
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Detection of Vulnerabilities and Automatic Protection for
Web Applications

Documento provisório

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE CIÊNCIAS DA COMPUTAÇÃO

Ibéria Vitória de Sousa Medeiros

Tese orientada pelo Prof. Doutor Miguel Nuno Dias Alves Pupo Correia
e pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

Documento especialmente elaborado para a obtenção do grau de doutor

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/78466041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ul.pt
http://www.fc.ul.pt
mailto:ibemed@gmail.com

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

Detection of Vulnerabilities and Automatic Protection for
Web Applications

Documento provisório

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE CIÊNCIAS DA COMPUTAÇÃO

Ibéria Vitória de Sousa Medeiros

Tese orientada pelo Prof. Doutor Miguel Nuno Dias Alves Pupo Correia
e pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

Documento especialmente elaborado para a obtenção do grau de doutor

2016

http://www.ul.pt
http://www.fc.ul.pt
mailto:ibemed@gmail.com

Resumo

Em duas décadas de existência, a web evoluiu de uma plataforma para aceder

a conteúdos hipermédia para uma infraestrutura para execução de aplicações

complexas. Estas aplicações têm várias formas, desde aplicações pequenas e

caseiras, a aplicações complexas e de grande escala e para diversos propósitos,

como por exemplo serviços comerciais como o Gmail, Office 365 e Facebook.

Apesar do grande esforço de investigação da última década em como tornar as

aplicações web seguras, estas continuam a ser uma fonte de problemas e a sua

segurança um desafio. Uma parte importante deste problema deriva de código

fonte vulnerável, muitas vezes desenvolvido com linguagens de programação

com poucas validações e construído por pessoas sem os conhecimentos mais

adequados para uma programação segura. Atualmente a categoria de vulnera-

bilidades mais explorada é a de validação de input, diretamente relacionada com

os dados (inputs) que os utilizadores inserem nas aplicações web.

A tese propõe metodologias para a detecção e remoção de vulnerabilidades no

código fonte e para a proteção das aplicações web em tempo de execução, em-

pregando técnicas como a análise estática de código, aprendizagem máquina e

protecção em tempo de execução.

Numa primeira fase, a análise estática é utilizada para descobrir e identificar

vulnerabilidades no código programado na linguagem PHP. Os inputs dos uti-

lizadores são rastreados e é verificado se estes são parâmetros de funções PHP

susceptíveis de serem exploradas. A combinação desta técnica com a aprendiza-

gem máquina aplicada em minerização de dados é proposta para prever se as

vulnerabilidades detectadas são falsos positivos ou reais. Caso sejam reais, o

resultado da análise estática de código é utilizado para eliminá-las, corrigindo

o código fonte automaticamente com fixes (remendos) e protegendo assim as

aplicações web.

A tese apresenta também uma nova técnica de análise estática de código para
descobrir vulnerabilidades. A técnica aprende o que é código vulnerável e de-
pois tira partido desse conhecimento para localizar problemas. A aprendizagem
máquina aplicada ao processamento de linguagem natural é utilizada para, numa
primeira instância, aprender aspectos que caracterizam as vulnerabilidades, para
depois processar e analisar o código fonte, classificando-o como sendo ou não
vulnerável, descobrindo e identificando os erros.

Numa terceira fase, é proposta uma nova técnica de proteção em tempo de ex-
ecução para descobrir e bloquear ataques de injeção contra bases de dados. A
técnica é concretizada dentro do sistema de gestão de bases de dados para mel-
horar a eficácia na detecção dos ataques. É utilizada conjuntamente com identi-
ficadores de código fonte que, quando um ataque é sinalizado, permitem identi-
ficar a vulnerabilidade no programa.

No total este trabalho permitiu a identificação de cerca de 1200 vulnerabilidades
em aplicações web de código aberto disponíveis na Internet, das quais 560 eram
até então desconhecidas. As vulnerabilidades desconhecidas foram reportadas
aos autores do software onde foram encontradas e muitas delas já foram removi-
das.

Palavras Chave: aplicações web, segurança de software, vulnerabilidades de
validação de input, falsos positivos, análise do código fonte, protecção automática,
aprendizagem máquina

Abstract

In less than three decades of existence, the Web evolved from a platform for

accessing hypermedia to a framework for running complex web applications.

These applications appear in many forms, from small home-made to large-scale

commercial services such as Gmail, Office 365, and Facebook. Although a sig-

nificant research effort on web application security has been on going for a while,

these applications have been a major source of problems and their security con-

tinues to be challenged. An important part of the problem derives from vulner-

able source code, often written in unsafe languages like PHP, and programmed

by people without the appropriate knowledge about secure coding, who leave

flaws in the applications. Nowadays the most exploited vulnerability category

is the input validation, which is directly related with the user inputs inserted in

web application forms.

The thesis proposes methodologies and tools for the detection of input valida-

tion vulnerabilities in source code and for the protection of web applications

written in PHP, using source code static analysis, machine learning and runtime

protection techniques.

An approach based on source code static analysis is used to identify vulnerabili-

ties in applications programmed with PHP. The user inputs are tracked with taint

analysis to determine if they reach a PHP function susceptible to be exploited.

Then, machine learning is applied to determine if the identified flaws are actu-

ally vulnerabilities. In the affirmative case, the results of static analysis are used

to remove the flaws, correcting the source code automatically thus protecting the

web application.

A new technique for source code static analysis is suggested to automatically

learn about vulnerabilities and then to detect them. Machine learning applied to

natural language processing is used to, in a first instance, learn characteristics

about flaws in the source code, classifying it as being vulnerable or not, and then
discovering and identifying the vulnerabilities.

A runtime protection technique is also proposed to flag and block injection at-
tacks against databases. The technique is implemented inside the database man-
agement system to improve the effectiveness of the detection of attacks, avoid-
ing a semantic mismatch. Source code identifiers are employed so that, when an
attack is flagged, the vulnerability is localized in the source code.

Overall this work allowed the identification of about 1200 vulnerabilities in open
source web applications available in the Internet, 560 of which previously un-
known. The unknown vulnerabilities were reported to the corresponding soft-
ware developers and most of them have already been removed.

Keywords: input validation vulnerabilities, web applications, software security,
source code static analysis, machine learning, automatic protection.

Resumo Estendido

Desde o seu aparecimento no início dos anos 90, a World Wide Web evoluiu
de uma plataforma de acesso a texto e outros elementos multimédia estáticos
para a execução de aplicações web. Estas aplicações apresentam-se em diver-
sas formas, desde simples aplicações até serviços comerciais de grande escala
(ex., Google Docs, Twitter, Facebook), tendo-se gradualmente tornado parte da
nossa vida diária. No entanto, as aplicações web têm sido afetadas por vários
problemas de segurança com impacto nas organizações. Por exemplo, relatórios
recentes mostram um aumento de 33% dos ataques web em 2012, de 62% dos
roubos de dados em 2013, de 4% de websites críticos contendo vulnerabilidades
em 2014 (Symantec, 2013, 2014, 2015). Sem dúvida que uma razão para a inse-
gurança das aplicações web é que muitos programadores não possuem um con-
hecimento adequado sobre a construção de código seguro, deixando, portanto,
as aplicações com vulnerabilidades.

Embora a segurança tenha começado a ser tomada em consideração durante o
desenvolvimento destas aplicações, a tendência para o código fonte conter vul-
nerabilidades persiste. O OWASP top 10 de 2013 reporta a injecção de SQL e
o cross-site scripting (XSS) como as duas classes de vulnerabilidades de maior
risco (Williams & Wichers, 2013). Embora existam ferramentas para lidar com
estas vulnerabilidades, a verdade é que as boas práticas de programação contin-
uam a não ser suficientemente adoptadas e os ataques que exploram tais vulnera-
bilidades são muito comuns. Tanto a injecção de SQL como o XSS estão incluí-
das no que denominamos por vulnerabilidades de validação de input. Estas são
caracterizadas por permitirem que inputs maliciosos atinjam certas chamadas a
funções, sem terem sido devidamente sanitizados ou validados. Agravando a
complexidade das soluções actuais, novas tecnologias estão a tornar-se comuns
nas aplicações web. Um exemplo são as base de dados NoSQL, particularmente
convenientes para armazenar big data. Com as novas tecnologias, surgem tam-
bém novos vectores de ataque com variadas consequências, como por exemplo,

os 600 TB de dados recentemente roubados do MongoDB (The Hacker News,

2015) (o sistema gestor de bases de dados NoSQL mais utilizado (DB-Engines,

2015)).

A análise estática de código é uma das técnicas utilizada pelas empresas para

diminuir o problema de vulnerabilidades de software (WhiteHat Security, 2015).

As ferramentas de análise estática procuram vulnerabilidades no código fonte,

ajudando os programadores a melhorar o código. Esta técnica é eficaz, en-

contrando potenciais erros nos programas, mas tende a reportar muitos falsos

positivos (falsas vulnerabilidades) por várias razões, nomeadamente devido à

indecidibilidade do problema a resolver (Landi, 1992). Este problema é partic-

ularmente difícil de contornar e advém de linguagens de programação como o

PHP, as quais são fracamente tipificadas e não formalmente especificadas (Big-

gar & Gregg, 2009; Biggar et al., 2009). A análise dinâmica é uma técnica para

encontrar vulnerabilidades em tempo de execução, rastreando os inputs dos uti-

lizadores e verificando se eles constituem um ataque (Huang et al., 2003). Os

varredores de aplicações web utilizam assinaturas para detectar se existem vul-

nerabilidades específicas numa aplicação, mas, no entanto, esta abordagem tem

uma elevada taxa de falsos negativos (não encontra vulnerabilidades existentes)

(Vieira et al., 2009). As ferramentas de fuzzing e injecção de ataques também

procuram por vulnerabilidades, mas através da injecção de inputs maliciosos

(Antunes et al., 2010; Banabic & Candea, 2012). Ao contrário destas técnicas,

os mecanismos de protecção em tempo de execução não procuram por vulner-

abilidades em software, mas detectam ataques que tentam explorá-las (Band-

hakavi et al., 2007; Boyd & Keromytis, 2004; Halfond & Orso, 2005; Son et al.,

2013).

A aprendizagem máquina é uma técnica muito diferente e com um grande leque

de aplicações. Nesta tese ela é usada na identificação de vulnerabilidades em

código fonte. De facto, as técnicas anteriores que procuram vulnerabilidades e a

aprendizagem máquina são, em certo sentido, abordagens disjuntas: os humanos

codificam o conhecimento sobre vulnerabilidades versus obtenção automática

deste conhecimento através da aprendizagem máquina. Curiosamente esta di-

cotomia tem estado presente há muito noutra área da segurança, a detecção de

intrusões. Como o seu nome sugere, a detecção de intrusões baseada em com-

portamento assenta em modelos de comportamento normal criados utilizando

técnicas de aprendizagem máquina.

Esta tese enquadra-se no contexto de segurança de software. O objectivo desta

tese está relacionado com a investigação de técnicas para a detecção de vulner-

abilidades e para a proteção automática de aplicações web. A investigação recai

em dois focos principais: detecção e protecção.

O foco da detecção prende-se com a descoberta e identificação de vulnerabili-

dades de validação de input no código fonte das aplicações web, utilizando para

tal a análise estática de código e a aprendizagem máquina. A combinação das

duas soluções aplicada em mineração de dados é proposta para prever se as vul-

nerabilidades detectadas pela primeira são falsos positivos ou reais. Caso sejam

reais, o resultado da análise estática de código é utilizado para removê-las, cor-

rigindo o código fonte automaticamente e protegendo assim as aplicações web.

A aprendizagem máquina utilizada para descobrir vulnerabilidades também foi

experimentada, sendo inovadora nesta área de investigação. A técnica consiste

em aprender sobre vulnerabilidades para depois detectá-las. Assim sendo, a

aprendizagem máquina aplicada ao processamento de linguagem natural (NLP)

é utilizada para, numa primeira instância, aprender as características das vulner-

abilidades em código fonte, para depois poder determinar se as aplicações são

ou não vulneráveis.

O foco de protecção automática de aplicações web prende remover este tipo de

vulnerabilidades pela correção do código fonte e em sinalizar e bloquear ataques

de injecção em tempo de execução. A remoção, tal como referido acima, é

efectuada utilizando os resultados da análise estática de código. Para bloquear

ataques de injeção contra bases de dados utiliza-se uma protecção implemen-

tada dentro do sistema gestor de bases de dados (SGBD). Esta opção, para além

de melhorar a eficácia na deteção dos ataques, lida também com o problema

de semantic mismatch existente entre as linguagens de programação do lado do

servidor e o SGBD, quando este interpreta os pedidos (queries) compostos e
enviados pelas aplicações web. Como forma de localização de vulnerabilidades
no código das aplicações, a protecção em tempo de execução é combinada com
identificadores de código permitindo a sua descoberta quando um ataque é de-
tectado.

Este trabalho permitiu a identificação de cerca de 1200 vulnerabilidades em apli-
cações web de código aberto disponíveis na Internet, das quais 560 eram até
então desconhecidas. As vulnerabilidades desconhecidas foram reportadas aos
autores do software onde foram encontradas e muitas delas já foram removidas.

Acknowledgements

I usually say that there are no first or second places to thank who helps in the

realization of a project. This thesis is not an exception, and I hope I do not forget

anyone.

To my advisors, Professor Miguel Correia and Professor Nuno Neves, that con-

tributed in different periods and ways. Professor Miguel Correia that is my ad-

visor since my master degree, who taught me everything that I know about re-

search, guiding me with rigor, scientific wisdom, and enthusiasm. I also appre-

ciate his professionalism, time, support, wise advises, motivation and patience,

and for believing that this thesis was possible in the form that it was realized,

remotely. Professor Nuno Neves that in different times had a great impact in my

evolution as researcher. First, transmitting me what was missing in my research,

looking for details and teaching me that the little things (even the little ones)

are fundamental and make the difference. Secondly, teaching me how to see the

opportunities of new research topics and to not waste them. Also, in this last

period of the writing of this thesis, the continued concern and friendly support,

that I appreciated very much. Thank you, Nuno! Despite not working near them,

I had the luck and privilege of having the two advisors I wanted since my master

degree.

I would like to thank Professor Paulo Veríssimo who, with his way of teaching

security, awoke the “security bug” inside me, and in a certain way put me in this

path.

I also want to thank Dr. Miguel Beatriz for his work and dedication, contribut-

ing on one of the chapters of this thesis. Professor Armando Mendes from the

Department of Mathematics (DM), of University of Azores (Uac), and Professor

Bruno Martins from Institute Superior Técnico of University of Lisbon, for their

valuable comments on revisions of papers, and Dra. Alexandra Baptista for the
development of the WAP tool logo.

To my friend, life partner, and husband, Pedro Marques, for his support and
comprehension, especially in the hard moments, in which he had to abdicate
of my company. Also, to Cocas (Inês Gonçalves), my niece, that patiently and
curiously followed this thesis, and Maria de Jesus Sousa, mother of my husband,
for her support.

I thank my basketball team, that since my teen age showed constant friendship,
for all the games and laughs, helping me in hard times, with more stress. In
particular thank you Ana Cunha, Fátima Soares Sousa (Fêma), Mónica Cam-
pos Cardoso (Mokna), Patricia Índio (Índia Colibri), Patricia Martins (Pat), and
Cidália Botelho and Pilar Melo that joined us later.

I express my gratitude to all my students for their comprehension, and Professor
Isaura Ribeiro, Professor Jerónimo Nunes, and Professor Maria do Carmo Mar-
tins (Miká) from DM, Uac, for their friendship, along these years of doctorate.
As well as, to Professor Dulce Domingos, Professor Ana Respício, and the mas-
ter students of Security Informatics from the Department of Informatics (DI), of
Faculty of Sciences, University of Lisbon (FCUL), for their companionship and
friendship along the ParIS – ISP event.

Not repeating, but reinforcing, a very special thanks, and expressing my sincere
gratitude, to my advisor Miguel and my husband Pedro. This thesis would not
exist without Miguel and would not be possible without them.

Finally, I gratefully acknowledge the financial support from European Comis-
sion (EC) through projects FP7-607109 (SEGRID) and FP7-257475 (MASSIF),
and from national funds through Fundação para a Ciência e a Tecnologia (FCT)
with the project RC-Clouds (PTDC/EIA-EIA/115211/2009) and references UID
/CEC/50021/2013 (INESC-ID) and UID/CEC/00408/2013 (LaSIGE).

Àqueles para quem a aprendizagem é uma fonte de inspiração e paixão.

&

À vida.

Contents

Contents xii

List of Figures xviii

List of Tables xxi

List of Code Listings xxiii

List of Notations and Acronyms xxv

List of Publications xxix

1 Introduction 1
1.1 Objectives . 3

1.2 Summary of Contributions . 5

1.3 Structure of the Thesis . 7

2 Context and Related Work 9
2.1 Input Validation Vulnerabilities in Web Applications 9

2.1.1 Query manipulation . 10

2.1.2 Client-side injection . 14

2.1.3 File and path injection . 16

2.1.4 Command injection . 17

2.2 Detection of Vulnerabilities . 18

2.2.1 Static analysis . 19

2.2.2 Fuzzing . 25

2.3 Vulnerabilities and Machine Learning . 27

2.3.1 Machine learning classifiers and data mining 27

2.3.2 Sequence models and natural language processing 29

2.3.3 Detecting vulnerabilities using machine learning 30

xiii

CONTENTS

2.3.4 Related uses of machine learning 31
2.4 Removing Vulnerabilities and Runtime Protection 33

2.4.1 Removing vulnerabilities . 33
2.4.2 Runtime protection . 35

3 Detecting and Removing Vulnerabilities with Static Analysis and Data Mining 39
3.1 A Hybrid of Static Analysis and Data Mining 41

3.1.1 Overview of the approach . 41
3.1.2 Architecture . 43

3.2 Detecting Candidate Vulnerabilities by Taint Analysis 44
3.3 Predicting False Positives . 48

3.3.1 Classification of vulnerabilities 50
3.3.2 Classifiers and metrics . 51
3.3.3 Evaluation of classifiers . 54
3.3.4 Selection of classifiers . 59
3.3.5 Final selection and implementation 61

3.4 Fixing and Testing the Source Code . 62
3.4.1 Code correction . 62
3.4.2 Testing fixed code . 63

3.5 Implementation and Challenges . 65
3.6 Experimental Evaluation . 67

3.6.1 Large scale evaluation . 67
3.6.2 Taint analysis comparative evaluation 68
3.6.3 Full comparative evaluation . 70
3.6.4 Fixing vulnerabilities . 72
3.6.5 Testing fixed applications . 72

3.7 Conclusions . 73

4 Detecting Vulnerabilities using Weapons 75
4.1 Architecture . 76
4.2 Restructuring WAP . 77

4.2.1 Code analyzer . 77
4.2.2 False positive predictor . 79
4.2.3 Code corrector . 83

xiv

CONTENTS

4.2.4 Weapons . 85

4.2.5 Effort to modify WAP . 86

4.3 Extending WAP with weapons . 87

4.3.1 Reusing the sub-modules . 88

4.3.2 Creating weapons . 88

4.4 Experimental Evaluation . 89

4.4.1 Real web applications . 90

4.4.2 WordPress plugins . 92

4.5 Conclusions . 94

5 Learning to Detect Vulnerabilities 97

5.1 Overview of the Approach . 99

5.2 Intermediate Slice Language . 100

5.2.1 ISL tokens and grammar . 101

5.2.2 Variable map . 105

5.2.3 Slice translation process . 105

5.3 The Model . 106

5.3.1 Building the corpus . 107

5.3.2 Sequence model . 110

5.3.3 Detecting vulnerabilities . 114

5.4 Implementation and Assessment . 116

5.4.1 Implementation of the DEKANT 117

5.4.2 Model and corpus assessment . 118

5.5 Experimental Evaluation . 120

5.5.1 Open source software evaluation 121

5.5.2 Comparison with data mining tools 124

5.5.3 Comparison with taint analysis tools 128

5.6 Discussion . 128

5.7 Conclusions . 129

xv

CONTENTS

6 Preventing Injection Attacks inside the DBMS 131
6.1 DBMS Injection Attacks . 133
6.2 The SEPTIC Approach . 136

6.2.1 SEPTIC overview . 136
6.2.2 Query structures and query models 138
6.2.3 Query identifiers . 140
6.2.4 Attack detection . 142
6.2.5 Training . 144
6.2.6 Detection examples . 145
6.2.7 Discussion . 147

6.3 Implementation . 148
6.3.1 Protecting MySQL . 148
6.3.2 Inserting identifiers in Zend . 150
6.3.3 Inserting identifiers in Spring / Java 152

6.4 Experimental Evaluation . 153
6.4.1 Attack detection . 153
6.4.2 Performance overhead . 158

6.5 Extensions to SEPTIC . 161
6.5.1 Protecting other DBMSs . 161
6.5.2 Vulnerability diagnosis . 163
6.5.3 Detecting attacks against non-web applications 164

6.6 Conclusions . 164

7 Conclusions and Future Work 167
7.1 Conclusions . 167
7.2 Future Work . 170

Bibliography 173

xvi

List of Figures

3.1 Information flows that exploit web vulnerabilities. 42

3.2 Architecture including main modules, and data structures. 44

3.3 Example (i) AST, (ii) TST, and (iii) taint analysis. 45

3.4 Script with SQLI vulnerability, its TEPT, and untaint data structures. 46

3.5 Number of attribute occurrences in the original data set. 55

3.6 Number of attribute occurrences in the balanced data set. 58

4.1 Overview of the WAP tool modules and data flow. 77

4.2 Reorganization of WAP’s code analyzer module. 78

4.3 Reorganization of the false positives predictor module. 84

4.4 Downloads and active installed plugins of 115 analyzed (blue columns) and

23 vulnerable (orange columns) plugins. 94

4.5 Number of vulnerabilities detected by class in the vulnerable web applica-

tions and WordPress plugins. 95

5.1 Overview on the proposed approach. 101

5.2 Code vulnerable to SQLI, translation into ISL, and detection of the vulnera-

bility. 106

5.3 Code with a slice vulnerable to XSS (lines {1, 2, 4}) and a slice not vulner-

able (lines {1, 2, 3}), with translation into ISL. 106

5.4 Model graph of the proposed HMM. 111

5.5 Models for two example corpus sequences. 112

5.6 Parameters of the model extracted from the corpus. The columns represent

the 5 states in the order that appears in the first column of Table 5.2. The

lines of matrix (c) are the tokens in the order appearing in the first column of

Table 5.1 . 119

xvii

LIST OF FIGURES

6.1 Architecture and data flows of a web application and SEPTIC (optional com-
ponents in gray). 137

6.2 A generic query structure. 138
6.3 Representation of a query as parse tree, structure (QS) and model (QM). . . 139
6.4 QS of query SELECT name FROM users WHERE user=? AND pass=?

with admin’-- as user. 146
6.5 Stack of query with the admin’ AND 1=1 input. 147
6.6 Placement of the protections considered in the experimental evaluation: SEP-

TIC, anti-SQLI tools, and a WAF. 154
6.7 Latency and overhead with refbase varying the number of PCs, each one

with a single browser. 160
6.8 Overhead with refbase with 4 PCs and varying the number browsers. 160
6.9 Overhead of SEPTIC with PHP Address Book, refbase and ZeroCMS appli-

cations using 20 browsers. 161

xviii

List of Tables

2.1 Vulnerability classes split by vulnerability categories. 10

3.1 Sanitization functions used to fix PHP code by vulnerability and sensitive sink. 49

3.2 Attributes and class for some vulnerabilities 52

3.3 Confusion matrix (generic) . 53

3.4 Evaluation of the machine learning models applied to the original data set . 55

3.5 Confusion matrix of the top 3 classifiers (first two with original data, third

with a balanced data set) . 57

3.6 Evaluation of the machine learning models applied to the balanced data set . 57

3.7 Confusion matrix of Logistic Regression classifier applied to a false positives

data set . 59

3.8 Evaluation of the induction rule classifiers applied to our original data set . 61

3.9 Set of induction rules from the JRip classifier 61

3.10 Action and output of the fixes . 63

3.11 Summary of the results of running WAP with open source packages 69

3.12 Results of running WAP’s taint analyzer (WAP-TA), Pixy, and WAP complete (with

data mining) . 70

3.13 Evaluation of the machine learning models applied to the data set resulting

from PhpMinerII . 71

3.14 Confusion matrix of PhpMinerII with LR 71

3.15 Summary for WAP, Pixy and PhpMinerII 71

3.16 Results of the execution of WAP with all vulnerabilities it detects and corrects 72

4.1 Attributes and symptoms defined in the original WAP and those new. In the

new WAP all symptoms are also attributes. 80

4.2 Evaluation of the machine learning models applied to the data set. 82

4.3 Confusion matrix of the top 3 classifiers and confusion matrix notation (last

two columns). 83

xix

LIST OF TABLES

4.4 Sensitive sinks added to the WAP sub-modules to detect new vulnerability

classes. 88

4.5 Summary of results for the new version of WAP with real web applications. 91

4.6 Vulnerabilities found and false positives predicted and reported by the two

versions of WAP in web applications. 92

4.7 Vulnerabilities found by new version of WAP in WordPress plugins. 93

5.1 Intermediate Slice Language tokens. 103

5.2 HMM states and the observations they emit. 110

5.3 Confusion matrix of the model tested with the corpus. Observed is the re-

ality (414 vulnerable slices, 96 not vulnerable). Predicted is the output of

DEKANT with our corpus (428 vulnerable, 82 not vulnerable). 120

5.4 Vulnerabilities found by DEKANT in WordPress plugins. 122

5.5 Results of running the slice extractor, WAP and DEKANT in open source

software. 123

5.6 Confusion matrix of DEKANT, WAP and C4.5/J48 in PhpMinerII data set

(original and analyzed). 123

5.7 Summary of results of DEKANT with open source code. 124

5.8 Results of the classification of DEKANT considering different classes of

vulnerabilities extracted by the slice extractor. 124

5.9 Registered vulnerabilities detected by DEKANT. 125

5.10 Comparison of results between DEKANT, WAP, PHPMinerII and Pixy with

open source projects. 126

5.11 Evaluation metrics of DEKANT, WAP, PhpMinerII, Pixy. 127

6.1 Classes of attacks against DBMSs . 134

6.2 Summary of modifications to software packages 149

6.3 Code (attacks) and non-code (non-attacks) cases defined by Ray and Lig-

atti (Ray & Ligatti, 2012). Although those authors consider case 10 to be

code/attack, we disagree because the input is an integer, which is the type

expected by the char function. 154

6.4 Detection of attacks with code samples. 156

6.5 Detection of attacks in real applications 157

xx

LIST OF TABLES

6.6 Performance overhead of SEPTIC measured with Benchlab for three web
applications: PHP Address Book, refbase and ZeroCMS. Latencies are in
milliseconds and overheads in percentage. 159

xxi

Code Listings

2.1 PHP login script vulnerable to SQLI. 11
2.2 PHP login script vulnerable to XPathI. 12
2.3 PHP login script vulnerable to LDAPI. 13
2.4 PHP login script vulnerable to NoSQLI. 13
2.5 PHP script vulnerable to remote file inclusion. 16
2.6 PHP script vulnerable to PHP code injection. 18
4.1 Fix templates proposed. 86
5.1 Grammar rules of ISL. 104
5.2 Building the corpus: collecting and representing steps. 109
5.3 Building the corpus: annotating and removing steps. 110
6.1 Script vulnerable to SQLI with encoded characters. 134
6.2 Algorithm to get the query ID. 151

xxiii

List of Notations and Acronyms

acc accuracy of classifier

fn false negative outputted by a classifier

fpp false positive rate of prediction

fp false positive outputted by a classifier

kappa kappa statistic

pd probability of detection

pfd probability of false detection

prd precision of detection

prfp precision of prediction

pr precision of classifier

tn true negative outputted by a classifier

tpp true positive rate of prediction

tp true positive outputted by a classifier

wilcoxon Wilcoxon signed-rank test

AI Artificial Intelligence

ASLR Address Space Layout Randomization

AST Abstract Syntax Tree

CMS Content Management System

xxv

List of Notations and Acronyms

CS Comment Spamming Injection

DBMS Database Management System

DEKANT hidDEn marKov model diAgNosing vulnerabiliTies

DEP Data Execution Prevention

DoS Denial of Service

DT/PT Directory Traversal or Path Traversal

EI Email Injection

FN False Negatives

FP False Positives

HI Header Injection

HMM Hidden Markov Model

ISL Intermediate Slice Language

K-NN K-Nearest Neighbor

LDAPI LDAP Injection

LFI Local File Inclusion

LR Logistic Regression

ML Machine Learning

MLP Multi-Layer Perceptron

NB Naive Bayes

NLP Natural Language Processing

xxvi

List of Notations and Acronyms

NoSQLI NoSQL Injection

OSCI OS Command Injection

PHPCI PHP Code Injection

PoS Part-of-Speech

RFI Remote File Inclusion

RT Random Tree

SCD Source Code Disclosure

SEPTIC SElf-Protecting daTabases preventIng attaCks

SQLI SQL Injection

SVM Support Vector Machine

TEPT Tainted Execution Path Tree

TST Tainted Symbol Table

UD Untainted Data

Vul Vulnerabilitiy(ies)

WAF Web Application Firewall

WAP Web Application Protection

WAP-TA Web Application Protection Taint Analyzer

XPathI XPath Injection

XSS Cross-site Scripting

xxvii

List of Publications

International Conferences and Journals

• Ibéria Medeiros, Nuno Neves, Miguel Correia. DEKANT: A Static Anal-

ysis Tool that Learns to Detect Web Application Vulnerabilities. In Pro-

ceedings of the International Symposium on Software Testing and Analysis

(ISSTA), Saarbrücken, Germany, 12 pages, July 2016.

• Ibéria Medeiros, Nuno Neves, Miguel Correia. Equipping WAP with WEA-

PONS to Detect Vulnerabilities. In Proceedings of the 46th IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),

Toulouse, France, 8 pages, June-July 2016.

• Ibéria Medeiros, Miguel Beatriz, Nuno Neves, Miguel Correia. Hacking

the DBMS to Prevent Injection Attacks. In Proceedings of the ACM Con-

ference on Data and Applications Security and Privacy (CODASPY), New

Orleans, EUA, 12 pages, March 2016.

• Ibéria Medeiros, Nuno Neves, Miguel Correia. Detecting and Removing

Web Application Vulnerabilities with Static Analysis and Data Mining.

IEEE Transactions on Reliability, Vol. 65, No. 1, pages 54-69, March

2016.

• Ibéria Medeiros, Nuno Neves, Miguel Correia. Automatic Detection and

Correction of Web Application Vulnerabilities using Data Mining to Pre-

dict False Positives. In Proceedings of the International World Wide Web

Conference (WWW), Seoul, Korea, 12 pages, April 2014.

• Ibéria Medeiros, Nuno Neves, Miguel Correia. Securing Energy Meter-

ing Software with Automatic Source Code Correction. In Proceedings of

xxix

List of Notations and Acronyms

the 11th IEEE International Conference on Industrial Informatics (INDIN),
Bochum, Germany, 6 pages, July 2013.

Fast Abstracts

• Ibéria Medeiros, Nuno Neves, Miguel Correia. Web Application Protection

with the WAP tool. In Supplement of the Proceedings of the 44th IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN),
Atlanta, Georgia USA, June 2014.

xxx

1
Introduction

Since its appearance in the early 1990s, the World Wide Web evolved from a platform to

access text and other media to a framework for running complex web applications. These

applications appear in many forms, from small home-made to large-scale commercial ser-

vices (e.g., Google Docs, Twitter, Facebook). However, web applications have been plagued

with security problems and the state of their security continues to be a concern. For example,

recent reports indicate an increase of web attacks of around 33% in 2012, of data breaches of

62% in 2013, and of critical websites with vulnerabilities of 4% in 2014 (Symantec, 2013,

2014, 2015). Arguably, a reason for the insecurity of web applications is that many pro-

grammers lack appropriate knowledge about secure coding, so they leave applications with

flaws.

Web application vulnerabilities have been a problem for several years. Although security

starts to be taken into account during the application development, the tendency for source

the code to contain vulnerabilities persists. The OWASP top 10 2010 reports SQL injection

and cross-site scripting as the two classes of vulnerabilities with the highest risk (Williams

& Wichers, 2010), and a similar conclusion was reached three years later when there was an

update of the study (Williams & Wichers, 2013). Although there are tools to deal with these

vulnerabilities, the fact is that good programming practices are still not sufficiently adopted

and that the attacks against such vulnerabilities are very common. Both SQL injection and

cross-site scripting are what we call input validation vulnerabilities. They are characterized

by allowing malicious input to reach certain function calls without appropriate sanitization

1

1. INTRODUCTION

or validation. To make the problem even more difficult, continuously new technologies are

constantly being introduced in web applications increasing their complexity. An example are

NoSQL databases, particularly convenient to store big data. With new technologies come

also new attack vectors with consequences such as the 600 TB of data recently stolen from

the most used (The Hacker News, 2015) NoSQL database, MongoDB (DB-Engines, 2015).

Static analysis is one of the techniques used by companies today to mitigate the problem

of software vulnerabilities (WhiteHat Security, 2015). Static analysis tools search for vulner-

abilities in source code, helping programmers to improve their applications. This technique

is effective to find vulnerabilities, but it tends to report many false positives (false vulner-

abilities) due to various reasons such as the undecidability of the problem being addressed

(Landi, 1992). This difficulty is particularly hard with languages such as PHP because they

are weakly typed and not formally specified (Biggar & Gregg, 2009; Biggar et al., 2009).

Dynamic analysis is another technique to find vulnerabilities by tracking the user inputs at

runtime and checking if they constitute an attack (Huang et al., 2003). Web vulnerabil-

ity scanners use signatures to detect if specific vulnerabilities exist in an application, but

this approach has been shown to lead to high ratios of false negatives (Vieira et al., 2009).

Fuzzing and attack injection tools also search for vulnerabilities by injecting malicious user

inputs (Antunes et al., 2010; Banabic & Candea, 2012). On the contrary to these techniques,

runtime protection mechanisms do not search for software vulnerabilities, but block or flag

attacks that attempt to exploit them (Bandhakavi et al., 2007; Boyd & Keromytis, 2004;

Halfond & Orso, 2005; Son et al., 2013).

Machine learning is a very different technique with a large range of applications. How-

ever, it can also be applied to search for vulnerabilities in source code. In fact, the previ-

ous techniques that look for vulnerabilities and machine learning are in a sense disjoint ap-

proaches: humans coding the knowledge about vulnerabilities versus automatically obtain-

ing that knowledge with machine learning. Interestingly this dichotomy has been present for

long in another area of security, intrusion detection. As its name suggests, knowledge-based

intrusion detection relies on knowledge about intrusions coded by humans (signatures). On

the contrary, behavior-based detection relies on models of normal behavior created using

machine learning techniques.

2

1.1 Objectives

1.1 Objectives

This thesis is developed in context of software security, i.e., it proposes methodologies and

tools that contribute to build secure applications. The objective is related with the investiga-

tion of techniques for the detection of web application vulnerabilities and for the protection

of these applications. The thesis has therefore two main focus: detection and protection.

The first main focus is on identifying and locating input validation vulnerabilities by an-

alyzing statically the source code of web applications, using taint analysis with data mining,

and sequence models employed in natural language processing (NLP). The second main fo-

cus is on removing these vulnerabilities by fixing the source code of the applications and on

blocking injection attacks against databases inside database management systems (DBMS)

using for that runtime protections. As a complementary way to find vulnerabilities is based

on combining the runtime protection with source code identifiers allowing the identification

of the flawed code when an attack is flagged.

Next, we present in more detail the main topics of research and the objectives of the

thesis.

Static analysis and data mining
Our general approach consists in analyzing the web application source code searching for

vulnerabilities, predicting if the vulnerabilities found are real or false positives, and inserting

fixes that correct the flaws. This approach also aims at keeping the programmer in the loop of

the protection of his web application by allowing him to understand where the vulnerabilities

were found and how they were removed.

In order to reduce the number of false positives we propose a new hybrid method of

analysis to detect vulnerabilities. We complement a form of static analysis – taint analysis

– with the use of machine learning applied to data mining to predict the existence of false

positives. This approach is a trade-off between two apparently disjoint approaches: humans

coding the knowledge about vulnerabilities (for taint analysis) versus automatically obtain-

ing that knowledge (machine learning, then data mining). We make an argument that the

combination of the two broad approaches can be effective for vulnerability location.

The insertion of fixes in the source code of web applications allows the removal of vul-

nerabilities, but these fixes must not compromise the normal behavior of the applications.

Besides studying what pieces of code have to be inserted, we also studied the best places

3

1. INTRODUCTION

in the program to insert the fixes and how to avoid breaking the correct behavior of the

application.

We implemented this approach in a tool called WAP. Currently, the tool is available at

(Medeiros, 2014), having more than 7500 downloads (as sourceforge shows). The tool has

been included in several relevant projects, such as OWASP WAP - Web Application Protec-

tion project (Medeiros, 2015), the NIST’s SAMATE Source Code Security Analyzers (NIST,

2016), and is considered by Open Source Testing as a security testing tool (opensourcetest-

ing.org, 2015).

Sequence models
We have also researched an alternative approach to analyze source code to discover vul-

nerabilities, but in a way that is different from traditional static analysis. The second topic

involves using a sequence model to learn to characterize vulnerabilities based on a set of

annotated source code slices. The model created can then be used as a static analysis tool to

discover and identify vulnerabilities in source code.

We explore the hidden Markov model (HMM) to learn from source code annotated as

vulnerable and not vulnerable, and then classify source code elements. The model takes

into account the order of the code elements inside the source code being analyzed, and the

different states that they can take.

Again, as the approach above, the knowledge is obtained automatically through machine

learning, but in this case it is used to train sequence models that usually are applied in NLP.

However, on the contrary of the previous approach, this one does not involve coding knowl-

edge about vulnerabilities (all knowledge is learned).

We implemented this approach in a tool called DEKANT, which was used to test both

web applications and WordPress plugins (WordPress, 2015).

Runtime protection
The third topic consists in preventing injection attacks against the DBMS behind web

applications by embedding protections in the DBMS itself. The motivation is twofold. First,

the approach of embedding protections in operating systems and applications running on top

of them has been effective to protect this software. Second, there is a semantic mismatch

4

1.2 Summary of Contributions

between how SQL queries are believed to be executed by the DBMS and how they are

actually executed, leading to subtle vulnerabilities in prevention mechanisms.

This topic is different from the previous two in terms of objective. Here the goal is to

block attacks at runtime, whereas the first two aimed to discover vulnerabilities in source

code. Nevertheless, in this case it is also possible to identify vulnerabilities in the source

code using the information obtained when an attack is detected.

We implemented this framework in a mechanism called SEPTIC inside the MySQL

DBMS, and then tested it with several kinds of classes of attacks and compared it with

alternative approaches (e.g., web application firewall).

1.2 Summary of Contributions

This section summarizes the most important contributions that resulted from this work.

Static analysis and data mining to detect and fix vulnerabilities

• A novel hybrid method to detect vulnerabilities with less false positives, then to cor-

rect them. After an initial step of taint analysis to flag candidate vulnerabilities, our

approach uses data mining to predict the existence of false positives. This approach is

a trade-off between two apparently disjoint approaches: humans coding the knowledge

about vulnerabilities (for taint analysis) versus automatically obtaining that knowledge

(with machine learning, for data mining). Given this more precise form of detection,

we do automatic code correction by inserting fixes in the source code.

• The WAP (Web Application Protection) tool that implements this approach for web

applications written in PHP with several database management systems. For the im-

plementation of the data mining module a study of the machine learning algorithms

was made to select the best three algorithm to be used. This module classifies a vul-

nerability detected (by taint analysis) as being a false positive or a real vulnerability.

The tool is written in the Java programming language so it will be portable to any op-

erating system. The evaluation of the tool was done with a large set of open source

PHP applications.

5

1. INTRODUCTION

• A study about the fixes that correct the source code and remove the vulnerabilities

without compromising the behavior of the web applications. This involves under-

standing which PHP instructions shall be inserted (fixes) and how they eliminate the

vulnerabilities, and where they should be inserted in the source code, changing the

semantics of the web application but ensuring the reliability of its functioning.

• A modular and extensible version of the WAP tool that allows creating weapons (WAP

extensions) to detect and correct new vulnerability classes, without requiring modi-

fications to the core of the tool. A study of the configuration for a new data mining

component, with a set of attributes and a data set larger. The evaluation of the new ver-

sion of the tool was done with a set of open source PHP applications and WordPress

plugins.

Learning to detect vulnerabilities statically
• A novel static analysis method to detect vulnerabilities that first learns about them and

then later detects them. After an initial step of slices extraction, which start in entry

points and end in sensitive sinks, our approach translates them to an intermediate slice

language (ISL). Then, it uses a sequence model (HMM) to classify these translated

slices as being vulnerable or not, using for that annotated code slices. This approach

is based on automatically extracting the knowledge to learn to detect vulnerabilities.

• A sequence model and an intermediate language used by the model to detect vulner-

abilities taking into consideration the order in which the code elements appear in the

slices. A study about PHP functions that sanitize, validate and modify strings, and

the states that an entry point can take when it is an argument of these functions. This

involves understanding of which PHP functions and arguments shall be contemplated

by the intermediate language and classified by the sequence model.

• The DEKANT (hidDEn marKov model diAgNosing vulnerabiliTies) static analysis

tool that implements the approach, learning to detect vulnerabilities using annotated

code slices, then using this knowledge to find vulnerabilities in source code of web

application written in PHP. The tool is programmed in the Java language so it will be

portable.

6

1.3 Structure of the Thesis

• An experimental evaluation with a large set of open source PHP applications and

WordPress plugins, that shows the ability of this tool to detect previously known and

zero-day (i.e., new) vulnerabilities.

Runtime protection and vulnerability identification
• A mechanism to be included in the DBMS to detect and block injection attacks. By be-

ing placed inside the DBMS, the mechanism is able to mitigate the semantic mismatch

problem and to handle sophisticated SQL injection and stored injection attacks.

• A study about different types of injection attacks and types of semantic mismatch, and

their forms of detection, both structurally and syntactically.

• A study about query identifiers to be sent by web applications to the DBMS with the

goal of making them unique. A mechanism that, when an attack is detected, allows

the location of the vulnerability in the source code exposing information in the query

identifier, so that the programmer can remove the flaw.

• The SEPTIC (SElf-Protecting daTabases preventIng attaCks) mechanism implemented

in the MySQL DBMS to address injection attacks, independently of the server-side

language that was used to develop the applications, and to find the vulnerabilities in

source code of web applications. The mechanism is written in the C++ programming

language and we explain how it could be adapted to other DBMSs, such as mariaDB

and PostgreSQL.

• An experimental evaluation with a set of open source PHP applications and PHP syn-

thetic code that shows the ability of this mechanism to block injection attacks. An

evaluation with a testbed with several machines to assess the performance overhead of

SEPTIC inside the DBMS.

1.3 Structure of the Thesis

This thesis is organized as follows:

Chapter 2 provides the context in which the thesis appears and presents the related work.

7

1. INTRODUCTION

Chapter 3 describes an hybrid approach based on static analysis and data mining to au-
tomatically detect vulnerabilities and predict if they are false positives, and then correct the
source code to remove the flaws.

Chapter 4 presents how to turn the WAP tool to be extensible in order to detect other
classes of vulnerabilities and support different classes of programming frameworks (e.g.,
WordPress). Also, the experimental evaluation of the tool is presented.

Chapter 5 shows a new approach to detect vulnerabilities statically, based on sequence
models used in NLP to learn how to find flaws in the code.

Chapter 6 provides a technique and a mechanism to protect web applications in runtime
against injection attacks. The mechanism is inserted inside the DBMS, taking advantage of
its resources for a more precise detection.

Chapter 7 concludes the thesis and discusses some future work.

8

2
Context and Related Work

The main problem in web application security lies arguably in the improper validation of user

input. Inputs enter an application through entry points (e.g., $_GET in the PHP language)

and exploit a vulnerability by reaching a sensitive sink (e.g., mysql_query). Most attacks

involve mixing normal input with metacharacters or metadata (e.g., ’, OR), and therefore

applications often can be protected by placing sanitization functions or doing validation in

the paths between entry points and sensitive sinks.

This chapter provides background on the problem at hand, mainly by introducing the

necessary concepts and discussing relevant work done in the area. We organized the related

work in four main areas of interest. The first section presents the input validation vulner-

abilities handled in our work. Then, we discuss the two main approaches of detection of

vulnerabilities – static analysis and fuzzing –, with a strong focus in taint analysis, which is

the type of static analysis most used in this work. The third section discusses previous work

on the use of machine learning to deal with software vulnerabilities, used in data mining and

sequence models. Finally, we present techniques for removing vulnerabilities in source code

and protecting applications at runtime.

2.1 Input Validation Vulnerabilities in Web Applications

This section presents the fourteen classes of vulnerabilities considered in our work. Table

2.1 presents them (third column) divided in four categories – query manipulation, client-side

9

2. CONTEXT AND RELATED WORK

injection, file and path injection, and command injection (first column). Columns 2 and 4,

respectively, present an overview and the section of each category.

For each vulnerability class, we present how it can be exploited and a technique to avoid

its exploitation. This is the technique we used to remove these vulnerabilities (see Section

3.4).

Vulnerability category Overview Vulnerability class Section
Vulnerabilities related with structures SQL injection

Query manipulation that store data, like databases, and XPath injection 2.1.1
where the malicious code manipulates the LDAP injection
queries, changing them NoSQL injection
Vulnerabilities associated to malicious Cross-site scripting

Client-side injection code injected by client-side, such as Header injection 2.1.2
javaScript, and processed by server-side Email injection

Comment spamming
Class of vulnerabilities that manipulate Remote file inclusion

File and path injection relative paths or files to, respectively, Local file inclusion 2.1.3
redirect to a different location or access Directory/Path traversal
the local system and web application files Source code disclosure

Command injection Vulnerabilities exploited by injection of file OS command injection 2.1.4
system commands and PHP instructions PHP code injection

Table 2.1: Vulnerability classes split by vulnerability categories.

2.1.1 Query manipulation

We consider SQL injection (SQLI), XPath injection (XPathI), LDAP injection (LDAPI) and

NoSQL injection (NoSQLI) vulnerabilities as belonging to the same category. They are asso-

ciated to the construction of queries or filters that are executed by some kind of engine, e.g.,

a database management system (DBMS). SQLI is the best known and exploited vulnerability

(Williams & Wichers, 2013). The other three vulnerabilities behave similarly to SQLI, i.e.,

if a query is constructed with unsanitized user inputs containing malicious characters, then it

is possible to modify the behavior of the executed query (OWASP, 2014b; Scambray et al.,

2011). Next, each vulnerability is presented.

SQL injection
SQL injection (SQLI) vulnerabilities are caused by the use of string-building functions

to create SQL queries. SQLI attacks mix normal characters with metacharacters to alter

10

2.1 Input Validation Vulnerabilities in Web Applications

the structure of the query and read or write the database in an unexpected way. Listing 2.1

shows PHP code vulnerable to SQLI. This script inserts in a SQL query (line 4) the username

and password provided by the user (lines 2, 3). If the user is malicious, he can provide as

username admin’ -- , causing the script to execute a query that returns information about

the user admin without the need to provide a password: SELECT * FROM users WHERE

username=‘admin’ -- ’ AND password=‘foo’ (note that - - cause the characters to

its right to be interpreted as a comment).

1 $conn = mysql_connect("localhost", "username", "password");

2 $user = $_POST[’user’];

3 $pass = $_POST[’password’];

4 $q = "SELECT * FROM users WHERE username=’$user’ AND password=’$pass’";

5 $result = mysql_query($query);

Listing 2.1: PHP login script vulnerable to SQLI.

This vulnerability can be removed either by sanitizing the inputs (e.g., preceding with a

backslash metacharacters such as the prime) or by using prepared statements. Sanitization

depends on the sensitive sink, i.e., on the way in which the input is used. For the MySQL

engine, PHP provides the mysql_real_escape_string function. The username could

be sanitized in line 2: $user = mysql_real_escape_string($_POST[’user’]);

(note that the same should be done in line 3 to protect the password).

XPath injection
XPath injection (XPathI) works similarly to SQLI, but data is injected in XML docu-

ments. XML documents are usually used to store application configuration data or applica-

tion user information such as user credentials, roles, and privileges (Stuttard & Pinto, 2007).

Unlike SQL, XPath does not have a comment character, so if a query contains more than one

input parameter the injected code has to be sufficient to build a valid query. Listing 2.2 shows

PHP code vulnerable to XPathI. This script inserts in a XPath query (line 4) the username and

password provided by the user (lines 2, 3). An attacker can provide as username admin’ or

1=1 or ’a’=’b, causing the script to execute a query that returns information about the

user admin without the need of giving a password: //addresses[susername/text()=

’admin’ or 1=1 or ’a’=’b’ and password/text()=”]/creditCard/text()

11

2. CONTEXT AND RELATED WORK

1 $xml = simplexml_load_file("addresses.xml");

2 $user = $_POST[’user’];

3 $pass = $_POST[’password’];

4 $query = "//addresses[susername/text()=’".$user."’ and

password/text()=’".$pass."’]/creditCard/text()";

5 $result = $xml->xpath($query);

Listing 2.2: PHP login script vulnerable to XPathI.

This vulnerability can be prevented by checking if the user input contains the following

malicious characters: () = ’ [] : , * /. For the above example, the input would

be rejected because the prime character is matched.

LDAP injection

LDAP (Lightweight Directory Access Protocol) injection (LDAPI) vulnerabilities are

also exploited by providing metacharacters to string-building functions. Their exploitation

aims to modify the structure of the filter and retrieve data from a directory (a hierarchically

organized data store (Stuttard & Pinto, 2007)) service over the network, in an unexpected

way. However, unlike SQL, LDAP does not contain the comment character, meaning that

the malicious input has to be inserted in the first parameter of the filter and contain some

filter structure that will cause the intended filter structure to be ignored (Alonso et al., 2009).

The PHP code presented in the Listing 2.3 validates an user in a directory using the user-

name and password credentials provided by the user. This script inserts in a filter (line 6)

the required credentials (lines 4, 5). If an attacker provides as username Bob)(&)) and as

password anyWord, he causes the script to execute a filter that returns information (userID,

name, mail and creditCard) about the user Bob without the need of providing a correct

password. The resulting filter: (&(username=Bob)(&)) does not contain the second pa-

rameter ((password=$pass)) because it is substituted by (&). A solution to prevent this

vulnerability is to validate the user inputs, checking if they match with some of the following

characters () ; , * | & = (Stuttard & Pinto, 2007).

12

2.1 Input Validation Vulnerabilities in Web Applications

1 $ds = ldap_connect("ldap.server.com");

2 $r = ldap_bind($ds);

3 $dn = "ou=Bank foo of city XXX,o=Bank foo,c=PT";

4 $user = $_POST[’user’];

5 $pass = $_POST[’password’];

6 $filter = "(&(username=$user)(password=$pass))";

7 $fields = array("userID", "name", "mail", "creditCard");

8 $result = ldap_search($ds, $dn, $filter, $fields);

Listing 2.3: PHP login script vulnerable to LDAPI.

NoSQL injection
NoSQL is a common designation for non-relational databases used in many large-scale

web applications. There are various NoSQL database models and many engines that im-
plement them. MongoDB (MongoDB, 2015) is the most popular engine implementing the
document store model (DB-Engines, 2015). Thereby, we opted for studding the NoSQL
injection (NoSQLI) vulnerability in PHP web applications that connect to MongoDB. Mon-
goDB executes queries in JSON format, which is well defined, simple to encode/decode and
has good native implementations in many programming languages (Ron et al., 2015). There-
fore, a PHP application receives user inputs, represents them as an associative array, and then
implicitly encodes the array in JSON.

1 $conn = new MongoClient("mongodb.server.com");

2 $db = $conn->selectDB(’foo’);

3 $collection = new MongoCollection($db, ’users’);

4 $user = $_POST[’user’];

5 $pass = $_POST[’password’];

6 $query = array("username" => $user, "password" => $pass);

7 // line 9 does the following codification implicitly:

8 // $query = "{username: ’" + $user + "’, password: ’" + $pass + "’}";

9 $result = $collection->find($query);

Listing 2.4: PHP login script vulnerable to NoSQLI.

Listing 2.4 shows PHP code vulnerable to NoSQLI. This script aims to find a user in the
MongoDB database after the username and password are provided by the user (lines 4, 5). If
the user is malicious he can sent the following payload user=admin&password[$ne]=1,

13

2. CONTEXT AND RELATED WORK

assigning admin to the user parameter (line 4) and changing the password parameter to

password[$ne] and assigning it the value 1 (line 5). This malicious code generates an

associative array array(“username“ => “admin”, “password” => array(“$ne”

=> 1)) (line 6). It is encoded in JSON as {username: ’admin’, password: {

$ne: 1 }} and sent to be executed by MongoBD (line 9). The query returns information

about the user admin without the need of giving a correct password, since $ne is the not

equal condition in MongoDB.

Defending against this vulnerability is possible using one of three measures: (1) casting

the parameters received from the user to the proper type (Ron et al., 2015); In Listing 2.4 the

username would be cast to string by changing $user = (string)$_POST[’user’];

(line 4); (2) using the mysql_real_escape_string PHP sanitization function to invali-

date the same malicious characters as SQLI, such as the prime; (3) validating the user inputs,

checking if they match with some of the following characters < > & ; / { } : ’ *

“ (OWASP, 2014b).

2.1.2 Client-side injection

This category of vulnerabilities allows an attacker to execute malicious code (e.g., JavaScript)

in the victim’s browser. Differently from the other attacks we consider, an attack from this

category is not against a web application itself, but against its users. We consider in this

category four vulnerability classes that are detailed next: cross-site scripting (XSS), header

injection (HI), email injection (EI), and comment spamming injection (CS).

Cross-site scripting
Cross-site scripting (XSS) attacks execute malicious code (e.g., JavaScript) in the vic-

tim’s browser. There are three main classes of XSS attacks depending on how the malicious

code is sent to the victim: reflected or non-persistent, stored or persistent, and DOM-based.

In our work, we only consider the first two classes.

A script vulnerable to reflected XSS can have a single line, echo $_GET[’user’];.

The attack involves convincing the user to click on a link that accesses the web application,

sending it a script that is reflected by the echo instruction and executed in the browser.

A stored XSS is characterized by being executed in two steps: the first involves inserting a

malicious JavaScript code in the server-side, then later returning it to one or more users in the

14

2.1 Input Validation Vulnerabilities in Web Applications

second step. Usually this attack is performed using blogs or forums that allow users to submit

data, which is then accessed by other users. The first step can be achieved in two ways:

an SQL query that inserts the attacker’s script in the database (INSERT, and UPDATE SQL

commands); and contents inserted in a file using, for example, the file_put_contents

PHP function. Then the attacker’s script is retrieved from the database by a SELECT SQL

command or the file system by the file_get_contents PHP function and used in a echo

statement.

These kinds of attacks can be prevented by sanitizing the input (e.g., htmlentities

PHP function) and/or by encoding the output. The latter technique consists in encoding

metacharacters such as < and > in a way that they are interpreted as normal characters,

instead of HTML metacharacters.

Header injection
Header injection (HI) allows an attacker to manipulate the HTTP response, breaking the

normal response with the \n and \r characters. This allows the attacker to inject malicious

code (e.g., JavaScript) in a new header line or even a new HTTP response, performing in the

last case an HTTP response splitting. The vulnerability can be avoided by sanitizing these

characters (e.g., substituting them by a space) (Scambray et al., 2011).

Email injection
Email injection (EI) is similar to HI, and consists in an attacker injecting the line ter-

mination character or the corresponding encoded character (%0a and %0d) with the aim of

manipulating email components (e.g., sender, destination, message). The same protection

method as HI is applied to this vulnerability (Scambray et al., 2011).

Comment spamming injection
Comment spamming injection (CS) has the goal of manipulating the ranking of spam-

mers’ web sites, making them appear towards the top of search engines’ results. Web appli-

cations that allow the users to submit contents with hyperlinks are the potential victims of

the attack. Attackers inject, for example, comments containing links to their own web site

(Imperva, 2014, 2015). This type of attack works as a stored XSS attack, i.e., it is realized

in two steps: first the attacker stores the comments with hyperlinks and secondly the search

15

2. CONTEXT AND RELATED WORK

engine retrieves these comments and accesses the hyperlinks. To avoid CS, applications have

to check the content of posts, looking for hyperlinks (URLs).

2.1.3 File and path injection

Another category considers vulnerabilities dealing with the access to files from web applica-

tions or file system, and to URL locations different than the web application. The following

vulnerability classes belong to this category: remote file inclusion (RFI), directory traversal

or path traversal (DT/PT), local file inclusion (LFI) and source code disclosure (SCD).

Remote file inclusion
PHP allows a script to include files, which can be a vulnerability if the file name takes

user input. Remote file inclusion (RFI) attacks exploit this kind of vulnerability by forcing

the script to include a remote file containing PHP code. For example, an attack might be

to send as parameter country the URL http://www.evil.com/hack against the script

below (Listing 2.5), which would cause the execution of hack.php in the server.

1 $country = $_GET[’country’];

2 include($country . ’.php’);

Listing 2.5: PHP script vulnerable to remote file inclusion.

Directory/Path traversal
A directory traversal or path traversal (DT/PT) attack consists in an attacker access-

ing unexpected files, possibly outside the web site directory. To access these files, the

attacker crafts an URL containing path metacharacters such as .. and /. For instance, if

../../../etc/passwd%00 is passed to the script above, the /etc/passwd file is in-

cluded in the web page and sent to the attacker (the null character %00 truncates additional

characters, .php in this case).

Local file inclusion
Local file inclusion (LFI) differs from RFI by inserting in a script a file from the file sys-

tem of the web application (not a remote file). LFI includes local files so the attacker needs

16

2.1 Input Validation Vulnerabilities in Web Applications

to insert PHP code in the server beforehand, e.g., by injecting PHP code that is written into

a log file by calling http://www.victim.com/<?php+phpinfo();+?> (this file does

not exist, so the URL is logged). The attacker can do a LFI attack by calling the script above

with input /var/log/httpd/error_log%00. This kind of attack has been motivated by

a default configuration introduced in PHP 4.2 that disallows remote file inclusion.

Source code disclosure
The objective of source code disclosure (SCD) attacks is to access web application source

code and configuration files. The attackers can use these files to find vulnerabilities and other

information useful for attacking the site (e.g., misconfigurations, the database schema) or to

steal the application source code itself. This vulnerability normally appears in applications

that allow downloading files. Similarly to LFI, SCD may involve a DT/PT attack.

Defending against these kinds of attacks is based on disallowing access to file locations

and URL provided by the user. PHP does not provide a sanitization function for this purpose.

2.1.4 Command injection

For the last category we consider operating system command injection (OSCI) and PHP

code injection (PHPCI) vulnerabilities as being those that can be exploited by injecting,

respectively, operating system commands and PHP code.

OS command injection
An operating system command injection (OSCI) attack consists in forcing the application

to execute a command defined by the attacker. Consider as an example a script that uses the

following instruction to count the words of a file: $words=shell_exec(”/usr/bin/wc“

. $_GET[’file’]);. The shell_exec function allows the execution of system com-

mands in a shell, whereas the command wc is the system command that count the words of

a file. The attacker can do command injection by inserting a filename and a command sep-

arated by a semi-colon, e.g., paper.txt; cat /etc/passwd. The resultant instruction

$words = shell_exec(”/usr/bin/wc paper.txt; cat /etc/passwd”); execu-

tes the wc and cat commands. The second command shows the content of the file with the

17

2. CONTEXT AND RELATED WORK

information of all users of the system.

Despite the PHP language containing escapeshellarg and escapeshellcmd saniti-

zation functions to avoid OSCI attacks, they do not work correctly in some cases, depending

of operating system, such as Windows. So it is preferable to do filtering of the problematic

characters, i.e., looking for the following characters ! - # & ; ‘ | * ? ~ < > (

) [] { } $ \ , ’ ˆ x0A xFF x2a.

PHP code injection
The eval function runs the PHP code that it receives in its string parameter. A PHP code

injection (PHPCI) attack consists in an attacker supplying an input that is executed by an

eval statement. Consider as example the script of Listing 2.6 that uses the eval function

to concatenate the string "Hello" with the user name supplied by the user at line 3. The

attacker can do command injection by inserting a username and a command separated by a

semicolon, e.g., Bob; cat /etc/passwd.

1 $msg = ’Hello’;

2 $x = $_GET[’username’];

3 eval(’$msg = ’ . $msg . $x . ’;’);

4 echo $msg;

Listing 2.6: PHP script vulnerable to PHP code injection.

Defending from this attack is not simple, so the use of the eval function is discouraged.

PHP has no sanitization function to deal with this problem, so the programmer has to verify

the presence of dangerous characters as the semi-colon in the input.

2.2 Detection of Vulnerabilities

The following sections present the two techniques most used for the detection of previously

unknown vulnerabilities. While the first – static analysis – detects vulnerabilities by ana-

lyzing the source code of applications, the other – fuzzing – detects vulnerabilities while the

application is running. We focus mostly in static analysis, specifically in taint analysis, be-

cause it is the main technique used in our work to find input validation vulnerabilities in web

applications.

18

2.2 Detection of Vulnerabilities

Although there are other techniques for the detection of vulnerabilities, such as vulnera-

bility scanners, we do not present them here because they do not discover new vulnerabilities

and they execute essentially conventional tests to determine if applications suffer from pre-

viously known bugs.

2.2.1 Static analysis

Static analysis tools automate the auditing of code, either source, binary, or intermediate.

Static analysis aims to search for potential vulnerabilities by analyzing the code of the appli-

cations, without executing them (Chess & McGraw, 2004). The first papers in this area were

mostly focused on older vulnerabilities such as buffer overflows and, at least in a case, race

conditions (Bishop et al., 1996). Later this type of analysis was extended for binary code

(Durães & Madeira, 2006).

Static analysis tools are typically used by programmers during the development of soft-

ware, checking if the code does not have vulnerabilities. However, these tools only search

and detect the vulnerabilities they have been programmed to, searching for patterns and

using rules for the type of analysis that they implement (presented in next sections). As

consequence of this fact, the tools do not detect newly discovered classes of vulnerabilities

in source code, possibly leaving the applications with bugs, generating false negatives – a

vulnerability that exists is not reported. False negatives are worrying because they lead to

a false sense of security, especially if the tool does not report any vulnerability. This would

not mean that an application does not contain vulnerabilities and is secure, but that the appli-

cation does not contain vulnerabilities for which it was checked (Chess & McGraw, 2004).

Conversely, static analysis tools tend to generate false positives – a non-existent vulner-

ability ends uo being reported. This tendency is due to two main reasons, namely, the tools

do not implement the kind of analysis that permits to do an effective and precise detection,

and the complexity of developing these tools that may lead them to produce wrong paths of

analysis. The false positives are also a concern, but in the sense of causing a waste of time,

since the programmers have to inspect the code searching for non-existent bugs.

Static analysis techniques can be broadly classified in two main classes, namely lexi-

cal analysis and semantic analysis (Bush et al., 2000; Chess & McGraw, 2004; Michael &

Lavenhar, 2006; Shankar et al., 2001). Next, these techniques are presented, with more

emphasis on taint analysis, a form of semantic analysis.

19

2. CONTEXT AND RELATED WORK

2.2.1.1 Lexical analysis

This is the most basic form of static analysis. The source code is analyzed to search for
library functions or system calls that are not considered reliable – sensitive sinks –, i.e.,
meaning that if malicious data, without sanitization or validation, reaches these functions
it can exploit some vulnerability. Examples of these functions are gets and strcpy in C
language, which do not verify the array bounds and therefore can be exploited by malicious
code that triggers buffer overflow vulnerabilities.

The tools implementing lexical analysis first parse the source code splitting it in tokens,
then compare the tokens with sensitive sinks that are stored in a database. This analysis may
generate false positives because, for instance, there may exist variables in source code that
have a name equal to a name of a function in the database, and then they are interpreted as
being sensitive sinks (Michael & Lavenhar, 2006).

Some old tools that perform this type of analysis are ITS4, Flawfinder and RATS for
C and C++ (Chess & McGraw, 2004; Michael & Lavenhar, 2006; Viega et al., 2000).
Flawfinder also detects format string and race condition vulnerabilities and RATS analyzes
applications written in Perl, PHP and Python.

2.2.1.2 Semantic analysis

Semantic analysis verifies semantic aspects in the source code, such as variable declaration
and their bounds, loop control variables and data flow (Chess & West, 2007; Michael &
Lavenhar, 2006). This analysis encompasses a set of three main techniques: type checking,
control flow analysis and data flow analysis.

Type checking

Type checking is associated with checking bounds of variables, depending of their data
type. Some programming languages, such as Java, implement type checking, ensuring that
the values assigned to a variable do not exceed the limits of the variable data type. However,
other languages, such as C and C++, do not implement such checks and can incur in integer
vulnerabilities, namely integer overflow, integer underflow, signedness, and truncation, that
can be associated with buffers size. These vulnerabilities if exploited generate, for instance,
a buffer overflow and a denial of service (DoS) (Michael & Lavenhar, 2006). This analysis
may require annotations in the source code, normally using type qualifiers that are specials

20

2.2 Detection of Vulnerabilities

keywords written as comments for a specific data type and used to verify the variable bounds.

The type qualifiers are ignored by the compiler, but tools that implement this technique obtain

information about the data type and limits of the variables, and then they can determine if

the values assigned to a variable exceed the data type limits. CQual is a tool that implements

this approach for C (Foster et al., 1999; Shankar et al., 2001). BONN is another tool that

performs verification of string limits avoiding buffer overflow vulnerabilities in programs

written in C (Chess & McGraw, 2004; Wagner et al., 2000; Wilander, 2005).

Lint, LCLint and Splint also are from this category and also analyze C code. The last

two are based on the first. The Lint tool verifies the consistency of function calls, checking

the possible bounds of the variables that are parameters of functions. When a function is

called, the data type of the variables is checked with the data type required by the arguments

of the function. Splint (Evans & Larochelle, 2002) is an enhanced version of LCLint (Evans

et al., 1994), and does the same type checking as Lint. However, the tool can be extended

by the programmers to other forms of checking. The programmers can insert annotations

either in the source code of the application or functions of the library, specifying pre- and

post-conditions for the functions. The vulnerabilities are detected if these conditions are not

matched when the tool analyzes the source code.

Control flow analysis

Another type of static analysis technique is control flow analysis that is used to detect

inconsistencies (e.g., vulnerabilities) in source code, by simulating the execution of all pos-

sible execution paths of instructions of a program. More precisely, a control flow graph

is created taking into account the control flow program instructions (e.g., conditional in-

structions, loops, call functions), and then the analysis is performed traversing that graph,

checking if certain rules are met (Chess & West, 2007). For example, this analysis can be

used to detected invalid pointer references, improper operations on system resources (such

as trying to close a closed file descriptor), or use of uninitialized memory.

To define the control flow graph, the source code is parsed and an abstract syntax tree

(AST) is built. Then, the tree is traversed for gathering the control flow paths. Finally, the

paths are simulated and the vulnerabilities are detected. The analysis may be realized at

three levels: (1) local, each function is analyzed separately; (2) module, interactions be-

tween functions within a specific module are analyzed; (3) global, the program is analyzed

21

2. CONTEXT AND RELATED WORK

globally. PREfix is an error detection tool that implements this type of analysis for C and
C++ programs (Bush et al., 2000).

Data flow analysis

Data flow analysis aims to do verifications based on how the data (e.g., user inputs) flows
through the code of the program. The tools that employ this technique analyze the code
following the data paths inside a program to detect security problems. This analysis can be
implemented using a control flow graph, as explained in the last section.

The most commonly used data flow analysis technique is taint analysis, which marks the
data that enters in the program as tainted, and detects if it reaches sensitive functions. Taint
analysis typically uses two qualifiers – tainted and untainted – to annotate the source code,
denoting which instructions require/return trustworthy/untrustworthy data. If untrustworthy
data reaches a parameter that must be trustworthy, the analysis flags a vulnerability. For
example, if a program contains a buffer overflow vulnerability, there is a data flow that starts
in an entry point and ends in a function that manipulates a buffer and requires trustworthy
data (e.g., the strcpy sensitive sink). Therefore, it is possible to track entry points and
check if they reach some sensitive sink.

CQUAL (Shankar et al., 2001) is a seminal data flow analysis tool of this kind for C code.
It uses the two above-mentioned qualifiers to annotate source code: the untainted qualifier
indicates either that a function returns trustworthy data (e.g., a sanitization function), or
that a parameter of a function requires trustworthy data (e.g., strcpy and mysql_query);
the tainted qualifier means that a function returns non-trustworthy data (e.g., functions that
read user input such as $_GET). The tool tracks the user inputs, changing the data flow
state between tainted and untainted, and verifies if tainted data reaches function parameters
annotated with untainted.

Pixy (Jovanovic et al., 2006) uses taint analysis to verify PHP code, but extends it with
alias analysis that takes into account the existence of aliases, i.e., of two or more variable
names that are used to denominate the same variable. The tool detects SQLI and XSS vul-
nerabilities in PHP code that do not use objects. The tool is one of the first that processes
PHP code.

RIPS (Dahse & Holz, 2014) also uses static analysis to detect input validation vulnerabil-
ities in PHP applications. Like Pixy, the tool uses taint analysis to detect vulnerabilities and,
in its first versions, did not support PHP’s object-oriented features (Dahse & Holz, 2014).

22

2.2 Detection of Vulnerabilities

Later, the RIPS authors enhanced the tool to analyze PHP object-oriented code to search

statically for PHP object injection (POI) vulnerabilities that can be exploited by property-

oriented programming (POP), i.e., the ability of an attacker to modify the properties of an

object that is injected with the aim to exploit a POI vulnerability. This ability allows an

attacker to perform code reuse attacks without injecting its own malicious code, but reusing

and combining existing code fragments (gadgets) to build a malicious code chain to exploit

a POI. They propose an approach to detect POP gadget chains to confirm POI vulnerabilities

(Dahse et al., 2014).

SAFERPHP uses static analysis to detect certain semantic vulnerabilities in PHP code:

denial of service due to infinite loops, and unauthorized operations in databases (Son &

Shmatikov, 2011). In relation to denial of service, the tool uses taint analysis to find loops,

and then employs symbolic execution analysis to determine if the terminus of the loops

can be prevented by attackers. For the second vulnerability, the tool uses inter-procedural

analysis to verify all calling contexts in which sensitive database operations may be invoked,

and then employs semantic analysis to identify possible security checks, verifying whether

they are present in all calling contexts.

phpSAFE (Fonseca & Vieira, 2014; Nunes et al., 2015) does taint analysis to search

for vulnerabilities in PHP code. The authors evaluated experimentally the tool with content

management system (CMS) plugins, e.g., WordPress plugins. For more precise detection, the

tool not only takes into account the sanitization functions from the web application language,

but is also configurable to recognize CMS functions handling entry points, sanitization/vali-

dation functions and sensitive sinks.

Yamaguchi et al. (Yamaguchi et al., 2014) presented an approach to do more precise

static analysis based on a novel data structure to represent source code that was called code

property graph (CPG). This structure combines properties of abstract syntax trees, control

flow graphs and program dependence graphs, and gives a comprehensive view on code that

allows to detect and create templates for vulnerabilities using graph traversals. The graph

traversal navigates over the CPG and accesses the code structure, the control flow, and the

data dependencies associated with each node, inspecting thus different code properties and

detecting templates for vulnerabilities. Their implementation for static analysis of C code

managed to find several new vulnerabilities in the Linux kernel.

Yamaguchi et al. (Yamaguchi et al., 2015) propose a method for inferring search patterns

for taint-style vulnerabilities in program written in C language. For a given sensitive sink,

23

2. CONTEXT AND RELATED WORK

the method identifies corresponding source-sink systems, analyzes the data flow in these

systems, and constructs search patterns that model the data flow and sanitization in these

systems, reflecting thus the characteristics of taint-style vulnerabilities. They combine static

analysis and unsupervised machine learning techniques to generate the patterns. The inferred

patterns are represented in a CPG that, when traversed, allows retrieving unsanitized data

flows which could be associated to taint-style vulnerabilities. The CPG data structure, which

was presented in a previous work of the authors (Yamaguchi et al., 2014), was enhanced by

extending it to include information about statement precedence and interprocedural analysis.

AutoISES analyses source code inferring security specifications (e.g., sanitization func-

tions) and using them to detect security violations (Tan et al., 2008). The tool infers that a

security check function should be used to protect a particular sensitive operation. For this,

first the tool does static analysis of the source code verifying which security check func-

tions are frequently used to protect a given sensitive operation, then infers the security check

function to the sensitive operation.

Saner (Balzarotti et al., 2008) addresses the detection of vulnerabilities in PHP code

using a combination of static and dynamic analysis (executing a program to check properties

and find bugs while it is running (Ball, 1999)). First, during static analysis Saner models how

string manipulation routines (e.g., sanitization functions) modify the application’s inputs.

Secondly, it runs the code with malicious inputs to identify flaws in the sanitization.

Zheng et al. (Zheng & Zhang, 2013) presented an approach to detect remote code execu-

tion (RCE) vulnerabilities using a path- and context-sensitive interprocedural analysis. RCE

attacks require usually the manipulation of string and non-string parts of the client side in-

puts, so they propose an analysis that handles these parts in a cohesive and efficient manner,

and with multiple PHP scripts and requests. The scripts are analyzed searching for these

parts, and encoding them as two kinds of constraints. They developed an algorithm that

solves these constrains in an iterative and alternative fashion, so exploits can be composed

from this solution.

S3 (Trinh et al., 2014) is a symbolic string solver that addresses the detection of vulner-

abilities in web applications by analysis of JavaScript. The solver employs an algorithm for

a constraint language, which first makes use of symbolic representation handling string vari-

ables, then generates constraint of instances from these symbolic expressions. The results

are combined with the specifications for attacks. The specifications are a form of assertions

that constitute an attack against a particular sink. Therefore, if the constraint solver finds a

24

2.2 Detection of Vulnerabilities

solution to a constraint query, then this represents and attack that can reach a sensitive sink

and exploit a vulnerability.

2.2.2 Fuzzing

Fuzzing is another technique to detect vulnerabilities. On the contrary of static analysis it

does not analyze the application code to detect vulnerabilities, but in runtime verifies if in-

jected data triggers some vulnerability present in the application. Therefore, it is considered

a testing technique that discovers faults in software by feeding a program with unexpected

inputs and monitoring that program for exceptions (Evron & Rathaus, 2007; Sutton et al.,

2007). This technique tends to be simple to apply because it does not require knowledge

about the program to test, and its interaction with the program is limited to the program’s

entry points (Jimenez et al., 2009).

An important aspect of the technique is how the injected data is generated. It can be

implemented based on mutation or generation, meaning that, respectively, the fuzzers mutate

existing data samples to create data to be injected and tested, or generate new data based on

a model of inputs, i.e., using an input grammar.

The fuzzing technique was first presented by Miller et al. (Miller et al., 1990) that de-

scribed how they fed UNIX program utilities with random inputs and observed that some of

them crashed. Later, some fuzzers, such as SPIKE (Bradshaw, 2010a,b), improve this idea

by providing to the applications malformed inputs, using a generic data structure to repre-

sent different data types and others based on context-free grammars (CFG) (Kaksonen, 2001;

Sutton et al., 2007).

Fuzzers can be classified basically in two categories: blackbox and whitebox (Sutton

et al., 2007). A blackbox fuzzer implements the technique described up to this point. As

the blackbox approach is mostly independent of the application and does not require setting

up the application, it is useful to mimic the behaviors of attackers while testing existing

protections (Duchène et al., 2014). Despite blackbox fuzzers being useful, they tend to

find only shallow bugs (bugs that are easy to find) and usually have low code coverage (do

not exercise all possible values for a given variable), missing many relevant code paths and

thus many bugs (Chipounov et al., 2011; Duchène et al., 2014; Godefroid et al., 2008, 2012).

KameleonFuzz is a blackbox fuzzer that searches for XSS vulnerabilities in web applications.

It generates malicious inputs to exploit XSS, but also reveals the vulnerability using a genetic

25

2. CONTEXT AND RELATED WORK

algorithm guided by an attack grammar (Duchène et al., 2014). The tool infers the control

flow of the application and combines it with taint flow inference, since XSS vulnerabilities

can be discovered by taint analysis. The tool is an extension of two previous works (Doupé

et al., 2012; Duchène et al., 2013).

Other technique that, in a certain way, is related with the blackbox fuzzing is attack injec-

tion (Antunes et al., 2010). The technique is used to discover automatically vulnerabilities in

software. A tool that implements this technique intends to mimic the behavior of an attacker,

injecting continuously malformed inputs, while monitoring the application. As expected

some attacks are rejected (stopped) by the mechanisms of input validation, while others go

through and are processed, performing thus a successful attack. The fuzzing can be used in

attack injection to generate the malicious data to be injected and perform the attacks. The

AJECT tool follows an approach similar to this principle, i.e., mimics the behavior of at-

tackers to discover vulnerabilities in network-connected servers, for then remove them. The

tool monitors the server and the responses returned to the clients, looking for unexpected

behaviors, which indicate the presence of a vulnerability that was triggered by some attack.

After of attack identification, the tool reproduces the anomaly and uses the information of

the attack to support the removal of the vulnerability.

Whitebox fuzzers use symbolic execution and constraint solving applied to the source

code (Duchène et al., 2014). The principle of functioning of some whitebox fuzzers is, in a

first instance, to generate and inject well-formed inputs in the program and perform dynamic

symbolic execution, gathering data flow paths and constraints on inputs from conditional

branches encountered along the execution. Then, the collected constrains are negated (con-

straint solving) and new inputs are injected to collect new execution paths. This process is

repeated to gather all possible execution paths and checking several properties in runtime,

such as those implemented by Purify, Valgrind, or AppVerifier (Evron & Rathaus, 2007; Sut-

ton et al., 2007). This form of whitebox fuzzing is implemented in the SAGE (Godefroid

et al., 2008, 2012), KLEE (Cadar et al., 2008) and DART (Godefroid et al., 2005) fuzzers,

using symbolic execution to exercise all possible execution paths of the program. However,

as symbolic execution is slow and does not scale to large programs, it is hard to discover deep

and complex bugs (Cadar et al., 2008; Chipounov et al., 2011). To deal with this difficulty,

Dowser is a fuzzer that combines symbolic execution with dynamic taint analysis to find

buffer overflow and underflow (underrun) vulnerabilities buried deep in programs (Haller

et al., 2013).

26

2.3 Vulnerabilities and Machine Learning

2.3 Vulnerabilities and Machine Learning

Machine learning (ML) and data mining are used in several application areas (e.g., computer

games and robotics) and are based on a diverse set of techniques. It is not our intention

to describe all these techniques. We will restrict ourselves to the techniques that are used

in our work, i.e., to ML applied to data mining and sequence models for the extraction of

knowledge for classification. The first two sections present the use of ML with data mining

and sequence models. Then, in the next two sections, works using ML to detect software

problems, especially vulnerabilities, are presented.

2.3.1 Machine learning classifiers and data mining

Machine learning is a discipline of artificial intelligence (AI) that gives computers the ability

to learn knowledge without programming (coding) it, and then to use the acquired knowl-

edge to take actions/decisions. Computers have to be guided in order to learn before taking

actions. They need a data set of examples – training data set – from which to extract knowl-

edge, learning from there.

A task is called classification if it aims to assign input objects into classes (a set of discrete

values). A classifier is an automatic procedure that performs classification. A classifier

works as a prediction function that collects features that describe an input object and predicts

the class that the object fits in, which is the output of the classifier. For example, a spam filter

classifies e-mail messages into two classes: spam and not-spam (Hladká & Holub, 2015).

For a correct classification, first the developer should define a list of features that char-

acterize an object, exactly and explicitly based on his intuition about their usefulness. A

set of attributes is used to represent the features, in which an attribute can represent more

than one feature. Sometimes, attributes and features have the same meaning, denoting that

an attribute represents a feature. Thereby, since each object is characterized by a list of fea-

tures, the computer starts by extracting the features, which are next mapped to attributes,

composing what we call an attribute vector.

An attribute vector together with its class value forms an instance. The set of all instances

forms a training data set. There are two types of attributes, numerical and categorical. Nu-

merical attributes have numerical values (either discrete or continuous), while categorical

attributes have discrete, non-numerical values. A special kind of categorical attributes are

27

2. CONTEXT AND RELATED WORK

binary attributes that have only two possible values: true and false (Hladká & Holub, 2015;

Witten et al., 2011).

Therefore, classification is a form of data analysis that involves extracting models de-

scribing data classes. Such models, called classifiers, predict categorical (discrete, un-

ordered) class labels. Data classification is a two-step process: (1) learning, where a clas-

sification model is constructed; (2) classification, where the model is used to predict class

labels for given input data. Because the class label of each training instance is known, this

type of ML is known as supervised learning (i.e., the learning of the classifier is supervised

in the sense that it is told the class each training instance belongs to). An alternative type of

ML is unsupervised learning, in which the class label of each training attribute vector is not

known, and the number or set of classes to be learned may not be known in advance (Han

et al., 2011).

Each classifier uses a machine learning algorithm that depends on the learning type (su-

pervised or unsupervised), then it uses the training data set to discover/extract the knowledge

adequate to classify correctly the input data. The selection of machine learning algorithm

depends on some factors, such as the type of problem to be solved and the data set nature

(Chandola et al., 2009). Examples of some supervised algorithms are decision trees and

naive Bayes, and unsupervised algorithms are apriori and K-means.

Data mining, also known as knowledge discovery from data (KDD), aims to turn a large

collection of data into knowledge that can assist when taking actions/decisions. In other

words, data mining is the analysis of (often large) observational data sets to find patterns

(knowledge discovery) and to summarize the data in a way that is understandable and useful

to the data owner (Hand et al., 2001). Usually the data collection constitutes a database, and

each tuple of the database is composed by attributes that describe objects.

Data mining typically deals with data that has been collected for some purpose different

from the data mining itself (Hand et al., 2001). This means that before performing data min-

ing, the collection of data typically has to undergo a pre-processing step to clean the noise

(irrelevant and dubious data) and to select the attributes relevant for data mining. Therefore,

similarly to ML, data mining has a training data set (a database) constituted by attributes

representing features (observational data) that describe input objects, then it extracts knowl-

edge from this database and classifies input data. There are various classification methods

used in data mining, being ML one of them, in which adequate and necessary knowledge is

28

2.3 Vulnerabilities and Machine Learning

extracted from the database to classify input data. Therefore, we can use ML techniques in

data mining databases to build classification models and then classify input data.

2.3.2 Sequence models and natural language processing

Natural language processing (NLP) deals with human–machine communication in both writ-

ten and spoken natural language. This communication can work if computers are able to

recognize proper senses of words in sentences or texts (sequences of observations). Data

in NLP is represented by written and/or spoken corpora (sets of data sets of sequences of

observations). Once we computerize objects daily used (e.g., email messages or words in

sentences), we can retrieve features from them and form their data representations, which

means that the objects become data. On the other hand, machine learning uses data for

learning, extracting knowledge and classifying new objects (Hladká & Holub, 2015).

Part-of-Speech (PoS) tagging is one of the most important NLP tasks and uses a classi-

fication model for sequences of observations. The task is to assign each word (observation)

to a grammatical category (e.g., noun, verb, adjective), named tag. The model’s parameters

are typically inferred using supervised machine learning techniques, leveraging annotated

corpus – a data set with sequences of observations annotated manually with the values (e.g.,

tags in case of PoS) to be learned – to extract rules (knowledge) automatically. Then, with

this knowledge, other sequences of observations can be processed and classified. NLP has to

take into account the order of the observations, as the meaning of sentences depends on this

order.

Hidden Markov Model
A Hidden Markov Model (HMM) is a statistical generative model that represents a pro-

cess as a Markov chain with unobserved (hidden) states. It is a dynamic Bayesian network

with nodes that represent random variables and edges that represent probabilistic dependen-

cies between these variables (Baum & Petrie, 1966; Jurafsky & Martin, 2008; Smith, 2011).

These variables are divided in two sets: observed variables – observations – and hidden vari-

ables – states (e.g., the states in PoS are the tags). The edges are the transition probabilities,

i.e., the probabilities of going from one state to another. States are said to emit observations.

29

2. CONTEXT AND RELATED WORK

A HMM is composed of:

1. a vocabulary, a set of words, symbols or tokens that compose the sequence of obser-

vations;

2. states, a set of states to classify the observations of the sequence;

3. parameters, a set of probabilities: (i) the start-state or initial probabilities, which spec-

ify the probability of a sequence of observations starting in each state of the model;

(ii) the transition probabilities; (iii) and the emission probabilities, which specify the

probability of a state emitting a given observation.

Sequence models are models for structured classification, e.g., for the classification of

words in a sentence. The concept of sequence comes from a set of structured sequential ob-

servations. Therefore, sequence models correspond to a chain structure (Jurafsky & Martin,

2008) (e.g., the sequence of observations of words in a sentence) to be classified. These

models use sequential dependencies in the states, meaning that the i-th state depends of the

i-1 previously generated states. In a HMM, the states are generated according to a first order

Markov process, in which the i-th state depends only of the previous state.

In the context of NLP, a HMM is often used to find the sequence of states that best explain

a new sequence of observations, given the learned parameters. This is known as the decod-

ing problem, which can be solved by the Viterbi decoding algorithm (Viterbi, 1967). This

algorithm uses dynamic programming to pick the best hidden state sequence. Despite the

Viterbi algorithm using bigrams to generate the i-th state, it takes into account all previously

generated states, although this is not directly visible. In a nutshell, the algorithm iteratively

obtains the probability distribution for the i-th state based on the probabilities obtained for

the (i-1)-th state and the learned parameters.

2.3.3 Detecting vulnerabilities using machine learning

Machine learning has been used in some works to measure software quality by collecting

attributes that reveal the presence of software defects (Arisholm et al., 2010; Briand et al.,

2000; Lessmann et al., 2008). These works were based on code attributes such as numbers

of lines of code, code complexity metrics, and object-oriented features. Some papers went

one step further by using similar metrics to predict the existence of vulnerabilities in source

30

2.3 Vulnerabilities and Machine Learning

code (Neuhaus et al., 2007; Shin et al., 2011; Walden et al., 2009). They used attributes

such as past vulnerabilities and function calls (Neuhaus et al., 2007), or code complexity

and developer activities (Shin et al., 2011), or combination of code-metric analysis with

meta data gathered from code repositories (Perl et al., 2015). These works did not aim to

detect bugs and identify their location, but to assess the quality of the software in terms of

the prevalence of defects and vulnerabilities.

PhpMinerI and PhpMinerII are two tools that use data mining to assess the presence

of vulnerabilities in PHP programs (Shar & Tan, 2012b,c). These tools extract a set of

attributes from program slices that end in a sensitive sink but do not necessarily start in a

entry point. The tools are first trained with a set of annotated slices, then apply machine

learning algorithms to those attributes to assess the presence of vulnerabilities. The data

mining process is not really done by the tools, but instead the user has to use the WEKA tool

to do it (Witten et al., 2011). More recently, the authors evolved this idea to use also traces or

program execution (Shar et al., 2013). Their approach is an evolution of the previous works

that aimed to assess the prevalence of vulnerabilities, but obtaining a higher accuracy.

There are a few static analysis tools that use machine learning techniques in contexts

other than web applications. Chucky discovers vulnerabilities by identifying missing checks

in C source code (Yamaguchi et al., 2013). The tool does taint analysis to find checks be-

tween entry points and sensitive sinks, applies text mining to discover the neighbors of these

checks, and then builds a model to identify missing checks. Scandariato et al. use text min-

ing to predict vulnerable software components in Android applications (Scandariato et al.,

2014). They use text mining techniques to get the terms (words) present in software compo-

nents (files) and their frequencies, and use a static code analyzer to check if those software

components are vulnerable or not. Then, they correlate the term frequencies in vulnerable

software components and build a model to predict if a given software component is vulnera-

ble or not.

2.3.4 Related uses of machine learning

There has been other works that resort to machine learning in the context of software security,

including some very recent. SuSi uses machine learning to identify sources and sinks in the

source code of the Android API (Rasthofer et al., 2014). It is trained with two annotated

sets of sources and sinks, categorized with both syntactic and semantic features, to perform

31

2. CONTEXT AND RELATED WORK

two distinct classifications. The first, after collecting syntactic features related with methods

(functions) from the source code, classifies these methods as being sources or sinks. Then,

it uses the second data set composed of semantic features to classify the sources and sinks

into a category, such as account, bluetooth (for sources), file, and network (for sinks). After

trained with these sets, SuSi managed to detect and identify hundreds of sources and sinks

in the Android API.

Soska et al. aim to predict whether a website will become malicious in the future, before

it is actually compromised (Soska & Christin, 2014). They use machine learning to retrieve

features about the web server and about the websites that it hosts. The features extracted

about the websites are for instance: the file system structure (e.g., directory names that

indicate that the website is developed using a CMS), webpage structure (e.g., if the web

page is generated by a CMS template), and keywords (e.g., presence of some HTML tags).

Based on the presence of these features, they predict whether a website will be compromised.

pSigene retrieves features from a large collection of SQL injection attack samples to

learn how to characterize them. Then it creates signatures to detect these attacks (Howard

et al., 2014). It employs a biclustering technique to identify blocks of attack samples with

similar features (a bibluster), and then it uses the logistic regression algorithm to generate the

signature for each bicluster (i.e., the logistic regression model that classifies a new sample

attack for the bicluster). These signatures are used to create the signatures to be included in

an IDS to detect SQL injection attacks.

Nunan et al. also retrieve web document- and URL-based features from a large collection

of XSS attacks vectors to learn how to characterize attacks and classify new potential XSS

vector attacks as malicious (Nunan et al., 2012). In that large collection, they identified a

set of features (obfuscation-based, suspicious patterns and HTML/JavaScript schemes) that

allow the accurate classification of XSS in web pages. Then, they analyse automatically

web pages to detect XSS attacks, using a three steps process: detection and extraction of

obfuscated features, decoding of the web pages and features, and classification of web pages

using a machine learning algorithm.

Standard classifiers and other common data mining techniques only look for the presence

of attributes, without relating them or considering their order. This can originate wrong

classification and prediction. In recent years, this aspect has been taken into consideration

for improving accuracy. Specifically, HMM sequence models have started to be used in

the context of intrusion detection systems (Bhole & Patil, 2014; Khosronejad et al., 2013;

32

2.4 Removing Vulnerabilities and Runtime Protection

Sultana et al., 2012). Bhole et al. compare the results of HMM with standard classifiers for

the detection of anomalies performed by an IDS. They conclude that the HMM performs

better than the others.

Sultana et al. improve the traditional HMM technique used in anomaly detection reducing

the time of training. They propose to build a model based on extracted frequent common

patterns in trace events instead of taking each trace in its own. The traces are routine calls,

since they can reflect the presence of faults, unauthorized usage of resources or unusual

function calls due to attacks.

Khosronejad et al. also aim to reduce the time of training during the construction of the

HMM. They combine the C5.0 standard classifier with HMM. Thus, first their approach

collects the features from IDS events, composing a vector of attributes to be classified by

C5.0, then that vector plus the classification are the input for the HMM. The main goal is to

verify if the result of C5.0 improves the performance of the HMM in the processing of IDS

events and detection of anomalies.

2.4 Removing Vulnerabilities and Runtime Protection

Arguably, the best way of avoid vulnerabilities is writing secure software, but not all pro-

grammers have the required knowledge and mistakes can always occur. Static analysis can

help for instance to detect and identify vulnerabilities in the source code of applications,

which can then be removed. However, not all techniques used in software security have the

ability of detection and identification. Some techniques only do some kind of detection, as

for instance data mining when predicting the existence of vulnerabilities, while others do

neither, such as runtime protection.

This section presents two ways of addressing vulnerabilities. Sections 2.4.1 and 2.4.2,

respectively, present the works that remove vulnerabilities by changing the source code and

block vulnerability exploitation by interrupting the attack progress.

2.4.1 Removing vulnerabilities

Static analysis is essentially a technique to detect vulnerabilities by analyzing the source

code of applications. However, it also identifies vulnerabilities in the code, meaning that it

reports the places in the source code where the vulnerabilities were found. This distinction

33

2. CONTEXT AND RELATED WORK

is important and beneficial for the programmers because by being told the places in the

source code where the vulnerabilities exist, they can correct the programs. This removal is

normally done manually by the programmers, but they often do not have adequate training

on software security and vulnerabilities. Therefore, it would be beneficial to have tools that

detect, identify, and remove vulnerabilities automatically.

WebSSARI (Huang et al., 2004) does static analysis and inserts runtime guards during

the analysis. The runtime guards are sanitization routines that are inserted in vulnerable

sections of the code that use untrusted information. The tool employs type qualifiers to be

associated to variables and functions. The type qualifiers are used to define preconditions

for all sensitive sinks, postconditions for sanitization functions that generate trusted output

from tainted input, and annotations for all entry points. This information is stored in preludes

(files) that are used in the analysis of the code, and after that, a guard is inserted for each

variable involved in an insecure statement. Unfortunately, no details are available about what

the guards effectively are or how they are inserted, as the tool became commercial around

2006 under the designation of CodeSecure. Interestingly, it seems that the commercial tool

no longer corrects applications.

Merlo et al. (Merlo et al., 2007) present a tool that does static analysis of PHP source

code and SQL queries. It performs dynamic analysis to build syntactic model-based guards

of legitimate SQL queries, and protects queries from input that aims to do SQLI by inserting

those guards in the source code. The model guards are SQL abstract syntax trees (ASTs)

that are collected by instrumenting the PHP code. They are stored and then be matched

against queries sent by the applications before the database accesses. In case of an unmatched

query, the model guard is inserted in the source code dynamically, replacing the vulnerable

statements.

saferXSS (Shar & Tan, 2012a) does static analysis to find XSS vulnerabilities in Java-

based web applications. it applies pattern matching techniques for checking which escape

mechanism has to be applied to remove the vulnerabilities, and then prevents exploitation by

using functions provided by OWASP’s ESAPI (OWASP, 2014a). ESAPI is a web application

security control library (like a framework) that implements escape mechanisms and wraps

user inputs, preventing input values from causing any script execution. The tool has a detec-

tion and a removal phase. The detection phase is based on static analysis, more specifically

taint analysis, to identify potential XSS vulnerabilities in the application source code. The

34

2.4 Removing Vulnerabilities and Runtime Protection

removal phase first verifies the context of each user input referenced in the identified vul-

nerabilities, next finds the code locations where the untrusted user input can be adequately

escaped, determines the required escaping mechanisms, and finally removes the vulnerabili-

ties by applying the appropriate ESAPI functions.

2.4.2 Runtime protection

Static analysis tools are known to report false positives (Jackson & Rinard, 2000; Landi,

1992). Moreover, they generate false negatives because they only find the flaws that they

were programmed to detect. Runtime protection is another technique used to improve soft-

ware security. It follows the principle that: since it is difficult to eliminate all vulnerabilities

by analyzing the code, then it is acceptable to protect the applications in runtime. This sec-

tion presents this form of prevention giving a perspective on how it works and then focusing

in prevention against SQLI and stored XSS attacks.

Runtime protection often involves a mechanism that monitors applications, protecting

them when an attack is observed. It can be implemented inside of the application to be pro-

tected or developed as a third-party software. In both cases, the mechanism is programmed

to monitor source code properties of the application that are susceptible to be exploited by

malicious data provided by an attacker. In the presence of an attack, it is programmed to take

measures, such as stopping the application and logging information about the attack.

Some of the earlier mechanisms of this class aimed at protecting applications from buffer

overflows. A buffer overflow can, for example, be characterized by an attacker injecting

malicious data and manipulating the memory stack in such way that causes a deviation of the

program’s flow of control. By overflowing the return address of a function with a specially

selected address, the program will execute the code controlled by the attacker. The use of

canaries is one of the mechanism best known to find this type of attack, which works by

detecting invalid changes in the return address. This idea was first proposed in StackGuard

(Cowan et al., 1998). The canary is a random number that is associated to a function of the

application to be monitored. The application is compiled with the canary, so it is pushed in

the stack memory just after the return address. Then, StackGuard checks if the canary was

changed before the function returns. Later on, Microsoft integrated this mechanism in their

products (Howard & LeBlanc, 2003) and some Linux distributions also include a C compiler

with the Stack Smashing Protector (Etoh & Yoda, 2002; Wagle & Cowan, 2003).

35

2. CONTEXT AND RELATED WORK

Another two mechanisms were developed to mitigate buffer overflow attacks, namely

Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP), both

adopted by several operating systems (e.g., Windows and Linux (Howard & LeBlanc, 2003;

van de Ven, 2005)). ASLR randomizes the memory addresses where the code and data are

loaded into memory, preventing the attacker from knowing what memory addresses should

be used to compromise the control flow. DEP marks areas of memory either as executable or

nonexecutable, forcing the program to crash in case there is a jump to code in nonexecutable

memory. This is used for instance to prevent executable code from being run in the stack

segment.

Next we present a set of works on runtime protections against SQLI and XSS, thus more

related to our work.

AMNESIA (Halfond & Orso, 2005) and CANDID (Bandhakavi et al., 2007) detect SQLI

by comparing the structure of a SQL query before and after the inclusion of user inputs (and

before the DBMS processes the queries). Both tools use models to represent the queries and

do detection. AMNESIA creates models by analyzing the source code of the application and

extracting the query structure. Then, AMNESIA instruments the source code with calls to a

wrapper that in runtime compares queries with the models, blocking the attacks. CANDID

also analyses the source code of the application to find database queries that handle user

inputs, then simulates their execution with benign strings to create the models.

Buehrer et al. (Buehrer et al., 2005) present a similar scheme that manages to detect

mimicry attacks by enriching the models (parse trees) with comment tokens. SqlCheck (Su

& Wassermann, 2006) is another scheme that compares parse trees to detect SQLI attacks.

The detection is made by verifying if the syntactic structure of the query is changed by user

inputs containing SQL keywords. For that, it parses the queries and verifies if the nodes of

the user inputs have more than one leaf.

DIGLOSSIA (Son et al., 2013) is a technique to detect SQLI attacks that was imple-

mented as an extension of the PHP interpreter. The technique first obtains the query models

by mapping all query statements’ characters to shadow characters except user inputs, and

computes shadow values for all string user inputs. Second, for a query execution it computes

the query and verifies if the two parsed trees are isomorphic, i.e., verifies if the root nodes

from the two parsed trees are equal.

Recently, Masri et al. (Masri & Sleiman, 2015) and Ahuja et al. (Ahuja et al., 2015)

presented two works about prevention of SQLI attacks. The first work presents a tool called

36

2.4 Removing Vulnerabilities and Runtime Protection

SQLPIL that simply transforms SQL queries created as strings into prepared statements, thus

preventing SQLI in the source-code. The second presents three new approaches to detect and

prevent SQLI attacks based on rewriting queries, encoding queries and adding assertions to

the code.

Dynamic taint analysis tracks the flow of user inputs in the application and verifies it they

reach dangerous instructions. Xu et al. (Xu et al., 2005) show how this technique can be used

to detect SQLI and reflected XSS. They annotate the arguments from source functions and

sensitive sinks as untrusted and instrument the source code to track the user inputs to verify if

they reach the untrusted arguments of sensitive sinks (e.g., functions that send queries to the

database). A different but related idea is implemented by CSSE to protect PHP applications

from SQLI, XSS and OSCI. CSSE modifies the platform to distinguish between the parts

of a query that come from the program and from the external (input), defining checks to be

performed on the latter (Pietraszek & Berghe, 2005). An example check is to verify if the

query structure becomes different due to inputs. WASP also does something similar to block

SQLI attacks (Halfond et al., 2008).

Valeur et al. present an anomaly-based intrusion detection system for SQLI attacks (Valeur

et al., 2005). During the training phase the detector creates a model (a set of profiles) of nor-

mal access to the database. In runtime it detects deviations from that model.

The idea of randomized instruction sets was first proposed to block binary code injection

attacks (Barrantes et al., 2003; Kc et al., 2003). The RISE mechanism works as a unique

and private machine instruction set for each executing program. The code of the program

is protected by scrambling each byte with random numbers seeded with a random key that

is unique to each program execution. When binary code is injected, it will be descrambled

resulting in random bits that probably will crash the program, as the code was not correctly

scrambled (Barrantes et al., 2003). A similar mechanism was proposed by Kc et al. (Kc et al.,

2003). Boyd et al. evolved this idea for protecting web applications from SQLI and presented

the SQLrand tool (Boyd & Keromytis, 2004). SQLrand creates a new SQL language by

remapping SQL keywords with a secret key, essentially by appending a number to every SQL

keyword. Applications must be modified to use the new language for the generated queries.

In runtime, SQLrand decodes the queries to the original SQL keywords, and then sends them

to the DBMS. Before decoding, the tool checks if an original SQL keyword appears in the

user inputs, detecting SQLI of first and second order that alter the query structure.

37

2. CONTEXT AND RELATED WORK

There are several tools to detect reflected XSS vulnerabilities and attacks in the liter-
ature (Kieyzun, A. et al., 2009; Papagiannis et al., 2011; Saxena et al., 2010). Gálan et
al. propose a vulnerability scanner to detect this attack by finding the entry points of the
application susceptible to be exploited. Then, they inject malicious data in those entry points
while crawling the web application to verify if the injected data is returned (Gálan et al.,
2010). Using source code static analysis, Wang et al. identify the slice among the first step
of the vulnerability (functions that write in the database) and the second step (sensitive sinks)
extract the vulnerable slice to look for the existence of stored XSS (Wang et al., 2011).

38

3
Detecting and Removing Vulnerabilities

with Static Analysis and Data Mining

Arguably, a reason for the insecurity of web applications is that many programmers lack

appropriate knowledge about secure coding, so they leave applications with flaws. However,

the mechanisms for web application security fall in two extremes. On one hand, there are

techniques that put the programmer aside, e.g., web application firewalls and other runtime

protections (Halfond et al., 2008; Pietraszek & Berghe, 2005; Wang et al., 2006). On the

other hand, there are techniques that discover vulnerabilities but put the burden of removing

them on the programmer, e.g., black-box testing (Antunes et al., 2010; Banabic & Candea,

2012; Huang et al., 2003) and static analysis (Huang et al., 2004; Jovanovic et al., 2006;

Shankar et al., 2001).

This chapter explores an approach for automatically protecting web applications while

keeping the programmer in the loop. The approach consists in analyzing the web application

source code searching for input validation vulnerabilities, and inserting fixes in the same

code to correct these flaws. The programmer is kept in the loop by being allowed to un-

derstand where the vulnerabilities were found, and how they were corrected. This approach

contributes directly to the security of web applications by removing vulnerabilities, and in-

directly by letting the programmers learn from their mistakes. This last aspect is enabled by

inserting fixes following common security coding practices, so programmers can learn these

practices by seeing the vulnerabilities and how they were removed.

39

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

We explore the use of a novel combination of methods to detect this type of vulnera-

bilities: static analysis with data mining. Static analysis is an effective mechanism to find

vulnerabilities in source code, but tends to report many false positives (non-vulnerabilities)

due to its undecidability (Landi, 1992). This problem is particularly difficult with languages

such as PHP that are weakly typed and not formally specified (de Poel, 2010). Therefore, we

complement a form of static analysis, taint analysis, with the use of data mining to predict

the existence of false positives. This solution combines two apparently disjoint approaches:

humans coding the knowledge about vulnerabilities (for taint analysis), in combination with

automatically obtaining that knowledge (with supervised machine learning supporting data

mining).

To predict the existence of false positives, we introduce the novel idea of assessing if

the vulnerabilities detected are false positives using data mining. To do this assessment, we

measure attributes of the code that we observed to be associated with the presence of false

positives, and use a combination of the three top-ranking classifiers to flag every vulnerabil-

ity as false positive or not. We explore the use of several classifiers: ID3, C4.5/J48, Random

Forest, Random Tree, K-NN, Naive Bayes, Bayes Net, MLP, SVM, and Logistic Regression

(Witten et al., 2011). Moreover, for every vulnerability classified as false positive, we use an

induction rule classifier to show which attributes are associated with it. We explore the JRip,

PART, Prism, and Ridor induction rule classifiers for this goal (Witten et al., 2011). Clas-

sifiers are automatically configured using machine learning based on labeled vulnerability

data.

Ensuring that the code correction is done correctly requires assessing that the vulnera-

bilities are removed, and that the correct behavior of the application is not modified by the

fixes. We propose using program mutation and regression testing to confirm, respectively,

that the fixes function as they are programmed to (blocking malicious inputs), and that the

application remains working as expected (with benign inputs).

The chapter also describes the design of the Web Application Protection (WAP) tool that

implements our approach (Medeiros, 2014). WAP analyzes and removes input validation

vulnerabilities from programs or scripts written in PHP 5, which according to a recent re-

port is used by more than 82% of existing web applications (Imperva, 2014). WAP covers

eight classes of vulnerabilities presented in Section 2.1, namely SQLI, XSS, RFI, LFI, SCD,

DT/PT, OSCI and PHPCI. Currently, WAP assumes that the background database is MySQL,

40

3.1 A Hybrid of Static Analysis and Data Mining

DB2, or PostgreSQL. The tool might be extended with more flaws and databases (see Chap-

ter 4), but this set is enough to demonstrate the concept. Designing and implementing WAP

was a challenging task. The tool does taint analysis of PHP programs, a form of data flow

analysis. To do a first reduction of the number of false positives, the tool performs global,

interprocedural, and context-sensitive analysis, which means that data flows are followed

even when they enter new functions and other modules (other files). This result involves

the management of several data structures, but also deals with global variables (that in PHP

can appear anywhere in the code, simply by preceding the name with global or through

the $_GLOBALS array), and resolving module names (which can even contain paths taken

from environment variables). Handling object orientation with the associated inheritance and

polymorphism was also a considerable challenge.

This chapter describes a form to detect and correct automatically the eight classes of vul-

nerabilities mentioned above, predicting if they are false positives or not. In Section 3.1 the

approach to detect and correct automatically this type of vulnerabilities is discussed, using

the output of taint analysis and predicting false positives by data mining, and the architecture

of the WAP tool that implements the approach is presented. The tool is composed by three

main modules - Code Analyzer, False Positives Predictor and Code Corrector - discussed

in Sections 3.2, 3.3 and 3.4, respectively. The first module performs taint analysis to detect

candidate vulnerabilities, while the second classifies them as being or not false positives, and

the third removes the true positives (vulnerabilities) by correction of the source code. Section

3.5 presents the challenges to implement the WAP tool and Section 3.6 shows an experimen-

tal evaluation of the tool. The chapter ends with conclusions of this form of detection and

correction (Section 3.7), and discusses some related work.

3.1 A Hybrid of Static Analysis and Data Mining

3.1.1 Overview of the approach

The notion of detecting and correcting vulnerabilities in the source code that we propose is

tightly related to information flows: detecting problematic information flows in the source

code, and modifying the source code to block these flows. The notion of information flow

41

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

is central to two of the three main security properties: confidentiality and integrity (Sandhu,
1993). Confidentiality is related to private information flowing to public objects, whereas
integrity is related to untrusted data flowing to trusted objects. Availability is an exception
as it is not directly related to information flow.

The approach proposed is, therefore, about information-flow security in the context of
web applications. We are mostly concerned with the server-side of these applications, which
is normally written in a language such as PHP, Java, or Perl. Therefore, the problem is a
case of language-based information-flow security, a topic much investigated in recent years
(Huang et al., 2004; Nguyen-Tuong et al., 2005; Sabelfeld & Myers, 2003). Attacks against
web vulnerabilities can be expressed in terms of violations of information-flow security.
Figure 3.1 shows the information flows that exploit each of the vulnerabilities of Section
2.1. The information flows are labeled with the vulnerabilities that usually permit them (a
few rarer cases are not represented). XSS is different from other vulnerabilities because
the victim is not the web application itself, but a user. Our approach is a way of enforcing
information-flow security at the language-level. The tool detects the possibility of the ex-
istence of the information flows represented in the figure, and modifies the source code to
prevent them.

attackerattacker

attackerattacker

attackerattacker victim uservictim user

web applicationweb application

web applicationweb application

web applicationweb application

integrity violation
(SQLI, FRI, LFI, OSCI)

confidentiality violation
(SQLI, DT/PT, SCD)

confidentiality or integrity violation (XSS)

Figure 3.1: Information flows that exploit web vulnerabilities.

The approach can be implemented as a sequence of steps.

1. Taint analysis: parsing the source code, generating an abstract syntax tree (AST),
doing taint analysis based on the AST, and generating trees describing candidate vul-
nerable control-flow paths (from an entry point to a sensitive sink).

2. Data mining: obtaining attributes from the candidate vulnerable control-flow paths,
and using 3 classifiers to predict if each candidate vulnerability is a false positive or

42

3.1 A Hybrid of Static Analysis and Data Mining

not. In the presence of a false positive, use induction rules to present the relation

between the attributes that classified it.

3. Code correction: given the control-flow path trees of vulnerabilities (predicted not to

be false positives), identifying the vulnerabilities, the fixes to insert, and the places

where they have to be inserted; assessing the probabilities of the vulnerabilities being

false positives; and modifying the source code with the fixes.

4. Feedback: provide feedback to the programmer based on the data collected in the

previous steps (vulnerable paths, vulnerabilities, fixes, false positive probability, and

the attributes that were used to classify a false positive).

5. Testing: higher assurance can be obtained with two forms of testing, specifically pro-

gram mutation to verify if the fixes do their function, and regression testing to verify

if the behavior of the application remains the same with benign inputs.

3.1.2 Architecture

Figure 3.2 shows the architecture that implements steps 1 to 4 of the approach (testing,

which is step 4, is not represented). It is composed of three modules: code analyzer, false

positives predictor, and code corrector. The code analyzer first parses the PHP source code

and generates an AST. Then, it uses tree walkers to do taint analysis, i.e., to track if data

supplied by users through the entry points reaches sensitive sinks without sanitization. While

doing this analysis, the code analyzer generates tainted symbol tables and tainted execution

path trees for those paths that link entry points to sensitive sinks without proper sanitization.

The false positives predictor continues where the code analyzer stops. For every sensitive

sink that was found to be reached by tainted input, it tracks the path from that sink to the

entry point using the tables and trees just mentioned. Along the track paths (slice candidate

vulnerabilities in the figure), the vectors of attributes (instances) are collected and classified

by the data mining algorithm as true positive (a real vulnerability), or false positive (not a

real vulnerability). Note that we use the terms true positive and false positive to express that

an alarm raised by the taint analyzer is correct (a real vulnerability) or incorrect (not a real

vulnerability). These terms do not mean the true and false positive rates resulting from the

data mining algorithm, which measure its precision and accuracy.

43

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

PHP
source code

Lexer Parser

Create AST AST
Taint

analysis

Fixes

Entry
points

Sensitive
sinks

PHP
Sanitization
functions

TST

TEPT

Detect
vulnerabilities

Slice of candidate
vulnerabilities

Taint AnalyzerTree Generator

Code Analyzer

Collect
attributes

Instances

Trained
data set

Trained
balanced
data set

Top 3 of
classifiers

Predict
false positives

Untainted
data

Rule
inductor

False
positives

Slice of real
vulnerabilities

Correlate
attributes

False Positives Predictor

False positive
information

Identify the
right places

Correct the
source code

Protected
source code

Source code
marked

Code Corrector

Figure 3.2: Architecture including main modules, and data structures.

The code corrector picks the paths classified as true positives to signal the tainted inputs

to be sanitized using the tables and trees mentioned above. The source code is corrected by

inserting fixes, e.g., calls to sanitization functions. The architecture describes the approach,

but represents also the architecture of the WAP tool.

3.2 Detecting Candidate Vulnerabilities by Taint Analysis

Taint analysis for vulnerability detection has been investigated for more than a decade (Evans

& Larochelle, 2002). However, papers in the area do not present the process in detail, and

usually do not do interprocedural, global, and context-sensitive analysis, so we present how

we do it. The taint analyzer is a static analysis tool that operates over an AST created by a

lexer and a parser, for PHP 5 in our case (in WAP we implemented it using ANTLR (Parr,

2009)). In the beginning of the analysis, all symbols (variables, functions) are untainted

44

3.2 Detecting Candidate Vulnerabilities by Taint Analysis

unless they are an entry point (e.g., $a in $a = $_GET[’u’]). The tree walkers (also

implemented using the ANTLR) build a tainted symbol table (TST) in which every cell is a

program statement from which we want to collect data (see Figure 3.3). Each cell contains

a subtree of the AST plus some data. For instance, for statement $x = $b + $c; the TST

cell contains the subtree of the AST that represents the dependency of $x on $b and $c. For

each symbol, several data items are stored, e.g., the symbol name, the line number of the

statement, and the taintedness.

Taint analysis involves traveling though the TST. If a variable is tainted, this state is prop-

agated to symbols that depend on it, e.g., function parameters or variables that are updated

using it. Figure 3.3 (iii) shows the propagation of the taintedness of the symbol $_GET[’u’]

to the symbol $a, where the attribute tainted of $a receives the value of the attribute tainted

from $_GET[’u’]. On the contrary, the state of a variable is not propagated if it is untainted,

or if it is an argument of a PHP sanitization function (a list of such functions is in Section

3.5). The process finishes when all symbols are analyzed this way.

$a

1: $query

$query

9: mysql_query

mysql_query

10: $r

$r

10:

$b

2:

8: $query

$_GET['u']$a

=

a) AST (i), TST (ii) and taint analysis of the $a = $_GET['u']; statement (iii)

$_GET['u']

$a

name: $_GET['u']
line: 15
tainted: 1

name: $a
line: 15
tainted: 1

(i) (ii) (iii)

d
ir
e
c
ti
o
n

 o
f

ta
in

t
a
n
a

ly
s
is

 p
ro

p
a

g
a

ti
o

n

$x

=

$b

+

$c

$b

$x

$c

b) AST (i), TST (ii) and taint analysis of the $x = $b + $c; statement (iii)

name: $x
line: 16
tainted: 0

name: $b
line: 16
tainted: 0

name: $c
line: 16
tainted: 0

(i) (ii) (iii)

d
ir
e

c
ti
o

n
 o

f
ta

in
t

a
n

a
ly

s
is

 p
ro

p
a
g
a

ti
o
n

$b

Figure 3.3: Example (i) AST, (ii) TST, and (iii) taint analysis.

While the tree walkers are building the TST, they also build a tainted execution path

tree (TEPT; example in Figure 3.4 b)). Each branch of the TEPT corresponds to a tainted

variable, and contains a sub-branch for each line of code where the variable becomes tainted

(a square in the figure). The entries in the sub-branches (curly parentheses in the figure) are

the variables that the tainted variable propagated its state into (dependent variables). Taint

analysis involves updating the TEPT with the variables that become tainted.

Figure 3.4 shows a sample script vulnerable to SQLI, its TEPT, and untainted data

(UD) structures. The analysis understands that $a and $b are tainted because they get non-

sanitized values from an entry point (lines 1-2). When analyzing line 3, it finds out that $c is

45

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

1 $a = $_GET[’user’];
2 $b = $_POST[’pass’];
3 $c = "SELECT * FROM users WHERE u = ’".mysql_real_escape_string($a)."’";
4 $b = "wap";
5 $d = "SELECT * FROM users WHERE u = ’".$b."’";
6 $r = mysql_query($c);
7 $r = mysql_query($d);
8 $b = $_POST[’pass’];
9 $query = "SELECT * FROM users WHERE u = ’".$a."’ AND p = ’".$b."’";
10 $r = mysql_query($query);

a) Sample script vulnerable to SQLI.

$_GET['u']$a

=

a) AST (i), TST (ii) and taint analysis of the $a = $_GET['u']; statement (iii)

$_GET['u']

$a

name: $_GET['u']
line: 15
tainted: 1

name: $a
line: 15
tainted: 1

(i) (ii) (iii)

d
ire

ct
io

n
 o

f
ta

in
t

an
a

ly
si

s
pr

op
a

ga
tio

n

$x

=

$b

+

$c

$b

$x

$c

b) AST (i), TST (ii) and taint analysis of the $x = $b + $c; statement (iii)

name: $x
line: 16
tainted: 0

name: $b
line: 16
tainted: 0

name: $c
line: 16
tainted: 0

(i) (ii) (iii)

di
re

ct
io

n
of

ta
in

t
an

al
ys

is
 p

ro
p

ag
at

io
n

$a

1: $query

$query

9: mysql_query

mysql_query

10: $r

$r

10:

$b

2:

8: $query

$b

b) TEPT of a) c) untainted data of a)

Figure 3.4: Script with SQLI vulnerability, its TEPT, and untaint data structures.

not tainted because $a is sanitized. Analyzing line 5, $d is not tainted because $b becomes

untainted in line 4. In line 8, $b is tainted again; and in line 9, $query becomes tainted due

to $a and $b. A vulnerability is flagged in line 10 because tainted data reaches a sensitive

sink (mysql_query). When $a becomes tainted, a new branch is created (Figure 3.4 b).

Also, a sub-branch is created to represent the line of code where $a became tainted. The

46

3.2 Detecting Candidate Vulnerabilities by Taint Analysis

same procedure occurs to $b in line 2. The state of $b in line 4 becomes untainted. An entry

of it is added to UD (Figure 3.4 c) to avoid its taintedeness propagation from TEPT. So, in

line 5, the statement is untainted because $b belongs to UD, and its taintedness propaga-

tion is blocked. When, in line 8, $b becomes tainted again, a new sub-branch is created in

$b to line 8, and its entry is removed from UD. For $query, a branch with a sub-branch

representing line 9 is created. Here, $query is tainted because $a and $b propagated their

taintedness, so an entry of $query is added in the last sub-branch created in $a and $b (1:

to $a; 8: to $b). Analyzing line 10, mysql_query and $r become tainted because $query

taintedness is propagated. The procedure is repeated for the creation of the branch and in-

sertion of the dependency in the sub-branch. As we can see, the process of taint analysis is

a symbiosis of exploring the TST, TEPT, and UD structures. A symbol from a statement of

TST propagates its taintedness to its root node iff it belongs to TEPT but not to UD. At the

end of the analysis of a statement, the TEPT or UD or both are updated: TEPT with new

tainted variables and tainted dependent variables, and UD with the addition or the removal

of variables.

To summarize, the taint analysis model has the following steps.

1. Create the TST by collecting data from the AST, and flagging as tainted the entry

points.

2. Propagate taintedness by setting variables as tainted in the TST iff the variable that

propagates its taintdeness belongs to the TEPT and not to the UD.

3. Block taintedness propagation by inserting in the UD any tainted variable that belongs

to the TEPT and is sanitized in the TST; conversely, remove a variable from the UD if

it becomes tainted.

4. Create the TEPT: (i) a new branch is created for each new tainted variable resulting

from the TST; (ii) a sub-branch is created for each line of code where the variable

becomes tainted; and (iii) an entry in a sub-branch is made with a variable that becomes

tainted by the taintedness propagation from the branch variable.

5. Flag a vulnerability whenever a TST cell representing a sensitive sink is reached by a

tainted variable in the same conditions as in step 2.

47

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

During the analysis, whenever a variable that is passed to a sensitive sink becomes

tainted, the false positives predictor is activated to collect the vector of attributes, creating

thus an instance, and classify the instance as being a false positive or a real vulnerability. In

the last case, the code corrector is triggered to prepare the correction of the code. The code

is updated and stored in a file only at the end of the process, when the analysis finishes, and

all the corrections that have to be made are known.

Table 3.1 shows the functions used to fix the vulnerabilities detected. For example, for

SQLI the tool uses the function san_sqli (developed by us) that employs sanitization func-

tions provided by PHP (column on the right hand side of the table), but also replaces some

problematic, deprecated, tainted sensitive sinks (mysql_db_query, mysqli_execute) by

non-deprecated functions with similar functionality (mysql_query, mysqli_stmt_execute).

3.3 Predicting False Positives

The static analysis problem is known to be related to Turing’s halting problem, and therefore

is undecidable for non-trivial languages (Landi, 1992). In practice, this difficulty is solved

by making only a partial analysis of some language constructs, leading static analysis tools

to be unsound. In our approach, this problem can appear, for example, with string manipu-

lation operations. For instance, it is unclear what to do to the state of a tainted string that is

processed by operations that return a substring or concatenate it with another string. Both

operations can untaint the string, but we cannot decide with complete certainty. We opted to

let the string be tainted, which may lead to false positives but not false negatives.

The analysis might be further refined by considering, for example, the semantics of string

manipulation functions, as in (Wassermann & Su, 2007). However, coding explicitly more

knowledge in a static analysis tool is hard, and typically has to be done for each class of

vulnerabilities ((Wassermann & Su, 2007) follows this direction, but considers a single class

of vulnerabilities, SQLI). Moreover, the humans who code the knowledge have first to obtain

it, which can be complex.

Data mining allows a different approach. Humans label samples of code as vulnerable or

not, then machine learning techniques are used to configure the tool with knowledge acquired

from the labelled samples. Data mining then uses that data to analyze the code. The key idea

48

3.3 Predicting False Positives

Vulnerability Entry points Sensitive sinks Sanitization functions Sanitization functions
used for untainting used for correction (3)

SQL Injection

$_GET MySQL
$_POST mysql_query mysql_escape_string san_sqli,
$_COOKIE mysql_unbuffered_query mysql_real_escape_string that uses the following
$_REQUEST mysql_db_query (1) PHP sanitization functions,
HTTP_GET_VARS mysqli_query by DBMS:
HTTP_POST_VARS mysqli_real_query mysqli_escape_string mysql_real_escape_string
HTTP_COOKIE_VARS mysqli_master_query mysqli_real_escape_string mysqli_real_escape_string
HTTP_REQUEST_VARS mysqli_multi_query

mysqli_stmt_execute mysqli_stmt_bind_param mysqli_stmt_bind_param
mysqli_execute (2)

mysqli::query mysqli::escape_string
mysqli::multi_query mysqli::real_escape_string mysqli::real_escape_string
mysqli::real_query
mysqli_stmt::execute mysqli_stmt::bind_param mysqli_stmt::bind_param
DB2
db2_exec db2_escape_string db2_escape_string
PostgreSQL
pg_query pg_escape_string pg_escape_string
pg_send_query pg_escape_bytea pg_escape_bytea

pg_escape_literal pg_escape_literal
$_GET fopen, copy, unlink
$_POST file_get_contents, file san_mix,
$_COOKIE require, require_once that performs validation
$_REQUEST include, include_once by black-list

Remote File HTTP_GET_VARS move_uploaded_file
Inclusion HTTP_POST_VARS imagecreatefromgd2

HTTP_COOKIE_VARS imagecreatefromgd2part
HTTP_REQUEST_VARS imagecreatefromgd

Local File imagecreatefromgif
Inclusion imagecreatefromjpeg

imagecreatefrompng
imagecreatefromstring

Directory Traversal/ imagecreatefromwbmp
Path Traversal imagecreatefromxbm

imagecreatefromxpm
Source Code readfile
Disclosure highlight_file

passthru, system, san_osci,
OS Command shell_exec, exec, that performs validation
Injection pcntl_exec, popen, by black-list

proc_open

Cross Site Scripting

$_GET echo, print, printf htmlentities

san_out (4)$_POST die, error htmlspecialchars
$_COOKIE exit strip_tags
$_REQUEST urlencode
HTTP_GET_VARS

san_wdata (4)HTTP_POST_VARS file_put_contents, fprintf
HTTP_COOKIE_VARS
HTTP_REQUEST_VARS file_get_contents

san_rdata (4)$_FILES fgets, fgetc, fscanf
$_SERVERS

PHP Code Injection eval, preg_replace
san_eval,
that performs validation
by black-list and sanitization

(1) Function deprecated replaced by mysql_query function. (2) Function deprecated replaced by mysqli_stmt_execute function.
(3) WAP-specific sanitization functions. (4) Uses the OWASP PHP Anti-XSS Library v1.2b.

Table 3.1: Sanitization functions used to fix PHP code by vulnerability and sensitive sink.

49

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

is that there are symptoms in the code, e.g., the presence of string manipulation operations,

that suggest that flagging a certain pattern as a vulnerability may be a false positive (not a

vulnerability). The assessment has mainly two steps, as follows.

1. definition of the classifier: pick a representative set of vulnerabilities identified by

the taint analyzer, verify if they are false positives or not, extract a set of attributes,

analyze their statistical correlation with the presence of a false positive, evaluate can-

didate classifiers to pick the best for the case in point, and define the parameters of the

classifier.

2. classification of vulnerabilities: given the classifier, for every vulnerability found de-

termine if it is a false positive or not.

3.3.1 Classification of vulnerabilities

Any process of classification involves two aspects: the attributes that allow classifying an

instance, and the classes in which these instances are classified. We identified the attributes

by analyzing manually a set of vulnerabilities found by WAP’s taint analyzer. We studied

these vulnerabilities to understand if they were false positives. This study involved both

reading the source code, and executing attacks against each vulnerability found to understand

if it was attackable (true positive) or not (false positive). This data set is further discussed in

Section 3.3.3.

From this analysis, we found three main sets of attributes that led to false positives, as

outlined next.

• String manipulation: attributes that represent PHP functions or operators that manipu-

late strings. These attributes are substring extraction, concatenation, addition of char-

acters, replacement of characters, and removal of white spaces. Recall that a data flow

starts at an entry point, where it is marked tainted, and ends at a sensitive sink. The taint

analyzer flags a vulnerability if the data flow is not untainted by a sanitization function

before reaching the sensitive sink. These string manipulation functions may result in

the sanitization of a data flow, but the taint analyzer does not have enough knowledge

to change the status from tainted to untainted, so if a vulnerability is flagged it may be

a false positive. The combinations of functions and operators that untaint a data flow

are hard to establish, so this knowledge is not simple to retrofit into the taint analyzer.

50

3.3 Predicting False Positives

• Validation: a set of attributes related to the validation of user inputs, often involving

an if-then-else construct. We define several attributes: data type (calls to is_int(),

is_string()), is value set (isset()), control pattern (preg_match()), a test of belonging

to a white-list, a test of belonging to a black-list, and error and exit functions that

output an error if the user inputs do not pass a test. Similarly to what happens with

string manipulations, any of these attributes can sanitize a data flow, and lead to a false

positive.

• SQL query manipulation: attributes related to insertion of data in SQL queries (SQL

injection only). We define attributes: string inserted in a SQL aggregate function

(AVG, SUM, MAX, MIN, etc.), string inserted in a FROM clause, a test if the data are

numeric, and data inserted in a complex SQL query. Again, any of these constructs

can sanitize data of an otherwise considered tainted data flow.

For the string manipulation and validation sets, the possible values for the attributes were

two, corresponding to the presence (Y) or absence (N) of at least one of these constructs in

the sequence of instructions that propagates the input from an entry point to a sensitive sink.

The SQL query manipulation attributes can take a third value, not assigned (NA), when the

vulnerability observed is other than SQLI.

We use only two classes to classify the vulnerabilities flagged by the taint analyzer: Yes

(it is a false positive), and No (it is not a false positive, but a real vulnerability). Table 3.2

shows some examples of candidate vulnerabilities flagged by the taint analyzer, one per line.

For each candidate vulnerability, the table shows the values of the attributes (Y or N), and the

class, which has to be assessed manually (supervized machine learning). In each line, the set

of attributes forms an instance which is classified in the class. The data mining component

is configured using data like this.

3.3.2 Classifiers and metrics

As already mentioned, our data mining component uses machine learning algorithms to ex-

tract knowledge from a set of labeled data. This section presents the machine learning al-

gorithms that were studied to identify the best approach to classify candidate vulnerabilities.

We also discuss the metrics used to evaluate the merit of the classifiers.

51

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

Potential vulnerability String manipulation Validation SQL query manipulation

Type Webapp Extract String Add Replace Remove Type IsSet Pattern While Black Error Aggreg. FROM Numeric Complex Classsubstring concat. char string whitesp. checking entry point control list list / exit function clause entry point query

SQLI currentcost Y Y Y N N N N N N N N Y N N N Yes
SQLI currentcost Y Y Y N N N N N N N N N N N N Yes
SQLI currentcost N N N N N N N N N N N N N N N No
XSS emoncms N Y N Y N N N N N N N NA NA NA NA Yes
XSS Mfm 0.13 N Y N Y Y N N N N N N NA NA NA NA Yes
XSS St. ZiPEC 0.32 N Y N N N N N N N N N NA NA NA NA No
RFI DVWA 1.0.7 N N N N N N N N Y N Y NA NA NA NA Yes
RFI SAMATE N N N Y N N Y N N N N NA NA NA NA No
RFI SAMATE N N N Y N N Y Y N N N NA NA NA NA No
OSCI DVWA 1.0.7 N Y N Y N N N N N Y N NA NA NA NA Yes
XSS St. OWASP Vicnum Y N N N N N N Y N N N NA NA NA NA Yes
XSS Mfm 0.13 N N N N N N N N N Y N NA NA NA NA Yes

Table 3.2: Attributes and class for some vulnerabilities

Machine learning classifiers
We studied machine learning classifiers from three classes.
• Graphical and symbolic algorithms. This class includes algorithms that represent

knowledge using a graphical model. In the ID3, C4.5/J48, Random Tree, and Random
Forest classifiers, the graphical model is a decision tree. They use the information gain
rate metric to decide how relevant an attribute is to classify an instance in a class (a
leaf of the tree). An attribute with a small information gain has big entropy (degree of
impurity of attribute or information quantity that the attribute offers to the obtention of
the class), so it is less relevant for a class than another with a higher information gain.
C4.5/J48 is an evolution of ID3 that does pruning of the tree, i.e., removes nodes with
less relevant attributes (with a bigger entropy). The Bayesian Network is an acyclic
graphical model, where the nodes are represented by random attributes from the data
set.

• Probabilistic algorithms. This category includes Naive Bayes (NB), K-Nearest Neigh-
bor (K-NN), and Logistic Regression (LR). They classify an instance in the class that
has the highest probability. NB is a simple probabilistic classifier based on Bayes’
theorem, based on the assumption of conditional independence of the probability dis-
tributions of the attributes. K-NN classifies an instance in the class of its neighbors.
LR uses regression analysis to classify an instance.

• Neural network algorithms. This category has two algorithms: Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM). These algorithms are inspired on the
functioning of the neurons of the human brain. MLP is an artificial neural network
classifier that maps sets of input data (values of attributes) onto a set of appropriate
outputs (our class attribute, Yes or No). SVM is an evolution of MLP.

52

3.3 Predicting False Positives

Observed
Yes (FP) No (not FP)

Predicted Yes (FP) True positive (tp) False positive (fp)
No (not FP) False negative (fn) True negative (tn)

Table 3.3: Confusion matrix (generic)

Classifier evaluation metrics
To evaluate the classifiers, we use ten metrics that are computed based mainly on four pa-

rameters of each classifier. These parameters are better understood in terms of the quadrants
of a confusion matrix (Table 3.3). This matrix is a cross reference table where its columns
are the observed instances, and its rows are the predicted results (instances classified by a
classifier). Note that through all the chapter we use the terms false positive (FP) and true

positive (not FP) to express that an alarm raised by the taint analyzer is incorrect (not a real
vulnerability) or correct (a real vulnerability). In this section, we use the same terms, false

positive (fp), and true positive (tp), as well as false negative (fn), and true negative (tn), for
the output of the next stage, the FP classifier. To reduce the possibility of confusion, we use
uppercase FP and lowercase fp, tp, fn, tn consistently as indicated.

• True positive rate of prediction (tpp) measures how good the classifier is: tpp =

tp/(tp+ fn).

• False positive rate of prediction (fpp) measures how the classifier deviates from the
correct classification of a candidate vulnerability as FP: fpp = fp/(fp+ tn).

• Precision of prediction (prfp) measures the actual FPs that are correctly predicted in
terms of the percentage of total number of FPs: prfp = tp/(tp+ fp).

• Probability of detection (pd) measures how the classifier is good at detecting real vul-
nerabilities: pd = tn/(tn+ fp).

• Probability of false detection (pfd) measures how the classifier deviates from the cor-
rect classification of a candidate vulnerability that was a real vulnerability: pfd =

fn/(fn+ tp).

• Precision of detection (prd) measures the actual vulnerabilities (not FPs) that are
correctly predicted in terms of a percentage of the total number of vulnerabilities:
prd = tn/(tn+ fn).

53

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

• Accuracy (acc) measures the total number of instances well classified: acc = (tp +

tn)/(tp+ tn+ fp+ fn).

• Precision (pr) measures the actual FPs and vulnerabilities (not FPs) that are correctly

predicted in terms of a percentage of the total number of cases: pr = average(prfp,

prd).

• Kappa statistic (kappa) measures the concordance between the classes predicted and

observed. It can be stratified into six categories: worst, bad, reasonable, good, very

good, excellent. kappa = (po−pe)/(1−pe), where po = acc, and pe = (P ∗P ′+N ∗
N ′)/(P +N)2 to P = (tp+fn), P ′ = (tp+fp), N = (fp+tn), and N ′ = (fn+tn).

• Wilcoxon signed-rank test (wilcoxon) compares classifier results with pairwise com-

parisons of the metrics tpp and fpp, or pd and pfd, with a benchmark result of tpp, pd

> 70%, and fpp, pfd < 25% (Demšar, 2006).

Some of these metrics are statistical, such as rates and kappa, while acc and pr are

probabilistic, and the last is a test.

3.3.3 Evaluation of classifiers

In this section we use the metrics to select the best classifiers for our case. Our data set has

76 vulnerabilities labeled with 16 attributes: 15 to characterize the candidate’s vulnerabili-

ties, and 1 to classify it as being false positive (Yes) or a real vulnerability (No). For each

candidate vulnerability, we used a version of WAP to collect the values of the 15 attributes,

and we manually classified them as false positives or not. Needless to say, understanding if

a vulnerability was real or a false positive was a tedious process. The 76 potential vulnera-

bilities were distributed by the classes Yes, and No, with 32, and 44 instances, respectively.

Figure 3.5 shows the number of occurrences of each attribute.

The 10 classifiers are available in WEKA, an open source data mining tool (Witten et al.,

2011). We used it for training and testing the ten candidate classifiers with a standard 10-fold

cross validation estimator. This estimator divides the data into 10 buckets, trains the classifier

with 9 of them, and tests it with the 10th. This process is repeated 10 times to test every

bucket, with the classifier trained with the rest. This method accounts for heterogeneities in

the data set.

54

3.3 Predicting False PositivesSheet21

Page 2

Aggregate function
FROM clause

Numeric ent ry point
Complex query

Ext ract substring
String concatenation

Add char
Replace string

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Patt ern cont rol
White-list
Black-list

0 5 10 15 20 25 30

Number of observations

A
tt

ri
bu

te
s

Aggregate funct ion
FROM clause

Numeric ent ry point
Complex query

Extract subst ring
St ring concatenat ion

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Ent ry point is set

Pat tern control
White-list
Black-list

0 10 20 30 40 50 60

Number of observations

A
tt

ri
bu

te
s

Figure 3.5: Number of attribute occurrences in the original data set.

Table 3.4 shows the evaluation of the classifiers. The first observation is the rejection

of the K-NN and Naive Bayes algorithms by the Wilcoxon signed-rank test. The rejection

of the K-NN algorithm is explained by the classes Yes and No not being balanced, where

the first class has fewer instances, 32, than the second class, 44, which leads to unbalanced

numbers of neighbors, and consequently to wrong classifications. The Naive Bayes rejection

seems to be due to its naive assumption that attributes are conditionally independent, and the

small number of observations of certain attributes.

Measures ID3 C4.5/J48 Random Random K-NN Naive Bayes MLP SVM Logistic
(%) Forest Tree Bayes Net Regression
tpp 75.0 81.3 78.1 78.1 71.9 68.8 78.1 75.0 81.3 84.4
fpp 0.0 13.6 4.5 0.0 0.0 13.6 13.6 0.0 4.5 2.3
prfp 100.0 81.3 92.6 100.0 100.0 78.6 80.6 100.0 92.9 96.4
pd 100.0 86.4 95.5 100.0 100.0 86.4 86.4 100.0 95.5 97.7
pfd 25.0 18.8 21.9 21.9 28.1 31.3 21.9 25.0 18.8 15.6
prd 84.6 86.4 85.7 86.3 83.0 79.2 84.4 84.6 87.5 89.6
acc 89.5 82.2 88.2 90.8 82.9 78.9 82.9 89.5 89.5 92.1
(% #) 68 64 67 69 63 60 63 68 68 70
pr 91.0 84.2 88.6 92.0 86.8 78.9 82.8 91.0 89.8 92.5

kappa 77.0 67.0 75.0 81.0 63.0 56.0 64.0 77.0 78.0 84.0
very good very good very good excellent very good good very good very good very good excellent

wilcoxon accepted accepted accepted accepted rejected rejected accepted accepted accepted accepted

Table 3.4: Evaluation of the machine learning models applied to the original data set

55

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

In the first four columns of the table are the decision tree models. These models select for

the tree nodes the attributes that have higher information gain. The C4.5/J48 model prunes

the tree to achieve better results. The branches that have nodes with weak information gain

(higher entropy), i.e., the attributes with less occurrences, are removed (see Figure 3.5).

However, an excessive tree pruning can result in a tree with too few nodes to do a good

classification. This was what happened in our study, where J48 was the worst decision tree

model. The results of ID3 validate our conclusion because this model is the J48 model

without tree pruning. We can observe that ID3 has better accuracy and precision results

when compared with J48: 89.5% against 82.2%, and 91% against 84.2%, respectively. The

best of the tree decision models is the Random Tree. The table shows that this model has the

highest accuracy (90.8% which represents 69 of 76 instances well classified) and precision

(92%), and the kappa value is in accordance (81%, excellent). This result is asserted by the

100% of prpf that tells us that all false positive instances were well classified in class Yes;

also the 100% of pd tells us that all instances classified in class No were well classified.

The Bayes Net classifier is the third worst model in terms of kappa, which is justified by the

random selection of attributes to be used as the nodes of its acyclic graphical model. Some

selected attributes have high entropy, so they insert noise in the model that results in bad

performance.

The last three columns of Table 3.4 correspond to three models with good results. MLP

is the neural network with the best results, and curiously with the same results as ID3. Lo-

gistic Regression (LR) was the best classifier. Table 3.5 shows the confusion matrix of LR

(second and third columns), with values equivalent to those in Table 3.4. This model presents

the highest accuracy (92.1%, which corresponds to 70 of 76 instances well classified) and

precision (92.5%), and has an excellent kappa value (84%). The prediction of false positives

(first 3 rows of Table 3.4) is very good, with a great true positive rate of prediction (tpp =

84.6%, 27 of 32 instances), very low false alarms (fpp = 2.3%, 1 of 44 instances), and an ex-

cellent precision of the prediction of false positives (prfp = 96.4%, 27 of 28 instances). The

detection of vulnerabilities (next 3 rows of the Table 3.4) is also very good, with a great true

positive rate of detection (pd = 97.7%, 43 of 44 instances), low false alarms (pfd = 15.6%, 5

of 32 instances), and a very good precision of detection of vulnerabilities (prd = 89.6%, 43

of 48 instances).

56

3.3 Predicting False Positives

Observed
Logistic Regression Random Tree SVM

Predicted Yes (FP) No (not FP) Yes (FP) No (not FP) Yes (FP) No (not FP)
Yes (FP) 27 1 25 0 56 0
No (not FP) 5 43 7 44 8 44

Table 3.5: Confusion matrix of the top 3 classifiers (first two with original data, third with a
balanced data set)

Balanced data set
To try to improve the evaluation, we applied the SMOTE filter to balance the classes

(Witten et al., 2011). This filter doubles instances of smaller classes, creating a better bal-

ance. Figure 3.6 shows the number of occurrences in this new data set. Table 3.6 shows the

results of the re-evaluation with balanced classes. All models increased their performance,

and passed the Wilcoxon signed-rank test. The K-NN model has much better performance

because the classes are now balanced. However, the kappa, accuracy, and precision metrics

show that the Bayes models continue to be the worst. The decision tree models present good

results, with the Random Tree model again the best of them, and the C4.5/J48 model still the

worst. Observing Figure 3.6, there are attributes with very low occurrences that are pruned

in the C4.5/J48 model. To increase the performance of this model, we remove the lowest

information gain attribute (the biggest entropy attribute) and re-evaluate the model. There

is an increase in its performance to 92.6% of pr, 93,7% of acc, and 85.0% (excellent) of

kappa, in such a way that it is equal to the performance of the Random Tree model. Again,

the neural networks and LR models have very good performance, but SVM is the best of the

three (accuracy of 92.6%, precision of 92.3%, prfp and pd of 100%).

Measures ID3 C4.5/J48 Random Random K-NN Naive Bayes MLP SVM Logistic
(%) Forest Tree Bayes Net Regression
tpp 87.3 87.5 85.9 87.5 84.4 83.6 83.6 85.9 87.5 85.9
fpp 0.0 9.1 0.0 0.0 0.0 19.5 18.2 0.0 0.0 2.3
prfp 100.0 93.3 100.0 100.0 100.0 87.5 87.5 100.0 100.0 98.2
pd 100.0 90.9 100.0 100.0 100.0 80.5 81.8 100.0 100.0 97.7
pfd 12.7 12.5 14.1 12.5 15.6 16.4 16.4 14.1 12.5 14.1
prd 84.6 83.3 83.0 84.6 81.5 75.0 76.6 83.0 84.6 82.7
acc 92.5 88.9 91.7 92.6 90.7 82.4 82.9 91.7 92.6 90.7
(% #) 99 96 99 100 98 89 89 99 100 98
pr 92.3 88.3 91.5 92.3 90.7 81.3 82.0 91.5 92.3 90.5

kappa 85.0 77.0 83.0 85.0 81.0 64.0 64.0 83.0 85.0 81.0
Excellent Very Good Excellent Excellent Excellent Very Good Very Good Excellent Excellent Excellent

wilcoxon Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted

Table 3.6: Evaluation of the machine learning models applied to the balanced data set

57

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

Sheet21

Page 2

Aggregate function
FROM clause

Numeric ent ry point
Complex query

Ext ract substring
String concatenation

Add char
Replace string

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Patt ern cont rol
White-list
Black-list

0 5 10 15 20 25 30

Number of observations
A

tt
ri

bu
te

s

Aggregate funct ion
FROM clause

Numeric ent ry point
Complex query

Extract subst ring
St ring concatenat ion

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Ent ry point is set

Pat tern control
White-list
Black-list

0 10 20 30 40 50 60

Number of observations

A
tt

ri
bu

te
s

Figure 3.6: Number of attribute occurrences in the balanced data set.

Main attributes
To conclude the study of the best classifier, we need to understand which attributes con-

tribute most to a candidate vulnerability being a false positive. For that purpose, we extracted

from our data set 32 false positive instances, and classified them in three sub-classes, one for

each of the sets of attributes of Section 3.3.1: string manipulation, SQL query manipulation,

and validation. Then, we used WEKA to evaluate this new data set with the classifiers that

performed best (LR, Random Tree, and SVM), with and without balanced classes. Table 3.7

shows the confusion matrix obtained using LR without balanced classes. The 32 instances

are distributed by the three classes with 17, 3, and 12 instances. The LR performance was

acc = 87.5%, pr = 80.5%, and kappa = 76% (very good). All 17 instances of the string

manipulation class were correctly classified. All 3 instances from the SQL class were classi-

fied in the string manipulation class, which is justified by the presence of the concatenation

attribute in all instances. The 11 instances of the validation class were well classified, except

one that was classified as string manipulation. This mistake is explained by the presence of

the add char attribute in this instance. This analysis lead us to the conclusion that the string

manipulation class is the one that most contributes to a candidate vulnerability being a false

positive.

58

3.3 Predicting False Positives

Observed
String manip. SQL Validation

Predicted
String manip. 17 3 1
SQL 0 0 0
Validation 0 0 11

Table 3.7: Confusion matrix of Logistic Regression classifier applied to a false positives data
set

3.3.4 Selection of classifiers

After the evaluation of classifiers, we need to select the classifier that is best at classifying

candidate vulnerabilities as false positives or real vulnerabilities. For that purpose, we need a

classifier with great accuracy and precision, but with a rate of fpp as low as possible, because

this rate measures the false negatives of the classifier, which is when a candidate vulnera-

bility is misclassified as being a false positive. We want also a classifier with a low rate of

pfd, which is when a candidate vulnerability is misclassified as being a real vulnerability.

This pfd rate being different from zero means that source code with a false positive may be

corrected, but it will not break the behavior of the application because the fixes are designed

to avoid affecting the behavior of the application. Finally, we want to justify why a candidate

vulnerability is classified as a false positive, i.e., which attributes lead to this classification.

Meta-models

To improve the classification performed by classifiers, our first attempt was to combine

machine learning algorithms. WEKA allows us to do this using meta-models. In the eval-

uation made in the previous section, the Random Tree (RT) and LR were two of the best

classifiers. We used the Bagging, Stacking, and Boosting algorithms with RT; and Boosting

with LR (LogitBoost). The Stacking model had the worst performance with an acc = 58%,

and thus we removed it from the evaluation. The others meta-models had in average acc =

86.2%, pr = 87.7%, fpp = 3.8%, and 66 instances well classified. Given these results, we

concluded that the meta-models had no benefit, as they showed worst performance than RT

and LR separately (see Tables 3.4, and 3.6 for these two classifiers).

59

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

Top 3 classifiers
LR was the best classifier with our original data set, but had fpp = 2.3% so it can mis-

classify candidate vulnerabilities as false positives. With the balanced data set, it was one of
the best classifiers, despite fpp remaining unchanged. On the other hand, RT was the best
decision tree classifier in both evaluations with fpp = 0%, i.e., no false negatives. Also, the
SVM classifier was one of the best with the original data set, and the best with the balanced
data set, with fpp = 0% unlike the fpp = 4.5% in the first evaluation. It was visible that SVM
with the balanced data set classified correctly the two false negative instances that it classi-
fied wrongly with the original data set. Table 3.5 shows the confusion matrix for RT (4th
and 5th columns), and SVM (last two columns) with no false negatives; and for LR (2nd and
3rd columns) with the number of false positives (a false positive classified as a vulnerability)
lower than the other two classifiers.

Rules of induction
Data mining is typically about correlation, but the classifiers presented so far do not

show this correlation. For that purpose, our machine learning approach allows us to iden-
tify combinations of attributes that are correlated with the presence of false positives, i.e.,
what attributes justify the classification of false positives. To show this correlation, we use
induction or coverage rules for classifying the instances, and for presenting the attributes
combination to that classification. For this effect, we evaluated the JRip, PART, Prism, and
Ridor induction classifiers.

The results are presented in Table 3.8. Clearly, JRip was the best induction classifier,
with higher pr and acc, and the only one without false negatives (fpp = 0%). It correctly
classified 67 out of 76 instances. The instances wrongly classified are expressed by pfd =

28.1%. As explained, this statistic reports the number of instances that are false positives but
were classified as real vulnerabilities. In our approach, these instances will be corrected with
unnecessary fixes, but a fix does not interfere with the functionality of the code. So, although
JRip has a higher pfd than the other classifiers, this is preferable to a fpp different from zero.

Table 3.9 shows the set of rules defined by JRip to classify our data set. The first six
columns are the attributes involved in the rules, the seventh is the classification, and the last
is the total number of instances covered by the rule, and the number of instances wrongly
covered by the rule (the two numbers are separated by a comma). For example, the first
rule (second line) classifies an instance as being false positive (Class Yes) when the String

60

3.3 Predicting False Positives

Measures (%) JRip PART Prism Ridor
acc 88.2 88.2 86.8 86.8
(% #) 67 67 66 66
pr 90.0 88.5 88.4 87.5
fpp 0.0 6.8 13.6 4.5
pfd 28.1 18.6 9.7 25.0

Table 3.8: Evaluation of the induction rule classifiers applied to our original data set

concatenation and Replace string attributes are present. The rule covers 9 instances in these

conditions, from the 32 false positives instances from our data set, none were wrongly clas-

sified (9 , 0). The last rule classifies as real vulnerability (Class No) all instances that are

not covered by the previous five rules. The 44 real vulnerabilities from our data set were

correctly classified by this rule. The rule classified five instances in class No that are false

positives. These instances are related with Black list and SQL attributes, which are not cover

by the other rules. This classification justifies the pfd value in Table 3.8. Notice that the at-

tributes involved in this set of rules confirms the study of main attributes presented in Section

3.3.3, where the SQL attributes are not relevant, and the string manipulation and validation

attributes (string manipulation first) are those that most contribute to the presence of false

positives.

String Replace Error Extract IsSet While Class Coverconcatenation string / exit substring entry point list
Y Y Yes 9, 0
Y Y Yes 7, 0

Y Yes 7, 0
Y Yes 2, 0

N Y Yes 2, 0
No 49, 5

Table 3.9: Set of induction rules from the JRip classifier

3.3.5 Final selection and implementation

The main conclusion of our study is that there is no single classifier that is the best for clas-

sifying false positives with our data set. Therefore, we opted to use the top 3 classifiers

to increase the confidence in the false positive classification. The top 3 classifiers include

Logistic Regression and Random Tree trained with the original data set, and SVM trained

61

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

with the balanced data set. Also, the JRip induction rule is used to present the correlation

between the attributes to justify the false positives classification. The combination of 3 clas-

sifiers is applied in sequence: first LR; if LR classifies the vulnerability as false positive, RT

is applied; if false positive, SVM is applied. Only if SVM considers it a false positive is the

final result determined to be a false positive. These classifiers were implemented in WAP,

and trained with the original and balanced data sets as indicated.

3.4 Fixing and Testing the Source Code

3.4.1 Code correction

Our approach involves doing code correction automatically after the detection of the vulnera-

bilities is performed by the taint analyzer and the data mining component. The taint analyzer

returns data about the vulnerability, including its class (e.g., SQLI), and the vulnerable slice

of code. The code corrector uses these data to define the fix to insert, and the place to insert

it. Inserting a fix involves modifying a PHP file.

A fix is a call to a function that sanitizes or validates the data that reaches the sensi-

tive sink. Sanitization involves modifying the data to neutralize dangerous metacharacters

or metadata, if they are present. Validation involves checking the data, and executing the

sensitive sink or not depending on this verification. Most fixes are inserted in the line of the

sensitive sink instead of, for example, the line of the entry point, to avoid interference with

other code that sanitizes the variable. Table 3.10 shows the fixes, how they are inserted, and

other related information.

For SQLI, the fix is inserted into the last line where the query is composed, and before

it reaches the sensitive sink. However, the fix can be inserted in the line of the sensitive

sink, if the query is composed there. The san_sqli fix applies PHP sanitization functions

(e.g., mysql_real_escape_string), and lets the sensitive sink be executed with its argu-

ments sanitized. The SQLI sanitization function precedes any malicious metacharacter with

a backslash, and replaces others by their literal, e.g., \n by ’\n’. The sanitization function ap-

plied by the san_sqli fix depends on the DBMS, and the sensitive sink. For example, for

MySQL, the mysql_real_escape_string is selected if the sensitive sink mysql_query

is reached; but for PostgreSQL, the pg_escape_string is used if the sensitive sink is

pg_query. For XSS, the fixes use functions from the OWASP PHP Anti-XSS library that

62

3.4 Fixing and Testing the Source Code

Vulnerability
Fix Output

Sanitization Validation Applied to Function Alarm Stop
Addition Substitution Black-list White-list message execution

SQLI X X query san_sqli – No
Reflected XSS X sensitive sink san_out – No
Stored XSS X X X sensitive sink san_wdata X No
Stored XSS X X sensitive sink san_rdata X No
RFI X sensitive sink san_mix X Yes
LFI X sensitive sink san_mix X Yes
DT /PT X sensitive sink san_mix X Yes
SCD X sensitive sink san_mix X Yes
OSCI X sensitive sink san_osci X Yes
PHPCI X X X sensitive sink san_eval X, – Yes, No

Table 3.10: Action and output of the fixes

replace dangerous metacharacters by their HTML entity (e.g., < becomes <). For stored

XSS, the sanitization function addslashes is used, and the validation process verifies in run-

time if an attempt of exploitation occurs, raising an alarm if that is the case. For these two

classes of vulnerabilities, a fix is inserted for each malicious input that reaches a sensitive

sink. For example, if three malicious inputs appear in an echo sensitive sink (for reflected

XSS), then the san_out fix will be inserted three times (one per each malicious input).

The fixes for the other classes of vulnerabilities were developed by us from scratch,

and perform validation of the arguments that reach the sensitive sink, using black lists, and

emitting an alarm in the presence of an attack. The san_eval fix also performs sanitization,

replacing malicious metacharacters by their HTML representation, for example backtick by

`.

The last two columns of the table indicate if the fixes output an alarm message when an

attack is detected, and what happens to the execution of the web application when that action

is made. For SQLI, reflected XSS, and PHPCI, nothing is outputted, and the execution of

the application proceeds. For stored XSS, an alarm message is emitted, but the application

proceeds with its execution. For the others, where the fixes perform validation, when an

attack is detected, an alarm is raised, and the execution of the web application stops.

3.4.2 Testing fixed code

Our fixes were designed to avoid modifying the (correct) behavior of the applications. So far,

we witnessed no cases in which an application fixed by WAP started to function incorrectly,

63

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

or that the fixes themselves worked incorrectly. However, to increase the confidence in this

observation, we propose using software testing techniques. Testing is probably the most

widely adopted approach for ensuring software correctness. The idea is to apply a set of test

cases (i.e., inputs) to a program to determine for instance if the program in general contains

errors, or if modifications to the program introduced errors. This verification is done by

checking if these test cases produce incorrect or unexpected behavior or outputs. We use

two software testing techniques for doing these two verifications, respectively: 1) program

mutation, and 2) regression testing.

Program mutation
We use a technique based on program mutation to confirm that the inserted program

fixes prevent the attacks as expected. Program mutation is a form of code-based testing, as

it involves using the source code of the program (Huang, 2009). This technique consists in

generating variations of the program (mutants), which are afterwards used to verify if the

outputs they produce differ from those produced by the unmodified program. The main idea

is that, although understanding if the behavior of a program is incorrect or not is not trivial,

on the contrary comparing the results of two tests of similar programs is quite feasible.

A mutant of a program P is defined as a program P ′ derived from P by making a single

change to P (DeMillo et al., 1978; T. Budd et al., 1978). Given programs P and P ′, and

a test-case T : (A1) T differentiates P from P ′ if executions of P and P ′ with T produce

different results; and (A2) if T fails to differentiate P from P ′, either P is functionally

equivalent to P ′, or T is ineffective in revealing the changes introduced into P ′. For each

vulnerability it detects, WAP returns the vulnerable slice of code, and the same slice with the

fix inserted, both starting in an entry point, and ending in a sensitive sink. Consider that P

is the original program (that contains the vulnerable slice), and P ′ is the fixed program (with

the fix inserted). Consider that both P and P ′ are executed with a test case T .

• T differentiates P from P ′ (A1): If T is a malicious input that exploits the vulnerability

in P , then P executed with T produces an incorrect behavior. P ′ is the fixed version

of P . Therefore, if the fix works correctly, the result of the execution of P ′ with T

differs from the result of the execution of P with T . As explained above, comparing

the results of the two tests is quite feasible.

64

3.5 Implementation and Challenges

• T does not differentiate P from P ′ (A2): If T is a benign input, and P and P ′ are
executed with T , a correct behavior is obtained in both cases, and the result produced
by both programs is equal. Input sanitization and validation do not interfere with
benign inputs, so the fixes only act on malicious inputs, leaving the benign inputs
untouched, and remaining the correct behavior.

Applying this approach with a large set of test cases, we can gain confidence that a fix
indeed corrects a vulnerability.

Regression testing
A concern that may be raised about the use of WAP for correcting web applications

is that the applications may start to function incorrectly due to the modifications made by
the tool. As mentioned, we have some experience with the tool, and we never observed this
problem. Nevertheless, we propose using regression testing to verify if the (correct) behavior
of an application was modified by WAP. Regression testing consists in running the same tests
before and after the program modifications (Huang, 2009). The objective is to check if the
functionality that was working correctly before the changes still continues to work correctly.

We consider that the result of running an application test can be either pass or fail, respec-
tively if the application worked as expected with that test case or not. We are not concerned
about how the test cases are obtained. If WAP is used by the application developers, then
they can simply do their own regression testing process. If WAP is employed by others, they
can write their own suite of tests, or use the tests that come with the application (something
that happens with many open source applications). Regression testing is successful if all the
test cases that resulted in pass before the WAP modification also result in pass after inserting
the fixes.

3.5 Implementation and Challenges

Implementing WAP was quite challenging for several reasons, namely the need to reduce
the number of false positives/negatives, the idiosyncrasies of PHP, etc. In summary the
fundamental challenges were the following:

• Data structures: WAP performs taint analysis navigating in the AST and propagating
the taintedness through its nodes. There are two main data structures – taint symbol

65

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

table (TST) and tainted execution path tree (TEPT) – that are built while the AST is

navigated, as explained in Section 3.2.

• Interprocedural, global and context-sensitive analysis: WAP does global, interproce-

dural and context-sensitive analysis. Interprocedural means that it analyzes the prop-

agation of taintedness when functions are called, instead of analyzing functions in

isolation. The analysis being global means that the propagation of taintedness is also

propagated when functions in different modules are called. Being context-sensitive

means that the result of the analysis of a function is propagated only to the point of

the program where the call was made (context-insensitive analysis propagates results

to all points of the program where the function is called) (Jovanovic et al., 2006).

• File name resolution: the name of the include files has to be resolved to perform global

analysis. This often involves getting the value of environment variables defined in files

like config.php and in global, local, and array variables. WAP also handles define

and dirname functions and __DIR__ and __FILE__ magic constants to indicate path

files and/or directories to include files. These definition forms are not easy to get and

track when analysing source code statically.

• Function/method calls: creation of TST and TEPT for each function/method call to

perform interprocedural analysis. Each user function or method definition originates

a clean AST. When a function/method call is performed, the corresponding AST is

copied and the taint analysis is performed, navigating through the AST and creating

the TST and TEPT. To perform the interprocedural analysis correctly, the taint analysis

takes the current context-sensitive of the analysis already performed, i.e., the current

taintedness state and propagate it through the AST. This means that WAP deals with

several TST and TEPT to correctly propagate the taintedness.

• Programming models – imperative and object oriented: object oriented programming

languages are known to be harder to analyse that imperative languages due to the use

of classes, inheritance, polymorphism, etc. PHP in this sense provides the worst-of-

both-worlds as it supports both programming models, which WAP has to handle. To

correctly track the objects it was necessary to simulate them in memory and track their

attributes and method calls in order to see the propagation of taintedness.

66

3.6 Experimental Evaluation

• Top-down and bottom-up approaches: WAP needs to combine both top-down and
bottom-up approaches when navigating source code representations in memory. It
navigates in the abstract syntax tree (AST) using the top-down approach to taint the
entry points, then follows the bottom-up approach to propagate the taintedness to its
parent. It identifies the vulnerable path and the right places to insert fixes using the
bottom-up approach. Finally, it collects the attributes and performs the correction of
the source code using the top-down approach.

• Uncertainty of PHP syntax: the syntax of PHP is not rigorously defined, so often the
analysis of new applications breaks the parser and requires improvements.

3.6 Experimental Evaluation

WAP was implemented in Java, using the ANTLR parser generator. It has around 95,000
lines of code, with 78,500 of which generated by ANTLR. The implementation followed
the architecture of Figure 3.2, and the approach of the previous sections. The evaluation
presented in this section is besed on WAP version 2.1 (Medeiros, 2014).

The objective of the experimental evaluation was to answer the following questions.

1. Is WAP able to process a large set of PHP applications? (Section 3.6.1.)

2. Is it more accurate and precise than other tools that do not combine taint analysis and
data mining? (Sections 3.6.2 and 3.6.3.)

3. Does it correct the vulnerabilities it detects? (Section 3.6.4.)

4. Does the tool detect the vulnerabilities that it was programmed to detect? (Section
3.6.4.)

5. Do its corrections interfere with the normal behavior of applications? (Section 3.6.5.)

3.6.1 Large scale evaluation

To show the ability of using WAP with a large set of PHP applications, we run it with 45
open source packages. Table 3.11 shows the packages that were analyzed, and summarizes
the results. The table shows that more than 6,700 files and 1,380,000 lines of code were

67

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

analyzed, with 431 vulnerabilities found (at least 43 of which were false positives (FP)).

The largest packages analyzed were Tikiwiki version 1.6 with 499,315 lines of code, and

phpMyAdmin version 2.6.3-pl1 with 143,171 lines of code. We used a range of packages

from well-known applications (e.g., Tikiwiki) to small applications in their initial versions

(like PHP-Diary). The functionality was equally diverse, including for instance a small con-

tent management application like phpCMS, an event console for the iPhone (ZiPEC), and

a weather application (PHP Weather). The vulnerabilities found in ZiPEC were in the last

version, so we informed the programmers, who then acknowledged their existence and fixed

them.

3.6.2 Taint analysis comparative evaluation

To answer the second question, we compare WAP with Pixy and PhpMinerII. To the best

of our knowledge, Pixy is the most cited PHP static analysis tool in the literature, and Php-

MinerII is the only tool that does data mining. Other open PHP verification tools are avail-

able, but they are mostly simple prototypes. The full comparison of WAP with the two tools

can be found in the next section. This section has the simpler goal of comparing WAP’s

taint analyzer with Pixy, which does this same kind of analysis. We consider only SQLI

and reflected XSS vulnerabilities, as Pixy only detects these two (recall that WAP detects

vulnerabilities of eight classes).

Table 3.12 shows the results of the execution of the two tools with a randomly selected

subset of the applications of Table 3.11: 9 open source applications, and all PHP samples of

NIST’s SAMATE (SAMATE, 2014). Pixy did not manage to process mutilidae and Wack-

oPicko because they use the object-oriented features of PHP 5.0, whereas Pixy supports only

those in PHP 4.0. WAP’s taint analyzer (WAP-TA) detected 68 vulnerabilities (22 SQLI,

and 46 XSS), with 21 false positives (FP). Pixy detected 73 vulnerabilities (20 SQLI, and 53

XSS), with 41 false positives, and 5 false negatives (FN, i.e., it did not detect 5 vulnerabilities

that WAP-TA did).

Pixy reported 30 false positives that were not raised by WAP-TA. This difference is ex-

plained in part by the interprocedural, global, and context-sensitive analyses performed by

WAP-TA, but not by Pixy. Another part of the justification is the bottom-up taint analysis

carried out by Pixy (AST navigated from the leafs to the root of the tree), whereas the WAP-

68

3.6 Experimental Evaluation

Web application Files Lines of Analysis Vul Vul FP Real
code time (s) files found vul

adminer-1.11.0 45 5,434 27 3 3 0 3
Butterfly insecure 16 2,364 3 5 10 0 10
Butterfly secure 15 2,678 3 3 4 0 4
currentcost 3 270 1 2 4 2 2
dmoz2mysql 6 1,000 2 0 0 0 0
DVWA 1.0.7 310 31,407 15 12 15 8 7
emoncms 76 6,876 6 6 15 3 12
gallery2 644 124,414 27 0 0 0 0
getboo 199 42,123 17 30 64 9 55
Ghost 16 398 2 2 3 0 3
gilbitron-PIP 14 328 1 0 0 0 0
GTD-PHP 62 4,853 10 33 111 0 111
Hexjector 1.0.6 11 1,640 3 0 0 0 0
Hotelmis 0.7 447 76,754 9 2 7 5 2
Lithuanian-7.02.05-v1.6 132 3,790 24 0 0 0 0
Measureit 1.14 2 967 2 1 12 7 5
Mfm 0.13 7 5,859 6 1 8 3 5
Mutillidae 1.3 18 1,623 6 10 19 0 19
Mutillidae 2.3.5 578 102,567 63 7 10 0 10
NeoBill0.9-alpha 620 100,139 6 5 19 0 19
ocsvg-0.2 4 243 1 0 0 0 0
OWASP Vicnum 22 814 2 7 4 3 1
paCRUD 0.7 100 11,079 11 0 0 0 0
Peruggia 10 988 2 6 22 0 22
PHP X Template 0.4 10 3,009 5 0 0 0 0
PhpBB 1.4.4 62 20,743 25 0 0 0 0
Phpcms 1.2.2 6 227 2 3 5 0 5
PhpCrud 6 612 3 0 0 0 0
PhpDiary-0.1 9 618 2 0 0 0 0
PHPFusion 633 27,000 40 0 0 0 0
phpldapadmin-1.2.3 97 28,601 9 0 0 0 0
PHPLib 7.4 73 13,383 35 3 14 0 14
PHPMyAdmin 2.0.5 40 4,730 18 0 0 0 0
PHPMyAdmin 2.2.0 34 9,430 12 0 0 0 0
PHPMyAdmin 2.6.3-pl1 287 143,171 105 0 0 0 0
Phpweather 1.52 13 2,465 9 0 0 0 0
SAMATE 22 353 1 10 20 1 19
Tikiwiki 1.6 1,563 499,315 1 4 4 0 4
volkszaehler 43 5,883 1 0 0 0 0
WackoPicko 57 4,156 3 4 11 0 11
WebCalendar 129 36,525 20 0 0 0 0
Webchess 1.0 37 7,704 1 5 13 0 13
WebScripts 5 391 4 2 14 0 14
Wordpress 2.0 215 44,254 10 7 13 1 12
ZiPEC 0.32 10 765 2 1 7 1 6

Total 6,708 1,381,943 557 174 431 43 388

Table 3.11: Summary of the results of running WAP with open source packages

TA analysis is top-down (starts from the entry points, and verifies if they reach a sensitive

sink).

Overall, WAP-TA was more accurate than Pixy: it had an accuracy of 69%, whereas Pixy

had only 44%.

69

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

Webapp WAP-TA Pixy WAP (complete)
SQLI XSS FP FN SQLI XSS FP FN SQLI XSS Fixed

currentcost 3 4 2 0 3 5 3 0 1 4 5
DVWA 1.0.7 4 2 2 0 4 0 2 2 2 2 4
emoncms 2 6 3 0 2 3 0 0 2 3 5
Measureit 1.14 1 7 7 0 1 16 16 0 1 0 1
Mfm 0.13 0 8 3 0 0 10 8 3 0 5 5
Multilidae 2.3.5 0 2 0 0 - - - - 0 2 2
OWASP Vicnum 3 1 3 0 3 1 3 0 0 1 1
SAMATE 3 11 0 0 4 11 1 0 3 11 14
WackoPicko 3 5 0 0 - - - - 3 5 8
ZiPEC 0.32 3 0 1 0 3 7 8 0 2 0 2
Total 22 46 21 0 20 53 41 5 14 33 47

Table 3.12: Results of running WAP’s taint analyzer (WAP-TA), Pixy, and WAP complete (with data
mining)

3.6.3 Full comparative evaluation

This section compares the complete WAP with Pixy and PhpMinerII. PhpMinerII does data

mining of program slices that end at a sensitive sink, regardless of data being propagated

through them starting at an entry point or not. PhpMinerII does this analysis to predict

vulnerabilities, whereas WAP uses data mining to predict false positives in vulnerabilities

detected by the taint analyzer.

We evaluated PhpMinerII with our data set using the same classifiers as PhpMinerII’s

authors (Shar & Tan, 2012b,c) (a subset of the classifiers of Section 3.3.2). The results of

this evaluation are in Table 3.13. It is possible to observe that the best classifier is LR, which

is the only one that passed the Wilcoxon signed-rank test. It had also the highest precision

(pr) and accuracy (acc), and the lowest false alarm rate (fpp = 20%).

The confusion matrix of the LR model for PhpMinerII (Table 3.14) shows that it correctly

classified 68 instances, with 48 as vulnerabilities, and 20 as non-vulnerabilities. We can

conclude that LR is a good classifier for PhpMinerII, with an accuracy of 87.2%, and a

precision of 85.3%.

We now compare the three tools. The comparison with Pixy can be extracted from Table

3.12; however, we cannot show the results of PhpMinerII in the table because it does not

really identify vulnerabilities. The accuracy of WAP was 92.1%, whereas the accuracy of

WAP-TA was 69%, and of Pixy was only 44%. The PHPminerII results (Tables 3.13 and

3.14) are much better than Pixy’s, but not as good as WAP’s, which has an accuracy of

70

3.6 Experimental Evaluation

Measures C4.5/J48 Naive MLP Logistic
(%) Bayes Regression
tpp 94.3 88.7 94.3 90.6
fpp 32.0 60.0 32.0 20.0
prfp 86.2 75.8 86.2 90.6
pd 68.0 40.0 68.0 80.0
pfd 5.7 11.3 5.7 9.4
prd 85.0 62.5 85.0 80.0
acc 85.9 73.1 85.9 87.2
(% #) 67 57 67 68
pr 85.6 69.2 85.6 85.3

kappa 65.8 31.7 65.8 70.6
Very Good Reasonable Very Good Very Good

wilcoxon Rejected Rejected Rejected Accepted

Table 3.13: Evaluation of the machine learning models applied to the data set resulting from
PhpMinerII

92.1%, and a precision of 92.5% (see Table 3.4) with the same classifier.

Table 3.15 summarizes the comparison between WAP, Pixy, and PhpMinerII. We re-

fined these values for a more detailed comparison. We obtained the intersection between the

53 slices classified as vulnerable by PHPminerII and the 68 vulnerabilities found by WAP.

Removing from the 68 those found in applications that PHPminerII could not process, 37 re-

main, 11 of which are false positives. All the 22 real vulnerabilities detected by PHPminerII

were also detected by WAP, and PHPminerII did not detect 4 vulnerabilities that WAP iden-

tified. The 11 false positives from WAP are among the 31 false positives of PHPminerII.

Observed
Yes (Vul) No (not Vul)

Predicted Yes (Vul) 48 5
No (not Vul) 5 20

Table 3.14: Confusion matrix of PhpMinerII with LR

Metric WAP Pixy PhpMinerII
accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%

Table 3.15: Summary for WAP, Pixy and PhpMinerII

71

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

3.6.4 Fixing vulnerabilities

WAP uses data mining to discover false positives among the vulnerabilities detected by its

taint analyzer. Table 3.12 shows that in the set of 10 packages WAP detected 47 SQLI and

reflected XSS vulnerabilities. The taint analyzer raised 21 false positives that were detected

by the data mining component. All the vulnerabilities detected were corrected (right-hand

column of the table).

WAP detects several other classes of vulnerabilities besides SQLI and reflected XSS.

Table 3.16 expands the data of Table 3.12 for all the vulnerabilities discovered by WAP.

The 69 XSS vulnerabilities detected include reflected and stored XSS vulnerabilities, which

explains the difference to the 46 reflected XSS of Table 3.12. Again, all vulnerabilities were

corrected by the tool (last column).

Webapp
Detected taint analysis Detected

FixedSQLI RFI, LFI SCD OSCI XSS Total FP data
DT/PT mining

currentcost 3 0 0 0 4 7 2 5 5
DVWA 1.0.7 4 3 0 6 4 17 8 9 9
emoncms 2 0 0 0 13 15 3 12 12
Measureit 1.14 1 0 0 0 11 12 7 5 5
Mfm 0.13 0 0 0 0 8 8 3 5 5
Mutillidae 2.3.5 0 0 0 2 8 10 0 10 10
OWASP Vicnum 3 0 0 0 1 4 3 1 1
SAMATE 3 6 0 0 11 20 1 19 19
WackoPicko 3 2 0 1 5 11 0 11 11
ZiPEC 0.32 3 0 0 0 4 7 1 6 6
Total 22 11 0 9 69 111 28 83 83

Table 3.16: Results of the execution of WAP with all vulnerabilities it detects and corrects

3.6.5 Testing fixed applications

WAP returns new application files with the vulnerabilities removed by the insertion of fixes

in the source code. As explained in Section 3.4.2, regression testing can be used to check

if the code corrections made by WAP compromise the previously correct behavior of the

application. Also, as depicted in the same section, program mutation can be used to check

if the fixes correct vulnerabilities, i.e., if the new application files pass the tests made by

regression testing.

72

3.7 Conclusions

For this purpose, we did regression testing using Selenium (Selenium, 2014), a frame-
work for testing web applications. Selenium automates browsing, and verifies the results of
the requests sent to web applications. The DVWA 1.0.7 application and the samples in SA-
MATE were tested because they contain a variety of vulnerabilities detected and corrected
by the WAP tool (see Table 3.16). Specifically, WAP corrected 6 files of DVWA 1.0.7, and
10 of SAMATE.

The regression testing was carried out in the following way. First, we created in Sele-
nium a set of test cases with benign inputs. Then, we ran these test cases with the original
DVWA and SAMATE files, and observed that they passed all tests. Next, we replaced the
16 vulnerable files by the 16 files returned by WAP, and reran the tests to verify the changes
introduced by the tool. The applications passed again all the tests.

3.7 Conclusions

This chapter presents an approach for finding and correcting input validation vulnerabilities
in web applications, and a tool that implements the approach for PHP programs and input
validation vulnerabilities. The approach and the tool search for vulnerabilities using a com-
bination of two techniques: static source code analysis and data mining. Data mining is used
to identify false positives using 3 machine learning classifiers. All classifiers were selected
after a thorough comparison of several alternatives. It is important to note that this com-
bination of detection techniques cannot provide entirely correct results. The static analysis
problem is undecidable, and resorting to data mining cannot circumvent this undecidability,
but only provide probabilistic results.

WAP as other tools that do taint analysis (presented in Section 2.2.1.2) also does alias
analysis for detecting vulnerabilities, although it goes further by also correcting the code.
Furthermore, Pixy does only module-level analysis, whereas WAP does global analysis (i.e.,
the analysis is not limited to a module or file, but can involve several). Contrary to our work,
the works presented in Section 2.3.1 that use data mining did not aim to detect bugs and
identify their location, but to assess the quality of the software in terms of the prevalence
of defects and vulnerabilities. WAP is quite different because it has to identify the location
of vulnerabilities in the source code, so that it can correct them with fixes. Moreover, WAP
does not use data mining to identify vulnerabilities, but to predict whether the vulnerabilities
found by taint analysis are really vulnerabilities or false positives.

73

3. DETECTING AND REMOVING VULNERABILITIES WITH STATIC
ANALYSIS AND DATA MINING

We propose to use the output of static analysis to remove vulnerabilities automatically.
A few works use approximately the same idea of first doing static analysis then doing some
kind of protection, but mostly for SQL injection and XSS, and without attempting to in-
sert fixes to correct the source code in the same way than WAP. However, saferXSS (Shar
& Tan, 2012a) also corrects the source code, but differently than WAP. After to find XSS
vulnerabilities, it wraps the user inputs (entry points) with functions provided by OWASP’s
ESAPI (OWASP, 2014a). On contrary, WAP inserts fixes in the sensitive sinks with the aim
of not to compromise the behavior of the application, since it deals with several classes of
vulnerabilities. However, none of these works use data mining or machine learning.

The WAP tool corrects the code by inserting fixes, i.e., sanitization and validation func-
tions. Testing is used to verify if the fixes actually remove the vulnerabilities and do not
compromise the (correct) behavior of the applications. The tool was experimented with syn-
thetic code with vulnerabilities inserted on purpose, and with a considerable number of open
source PHP applications. It was also compared with two source code analysis tools: Pixy and
PhpMinerII. This evaluation suggests that the tool can detect and correct the vulnerabilities
of the classes it is programmed to handle. It was able to find 388 vulnerabilities in 1.4 million
lines of code. Its accuracy and precision were approximately 5% better than PhpMinerII’s,
and 45% better than Pixy’s.

74

4
Detecting Vulnerabilities using Weapons

Static analysis tools search for vulnerabilities in source code, helping programmers to fix

the code. However, these tools are programmed to detect specific sets of flaws, often SQLI

and XSS (Jovanovic et al., 2006; Nunes et al., 2015), occasionally a few other (case of WAP

and (Dahse & Holz, 2014)), and are typically hard to extend to search for new classes of

vulnerabilities. Furthermore, new technologies are becoming centric in web applications. An

example are NoSQL databases, particularly convenient to store big data, like the MongoDB,

the most used NoSQL database (DB-Engines, 2015).

The chapter addresses the difficulty of extending these tools by proposing a modular

and extensible version of the WAP tool (presented in Chapter 3), equipping it with weapons

(WAP extensions) to detect and correct new vulnerability classes. This involves restructur-

ing the tool in: (1) modules for the vulnerability classes that it already detects; and, more

importantly, (2) a new module to be configured by the user to detect and correct new vul-

nerability classes without additional programming. This latter module takes as input data

about the new vulnerability class: entry points (input sources), sensitive sinks (functions ex-

ploited by the attack), and sanitization functions (functions that neutralize malicious input).

Then it automatically generates a weapon composed of: a detector to search for vulnerabil-

ities, symptoms to predict false positives, and a fix to correct vulnerable code. We used this

scheme to enhance the new version of WAP with the ability to detect 7 new classes of vul-

nerabilities: session fixation, header injection (or HTTP response splitting), email injection,

75

4. DETECTING VULNERABILITIES USING WEAPONS

comment spamming injection, LDAP injection, XPath injection, and NoSQL injection.

We also demonstrate that this modularity and extensibility can be used to create weapons

that deal with non-native entry points, sanitization functions, and sensitive sinks. We show

this point by creating a weapon to detect SQLI vulnerabilities in WordPress (WordPress,

2015), the most popular content management system (CMS) (Imperva, 2015).

A second improvement to the tool was performed to make it more precise and accurate.

We propose to increase the granularity of the analysis, adding more symptoms to the original

set used in previous version of WAP and a new, larger, data set. A re-evaluation of machine

learning classifiers was performed to select the new top 3 classifiers.

The version of WAP presented in this chapter is the first static analysis tool configurable

to detect and correct new classes of vulnerabilities without programming. To the best of our

knowledge, it is also the first static analysis tool that detects NoSQL injection and comment

spamming injection (CI). The latter is currently the most exploited vulnerability in applica-

tions based on WordPress (Imperva, 2015).

The chapter is organized as follows. Section 4.1 presents briefly the architecture of the

WAP tool. Section 4.2 explains the restructuring performed in the tool to make it modular

and extensible. Section 4.3 presents the weapons we created to detect seven new classes of

vulnerabilities and SQLI vulnerabilities in WordPress. Section 4.4 presents the experimental

evaluation. The chapter ends with conclusions (Section 4.5).

4.1 Architecture

This section presents briefly the architecture of the WAP tool (detailed version in Section

3.1). WAP detects input validation vulnerabilities in PHP web applications. This version of

the tool handles eight vulnerability classes: SQLI, XSS (reflected and stored), remote file

inclusion (RFI), local file inclusion (LFI), directory or path traversal (DT/PT), OS command

injection (OSCI), source code disclosure (SCD), and PHP command injection (PHPCI).

WAP is developed in Java, and its implementation follows the architecture of Figure

3.2, and the approach presented in Section 3.1. It is composed of 3 modules represented

summarily in Figure 4.1 and explained briefly as following:

1. Code analyzer: parses the source code, generates an abstract syntax tree (AST), does

taint analysis, and generates trees describing candidate vulnerable data-flow paths

76

4.2 Restructuring WAP

(from an entry point to a sensitive sink). The code analyzer may return false positives

as it may not recognize that certain code structures effectively sanitize data flows.

2. False positive predictor: obtains symptoms (source code features) from the candidate

vulnerable data-flow paths and uses a combination of 3 classifiers to make the predic-

tion (Logistic Regression, Random Tree, Support Vector Machine).

3. Code corrector: identifies the fixes to add and the places where they have to be in-

serted; then modifies the source code with the fixes.

 vulnerabilities
fixed

Code
analyzer

False positives
predictor

Code
corrector

trained
data sets

entry points
sensitive sinks

sanit. funcs

PHP
source code

fixes

 false
positives

 vulnerabilities
fixed

detecting
candidate

vulnerabilities

predicting
false positives

correcting
source code

trained
data sets

entry points
sensitive sinks

sanit. funcs

PHP
source code

fixes

 false
positives

Figure 4.1: Overview of the WAP tool modules and data flow.

4.2 Restructuring WAP

We propose to extend the WAP tool to be configurable to handle new classes of input vali-

dation vulnerabilities, so we restructure the tool making it modular. We explain this process

considering WAP’s three original modules: code analyzer, false positive predictor, and code

corrector.

4.2.1 Code analyzer

The code that does taint analysis uses three pieces of data about each class of vulnerabil-

ity: entry points, sensitive sinks, and sanitization functions. Data coming from entry points

is considered tainted (i.e., non-trustworthy). This component tracks how this data flows

77

4. DETECTING VULNERABILITIES USING WEAPONS

through variables and functions, verifying if it reaches a sensitive sink. Sanitization func-

tions block the flow of tainted data. Therefore, the taint analyzer is coded to recognize the

set of functions for each vulnerability class and specific characteristics on this class (if they

exist).

Restructuring the code analyzer implies, on the one hand, to reorganize the taint analyzer

in sub-modules and, on the other hand, to create a generic detection sub-module configurable

by the user for new vulnerability classes. The AST has to be left unmodified as it is input to

all the sub-modules.

PHP
source code

AST

parsing
code

candidate
vulnerabilities

...

RCE & file
injection

sub-module

client-side
injection

sub-module

query
injection

sub-module

ep ss san ep ss san ep ss san

ta
in

t
an

al
yz

er

new vuln.
detector

sub-module

ep ss san

vulnerability
detector

generator

Figure 4.2: Reorganization of WAP’s code analyzer module.

Figure 4.2 shows the restructured code analyzer. At the top the figure shows that PHP

code is converted to an AST that is common input to all sub-modules. The sub-modules are:

1. RCE & file injection, dealing with vulnerabilities involving file system, files, and URLs

leading to remote code execution (RCE). These vulnerabilities are OSCI, PHPCI, RFI,

LFI, DT, and SCD.

78

4.2 Restructuring WAP

2. client-side injection, handling vulnerabilities related with injection of client-side code

(e.g., JavaScript code), namely reflected and stored XSS.

3. query injection, for vulnerabilities associated to queries, i.e., SQLI.

4. vulnerability detector generator, the generic detector configurable by the user for new

vulnerabilities.

5. new vulnerability detector sub-module, the detectors generated by 4., one for each new

vulnerability class.

Each sub-module is fed with entry points (ep), sensitive sinks (ss), and sanitization (san)

functions. These sets of data are now stored in external files, allowing the inclusion of new

items without recompiling the tool.

WAP’s parser was implemented using ANTLR (Parr, 2007). This framework provides

tree walkers to navigate through ASTs. The new vulnerability detector sub-module (sub-

module 5.) leverages a tree walker to track data flow and understand if tainted data reaches

a sensitive sink.

4.2.2 False positive predictor

The 3 classifiers of the original WAP use 15 attributes to classify the vulnerabilities found

by the taint analyzer as true or false. These attributes represent 24 symptoms that may be

present in source code, divided in three categories: validation, string manipulation and SQL

query manipulation. Table 4.1 shows these attributes and symptoms in the two left-hand

columns. The symptoms are PHP functions that manipulate entry points or variables. The

attributes represent symptoms of the same kind, e.g., the type checking attribute represent

the symptoms that check the data type of variables. Therefore, an attribute represents several

symptoms. A special attribute is used to indicate the class of each instance (the 16th, last

row).

We propose to improve this component in two directions: (1) by adding more symptoms

to the original set used in WAP (static symptoms), and (2) allowing the user to define new

symptoms (dynamic symptoms).

79

4. DETECTING VULNERABILITIES USING WEAPONS

WAP (original) WAPe (new version)
attribute symptom symptom

validation
Type checking is_string ctype_alpha

is_int is_scalar, intval, is_integer, is_long
is_float is_double, is_real
is_numeric
ctype_digit ctype_alnum,

Entry point is set isset is_null, empty
Pattern control preg_match preg_match_all

ereg
eregi
strnatcmp
strcmp
strncmp
strncasecmp
strcasecmp

White list user functions1

Black list user functions2

Error and exit error, exit
Extract substring substr preg_split

str_split
explode
split
spliti

String concatenation concatenation operator implode, join
Add char addchar str_pad
Replace string substr_replace preg_filter

str_replace ereg_replace
preg_replace eregi_replace

str_ireplace
str_shuffle
chunk_split

Remove whitespaces trim rrim, ltrim
SQL query manipulation

Complex query ComplexSQL
Numeric entry point IsNum
FROM clause FROM
Aggregated function AVG, COUNT, SUM

MAX, MIN
classification

Class false positive (FP)
real vulnerability (RV)

1 user functions containing white lists to validate user inputs. 2 user functions containing black lists to block user inputs

Table 4.1: Attributes and symptoms defined in the original WAP and those new. In the new
WAP all symptoms are also attributes.

80

4.2 Restructuring WAP

Static symptoms
By investigating the symptoms associated with false positives we have understood that

there were several relevant symptoms not considered originally in WAP. These symptoms

are listed in the right-hand column of Table 4.1. Moreover, we increased the granularity of

the analysis by specifying that all symptoms are attributes (both old and new, 2nd and 3rd

columns). Therefore, instead of 16 attributes we now have 61: 29 related to validation, 23 to

string manipulation, 8 to SQL query manipulation, and the class attribute.

Modifying the attributes requires training again the classifiers and, as the number of

attributes is much higher, we need also a much larger number of instances (samples of code

annotated as false positive or not). The original WAP was trained with a data set of 76

instances: 32 annotated as false positives and 44 as real vulnerabilities. Each instance had

16 attributes set to 1 or 0, indicating the presence or not of symptoms for the attributes, and an

attribute saying if the instance is a false positive or not. We increased the number of instances

to 256, each one with 61 attributes. The instances are evenly divided in false positives and

vulnerable (balanced data set). To create the data set we used WAP configured to output the

candidate vulnerabilities, and we ran it with 29 open source PHP web applications. Then,

each candidate vulnerability was processed manually to collect the attributes and to classify

it as being a false positive or not. Finally, noise was eliminated from the data set by removing

duplicated and ambiguous instances.

To perform the data mining process we used the WEKA tool (Witten et al., 2011) with

the original classifiers and induction rules. Also, as in the original WAP, we want a top 3 of

classifiers. Our goals are that classifiers:

1. predict as many false positives correctly as possible.

2. have a fallout as low as possible (wrong classifications of vulnerabilities as false pos-

itives), avoiding to miss vulnerabilities found by the taint analyzer. This principle is

important because we do not want to miss vulnerabilities found by the taint analyzer

due to wrong prediction.

Table 4.2 depicts the evaluation of the three best classifiers. We adopt the same terminol-

ogy defined and used in Section 3.3.2 for the first 7 metrics. The last 2 metrics are new. The

last column shows the formulas to calculate each metric, based in values extracted from the

confusion matrix (Table 4.3, last 2 columns).

81

4. DETECTING VULNERABILITIES USING WEAPONS

Metrics SVM Logistic Random Formula(%) Regression Forest
tpp 94.5% 93.0% 90.6% tpp = recall = tp / (tp + fn)
pfp 4.7% 4.7% 2.3% pfp = fallout = fp / (tn + fp)
prfp 95.3% 95.2% 97.5% prfp = pr positive = tp / (tp + fp)
pd 95.3% 95.3% 97.7% pd = specificity = tn / (tn + fp)
ppd 94.6% 93.1% 91.2% ppd = inverse pr = tn / (tn + fn)
acc 94.9% 94.1% 94.1% accuracy = (tp + tn) / N
pr 94.9% 94.2% 94.4% precision = (prfp + ppd) / 2
inform 89.8% 88.3% 88.3% informedness = tpp + pd -1 = tpp - pfp
jacc 90.3% 88.8% 88.5% jaccard = tp / (tp + fn + fp)

Table 4.2: Evaluation of the machine learning models applied to the data set.

Classifiers are usually selected based on accuracy and precision, but in this case the three

classifiers have very similar values in both metrics: between 94% and 95%. Moreover, the

compliance to goal (1) is measured by tpp. In terms of this metric, Support Vector Machine

(SVM) had the best results and Logistic Regression (LR) the second best. In terms of goal

(2), Random Forest (RF) had the best fallout rate (pfp). The inform metric expresses how the

classifications made by the classifier are close to the correct (real) classifications, whereas

jacc measures the classifications in the false positive class, taking into account false positives

and negatives (Powers, 2015). For inform, we combine the best values of tpp and pfp, i.e., the

tpp from SVM and the pfp from RF, resulting in 92%, while for jacc we use the correct and

misclassifications of all classifiers, resulting in 92%. These measures confirm our choice of

the top 3 classifiers. These classifiers are the same as those used in the original WAP, except

RF that substitutes Random Tree.

The confusion matrix of these classifiers is presented in Table 4.3. SVM and LR classi-

fied incorrectly a few instances, and RF classified 3 real vulnerabilities as being false pos-

itives. Notice that this misclassification is represented as fp in the confusion matrix, repre-

senting the instances belonging to class No that were classified in class Yes. However, in

the context of vulnerability detection this represents false negatives, i.e., vulnerabilities that

were not detected.

Dynamic symptoms
We use the term dynamic symptoms to designate symptoms defined by the user that

configures the tool for new vulnerabilities, whereas static symptoms are those that come

82

4.2 Restructuring WAP

Observed
SVM Logistic Regression Random Forest Classifier

Predicted Yes (FP) No (not FP) Yes (FP) No (not FP) Yes (FP) No (not FP) Yes No
Yes (FP) 121 6 119 6 116 3 tp fp
No (not FP) 7 122 9 122 12 125 fn tn

Table 4.3: Confusion matrix of the top 3 classifiers and confusion matrix notation (last two
columns).

with the tool. For every dynamic symptom the user has to provide a category and a type. For

example, if the user develops a function val_int to validate integer inputs (instead of is_int)

he has to provide the information that the function belongs to the validation category and that

it has an effect similar to the static symptom (function) is_int. Based on this information, the

tool understands how to handle function val_int when predicting false positives.

Figure 4.3 presents the reorganization of the false positive predictor. When a candidate

vulnerability is processed by this module: first the static and dynamic symptoms are collected

from the source code; then a vector of 61 attributes is created using the map from static

symptoms to attributes (stored into the tool) and the map of dynamic symptoms to attributes

(created dynamically); then the vector is classified using machine learning classifiers; finally,

in case of a real vulnerability, it is sent to the code corrector module to be fixed.

4.2.3 Code corrector

When a vulnerability is found, the code corrector inserts a fix that does sanitization or vali-

dation of the data flow. To make WAP modular we created two sub-modules:

1. code fixing sub-module, which receives the vulnerability class and the code to be fixed

and inserts the fix.

2. fix creation that uses information and constraints provided by the user to generate a

new fix for a new class of vulnerabilities.

The first does essentially what the original version of WAP already did so we focus on

2..

We propose three fix templates to generate automatically fixes: PHP sanitization func-

tion, user sanitization, and user validation. The one that is used depends on the information

provided by the user.

83

4. DETECTING VULNERABILITIES USING WEAPONS

collecting
symptoms

static
symptoms

dynamic
symptoms

creating
attributes

vector mapping
dynam. sympt.

to attributes

attributes

map of static
symptoms to

attributes

classifying
attributes

vector
data set

Is a
FP

justifying
false positives

Y N
send to
code

corrector

 false
positives

candidate
vulnerabilities

...

Figure 4.3: Reorganization of the false positives predictor module.

• The PHP sanitization function template is applied when the user specifies the PHP
sanitization function used to sanitize data and the sensitive sink associated to this func-
tions, for a given vulnerability. The sanitization function is used as fix.

• The user sanitization template is chosen if the user indicates the malicious charac-
ters that may be used to exploit the vulnerability and a character that can be used to
neutralize them (e.g., the backslash).

• The user validation template is used if the user only specifies the set of malicious
characters used to exploit the vulnerability. In that case the fix checks the presence of
these characters, issuing a message in case there is a match.

Fixes are inserted in the line of the sensitive sink, as in the original WAP.
The Listing 4.1 shows the code of these templates. The PHP sanitization function tem-

plate (Listing 4.1(a)) is applied when the user specifies which are the PHP sanitization func-
tions used to sanitize data and the sensitive sink associated to this functions, for a given
vulnerability. For example for SQLI vulnerability, the mysql_real_escape_string san-
itization function was specified to the mysql_query sensitive sink. In the code of the figure,

84

4.2 Restructuring WAP

for this example, the ss_user and san_user represent these two functions, respectively for

SQLI vulnerability (vulName). The user sanitization template (Listing 4.1(b)) is chosen if

the user indicates the malicious characters that are employed to exploit a vulnerability and

which characters are used to neutralize them. For instance, for SQLI we could specify the set

of malicious characters and the backslash, respectively. The code of the figure represents this

set of malicious characters by the $metachars array and the set of characters that neutralize

it by the $replaceBy array. To user validation template (Listing 4.1(c)) is utilized if the user

only specifies the set of malicious characters used to exploit the vulnerability. In the code

of the figure, the $metachars array contains the malicious characters; each one is checked to

determine if it appears inside the $input; and in the presence of such character a message is

issued.

4.2.4 Weapons

A weapon is a WAP extension composed by a detector, a fix and, optionally, a set of dynamic

symptoms. To generate weapons we developed a weapon generator, external to WAP. The

data needed to create a weapon is:

1. for the detector, the sanitization and sensitive sinks functions, plus additional entry

points if they exist.

2. for the fix, data for the fix templates (Section 4.2.3).

3. dynamic symptoms, in case the user has a white/black lists of functions, or functions

that do not belong to the static symptoms list (in this case, the correspondence between

dynamic and static symptoms is required).

To generate a weapon, the weapon generator uses the vulnerability detector generator

(see Section 4.2.1) that it configures with item 1. above, generating a new detector with the

ss, san and ep files containing the data provided by the user. Next, it configures the selected

fix template with item 2., generating a new fix. Then, it creates a file with item 3.. The last

step is to put together the three parts, linking them to WAP. Detection is activated using a

command line flag also provided by the user (e.g., -nosqli).

When the weapon is activated, WAP parses the code, generating an AST; next the detector

navigates through the AST using the data stored in its files. The candidate vulnerabilities

85

4. DETECTING VULNERABILITIES USING WEAPONS

1 function san_vulName($input, $sensitiveSink){
2 if (strcasecmp($sensitiveSink, "ss_user") == 0)
3 return san_user($input);
4

5 // repeat "if" statement for each pair ss_user, san_user
6 }

(a) Template of PHP sanitization function.

1 function san_vulName($input){
2 $metachars = array(’m1’, ’m2’, ..., ’mx’);
3 $replaceBy = array(’r1’, ’r2’, ..., ’rx’);
4 $out = str_replace($metachars, $replaceBy, $input);
5 return $out;
6 }

(b) Template of user sanitization.

1 function san_vulName($input){
2 $metachars = array(’m1’, ’m2’, ..., ’mx’);
3 foreach ($metachars as &metachar){
4 $pos = stripos($input, $metachar);
5 if ($pos != false){
6 echo ’<script>’;
7 echo ’alert("vulName attack detected!!!")’;
8 echo ’</script>’;
9 return 1;
10 }
11 }
12 return 0;
13 }

(c) Template of user validation.

Listing 4.1: Fix templates proposed.

found by the detector are processed by the false positives predictor using the symptoms

defined in WAP and contained in the weapon, and the real vulnerabilities are fixed using the

code fixing module (see Section 4.2.3) with the fix of the weapon.

4.2.5 Effort to modify WAP

Modifying WAP involved an effort with three facets:

1. making the AST independent of the navigation made by the detectors (tree walkers).

86

4.3 Extending WAP with weapons

2. restructuring the code to create the three sub-modules for the vulnerabilities originally

considered (Section 4.2.1), to integrate the dynamic symptoms (Section 4.2.2), and to

make the code corrector able to receive new fixes (Section 4.2.3).

3. coding the weapon generator module (Section 4.2.4).

From the three facets, 3. was the one that required more effort. We had to build a new java

package to create weapons (new vulnerability detector sub-module), a frontend for the user

to configure the weapon generator, templates to create automatically fixes, and to integrate

the weapon in WAP. When the weapon generator is executed it creates a new java package

and compiles it, building a jar to be integrated with the WAP tool.

4.3 Extending WAP with weapons

This section presents how we extended WAP for seven new vulnerabilities classes, as well

as how this extension was done. The seven vulnerability classes are the following (6 were

presented in Section 2.1): LDAP injection (LDAPI), XPath injection (XPathI), NoSQL in-

jection (NoSQLI), comment spamming (CS), header injection or HTTP response splitting

(HI), email injection (EI), and the seventh vulnerability class is the session fixation (SF).

With the exception of SF, all of them are input validation vulnerabilities, meaning that they

are created by lack of sanitization or validation of user inputs (entry points) before they reach

a sensitive sink.

Session fixation allows an attacker to force a web client to use a specific (“fixed”) session

ID, allowing him to access the account of the user. Avoiding this vulnerability is not trivial

as there is no sanitization function to apply or set of malicious characters to recognize. A

way to defend against SF is to avoid using a session token provided by the user (OWASP,

2013; Scambray et al., 2011).

The section also presents the extension to detect SQLI in WordPress plugins that uses

WordPress functions as entry points, sanitization functions, and sensitive sinks.

To demonstrate how we can take advantage of the modularity we created in WAP, we

opted by extending it in two different ways: reusing the sub-modules presented in Section

4.2.1 and with weapons (Section 4.3.2). However, a normal user would probably use the

second form.

87

4. DETECTING VULNERABILITIES USING WEAPONS

4.3.1 Reusing the sub-modules

The detection of four of the vulnerabilities referenced above can be integrated in the sub-
modules of Section 4.2.1 and the fixes to remove them can be created using a fix template
(Section 4.2.3). Table 4.4 shows the classes of vulnerabilities integrated in each sub-module
and the sensitive sinks added to detect each vulnerability. These functions were inserted in
the ss file of each sub-module. No sanitization functions or entry points were added to the
san and ep files.

Sub-module Vuln. Sensitive sink
RCE & file SF setcookie, setdrawcookie, session_idinjection
client-side CS file_put_contents, file_get_contentsinjection

query LDAPI ldap_add, ldap_delete, ldap_list, ldap_read, ldap_search
injection XPathI xpath_eval, xptr_eval, xpath_eval_expression

Table 4.4: Sensitive sinks added to the WAP sub-modules to detect new vulnerability classes.

In relation to LDAPI and XPathI, a fix was created for each one using the user validation

fix template. For CS we changed WAP’s san_read and san_write fixes. These fixes
deal with the sensitive sinks specified above for the CS vulnerability. They validate the user
inputs contents against JavaScript code, so we changed them to also check the input contents
against URIs/hyperlinks. For SF we created a fix from scratch.

4.3.2 Creating weapons

We used the scheme presented in Section 4.2.4 to create three weapons, for (1) NoSQLI, (2)
HI and EI, and (3) SQLI for WordPress.

NoSQLI weapon
NoSQL is a common designation for non-relational databases used in many large-scale

web applications. There are various NoSQL database models and many engines that im-
plement them. MongoDB (MongoDB, 2015) is the most popular engine implementing the
document store model (DB-Engines, 2015). Therefore, we opted for creating a weapon to de-
tect NoSQLI in PHP web applications that connect to MongoDB. We configured the weapon
generator with: (1) the find, findOne, findAndModify, insert, remove, save and

88

4.4 Experimental Evaluation

execute sensitive sinks and the mysql_real_escape_string sanitization function; (2)
the PHP sanitization fix template to sanitize the user inputs that reach that sink with that
sanitization function, resulting in the san_nosqli fix; and (3) no dynamic symptoms. The
weapon is activated by the -nosqli flag.

HI and EI weapon
We configured the weapon generator with: (1) the header and mail sensitive sinks

and no sanitization functions; (2) the user sanitization fix template to check the malicious
characters presented in Section 2.1 and to replace them by a space, resulting in the san_hei

fix; and (3) no dynamic symptoms. The weapon is activated with the -hei flag of WAP.

SQLI for WordPress weapon
WordPress has a set of functions that sanitize and validate different data types, which are

used in some add-ons. It has also its own sinks to handle SQL commands ($wpdb class).
If we want to analyze, for example, WordPress plugins with WAP for SQLI vulnerabilities,
we need a weapon that recognizes these functions. Therefore, we configured the weapon
generator with: (1) the sensitive sinks and sanitization functions from $wpdb; (2) the PHP

sanitization fix template to sanitize the user inputs that reach those sinks with those saniti-
zation functions, resulting in the san_wpsqli fix; and (3) dynamic symptoms, with validation
functions from $wpdb and their corresponding static symptoms. The weapon is activated by
the flag -wpsqli.

4.4 Experimental Evaluation

The objective of the experimental evaluation was to answer the following questions:

1. Is the new version of WAP able to detect the new vulnerabilities (Section 4.4.1 and
Section 4.4.2)?

2. Does it remain able to detect the same vulnerabilities as the previous version of WAP
(Section 4.4.1)?

3. Is the new version it more accurate and precise in predicting false positives (Section
4.4.1)?

89

4. DETECTING VULNERABILITIES USING WEAPONS

4. Can it be equipped with weapons configured with non-native PHP functions and detect
vulnerabilities (Section 4.4.2)?

For convenience, in this section we designate the new version of the WAP tool by WAPe.

4.4.1 Real web applications

To assess the new version of the tool and to answer the first three questions, we run WAPe
with 54 web application packages written in PHP and compare it with the prior version of
the tool.

WAPe analyzed a total of 8,374 files corresponding to 2,065,914 lines of code of the
54 packages. It detected 413 real vulnerabilities from several classes in 17 applications, in
which 366 of them are zero-day vulnerabilities. The largest packages analyzed were Play sms

v1.3.1 and phpBB v3.1.6_Es with 248,875 and 185,201 lines of code. Table 4.5 summarizes
this analysis presenting the 17 packages where these vulnerabilities were found and some
information about the analysis. These 17 packages contain 4,714 files corresponding to
1,196,702 lines of code. The total execution time for the analysis was 123 seconds, with an
average of 7.2 seconds per application. This average time indicates that the tool has a good
performance as it searches for 15 vulnerability classes in one execution.

We run the same 54 packages with the old version of WAP. The tool flagged as vulnerable
the same 15 applications (less 2 packages, since they only contain classes of vulnerabilities
not known by WAP). Table 4.6 presents the detection made by the two tools distributed by
the 10 classes of vulnerabilities and the false positives predicted and not predicted. The
third to sixth columns show the number of real vulnerabilities that the tools found for the
classes that both detect, i.e., the 386 vulnerabilities of classes SQLI, XSS, RFI, LFI, DT and
SCD; 340 of them are zero-day vulnerabilities. This provides a positive answer to the second
question: WAPe still discovers the vulnerabilities detected by the old WAP.

The next four columns correspond to the new vulnerabilities that WAPe was equipped to
detect and the following column is the total of vulnerabilities detected by WAPe (413 vul-
nerabilities). WAPe detected 26 zero-day vulnerabilities of the LDAPI, HI, and CS classes,
plus one known SF vulnerability. The vulnerabilities found in the Pivotx v2.3.10 and refbase

v0.9.6 (for XSS) packages were previously discovered and registered in Packet storm (Packet
storm, 2015) and CVE-2015-7383. The Community Mobile Channels v0.2.0 application was
the most vulnerable mobile application with 47 vulnerabilities (SQLI and XSS mostly). This

90

4.4 Experimental Evaluation

Web application Version Files Lines of Analysis Vuln. Vuln.
code time (s) files found

Admin Control Panel Lite 2 0.10.2 14 1,984 1 9 81
Anywhere Board Games 0.150215 3 501 1 1 3
Clip Bucket 2.7.0.4 597 148,129 11 16 22
Clip Bucket 2.8 606 149,830 12 18 26
Community Mobile Channels 0.2.0 372 119,890 8 116 47
divine 0.1.3a 5 706 1 2 9
Ldap address book 0.22 18 4,615 2 4 1
Minutes 0.42 19 2,670 1 2 10
Mle Moodle 0.8.8.5 235 59,723 18 4 7
Php Open Chat 3.0.2 249 83,899 7 9 11
Pivotx 2.3.10 254 108,893 6 1 1
Play sms 1.3.1 1,420 248,875 19 7 6
RCR AEsir 0.11a 8 396 1 6 13
refbase 0.9.6 171 109,600 10 18 48
SAE 1.1 150 47,207 7 39 48
Tomahawk Mail 2.0 155 16,742 3 3 3
vfront 0.99.3 438 93,042 15 25 77

Total 4,714 1,196,702 123 280 413

Table 4.5: Summary of results for the new version of WAP with real web applications.

seems to confirm the general impression that the security of mobile applications is not al-

ways the best. Also interesting is the fact that the most recent version of Clip Bucket contains

more 4 SQLI and the same 22 vulnerabilities than the previous version.

WAP reported more vulnerabilities than WAPe, but they were false positives. The last

four columns of the table show the number of false positives predicted (FPP) and not pre-

dicted (FP) by WAP (the first two columns) and WAPe (the next two columns). The original

tool correctly predicted 62 false positives and incorrectly 60 as not being so. WAPe predicted

104 false positives: the same as WAP plus 42 that WAP classified as not being false positives.

This means that the data mining improvements proposed in this chapter made the tool more

accurate and precise in prediction of false positives and detection of real vulnerabilities.

We analyzed the 18 cases reported by WAPe as not being false positives; some of them

had function calls that we did not consider as symptoms, such as calls to functions sizeof

and md5, whereas others contained sanitization functions developed by the applications’

programmers. For example, the vfont v0.99.3 application contains 6 of these cases, using a

function named escape to sanitize the user inputs. To demonstrate the extensibility of the tool

for such functions, we fed it with that non-native PHP function (escape) as being an external

sanitization function and belonging to the sanitization list (see Section 4.2.1), and we run the

91

4. DETECTING VULNERABILITIES USING WEAPONS

Web application Version WAP & WAPe real vuls. WAPe real vuls. WAP FP WAPe FP
SQLI XSS Files* SCD LDAPi SF HI CS Total FPP FP FPP FP

Admin Control Panel Lite 2 0.10.2 9 72 81 8 8
Anywhere Board Games 0.150215 1 1 1 3
Clip Bucket 2.7.0.4 10 11 1 22 2 4 6
Clip Bucket 2.8 4 10 11 1 26 2 4 6
Community Mobile Channels 0.2.0 14 27 3 3 47 4 4
divine 0.1.3a 4 2 3 9
Ldap address book 0.22 1 1
Minutes 0.42 9 1 10
Mle Moodle 0.8.8.5 6 1 7 2 1 2 1
Php Open Chat 3.0.2 10 1 11
Pivotx 2.3.10 1 1 9 9
Play sms 1.3.1 6 6 2 2
RCR AEsir 0.11a 9 3 1 13 1 1
Refbase 0.9.6 46 2 48 7 4 11
SAE 1.1 11 25 10 1 1 48 23 12 11
Tomahawk Mail 2.0 2 1 3 1 2 3
vfront 0.99.3 23 28 16 10 77 26 20 40 6

Total 72 255 55 4 2 1 19 5 413 62 60 104 18
*DT & RFI, LFI vulnerabilities

Table 4.6: Vulnerabilities found and false positives predicted and reported by the two ver-
sions of WAP in web applications.

tool again for that application. The tool correctly did not report these 6 cases. We recall that

WAP does not report candidate vulnerabilities that are sanitized. This example shows that

a user can configure WAPe for a specific web application during its development, feeding

WAPs with user functions developed for that application and helping the user revising the

code of the application.

4.4.2 WordPress plugins

To answer the first and last questions, and to find previously-unknown (zero-day) vulnera-

bilities, we run WAPe with a set of 115 WordPress (WP) plugins (WordPress, 2015), 5 of

which with vulnerabilities registered in CVE (CVE, 2015).

WordPress is the most adopted CMS and supports plugins developed by many different

teams. We selected 115 plugins from different tags (arts, food, health, shopping, travel,

authentication, popular plugins and others) and distributed by several ranges of downloads,

from less than 2000 to more than 500K. The popular plugins fit in this last range, having

92

4.4 Experimental Evaluation

Plugin Version Real vulnerabilities Total FPP FPSQLI XSS Files* SCD CS HI
Appointment Booking Calendar** 1.1.7 1 3 4 1
Auth0 1.3.6 1 1
Authorizer 2.3.6 2 2
BuddyPress 2.4.0 0 1
Contact formgenerator 2.0.1 11 11
CP Appointment Calendar 1.1.7 2 2
Easy2map** 1.2.9 1 2 3
Ecwid Shopping Cart 3.4.6 1 1
Gantry Framework 4.1.6 3 3
Google Maps Travel Route 1.3.1 1 2 3
Lightbox Plus Colorbox 2.7.2 8 8
Payment form for Paypal pro** 1.0.1 2 2
Recipes writer 1.0.4 4 4
ResAds** 1.0.1 2 2
Simple support ticket system** 1.2 18 18
The CartPress eCommerce Shopping Cart 1.4.7 8 17 25
WebKite 2.0.1 1 1
WP EasyCart - eCommerce Shopping Cart 3.2.3 13 6 29 5 2 5 60
WP Marketplace 2.4.1 9 9 1
WP Shop 3.5.3 5 5 1
WP ToolBar Removal Node 1839 1 1
WP ultimate recipe 2.5 0 1
WP Web Scraper 3.5 3 3

Total 55 71 31 5 2 5 169 3 2
*DT & RFI, LFI vulnerabilities
**plugins with vulnerabilities registered in CVE-2015-7319, CVE-2015-7320, CVE-2015-7666, CVE-2015-7667, CVE-2015-7668,
CVE-2015-7669, CVE-2015-7670

Table 4.7: Vulnerabilities found by new version of WAP in WordPress plugins.

some of them more than 1M downloads. Figure 4.4(a) shows the number of downloads of

these plugins and Figure 4.4(b) the number of web sites that have these plugins active.

WAPe discovered 153 zero-day vulnerabilities and detected 16 known vulnerabilities.

Table 4.7 shows the 23 plugins with vulnerabilities, distributed by 8 classes. The wpsqli

weapon detected 55 SQLI vulnerabilities, while the other detectors found the remaining 114

vulnerabilities of the XSS, RFI, LFI, DT, HI and CS classes (last 2 are new). For the known

5 vulnerable plugins (appointment-booking-calendar 1.1.7, easy2map 1.2.9, payment-form-

for-paypal-pro 1.0.1, resads 1.0.1 and simple-support-ticket-system 1.2), we confirmed the

vulnerabilities using the information about them published in BugTraq (BugTraq, 2015).

However, for the simple-support-ticket-system 1.2 plugin WAPe detected more 13 SQLI vul-

nerabilities than those that were registered.

93

4. DETECTING VULNERABILITIES USING WEAPONS Sheet1

Page 2

< 2000
2K – 5K

.5K – 10K
10K – 50K

50K – 100K
100K – 500K

> 500K

0

5

10

15

20

25

30

35

Analyzed Vulnerable

< 100
100 – 500

500 – 1K
1K – 2K

2K – 5K
5K – 10K

> 10K

0

5

10

15

20

25

30

Analyzed Vulnerable

(a) Downloads

Sheet1

Page 2

< 2000
2K – 5K

.5K – 10K
10K – 50K

50K – 100K
100K – 500K

> 500K

0

5

10

15

20

25

30

35

Analyzed Vulnerable

< 100
100 – 500

500 – 1K
1K – 2K

2K – 5K
5K – 10K

> 10K

0

5

10

15

20

25

30

Analyzed Vulnerable

(b) Active installs

Figure 4.4: Downloads and active installed plugins of 115 analyzed (blue columns) and 23
vulnerable (orange columns) plugins.

The 23 plugins fit in all ranges of downloads, as depicted by the orange columns of Figure

4.4(a). 16 of them have more than 10K downloads, reaching more than 500K downloads.

All ranges of active WP installations contain vulnerable plugins, as shown by the orange

columns of Figure 4.4(b). 12 plugins are used in more than 2000 web sites. The vulnerable

Lightbox Plus Colorbox plugin is active in more than 200,000 web sites (the most used

plugin), making these web sites vulnerable to XSS attacks.

Figure 4.5 presents the vulnerabilities detected by class for the 17 web applications and

23 WP plugins. Clearly SQLI and XSS continue to be the most prevalent classes. Moreover,

it is possible to observe that WAPe detects correctly the vulnerabilities it was extended to

detect. In both analysis it detected HI and CS vulnerabilities, while LDAPI and SF were

only detected in the web applications (not plugins).

All these vulnerabilities were reported to the developers of the web applications and WP

plugins. Some already confirmed their existence. All were confirmed by us manually.

4.5 Conclusions

The chapter presents the extension of the WAP tool to detect new vulnerabilities. It addresses

the difficulty of extending these tools by proposing a modular and extensible version of the

WAP tool, equipping it with “weapons” to detect (and correct) vulnerabilities of new classes.

The approach involved restructuring WAP to make it modular and the creation of a new

94

4.5 Conclusions

Sheet10

Page 4

PLUGUNS & WEB APPS

Plugins
SQLI 72 55

XSS 255 71

Files 55 31
SCD 4 5

LDAP 2 0

SF 1 0

HI 19 2
CS 5 5

WebApps

SQLI

XSS

Files

SCD

LDAP

SF

HI

CS

0 25 50 75 100 125 150 175 200 225 250 275

Number of vulnerabilities by class

WebApps Plugins

Figure 4.5: Number of vulnerabilities detected by class in the vulnerable web applications
and WordPress plugins.

module to generate weapons, i.e., to generate automatically detectors and fixes to detect and
remove new classes of vulnerabilities. To predict false positives the precision and accuracy
of the data mining process has been improved, adding more symptoms about false positives
and instances.

The new version of the tool was evaluated with seven new vulnerability classes using
54 web application packages and 115 WordPress plugins, adding up to more than 8,000
files and 2 million lines of code. The tool discovered respectively 366 and 153 zero-day
vulnerabilities, i.e., 519 previously-unknown vulnerabilities. In our experiments our modular
and extensible tool has shown a much higher ability to detect new (zero-day) vulnerabilities
than the original version.

95

5
Learning to Detect Vulnerabilities

Programmers often use static analysis tools to search for vulnerabilities automatically in the

application source code, then removing them. However, developing these tools requires ex-

plicitly coding knowledge about how each vulnerability is detected (Dahse & Holz, 2014;

Fonseca & Vieira, 2014; Jovanovic et al., 2006), which is complex. Moreover, this knowl-

edge may be wrong or incomplete, making the tools inaccurate (Dahse & Holz, 2015). For

example, if the tools do not understand that a certain function sanitizes inputs, this could lead

to a false positive (a warning about an inexistent vulnerability).

This chapter presents a new approach for static analysis, leveraging classification mod-

els for sequences of observations that are commonly used in the field of natural language

processing (NLP). Currently, NLP tasks such as parts-of-speech tagging or named entity

recognition are typically modeled as sequence classification problems, in which a class (e.g.,

a given morpho-syntactic category) is assigned to each word in a given sentence, according

to estimates given by a structured prediction model that takes word order into considera-

tion. The model’s parameters (e.g., symbol emission and class transition probabilities, in

the case of hidden Markov models) are typically inferred using supervised machine learning

techniques, leveraging annotated corpora.

We propose applying the same approach to programming languages. These languages

are artifical but they have many characteristics in common with natural languages, such as

the existence of words, sentences, a grammar, and syntactic rules. NLP usually employs

machine learning to extract rules (knowledge) automatically from a corpus. Then, with this

knowledge, other sequences of observations can be processed and classified. NLP has to

97

5. LEARNING TO DETECT VULNERABILITIES

take into account the order of the observations, as the meaning of sentences depends on

this order. Therefore it involves forms of classification more sophisticated than classification

based on standard classifiers (e.g., naive Bayes, decision trees, support vector machines)

that simply verify the presence of certain observations, without considering any order and

relation between them.

This work is the first to propose an approach in which static analysis tools learn to detect

vulnerabilities automatically using machine learning. The approach involves using machine

language techniques that take the order of source code instructions into account – sequence

models – to allow accurate detection and identification of the vulnerabilities in the code.

We specifically use a hidden Markov model (HMM) (Rabiner, 1989) to characterize vul-

nerabilities based on a set of source code slices with their code elements (e.g., function calls)

annotated as tainted or not, taking into consideration the code that validates, sanitizes, and

modifies inputs. The model can then be used as a static analysis tool to discover vulnerabil-

ities in source code. A HMM is a Bayesian network composed of nodes representing states

and edges representing transitions between states. In a HMM the states are hidden, i.e., are

not observed. Given a sequence of observations, the hidden states (one per observation) are

discovered following the HMM, taking into account the order of the observations. The HMM

can be used to find the sequence of states that best explains the sequence of observations (of

code elements, in our case). To detect vulnerabilities we introduce the idea of revealing the

discovered hidden states of the code elements that compose the slice. This is interesting be-

cause the state of the elements determines if they are tainted, i.e., if the state may have been

defined by an input, which may have been provided by an adversary. This allows the tool

to interpret the execution of the slice statically, i.e., without actually running it. Notice that

transitioning from a state to another requires understanding how the code elements behave

in terms of sanitization, validation and modification, or if they affect the data flow somehow.

This understanding is performed by the machine learning algorithm we propose.

The chapter also presents the DEKANT tool – hidDEn marKov model diAgNosing vul-

nerabiliTies – that implements our approach. DEKANT first extracts slices from the source

code, next translates these slices into an intermediate language – intermediate slice language

(ISL) – and retrieves their variable map. Then it analyses that representation, with the assis-

tance of its variable map, to understand if there are vulnerabilities or not. Finally, the tool

outputs the vulnerabilities, identifying them in the source code.

98

5.1 Overview of the Approach

The chapter is organized as follows: the next section (Section 5.1) gives an overview of

the approach for detection input validation vulnerabilities in web applications using static

analysis based in a sequence model that learns to classify. Then, the Intermediate Slice

Language (ISL) is characterized and described in Section 5.2. The ISL is used to translate

PHP slices in a tokenized language, more simple to process by a sequence model. Section 5.3

presents the model that receives the translated PHP slices to classify them as being vulnerable

or not, detecting thus vulnerabilities. In Section 5.4 the DEKANT tool that implements the

model is presented and in Section 5.5 an experimental evaluation is showed. The chapter

ends with discussion, including with related work, and conclusions (Sections 5.6 and 5.7).

5.1 Overview of the Approach

The approach has two phases: learning and detection. In the first, an annotated data set is

used to acquire knowledge about vulnerabilities. In the second, vulnerabilities are detected

using a sequence model, a HMM.

The HMM captures how calls to sanitization functions, validation and string modification

affect the data flows between entry points and sensitive sinks. These factors may lead state

to change from not tainted to tainted or vice-versa. However, we do not tell the model how

to understand these functions, but train it automatically using the annotated data set (see

Section 5.3).

The two phases are represented in Figure 5.1. The learning phase is executed when the

corpus is first defined or later modified and is composed of the following sequence of steps:

1. Building the corpus: to build the corpus with a set of source code slices annotated

either as vulnerable or non-vulnerable, to characterize code with flaws and code that

handles inputs adequately (see Section 5.3.1). Duplicates have to be removed.

2. Knowledge extraction: to extract knowledge from the corpus (the parameters of the

model) and represent it with probability matrices (see Section 5.3.2).

3. Training HMM: to train the HMM to characterize vulnerabilities with knowledge con-

tained in the parameters.

99

5. LEARNING TO DETECT VULNERABILITIES

The detection phase is composed of the following steps:

1. Slice extraction: to extract slices from the source code, with each slice starting in

an entry point and finishing in a sensitive sink. This is done by the slice extractor,

which tracks the entry points and their dependencies until they reach a sensitive sink,

independently if they are sanitized, validated and/or modified. The resulting slice is a

sequence of tracked instructions.

2. Slice translation: to translate the slice into Intermediate Slice Language (ISL). We des-

ignate the slice in ISL by slice-isl. During this translation, a variable map is created

containing the variables present in the slice source code. ISL is a categorized lan-

guage with grammar rules that aggregate in categories the functions of the server-side

language by their functionality.

3. Vulnerability detection: to use the HMM to find the best sequence of states that ex-

plains slice-isl. Each slice-isl instruction (sequence of observations) is classified by the

model after the tainted variables from the previous instruction determine which emis-

sion probabilities will be selected for the instruction to be classified. The classification

of the last observation from the last instruction of the slice-isl will classify the whole

slice as containing a vulnerability or not. If a vulnerability is detected, its description

(including its location in the source code) is reported.

5.2 Intermediate Slice Language

As explained, slices are translated into ISL. All slices begin with an entry point and end with

a sensitive sink; between them there can be other entry point assignments, input validations,

sanitizations, modifications, etc. A slice contains all instructions (lines of code) that ma-

nipulate an entry point and the variables that depend on it, but no other instructions. These

instructions are composed of code elements (e.g., entry points, variables, functions) that are

categorized in classes of elements with the same purpose (e.g., class input contains PHP

entry points like $_GET and $_POST). The classes are the tokens of the ISL language. ISL

is essentially a representation of the instructions in terms of these classes. Therefore, the

representation of a slice in ISL is an abstraction of the original slice, which is simpler to

100

5.2 Intermediate Slice Language

 vulnerabilities
detected

source code slice
extraction

slice
translation

vulnerability
detection

entry points
sensitive sinks

Learning

Detection

representing
in ISL

annotating
states

removing
duplicates

extracting
knowledge

source code

corpusprobabilities
matrices

training
HMM

collecting
slices

(a) Learning phase.

 vulnerabilities
detected

source code slice
extraction

slice
translation

vulnerability
detection

entry points
sensitive sinks

Learning

Detection

representing
in ISL

annotating
states

removing
duplicates

extracting
knowledge

source code

corpusprobabilities
matrices

training
HMM

collecting
slices

(b) Detection phase.

Figure 5.1: Overview on the proposed approach.

process. Next we present the ISL, assuming the language of the code inspected is PHP, but
the approach is generic and other languages could be considered.

5.2.1 ISL tokens and grammar

Tokens
To define the ISL tokens, we studied which PHP code elements could manipulate entry

points and be associated to vulnerabilities or prevent them (e.g., functions that do sanitization
or replace characters in strings). Moreover, we examined many slices (vulnerable and not) to
check the presence of these code elements. The code elements representing PHP functions
were carefully studied to understand which of their parameters are relevant for vulnerability
detection. Some code elements are represented by more than one token. For instance, the
mysql_query function and its parameter are represented by two tokens: ss (sensitive sink)
and var (variable; or input if the parameter is an entry point).

Table 5.1 shows the 22 ISL tokens (column 1). The first 20 represent code elements and
their parameters, whereas the last two are specific for the corpus and the implementation
of the model (see Sections 5.3 and 5.4). Each of the 20 tokens represents one or more PHP
functions. Column 2 says the purpose of the functions and column 3 gives function examples.

101

5. LEARNING TO DETECT VULNERABILITIES

Column 4 defines the taintdness status of each token, which is used to build the corpus (see

Section 5.3.1).

Some remarks on some tokens:

• cond corresponds to an if statement with validation functions over variables (user

inputs) from the slice. This token allows the correlation and verification of the relation

between the validated variables and the variables that appear inside the if branches.

• char5 and char6 represent the amount of characters from a string manipulated by

functions that extract or replace the user input contents.

• start_where represents the place in the string (begin, middle or end) where the user

input contents suffers modifications by functions that extract or replace characters.

• var_vv represents variables with Taint state, i.e., that are tainted, meaning that they

have values that depend on entry points. This token is used in the corpus and emitted

by the model, but is not used when a slice is translated to ISL. The reason is that

ISL is used to represent PHP slices, before anything is known about tainted variables

or vulnerabilities. Therefore, ISL represents variables by var indicating a variable

without state or with N-Taint state (a variable not tainted or untainted). On the other

hand, the corpus contains information about vulnerabilities, therefore it must contain

tainted variables which are represented by this token. The model emits this token when

a variable represented by var is classified with Taint state (see Section 5.3).

• miss, also used in the corpus, serves to normalize the length of sequences (see Section

5.4).

There are some code elements whose token representation depends on the context in

which they appear in the source code – context-sensitive. The char5 and char6 tokens are

two of such cases. They are correctly represented in ISL if the amount of manipulated char-

acters is explicitly specified in the source code by an integer value. However, if the amount

is calculated using a mathematical expression, obtaining their value in runtime, we are deal-

ing with an unspecified case. These cases may originate false positives or false negatives,

but we prefer to define a model generating some false positives than false negatives, i.e.,

to report some non-existent vulnerabilities than to miss some vulnerabilities that exist in the

source code. Therefore in case the number of characters is undefined, ISL represents it by the

102

5.2 Intermediate Slice Language

Token Description PHP Function Taint
input entry point $_GET, $_POST, $_COOKIE, $_REQUEST Yes

$_HTTP_GET_VARS, $_HTTP_POST_VARS
$_HTTP_COOKIE_VARS, $_HTTP_REQUEST_VARS
$_FILES, $_SERVERS

var variable – No
sanit_f sanitization function mysql_escape_string, mysql_real_escape_string No

mysqli_escape_string, mysqli_real_escape_string
mysqli_stmt_bind_param, mysqli::escape_string
mysqli::real_escape_string, mysqli_stmt::bind_param

htmlentities, htmlspecialchars, strip_tags, urlencode
ss sensitive sink mysql_query, mysql_unbuffered_query, mysql_db_query Yes

mysqli_query, mysqli_real_query, mysqli_master_query
mysqli_multi_query, mysqli_stmt_execute, mysqli_execute
mysqli::query, mysqli::multi_query, mysqli::real_query
mysqli_stmt::execute

fopen, file_get_contents, file, copy, unlink, move_uploaded_file
imagecreatefromgd2, imagecreatefromgd2part, imagecreatefromgd
imagecreatefromgif, imagecreatefromjpeg, imagecreatefrompng
imagecreatefromstring, imagecreatefromwbmp
imagecreatefromxbm, imagecreatefromxpm
require, require_once, include, include_once

readfile

passthru, system, shell_exec, exec, pcntl_exec, popen

echo, print, printf, die, error, exit
file_put_contents, file_get_contents

eval
typechk_str type checking string function is_string, ctype_alpha, ctype_alnum Yes
typechk_num type checking numeric function is_int, is_double, is_float, is_integer No

is_long, is_numeric, is_real, is_scalar, ctype_digit
contentchk content checking function preg_match, preg_match_all, ereg, eregi No

strnatcmp, strcmp, strncmp, strncasecmp, strcasecmp
fillchk fill checking function isset, empty, is_null Yes
cond if instruction presence if No
join_str join string function implode, join No
erase_str erase string function trim, ltrim, rtrim Yes
replace_str replace string function preg_replace, preg_filter, str_ireplace, str_replace No

ereg_replace, eregi_replace, str_shuffle, chunk_split
split_str split string function str_split, preg_split, explode, split, spliti Yes
add_str add string function str_pad Yes/No
sub_str substring function substr Yes/No
sub_str_replace replace substring function substr_replace Yes/No
char5 substring with less than 6 chars – No
char6 substring with more than 5 chars – Yes
start_where where the substring starts – Yes/No
conc concatenation operator – Yes/No
var_vv variable tainted – Yes
miss miss value – Yes/No

Table 5.1: Intermediate Slice Language tokens.

char6 token, assuming by default that that amount can carry malicious data, i.e., is tainted.

The same scenario appears in the contentchk token that depends of the verification pattern.

103

5. LEARNING TO DETECT VULNERABILITIES

Grammar
The ISL grammar is composed of the rules shown in Figure 5.1. It is used to translate

a slice, composed of code elements (Table 5.1, column 3), into what we designate by slice-

isl, composed of tokens (column 1). A slice-isl is the result of the application of a set of

statement rules (line 2), each one of which can be a sub-rule (lines 4-11), an if statement

(line 12) or an assignment instruction (line 13). The sub-rules represent the syntax of the

functions in column 3 of the table: sensitive sink (line 4), sanitization (line 5), validation

(line 6), extraction and modification (lines 7-10), and concatenation (line 11). Each rule

denotes how each code element is represented, as exemplified above for the mysql_query

function and its parameter, where the sensitive_sink rule was applied (line 4 on Figure

5.1).

1 grammar isl {

2 slice-isl: statement+

3 statement:

4 sensitive_sink: ss (param | concat)

5 | sanitization: sanit_f param

6 | valid: (typechk_str | typechk_num | fillchk | contentchk) param

7 | mod_all: (join_str | erase_str | replace_str | split_str) param

8 | mod_add: add_str param num_chars param

9 | mod_sub: sub_str param num_chars start_where?

10 | mod_rep: sub_str_replace param num_chars param start_where?

11 | concat: (statement | param) (conc concat)?

12 | cond statement+ cond?

13 | (statement | param) attrib_var

14 param: input | var

15 attrib_var: var

16 num_chars: char5 | char6

17 }

Listing 5.1: Grammar rules of ISL.

A HMM processes observations from left to right and a PHP assignment instruction

assigns the right-hand side to the left-hand side; the assignment rule in ISL follows the

HMM scheme. This means, for example, that the PHP instruction $u = $_GET[’user’];

is translated to input var, where input is the right-hand side and var the left one.

104

5.2 Intermediate Slice Language

5.2.2 Variable map

A slice-isl does not contain information about the variables represented by the var token.

However, this information is crucial for the vulnerability detection process as var may apply

to different variables and the existence of a vulnerability may depend on that information.

Therefore, during slice translation a data structure called variable map is populated. This

map associates each occurrence of var in the slice-isl with the name of the variable that

appears in the source code. This allows tracking how input data propagates to different

variables or is sanitized/validated or modified. Each line of the variable map starts with

1 or 0, indicating if the instruction is an assignment or not. The rest of the line contains

one item per token in a slice-isl instruction. For instance, the above PHP instruction, $u =

$_GET[’user’];, translated to input var, populates the variable map with the entrance

1 - u, denoting that that instruction is an assignment containing a variable in the second

position. The - symbolizes a place within of the instruction not occupied by a variable.

5.2.3 Slice translation process

The process of slice translation consists in representing the slice using ISL and creating the

corresponding variable map. This section presents this process with two examples.

The slice extractor analyses the source code, extracting slices that start in entry points

and end in sensitive sinks. The instructions between these points are those that handle en-

try points and variables depending on them. The slice extractor performs intra- and inter-

procedural analysis, as it tracks the entry points and their dependencies along the source

code, walking through different files and functions. The analysis is also context-sensitive as

it takes into account the results of function calls.

Figure 5.2(a) shows PHP code (a slice) vulnerable to SQLI and Figure 5.2(b) shows this

code translated into ISL and the corresponding variable map (ignore the right-hand side for

now). The first line represents the assignment of an input to a var: input var in ISL. The

variable map entry starts with 1 (assignment) and has two items, one for input (-) and the

other for var (u, the variable name without the $ character). The next line is a variable

assignment represented by var var in ISL and by 1 u q in the variable map. The last line

contains a sensitive sink (ss) and two variables.

The second example is in Figure 5.3. The slice extractor takes from that code two slices:

lines {1, 2, 3} and {1, 2, 4}. The first has input validation, but not the second that is vulnera-

105

5. LEARNING TO DETECT VULNERABILITIES

1 $u = $_POST[’username’];
2 $q = "SELECT pass FROM users WHERE user=’".$u."’";
3 $result = mysql_query($q);

(a) code with SQLI vulnerability.

slice-isl variable map tainted list slice-isl classification

1 input var 1 - u TL = {u} 〈input,Taint〉 〈var_vv_u,Taint〉
2 var var 1 u q TL = {u, q} 〈var_vv_u,Taint〉 〈var_vv_q,Taint〉
3 ss var var 1 - q result TL = {u, q, result} 〈ss,N-Taint〉 〈var_vv_q,Taint〉 〈var_vv_result,Taint〉

(b) slice-isl (c) outputting the final classification

Figure 5.2: Code vulnerable to SQLI, translation into ISL, and detection of the vulnerability.

1 $u = $_POST[’name’];
2 if (isset($u) && preg_match(’/[a-zA-Z]+/’, $u))
3 echo $u;
4 echo $u;

(a) code with XSS vulnerability and validation.

slice-isl variable map list

1 input var 1 - u TL = {u}; CTL = {}
2 cond fillchk var contentchk var cond 0 - - u - u - TL = {u}; CTL = {u}
3 cond ss var 0 - - u TL = {u}; CTL = {u}
4 ss var 0 - u TL = {u}; CTL = {}

(b) slice-isl and variable map (c) artifacts lists

Figure 5.3: Code with a slice vulnerable to XSS (lines {1, 2, 4}) and a slice not vulnerable
(lines {1, 2, 3}), with translation into ISL.

ble to XSS. The corresponding ISL and variable map are shown in the middle columns. The

interesting cases are lines 2 and 3 that represent the if statement and its true branch. Both

are prefixed with the cond token and the former also ends with the same token.

5.3 The Model

This section presents the model used to learn and detect vulnerabilities. The section covers

the two phases of the proposed approach (Section 5.1). The learning phase is mainly pre-

sented in Sections 5.3.1 and 5.3.2 (parameters). The detection phase is presented in Section

106

5.3 The Model

5.3.3. In the learning phase, the corpus (a set of annotated sequences of observations) is

used to set the parameters of the sequence model (matrices of probabilities). In the detection

phase, a sequence of observations represented in ISL is processed by the model using the

Viterbi algorithm (Jurafsky & Martin, 2008) with some adaptations to decode the sequence

of states that explains those observations. This algorithm is often used in NLP to decode (i.e.,

discover) the states given the observations. The states classify the observations as tainted or

not; and in particular the last state of the sequence indicates if the slice is vulnerable or not.

5.3.1 Building the corpus

Our approach involves configuring the model automatically using machine learning. The

corpus is a set of sequences of observations annotated with states, that contains the knowl-

edge that will be learned by the model. The corpus is crucial for the approach as it includes

the information about which sequences of instructions lead to vulnerabilities or not.

The corpus is built in four steps: collecting a set of (PHP) instructions associated with

slices vulnerable and not vulnerable; representing these instructions in ISL (sequences of

observations); annotating manually the state to each observation (to each ISL token) of the

sequences; and removing duplicated sequences of observations annotated with states. The

upper part of Figure 5.1(a) represents these steps.

The most critical step is the first, in which a set of slices representing existing vulner-

abilities (and non-vulnerabilities) with different combinations of code elements has to be

obtained. In practice we used a large number of slices from open source applications (see

Section 5.4).

A sequence of the corpus is composed of two or more pairs 〈token,state〉. The

instruction $var = $_POST[’paramater’], for instance, translated into ISL becomes

input var and is represented in the corpus as 〈input,Taint〉 〈var_vv,Taint〉.

Both states are Taint (compromised) because the input is always Taint (input is the

source of attacks we consider).

In the corpus, the sequences of observations are annotated according to their taintd-

ness status and type, as presented in column 4 of Table 5.1, and the tokens represent-

ing some class of functions from that table. For instance, the PHP instruction $var =

107

5. LEARNING TO DETECT VULNERABILITIES

htlmentities($_POST[’parameter’]) is translated to sanit_f input var and rep-

resented in the corpus by the sequence 〈sanit_f,San〉 〈input, San〉 〈var,N-Taint〉.

The first two tokens were annotated with the San state, because the sanitization function

sanitizes its parameter, and the last token was annotated with N-Taint state, meaning that

the operation and the final state of the sequence are not tainted.

Notice that in the previous examples the state of the last observation is the final state of

the sequence. In the sanitization example that state is N-Taint, indicating that the sequence

is not-tainted (not compromised), while in the other example that state is Taint, indicating

that the sequence is tainted (compromised).

As mentioned above, the token var_vv is not produced when slices are translated into

ISL, but used in the corpus to represent variables with state Taint (tainted variables). In

fact, during translation into ISL variables are not known to be tainted or not, so they are

represented by the token var. In the corpus, if the state of the variable is annotated as

Taint, the variable is represented by var_vv, forming the pair 〈var_vv,Taint〉.

Listings 5.2 and 5.3 show an example of this process of creating of the corpus, with

its four steps. Listing 5.2(a) presents PHP instructions extracted from vulnerable and non-

vulnerable slices. Two examples of these slices, respectively, are the sequences of instruc-

tions of the lines {1, 8} and {2, 5, 8}. Listing 5.2(b) represents each of these instructions

into ISL (second step). Some instructions have more than one representation, depending if

the extracted slice is vulnerable or not. For example, the instruction labeled by 5 has two

representations (the two lines immediately below of it) to represent the sanitization of an un-

tainted and a tainted variable, respectively (first and second representations). In the figure, it

is visible the difference between the var and var_vv tokens. For the two examples of slices

above, line 8 is represented in ISL by the first representation for the vulnerable slice, and

by the second representation for the non-vulnerable slice. Listing 5.3 represents the last two

steps and the corpus. Each sequence of observations is annotated as explained above. The

duplicated sequences are reduced to one sequence, because different PHP instructions can

result in the same sequence. For example, the PHP instructions from lines 1 and 2 (Listing

5.2(a)) result in the sequence of line 1 of the corpus.

108

5.3 The Model

1 $var = $_POST[‘parameter’]
2 $var = $_GET[‘parameter’]
3 $var = htmlentities($_POST[‘parameter’])
4 $var = mysql_real_escape_string($_GET[‘parameter’])
5 $var = htmlentities($var)
6 $var = "SELECT field FROM table WHERE field = $var"
7 $var = mysql_query($var)
8 echo $var
9 include($var)
10 if (isset($var) && $var > number)
11 if (is_string($var) && preg_match(’pattern’, $var))

(a) collecting step.

1 $var = $_POST[‘parameter’]
input var_vv

2 $var = $_GET[‘parameter’]
input var_vv

3 $var = htmlentities($_POST[‘parameter’])
sanit_f input var

4 $var = mysql_real_escape_string($_GET[‘parameter’])
sanit_f input var

5 $var = htmlentities($var)
sanit_f var var
sanit_f var_vv var

6 $var = "SELECT field FROM table WHERE field = $var"
var var
var_vv var_vv

7 $var = mysql_query($var)
ss var var
ss var_vv var_vv

8 echo $var
ss var_vv
ss var

9 include($var)
ss var_vv
ss var

10 if (isset($var) && $var > number)
cond fillchk var_vv cond
cond fillchk var cond

11 if (is_string($var) && preg_match(’pattern’, $var))
cond typechk_str var_vv contentchk var_vv cond
cond typechk_str var_vv contentchk var cond
cond typechk_str var contentchk var_vv cond
cond typechk_str var contentchk var cond

(b) representing step.

Listing 5.2: Building the corpus: collecting and representing steps.

109

5. LEARNING TO DETECT VULNERABILITIES

1 <input,Taint> <var_vv,Taint>
2 <sanit_f,San> <input,San> <var,N-Taint>
3 <sanit_f,San> <var,San> <var,N-Taint>
4 <sanit_f,San> <var_vv,San> <var,N-Taint>
5 <var,N-Taint> <var,N-Taint>
6 <var_vv,Taint> <var_vv,Taint>
7 <ss,N-Taint> <var,N-Taint> <var,N-Taint>
8 <ss,N-Taint> <var_vv,Taint> <var_vv,Taint>
9 <ss,N-Taint> <var_vv,Taint>
10 <ss,N-Taint> <var,N-Taint>
11 <cond,N-Taint> <fillchk,Val> <var_vv,Val> <cond,N-Taint>
12 <cond,N-Taint> <fillchk,Val> <var,Val> <cond,N-Taint>
13 <cond,N-Taint> <typechk_str,Val> <var_vv,Val> <contentchk,Val>

<var_vv,Val> <cond,N-Taint>
14 <cond,N-Taint> <typechk_str,Val> <var_vv,Val> <contentchk,Val> <var,Val>

<cond,N-Taint>
15 <cond,N-Taint> <typechk_str,Val> <var,Val> <contentchk,Val> <var_vv,Val>

<cond,N-Taint>
16 <cond,N-Taint> <typechk_str,Val> <var,Val> <contentchk,Val> <var,Val>

<cond,N-Taint>

Listing 5.3: Building the corpus: annotating and removing steps.

5.3.2 Sequence model

Vocabulary and states
The HMM vocabulary consists in the 21 ISL tokens. The HMM contains the 5 states in

Table 5.2. The final state of slice-isl will be vulnerable (Taint) or not vulnerable (N-Taint),

but for correct detection it is necessary to take into account sanitization (San), validation

(Val) and modification (Chg_str) of the user inputs. Therefore these three factors are rep-

resented as intermediate states in the model.

State Description Emitted observations
Taint Tainted input, var, var_vv, conc
N-Taint Not tainted Input, var, var_vv, ss, cond, conc
San Sanitization input, var, var_vv, sanit_f
Val Validation input, var, var_vv, typechk_str,

typechk_num, contentchk, fillchk
Chg_str Change string input, var, var_vv, join_str, add_str,

erase_str, replace_str, split_str, sub_str,
sub_str_replace, char5, char6, start_where

Table 5.2: HMM states and the observations they emit.

110

5.3 The Model

Model graph
The model uses the knowledge in the corpus to discover the states of new sequences of

observations, detecting vulnerabilities. The knowledge that we want to be learned can be

expressed as a graph, which represents the model to detect vulnerabilities. Figure 5.4 shows

the graph for the specific HMM we use, where the nodes represent the states and the edges

the transitions between them. Table 5.2 shows the observations that can be emitted in each

state (column 3).

Figure 5.4: Model graph of the proposed HMM.

A sequence of observations can start in any state except Val, and end in the states Taint

or N-Taint. The exception is due to validated instructions that begin with the cond obser-

vation (e.g., lines 2-3 in Figure ??), which is emitted by the N-Taint state, but after this

observation the state transits to the Val state. In relation to the final state, an instruction (a

sequence of observations) from slice-isl is classified for all its observations, where the state

of the last observation will be the final state of all observations, meaning that an instruction

is always classified as Taint or N-Taint. Therefore, the final state of the last instruction

of slice-isl gives the final classification, i.e., says if the slice-isl is vulnerable or not. State

outputs and transitions depend on the previously processed observations and the knowledge

learned.

Figure 5.5 shows the instantiation of the graph for two sequences. The sanitization code

of Figure 5.5(a) is translated to the ISL sequence sanit_f input var. The sequence

starts in the San state and emits the sanit_f observation; next it remains in the same

111

5. LEARNING TO DETECT VULNERABILITIES

state and emits the input observation; then, it transits to N-Taint state, emitting the var

observation (non-tainted variable). Figure 5.5(b) depicts the assignment of an entry point to

a variable, turning this one tainted (Taint) and emitting var_vv (tainted variable).

(a) PHP instruction: $p = htlmentities($_GET[’user’])
ISL instruction: sanit_f input var
Sequence: 〈sanit_f,San〉 〈input,San〉 〈var,N-Taint〉

(b) PHP instruction: $u = $_GET[’user’]
ISL instruction: input var
Sequence: 〈input,Taint〉 〈var_vv,Taint〉

Figure 5.5: Models for two example corpus sequences.

Parameters
The parameters of the model are probabilities for the initial states, the state transitions,

and symbol emissions (Section 5.3.2). The parameters are calculated using the corpus and

the add-one smoothing technique to ensure that all probabilities are different from zero.

The probabilities are calculated from the corpus counting the number of occurrences of

observations and/or states for each type of probability. The result are 3 matrices of probabil-

ities with dimensions of (1× s), (s× s) and (t× s), where s and t are the number of states

and tokens of the model. For our model these numbers are 5 and 21, resulting in matrices of

dimensions (1× 5), (5× 5) and (21× 5). They are calculated as follows:

112

5.3 The Model

• Initial-state probabilities: count how many sequences start in each state. Then, calcu-

late the probability for each state dividing these counts by the number of sequences of

the corpus, resulting in a matrix with the dimension (1×5). For example, to obtain the

initial-state probability to the San state, we need to count how many sequences begin

with the San state; then this number is divided by the corpus size.

• Transition probabilities: count how many times in the corpus a certain state transits to

another state (or to itself). Recall that we consider pairs of states. We can calculate

the transition probability by dividing this count by the number of pairs of states from

the corpus that begin with the start state. For instance, the transition probability from

the N-Taint state to Taint state is the number of occurrences of this pair of states

divided by the number of pairs of states starting in the N-Taint state. The resulting

matrix has a dimension of (5× 5), that represents the possible transitions between the

5 states.

• Emission probabilities: count how many times in the corpus a certain token is emitted

by a certain state, i.e., count how many times a certain pair 〈token,state〉 appears

in the corpus. Then, calculate the emission probability by dividing this count by the

total of pairs 〈token,state〉 for that specific state. An example is the probability

of the Taint state to emit the var_vv token – the pair 〈var_vv,Taint〉. First, the

number of occurrences of this pair in the corpus is counted, next it is divided by the

total of pairs related to the Taint state. The resulting matrix – called global emission

probabilities matrix – has a dimension of (21× 5), representing the 21 tokens emitted

by the 5 states.

Zero-probabilities have to be avoided because the Viterbi algorithm uses multiplication

to calculate the probability of the next state, and therefore we need to ensure that this mul-

tiplication is never zero. The add-one smoothing technique (Jurafsky & Martin, 2008) is

used to calculate the parameters, avoiding zero probabilities. This technique adds a unit to

all counts, making zero-counts equal to one and the associated probability different from

zero. For example, to calculate the probability of the state Vul being emitted the observa-

tion ss, means to count how many times the pair 〈ss,Vul〉 appears in the corpus; if it is

equal to zero, then the result is a zero-probability. Using this technique, this probability is

transformed in a non-zero-probability.

113

5. LEARNING TO DETECT VULNERABILITIES

5.3.3 Detecting vulnerabilities

This section describes the detection phase of Figure 5.1(b).

Detection
A sequence of observations in ISL is processed by the model using the Viterbi algorithm

to decode the sequence of states. For each observation, the algorithm calculates the probabil-

ity of each state emitting that observation, taking for this purpose the emission and transition

probabilities and the maximum of probabilities calculated for the previous observation in

each state, i.e., the order in which the observation appears in the sequence and the previous

knowledge. For the first observation of the sequence the initial-state probabilities are used,

whereas for the rest of the probabilities these are replaced by the maximum of probabilities

calculated for each state for the previous observation. For emission probabilities, the matrix

for the observations to be processed is retrieved from the global emission probabilities ma-

trix. The multiplication of these probabilities is calculated for each state – score of state –

and the maximum of scores is selected, assigning it the state with bigger score to the obser-

vation. The process is repeated for all observations and the last observation is the one with

the highest probability of the states of the sequence. In our case, this probability classifies

the sequence as Taint or N-Taint.

A slice-isl is composed by a set of sequences of observations. The model is applied

to each sequence, classifying each one as tainted or not (Taint, N-Taint). However, for

the classification to be correct the model needs to know which variables are tainted and

propagate this information between the sequences processed. For this purpose, three artefacts

are used in the model: the lists of tainted variables (tainted list, TL) (explained next), inputs

and tainted variables validated by validation functions (conditional tainted list, CTL), and

sanitized variables (sanitized list, SL) (Section 5.3.3).

There are two relevant interactions between the variable map, the emission probabilities

and var_vv to fill the three lists in two moments of the sequence processing: after and

before.

• After: if the sequence represents an assignment, i.e., the last observation of the se-

quence is a var, the variable map is visited to get the variable name for that var, then

114

5.3 The Model

TL is updated: (i) inserting the variable name if the state is Taint; or (ii) removing it

if its state is N-Taint and the variable belongs to TL. In case (ii) and in the presence

of a sanitization sequence, SL is updated inserting the variable name; if the sequence

represents an if condition (the first and last observations of the sequence must be

cond), for each var and var_vv observation, the variable map is visited to get the

variable name, next TL to verify if it contains the variable name, and then, in that case,

CTL is updated inserting that variable name.

• Before: for each var observation, the variable map is visited to get the variable name,

then TL and SL are accessed to verify if they contain that variable name. CTL is also

accessed if the sequence starts with the token cond; in case of variable name only be-

long to TL, the var observation is updated to var_vv, then the emission probabilities

matrix for the observations from the sequence is retrieved from the global emission

probabilities matrix.

In order to detect vulnerabilities, the Viterbi algorithm was modified with these arte-

facts and interactions. Our model processes each sequence of observations from slice-isl as

follows:

1. “before” is performed.

2. the decoding step of the Viterbi algorithm is applied.

3. “after” is performed.

Detection example
Figure 5.2 shows an example of detection. The figure contains from left to right: the code,

the slice-isl, the variable map, and TL after the model classifies the sequence of observations.

Observing TL, it is visible that it contains the tainted variables and that they propagate their

state to the next sequences, influencing the emission probability of the variable. In line 1,

the var observation is vulnerable because by default the input observation is so; the model

classifies it correctly; and in TL the variable u is inserted. Next, line 2, before the Viterbi

algorithm is applied the first var observation is updated to var_vv because it represents

the u variable which belongs to TL. The var_vv var sequence is classified by the Viterbi

115

5. LEARNING TO DETECT VULNERABILITIES

algorithm, resulting in Taint as final state, and the variable q is inserted in TL. The process

is repeated in the next line.

Figure 5.2(c) presents the decoding of slice-isl, where it is possible to observe the re-

placement of var by var_vv, with the variable name as suffix. Also, the states of each

observation are presented and the state of the last observation indicates the final classifica-

tion (there is a vulnerability). Looking for the states generated it is possible to understand

the execution of the code without running it, why the code is vulnerable, and which variables

are tainted.

Validation and sanitization
The conditional tainted list (CTL) is an artefact used to help interpret inputs and variables

that are validated. This list will contain the validated inputs and variables, i.e., the inputs

(token input) and tainted variables that belong to TL, and that are validated by validation

functions (tokens typechk_num and contentchk). Therefore, when line 2 of Figure 5.3 is

processed, this list is created and will be passed to the other sequences. That figure contains

two slice-isl executed alternatively, depending on the result of the condition in line 2: {1, 2,

3} and {1, 2, 4}. When the model processes the former, it sets TL = {u} and CTL = {u}, as

the variable {u} is the parameter of the contentchk token. The final state of the slice-isl

(corresponding to line 3) is N-Taint, as the variable is in CTL. In the other slice there is no

interaction with CTL and the final state is Taint.

The sanitized list (SL) is a third artefact. Its purpose is essentially the same as CTL,

except that SL will contain variables sanitized using sanitization functions or modified using

functions that, e.g., manipulate strings.

5.4 Implementation and Assessment

To evaluate our approach and model we implemented them in the DEKANT tool. Moreover,

we defined a corpus that we used to train the model before running the experiments. This

corpus can be later extended with additional knowledge (remember that the tool is able to

learn, so also to evolve).

116

5.4 Implementation and Assessment

5.4.1 Implementation of the DEKANT

The DEKANT tool was implemented in Java. The tool has four main modules: knowledge

extractor, slice extractor, slice translator, and vulnerability detector.

Knowledge extractor
The knowledge extractor module is independent of the other three and executed just when

the corpus is first created or later modified. It runs in three steps.

1. Corpus processing: the sequences of the corpus are loaded from a plain text file; each

sequence is separated in pairs 〈token,state〉 and the elements of each pair are in-

serted in the matrices of observations and states.

2. Parameter calculation: the parameters (probabilities) of the model are computed using

the two matrices, and inserted in auxiliary matrices.

3. Parameter storage: the parameters are stored in a plain text file to be loaded by the

vulnerability detector module.

To obtain the parameters we need to normalize the sequence length of the corpus, making

it equal for all sentences. Processing the sequences of the corpus (corpus processing step)

means splitting the observations from the states, resulting the observations and states matri-

ces with equal dimension. The number of columns of these matrices represents the sequence

length. However, the sequences of the corpus do not have the same length (see Figure 5.3,

for example), so normalization is necessary.

The model (and tool) uses the token miss for this purpose. The model is configured

with a maximum length sequence (e.g., 10), which it is automatically calculated when the

sequences of the corpus are processed, finding which of them has the largest length. The

sequences with length lower than the maximum are padded to their right with the pair

〈miss,Taint〉 or 〈miss,N-Taint〉, depending on the state of the last element of the se-

quence. Recall that the last state of the sequence indicates its final state, so it can be used for

padding without causing wrong classification.

117

5. LEARNING TO DETECT VULNERABILITIES

Slice extractor
The slice extractor extracts slices from PHP code by tracking data flows starting at entry

points and ending at sensitive sinks, independently if the entry points are sanitized, validated

and modified.

Slice translator
The slice translator parses the slices, translates them into ISL applying the grammar, and

generates the variable maps.

Vulnerability detector
The vulnerability detector works in three steps.

1. Parameter loading: the parameters (probabilities) are loaded from a text file and stored

in matrices (initial-state, transition and emission illustrated in Figure 5.6 extracted

from the corpus presented in next section).

2. Sequence of observations decoding: the modified Viterbi algorithm is executed, i.e.,

the process described in Section 5.3.3 is performed.

3. Evaluation of sequences of observations: the probability of a sequence of observations

to be explained by a sequence of states is estimated, the most probable is chosen, and

a vulnerability flagged if it exists.

In step 2., if the length of the sequence being processed is bigger than the configured

maximum sequence length (retrieved from the corpus), the sequence is divided in sequences

of that maximum sequence length, and each one is classified separately, but the initial proba-

bility from the next sequence is equal to the resulting probability from the previous sequence.

5.4.2 Model and corpus assessment

A concern when specifying a HMM is to make it accurate and precise, i.e., to ensure that

it classifies correctly sequences of observations or, in our case, that it detects vulnerabili-

ties correctly. Accuracy measures the total of slices well-classified as vulnerable and non-

vulnerable, whereas precision measures the fraction of vulnerabilities identified that are re-

ally vulnerabilities. The objective is high accuracy and precision or, equivalently, minimum

118

5.4 Implementation and Assessment

rates of false positives (inexistent vulnerabilities classified as vulnerabilities) and false neg-

atives (vulnerabilities not classified as vulnerabilities). The model is configured with the

corpus, so its accuracy and precision depend strongly on that corpus containing correct and

enough information.

We created a corpus with 510 slices: 414 vulnerable and 96 non-vulnerable. These slices

were extracted from several open source PHP applications1 and contained vulnerabilities

from the eight classes presented in Section 2.1 (SQLI, XSS, RFI, LFI, DT/PT, SCD, OSCI

and PHPCI). The knowledge extracted from this corpus is shown in Figure 5.6, representing

the parameters of the model.

[
0.062 0.323 0.062 0.015 0.538

]
(a) initial-state probabilities.


0.619 0.099 0.174 0.059 0.333
0.115 0.641 0.304 0.353 0.373
0.027 0.028 0.435 0.059 0.020
0.009 0.033 0.043 0.471 0.020
0.009 0.006 0.043 0.059 0.255


(b) transition probabilities.



0.085 0.015 0.103 0.030 0.075
0.016 0.294 0.051 0.212 0.075
0.326 0.010 0.154 0.030 0.075
0.008 0.005 0.256 0.030 0.015
0.008 0.051 0.026 0.030 0.015
0.380 0.406 0.026 0.030 0.015
0.008 0.005 0.026 0.091 0.015
0.008 0.005 0.026 0.091 0.015
0.008 0.005 0.026 0.061 0.015
0.008 0.005 0.026 0.061 0.015
0.008 0.076 0.026 0.030 0.015
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.060
0.008 0.005 0.026 0.030 0.134
0.008 0.005 0.026 0.030 0.104
0.008 0.005 0.026 0.030 0.134
0.008 0.061 0.026 0.030 0.015
0.070 0.020 0.026 0.030 0.015
0.008 0.005 0.026 0.030 0.015
0.270 0.208 0.056 0.061 0.015


(c) global emission probabilities.

Figure 5.6: Parameters of the model extracted from the corpus. The columns represent the
5 states in the order that appears in the first column of Table 5.2. The lines of matrix (c) are
the tokens in the order appearing in the first column of Table 5.1

1bayar, bayaran, ButterFly, CurrentCost, DVWA 1.0.7, emoncms, glfusion-1.3.0, hotelmis, Measureit 1.14,
Mfm-0.13, mongodb-master, Multilidae 2.3.5, openkb.0.0.2, Participants-database-1.5.4.8, phpbttrkplus-2.2,
SAMATE, superlinks, vicnum15, ZiPEC 0.32, Wordpress 3.9.1.

119

5. LEARNING TO DETECT VULNERABILITIES

To evaluate the accuracy and precision of the model configured with this corpus, we did

10-fold cross validation (Demšar, 2006), a common technique to validate training data. This

form of validation involves dividing the training data (the corpus of 510 slices) in 10 folds.

Then, the tool is trained with a pseudo-corpus of 9 of the folds and tested with the 10th fold.

This process is repeated 10 times to test every fold with the model trained with the rest. This

estimator allows assessing the quality of the corpus without the bias of testing data used for

training or just a subset of the data.

Observed
Vulnerable Not Vulnerable

Predicted Vulnerable 412 16
Not Vulnerable 2 80

Table 5.3: Confusion matrix of the model tested with the corpus. Observed is the reality (414
vulnerable slices, 96 not vulnerable). Predicted is the output of DEKANT with our corpus
(428 vulnerable, 82 not vulnerable).

The confusion matrix of Table 5.3 presents the results of this estimator. The precision

and accuracy of the model were around 96%. The rate of false positives was 17% and the

rate of false negatives almost null (0.5%). There is a tradeoff between these two rates and

it is better to have a very low rate of false negatives that leads to some false positives (non-

vulnerabilities flagged as vulnerabilities) than the contrary (missing vulnerabilities). These

results show that the model has good performance using this corpus.

5.5 Experimental Evaluation

The objective of the experimental evaluation was to answer the following questions using

DEKANT and the corpus presented in the previous section:

1. Is a tool that learns to detect vulnerabilities able to detect vulnerabilities in plugins

and real web applications? (Section 5.5.1)

2. Can it be more accurate and precise than other tools that do data mining using standard

classifiers? (Section 5.5.2)

3. Can it be more accurate and precise than other tools that do data mining using standard

classifiers? (Section 5.5.3)

120

5.5 Experimental Evaluation

4. Is it able to classify correctly vulnerabilities independently of their class? (Section

5.5.1) Is it able to classify correctly vulnerabilities independently of their class? (Sec-

tion 5.5.1)

5.5.1 Open source software evaluation

To demonstrate the ability of DEKANT to classify vulnerabilities, we run it with 10 Word-

Press plugins (WordPress, 2015) and 10 packages of real web applications, all written in

PHP, using the corpus of the previous section. The code used in the evaluation was not the

same used to build the corpus.

Zero-day vulnerabilities in plugins
WordPress is the most adopted CMS worldwide and supports plugins developed by dif-

ferent teams. Plugins are interesting because they are often less scrutinized than full appli-

cations. We selected 10 plugins based on two criteria: development team and number of

downloads. For the former, we choose 5 plugins developed by companies and the other 5 by

individual developers. For the second, we choose 5 with less than 1000 downloads and the

other 5 with more than 21,000 downloads. The plugins with less downloads were not always

those developed by individual developers.

WordPress has a set of functions that sanitize and validate different data types, which are

used by some of the plugins. Therefore, to run DEKANT with the source code of the plugins

but without the WordPress code base, we added the information about those functions to the

tool. Notice that the entry points and sensitive sinks remain mostly the same, except for sinks

that handle SQL commands ($wpdb class). We configured DEKANT with these functions,

mapping them to the ISL tokens. Recall that ISL abstracts the PHP instructions, so it can

capture behaviors such as sanitization and validation even for the functions that were added.

DEKANT discovered 16 new vulnerabilities as shown in Table 5.4. 80 slices were ex-

tracted and translated into ISL. The tool classified 24 slices as vulnerable and 56 as not

vulnerable (N-Vul), but 8 of the vulnerable were false positives (FP). This classification was

confirmed by us manually. The 16 real vulnerabilities detected (columns 3-5) were 6 SQLI,

8 XSS, and 2 DT/LFI. These vulnerabilities were reported to the developers, who confirmed

and fixed them, releasing new versions. The plugins appointment-booking-calendar 1.1.7,

121

5. LEARNING TO DETECT VULNERABILITIES

easy2map 1.2.9, payment-form-for-paypal-pro 1.0.1, resads 1.0.1 and simple-support-ticket-

system 1.2 were fixed thanks to this work. We registered the vulnerabilities in CVE with the
IDs shown in the table.

Plugin Slices Real vulnerabilities N-Vul FPSQLI XSS DT & LFI

appointment-booking-calendar 1.1.7* 12 1 3 – 6 2
CVE-2015-7319, CVE-2015-7320

calculated-fields-form 1.0.60 3 – – – 2 1
contact-form-generator 2.0.1 5 – – – 4 1

easy2map 1.2.9* 6 – 1 2 3 0
CVE-2015-7668, CVE-2015-7669

event-calendar-wp 1.0.0 6 – – – 6 0

payment-form-for-paypal-pro 1.0.1* 11 – 2 – 8 1
CVE-2015-7666

resads 1.0.1* 2 – 2 – 0 0
CVE-2015-7667

simple-support-ticket-system 1.2* 20 5 – – 15 0
CVE-2015-7670

wordfence 6.0.17 6 – – – 6 0
wp-widget-master 1.2 9 – – – 6 3
Total 80 6 8 2 56 8
*confirmed and fixed by the developers and registered in CVE

Table 5.4: Vulnerabilities found by DEKANT in WordPress plugins.

The 16 zero-day vulnerabilities were found in 5 plugins: 2 developed by companies and
3 by individual developers; plus 2 having more than 21,000 downloads. These results show
that, independently of the development teams and the number of downloads, the WordPress
plugins are vulnerable and may contain more vulnerabilities than other web applications, as
recent research suggests (Nunes et al., 2015).

Real web applications
To demonstrate the ability of DEKANT to classify vulnerabilities from the 8 classes of

Section 2.1, we run it with 10 open source software packages with vulnerabilities disclosed
in the past. These packages were not used to build the corpus.

DEKANT classified 310 slices of the 10 applications. The results are in Table 5.5,
columns 10-13. After this process we confirmed this classification manually in order to
assess the results of DEKANT and the other tools (columns 2-5; Vul stands for vulnera-
ble, San for sanitized, and VC for validated and/or changed). The 4 right-hand columns of

122

5.5 Experimental Evaluation

Web application Slices WAP DEKANT
Vul San VC Total Vul FPP FP FN Vul N-Vul FP FN

cacti-0.8.8b 2 0 8 10 2 2 6 0 2 6 2 0
communityEdition 16 36 8 60 16 6 2 0 16 44 0 0
epesi-1.6.0-20140710 25 1 8 34 25 6 2 0 25 5 4 0
NeoBill0.9-alpha 19 0 0 19 19 0 0 0 19 0 0 0
phpMyAdmin-4.2.6-en 1 6 7 14 1 0 7 0 1 13 0 0
refbase-0.9.6 5 4 3 12 5 0 3 0 5 1 6 0
Schoolmate-1.5.4 120 0 0 120 117 0 0 3 120 0 0 0
VideosTube 1 0 2 3 1 1 1 0 1 2 0 0
Webchess 1.0 20 0 0 20 18 0 0 2 20 0 0 0
Zero-CMS.1.0 2 5 11 18 2 5 6 0 2 16 0 0
Total 211 52 47 310 206 20 27 5 211 87 12 0

Table 5.5: Results of running the slice extractor, WAP and DEKANT in open source soft-
ware.

the table show that DEKANT correctly classified 211 slices as being vulnerable (Vul) and
the remaining as not-vulnerable (N-Vul), except 12 wrongly classified as vulnerable (false
positives – FP). This misclassification is justified by the presence of validation and string
modification functions (e.g., preg_match and preg_replace) with context-sensitive states. In
such cases we set DEKANT to classify the slices as vulnerable but printing a warning on
a possible false positive. Table 5.6 shows the confusion matrix summarizing these values.
Overall, DEKANT had accuracy and precision of 96% and 95%, 12% of false positives, and
no false negatives.

Observed
DEKANT WAP Original Analyzed

Predicted Vul N-Vul Vul N-Vul Vul N-Vul Vul N-Vul
Vul 211 12 206 27 182 36 50 218

N-Vul 0 87 5 72 86 821 109 748

Table 5.6: Confusion matrix of DEKANT, WAP and C4.5/J48 in PhpMinerII data set (origi-
nal and analyzed).

Table 5.7 summarizes the results and presents additional metrics. For the 10 packages,
more than 4,200 files and 1,525,865 lines of code were analyzed and 223 vulnerabilities
found (12 false positives). The largest packages were epesi and phpMyAdmin (741 and 241
thousand lines of code).

Table 5.8 presents the 223 slices classified by DEKANT as vulnerable (12 false positives)
distributed by the 6 classes of vulnerabilities. Interestingly, all false positives were PHPCI

123

5. LEARNING TO DETECT VULNERABILITIES

Web application Files Lines of Analysis Vuln. Vulner.
code time (s) files found

cacti-0.8.8b 249 95,274 7 7 4
communityEdition 228 217,195 21 11 16
epesi-1.6.0-20140710 2246 741,440 90 13 29
NeoBill0.9-alpha 620 100,139 5 5 19
phpMyAdmin-4.2.6-en 538 241,505 12 1 1
refbase-0.9.6 171 109,600 8 5 11
Schoolmate-1.5.4 64 8,411 2 41 120
VideosTube 39 3,458 2 1 1
Webchess 1.0 37 7,704 2 5 20
Zero-CMS.1.0 21 1,139 2 2 2
Total 4,213 1,525,865 151 91 223

Table 5.7: Summary of results of DEKANT with open source code.

and XSS vulnerabilities. The tool correctly classified the sanitized slices as not vulnerable.

The vulnerabilities correctly classified by DEKANT correspond to 21 entries of vulnerabil-

ities that appear in CVE (CVE, 2015) and OSVDB (OSVDB, 2015), as shows the Table

5.9.

Web application SQLI RFI, LFI PHPCI XSS TotalDT/PT
cacti-0.8.8b 0 0 2 2 4
communityEdition 4 4 3 5 16
epesi-1.6.0-20140710 0 3 4 22 29
NeoBill0.9-alpha 0 2 0 17 19
phpMyAdmin-4.2.6-en 0 0 0 1 1
refbase-0.9.6 0 0 0 11 11
Schoolmate-1.5.4 69 0 0 51 120
VideosTube 0 0 0 1 1
Webchess 1.0 6 0 0 14 20
Zero-CMS.1.0 1 0 0 1 2
Total 80 9 9 125 223

Table 5.8: Results of the classification of DEKANT considering different classes of vulner-
abilities extracted by the slice extractor.

5.5.2 Comparison with data mining tools

To answer the second question, DEKANT was compared with WAP (version 2.1 presented

in Section 3) and PHPMinerII with the 10 packages of the previous section. We opted by

124

5.5 Experimental Evaluation

Web application Vulnerability
cacti-0.8.8b XSS: CVE-2014-5026, CVE-2014-4082
communityEdition LFI: CVE-2014-8770

SQLI: CVE-2013-4580
XSS: CVE-2014-2016, CVE-2013-5913
PHPCI: CVE-2014-2988

epesi-1.6.0-20140710 XSS: OSVDB-103888
NeoBill0.9-alpha XSS: OSVDB-86204

DT, LFI: OSVDB-100669, OSVDB-100670
phpMyAdmin-4.2.6-en XSS: CVE-2014-4955
refbase-0.9.6 XSS: OSVDB-44977, OSVDB-58139, CVE-2008-6400
Schoolmate-1.5.4 XSS: CVE-2010-5010

SQLI: CVE-2010-5011
VideosTube XSS: OSVDB-114753
Webchess 1.0 SQLI, XSS: Bugtraq 43895
Zero-CMS.1.0 XSS: CVE-2014-4195

SQLI: CVE-2014-4034

Table 5.9: Registered vulnerabilities detected by DEKANT.

evaluating these tools with those packages and not with the plugins, because they are not

configurable for the plugins. When run with the plugins these tools provide much worse

results than DEKANT.

Both tools also classify slices previously extracted, but using data mining based on stan-

dard classifiers, which do not consider order. WAP performs taint analysis to extract the

slices that start in an entry point and reach a sensitive sink, with attention to sanitization,

then uses data mining to predict if they are false positives or real vulnerabilities. The tool

deals with the same vulnerability classes as DEKANT. PhpMinerII uses data mining to clas-

sify slices as being vulnerable or not, without considering false positives. This tool handles

only SQLI and reflected XSS vulnerabilities.

Comparison for all vulnerability classes
Columns 6 to 9 of Table 5.5 present WAP’s results for the 8 vulnerability classes. WAP

reported 206 vulnerabilities (Vul), 20 false positives predicted (FPP), with 27 false positives

and 5 false negatives (vulnerabilities not detected). WAP identified the same 258 slices

without sanitization (columns 2 and 4 from Table 5.5) than the slice extractor and detected

the same 206 vulnerabilities than DEKANT (5 less than DEKANT, false negatives, FN).

Moreover and as expected, from the 47 slices classified as not vulnerable by DEKANT,

125

5. LEARNING TO DETECT VULNERABILITIES

WAP predicted correctly 20 of them as false positives (FPP), meaning that 27 slices were
wrongly classified as vulnerabilities (FP), reporting 27 false positives.

This difference of false positives is justified by: (1) the presence of symptoms in the slice
which are not contemplated by WAP as attributes in its data set; (2) lack of verification of
the relations between attributes, once the data mining mechanism only verifies the presence
of the attributes in the slice, does not relates them. The false negatives are justified by reason
(2) plus the importance of the order of the code elements in the slice. The misclassification
was based in the concatenation of variables tainted with not-tainted (variables validated or
modified), in that order; then data mining matches the presence of symptoms related with
validation and classified the slices as false positives. In these 5 slices is evident the impor-
tance of the order of code elements for a correct classification and detection. DEKANT
implements a sequence model that takes into account that order, prevailing in these cases.

Columns 4 and 5 of Table 5.6 present the confusion matrix with these values. WAP had
an accuracy of 90%, a precision of 88%, 2% of false negatives and 27% of false positives
(Table 5.11, third column).

Comparison for SQLI and reflected XSS
For a fair comparison with PHPMinerII, only SQLI and reflected XSS vulnerabilities

classes considered. Table 5.10 shows the results; columns 2 to 4 are the 158 vulnerabilities
classified by DEKANT (80 SQLI, 78 XSS) and 6 false positives. The next four columns are
about WAP, with the 153 vulnerabilities (77 SQLI, 76 XSS), but with 21 false positives and
5 false negatives. The next 12 columns present the PHPMinerII results.

Web application DEKANT WAP PhpMinerII - SQLI PhpMinerII - XSS Pixy
SQLI XSS FP SQLI XSS FP FN Yes No Y - Y Y - N FP FN Yes No Y - Y Y - N FP FN SQLI XSS FP FN

cacti-0.8.8b 0 2 0 0 2 6 0 0 0 0 0 0 0 6 11 2 0 4 0 0 6 4 0
communityEdition 4 5 0 4 5 0 0 5 0 0 0 5 4 43 521 0 0 43 5 5 8 13 9
epesi-1.6.0-20140710 0 18 0 0 18 0 0 0 0 0 0 0 0 1 1 1 0 0 16 0 1 0 17
NeoBill0.9-alpha 0 17 0 0 17 0 0 0 0 0 0 0 0 20 3 17 0 3 0 0 20 3 0
phpMyAdmin-4.2.6-en 0 1 0 0 1 6 0 0 0 0 0 0 0 24 74 0 0 24 1 – 25 24 0
refbase-0.9.6 0 5 6 0 5 3 0 3 0 0 0 3 0 82 115 0 1 82 5 3 93 96 5
Schoolmate-1.5.4 69 14 0 66 14 0 3 41 11 11 0 30 58 2 0 2 0 0 12 303 113 339 6
VideosTube 0 1 0 0 1 0 0 10 19 0 0 10 0 2 28 1 0 1 0 12 2 13 0
Webchess 1.0 6 14 0 6 12 0 2 1 0 1 0 0 5 13 7 13 0 0 1 92 206 279 1
Zero-CMS.1.0 1 1 0 1 1 6 0 6 2 1 1 5 0 9 65 1 0 8 0 6 7 11 0
Total 80 78 6 77 76 21 5 66 32 13 1 53 67 202 825 37 1 165 40 421 481 782 38

Table 5.10: Comparison of results between DEKANT, WAP, PHPMinerII and Pixy with
open source projects.

PhpMinerII does not come trained, so we had to create a data set to train it. For that
purpose, PhpMinerII extracts slices that end in a sensitive sink, but that do not have to start

126

5.5 Experimental Evaluation

in an entry point. It outputs the slices, the vector of attributes of each slice, and a preliminary

classification as vulnerable or not. Then a classification has to be assigned to each attribute

vector manually. This data set is used to train the data mining part of the tool. We present

experimental results of the tool running it both without and with data mining. Table 5.10

shows the analysis without data mining and the intersection of both sets of slices for SQLI

and XSS with the DEKANT slices. For these two classes, columns 9, 10, 15 and 16 (Yes,

No) show the number of slices classified by the tool, columns 11 and 17 (Y - Y) show

the intersection (the number of vulnerabilities detected by both tools), whereas columns

12 and 18 (Y - N) depict the number of vulnerabilities that DEKANT classified correctly

but PHPMinerII did not report. We observe that from the SQLI vulnerabilities detected by

DEKANT, PHPMinerII only detected correctly approximately 16%, presenting high rates of

false negatives and false positives. For XSS, PHPMiner II presents again an elevated rate of

false negatives and false positives, besides a small number of true positives compared with

the number of vulnerabilities detected by DEKANT.

To perform the data mining process the WEKA tool was used (Witten et al., 2011)

with the same classifiers as PhpMinerII (Shar & Tan, 2012b,c). The best classifier was

the C4.5/J48. Columns 6 to 9 of Table 5.6 show the results of this classifier. The first two

columns of these four are relative to the slices flagged by the tool without data mining, while

the last two columns are relative to the data mining process presented above. The accuracy

and precision are equal to 71% and 19%, and the false positives and negatives rates are 23%

and 69%, justifying the very low precision rate.

Metric DEKANT WAP PhpMinerII Pixyoriginal analyzed
acurracy 96% 90% 89% 71% 21%
precision 95% 88% 83% 19% 16%
false positive 12% 27% 4% 23% 84%
false negative 0% 2% 32% 69% 23%

Table 5.11: Evaluation metrics of DEKANT, WAP, PhpMinerII, Pixy.

Table 5.11 summarizes the comparison between DEKANT, WAP and PhpMinerII. DE-

KANT was the best of all. WAP was the second, also with low false negatives but high false

positives. Despite PhpMinerII presenting the lowest false positive rate, it had the highest rate

of false negatives and lower accuracy and precision rates, making it the weakest tool (false

negatives are specially problematic as they represent vulnerabilities that were not found).

127

5. LEARNING TO DETECT VULNERABILITIES

5.5.3 Comparison with taint analysis tools

We compare DEKANT with Pixy (Jovanovic et al., 2006), a tool that performs taint analysis

to detect SQLI and reflected XSS vulnerabilities, taking sanitization functions in considera-

tion. The last four columns of Table 5.10 are related to the analysis made with Pixy. Despite

Pixy reporting 902 vulnerabilities in 10 packages, they are mostly false positives. Those

vulnerabilities were 421 SQLI and 481 XSS (first two columns of the last 4). The same

process of the previous section was executed over the results of Pixy. In summary, only 120

vulnerabilities are the same as for DEKANT, while the rest are false positives and some false

negatives (last 2 columns).

5.6 Discussion

DEKANT is a static analysis tool because it searches for vulnerabilities in source code,

without execution. DEKANT has two main parts: one programmed, another learned. The

former corresponds to the slice extractor that does part of what other static analysis tools

do: parses the code and extracts slices. The latter uses the sequence model we propose,

configured with knowledge extracted from the corpus.

In classic static analysis tools this knowledge was programmed, involving several data

structures and variables representing and relating the code elements that create and avoid

vulnerabilities. Programming this knowledge is a hard, complex task, for the programmers,

who may leave errors that lead to false positives and false negatives (Dahse & Holz, 2015).

Taking this difficulty into account, machine learning started to be used to reduce the effort

required to programming static analysis tools. Table 5.11 compares the results of WAP and

PHPMinerII (both use machine learning) with Pixy (an older tool that does not use it). In

that table it is possible to see that tools based on machine learning can provide good results.

The application of data mining requires a definition of a data set with the knowledge about

vulnerabilities, making it a crucial part of the process for correct detection.

WAP does taint analysis and alias analysis for detecting vulnerabilities, although it goes

further by also correcting the code. Furthermore, Pixy does only module-level analysis,

whereas WAP does global analysis (i.e., the analysis is not limited to a module or file, but can

involve several). We propose an alternative approach that does not involve coding knowledge

about vulnerabilities, instead based on training a model through annotated code samples.

128

5.7 Conclusions

The slices extracted from the source code, i.e excerpts of code that begin in a entry points

ans end in a sensitive sink, are processed by DEKANT mechanism to discover if they are

vulnerabilities or not.

Our work also aims to identify the location of vulnerabilities in source code, contrarily to

other works that assess the quality of the software in terms of the prevalence of defects (Ar-

isholm et al., 2010; Briand et al., 2000; Lessmann et al., 2008) and vulnerabilities (Neuhaus

et al., 2007; Perl et al., 2015; Shar & Tan, 2012b,c; Shin et al., 2011; Walden et al., 2009)

(details about these works in Section 2.3). WAP is quite different because it has to iden-

tify the location of vulnerabilities in the source code, so that it can correct them with fixes.

Moreover, WAP does not use data mining to identify vulnerabilities, but to predict whether

the vulnerabilities found by taint analysis are really vulnerabilities or false positives.

This chapter presents the first static analysis approach and tool that learns to detect vul-

nerabilities automatically using machine learning (WAP has most knowledge programmed

and PHPMinerII does not identify vulnerabilities, only predicts if they exist). Furthermore,

we go one step further by using for the first time in this context a sequence model instead

of standard classifiers. This model not only considers the code elements that appear in the

slices, but also their order and relations between them. Again, similarly to what happens with

standard classifiers, the definition of the corpus for the sequence model is crucial. Table 5.11

compares the results of DEKANT with WAP and PHPMinerII, showing that this approach

indeed improves the results.

5.7 Conclusions

The chapter explores a new approach to detect web application vulnerabilities inspired in

NLP in which static analysis tools learn to detect vulnerabilities automatically using machine

learning. Whereas in classical static analysis tools it is necessary to code knowledge about

how each vulnerability is detected, our approach obtains knowledge about vulnerabilities

automatically. The approach uses a sequence model (HMM) that, first, learns to characterize

vulnerabilities from a corpus composed of sequences of observations annotated as vulnerable

or not, then processes new sequences of observations based on this knowledge, taking into

consideration the order in which the observations appear. The model can be used as a static

analysis tool to discover vulnerabilities in source code and identify their location.

129

5. LEARNING TO DETECT VULNERABILITIES

Future developments may consider the usage of other types of sequence classification
models (e.g., discriminative approaches such as Conditional Random Fields or Structured-
SVMs, or even recently proposed methods based on deep neural network architectures),
which often had lead to better results in the context of NLP tasks, and which also facilitate
the inclusion of additional contextual features.

The DEKANT tool implements the proposed approach. It was experimented with 10
packages of open source PHP applications and 10 WordPress plugins. 16 zero-day vulnera-
bilities were found in the analyzed plugins. They were confirmed and fixed by the developers
and registered in CVE by us. These plugins were fixed due to this work. This evaluation
suggests that the tool can detect vulnerabilities from several classes, having an accuracy of
around 96% and performing better that other tools in the literature.

130

6
Preventing Injection Attacks inside the

DBMS

After more than a decade of research, web application security continues to be a challenge

and the backend database the most appetizing target. For example, SQL injection (SQLI)

attacks have allegedly victimized 12 million Drupal sites (BBC Technology, 2014); SQLI at-

tacks were considered an important threat against critical infrastructures (ICS-CERT, 2015);

and stored cross-site scripting (XSS) attacks were used to inject malicious code in servers

running Wordpress (Search Security TechTarget, 2015).

The mechanisms most commonly used to protect web applications from malicious in-

puts are web application firewalls (WAFs), sanitization/validation functions, and prepared

statements in the application source code. The first two mechanisms, respectively, inspect

web application inputs and block and sanitize those that are considered malicious/dangerous,

whereas the third bounds inputs to placeholders in the query. Other anti-SQLI mechanisms

have been presented in the literature, but barely adopted. Some of these mechanisms mon-

itor SQL queries and block them if they deviate from certain query models. However, they

can make mistakes because the queries are inspected without full knowledge about how

the server-side scripting language and the DBMS process them (Boyd & Keromytis, 2004;

Buehrer et al., 2005; Halfond & Orso, 2005; Masri & Sleiman, 2015; Su & Wassermann,

2006).

In all these cases, administrators and programmers make assumptions about how the

server-side language and the DBMS work and interact, which sometimes are simplistic,

131

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

others blatantly wrong. For example, programmers often assume that in PHP the func-

tion mysql_real_escape_string always effectively sanitizes inputs and prevents SQLI

attacks but unfortunately this is not true. In addition, they may ignore that data may be

unsanitized when inserted in the DBMS leading to second-order SQLI vulnerabilities.

We argue that such simplistic or wrong assumptions are caused by a semantic mismatch

between how an SQL query is expected to run and what actually occurs when it is executed.

This mismatch leads to unexpected vulnerabilities in the sense that mechanisms such as those

mentioned above can become ineffective, resulting in false negatives (attacks not detected).

To avoid this problem, these attacks could be handled after the server-side code processes

the inputs and the DBMS validates the queries, reducing the amount of assumptions that are

made. The mismatch and this solution are not restricted to web applications.

Today operating systems are much more secure than years ago due to the deployment

of automatic protection mechanisms in themselves, in core libraries (e.g., .NET and glibc),

and in compilers. For example, address space layout randomization (ASLR), data execu-

tion prevention (DEP), or canaries/stack cookies are widely deployed in Windows and Linux

(Howard & LeBlanc, 2007; Koschany, 2013). These mechanisms block a large range of

attacks irrespectively of the programmer following secure programming practices or not.

Clearly, something similar would be desirable for web applications. The DBMS is an inter-

esting location to add these protections as it is a common target for attacks.

We propose modifying – “hacking” – DBMSs to detect and block attacks in runtime

without programmer intervention. We call this approach SElf-Protecting daTabases prevent-

Ing attaCks (SEPTIC). This chapter, focus on the two main categories of attacks related

with databases: SQL injection attacks, which continue to be among those with highest risk

(Williams & Wichers, 2013) and for which new variants continue to appear (Ray & Ligatti,

2012), and stored injection attacks, which also involve SQL queries. For SQLI, we propose

detecting attacks essentially by comparing queries with query models, taking to its full po-

tential an idea that has been previously used only outside of the DBMS (Boyd & Keromytis,

2004; Buehrer et al., 2005; Halfond & Orso, 2005; Su & Wassermann, 2006) and circum-

venting the semantic mismatch problem. For stored injection, we propose having plugins to

deal with specific attacks before data is inserted in the database.

We demonstrate the concept with a popular deployment scenario: MySQL, probably the

most popular open-source DBMS (DB-Engines, 2015), and PHP, the language most used in

132

6.1 DBMS Injection Attacks

web applications (more than 82%) (Imperva, 2015). We also explore Java/Spring, the second

most employed programming language.

The chapter is organized as follows. Section 6.1 presents the injection attacks we con-

sider in the chapter. In Section 6.2 the SEPTIC approach is presented, starting by an overview,

then detailing the components that compose the SEPTIC mechanism and how it is trained to

detect injection attacks. Section 6.3 describes the implementation of SEPTIC in the MySQL

DBMS and the interaction with the PHP Zend and Spring/Java engines to collect query iden-

tifiers. Section 6.4 presents an evaluation of the performance overhead of SEPTIC. Next,

Section 6.5 presents how the mechanism can be extended to other DBMSs and used to

identify vulnerabilities and protect non-web applications. Finally, the chapter ends with a

discussion of the related work and conclusions in Section 6.6.

6.1 DBMS Injection Attacks

We define semantic mismatch as the difference between how programmers assume SQL

queries are run by the DBMS and how queries are effectively executed. This mismatch

often leads to mistakes in the implementation of protections in the source code of web ap-

plications, letting these applications vulnerable to SQL injection and other attacks involv-

ing the DBMS. The semantic mismatch is subjective in the sense that it depends on the

programmer, but some mistakes are usual. A common way to try to prevent SQLI con-

sists in sanitizing user inputs before they are used in SQL queries. For instance, PHP

mysql_real_escape_string precedes special characters like the prime or the double

prime with a backslash, transforming these delimiters into normal characters. However, san-

itization functions do not behave as envisioned when the special characters are represented

differently from expected. This problem has lead us to use the term semantic mismatch to

refer to the gap between how the SQL queries that take these sanitized inputs are believed to

be executed by the programmer, and how they are actually processed by the DBMS.

We identified several DBMS injection attacks in the literature, including a variety of

cases related to semantic mismatch (Clarke, 2009; Douglen, 2007; Dowd et al., 2006; Ray

& Ligatti, 2012; Son et al., 2013). Table 6.1 organizes these attacks in classes. The first

133

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

three columns identify the classes, whereas the fourth and fifth state what PHP sanitization
functions and the DBMS do to the example malicious inputs in the sixth column.

Class Class name PHP sanit. func. DBMS Example malicious input

SQ
L

in
je

ct
io

n

A Obfuscation
A.1 - Encoded characters do nothing decodes and executes %27, 0x027
A.2 - Unicode characters do nothing translates and executes U+0027, U+02BC
A.3 - Dynamic SQL do nothing completes and executes char(39)
A.4 - Space character evasion do nothing removes and executes char(39)/**/OR/**/1=1--
A.5 - Numeric fields do nothing interprets and executes 0 OR 1=1--

B Stored procedures sanitize executes admin’ OR 1=1
C Blind SQLI sanitize executes admin’ OR 1=1

St
or

ed
in

j. D Stored injection code
D.1 - Second order SQLI – executes any of the above
D.2 - Stored XSS – – <script>alert(’XSS’)</script>
D.3 - Stored RCI, RFI, LFI – – malicious.php
D.4 - Stored OSCI – – ; cat /etc/passwd

S.1 Syntax structure sanitize executes admin’ OR 1=1
S.2 Syntax mimicry sanitize executes admin’ AND 1=1--

RCI: Remote Code Injection; RFI:Remote File Inclusion; LFI: Local File Inclusion; OSCI: OS Command Injection

Table 6.1: Classes of attacks against DBMSs

As mentioned in the introduction, we consider two main classes of attacks: SQL injection

and stored injection (first column). These classes are divided in sub-classes for common
designations of attacks targeted at DBMSs (A to D). Obfuscation attacks (class A) are the
most obvious cases of semantic mismatch. Classes S.1 and S.2 classify attacks in terms of
the way they affect the syntactic structure of the SQL query. Class S.1 is composed of attacks
that modify this structure. Class S.2 is composed of attacks that modify the query but mimic
its original structure.

1 $u = mysql_real_escape_string($_POST[’username’]);

2 $p = mysql_real_escape_string($_POST[’password’]);

3 $query = "SELECT * FROM users WHERE username=’$u’ AND password=’$p’";

4 $result = mysql_query($query);

Listing 6.1: Script vulnerable to SQLI with encoded characters.

Class A, obfuscation, contains five subclasses. Consider the code excerpt in Listing 6.1
that shows a login script that checks if the credentials the user provides (username, password)
exist in the database.1 The user inputs are sanitized by the mysql_real_escape_string
function (lines 1-2) before they are inserted in the query (line 3) and submitted to the DBMS
(line 4). If an attacker injects the admin’-- string as username (line 1), the $user variable

1 All examples included in the chapter were tested with Apache 2.2.15, PHP 5.5.9 and MySQL 5.7.4

134

6.1 DBMS Injection Attacks

receives this string sanitized, with the prime character preceded by a backslash. The user

admin\’-- does not exist in the database so this SQLI attack is not successful.

On the contrary, this sanitization is ineffective if the input uses URL encoding (Berners-

Lee et al., 2005), leading to an attack of class A.1. Suppose the attacker inserts the same user-

name URL-encoded: %61%64%6D%69%6E%27%2D%2D%20. mysql_real_escape_string

function does not sanitize the input because it does not recognize %27 as a prime. How-

ever, MySQL receives that string as part of a query and decodes it, so the query executed is

SELECT * FROM users WHERE username=’admin’-- ’ AND password=’foo’.

The attack is therefore effective because this query is equivalent to SELECT * FROM users

WHERE username=’admin’ (no password has to be provided as - - indicates that the ret of

the code in the line should be ignored). This is also an attack of class S.1 as the structure of

the query is modified (the part that checks the password disappears). The other subclasses

of class A involve similar techniques. In class A.2 the attacker encodes some characters in

Unicode, e.g., the prime as U+02BC. In A.3 decoding involves calling dynamically a func-

tion (e.g., the prime is encoded as char(39)). Class A.4 attacks use spaces and equivalent

strings to manipulate queries (e.g., concealing a space with a comment like /**/) (Clarke,

2009). A.5 attacks abuse the fact that numeric fields do not require values to be enclosed

with primes, so a tautology similar to the example we gave for A.1 can be caused without

these characters, fooling sanitization functions like mysql_real_escape_string.

Stored procedures that take user inputs may be exploited similarly to queries constructed

in the application code (class B). These inputs may modify or mimic the syntactic structure

of the query, leading to attacks of classes S.1 or S.2.

Blind SQLI attacks (class C) aim to extract information from the database by observing

how the application responds to different inputs. These attacks may also fall in classes S.1

or S.2.

Class D attacks – stored injection – are characterized by being executed in two steps:

the first involves doing an SQL query that inserts attacker data in the database (INSERT,

UPDATE); the second uses this data to complete the attack. The specific attack depends on

the data inserted in the database and how it is used in the second step. In a second order SQLI

attack (class D.1) the data inserted is a string specially crafted to be inserted in a second SQL

query executed in the second step. This second query is the attack itself, which may fall in

classes S.1 or S.2. This is another case of semantic mismatch as the sanitization created by

functions like mysql_real_escape_string is removed by the DBMS when the string is

135

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

inserted in the database (first step of the attack). A stored XSS (class D.2) involves inserting

a browser script (typically JavaScript) in the database in the first step, then returning it to

one or more users in the second step. In class D.3 the data inserted in the database can be

a malicious PHP script or an URL of a website containing such a script, resulting on local

or remote file inclusion, or on remote code injection. In class D.4 attacks the data that is

inserted is an operating system command, which is executed in the second step.

6.2 The SEPTIC Approach

This section presents the SEPTIC approach. The idea consists in having a module inside the

DBMS that processes every query it receives in order to detect attacks against the DBMS.

We designate both the approach and this module by SEPTIC. This approach circumvents the

semantic mismatch problem as detection is performed near the end of the data flow entering

the DBMS, just before is executed the query.

6.2.1 SEPTIC overview

This section presents an overview of the approach. Figure 6.1(a) represents the architecture

of a web application, including the DBMS and SEPTIC. This module is placed inside the

DBMS, after the parsing and validation of the queries. There may be also hooks inside the

server-side language engine (Section 6.2.3).

In runtime SEPTIC works basically the following way:

1. Server-side application code: requests the execution of a query Q;

2. Server-side language engine: receives Q and sends it to the DBMS; optionally it may

add an identifier (ID) to Q;

3. DBMS: receives, parses, validates, and executes Q; between validation and execution,

SEPTIC detects and possibly blocks an incoming attack.

Figure 6.1(b) provides more details on the operation of SEPTIC. The figure should be

read starting from the gray arrow at the top/left. Dashed arrows and dashed processes repre-

sent alternative paths.

136

6.2 The SEPTIC Approach

web
application

browser
inputs

SEPTIC

DBMS
WAF

anti-SQL
tool

DBMS

query (Q) Server-Side
Language engine

Web
application

inputs parses pre-executes executesSEPTIC

DBMS

SEPTIC

Web
application

Browser
inputs

WAF Proxy

server-side application code

query
function call

server-side language engine

DBMS

Q

create
ID

get
Q

/*ID*/ Q

query
function call

parsing

pre-execution

query models

get
/*ID*/ Q

attack
detection

drop
Q

execute Q IDentifier
Query

log of attacks

detect scripts

SEPTIC

web application
server-side

application code

inputs query (Q) server-side
language engine

parse validate executeSEPTIC

DBMS

(a) Main modules of a web application backed by a DBMS with SEPTIC.

server-side app. code

query
function call

Q

server-side lang. engine

create
ID

get
Q

Q

query
function call

ID parsed Qparse

query
models

log of
attacks

get
ID

get
QM

drop
Q

execute Q
IDentifier
Query
Query Model
Query Structure

create
QS

detect
attacks

apply
plugins

validateID Q

DBMS

SEPTIC

create
QM

generate
ID

ID

(b) SEPTIC approach data flows.

Figure 6.1: Architecture and data flows of a web application and SEPTIC (optional compo-
nents in gray).

When a web application is started, SEPTIC has to undergo some training before it enters

in normal execution. Training is typically done by putting SEPTIC in training mode and

running the application for some time without attacks (Section 6.2.5). Training results in a

set of query models (QM) stored in SEPTIC.

In normal execution, for every query SEPTIC receives, it extracts the query ID and the

query structure (QS). If no ID is provided, SEPTIC generates one (Section 6.2.3). SEPTIC

detects attacks first by comparing the query structure (QS) with the query model(s) stored

for that ID. If there is no match, an SQLI attack was detected. Otherwise, SEPTIC uses a set

of plugins to discover stored injection attacks. If no attack is detected the query is executed.

The action taken when an attack is detected depends on the mode SEPTIC is running. In

prevention mode, SEPTIC aborts the attacks, i.e., it drops the queries and the DBMS stops

the query processing. In detection mode, queries are executed, not dropped. In both modes

of operation, SEPTIC logs information about the attacks detected.

137

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

In summary, SEPTIC runs in three modes, one for training (training mode) and two for

normal operation (prevention mode and detection mode).

The following sections present the approach in detail.

6.2.2 Query structures and query models

As explained in the previous section, in prevention and detection modes SEPTIC finds out if

a query is an attack by comparing the query structure with the query model(s) associated to

the query’s ID.

We consider that SEPTIC receives the parse tree of every query represented as a list of

stacks data structure. Each stack of the list represents a clause of the query (e.g., SELECT,

FROM, WHERE), and each of its nodes contains data about the query element, such as category

(e.g., field, function, operator), data type (e.g., integer, string), and data.

The query structure (QS) of a query is constructed by creating a single stack with the

content of all the stacks in the list of stacks of a query. Figure 6.2 depicts a generic query

structure, showing from bottom to top the clauses and their elements. Each node (a row)

represents an element of the query.

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

elem_type elem_data_R

elem_type elem_data_ri

elem_type elem_data_le

WHERE empty

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

Figure 6.2: A generic query structure.

Each node is composed by the element type (category) and the element data: 〈ELEM_TYPE,

ELEM_DATA〉. The single exception is the alternative format 〈DATA_TYPE, DATA〉 that repre-

sents an input inserted in the query and its (primitive) data type (DATA_TYPE). A part of the

query is considered to be an input if its type is primitive (e.g., a string or an integer) or if it

138

6.2 The SEPTIC Approach

is compared to something in a predicate. For the clauses with conditional expressions (e.g.,

WHERE) the elements are inserted in the QS by doing post-order traversal of the parse tree of

the query (i.e., the left child is visited and inserted in the stack first, then the right child, and

so on until the root).

SELECT

FROM WHERE

users

user

=

alice pass

=

foo

AND

user

name

(a) Query parse tree

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

bottom of the stack

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM alice

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

push
top, pop

(b) Query structure

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

Τ

Τ

(c) Query model

Figure 6.3: Representation of a query as parse tree, structure (QS) and model (QM).

As mentioned in the previous section, in training mode SEPTIC creates query models.

Specifically, it creates a query model (QM) whenever the DBMS processes a query, but stores

it only if that model is not yet stored for that query ID. The query model is created based

on the query structure of the query. The process consists simply in substituting DATA by

a special value ⊥ in all 〈DATA_TYPE, DATA〉 nodes to denote that these fields shall not be

compared during attack detection (Section 6.2.4). All the other nodes are identical in QM

and QS.

Take as example the query SELECT name FROM users WHERE user=’alice’ AND

pass=’foo’. Figure 6.3 represents its (a) parse tree, (b) structure (QS), and (c) model

(QM). In Figure 6.3(b) and (c) the gray items at the bottom have data about the SELECT and

FROM clauses, whereas the rest are about the WHERE clause. In Figure 6.3(b) the inputs are

represented in bold and in Figure 6.3(c) they have the special value ⊥ as explained. In the

left-hand column, each item of the query takes a category (field, data type, condition operator,

etc), whereas the right-hand column has the query’s keywords, variables and primitive data

139

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

type. Primitive data types (real, integer, decimal and string) also take a category, such as

STRING_ITEM (e.g., in the third row).

6.2.3 Query identifiers

Each query received by the DBMS has to be verified against one or more query models.

Query identifiers (IDs) are used to match queries to their models. More specifically, each

query is assigned an ID and for each ID the training mode creates a set of one or more

models. Then, during the detection/prevention mode, the SEPTIC module matches a query

to a set of models. From the point of view of the module, IDs are opaque, i.e., their structure

is not relevant.

SEPTIC can use three kinds of IDs, depending on where they are generated: in the server-

side language engine (SSLE), in the DBMS, and outside both the SSLE and the DBMS. We

explain them below.

SSLE-generated IDs
The SSLE is arguably the best place to generate the IDs because this can let the appli-

cation administrator oblivious to the existence of IDs. Figure 6.1(b) shows how this would

work generically (SSLE in the left-hand side).

Ideally, every query issued by an application should have a unique ID (Section 6.2.4)

and the SSLE can provide this in many cases. For instance, in the example of Listing 6.1

there should be a unique ID for the query constructed in line 3 and issued in line 4. In

training mode a model with this ID would be constructed and in prevention/detection modes

any query issued there would have the same ID. This would allow queries to be compared

against the model without confusion with queries issued elsewhere in the application source

code. The SSLE can create this ID when it sees a call to function mysql_query. The ID

may contain data such as the file and line number in which the query is issued. However,

this may be not enough to distinguish the queries because many applications have a single

function that calls the DBMS with different queries. This function is called from several

places in the application, but the file and line number that calls the DBMS is always the

same.

We consider the ID format to be a sequence of file:line pairs separated by the character |,
one pair per each function entered while the query is being composed. Specifically, the first

140

6.2 The SEPTIC Approach

pair corresponds to the line where the DBMS is called and the rest to lines where the query is

passed as argument to some function. file contains the complete path to allow distinguishing

even queries from different applications using the same DBMS.

Assume that the code sample of Figure 6.1 is in file login.php. The query is cre-

ated in the same function that calls the function mysql_query, so the ID is simply lo-

gin.php:4, meaning that the DBMS is called in line 4 of file login.php. Consider a second

example in which line 4 is substituted by $result = my_db_query($query), that func-

tion my_db_query is defined in file my_db.php, and that function calls the DBMS using

mysql_query in line 10 of that file. In this example, the ID is my_db.php:10 | login.php:4.

This ID format is not guaranteed to generate unique IDs in all situations, but we observed no

cases in which it did not. In these examples we show the filename without the full pathname

for readability.

DBMS-generated IDs
Whenever the SEPTIC module in the DBMS receives a query without ID (e.g., because

the SSLE does not generate SEPTIC IDs), it generates an ID automatically (Figure 6.1(b),

gray boxes inside SEPTIC). The DBMS is unaware of what kind of client calls it (e.g., if it is

an SSLE), much less about the web application source code. Therefore this ID has a different

format. Similarly to SSLE-generated IDs, the application administrator can be oblivious to

DBMS-generated IDs.

The ID format is the SQL command (typically SELECT) followed by the number of nodes

of the query structure. For the example of Listing 6.1 that has the query structure of Figure

6.3(b) the ID would be select_9.

IDs generated outside the DBMS and the SSLE
In the previous two kinds of IDs the web application administrator is left aside from the

process of assigning IDs to queries. If for some reason these kinds of IDs are not desirable,

the administrator can define his own IDs. These IDs can have any format, e.g., a sequential

number or the same format used in SSLE-generated IDs. They can be added to the queries

in a few ways: (1) they may be appended to the query when it is defined or when the DBMS

is called; or (2) a wrapper may be inserted between the applications code and the DBMS.

141

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

6.2.4 Attack detection

This section explains how SEPTIC detects attacks by dividing the categories of Table 6.1 in
two groups that are discovered differently: SQL injection and stored injection. The former
contains the classes A to C and D.1, whereas the latter contains class D (except D.1). Class
D.1 is also a form of stored injection, but it is more convenient to detect these attacks using
the approach to discover SQLI.

SQLI detection
SEPTIC detects SQLI attacks by verifying if queries fall in classes S.1 and S.2. We say

that attack classes S.1 and S.2 are primordial for SQL injection because any SQLI attack falls
in one of these two categories. The rationale is that if an SQLI attack neither modifies the
query structure (class S.1) nor modifies the query mimicking the structure (class S.2), then it
must leave the query unmodified, but then it is not an SQL injection attack.

SEPTIC detects SQLI attacks by comparing each query with the query models for the
query’s ID structurally (for class S.1) and syntactically (for class S.2). An attack is flagged
if there are differences between the query and all the models for its ID.

Given a query Q with a certain ID and its query structure QS, detection involves iterating
over all the models QMi stored for ID. For every QMi there are two steps:

1. Structural verification – if the number of items in QS is different from the number of
items in QMi, then Q does not match the model QMi and detection for QMi ends;

2. Syntactical verification – if the data type of any of the items of QS is different from
the type of any of the items of QMi (except primitive types), then Q does not match
the model QMi and detection for QMi ends. Items are compared starting at the top
and going down the QS and QM stacks as represented in Figures 6.3(b) and (c). Prim-
itive data types (real, integer, decimal and string) are an exception because DBMSs
implicitly make type-casting between them (e.g., integer to string), so these types are
considered equivalent.

This process is iterated for all query models QMi stored for ID. If Q matches one of the
models, there is no attack; otherwise there is an attack. The action taken depends on the
mode in which SEPTIC is running: the query processing is aborted in prevention mode, and
the query is executed in detection mode.

142

6.2 The SEPTIC Approach

As mentioned in Section 6.2.3, IDs should be unique, so that a single query model QM

would be stored for each ID during training. From that point of view DBMS-generated IDs

are the worst option as they do not ensure uniqueness, except in applications with a very

small number of queries. SSLE-generated IDs tend to be unique and IDs generated outside

the DBMS and the SSLE may be created unique.

Stored injection detection
Stored injection attacks have two steps. In the first, malicious data is inserted in the

database; in the second that data is taken from the database and used. For example, for

stored XSS (D.2) the data includes a script to be executed at the victims’ browsers; in the

first step it is stored in the database; in the second step that script is taken from the database

and sent to a browser. These attacks cannot be detected in the way just explained because

they do not work by modifying queries. Therefore, we employ a different solution based on

the idea of detecting the presence of malicious data.

SEPTIC detects the presence of malicious data in queries that insert data in the database

(first step of the attacks). To do this detection, SEPTIC contains a set of plugins, typically

one for each type of attack. The plugins analyze the queries searching for code that might

be executed by browsers (JavaScript, VB Script), by an operating system (shell script, OS

commands, binary files) or by server-side scripts (php). Since running the plugins may

introduce some overhead, the mechanism is applied in two steps:

1. Filtering – searches for suspicious strings such as: <, >, href, and javacsript at-

tributes (D.2); protocol keywords (e.g., http) and extensions of executable or script

files (e.g., exe, php) (D.3); special characters (e.g., ; and |) (D.4). If none is found,

detection ends.

2. Testing – consists in passing the input to the proper plugin for inspection. For example,

if the filtering phase finds the href string, the data is provided to a plugin that detects

stored XSS attacks. This plugin inserts the input in a simple HTML page with the

three main tags (<html>, <head>, <body>), and then calls an HTML parser to

determine if other tags appear in the page indicating the presence of a script.

143

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

6.2.5 Training

As explained in Section 6.2.1, whenever an application is put to run, SEPTIC has to be

subjected to training. This is necessary for SEPTIC to create the models of the queries for

SQLI detection (Section 6.2.4). There are two methods to do training: training phase and

incremental.

• training phase – involves putting SEPTIC in training mode and executing all queries

of the web application with correct inputs (i.e., inputs that are not attacks). For every

query a model is created and stored, unless the same model has already been stored for

the same ID. If there is already a model (or more) associated to that ID and the model

created is different, then ID becomes associated to two (or more) models. After this is

done, SEPTIC can be put in prevention or detection mode and no further intervention

from the administrator is needed. The execution of all queries can be achieved in two

fashions: (1) using the unit tests of the application; or (2) with the assistance of an

external module, called septic_training. This module is a web client that works as a

crawler. For each web page, it searches for HTML forms and extracts information

about the submission method, action, variables and values. Then, it issues HTTP

requests for all forms, causing the SQL queries to be sent to the DBMS. These queries

can contain user inputs generated by the training module, can be static, or can depend

on the results of other queries.

• incremental – in this method, SEPTIC runs in prevention or detection mode all the

time, without the need to switch modes and run an explicit training phase. This is very

convenient and efficient as long as no attacks happen before the models are created.

In both modes, for every query SEPTIC obtains the query structure (QS), gets the set

of QMs associated to the query ID, and compares QS with every QM in the set, as

explained in Section 6.2.4. From the point of view of training, the relevant case is

when there is no QM associated with the ID. In this situation, SEPTIC behaves as if it

was in the training phase and creates and stores the query model. The administrator is

notified and should confirm that the model was built with a correct query, as it did not

appear previously. This verification, however, is not critical for two reasons: (1) it is

highly unlikely that the first query with a certain ID in a web application is malicious

144

6.2 The SEPTIC Approach

(attackers take time to find the application and to learn how it works); (2) in the un-

likely case of the model is built with a malicious query, this will become conspicuous

as correct queries will start being detected as attacks, which will be conspicuous.

In case there are modifications to the application code we envisage two cases. If the

changes are not significant, SEPTIC can continue in detection or prevention mode, building

new QMs incrementally (incremental method). If the application code suffers many changes,

SEPTIC can be put in training mode (training phase method) and all QMs of the application

are rebuilt. In this case, the existent QMs are substituted by new ones. However, in both

cases the administrator can opt for either training method.

An interesting case occurs if a query changes from line x to line y in the new version

of application. This is not problematic if the training phase method is used, as all QMs are

rebuilt. In the incremental method two unlikely scenarios may happen: (1) the QM of the

query of line y is created and associated to a IDy not in use or to an existing IDy; (2) the

IDx (query from line x) receives a new QM, if the line x has now a different query. In both

cases the old QMs stored for IDx and IDy are checked for the queries that come with those

IDs with the new version of the application. Even if SEPTIC checks that they not match

with the old QMs, they match with the new QMs, so SEPTIC does not flag an attack (no

false positives). False negatives (attacks not detected) are possible as a wrong QM will be

associated to an ID, but this should not happen for two reasons: the two scenarios above are

unlikely as a query would have to move to the same line of another; an attack against one of

the queries would have to match exactly the QM of the other query.

6.2.6 Detection examples

This section presents two detection examples to illustrate the process.

SQLI detection
Consider a query SELECT name FROM users WHERE user=? AND pass=?. This

query checks if a user exists in the database, returning his name. It accepts two inputs repre-

sented by a question mark. The corresponding query model is represented in Figure 6.3(c).

Consider a second-order SQLI attack (class D.1): (1) a malicious user provides an input that

145

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

bottom of the stack

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM alice

FIELD_ITEM user

SELECT_FIELD name

FROM_TABLE users

push
top, pop

Figure 6.4: QS of query SELECT name FROM users WHERE user=? AND pass=?

with admin’-- as user.

leads the application to insert adminU+02BC-- in the database (i.e., admin’-- with the

prime represented in unicode as U+02BC); (2) later this data is retrieved from the database

and inserted in the user field in the query above; (3) the DBMS parses and validates the

query, decoding U+02BC into the prime; the resulting query SELECT name FROM users

WHERE user= admin falls in class S.1 as it modifies the structure of the query. Figure 6.4

presents the QS for this query and Figure 6.3(c) its QM, which we assume was stored in SEP-

TIC’s query models store during training. When the query is issued, SEPTIC compares QS

with QM and during structural verification observes that they do not match, as the number

of items of both structures is different.

For a second example, consider a syntax mimicry attack (class S.2), the query above and

the malicious input admin’ AND 1=1-- inserted as user. The resulting query is SELECT

name FROM users WHERE user= admin AND 1=1. Figure 6.5 represents the parse tree

and query stack of this query. Comparing the parse tree and stack with Figure 6.3(a) and

(b), both trees have the same structure and both stacks equal number of nodes. When the

query is issued, SEPTIC compares QS with QM. First, during structural verification it checks

that they match, as the number of items of both structures is equal; then during syntactical

verification it observes that the 〈INT_ITEM, 1〉 node from QS (fourth row in Figure 6.5(b))

does not match with the 〈FIELD_ITEM, PASS〉 node from QM (Figure 6.3(c)). The attack is

flagged due to this difference.

146

6.2 The SEPTIC Approach

SELECT

FROM WHERE

users

user

=

admin 1

=

1

AND

user

name

(a) Query parse tree

COND_ITEM AND

FUNC_ITEM =

INT_ITEM 1

INT_ITEM 1

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

FIELD_ITEM name

... (...)

SELECT_FIELD name

FROM_TABLE users

(b) Query stack

Figure 6.5: Stack of query with the admin’ AND 1=1 input.

Stored XSS detection
Consider a web application that registers new users and that a malicious user inserts as

his first name <script> alert(”Hello!”);</script>, which is JavaScript code and
a class D.2 attack. When SEPTIC receives the query, it does the filtering step and finds
two characters associated with XSS, < and >, so it calls the plugin that detects stored XSS
attacks. This plugin inserts this input in a web page, calls an HTML parser, finds that the
input contains a script, and flags a stored XSS attack.

6.2.7 Discussion

To summarize, SEPTIC has the following important features:

• Server-side language independence – SEPTIC requires minimal and optional support
at SSLE level to obtain the identifiers (unlike (Halfond et al., 2008; Pietraszek &
Berghe, 2005; Son et al., 2013; Xu et al., 2005));

• No client configuration – the DBMS client connectors do not need reconfiguration to
use SEPTIC, as it is inside the DBMS;

• Client diversity – several DBMS clients of different types may be connected to a single
DBMS server with SEPTIC;

• No application source code modification – the programmer does not need to make
changes to the web application source code to use the mechanism (unlike (Boyd &

147

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

Keromytis, 2004; Buehrer et al., 2005; Halfond & Orso, 2005; Su & Wassermann,

2006; Xu et al., 2005));

• No application source code analysis – SEPTIC does not need to do source code anal-

ysis to find the queries in the source code of the web application (unlike (Bandhakavi

et al., 2007; Halfond & Orso, 2005));

• Vulnerability diagnosis – SEPTIC can use the query identifiers to identify the place

where the vulnerability exists in the source code when an attack is detected (unlike

(Boyd & Keromytis, 2004; Buehrer et al., 2005; Halfond & Orso, 2005; Halfond et al.,

2008; Pietraszek & Berghe, 2005; Son et al., 2013; Su & Wassermann, 2006; Trust-

wave SpiderLabs, 2015; Xu et al., 2005)); details in Section 6.5.2.

6.3 Implementation

This section explains how SEPTIC was implemented in MySQL and the creation of iden-

tifiers implemented in two contexts: for PHP applications by modifying the PHP runtime

(Zend engine); and for web applications implemented in the Spring framework in Java, us-

ing aspect oriented programming and a pair of alternatives. The first solution involves a few

modifications to the engine’s source code, whereas the second does not. Table 6.2 summa-

rizes the changes made to those software packages.

The implementation of query identifiers has to be compatible with all the components

we have been discussing: application source code, SSLE, and DBMS. Specifically, it is im-

portant that having SEPTIC in the DBMS or generating IDs in the SSLE does not require

modifications to the other components. The solution is to place the identifiers inside DMBS

comments. SEPTIC assumes that the first comment in a query is the ID. We place the com-

ment at the beginning of the query, before the query proper.

6.3.1 Protecting MySQL

We implemented SEPTIC – i.e., the center and right-hand side of Figure 6.1(b) – in MySQL

5.7.4. We modified a single file of the package (sql_parser.cc) and added a new header

file (SEPTIC detector) and a configuration file (SEPTIC setup), plus the plugins, which are

external to the DBMS (e.g., for stored XSS the plugin is essentially the jsoup library (JSoup,

148

6.3 Implementation

Software sfm sfc loc sa
MySQL 5.7.4
- sql_parser.cc 1 – 14 –
- SEPTIC detector – 1 1570 plugins
- SEPTIC setup – 1 15 –
- septic_training – 1 380 –
Zend engine / PHP 5.5.9
- mysql extension 1 – 6 –
- mysqli extension 2 – 21 –
- SEPTIC identifier – 1 249 –
Spring 4.0.5 / Java
- JdbcTemplate.java 1 – 16 –
- SEPTIC identifier – 1 – –
sfm: source file modified loc: lines of code
sfc: source file created sa: software added

Table 6.2: Summary of modifications to software packages

2014)). The septic_training module is not only external but also runs separately from the

DBMS.

The lines added to the sql_parser.cc file were inserted in function mysql_parse,

and just before the call to the function mysql_execute_command that executes the query.

These lines call the SEPTIC detector with an input corresponding to the query parsed and

validated by MySQL. The module performs the previously described operations: builds the

query structure (QS); compares QS with its query model (QM); logs the query and the ID if

an attack is detected; and optionally drops the query.

In detail, the SEPTIC detector is executed by the compareQueryStructure function.

This function calls the processSelect_Lex and insertElementTemplate functions to

check the query command (SELECT, DELETE, INSERT, UPDATE) and to build the QS.

At the same time, this function gets the query ID and verifies if a QM for that query ID exists

in query models storage. If QM exists, it is loaded and the compareQueryToTemplate

function is called to compare QS with QM. Otherwise, the QM is built from the QS, and

then it is associated to that query ID and it is stored in the query models storage (training

incremental method). Comparing QS with QM means to perform the algorithm of detection

for SQLI attacks presented in Section 6.2.4. First, it verifies if the number of items in both

stacks is equal (structural verification). If it is not, a SQLI attack is detected. Otherwise,

the syntactical verification is performed. For this verification, the processItem function

is called to compare each item of the QS with its correspondent item of the QM. If any

149

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

comparison does not match, a SQLI attack is flagged. The processItem function analyzes

27 different types of items defined in the MySQL. The function uses two auxiliary functions

– processField and isPrimitiveTypeBenign – to detect differences between fields

and to check if an item is a primitive data type (integer, real, string or decimal), allowing

casts between them.

The detection of stored injection attacks is made for INSERT, and UPDATE SQL com-

mands and performed by the processItem function. The function performs the filtering

and testing steps explained in Section 6.2.4 for the string items contained in the queries.

SEPTIC is configured using a few switches. The first allows putting SEPTIC in training

mode, detection mode (logs attacks), or prevention mode (logs and blocks attacks). The

other two enable and disable respectively the detection of SQLI and stored injection attacks.

The values for these switches are defined in a configuration file (SEPTIC setup) that is read

by MySQL whenever it is started or restarted. A typical routine consists in setting the first

switch to training mode and the other two switches to on. Then, the DBMS and the web

server are initiated, running the septic_training module. Later, the first switch is changed

to prevention or detection mode, followed by the restart of the DBMS and the application

server.

6.3.2 Inserting identifiers in Zend

In Section 6.2.3 we discussed three kinds of IDs. We implemented the first kind – SSLE-

generated IDs – for the PHP language, with the Zend engine as SSLE. As explained in that

section, those IDs can be formed by pairs of file:line separated by |. So the comments we con-

sider in this section have the format /* file:line | file:line | ... | file:line

*/.

Table 6.2 shows the two Zend engine extensions to which we added a few lines of code to

create and insert query IDs. Extensions are used in Zend to group related functions. The table

shows also the new header file that we developed for the same purpose (SEPTIC identifier).

The identifiers have to be inserted when the DBMS is called, so we modified in Zend

the 11 functions used for this purpose (e.g., mysql_query, mysqli::real_query, and

mysqli::prepare). Specifically, the ID is inserted in these functions just before the line

150

6.3 Implementation

that passes the query to the DBMS. This involved modifying three files: php_mysql.c,
mysqli_api.c and mysqli_nonapi.c.

In detail, the generate_ID function is implemented in Zend by our get_query_ID
function that calls other three functions: get_function_args, get_query_index and
get_query_function_args. Listing 6.2 presents the algorithm to get the query ID im-
plemented by the get_query_ID function.

1 ID

2 backtrace = true

3 while backtrace and not empty stack do

4 TOP function from stack

5 get function_name

6 get array_args_function

7 get filename_function_call

8 get line_function_call

9 compose pair filename_function_call:line_function_call

10 concatenate pair to previous ID

11 if function_name equals some sensitive sink then

12 get query

13 else

14 if query not in array_args_function then

15 backtrace = false

16 end_if

17 end_if

18 compose pair filename_function_call:line_function_call

19 concatenate pair to previous ID

20 POP function from the stack

21 end_do

Listing 6.2: Algorithm to get the query ID.

When a PHP program is executed, Zend keeps a call stack. This stack contains data about
the functions called, such as function name, full pathname of the file and line of code where
the function was called. This stack allows backtracking the query until a function that does
not contain it as argument. This provides the places where the query was composed and/or
was argument of a function, and allows obtaining query IDs in the format above.

The algorithm presented in Listing 6.2 represents this backtrack and composition of the
backtrace of the query. A TOP stack operation is made, accessing thus the call function in the
top of the stack. The information listed above is retrieved (lines 4 to 8) to compose the pair

151

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

file:line and concatenate it with the previous ID, resulting a new ID (lines 9 and 10). Then,

if the function is a sensitive sink we get the query argument to start backtracking it (lines 11

and 12). Otherwise, the algorithm checks if the query belongs to the array of the function

arguments. If not, the backtracking stops, otherwise a POP stack operation is made (line 18)

and a new loop iteration is performed.

6.3.3 Inserting identifiers in Spring / Java

We also implemented the third kind of IDs explained in Section 6.2.3 – IDs generated outside

the DBMS and the SSLE – in Spring / Java. Spring is a framework aimed at simplifying

the implementation of enterprise applications in the Java programming language (Spring,

2014a). It allows building Java web applications using the Model-View-Controller (MVC)

model. In Spring applications connect to the DBMS via a JDBC driver.

We used three different forms to insert the IDs to show the flexibility of doing it. The first

form consists in inserting the ID directly in the query in the source code of the application.

Before the query is issued a comment with the ID is inserted. This is a very simple solution

that has the inconvenient of requiring modifications to the source code. The second form

uses a wrapper to catch the query request before it is sent to JDBC and MySQL, and insert

the ID in a comment prefixing the query (e.g., the file and line data). Using a wrapper avoids

the need to modify the source code of the application, except for the substitution of the calls

to JDBC by calls to the wrapper.

The third form is the most interesting as it does not involve modifications to the applica-

tion source code. We use Spring AOP, an implementation of Aspect-Oriented Programming

for Spring, essentially to create a wrapper without modifying the applications’ source code

(Spring, 2014b). Spring AOP allows the programmer to create aspects for the application

that he is developing. These aspects allow the interception of method calls from the appli-

cation, to insert code that is executed before the methods. These operations are performed

without the programmer making changes to the application source code. On the contrary, the

programmer develops new files with the aspects and their point cuts, where the point cuts are

the application methods that will be intercepted. We use aspects for intercepting in runtime

calls to JDBC, inserting the query ID in the query and proceeding with the query request to

MySQL.

152

6.4 Experimental Evaluation

6.4 Experimental Evaluation

The objective of the experimental evaluation was to answer the following questions:

1. Is SEPTIC able to detect and block attacks against code samples?

2. Is it more efficient than other tools in the literature?

3. Does it solve the semantic mismatch problem better than other tools?

4. How does it perform in terms of false positives and false negatives?

5. Is SEPTIC capable of discovering and blocking attacks against real (open source) soft-

ware?

6. Is the performance overhead acceptable?

The evaluation was carried out with the implementation of SEPTIC in MySQL and PH-

P/Zend. Sections 6.4.1 presents the evaluation of SEPTIC in terms of its ability to detect

attacks – questions 1 to 5 – and Section 6.4.2 presents the evaluation of performance over-

head – question 6.

6.4.1 Attack detection

Detection with code samples
To answer questions 1. to 4., we evaluated SEPTIC with:

1. a set of (small) code samples that perform attacks of all classes in Table 6.1 (17 for the

semantic mismatch problem, 7 for other SQLI attacks, 5 for stored injection);

2. 23 code samples from the sqlmap project (sqlmap, 2014), unrelated with semantic

mismatch;

3. 11 samples with the code and non-code injection cases defined in (Ray & Ligatti, 2012)

(Table 6.3).

153

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

Case Attack/code
1 SELECT balance FROM acct WHERE password=’’ OR 1=1 -- ’ Yes
2 SELECT balance FROM acct WHERE pin= exit() Yes
3 ...WHERE flag=1000>GLOBAL Yes
4 SELECT * FROM properties WHERE filename=’f.e’ No
5 ...pin=exit() Yes
6 ...pin=aaaa() Yes
7 SELECT * FROM t WHERE flag=TRUE No
8 ...pin=aaaa() Yes
9 SELECT * FROM t WHERE password=password Yes

10 CREATE TABLE t (name CHAR(40)) No
11 SELECT * FROM t WHERE name=’x’ No

Table 6.3: Code (attacks) and non-code (non-attacks) cases defined by Ray and Ligatti (Ray
& Ligatti, 2012). Although those authors consider case 10 to be code/attack, we disagree
because the input is an integer, which is the type expected by the char function.

We compare SEPTIC with a Web Application Firewall (WAF) and four anti-SQLI tools.

Figure 6.6 shows the place where the WAF and the anti-SQLI tools act and intercept, re-

spectively, the user inputs sent in HTTP requests and the query sent by the web application.

SEPTIC acts inside the DBMS. The WAF was ModSecurity 2.7.3.3 (Trustwave SpiderLabs,

2015), which was configured with the OWASP Core Rule Set 2.2.9. ModSecurity is the

most adopted WAF worldwide, with a stable rule set developed by experienced security ad-

ministrators. In fact, it has been argued that its ability to detect attacks is hard to exceed

(Modelo-Howard et al., 2014). It detects SQLI and other types of attacks by inspecting

HTTP requests. The anti-SQLI tools were: CANDID (Bandhakavi et al., 2007), AMNESIA

(Halfond & Orso, 2005), DIGLOSSIA (Son et al., 2013) and SQLrand (Boyd & Keromytis,

2004). The evaluation of these tools was made manually by analyzing the data in (Ray &

Ligatti, 2012) and the papers that describe them. More information about them can be found

in Section 2.4.2.

web
application

browser
inputs

SEPTIC

DBMS
WAF

anti-SQLI
tool

Figure 6.6: Placement of the protections considered in the experimental evaluation: SEPTIC,
anti-SQLI tools, and a WAF.

154

6.4 Experimental Evaluation

In the experiments, first with SEPTIC turned off, we injected malicious user inputs cre-

ated manually to confirm the presence of the vulnerabilities in the code samples. We also

used the sqlmap tool to exploit the vulnerabilities from the first two groups of code samples.

sqlmap is a tool widely used to perform SQLI attacks, both by security professionals and

hackers. Second, with SEPTIC turned on and in training mode, we injected benign inputs

in the code samples for the mechanism to learn the queries and to get their models. Then,

we run the same attacks from the first phase in detection mode and analyzed the results to

determine if they were detected.

Table 6.4 shows the results of the evaluation. There were 63 tests executed (third col-

umn), 4 of which not attacks (the 4 non-attack cases in Table 6.3). SEPTIC (last column)

correctly detected all 59 attacks (row 34) and correctly did not flag as attacks the 4 non-

attack cases (row 11). SEPTIC had neither false negatives nor positives (rows 35–36) and

correctly handled the semantic mismatch problem by detecting all attacks from classes A

(rows 17–21), B (7), C (8–9), and D.2–D.4 (26–30).

The other tools can also detect the syntax structure 1st order (row 3), blind SQLI syntax

structure (8), and sqlmap (12) attacks (all from class S.1), but not stored procedure (7) and

stored injection attacks (26–30). The anti-SQLI tools, only found the attack from class A.5

in the semantic mismatch attacks (row 21). ModSecurity detected this attack plus 1st order

SQLI attacks with encoding and space evasion (A.1 and A.4, rows 17 and 19). Furthermore,

ModSecurity could not detect 2nd order SQLI attacks because in the second step of these

attacks the malicious input comes from the DBMS, not from outside. All tools other than

SEPTIC had a few false positives (except DIGLOSSIA) and many false negatives (around

50% of the attacks). This is essentially justified by the non-detection of semantic mismatch

attacks and the Ray and Ligatti code cases (row 10), where the injected code does not contain

malicious characters recognized by the tools.

Globally ModSecurity and DIGLOSSIA had a similar performance (35 attacks detected).

The latter was the best of the four anti-SQLI tools and the only one that detected the syntax

mimicry 1st order attack (row 5). ModSecurity does not flag 2nd order attacks because it

just analyses queries with user inputs (rows 18 and 20). On the contrary, SQLrand and

AMNESIA detect this type of attack. CANDID does not discover either of them. The false

positive reported for ModSecurity was case 11 from (Ray & Ligatti, 2012), as the input

contained the prime character that is considered malicious by this WAF.

155

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

1 Type of attack N. Tests SQLrand AMNESIA CANDID DIGLOSSIA ModSecurity SEPTIC
2 SQLI without sanitization and semantic mismatch (S.1, S.2, B, C, D.1)
3 Syntax structure 1st order 1 Yes Yes Yes Yes Yes Yes
4 Syntax structure 2nd order 1 Yes Yes No No No Yes
5 Syntax mimicry 1st order 1 No No No Yes Yes Yes
6 Syntax mimicry 2nd order 1 No No No No No Yes
7 Stored procedure 1 No No No No No Yes
8 Blind SQLI syntax structure 1 Yes Yes Yes Yes Yes Yes
9 Blind SQLI syntax mimicry 1 No No No Yes Yes Yes
10 Ray & Ligatti code 7 2 3 3 7 2 7
11 Ray & Ligatti non-code 4 (non-attacks) 2 1 2 0 1 0
12 sqlmap project 23 23 23 23 23 23 23
13 Flagged as attack – 30 30 30 34 30 37
14 False positives – 2 1 2 0 1 0
15 False negatives – 9 8 9 3 8 0

16 SQLI with sanitization and semantic mismatch (S.1, S.2, A.1–A.5, D.1)
17 Syntax structure 1st order 4 0 0 0 0 2 4
18 Syntax structure 2nd order 4 0 0 0 0 0 4
19 Syntax mimicry 1st order 4 0 0 0 0 2 4
20 Syntax mimicry 2nd order 4 0 0 0 0 0 4
21 Numeric fields 1 1 1 1 1 1 1
22 Flagged as attack – 1 1 1 1 5 17
23 False positives – 0 0 0 0 0 0
24 False negatives – 16 16 16 16 12 0

25 Stored injection (D.2–D.4)
26 Stored XSS 1 No No No No No Yes
27 RFI 1 No No No No No Yes
28 LFI 1 No No No No No Yes
29 RCI 1 No No No No No Yes
30 OSCI 1 No No No No No Yes
31 Flagged as attack – 0 0 0 0 0 5
32 False positives – 0 0 0 0 0 0
33 False negatives – 5 5 5 5 5 0

34 Flagged as attack – 31 31 31 35 35 59
35 False positives – 2 1 2 0 1 0
36 False negatives – 30 29 30 24 25 0

Table 6.4: Detection of attacks with code samples.

The answer to the first four questions is positive. We conclude that the proposed ap-

proach to detected and block injection attacks inside the DBMS is effective because it uses

the information given by the DBMS – that processes the queries – without the need of as-

sumptions about how the queries are executed, which is the root of the semantic mismatch

problem.

Detection with real software
We used SEPTIC with real web applications to verify if it identifies attacks against them

– question 5. We evaluated it with five open source PHP web applications: ZeroCMS, a con-

tent management system (ZeroCMS, 2014); WebChess, an application to play chess online

156

6.4 Experimental Evaluation

(WebChess, 2014); measureit, an energy metering application that stores and visualizes volt-

age and temperature data (Measureit, 2014); PHP Address Book, a web-based address/phone

book (PHP Address Book, 2015); and refbase, a web reference database (refbase, 2015).

Table 6.5 shows the detection results. The ZeroCMS contains three SQLI vulnerabilities

that appeared in the Common Vulnerabilities and Exposures (CVE) (CVE, 2015) and the

Open Source Vulnerability Database (OSVDB) (OSVDB, 2015): CVE-2014-4194, CVE-

2014-4034 and OSVDB ID 108025. Using sqlmap, we performed SQLI attacks to exploit

these vulnerabilities and to verify if SEPTIC detected them. SEPTIC successfully found the

attacks and blocked them, protecting the vulnerable web application. Also, we performed

attacks against a patched version of ZeroCMS and verified that the attacks were no longer

successful or detected by SEPTIC.

With WebChess and measureit, we performed attacks manually and with sqlmap. SEP-

TIC blocked 13 different attacks against WebChess and one stored XSS against measureit.

To confirm the detection, we repeated the attacks with SEPTIC in detection mode (instead of

prevention mode), allowing attack discovering but without blocking them, and we verified

their impact. Also, we confirmed the vulnerabilities explored by these attacks by inspecting

the source code with the assistance of identifiers registered in the log file. We recall that our

approach identifies in runtime attacks and registers the source code location of the vulnera-

bilities explored by attacks when they are detected. SEPTIC does not registered any attack

against the PHP Address Book and refbase applications, meaning that these applications are

secure against attack injection. So these results allow us to answer affirmatively to question

5.

Application SQLI Stored inj. Registered
measureit – 1 –
PHP Address Book – – –
refbase – – –
WebChess 13 – –
ZeroCMS 3 – CVE-2014-4194

CVE-2014-4034
OSVDB ID 108025

Total 16 1 3

Table 6.5: Detection of attacks in real applications

157

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

6.4.2 Performance overhead

To answer question 6., we evaluated the overhead of SEPTIC using BenchLab v2.2 (Cecchet

et al., 2011) with the PHP Address Book, refbase and ZeroCMS applications. BenchLab is

a testbed for web application benchmarking. It generates realistic workloads, then replays

their traces using real web browsers, while measuring the application performance.

We have set up a network composed of six identical machines: Intel Pentium 4 CPU 2.8

GHz (1-core and 1-thread) with 2 GB of RAM, running Linux Ubuntu 14.04. Two machines

played the role of servers: one run the MySQL DBMS with SEPTIC; the other executed

an Apache web server with Zend and the web applications, and Apache Tomcat to run the

BenchLab server. The other four machines were used as client machines, running BenchLab

clients and Firefox web browsers to replay workloads previously stored by the BenchLab

server, i.e., to issue a sequence of requests to the web application being benchmarked. The

BenchLab server has te role of managing the experiments.

We evaluated SEPTIC with its four combinations of protections turned on and off (SQLI

and stored injection on/off) and compared them with the original MySQL without SEPTIC

installed (base). For that purpose, we created several scenarios, varying the number of client

machines and browsers. The ZeroCMS trace was composed of 26 requests to the web ap-

plication with queries of several types (SELECT, UPDATE, INSERT and DELETE). The traces

for the other applications were similar but for PHP Address Book the trace had 12 requests,

while for refbase it had 14 requests. All traces involved downloading images, cascading style

sheets documents, and other web objects. Each browser executes the traces in a loop many

times.

Table 6.6 summarizes the performance measurements. The main metric assessed was

the latency, i.e., the time elapsed between the browser starts sending a request and finishes

receiving the corresponding reply. For each configuration the table shows the average latency

and the average latency overhead (i.e., the average latency divided by the latency obtained

with MySQL without SEPTIC with the same configuration, multiplied by 100 to become

percentage). These values are presented as a pair (latency (ms), overhead (%)) and are shown

in the 2nd to 6th columns of the table. The first column characterizes the scenario tested,

varying the number of client machines (PCs) and browsers (brws). The latency obtained

with MySQL without SEPTIC is shown in the second column and the SEPTIC combinations

in the next four. The last two columns show, respectively, the number of times that each

158

6.4 Experimental Evaluation

configuration was tested with a trace (num exps) and the total number of requests done in

these executions (total reqs). Each configuration was tested with 5500 trace executions, in a

total of 87,200 requests (last row of the table).

N. PCs Base SEPTIC: SQL injection – stored injection Num Total
& brws off–off on–off off–on on–on exps reqs
refbase varying the number of PCs, one browser per PC
1 PC 430, – 431, 0.23 432, 0.47 433, 0.70 434, 0.93 70 980
2 PCs 430, – 433, 0.70 433, 0.70 433, 0.70 436, 1.40 120 1680
3 PCs 435, – 437, 0.46 440, 1.15 441, 1.38 442, 1.61 170 2380
4 PCs 435, – 438, 0.69 439, 0.92 442, 1.61 443, 1.84 220 3080
refbase with four PCs and varying the number of browsers
8 brws 504, – 506, 0.40 510, 1.19 513, 1.79 516, 2.38 420 5880
12 brws 530, – 532, 0.38 535, 0.94 539, 1.70 544, 2.64 620 8680
16 brws 540, – 541, 0.19 545, 0.93 550, 1.85 553, 2.41 820 11480
20 brws 570, – 573, 0.53 575, 0.88 581, 1.93 584, 2.46 1020 14280
PHP Address Book with four PCs
20 brws 79, – 79.26, 0.33 79.50, 0.63 80.60, 2.03 81, 2.53 1020 12240
ZeroCMS with four PCs
20 brws 239, – 240, 0.42 241, 0.84 243, 1.67 245, 2.51 1020 26520
Avg. overhead / Total 0.41% 0.82% 1.65% 2.24% 5500 87200

Table 6.6: Performance overhead of SEPTIC measured with Benchlab for three web ap-
plications: PHP Address Book, refbase and ZeroCMS. Latencies are in milliseconds and
overheads in percentage.

The first set of experiments evaluated the overhead of SEPTIC with the refbase appli-

cation (rows 3–6). We run a single Firefox browser in each client machine but varied the

number of these machines from 1 to 4. For each additional machine we increase the number

of experiments (num exps) by 50. Figure 6.7 represents graphically these results, showing the

latency measurements (a) and the latency overhead of the different SEPTIC configurations

(b). The most interesting conclusion taken from the figure is that the overhead of running

SEPTIC is very low, always below 2%. Another interesting conclusion is that SQLI detec-

tion has less overhead than stored injection detection, as the values for configuration NY are

just slightly higher than those for YN. Finally, it can be observed that the overhead tends to

increase with the number of PCs and browsers generating traffic as the load increases.

The second set of experiments used again the refbase application, this time with the

number of client machines (PCs) set to 4 and varying the number of browsers (Table 6.6,

rows 8–11). Figure 6.8 shows how the overhead varies when going from 1 to 4 PCs with one

159

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS
1 Firefox

Page 1

Cada PC com 1 firefox

Variação por combinação do SEPTIC e comparação com a base

Variação por PC e combinações

base NN YN NY YY
425
427
429
431
433
435
437
439
441
443
445

1 PC 2 PC's 3 PC's 4 PC's
Base configuration and SEPTIC combinations

La
te

nc
y

(m
s

)

1 PC 2 PC's 3 PC's 4 PC's
425

428

431

434

437

440

443

base NN YN NY YY

NN YN NY YY
0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

2.00%

1 PC 2 PC's 3 PC's 4 PC's

SEPTIC combinations

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

1 PC 2 PC's 3 PC's 4 PC's
0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%
1.75%
2.00%

NN YN NY YY

Number of PC's executing one browser

A
ve

ra
g

e
 la

te
nc

y
o

ve
rh

e
a

d
 (%

)

(a) Latency

1 Firefox

Page 1

Cada PC com 1 firefox

Variação por combinação do SEPTIC e comparação com a base

Variação por PC e combinações

base NN YN NY YY
425
427
429
431
433
435
437
439
441
443
445

1 PC 2 PC's 3 PC's 4 PC's
Base configuration and SEPTIC combinations

La
te

nc
y

(m
s

)

1 PC 2 PC's 3 PC's 4 PC's
425

428

431

434

437

440

443

base NN YN NY YY

NN YN NY YY
0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

2.00%

1 PC 2 PC's 3 PC's 4 PC's

SEPTIC combinations

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

1 PC 2 PC's 3 PC's 4 PC's
0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%
1.75%
2.00%

NN YN NY YY

Number of PC's executing one browser

A
ve

ra
g

e
 la

te
nc

y
o

ve
rh

e
a

d
 (%

)

(b) Overhead

Figure 6.7: Latency and overhead with refbase varying the number of PCs, each one with a
single browser.

browser each (a) then from 8 browsers (2 per PC) to 20 browsers (5 per PC). The figure allows

extracting some of the same conclusions as the first set of experiments. However, they also

show that increasing the number of browsers initially increases the overhead (Figure 6.8(a)),

then stabilizes (b), as neither the CPU at the PCs nor the bandwidth of the network were the

performance bottleneck.

Sheet5

Page 1

8 12 16 20
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

NN YN NY YY

Number of browsers

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

1 PC 2 PC's 3 PC's 4 PC's
0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%
1.75%
2.00%

NN YN NY YY

Number of PC's executing one browser

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

(a) Overhead (one browser per PC)

browsers

Page 2

8 12 16 20
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

NN YN NY YY

Number of browsers

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

(b) Overhead (varying browsers)

Figure 6.8: Overhead with refbase with 4 PCs and varying the number browsers.

The third and fourth sets of experiments used the PHP Address Book and ZeroCMS web

applications and 20 browsers in 4 PCs (Table 6.6, rows 13 and 15). Figure 6.9 shows the

overhead of these two applications and refbase with the same number of browsers and PCs.

The overhead of all applications is similar for each SEPTIC configuration. This is interesting

because the applications and their traces have quite different characteristics, which suggests

160

6.5 Extensions to SEPTIC

that the overhead imposed by SEPTIC is independent of the server-side language and web

application.

The average of the overheads varied between 0.82% and 2.24% (last row of the table).

This seems to be a reasonable overhead, suggesting that SEPTIC is usable in real settings,

answering positively question 6.. 3 apps

Page 1

NN YN NY YY
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

PHP Address Book refbase ZeroCMS

SEPTIC combinations

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

Figure 6.9: Overhead of SEPTIC with PHP Address Book, refbase and ZeroCMS applica-
tions using 20 browsers.

6.5 Extensions to SEPTIC

The previous sections presented the SEPTIC approach, its implementation, and experimental

evaluation. This section discusses extensions to the core approach and implementation.

6.5.1 Protecting other DBMSs

The SEPTIC approach is supposed not to be restricted to work with MySQL. To show that

this is the case, we discuss how to implement the approach in two other DBMSs, based on an

analysis we have made of their source code. We analyzed MariaDB 10.0.20 (MariaDB, 2015)

and PostgreSQL 9.4.4 (PostgreSQL, 2015). MariaDB is a fork of MySQL created around

2009 due to concerns over Oracle’s acquisition of MySQL. PostgreSQL is the second most

popular open source DBMS, after MySQL (DB-Engines, 2015).

161

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

6.5.1.1 MariaDB

MariaDB has essentially the same architecture as MySQL. When a query is received, it

parses, validates, and executes it (see Figure 6.1(a)). The outcome of the parsing and valida-

tion phases is the same as in MySQL, a list of stacks where each stack of the list represents a

clause of the query, and each of its nodes contains data about the query element. Moreover,

the file that contains the calls to the functions that perform parsing, validation and execution

of a query is the same as in MySQL: sql_parser.cc. Therefore, SEPTIC can be imple-

mented in MariaDB similarly to how it was in MySQL (Section 6.3.1). The SSLE-generated

IDs implemented in the Zend engine can be used without any modification.

6.5.1.2 PostgreSQL

The implementation of SEPTIC in PostgreSQL has some differences but also many sim-

ilarities to the MySQL and MariaDB cases. The processing of a query in PostgreSQL

involves four phases: parsing/validation, rewriting, planning/optimization, and execution.

Again the SEPTIC module is inserted after the parsing phase, before the rewriting phase.

Similarly to MySQL, a single file has to be modified (postgresql.c), adding essen-

tially the same 14 lines of code that were added to MySQL. That file contains the function

exec_simple_query that runs the four processing phases of a query. The code would be

inserted after the call to function pg_parse_query that parses and validates the query, just

before the call to the function that executes the rewriting phase (pg_analyze_and_rewrite).

SEPTIC might also be inserted after the rewriting phase, but the adaptation would be more

complicated as rewriting produces a different data structure, a query tree.

The data structure resulting from the parsing phase is slightly different from MySQL’s

but still a list of stacks. Again each stack of the list represents a clause of the query (e.g.,

SELECT, FROM) and its nodes a query element. PostgreSQL tags the query elements with

their types and distinguishes the primitive types (e.g., integer, float/real, string). The nodes

of the stacks contain this information similarly to what happens in MySQL, but the tags,

the structure of the nodes, and the way they are organized in the stack are different from

MySQL. Therefore, the data structures used in PostgreSQL and MySQL are similar, but the

current implementation of the module SEPTIC detector has to be modified, specifically: (1)

the navigation in the list of stacks; (2) the identification of the data about the query elements

162

6.5 Extensions to SEPTIC

in the nodes; and (3) the collection of this data. These modifications are related with the

construction of query structure for every query.

Similarly to MariaDB, no changes are needed to the generation of IDs implemented in

the Zend engine.

6.5.2 Vulnerability diagnosis

SEPTIC aims to protect web applications transparently from the administrator or program-

mer. However, if an attack is successful that means there is a vulnerability in the application

and it may be useful to understand where that vulnerability is in the source code.

SEPTIC combined with the SSLE-generated ID presented in Section 6.2.3 can provide

this information when an attack is detected. Recall that the SSLE-generated ID we propose

contains information about the places in the source code where the query is passed to func-

tions as a parameter and eventually sent to the DBMS. These places are identified by the

file:line pairs in the ID, as explained in Section 6.2.3. When SEPTIC detects an attack it logs

the ID and the query, both in detection and prevention modes.

The administrator/programmer can use this log to diagnose the vulnerability. Moreover,

it can use the attack query to understand how the vulnerability was exploited and how it can

be removed. Some rules of thumb on how to fix the application are:

• SQLI attack and user inputs are not sanitized: any of the attacks of Table 6.1 may have

happened; sanitization and/or validation has to be inserted in the source code;

• SQLI attack and user inputs are sanitized: the attack probably belonged to class A,

possibly a case of semantic mismatch; proper sanitization or validation has to be im-

plemented to deal with these attacks;

• Second order SQLI attack: the query contains inputs provided by another query, thus

introduced earlier in the database; therefore, the inputs provided by the other query

have to be sanitized/validated;

• Stored injection: the attack belonged to classes D.2–D.4; the programmer has to de-

velop validation routines to apply to the inputs.

163

6. PREVENTING INJECTION ATTACKS INSIDE THE DBMS

6.5.3 Detecting attacks against non-web applications

Despite the chapter has focused on the detection of injection attacks against web applications,

the SEPTIC approach (and its implementation in MySQL) also works with non-web appli-

cations. DBMSs are mostly oblivious to the type of applications that send them requests.

The SEPTIC module inside the DBMS is also oblivious to the applications, except for query

IDs. However, queries do not have to bring an ID as SEPTIC can also use DBMS-generated

IDs (see Section 6.2.3).

Attacks coming from non-web applications can be detected by SEPTIC using such DBMS-

generated IDs or IDs generated outside the DBMS and the SSLE. Similarly to what happens

with web applications, SEPTIC has to undergo training to learn about the normal queries is-

sued by the (non-web) application, in order to build their query models. This training cannot

be done with the septic_training module, which is specific for web applications, but the idea

is the same: to activate all queries with good inputs.

With the goal of demonstrating that SEPTIC also works with non-web applications, we

developed a simple Gambas application to manage contacts, i.e., an address book (Gambas,

2015). Gambas is a version of .NET / Visual Basic for Linux. Applications in Gambas can

connect to a DBMS and issue requests similarly to what happens in PHP and Java. We trained

SEPTIC using the incremental method (Section 6.2.5), i.e., by forcing the application to issue

non-malicious queries to the database without putting SEPTIC in training mode. Then, we

injected a few attacks that SEPTIC correctly detected.

6.6 Conclusions

The chapter explores a new form of protection from attacks against web applications that use

databases. It presents the idea of “hacking” the DBMSs to let it protected from SQLI and

stored injection attacks. Moreover, by putting protection inside the DBMS, we show that it is

possible to detect and block sophisticated attacks, including those related with the semantic

mismatch problem.

All the works we describe in Section 2.4.2 have a point in common that makes them quite

different from our work: their focus is on how to do detection or protection. On the contrary,

our work is more concerned with an architectural problem: how to do detection/protection

inside the DBMS, so that it runs out of the box when the DBMS is started. None of the related

164

6.6 Conclusions

works does detection inside the DBMS. Also, those schemes cannot deal with most attacks
related with the semantic mismatch problem. SEPTIC, on the contrary, does not involve
source code analysis or instrumentation, or modifying the application code. With SEPTIC
we aim to make the DBMS protect itself, so that both the model creation and attack detection
are performed inside the DBMS. Moreover, SEPTIC aims to handle the semantic mismatch
problem, so it analyses queries just before they are executed, whereas these works do it much
earlier. Most of these works also cannot detect attacks that do not change the structure of
the query (syntax mimicry), unlike SEPTIC. For example, AMNESIA and CANDID are
two of them. SqlCheck detects some of the attacks related with semantic mismatch, but not
those involving encoding and evasion. Like SEPTIC, DIGLOSSIA detects syntax structure
and mimicry attacks but, unlike SEPTIC, it neither detects second-order SQLI once it only
computes queries with user inputs, nor encoding and evasion space characters attacks as these
attacks do not alter the parse tree root nodes before the malicious user inputs are processed
by the DBMS.

The SEPTIC mechanism was experimented both with synthetic code with vulnerabilities
inserted on purpose, including a set of novel SQLI attacks presented recently (Ray & Ligatti,
2012), and with open source PHP web applications. This evaluation suggests that the mech-
anism can detect and block the attacks it is programmed to handle, performing better that all
other solutions in the literature, anti-SQLI mechanisms and the ModSecurity WAF. SEPTIC
shows neither false negatives nor false positives, on the contrary of the others. The perfor-
mance overhead evaluation shows an impact of around 2.2%, suggesting that our approach
can be used in real systems.

165

7
Conclusions and Future Work

This thesis proposes methodologies to detect and locate input validation vulnerabilities in

source code of web applications, exploring source code static analysis, machine learning and

runtime protection techniques. Static analysis and runtime protection are used as two distinct

ways to address vulnerabilities. While the former analyzes the source code of web applica-

tions to search for vulnerabilities, the latter monitors in runtime the web applications to block

injection attacks, which in conjunction with identifiers allows the detection of vulnerabili-

ties. Machine learning is applied with and as a static analysis technique to reduce the number

of false positives and to find vulnerabilities. Furthermore, the methodologies described pro-

vide protection for web applications, removing the vulnerabilities by automatic correction of

source code, and blocking injection attacks that attempt to exploit vulnerabilities contained

in the source code.

The chapter is divided in two sections that present the conclusions and future work that

could derive from this thesis.

7.1 Conclusions

The thesis begins by showing that input validation vulnerabilities are an important problem

in web applications, and how they can be detected and removed in source code. Then, it

presents the methodologies to detect and eliminate those vulnerabilities and to protect web

applications.

167

7. CONCLUSIONS AND FUTURE WORK

Taint analysis is a form of static analysis that can be used to verify the source code of

web applications looking for input validation vulnerabilities, i.e., tracking the user inputs

(entry points) and checking if they reach a function susceptible to be exploited (a sensitive

sink). The thesis shows that this technique is effective to search for vulnerabilities in source

code. However, static analysis tends to generate many false positives, so we propose the use

of machine learning applied to data mining to reduce this tendency. Thus, the vulnerabilities

found by taint analysis are processed by data mining, predicting if they are false positives or

not. This form of analysis turns the process of detection more accurate. Benefiting from the

identification, i.e., of the localization of the vulnerabilities in the source code, a step further

is made by the automatic correction of the source code. Using the identification provided

by the taint analysis, we correct the source code by inserting fixes in the right places of the

program to sanitize and validate the entry points. This is an important contribution because

it helps the programmers in different ways by: (1) verifying the code while the applications

are being developed; (2) signaling in the source code the location of the vulnerabilities, to

remove them automatically by correcting the source code; (3) avoiding the waste of time

checking the source code for vulnerabilities that are not real, i.e., looking for false positives;

(4) keeping the programmers in the loop of vulnerability detection and correction, showing

them the vulnerable code and how it is corrected.

Another contribution of the thesis is a novel source code static analysis technique to find

vulnerabilities and their location in source code. Apart from the traditional static analysis

technique and the standard machine learning classifiers used in data mining, we propose

an approach that uses sequence models with machine learning to obtain knowledge about

vulnerabilities, learning their characteristics from a corpus with sequences of observations

annotated as vulnerable or not. Then, new sequences of observations are processed and clas-

sified as vulnerable or not. The sequence model is a hidden Markov model that processes the

source code (sequences of observations) taking in consideration the order of code elements

(observations) inside the code and the relation between them.

This novel technique improves the first one in two ways. One is the ability to relate the

code elements, which allows a more sophisticated analysis. Previously, it only checked the

presence of characteristics about false positives and vulnerabilities in source code and did not

relate them. The other is the absence of coding these characteristics and their relationship,

i.e, there is no need to coding the knowledge about vulnerabilities.

168

7.1 Conclusions

Another important contribution of the thesis is a runtime protection for web applications

to block injection attacks. This approach helps to solve the semantic mismatch problem,

and interestingly also supports the discovery of vulnerabilities, identifying their location in

source code. Contrarily to the other two approaches that analyze the source code, we propose

to monitor the web applications in runtime and use identifiers that carry information about the

location of queries composition through the code until the sensitive sinks. Therefore, when

an injection attack is identified this information is used to identify the vulnerability. Another

contribution is the place where the mechanism that implements the approach is inserted. We

opted by the DBMS, “hacking” it. The DBMS is the entity that does the final processing of

the queries, so inserting there the protection solves the semantic problem, since at that point

there is not speculation about how the queries end up being executed.

The methodologies mentioned above resulted in the development of two tools and a

mechanism. The WAP and DEKANT tools implement the first two methodologies, while

the SEPTIC mechanism implements the last.

The WAP tool detects candidate vulnerabilities using taint analysis, predicts if they are

real vulnerabilities or false positives using data mining, and corrects the source code by

insertion of fixes. It was experimented in two different stages of its development. In its first

stage, the tool was able to detect eight classes of vulnerabilities, and our evaluation with open

source web applications confirmed that WAP detects and corrects vulnerabilities and reduces

the number of false positives, when compared with other tools. Recently, we evolved the

tool changing its structure to make it modular and extensible for new vulnerability classes,

without the programmer coding about the new classes. The three components of the tool that

perform the detection, prediction and correction were re-structured to enable the automatic

creation and setting up of WAP extensions (called weapons). The data mining component

was also enhanced with new attributes and instances. The tool, in this stage, was evaluated

with fifteen classes of vulnerabilities (seven are weapons) using real web applications and

WordPress plugins. The results confirmed the benefits of re-structuration compared with the

tool in its first stage.

DEKANT is a tool that learns about vulnerabilities and then detects them. The tool

extracts slices, starting in entry points and ending in sensitive sinks, translates them to an

intermediate language, and next classifies the new slices as being vulnerable or not using a

sequence model implemented by an HMM. It was experimented with open source software

169

7. CONCLUSIONS AND FUTURE WORK

and WordPress plugins. Both experiments confirmed the effectiveness of the tool, meaning

that it is feasible to learn about vulnerabilities and afterwards apply this knowledge to search

for vulnerabilities.

Finally, the SEPTIC mechanism, inserted inside the DBMS, has the aim to protect the

web applications that it monitors. SEPTIC requires a training phase to learn the query models

from the web application to be monitored, and then during the detection phase flags injection

attacks and identifies the vulnerabilities. The mechanism was evaluated with synthetic code

and real web applications, and compared with other types of mechanisms that operate before

the DBMS. The evaluation showed that SEPTIC performs better than the other mechanisms

and detects injection attacks when real web applications are being monitored. Also, the

place where it is inserted is the best to solve the semantic mismatch problem. The overhead

of SEPTIC to the DBMS was evaluated, showing that it is low.

7.2 Future Work

The thesis described techniques for detection of vulnerabilities and protection of web appli-

cations. Future works can develop other tools and methodologies to improve the detection

of vulnerabilities and protection of web applications, with the main goal of building secure

software. We discuss some possible research directions.

Machine learning can be used to improve the dependability of computer systems. Differ-

ently of its application in this thesis, i.e., to detect vulnerabilities, it can be used in protection

of web applications, detecting attacks of diverse vulnerability classes. An attack is consti-

tuted by malicious data exploring an attack vector, and a vector of attack is associated to a

vulnerability class, meaning that its path contains properties that can be characterized and as-

sociated to the exploitation of a vulnerability class. Also, the malicious data contains some

pattern(s), which are associated to the exploitation of a vulnerability class. Therefore, for

each class of vulnerability, vector of attacks and malicious data, can be studied and charac-

terized with properties and patterns, composing a data set with this knowledge. Then to apply

machine learning classifiers to predict if the inserted data in web applications is malicious

and constitutes an attack.

170

7.2 Future Work

There are several static analysis tools that analyze the source code of web applications
searching for input validation vulnerabilities, however, each one is tested and evaluated with
a different set of applications, and for different scenarios. Creating a benchmark for these
tools would allow comparing them. Each tool would be evaluated with a set of defined soft-
ware quality metrics and real application scenarios, where each metric and scenario defines
a goal to be reached by the tools.

Nowadays frameworks have been increasingly used in the development of web appli-
cations. These frameworks permit the combination of many programming or scripting lan-
guages and integrate them in one web application. Also, some of these frameworks contain
an intermediate layer that can be used to sanitize and validate the entry points of the appli-
cations. However, the use of this intermediate layer does not invalidate the use of the best
practices to write and build secure software. Furthermore, the programming and scripting
languages continue to be “insecure”, in the sense that a programmer could leave the applica-
tions with vulnerabilities. Therefore, new classes of vulnerabilities are emerging from these
flaws and frameworks. To study these flaws and frameworks is a new challenge that can
originate a new tool supporting different programming languages and their interconnections.

171

Bibliography

AHUJA, B., JANA, A., SWARNKAR, A. & HALDER, R. (2015). On preventing SQL injec-

tion attacks. Advanced Computing and Systems for Security, 395, 49–64.

ALONSO, J.M., GUZMÁN, A., BELTRÁN, M. & BORDON, R. (2009). LDAP injection

techniques. Wireless Sensor Network, 1, 233–244.

ANTUNES, J., NEVES, N.F., CORREIA, M., VERISSIMO, P. & NEVES, R. (2010). Vul-

nerability removal with attack injection. IEEE Transactions on Software Engineering, 36,

357–370.

ARISHOLM, E., BRIAND, L.C. & JOHANNESSEN, E.B. (2010). A systematic and compre-

hensive investigation of methods to build and evaluate fault prediction models. Journal of

Systems and Software, 83, 2–17.

BALL, T. (1999). The concept of dynamic analysis. In Proceedings of the 7th European

Software Engineering Conference, 216–234.

BALZAROTTI, D., COVA, M., FELMETSGER, V., JOVANOVIC, N., KIRDA, E., KRUEGEL,

C. & VIGNA, G. (2008). Saner: composing static and dynamic analysis to validate san-

itization in web applications. In Proceedings of the 29th IEEE Symposium Security and

Privacy, 387–401.

BANABIC, R. & CANDEA, G. (2012). Fast black-box testing of system recovery code. In

Proceedings of the 7th ACM European Conference on Computer Systems, 281–294.

BANDHAKAVI, S., BISHT, P., MADHUSUDAN, P. & VENKATAKRISHNAN, V.N. (2007).

CANDID: preventing SQL injection attacks using dynamic candidate evaluations. In Pro-

ceedings of the 14th ACM Conference on Computer and Communications Security, 12–24.

BARRANTES, E.G., ACKLEY, D.H., PALMER, T.S., STEFANOVIC, D. & ZOVI, D.D.

(2003). Randomized instruction set emulation to disrupt binary code injection attacks. In

173

BIBLIOGRAPHY

Proceedings of the 10th ACM Conference on Computer and Communications Security,
281–289.

BAUM, L.E. & PETRIE, T. (1966). Statistical inference for probabilistic functions of finite
state Markov chains. The Annals of Mathematical Statistics, 37, 1554–1563.

BBC TECHNOLOGY (2014). Millions of websites hit by Drupal hack attack.
Http://www.bbc.com/news/technology-29846539.

BERNERS-LEE, T., FIELDING, R. & MASINTER, L. (2005). Uniform resource identifier
(URI): Generic syntax. IETF Request for Comments: RFC 3986.

BHOLE, A.T. & PATIL, A.I. (2014). Intrusion detection with hidden Markov model and
Weka tool. International Journal of Computer Applications (IJCA), 85, 27–30.

BIGGAR, P. & GREGG, D. (2009). Static analysis of dynamic scripting languages. Draft:
Monday 17th August, 2009 at 10:29.

BIGGAR, P., DE VRIES, E. & GREGG, D. (2009). A practical solution for scripting language
compilers. In Proceedings of the 24th ACM Symposium on Applied Computing, 1916–
1923.

BISHOP, M., BISHOP, M., DILGER, M. & DILGER, M. (1996). Checking for race condi-
tions in file accesses. Computing Systems, 9, 131–152.

BOYD, S.W. & KEROMYTIS, A.D. (2004). SQLrand: Preventing SQL injection attacks.
In Proceedings of the 2nd Applied Cryptography and Network Security Conference, 292–
302.

BRADSHAW, S. (2010a). Fuzzer automation with spike.
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/.

BRADSHAW, S. (2010b). An introduction to fuzzing: Using fuzzers (spike) to find vulnera-
bilities. http://resources.infosecinstitute.com/intro-to-fuzzing/.

BRIAND, L.C., WÜST, J., DALY, J.W. & PORTER, D.V. (2000). Exploring the relation-
ships between design measures and software quality in object-oriented systems. Journal

of Systems and Software, 51, 245–273.

174

BIBLIOGRAPHY

BUEHRER, G.T., WEIDE, B.W. & SIVILOTTI, P. (2005). Using parse tree validation to pre-
vent SQL injection attacks. In Proceedings of the 5th International Workshop on Software

Engineering and Middleware, 106–113.

BUGTRAQ (2015). http://www.securityfocus.com.

BUSH, W., PINCUS, J. & SIELAFF, D. (2000). A static analyzer for finding dynamic pro-
gramming errors. Software Practice and Experience, 30, 775–802.

CADAR, C., DUNBAR, D. & ENGLER, D. (2008). Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, 209–224.

CECCHET, E., UDAYABHANU, V., WOOD, T. & SHENOY, P. (2011). Benchlab: An open
testbed for realistic benchmarking of web applications. In Proceedings of the 2nd USENIX

Conference on Web Application Development.

CHANDOLA, V., BANERJEE, A. & KUMAR, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys, 41, 15:1–15:58.

CHESS, B. & MCGRAW, G. (2004). Static Analysis for Security. IEEE Security and Pri-

vacy, 2, 76–79.

CHESS, B. & WEST, J. (2007). Secure programming with static analysis. Addison-Wesley.

CHIPOUNOV, V., KUZNETSOV, V. & CANDEA, G. (2011). S2e: A platform for in-vivo
multi-path analysis of software systems. In Proceedings of the 16th International Con-

ference on Architectural Support for Programming Languages and Operating Systems,
265–278.

CLARKE, J. (2009). SQL Injection Attacks and Defense. Syngress.

COWAN, C., PU, C., MAIER, D., HINTONY, H., WALPOLE, J., BAKKE, P., BEATTIE, S.,
GRIER, A., WAGLE, P. & ZHANG, Q. (1998). Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security

Symposium, 63–78.

CVE (2015). http://cve.mitre.org.

175

BIBLIOGRAPHY

DAHSE, J. & HOLZ, T. (2014). Simulation of built-in PHP features for precise static code

analysis. In Proceedings of the 21st Network and Distributed System Security Symposium.

DAHSE, J. & HOLZ, T. (2015). Experience report: An empirical study of PHP security

mechanism usage. In Proceedings of the 2015 International Symposium on Software Test-

ing and Analysis, 60–70.

DAHSE, J., KREIN, N. & HOLZ, T. (2014). Code reuse attacks in PHP: Automated pop

chain generation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, 42–53.

DB-ENGINES (2015). http://db-engines.com/en/ranking.

DE POEL, N.L. (2010). Automated Security Review of PHP Web Applications with Static

Code Analysis. Master’s thesis, State University of Groningen.

DEMILLO, R.A., LIPTON, R.J. & SAYWARD, F.G. (1978). Hints on test data selection:

Help for the practicing programmer. Computer, 11, 34–41.

DEMŠAR, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Jour-

nal of Machine Learning Research, 7, 1–30.

DOUGLEN, A. (2007). SQL smuggling or, the attack that wasn’t there. Tech. rep., COMSEC

Consulting, Information Security.

DOUPÉ, A., CAVEDON, L., KRUEGEL, C. & VIGNA, G. (2012). Enemy of the state: A

state-aware black-box web vulnerability scanner. In Proceedings of the 21st USENIX Con-

ference on Security Symposium, Security ’12, 26–26.

DOWD, M., MCDONALD, J. & SCHUH, J. (2006). Art of Software Security Assessment.

Pearson Professional Education.

DUCHÈNE, F., RAWAT, S., RICHIER, J. & GROZ, R. (2013). Ligre: Reverse-engineering

of control and data flow models for black-box XSS detection. In Proceedings of the 20th

Working Conference on Reverse Engineering, 252–261.

176

BIBLIOGRAPHY

DUCHÈNE, F., RAWAT, S., RICHIER, J. & GROZ, R. (2014). Kameleonfuzz: Evolutionary
fuzzing for black-box XSS detection. In Proceedings of the 4th ACM Conference on Data

and Application Security and Privacy, 37–48.

DURÃES, J. & MADEIRA, H. (2006). Emulation of software faults: A field data study and
a practical approach. IEEE Transactions on Software Engineering, 32, 849–867.

ETOH, H. & YODA, K. (2002). ProPolice: Improved Stack-smashing Attack Detection.
Transactions of Information Processing Society of Japan, 43, 4034–4041.

EVANS, D. & LAROCHELLE, D. (2002). Improving security using extensible lightweight
static analysis. IEEE Software, 42–51.

EVANS, D., GUTTAG, J., HORNING, J. & TAN, Y.M. (1994). Lclint: A tool for using
specifications to check code. SIGSOFT Software Engineering Notes, 19, 87–96.

EVRON, G. & RATHAUS, N. (2007). Open Source Fuzzing Tools. Elsevier Inc., 1st edn.

FONSECA, J. & VIEIRA, M. (2014). A practical experience on the impact of plugins in web
security. In Proceedings of the 33rd IEEE Symposium on Reliable Distributed Systems,
21–30.

FOSTER, J.S., FÄHNDRICH, M. & AIKEN, A. (1999). A theory of type qualifiers. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, 192–203.

GÁLAN, E.C., ALCAIDE, A., ORFILA, A. & ALÍS, J.B. (2010). A multi-agent scanner to
detect stored-xss vulnerabilities. In Proceedings of the IEEE International Conference for

Internet Technology and Secured Transactions, 1–6.

GAMBAS (2015). http://gambas.sourceforge.net/.

GODEFROID, P., KLARLUND, N. & SEN, K. (2005). Dart: Directed automated random test-
ing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, 213–223.

GODEFROID, P., LEVIN, M.Y. & MOLNAR, D.A. (2008). Automated whitebox fuzz test-
ing. In Proceedings of the Network and Distributed System Security Symposium.

177

BIBLIOGRAPHY

GODEFROID, P., LEVIN, M.Y. & MOLNAR, D. (2012). Sage: Whitebox fuzzing for secu-

rity testing. Communication ACM, 55, 40–44.

HALFOND, W. & ORSO, A. (2005). AMNESIA: analysis and monitoring for neutralizing

SQL-injection attacks. In Proceedings of the 20th IEEE/ACM International Conference

on Automated Software Engineering, 174–183.

HALFOND, W., ORSO, A. & MANOLIOS, P. (2008). WASP: protecting web applications

using positive tainting and syntax-aware evaluation. IEEE Transactions on Software En-

gineering, 34, 65–81.

HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M. & BOS, H. (2013). Dowsing for

overflows: A guided fuzzer to find buffer boundary violations. In Proceedings of the 22nd

USENIX Security Symposium, 49–64.

HAN, J., KAMBER, M. & PEI, J. (2011). Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 3rd edn.

HAND, D.J., SMYTH, P. & MANNILA, H. (2001). Principles of Data Mining. MIT Press.

HLADKÁ, B. & HOLUB, M. (2015). A gentle introduction to machine learning for natural

language processing: How to start in 16 practical steps. Language and Linguistics Com-

pass, 9, 55–76.

HOWARD, G.M., GUTIERREZ, C.N., ARSHAD, F.A., BAGCHI, S. & QI, Y. (2014). pSi-

gene: Webcrawling to generalize SQL injection signatures. In Proceedings of the 44th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 45–

56.

HOWARD, M. & LEBLANC, D. (2003). Writing Secure Code. 2nd edition. Microsoft Press.

HOWARD, M. & LEBLANC, D. (2007). Writing Secure Code for Windows Vista. Microsoft

Press, 1st edn.

HUANG, J.C. (2009). Software Error Detection through Testing and Analysis. John Wiley

and Sons, Inc.

178

BIBLIOGRAPHY

HUANG, Y.W., HUANG, S.K., LIN, T.P. & TSAI, C.H. (2003). Web application security

assessment by fault injection and behavior monitoring. In Proceedings of the 12th Inter-

national Conference on World Wide Web, 148–159.

HUANG, Y.W., YU, F., HANG, C., TSAI, C.H., LEE, D.T. & KUO, S.Y. (2004). Securing

web application code by static analysis and runtime protection. In Proceedings of the 13th

International World Wide Web Conference, 40–52.

ICS-CERT (2015). Incident response/vulnerability coordination in 2014. ICS-CERT Moni-

tor.

IMPERVA (2014). Anatomy of comment spam. hacker intelligence initiative.

IMPERVA (2015). Web application attack report #6.

JACKSON, D. & RINARD, M. (2000). Software analysis: A roadmap. In Proceedings of the

Conference on The Future of Software Engineering, ICSE’00, 133–145.

JIMENEZ, W., MAMMAR, A. & CAVALLI, A. (2009). Software vulnerabilities, prevention

and detection methods: A review. In Proceedings of the European Workshop on Security

in Model Driven Architecture, SEC-MDA’09, 6–13.

JOVANOVIC, N., KRUEGEL, C. & KIRDA, E. (2006). Precise alias analysis for static detec-

tion of web application vulnerabilities. In Proceedings of the 2006 Workshop on Program-

ming Languages and Analysis for Security, 27–36.

JSOUP (2014). Jsoup. http://jsoup.org.

JURAFSKY, D. & MARTIN, J.H. (2008). Speech and Language Processing. Prentice Hall.

KAKSONEN, R. (2001). A functional method for assessing protocol implementation security.

Tech. rep. 448, VTT.

KC, G.S., KEROMYTIS, A.D. & PREVELAKIS, V. (2003). Countering code-injection at-

tacks with instruction-set randomization. In Proceedings of the 10th ACM Conference on

Computer and Communications Security, 272–280.

179

BIBLIOGRAPHY

KHOSRONEJAD, M., SHARIFIFAR, E., TORSHIZI, H.A. & JALALI, M. (2013). Develop-
ing a hybrid method of hidden Markov models and c5.0 as a intrusion detection system.
International Journal of Database Theory and Application, 6, 165–174.

KIEYZUN, A. ET AL. (2009). Automatic creation of SQL injection and cross-site scripting
attacks. In Proceedings of the 31st International Conference on Software Engineering,
199–209.

KOSCHANY, M. (2013). Debian hardening. https://wiki.debian.org/ Hardening.

LANDI, W. (1992). Undecidability of static analysis. ACM Letters on Programming Lan-

guages and Systems, 1, 323–337.

LESSMANN, S., BAESENS, B., MUES, C. & PIETSCH, S. (2008). Benchmarking classifi-
cation models for software defect prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, 34, 485–496.

MARIADB (2015). Mariadb dbms. http://mariadb.org.

MASRI, W. & SLEIMAN, S. (2015). SQLPIL: SQL injection prevention by input labeling.
Security and Communication Networks, 8, 2545–2560.

MEASUREIT (2014). https://code.google.com/p/measureit/.

MEDEIROS, I. (2014). WAP website. http://awap.sourceforge.net/.

MEDEIROS, I. (2015). OWASP WAP - Web Application Protection.
https://www.owasp.org/index.php/OWASP_WAP-Web_Application_Protection.

MERLO, E., LETARTE, D. & ANTONIOL, G. (2007). Automated Protection of PHP Appli-
cations Against SQL Injection Attacks. In Proceedings of the 11th European Conference

on Software Maintenance and Reengineering, 191–202.

MICHAEL, C. & LAVENHAR, S.R. (2006). Source Code Analysis Tools – Overview.
https://buildsecurityin.us-cert.gov/articles/tools/source-code-analysis/source-code-
analysis-tools—overview.

MILLER, B.P., FREDRIKSEN, L. & SO, B. (1990). An empirical study of the reliability of
unix utilities. Communications of the ACM, 33, 32–44.

180

BIBLIOGRAPHY

MODELO-HOWARD, G., GUTIERREZAND, C., ARSHAD, F., BAGCHI, S. & QI, Y. (2014).

Psigene: Webcrawling to generalize SQL injection signatures. In Proceedings of the 44th

IEEE/IFIP International Conference on Dependable Systems and Networks, 45–56.

MONGODB (2015). https://www.mongodb.org/.

NEUHAUS, S., ZIMMERMANN, T., HOLLER, C. & ZELLER, A. (2007). Predicting vulner-

able software components. In Proceedings of the 14th ACM Conference on Computer and

Communications Security, 529–540.

NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., SHIRLEY, J. & EVANS, D. (2005).

Automatically hardening web applications using precise tainting. Security and Privacy in

the Age of Ubiquitous Computing, 295–307.

NIST (2016). NIST’S SAMATE.

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html.

NUNAN, A.E., SOUTO, E., DOS SANTOS, E.M. & FEITOSA, E. (2012). Automatic classi-

fication of cross-site scripting in web pages using document-based and url-based features.

In Proceedings of the IEEE Symposium on Computers and Communications, 702–707.

NUNES, P., FONSECA, J. & VIEIRA, M. (2015). phpSAFE: A security analysis tool for

OOP web application plugins. In Proceedings of the 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks.

OPENSOURCETESTING.ORG (2015). Open Source Testing.

http://www.opensourcetesting.org/security.php.

OSVDB (2015). http://osvdb.org.

OWASP (2013). Session fixation. https://www.owasp.org/index.php/Session_fixation.

OWASP (2014a). Owasp esapi. https://www.owasp.org/index.php/ESAPI.

OWASP (2014b). Testing for NoSQL injection.

https://www.owasp.org/index.php/Testing_for_NoSQL_injection.

PACKET STORM (2015). https://packetstormsecurity.com.

181

BIBLIOGRAPHY

PAPAGIANNIS, I., MIGLIAVACCA, M. & PIETZUCH, P. (2011). PHP Aspis: using partial

taint tracking to protect against injection attacks. In Proceedings of the 2nd USENIX Con-

ference on Web Application Development.

PARR, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf.

PARR, T. (2009). Language Implementation Patterns: Create Your Own Domain-Specific

and General Programming Languages. Pragmatic Bookshelf.

PERL, H., DECHAND, S., SMITH, M., ARP, D., YAMAGUCHI, F., RIECK, K., FAHL, S. &

ACAR, Y. (2015). VCCFinder: Finding potential vulnerabilities in open-source projects

to assist code audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, 426–437.

PHP ADDRESS BOOK (2015). http://php-addressbook.sourceforge.net.

PIETRASZEK, T. & BERGHE, C.V. (2005). Defending against injection attacks through

context-sensitive string evaluation. In Proceedings of the 8th International Conference

on Recent Advances in Intrusion Detection, 124–145.

POSTGRESQL (2015). Postgresql dbms. http://www.postgresql.org/.

POWERS, D. (2015). Evaluation a monte carlo study. CoRR, abs/1504.00854, 843–844.

RABINER, L.R. (1989). A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77, 257–286.

RASTHOFER, S., ARZT, S. & BODDEN, E. (2014). A machine-learning approach for clas-

sifying and categorizing android sources and sinks. In Proceedings of the 2014 Network

and Distributed System Security Symposium (NDSS).

RAY, D. & LIGATTI, J. (2012). Defining code-injection attacks. In Proceedings of the 39th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

179–190.

REFBASE (2015). http://http://www.refbase.net.

182

BIBLIOGRAPHY

RON, A., SHULMAN-PELEG, A. & BRONSHTEIN, E. (2015). No sql, no injection? exam-

ining nosql security. CoRR, abs/1506.04082.

SABELFELD, A. & MYERS, A.C. (2003). Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21, 5–19.

SAMATE, N. (2014). Nist’s samate reference dataset (srd). https://samate.nist.gov/SRD/.

SANDHU, R.S. (1993). Lattice-based access control models. IEEE Computer, 26, 9–19.

SAXENA, P., HANNA, S., POOSANKAM, P. & SONG, D. (2010). FLAX: systematic dis-

covery of client-side validation vulnerabilities in rich web applications. In Proceedings of

the Network and Distributed System Security Symposium.

SCAMBRAY, J., LUI, V. & SIMA, C. (2011). Hacking Exposed Web Applications: Web

Application Security Secrets and Solutions. Mc Graw Hill.

SCANDARIATO, R., WALDEN, J., HOVSEPYAN, A. & JOOSEN, W. (2014). Predicting vul-

nerable software components via text mining. IEEE Transactions on Software Engineer-

ing, 40, 993–1006.

SEARCH SECURITY TECHTARGET (2015). Wordpress vulnerable to stored XSS.

http://searchsecurity.techtarget.com/news/4500245137/WordPress-vulnerable-to-stored-

XSS-researchers-find.

SELENIUM (2014). Selenium IDE. https://docs.seleniumhq.org.

SHANKAR, U., TALWAR, K., FOSTER, J.S. & WAGNER, D. (2001). Detecting format-

string vulnerabilities with type qualifiers. In Proceedings of the 10th USENIX Security

Symposium.

SHAR, L.K. & TAN, H.B.K. (2012a). Automated removal of cross site scripting vulnera-

bilities in web applications. Information and Software Technology, 54, 467–478.

SHAR, L.K. & TAN, H.B.K. (2012b). Mining input sanitization patterns for predicting SQL

injection and cross site scripting vulnerabilities. In Proceedings of the 34th International

Conference on Software Engineering, 1293–1296.

183

BIBLIOGRAPHY

SHAR, L.K. & TAN, H.B.K. (2012c). Predicting common web application vulnerabilities

from input validation and sanitization code patterns. In Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, 310–313.

SHAR, L.K., TAN, H.B.K. & BRIAND, L.C. (2013). Mining SQL injection and cross site

scripting vulnerabilities using hybrid program analysis. In Proceedings of the 35th Inter-

national Conference on Software Engineering, 642–651.

SHIN, Y., MENEELY, A., WILLIAMS, L. & OSBORNE, J.A. (2011). Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulnerabilities. IEEE

Transactions on Software Engineering, 37, 772–787.

SMITH, N.A. (2011). Linguistic Structure Prediction. Graeme Hirst.

SON, S. & SHMATIKOV, V. (2011). SAFERPHP: Finding semantic vulnerabilities in PHP

applications. In Proceedings of the ACM SIGPLAN 6th Workshop on Programming Lan-

guages and Analysis for Security.

SON, S., MCKINLEY, K.S. & SHMATIKOV, V. (2013). Diglossia: detecting code injection

attacks with precision and efficiency. In Proceedings of the 20th ACM Conference on

Computer and Communications Security, 1181–1192.

SOSKA, K. & CHRISTIN, N. (2014). Automatically detecting vulnerable websites before

they turn malicious. In Proceedings of the 23rd USENIX Security Symposium, 625–640.

SPRING (2014a). Spring framework. http://spring.io/.

SPRING (2014b). Spring support. http://docs.spring.io/spring/docs/2.5.4/reference/aop.html.

SQLMAP (2014). sqlmap project. https://github.com/sqlmapproject/testenv/tree/master/mysql.

STUTTARD, D. & PINTO, M. (2007). The Web Application Hacker’s Handbook: Discover-

ing and Exploiting Security. Wiley Publishing, Inc.

SU, Z. & WASSERMANN, G. (2006). The essence of command injection attacks in web ap-

plications. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles

Of Programming Languages, 372–382.

184

BIBLIOGRAPHY

SULTANA, A., HAMOU-LHADJ, A. & COUTURE, M. (2012). An improved hidden Markov
model for anomaly detection using frequent common patterns. In Proceedings of the IEEE

International Conference on Communications, 1113–1117.

SUTTON, M., GREENE, A. & AMINI, P. (2007). Fuzzing: Brute Force Vulnerability Dis-

covery. Addison-Wesley, 1st edn.

SYMANTEC (2013). Internet threat report. 2012 trends, volume 18.

SYMANTEC (2014). Internet threat report. 2013 trends, volume 19.

SYMANTEC (2015). Internet threat report. 2014 trends, volume 20.

T. BUDD ET AL. (1978). The design of a prototype mutation system for program testing. In
Proceedings of the AFIPS National Computer Conference, 623–627.

TAN, L., ZHANG, X., MA, X., XIONG, W. & ZHOU, Y. (2008). AutoISES: Automati-
cally inferring security specifications and detecting violations. In Proceedings of the 17th

Conference on Security Symposium, 379–394.

THE HACKER NEWS (2015). 600tb MongoDB database accidentally exposed on the inter-
net. http://thehackernews.com/2015/07/MongoDB-Database-hacking-tool.html.

TRINH, M.T., CHU, D.H. & JAFFAR, J. (2014). S3: A symbolic string solver for vulnera-
bility detection in web applications. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, 1232–1243.

TRUSTWAVE SPIDERLABS (2015). ModSecurity - Open Source Web Application Firewall.
http://www.modsecurity.org.

VALEUR, F., MUTZ, D. & VIGNA, G. (2005). A learning-based approach to the detection
of SQL attacks. In Proceedings of the 2nd Detection of Intrusions and Malware, and

Vulnerability Assessment, 123–140.

VAN DE VEN, A. (2005). Limiting buffer overflows with execshield. Magazine 9, RedHat.

VIEGA, J., BLOCH, J., KOHNO, Y. & MCGRAW, G. (2000). Its4: a static vulnerability
scanner for C and C++ code. In Computer Security Applications, 2000. ACSAC ’00. 16th

Annual Conference, 257–267.

185

BIBLIOGRAPHY

VIEIRA, M., ANTUNES, N. & MADEIRA, H. (2009). Using web security scanners to de-

tect vulnerabilities in web services. In Proceedings of the 39th IEEE/IFIP International

Conference on Dependable Systems and Networks.

VITERBI, A. (1967). Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13, 260–269.

WAGLE, P. & COWAN, C. (2003). Stackguard: Simple stack smash protection for gcc. In

Proceedings of the GCC Developers Summit, 243–255.

WAGNER, D., FOSTER, J.S., BREWER, E.A. & AIKEN, A. (2000). A first step towards

automated detection of buffer overrun vulnerabilities. In Network and Distributed System

Security Symposium, 3–17.

WALDEN, J., DOYLE, M., WELCH, G.A. & WHELAN, M. (2009). Security of open source

web applications. In Proceedings of the 3rd International Symposium on Empirical Soft-

ware Engineering and Measurement, 545–553.

WANG, X., PAN, C., LIU, P. & ZHU, S. (2006). SigFree: A signature-free buffer overflow

attack blocker. In Proceedings of the 15th USENIX Security Symposium, 225–240.

WANG, Y., LI, Z. & GUO, T. (2011). Program slicing stored XSS bugs in web applica-

tion. In Proceedings of the 5th IEEE International Conference on Theoretical Aspects of

Software Engineering, 191–194.

WASSERMANN, G. & SU, Z. (2007). Sound and precise analysis of web applications for

injection vulnerabilities. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, 32–41.

WEBCHESS (2014). http://sourceforge.net/projects/webchess/.

WHITEHAT SECURITY (2015). Website security statistics report.

WILANDER, J. (2005). Modeling and visualizing security properties of code using depen-

dence graphs. In Proceedings of the 5th Conference on Software Engineering Research

and Practice, 65–74.

186

BIBLIOGRAPHY

WILLIAMS, J. & WICHERS, D. (2010). OWASP Top 10 - the ten most critical web applica-
tion security risks (2010). Tech. rep., OWASP Foundation.

WILLIAMS, J. & WICHERS, D. (2013). OWASP Top 10 2013 – the ten most critical web
application security risks.

WITTEN, I.H., FRANK, E. & HALL, M.A. (2011). Data Mining: Practical Machine Learn-

ing Tools and Techniques. Morgan Kaufmann, 3rd edn.

WORDPRESS (2015). https://wordpress.org/.

XU, W., BHATKAR, S. & SEKAR, R. (2005). Practical dynamic taint analysis for countering
input validation attacks on web applications. Tech. Rep. SECLAB-05-04, Department of
Computer Science, Stony Brook University.

YAMAGUCHI, F., WRESSNEGGER, C., GASCON, H. & RIECK, K. (2013). Chucky: Ex-
posing missing checks in source code for vulnerability discovery. In Proceedings of the

20th ACM SIGSAC Conference on Computer Communications Security, 499–510.

YAMAGUCHI, F., GOLDE, N., ARP, D. & RIECK, K. (2014). Modeling and discovering
vulnerabilities with code property graphs. In Proceedings of the 2014 IEEE Symposium

on Security and Privacy, 590–604.

YAMAGUCHI, F., MAIER, A., GASCON, H. & RIECK, K. (2015). Automatic inference of
search patterns for taint-style vulnerabilities. In Proceedings of the 2015 IEEE Symposium

on Security and Privacy, 797–812.

ZEROCMS (2014). Content management system built using PHP and MySQL.
Http://www.aas9.in/zerocms/.

ZHENG, Y. & ZHANG, X. (2013). Path sensitive static analysis of web applications for
remote code execution vulnerability detection. In Proceedings of the 2013 International

Conference on Software Engineering, 652–661.

187

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Notations and Acronyms
	List of Publications
	1 Introduction
	1.1 Objectives
	1.2 Summary of Contributions
	1.3 Structure of the Thesis

	2 Context and Related Work
	2.1 Input Validation Vulnerabilities in Web Applications
	2.1.1 Query manipulation
	2.1.2 Client-side injection
	2.1.3 File and path injection
	2.1.4 Command injection

	2.2 Detection of Vulnerabilities
	2.2.1 Static analysis
	2.2.2 Fuzzing

	2.3 Vulnerabilities and Machine Learning
	2.3.1 Machine learning classifiers and data mining
	2.3.2 Sequence models and natural language processing
	2.3.3 Detecting vulnerabilities using machine learning
	2.3.4 Related uses of machine learning

	2.4 Removing Vulnerabilities and Runtime Protection
	2.4.1 Removing vulnerabilities
	2.4.2 Runtime protection

	3 Detecting and Removing Vulnerabilities with Static Analysis and Data Mining
	3.1 A Hybrid of Static Analysis and Data Mining
	3.1.1 Overview of the approach
	3.1.2 Architecture

	3.2 Detecting Candidate Vulnerabilities by Taint Analysis
	3.3 Predicting False Positives
	3.3.1 Classification of vulnerabilities
	3.3.2 Classifiers and metrics
	3.3.3 Evaluation of classifiers
	3.3.4 Selection of classifiers
	3.3.5 Final selection and implementation

	3.4 Fixing and Testing the Source Code
	3.4.1 Code correction
	3.4.2 Testing fixed code

	3.5 Implementation and Challenges
	3.6 Experimental Evaluation
	3.6.1 Large scale evaluation
	3.6.2 Taint analysis comparative evaluation
	3.6.3 Full comparative evaluation
	3.6.4 Fixing vulnerabilities
	3.6.5 Testing fixed applications

	3.7 Conclusions

	4 Detecting Vulnerabilities using Weapons
	4.1 Architecture
	4.2 Restructuring WAP
	4.2.1 Code analyzer
	4.2.2 False positive predictor
	4.2.3 Code corrector
	4.2.4 Weapons
	4.2.5 Effort to modify WAP

	4.3 Extending WAP with weapons
	4.3.1 Reusing the sub-modules
	4.3.2 Creating weapons

	4.4 Experimental Evaluation
	4.4.1 Real web applications
	4.4.2 WordPress plugins

	4.5 Conclusions

	5 Learning to Detect Vulnerabilities
	5.1 Overview of the Approach
	5.2 Intermediate Slice Language
	5.2.1 ISL tokens and grammar
	5.2.2 Variable map
	5.2.3 Slice translation process

	5.3 The Model
	5.3.1 Building the corpus
	5.3.2 Sequence model
	5.3.3 Detecting vulnerabilities

	5.4 Implementation and Assessment
	5.4.1 Implementation of the DEKANT
	5.4.2 Model and corpus assessment

	5.5 Experimental Evaluation
	5.5.1 Open source software evaluation
	5.5.2 Comparison with data mining tools
	5.5.3 Comparison with taint analysis tools

	5.6 Discussion
	5.7 Conclusions

	6 Preventing Injection Attacks inside the DBMS
	6.1 DBMS Injection Attacks
	6.2 The SEPTIC Approach
	6.2.1 SEPTIC overview
	6.2.2 Query structures and query models
	6.2.3 Query identifiers
	6.2.4 Attack detection
	6.2.5 Training
	6.2.6 Detection examples
	6.2.7 Discussion

	6.3 Implementation
	6.3.1 Protecting MySQL
	6.3.2 Inserting identifiers in Zend
	6.3.3 Inserting identifiers in Spring / Java

	6.4 Experimental Evaluation
	6.4.1 Attack detection
	6.4.2 Performance overhead

	6.5 Extensions to SEPTIC
	6.5.1 Protecting other DBMSs
	6.5.2 Vulnerability diagnosis
	6.5.3 Detecting attacks against non-web applications

	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

