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Abstract. In this paper, we propose a computational approach to solve a

model-based optimal control problem. Our aim is to obtain the optimal so-
lution of the nonlinear optimal control problem. Since the structures of both

problems are different, only solving the model-based optimal control problem
will not give the optimal solution of the nonlinear optimal control problem.

In our approach, the adjusted parameters are added into the model used so

as the differences between the real plant and the model can be measured.
On this basis, an expanded optimal control problem is introduced, where sys-

tem optimization and parameter estimation are integrated interactively. The

Hamiltonian function, which adjoins the cost function, the state equation and
the additional constraints, is defined. By applying the calculus of variation, a

set of the necessary optimality conditions, which defines modified model-based

optimal control problem, parameter estimation problem and computation of
modifiers, is then derived. To obtain the optimal solution, the modified model-

based optimal control problem is converted in a nonlinear programming prob-
lem through the canonical formulation, where the gradient formulation can be
made. During the iterative procedure, the control sequences are generated as

the admissible control law of the model used, together with the corresponding
state sequences. Consequently, the optimal solution is updated repeatedly by

the adjusted parameters. At the end of iteration, the converged solution ap-

proaches to the correct optimal solution of the original optimal control problem
in spite of model-reality differences. For illustration, two examples are studied

and the results show the efficiency of the approach proposed.
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1. Introduction. Linear quadratic regulator (LQR) problem is a standard optimal
control problem, where the cost functional is in quadratic criterion and the state
dynamics is in a linear form. Solving this optimal control problem is simple and the
corresponding optimal solution is guaranteed [2], [5], [15]. Further from this, the
applications of the LQR problem have been widely explored; see for examples, [13],
[14], [10], [18], [9]. However, the nonlinear state dynamics is always linearized before
a decision control policy is determined to minimize the cost function. In this point
of view, the adjustable parameters are introduced in the LQR model such that the
differences between the real plant and the model used can be measured repeatedly.
At the end of iteration, the iterative solution could converge to the correct optimal
solution of the original optimal control problem, in spite of model-reality differences
[11], [12], [1].

Usually, the sweep method is applied to construct the feedback control law in
solving the LQR model-based optimal control problem [2], [5]. It is the same work
as those done by [11], [12], [1]. In this paper, we propose an efficient computation
approach to construct the control sequences for the optimal control problem with
model-reality differences. On this basis, the model-based optimal control problem,
which is added with the adjusted parameters, is solved iteratively. Our aim is to ob-
tain the true optimal solution of the original optimal control problem via solving the
model-based optimal control problem repeatedly. For doing so, the initial control
sequences are defined from the LQR optimal control model. Then, the modified
model-based optimal control problem is formulated as a nonlinear programming
problem [15], [6], [3]. During each iteration step, the differences between the real
plant and the model used are measured by the adjusted parameters. It follows that
the value of the control sequences is updated through the gradient algorithm, where
the mathematical optimization technique is applicable. Within a given tolerance,
the iterative algorithm gives the correct optimal solution of the original optimal
control problem despite model-reality differences. It is highly recommended that
the gradient algorithm can make the way of solving optimal control problems with
model-reality differences more flexible.

The rest of the paper is organized as follows. In Section 2, a general class
of optimal control problem is described. In Section 3, a simplified model-based
optimal control problem is discussed, where the adjusted parameters are added into
the model used. It points out that the interactive between system optimization
and parameter estimation gives a modified optimal control problem, which can be
solved by the gradient algorithm. Consequently, an efficient iterative algorithm is
resulted. In Section 4, two illustrative examples are demonstrated and the efficiency
of the approach proposed is shown. Finally, some concluding remarks are made.

2. Problem Description. Consider a general class of optimal control problem
given below:

min
u(k)

J0(u) = ϕ(x(N), N) +

N−1∑
k=0

L(x(k), u(k), k)

subject to (1)

x(k + 1) = f(x(k), u(k), k)

x(0) = x0
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where u(k) ∈ <m, k = 0, 1, . . . , N − 1, and x(k) ∈ <n, k = 0, 1, . . . , N , are,
respectively, control and state sequences, whereas f : <n×<m×< → <n represents
the real plant, ϕ : <n × < → < is the terminal cost and L : <n × <m × < → <
is the cost under summation. Here, J0 is the scalar cost function and the initial
state x0 is a known vector. It is assumed that all functions in (1) are continuously
differentiable with respect to their respective arguments.

This problem is regarded as the real optimal control problem, and is referred to
as Problem (P). Notice that this problem is a complex problem, where the structure
of the problem is in nonlinear manner. Solving this kind of the problem is compu-
tationally demanding. In view of this, we propose to solve a simplified model-based
optimal control problem iteratively in order to obtain the correct optimal solution
of Problem (P). Let this simplified model-based optimal control problem, which is
referred to as Problem (M), be given below.

min
u(k)

J1(u) =
1

2
x(N)>S(N)x(N) + γ(N)

+

N−1∑
k=0

1

2
(x(k)>Qx(k) + u(k)>Ru(k)) + γ(k)

subject to (2)

x(k + 1) = Ax(k) +Bu(k) + α(k)

x(0) = x0

where α(k) ∈ <n, k = 0, 1, . . . , N − 1, and γ(k) ∈ <, k = 0, 1, . . . , N , are the
adjustable parameters, while A is an n × n state transition matrix and B is an
n × m contol coefficient matrix. J1 is the model cost function, S(N) and Q are
n× n positive semi-definite matrices, and R is a m×m positive definite matrix.

Notice that solving Problem (M) iteratively would give the true optimal solution
of Problem (P). This could be done because of the adjustable parameters that
introduced into the model are able to measure the differences between the real plant
and the model used repeatedly. In such way, we aim at approximating the correct
optimal solution of Problem (P) by solving Problem (M), in spite of model-reality
differences.

3. Gradient Algorithm with Model-Reality Differences. Now, let us intro-
duce an expanded optimal control problem, which is referred to as Problem (E),
given below.

min
u(k)

J2(u) =
1

2
x(N)>S(N)x(N) + γ(N)

+

N−1∑
k=0

1

2
(x(k)>Qx(k) + u(k)>Ru(k)) + γ(k)

+
1

2
r1 ‖ u(k)− v(k) ‖2 +

1

2
r2 ‖ x(k)− z(k) ‖2

subject to (3)

x(k + 1) = Ax(k) +Bu(k) + α(k)

x(0) = x0

1

2
z(N)>S(N)z(N) + γ(N) = ϕ(z(N), N)
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1

2
(z(k)>Qz(k) + v(k)>Rv(k)) + γ(k) = L(z(k), v(k), k)

Az(k) +Bv(k) + α(k) = f(z(k), v(k), k)

v(k) = u(k)

z(k) = x(k)

where v(k) ∈ <m, k = 0, 1, . . . , N−1, and z(k) ∈ <n, k = 0, 1, . . . , N , are introduced
to separate the control sequence and the state sequence in the optimization problem
from the respective signals in the parameter estimation problem, and ‖ · ‖ denotes
the usual Euclidean norm. The terms 1

2r1 ‖ u(k)− v(k) ‖2 and 1
2r2 ‖ x(k)− z(k) ‖2

with r1 ∈ < and r2 ∈ < are introduced to improve convexity and to facilitate
convergence of the resulting iterative algorithm. It is important to note that the
algorithm is designed such that the constraints v(k) = u(k) and z(k) = x(k) are
satisfied upon termination of the iterations, assuming that convergence is achieved.
The state constraint z(k) and the control constraint v(k) are used for the compu-
tation of the parameter estimation and matching schemes, while the corresponding
state constraint x(k) and control constraint u(k) are reserved for optimizing the
model-based optimal control problem. In this way, system optimization and the
parameter estimation are mutually interactive.

3.1. Necessary optimality conditions. Consider that the Hamiltonian function
for Problem (E) is defined by

H2(k) =
1

2
(x(k)>Qx(k) + u(k)>Ru(k)) + γ(k)

+
1

2
r1 ‖ u(k)− v(k) ‖2 +

1

2
r2 ‖ x(k)− z(k) ‖2

+ p(k + 1)>(Ax(k) +Bu(k) + α(k))

− λ(k)>u(k)− β(k)>x(k) (4)

where λ(k) ∈ <m, k = 0, 1, . . . , N − 1, and β(k) ∈ <n, k = 0, 1, . . . , N − 1, are
modifiers. Then, the augmented cost function becomes

J ′2(k) =
1

2
x(N)>S(N)x(N) + γ(N) + p(0)>x(0)− p(N)>x(N)

+ξ(N)(ϕ(z(N), N)− 1

2
x(N)>S(N)x(N)− γ(N))

+Γ>(x(N)− z(N))

+

N−1∑
k=0

H2(k)− p(k)>x(k) + λ(k)>v(k) + β(k)>z(k)

+ξ(k)(L(z(k), v(k), k)− 1

2
(z(k)>Qz(k) + v(k)>Rv(k))− γ(k))

+µ(k)>(f(z(k), v(k), k)−Az(k)−Bv(k)− α(k)) (5)

where p(k), γ(k), ξ(k), µ(k),Γ, λ(k), and β(k), are the appropriate multipliers to be
determined later.

Applying the calculus of variation [2], [5], the following necessary optimality
conditions are obtained.

(a) Stationary condition:

Ru(k) +B>p(k + 1)− λ(k) + r1(u(k)− v(k)) = 0 (6a)
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(b) Co-state equation:

p(k) = Qx(k) +A>p(k + 1)− β(k) + r2(x(k)− z(k)) (6b)

(c) State equation:

x(k + 1) = Ax(k) +Bu(k) + α(k) (6c)

(d) Boundary conditions:

p(N) = S(N)x(N) + Γ and x(0) = x0 (6d)

(e) Adjustable parameter equations:

ϕ(z(N), N) =
1

2
z(N)>S(N)z(N) + γ(N) (7a)

L(z(k), v(k), k) =
1

2
(z(k)>Qz(k) + v(k)>Rv(k)) + γ(k) (7b)

f(z(k), v(k), k) = Az(k) +Bv(k) + α(k) (7c)

(f) Multiplier equations:

Γ = ∇z(k)ϕ− S(N)z(N) (8a)

λ(k) = −(∇v(k)L−Rv(k))−
(

∂f

∂v(k)
−B

)>
p̂(k + 1) (8b)

β(k) = −(∇z(k)L−Qz(k))−
(

∂f

∂z(k)
−A

)>
p̂(k + 1) (8c)

with ξ(k) = 1 and µ(k) = p̂(k + 1).
(g) Separable variables:

z(k) = x(k), v(k) = u(k), p̂(k) = p(k) (9)

Notice that the parameter estimation problem is defined by (7) and the multipli-
ers can be calculated from (8). Equations (6a) C (6d) are the necessary conditions
for the modified model-based optimal control problem.

3.2. Modified optimal control problem. The modified model-based optimal
control problem, which is referred to as Problem (MM), is given below.

min
u(k)

J3(u) =
1

2
x(N)>S(N)x(N) + Γ>x(N) + γ(N)

+

N−1∑
k=0

1

2
(x(k)>Qx(k) + u(k)>Ru(k)) + γ(k)

+
1

2
r1 ‖ u(k)− v(k) ‖2 +

1

2
r2 ‖ x(k)− z(k) ‖2

− λ(k)>u(k)− β(k)>x(k)

subject to (10)

x(k + 1) = Ax(k) +Bu(k) + α(k)

x(0) = x0

with the specified α(k), γ(k),Γ, λ(k), β(k), v(k) and z(k), where the boundary con-
ditions x(0) and p(N) are given with the specified modifier Γ.
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Once the state sequences are determined corresponding to the control sequences
which can be defined through the gradient formulation, Problem (MM) could be
converted in a nonlinear programming problem as given below [15], [6], [7], [8], [17]:

min
u(k)

J3(u) subject to u(k) ∈ <m, k = 0, 1, . . . , N − 1.

Let this problem be Problem (MM’).

3.3. Admissible control law. Define

V = {v = [v1, . . . , vm]> ∈ <m : ai ≤ vi ≤ bi, i = 1, . . . ,m} (11)

where ai, i = 1, . . . ,m, and bi, i = 1, . . . ,m, are given real numbers. Notice
that V is compact and convex subset of <m. Let u denote a control sequence
{u(k) : k = 0, 1, . . . , N − 1} in V . Then, u is called an admissible control. Let U be
the class of all such admissible controls.

For each u ∈ U , let x(k|u), k = 0, 1, . . . , N , be a sequence in <n such that the
difference equations with the initial condition as mentioned in Problem (MM) are
satisfied. This discrete function is called the solution of the system in Problem
(MM) corresponding to u ∈ U .

Let the control vector u be perturbed by εû, where ε > 0 is a small real number
and û is an arbitrary but fixed perturbation of u given by

û =
[
(û(0))>, (û(1))>, . . . , (û(N − 1))>

]>
. (12)

This gives

uε = u+ εû = [(u(0, ε))>, (u(1, ε))>, . . . , (u(N − 1, ε))>]> (13)

where
u(k, ε) = u(k) + εû(k), k = 0, 1, . . . , N − 1. (14)

Following from (14), the state of the model used in Problem (MM) will be perturbed,
and so is the cost functional J3.

3.4. Gradient formula. Define the state sequences

x(k, ε) = x(k|ε), k = 1, 2, . . . , N. (15)

Then, the system of difference equations in Problem (MM) becomes

x(k + 1, ε) = Ax(k, ε) +Bu(k, ε) + α(k). (16)

The variation of the state (16) for k = 0, 1, . . . , N − 1, is

∆x(k + 1) =
dx(k + 1, ε)

dε
|ε=0 = A∆x(k, ε) +Bû(k) (17a)

with

∆x(0) = 0 (17b)

For the cost functional, it is considered that

∂J3(u)

∂u
û = lim

ε→0

J3(uε)− J3(u)

ε
≡ dJ3(uε)

dε
|ε=0

= (S(N)x(N) + Γ)>∆x(N)

+

N−1∑
k=0

(Ru(k) + r1(u(k)− v(k))− λ(k))>û

+ (Qx(k) + r2(x(k)− z(k))− β(k))>∆x(k) (18)
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Consider the Hamiltonian function defined by (4) and the corresponding necessary
conditions (6a) -C (6b), we obtain

∂J3(u)

∂u
û =(S(N)x(N) + Γ)>∆x(N)

+

N−1∑
k=0

(
∂H2(k)

∂u
− p(k + 1)>B)û(k) + (p(k)− p(k + 1)>A

)
∆x(k)

Then, it follows from (17a) that

∂J3
∂u

û =(S(N)x(N) + Γ)>∆x(N)

+

N−1∑
k=0

p(k)>∆x(k)− p(k + 1)>∆x(k + 1) +
∂H2(k)

∂u
û (19)

Hence, from the boundary conditions (6d) and (17b), it yields that

∂J3(u)

∂u
û =

[
∂H2(0)

∂u(0)
, . . . ,

∂H2(N − 1)

∂u(N − 1)
]

]
û.

Because of û is arbitrary, we obtain the following gradient formula

∂J3(u)

∂u
=

[
∂H2(0)

∂u(0)
, . . . ,

∂H2(N − 1)

∂u(N − 1)

]
. (20)

We present this result in the following as a theorem [15], [6], [7], [8], [17].

Theorem 3.1. Consider Problem (MM’). The gradient of J3(u), where

u = [(u(0))>, (u(1))>, . . . , (u(N − 1))>]>,

is given by (20).

3.5. Gradient algorithm. The computation of the gradient of the cost functional
J3(u) is stated in the following algorithm.

Gradient algorithm

Data For a given u = [(u(0))>, (u(1))>, . . . , (u(N−1))>]> such that (11) is satisfied.
Step 1 Solve the system of difference equations (6c) forward in time from k = 0 to

k = N with initial condition (6d) to obtain x(k|u), k = 0, 1, . . . , N .
Step 2 Solve the system of the co-state difference equations (6b) backward in time

from k = N to k = 1. Let p(k|u) be the solution obtained.
Step 3 Calculate the value of the cost functional J3(u) from (10).
Step 4 Compute the gradient of J3(u) according to (20).

Remark: The gradient algorithm is used for updating the control sequence,
solving the system of difference equations, to calculate the value of J3(u) and the
corresponding gradient of J3(u) in Problem (MM’).

3.6. Iterative algorithm. From the discussion above, we shall summarize the
result as an iterative algorithm, and the computation procedure is given below.

The iterative computation procedure

Data A,B,Q,R, S(N), x0, N, r1, r2, kv, kz, kp, f, L, ϕ. Note that A and B may be
chosen based on the linearization of f at x0 or the linear terms of f .
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Step 0 Compute a nominal solution. Assuming that α(k) = 0, k = 0, 1, . . . , N − 1,
and r1 = r2 = 0. Solve Problem (M) defined by (2) to obtain u(k)0, k =
0, 1, . . . , N − 1, and x(k)0, p(k)0, k = 0, 1, . . . , N . Then, with α(k) = 0,
k = 0, 1, . . . , N − 1, and using r1, r2 from the data. Set i = 0, v(k)0 =
u(k)0, z(k)0 = x(k)0, and p̂(k)0 = p(k)0.

Step 1 Compute the parameters γ(k)i, k = 0, 1, . . . , N , and α(k)i, k = 0, 1, . . . , N −
1, from (7). This is called the parameter estimation step.

Step 2 Compute the modifiers Γi, λ(k)i and β(k)i, k = 0, 1, . . . , N − 1, from (8).
Note that this step requires taking the derivatives of f and L with respect to
v(k)i and z(k)i.

Step 3 Using α(k)i, γ(k)i,Γi, λ(k)i, β(k)i, v(k)i and z(k)i, solve Problem (MM’) us-
ing the result that is presented in Theorem 3.1 and the gradient algorithm.
This is called the system optimization step.

3.1 Use (20) to obtain the new control u(k)i, k = 0, 1, . . . , N − 1.
3.2 Use (6c) to obtain the new state x̄(k)i, k = 0, 1, . . . , N .
3.3 Use (6b) to obtain the new costate p(k)i, k = 0, 1, . . . , N .

Step 4 Test the convergence and update the optimal solution of Problem (P). In
order to provide a mechanism for regulating convergence, a simple relaxation
method is employed:

v(k)i+1 = v(k)i + kv(u(k)i − v(k)i) (21a)

z(k)i+1 = z(k)i + kz(x(k)i − z(k)i) (21b)

p̂(k)i+1 = p̂(k)i + kp(p(k)i − p̂(k)i) (21c)

where kv, kz, kp ∈ (0, 1] are scalar gains. If v(k)i+1 = v(k)i, k = 0, 1, . . . ,
N − 1, and z(k)i+1 = z(k)i, k = 0, 1, . . . , N , within a given tolerance, stop;
else set i = i+ 1, and repeat the procedure starting with Step 1.

Remarks:

(a) A set of control sequences, which is for solving Problem (M) in Step 0, and
for solving Problem (MM’) in Step 3, respectively, is determined from (20) by
using the gradient algorithm.

(b) The parameters α(k)i, γ(k)i,Γi, λ(k)i, and β(k)i are zero in Step 0. Their
calculated values, where α(k)i and γ(k)i in Step 1, and Γi, λ(k)i, β(k)i in Step
2, change from iteration to iteration.

(c) Problem (P) is not necessary to be linear or to have a quadratic cost function.
(d) The conditions v(k)i+1 = v(k)i and z(k)i+1 = z(k)i are required to be

satisfied for the converged optimal control sequence and the converged state
sequence, respectively. The following averaged 2-norms are computed, and
then they are compared with a given tolerance to verify the convergence of
v(k) and z(k):

‖ vi+1 − vi ‖2=

(
1

N − 1

N−1∑
k=0

‖ v(k)i+1 − v(k)i ‖

)1/2

(22a)

‖ zi+1 − zi ‖2=

(
1

N

N∑
k=0

‖ z(k)i+1 − z(k)i ‖

)1/2

(22b)

(e) The relaxation scalars (kv, kz, kp) are step-sizes that regulate the convergence
mechanism. They are normally chosen from the interval (0, 1], but this choice



A GRADIENT ALGORITHM FOR OPTIMAL CONTROL 259

may not result in an optimal number of iterations. It is important to note
that the optimal choice of kv, kz, kp ∈ (0, 1] is problem dependent, requiring
that the proposed algorithm is run several times from Step 1 to Step 4. These
values are initially set as kv = kz = kp = 1 for the first run of the algorithm
from Step 1 to Step 4, and then the algorithm is run with different values
ranging from 0.1 to 0.9. The value that provides the optimal number of
iterations can then be determined. The parameters r1 and r2 are to enhance
convexity, leading to the improvement of the convergence of the algorithm.

4. Illustrative Examples. Two illustrative examples are demonstrated here. They
are continuous stirred-tank reactor problem [4] and inverted pendulum balancing
problem [16].

Example 1: Consider a continuous stirred-tank reactor problem. The real plant
is given by

x1(k + 1) = x1(k)− 0.02(x1(k) + 0.25) + 0.01(x2(k) + 0.5) exp

(
25x1(k)

x1(k) + 2

)
− 0.01(x1(k) + 0.25)u(k)

x2(k + 1) = 0.99x2(k)− 0.005− 0.01(x2(k) + 0.5) exp

(
25x1(k)

x1(k) + 2

)
for k = 0, 1, . . . , 77, with initial condition

x1(0) = 0.05, x2(0) = 0.

Our aim is to determine the control sequences u(k), k = 0, 1, . . . , N − 1, so that the
cost function

min
u(k)

J0(u) = 0.01

N−1∑
k=0

(x1(k))2 + (x2(k))2 + 0.1(u(k))2

is minimized over the state dynamics.
This problem is referred to as Problem (P).
The simplified model-based optimal control problem, which is referred to as Prob-

lem (M), is given below.

min
u(k)

J1(u) =
1

2

N−1∑
k=0

[(x1(k))2 + (x2(k))2 + 0.1(u(k))2 + 2γ(k)]

subject to[
x̄1(k + 1)
x̄2(k + 1)

]
=

[
1.0895 0.0184
−0.1095 0.9716

] [
x̄1(k)
x̄2(k)

]
+

[
−0.003
0.000

]
u(k) +

[
α1(k)
α2(k)

]
with the initial condition x(0) = [0.05 0]>, and the adjusted parameters γ(k), and
α(k) = [α1(k) α2(k)]>. The tolerance is set to 10−5.

The simulation result that is shown in Table 1 presents the efficiency of the algo-
rithm proposed, where 99.3% of the initial cost has been reduced. The trajectories
of control and state are, respectively, shown in Figures 1 and 2, while the adjust-
ed parameters α(k) and γ(k) are, respectively, shown in Figures 3 and 4. From
the value of the adjusted parameters,which their values are approximated to zero
within the given tolerance, it seems that the correct optimal solution of the original
optimal control problem is obtained in spite of model-reality differences.
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Figure 1. Final control trajectory u(k), Example 1
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Figure 2. Final state trajectory x(k), Example 1



A GRADIENT ALGORITHM FOR OPTIMAL CONTROL 261

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.1

−0.05

0

0.05

0.1

0.15

time, t

al
ph

a
alp1
alp2

Figure 3. Adjusted parameter α(k), Example 1
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Figure 4. Adjusted parameter γ(k), Example 1
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Table 1. Simulation result, Example 1

Iteration Elapsed time Initial cost Final cost
number (s) J∗1 J∗9

9 35.1300 2.0859 0.014634

Example 2: Consider an inverted pendulum balancing problem. Problem (P)
is described as follows. The state dynamic equations are discretized and given by

x1(k + 1) = x1(k) + 0.1x2(k)

x2(k + 1) = x2(k) +
3.234 sinx1(k)− 0.015(x2(k))2 cosx1(k) sinx1(k)

2.2− 0.15(cosx1(k))2
(23)

+
0.3u(k) cosx1(k)

2.2− 0.15(cosx1(k))2

for k = 0, 1, . . . , 29, with initial condition

x1(0) = 1.0, x2(0) = 0.5.

We aim to determine a set of the control sequences u(k), k = 0, 1, . . . , N − 1, such
that the cost function

min
u(k)

J0(u) = 0.05

N−1∑
k=0

(x1(k))2 + (x2(k))2 + (u(k))2

is to be minimized over the state dynamics.
The corresponding Problem (M) is given below.

min
u(k)

J1(u) = 0.05

N−1∑
k=0

[(x1(k))2 + (x2(k))2 + 0.1(u(k))2 + 2γ(k)]

subject to[
x̄1(k + 1)
x̄2(k + 1)

]
=

[
1 0.1

1.5776 1

] [
x̄1(k)
x̄2(k)

]
+

[
0.0000
0.1463

]
u(k) +

[
α1(k)
α2(k)

]
with the initial condition x(0) = [1.0 0.5]>, and the adjusted parameters γ(k) and
α(k) = [α1(k) α2(k)]>. The given tolerance is 10−3.

The simulation result is shown in Table 2 with the 79% efficiency of the algorithm
proposed. Figures 5 and 6 show the trajectories of control and state, respectively,
while Figures 7 and 8 show the adjusted parameters α(k) and γ(k), respectively.
Since the values of the adjusted parameters tend to zero at the end of iteration step,
it shows that the true optimal solution of the original optimal control problem is
obtained despite model-reality differences.

Table 2. Simulation result, Example 2

Iteration Elapsed time Initial cost Final cost
number (s) J∗1 J∗7

7 2.063 452.5640 94.3415
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Figure 5. Final control trajectory u(k), Example 2
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Figure 6. Final state trajectory x(k), Example 2
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Figure 7. Adjusted parameter α(k), Example 2
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5. Concluding Remarks. A general class of discrete-time optimal control prob-
lems, where model-reality differences is taken in account, was discussed in this
paper. Because of the complexity of the original optimal control problem, a sim-
plified model-based optimal control problem was proposed to be solved iteratively
such that the true optimal solution of the original optimal control problem could be
obtained. With introducing an expanded optimal control problem, we integrated
system optimization and parameter estimation interactively. In addition to this,
a modified optimal control problem was formulated as a nonlinear programming
problem and it was solved by using the gradient approach. The resulting iterative
algorithm, which integrates the gradient algorithm and the model-reality differ-
ences, shows the efficiency through the illustrative examples discussed. On the
other hand, the convergence of the adjusted parameters is guaranteed as Lipschitz
condition is satisfied. In conclusion, the applicability of the algorithm proposed is
highly recommended for solving nonlinear optimal control problems.

REFERENCES

[1] V. M. Becerra and P. D. Roberts, Dynamic integrated system optimization and parameter

estimation for discrete time optimal control of nonlinear systems, Int. J. Control , 63 (1996),
257–281.

[2] A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing Company, New
York, 1975.

[3] S. L. Kek, Nonlinear programming approach for optimal control problems, Proceeding of the
2nd International Conference on Global Optimization and Its Applications, (2013), 20–25.

[4] D. E. Kirk, Optimal Control Theory: An Introduction, Mineola, NY: Dover Publications,
2004.

[5] F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed, John Wiley & Sons, 1995.

[6] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal

control: a survey, Journal of Industrial and Management Optimization, 10 (2014), 275–309.

[7] R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system
optimal control problems, IEEE Transactions on Automatic Control , 54 (2009), 2455–2460.

[8] R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a
continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250–

2257.

[9] L. F. Lupián and J. R. Rabadán-Martin, LQR control methods for trajectory execution in
omnidirectional mobile robots, Recent Advances in Mobile Robotics, (2011), 385–400.

[10] L. H. Nguyen, S. Park, A. Turnip and K. S. Hong, Application of LQR control theory to the

design of modified skyhook control gains for semi-active suspension systems, Proceeding of

ICROS-SICE International Joint Conference, (2009), 4698–4703.

[11] P. D. Roberts and T. W. C. Williams, On an algorithm for combined system optimization

and parameter estimation, Automatica, 17 (1981), 199–209.

[12] P. D. Roberts, Optimal control of nonlinear systems with model-reality differences, Proceed-

ings of the 31st IEEE Conference on Decision and Control, 1 (1992), 257–258.

[13] R. C. H. del Rosario and R. C. Smith, LQR control of shell vibrations via piezocreramic

actuators, NASA Contractor Report 201673, ICASE Report No. 97-19, 1997.

[14] J. Saak and P. Benner, Application of LQR techniques to the adaptive control of quasilinear

parabolic PDEs, Proceedings in Applied Mathematics and Mechanics, 2007.

[15] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control

Problem, Longman Scientific and Technical, Essex, 1991.

[16] L. X. Wang, A Course in Fuzzy Systems and Control, Upper Saddle River, NJ, 1997.

http://www.ams.org/mathscinet-getitem?mr=MR1647823&return=pdf
http://dx.doi.org/10.1080/00207179608921843
http://dx.doi.org/10.1080/00207179608921843
http://dx.doi.org/10.1080/00207179608921843
http://dx.doi.org/10.1080/00207179608921843
http://www.ams.org/mathscinet-getitem?mr=MR0446628&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3119153&return=pdf
http://dx.doi.org/10.3934/jimo.2014.10.275
http://dx.doi.org/10.3934/jimo.2014.10.275
http://dx.doi.org/10.3934/jimo.2014.10.275
http://dx.doi.org/10.3934/jimo.2014.10.275
http://www.ams.org/mathscinet-getitem?mr=MR2562853&return=pdf
http://dx.doi.org/10.1109/TAC.2009.2029310
http://dx.doi.org/10.1109/TAC.2009.2029310
http://dx.doi.org/10.1109/TAC.2009.2029310
http://dx.doi.org/10.1109/TAC.2009.2029310
http://www.ams.org/mathscinet-getitem?mr=MR2890784&return=pdf
http://dx.doi.org/10.1016/j.automatica.2009.05.029
http://dx.doi.org/10.1016/j.automatica.2009.05.029
http://dx.doi.org/10.1016/j.automatica.2009.05.029
http://dx.doi.org/10.1016/j.automatica.2009.05.029
http://www.ams.org/mathscinet-getitem?mr=MR607198&return=pdf
http://dx.doi.org/10.1016/0005-1098(81)90095-9
http://dx.doi.org/10.1016/0005-1098(81)90095-9
http://dx.doi.org/10.1016/0005-1098(81)90095-9
http://dx.doi.org/10.1016/0005-1098(81)90095-9
http://www.ams.org/mathscinet-getitem?mr=MR1153024&return=pdf


266 S. L. KEK, A. A. MOHD ISMAIL AND K. L. TEO

[17] C. Z. Wu, K. L. Teo and V. Rehbock, Optimal control of piecewise affine systems with piece-
wise affine state feedback, Journal of Industrial and Management Optimization, 5 (2009),

737–747.

[18] B. Yang and B. Xiong, Application of LQR techniques to the anti-sway controller of overhead

crane, Advanced Material Research, 139-141 (2010), 1933–1936.

Received May 2014; 1st revision June 2014; final revision March 2015.

E-mail address: slkek@uthm.edu.my

E-mail address: mismail@utm.my

E-mail address: K.L.Teo@curtin.edu.au

http://www.ams.org/mathscinet-getitem?mr=MR2534039&return=pdf
http://dx.doi.org/10.3934/jimo.2009.5.737
http://dx.doi.org/10.3934/jimo.2009.5.737
http://dx.doi.org/10.3934/jimo.2009.5.737
http://dx.doi.org/10.3934/jimo.2009.5.737
mailto:slkek@uthm.edu.my
mailto:mismail@utm.my
mailto:K.L.Teo@curtin.edu.au

	1. Introduction
	2. Problem Description
	3. Gradient Algorithm with Model-Reality Differences
	3.1. Necessary optimality conditions
	3.2. Modified optimal control problem
	3.3. Admissible control law
	3.4. Gradient formula
	3.5. Gradient algorithm
	3.6. Iterative algorithm

	4. Illustrative Examples
	5. Concluding Remarks
	REFERENCES

