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Abstract	
	

Amyotrophic	lateral	sclerosis	(ALS)	and	spinal	muscular	atrophy	(SMA)	are	characterized	
by	motor	 neuron	 (MN)	 degeneration	 and	 commonly	 referred	 as	motor	 neuron	 diseases	
(MND).	MN	degeneration	leads	to	the	loss	of	muscle	innervation	and	subsequent	muscular	
atrophy.	 In	 addition	 to	 phenotypic	 similarity,	 they	 also	 share	molecular	 overlaps.	 Genes	
that	 codify	 FUS,	 TDP43,	 SETX	 and	 SOD1	proteins	 are	 the	 best-known	 causative	 genes	 of	
ALS	and	SMN	dysfunction	is	the	cause	of	SMA.	FUS,	TDP43,	SMN	and	SETX	(FTSS)	proteins	
are	 known	 to	 physically	 interact	 and	 are	 involved	 in	 similar	 functions,	 many	 of	 which	
related	to	RNA	metabolism	processes.	

	
This	 supports	 the	 hypothesis	 that	 ALS	 and	 SMA	 are	 different	 pathophenotypic	 results	
derived	from	related	molecular	origins,	in	particular	from	RNA	homeostasis	perturbation.	
However,	 it	 is	 very	 intriguing	 how	 such	 critical	 events	 could	 specifically	 induce	 motor	
neuron	perturbation.	Besides,	RNA	metabolism	is	not	the	only	function	described	for	MND	
associated	 genes,	 indeed	 FTSS	 proteins	 are	 highly	 multifunctional	 which	 hinders	 the	
identification	of	the	most	relevant	functions	in	this	context.	
	
In	 order	 to	 solve	 these	questions	we	 followed	a	 systems	biology	 approach	 exploring	 the	
interactomic	 and	 functional	 framework	 of	 MN	 degeneration.	 Under	 the	 hypothesis	 that	
FTSS	 proteins	 are	 central	 elements	 in	 MN	 degeneration,	 we	 performed	 a	 local	 network	
analysis	to	unravel	the	most	influential	functions	among	FTSS	proteins.	We	constructed	a	
protein-protein	 interaction	 (PPI)	 network	 constituted	 by	 FTSS	 proteins'	 common	
interactors	 to	 identify	 the	 most	 over	 represented	 functions	 within	 this	 FTSS-focused	
network.		
	
We	also	performed	a	PPI	network	analysis	including	all	the	known	MND	associated	genes.	
For	 that	 purpose	 we	 developed	 a	 new	 method,	 S2B	 (double	 specific	 betweenness)	 to	
prioritize	 nodes	 specifically	 linking	 a	 pair	 of	 diseases.	 While	 standard	 betweenness	 is	
measured	 for	 all	 possible	 shortest	 paths	 between	 any	 nodes,	 S2B	 only	 considers	 those	
shortest	paths	involving	Disease	Associated	Genes	(DAGs)	from	one	disease	as	initial	nodes	
and	DAGs	 from	 the	 other	 disease	 as	 final	 nodes.	 Therefore,	 S2B	method	 only	 prioritizes	
proteins	 linking	 MND	 causative	 genes.	 Moreover,	 knowing	 that	 highly	 connected	 nodes	
(hubs)	 are	more	 likely	 found	by	 chance	 in	 a	 shortest	 paths	 involving	DAGs,	 S2B	method	
also	performs	 two	network	 randomization-based	statistics	 to	 filter	out	proteins	 that	 link	
MND	DAGs	non	specifically.	
	
Finally	 we	 functionally	 enriched	 the	 prioritized	 candidates	 and	 compared	 against	 the	
functional	 set	 obtained	with	 FTTS-focused	 network	 in	 other	 to	 explore	 the	 role	 of	 RNA	
metabolism	and	other	putative	molecular	mechanisms	on	MN	degeneration.	The	combined	
approaches	used	in	this	work	provided	novel	biological	processes	simultaneously	involved	
in	ALS	and	SMA	diseases	and	confirmed	the	relevance	of	known	related	processes.		
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Globally,	 our	 results	 suggest	 five	 pathways	 in	 common	 between	 ALS	 and	 SMA:	 1)	 DNA	
damage	 and	 apoptosis	 induced	 by	 R-loop	 deregulation,	 2)	 inflammation	 and	
neurodegeneration	 induced	by	 immune	hyper-sensitivity,	 3)	 chromatin	deregulation	and	
genotoxicity	produced	by	histone	biogenesis	perturbation,	4)	 splicing	patterns	alteration	
and	 genotoxicity	 produced	 by	 spliceosome	 assembly	 failure	 and	 5)	 deregulation	 of	
microtubule	 related	 processes	 leading	 to	 morphological	 problems	 in	 axon	 and	 synapse	
formation.	
	
Besides	the	new	hypothesis	of	common	pathomechanisms	in	MNDs,	our	work	also	supplies	
a	new	network-based	DAG	prioritization	method,	S2B,	 to	 identify	disease-disease	 linking	
candidates	we	expect	to	contribute	to	the	study	of	various	complex	diseases.	
	
	
	
Keywords:	 Amyotrophic	 Lateral	 Sclerosis,	 Disease-Associated	 Gene	 prioritization,	
network	biology,	Spinal	Muscular	Atrophy,	systems	biology	
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Resumo		
	
	
A	esclerose	lateral	amiotrófica	(ALS)	e	a	atrofia	muscular	espinal	(SMA)	são	caracterizadas	pela	
degeneração	 dos	 neurónios	 motores	 (MN)	 e	 são	 comummente	 conhecidas	 como	 doenças	
neuromusculares,	 ou	 mais	 especificamente	 doenças	 do	 neurónio	 motor	 (MND).	 A	 morte	 dos	
neurónios	 motores	 está	 diretamente	 envolvida	 na	 perda	 da	 inervação	 muscular	 e	 na	
consequente	 atrofia	 muscular.	 Para	 além	 da	 convergência	 fenotípica,	 estas	 doenças	 também	
partilham	 grandes	 semelhanças	 moleculares.	 A	 perda	 de	 função	 dos	 genes	 que	 codificam	 as	
proteínas	FUS,	TDP43,	SETX		e	SOD1	são	as	causas	mais	conhecidas	de	ALS.	No	caso	da	SMA,	a	
doença	é	provocada	pela	produção	de	 formas	não	funcionais	da	proteína	SMN.	Sabe-se	que	as	
proteínas	FUS,	TDP43,	SMN	e	SETX	(FTSS)	interagem	fisicamente	e,	além	disso,	são	conhecidas	
por	estar	envolvidas	num	conjunto	de	funções	semelhantes,	muitas	das	quais	estão	relacionados	
com	os	processos	de	metabolismo	do	RNA.	
	
Esta	observação	levou	à	hipótese	de	que	a	ALS	e	a	SMA	são	fenótipos	patológicos	que,	apesar	de	
diferentes,	 derivam	 de	 mecanismos	 moleculares	 semelhantes,	 possivelmente	 associados	 à	
perturbação	da	hemóstase	do	RNA.	No	entanto	,	é	muito	intrigante	como	eventos	transversais	a	
todos	 os	 tipos	 celulares	 podem	 induzir	 a	 morte	 especifica	 dos	 neurónios	 motores.	 A	 fim	 de	
resolver	estas	questões	nós	propomos	uma	abordagem	de	biologia	de	sistemas	para	descrever	a	
estrutura	interactómica	e	funcional	da	degeneração	dos	neurónios	motores.	
	
A	biologia	de	sistemas	(systems	biology)	baseia-se		no	pressuposto	de	que	"o	todo	é	mais	do	que	
a	soma	das	partes".	Utiliza	um	abordagem	holística	para	decifrar	a	complexidade	dos	sistemas	
biológicos	 e	 para	 isso	 integra	 muitas	 disciplinas	 científicas	 como	 a	 biologia,	 ciências	
computacionais,	 estatística	 e	 matemática.	 A	 biologia	 de	 sistemas	 concebe	 as	 entidades	
biológicas	 como	 sistemas	 complexos	 de	 elementos	 interrelacionados.	 Deste	 modo,	 uma	 boa	
maneira	 de	 entender	 as	 suas	 propriedades	 é	 representando-as	 como	 redes	 (networks).	 A	
biologia	 de	 redes	 (networks	 biology)	 é	 um	 subcampo	 da	 biologia	 de	 sistemas	 que	 explora	 os	
princípios	da	teoria	de	redes	para	inferir	informação	biológica.	Da	mesma	forma,	as	doenças	são	
o	 resultado	 fenotípico	 de	 perturbações	 interrelacionadas	 e	 assim	 também	 podem	 ser	
representadas	como	redes	biológicas.	A	medicina	de	redes	é,	por	sua	vez,	focalizada	na	obtenção	
de	conhecimento	biomédico	a	partir	da	biologia	de	redes.	
	
O	 nosso	 principal	 objetivo	 é,	 em	primeiro	 lugar,	 identificar	 os	 elementos	mais	 centrais	 numa	
rede	 de	 interação	 proteína-proteína	 contendo	 os	 genes	 associados	 à	 ALS	 e	 à	 SMA.	 Estes	
elementos	serão	parte	de	mecanismos	patológicos	hipoteticamente	envolvidos	na	degeneração	
dos	 neurónios	 motores.	 Considerando	 a	 hipótese	 de	 que	 as	 proteínas	 FTSS	 são	 elementos	
centrais	 nas	 MNDs,	 realizamos	 primeiramente	 uma	 análise	 exploratória	 para	 desvendar	 as	
funções	mais	influentes	entre	as	proteínas	FTSS.	Para	isso	foi	construída	uma	rede	de	interações	
proteína-proteína	(PPI)	constituída	pelos	interactores	mais	próximos	às	proteínas	FTSS,	o	que	
nos	permite	identificar	as	funções	mais	sobre-representadas	dentro	da	rede.		
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Embora,	 sabendo	 que	 as	 proteínas	 FTSS	 não	 são	 as	 únicas	 proteínas	 associadas	 às	 MNDs,	
também	 realizámos	 uma	 exploração	 mais	 integrativa	 incluindo	 todos	 os	 DAGs	 (genes	
associados	à	doença)	conhecidos	para	a	ALS	e	SMA	e	aplicando	um	método	de	priorização	de	
DAGs	 para	 prever	 os	 elementos	mais	 centrais	 a	 ligar	 as	 duas	 patologias.	 Contudo,	 depois	 de	
fazer	extensa	uma	pesquisa	bibliográfica,	não	encontramos	nenhum	método	com	um	objectivo	
semelhante,	pelo	que	construímos	um	método	novo	com	base	em	teoria	de	redes	para	prever	os	
nós	que	ligam	especificamente	os	DAGs	associados	a	um	par	de	doenças.	
	
O	método	S2B	foi	concebido	a	partir	do	pressuposto	de	que	as	proteínas	que	interagem	com	um	
DAG	são	provavelmente	relacionadas	com	a	mesma	doença	(constituindo	módulos	de	doenças	
na	rede)	e	também	que	os	DAGs	são	propensos	a	ser	associados	a	mais	do	que	uma	doença	(os	
módulos	 de	 doenças	 podem	 sobrepor-se).	 Assim,	 o	método	 S2B	 está	 focado	 na	medição	 dum	
tipo	 particular	 de	medida	 de	 centralidade	 (S2B	betweenness).	 O	betweeness	 é	 uma	medida	 de	
centralidade	popular	em	biologia	de	 redes	que	conta	as	vezes	que	um	nó	está	envolvido	num	
caminho	mais	 curto	 (shortest	path)	 numa	 rede.	 Geralmente	 o	betweeneess	 standard	é	medido	
para	 todos	 os	 possíveis	 caminhos	 mais	 curtos	 entre	 quaisquer	 nós	 enquanto	 que	 o	 S2B	
betweenness	 apenas	 considera	 os	 caminhos	 mais	 curtos	 entre	 pares	 de	 DAGs.	 	 Portanto,	 o	
método	S2B	só	prioriza	a	centralidade	dos	elementos	ligando	genes	causativos	de	duas	doenças.	
Além	disso,	sabendo	que	os	nós	altamente	conectados	(hubs)	são	mais	propensos	a	aparecer	por	
acaso	num	caminho	mais	curto	entre	DAGs,	o	algoritmo	do	S2B	também	utiliza	dois	algoritmos	
estatísticos	baseados	em	aleatorizações	da	rede	com	os	quais	mede	a	especificidade	dos	hubs	no	
contexto	das	doenças	em	estudo.	
	
As	proteínas	resultantes	da	priorização	realizada	pelo	S2B	foram	enriquecidos	funcionalmente.	
Os	 resultados	da	 análise	 de	 enriquecimento	 foram	 comparados	 com	os	 resultados	 obtidos	no	
analise	 da	 rede	 particular	 para	 as	 proteínas	 FTSS	 para	 assim,	 explorar	 qual	 é	 o	 papel	 do	
metabolismo	 do	 RNA	 e	 outros	 mecanismos	 moleculares	 hipotéticos	 na	 degeneração	 dos	
neurónios	motores.	
	
No	 conjunto	 das	 várias	 abordagens	 seguidas,	 este	 trabalho	 levou	 à	 descoberta	 de	 novos	
processos	biológicos	candidatos	a	mecanismos	moleculares	comuns	entre	a	ALS	e	a	SMA,	mas	
também	 confirmou	 alguns	 processos	 já	 conhecidos	 simultaneamente	 envolvidos	 na	 ALS	 e	 na	
SMA.	Globalmente,	os	nossos	resultados	sugerem	cinco	vias	moleculares	principais	em	comum	
nas	duas	patologias:	1)	danos	no	DNA	e	apoptose	induzidos	pela	desregulação	da	formação	de	
“R-loops”,	2)	inflamação	e	neurodegeneração	induzida	por	uma	hipersensibilidade	imunológica,	
3)	 desregulação	 da	 cromatina	 e	 genotoxicidade	 produzida	 pela	 perturbação	 da	 biogénese	 de	
histonas,	4)	alteração	dos	padrões	de	“splicing”	e	genotoxicidade	criada	pela	falha	da	formação	
do	 spliceossoma	 e	 5)	 desregulação	de	 processos	 relacionados	 com	microtúbulos	 que	 levam	a	
problemas	morfológicos	na	formação	de	axónios	e	sinapses.	
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As	 vias	 identificadas	 sugerem	 novas	 hipóteses	 que	 podem	 ser	 experimentalmente	 testadas.	
Assim,	esta	investigação	pode	ajudar	a	melhorar	a	compreensão	dos	mecanismos	envolvidos	na	
morte	 dos	 neurónios	 motores	 e	 também	 ajudar	 eventualmente	 ao	 desenho	 de	 alvos	
terapêuticos	e	biomarcadores	para	as	MNDs.	Além	disso,	também	fornecemos	um	novo	método	
para	 a	 priorização	 de	 DAGs	 candidatos	 a	 ligar	 os	 mecanismos	 moleculares	 de	 duas	 doenças	
relacionadas.	Tal	 	como	no	caso	das	MNDs,	esperamos	que	este	método	ajude	a	comunidade	a	
estudar	outros	tipos	de	doenças	complexas.	
	
	
Palavras-chave:	esclerose	lateral	amiotrófica,	priorização	de	genes	associados	à	doença,	
atrofia	muscular	espinal,	biologia	de	sistemas	
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Chapter	1:	Background	
	
	

Introduction	
	
	
Systems	 biology	 aims	 to	 understand	 biological	 processes	 at	 the	 system	 level.	 	 It	 focuses	 on	
understanding	 the	 roles	 of	 interactions	 between	 genes,	 proteins,	 biochemical	 reactions	 and	
other	components	in	an	organism	(Kitano	2002).	Biological	entities	and	processes	are	complex	
systems	 and	 therefore	 too	 intricate	 to	 analyze	 in	 a	 non-systematic	 way.	 These	 can	 be	 easily	
represented	 as	 networks	 and	 studied	 applying	 varied	 network	 theory	 concepts	 and	methods	
(Barabási	&	Oltvai	2004).	
	
Additionally,	thanks	to	the	development	of	high-throughput	techniques,	such	as	Next	Generation	
Sequencing,	 we	 currently	 have	 countless	 amounts	 of	 biological	 data.	 The	 availability	 of	
completely	annotated	genome	sequences	of	several	organisms	and	the	accessibility	to	databases	
of	genomic,	interactomic	or	metabolic	information	has	allowed	researchers	to	explore	biological	
questions	from	a	global	perspective.		
	
This	 is	 why	 networks	 have	 become	 a	 central	 resource	 in	 Systems	 biology.	Network	 biology	
enables	 researchers	 to	 model,	 store,	 report,	 transmit	 and	 interpret	 molecular	 interactions	
(Hiesinger	 &	 Hassan	 2005).	 Moreover,	 network	 biology	 has	 enormous	 applications	 in	
biomedical	 research.	 Phenotypes	 are	 emergent	properties	of	 the	 interactions	 among	all	 of	 the	
components	 of	 a	 system	 (Hiesinger	 &	 Hassan	 2005).	 Likewise,	 a	 disease	 is	 a	 pathologic	
phenotype	caused	by	complex	interactions	that	cannot	be	understood	in	a	reductionist	way.	This	
led	to	the	emergence	of	a	new	biomedical	field	commonly	termed	network	medicine	(Barabasi	
2007).	 Network	 theory	 techniques	 can	 be	 exploited	 to	 describe	 networks’	 properties	 and	
structure	 that	 in	 turn,	 can	 help	 us	 understand	 the	 networks	 behavior	 and	 identify	 relevant	
elements	 within	 it.	 Particularly	 in	 biological	 systems,	 networks’	 characteristics	 can	 help	 to	
identify	key	genes	or	functions	that	may	have	great	impact	on	biomedical	research.	
	
An	 interesting	 object	 of	 research	 in	 which	 network	 medicine	 can	 be	 very	 useful	 is	 the	
exploration	 of	 commonalities	 between	 Amyotrophic	 Lateral	 Sclerosis	 (ALS)	 and	 Spinal	
Muscular	Atrophy	(SMA)	diseases.		
	
Both	 are	 Motor	 Neuron	 degenerative	 Diseases	 (MND)	 and	 thus,	 share	 phenotypic	
characteristics.	Knowing	that	both	have	numerous	known	Disease	Associated	Genes	(DAG)	and	
some	of	 these	 are	 related	 to	 similar	 cellular	 functions,	 it	 has	 been	hypothesized	 that	ALS	 and	
SMA	share	molecular	pathomechanisms.	Nevertheless,	it	is	not	clear	yet	to	affirm	which	are	the	
most	central	genes	and	which	are	the	most	affected	functions	inducing	this	common	phenotype.	
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For	 further	 analysis	 of	 these	 putative	 common	 pathomechanisms,	 we	 have	 pursued	 two	
network-based	approaches.	First,	we	used	four	proteins	(SMN,	FUS,	TDP43	and	SETX)	as	seeds	
to	 search	 the	 human	 interactome	 for	 common	 interactors,	 producing	 a	 new	 disease	 related	
network	 (FTSS-focused	network).	These	 four	proteins	where	chosen	because	 they	are	 involved	
with	 the	 two	 diseases,	 have	 common	molecular	 functions	 related	with	mRNA	 processing	 and	
besides,	 physically	 interact	 with	 each	 other.	 Second,	 we	 have	 developed	 a	 method	 that	
prioritizes	 within	 a	 human	 interactome	 network	 the	 proteins	 that	 show	 higher	 specific	
betweenness	 linking	 ALS	 and	 SMA-related	 genes	 and	 thus	 possibly	 have	 key	 roles	 in	 the	
pathogenesis.	
	
In	the	remaining	sections	of	this	chapter,	the	main	concepts	behind	the	followed	network-based	
approaches	will	be	briefly	presented.	
	
	

Network	theory	
	
	
Networks	 are	 graphical	 representations	of	 relations	between	discrete	objects	within	 complex	
systems.	A	complex	 system	 is	characterized	by	two	main	properties;	 i)	they	are	composed	by	
many	components	and	ii)	these	components	are	highly	interconnected.	The	behavior	of	complex	
systems	 is	 quite	 different	 from	 merely	 the	 sum	 of	 the	 properties	 of	 its	 individual	 parts.	
Therefore,	 it	 is	 not	 possible	 to	 reliably	 predict	 the	 conduct	 of	 a	 complex	 system	 only	 by	 the	
simple	extrapolation	of	the	properties	of	a	few	components	(Anderson	P.W.	1972).		
	
Networks	 are	 not	 only	 a	 convenient	way	 of	 representing	 complex	 data	 but	 also	mathematical	
and	 computationally	 easier	 to	 handle.	 Thus,	 network	 theory	 provides	 a	 set	 of	 techniques	 to	
analyze	 complex	 systems’	 structure	 and	 behavior.	 The	 nature	 of	 complex	 systems	 is	 highly	
diverse	 and	 therefore	 network	 theory	 methodologies	 have	 been	 exploited	 in	 variety	 of	
disciplines	 such	 as:	 communications,	 engineering,	 sociology,	 ecology	 and	 biology	 (Newman	
2003).		
	
The	 basic	 mathematical	 concept	 used	 to	 model	 networks	 is	 a	 graph.	 It	 can	 be	 defined	 as	 a	
diagram	representing	a	system	of	connections	or	interrelations	(edges	or	links)	among	several	
units	(nodes	or	vertices).	In	this	work,	the	terms	graph	and	network	will	be	used	with	the	same	
meaning.	
	
	

Network	properties	
	
	
This	 section	 will	 discuss	 some	 important	 network	 parameters	 and	 measures	 useful	 for	 the	
analysis	 and	 understanding	 of	 network	 characteristics'	 impact	 on	 biological	 function.	 A	
comprehensive	 description	 of	 these	 properties	 can	 be	 found	 in	 Diestel	 2000;	 Mason	 and	
Verwoerd	2007;	Pavlopoulos	et	al.	2011;	Winterbach	et	al.	2013	among	others.	
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Interactions	 are	 the	 basis	 for	 building	 meaningful	 network	 models.	 According	 to	 edges’	
properties	 we	 can	 distinguish	 different	 type	 of	 networks.	 Depending	 on	 the	 existence	 of	
directionality	in	the	interactions	we	can	sort	them	in	two	broad	classes:	directed	or	undirected	
networks.	Depending	on	 the	 type	of	 interactions	and	 the	scientific	question	 to	address,	edges	
may	 have	 assigned	 scalar	 weights	 according	 to	 the	 relevance	 or	 reliability	 of	 the	 interaction.	
Thus	unweighted	networks	model	homogeneous	relationships	and	weighted	networks	non-
binary	ones.	
	
A	connected	network	is	a	graph	wherein	any	node	has	a	path	to	reach	any	other	node.	When	a	
network	 is	 unconnected,	 subsets	 of	 nodes	 and	 edges	 become	 isolated.	 These	 subsets	 or	
components	can	have	very	different	sizes	being	the	biggest	one	usually	called	main	component.	
On	 the	other	hand,	 an	 induced	 subnetwork	 is	 a	 graph	 formed	by	a	 subset	of	nodes	within	 a	
larger	 network	 and	 all	 the	 respective	 edges	 connecting	 that	 subset.	 Likewise,	 a	 clique	 is	 an	
induced	subnetwork	where	every	node	directly	interacts	with	every	other	node.	
	
	
The	analysis	of	network	structural	parameters	allows	distinguishing	amongst	various	network	
topologies	that	in	turn	involve	interesting	biological	properties.	
	
The	shortest	path,	as	the	name	implies,	is	the	minimum	number	of	links	one	must	traverse	to	
move	from	node	u	to	node	v.	The	distance	from	a	node	u	to	a	node	v	is	the	length	of	the	shortest	
path	 from	u	 to	v	 in	 the	network.	 	 The	average	 (or	 characteristic)	path	 length	 is	 the	 average	
distance	over	all	pairs	of	vertices	while	network	diameter	is	the	greatest	distance	between	any	
pair	of	connected	nodes	in	a	network.		Conversely,	degree	 is	the	number	of	edges	incident	on	a	
certain	node	within	the	network	whereas	the	degree	distribution	of	a	network	is	the	fraction	of	
nodes	in	the	network	with	degree	k.	Thus	the	degree	distribution	P(k)	gives	the	probability	that	
a	selected	node	has	exactly	k	links.		
	
Clustering	coefficient	of	a	given	node	is	a	ratio	between	the	actual	number	of	edges	connecting	
the	node’s	direct	neighbors	and	the	theoretically	maximum	number	of	edges	that	could	connect	
them.	Therefore,	it	measures	the	local	density	of	links	around	a	node.	Modularity	on	the	other	
hand	quantifies	the	tendency	of	a	graph	to	be	divided	into	clusters.	Knowing	a	partition	of	 the	
network	nodes	into	non-overlapping	subsets	it	is	possible	to	compute	a	modularity	coefficient	
as	the	fraction	of	all	network	edges	that	connects	nodes	in	the	same	subset.	A	cluster	or	module	
is	a	subset	of	nodes,	which	ideally	has	many	more	edges	within	the	cluster	than	edges	linking	to	
external	 nodes.	 Networks’	 modularity	 is	 not	 always	 evident	 and	 usually	 several	 clustering	
algorithms	need	to	be	applied	in	order	to	get	an	acceptable	modularity	coefficient.		
	
	
The	 problem	 of	 identifying	 the	 most	 important	 nodes	 in	 large	 complex	 networks	 is	 of	
fundamental	 importance	 (will	 the	 discussed	 more	 extensively	 in	 following	 sections).	 The	
relevance	of	nodes	is	usually	based	on	centrality	measures	because	it	is	commonly	assumed	that	
the	removal	of	nodes	with	central	positions	in	the	network	can	lead	to	the	network	connectivity	
failure.	There	are	several	centrality	measures	based	on	varied	assumptions	and	metrics.	We	will	
only	refer	two	classical	centrality	measures	that	have	been	widely	used	in	networks	biology.	
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Degree	 centrality	 is	 based	 on	 the	 assumption	 that:	 an	 important	 node	 is	 involved	 in	 a	 large	
number	of	interactions.	As	we	referred	before,	 the	degree	of	a	node	 is	 the	number	of	edges	the	
node	has	 connecting	 it	 to	other	nodes	 (illustrated	Figure	1.1).	Thus,	 the	degree	 centrality	of	 a	
node	is	its	normalized	degree.	
	
Betweenness	 centrality	 is	based	on	 the	assumption	 that:	an	important	node	will	 lie	on	a	high	
proportion	of	paths	between	other	nodes	in	the	network.	Therefore,	the	betweenness	centrality	of	
a	node	is	the	number	of	shortest	paths	of	the	network	that	include	it.	Nodes	with	low	degree	but	
high	 betweenness	 can	 be	 considered	 bottlenecks	 because	 their	 removal	 can	 be	 fatal	 to	 the	
network	connectivity	(Yu	et	al.	2007)	(illustrated	in	Figure	1.1).	
	
	

	

	
	

Figure	1.1	Illustration	of	the	differences	of	centrality	measures.	There	are	pointed	in	
the	network	the	most	central	nodes	according	to	degree	(B)	or	betweenness	measure	(A)	
respectively.	 Node	 A	 is	 involved	 in	 the	 highest	 number	 or	 shortest	 paths	 and	 thus	 is	 a	
bottleneck	 for	 global	 connectivity	 whereas	 node	 B	 shows	 the	 highest	 number	 of	 edges	
(connections).	Figure	adapted	from	(Yu	et	al.	2007).	

	
	
Besides	 the	 identification	of	central	nodes,	we	can	also	be	 interested	 in	 finding	 the	nodes	 that	
are	more	closely	related	with	one	or	more	nodes	that	are	relevant	under	our	subject	study.	The	
most	 direct	 approach	 is	 to	 consider	 the	 distance	 to	 the	 relevant	 node.	 Unfortunately,	 in	most	
biological	networks	 this	approach	 is	not	 sufficiently	discriminatory	as	 there	will	be	numerous	
ties	 in	 the	 distance	 values.	 	 Therefore,	 other	 approaches	 have	 been	 used	 that	 take	 the	
information	about	the	number	of	paths	linking	two	nodes	and	the	length	of	those	paths.		
	
These	approaches	can	be	based	in	diffusion	(Kondor	&	Lafferty	2002)	or	in	related	random-walk	
algorithms	(Can	et	al.	2005).	The	former	simulate	a	diffusion	process	along	the	network	edges	
starting	from	a	seed	node.	After	some	time,	the	amount	of	the	diffusible	substance	in	each	node	
measures	the	relatedness	with	the	seed	node.		Random	walks	simulate	the	iterative	trajectory	
of	walkers	that	decide	randomly	what	is	the	next	node	to	visit	among	the	direct	neighbors	of	the	
present	 node.	 Different	measures	 based	 on	 the	 trajectories	 of	 random	walkers	 (random	walk	
with	 restarts	 (Tong	 et	 al.	 2006)	 or	 commute	 time	 (Fouss	 et	 al.	 2007))	 can	 quantify	 the	
relatedness	between	the	seed	node	and	other	nodes	in	the	network.	
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The	systematic	analysis	of	network	parameters,	such	as	degree	distribution,	characteristic	path	
length	 or	 clustering	 coefficient,	 allowed	 researchers	 distinguish	 different	 type	 of	 networks	
models	and	describe	their	inherent	properties.	In	this	section	we	will	describe	three	models	that	
had	a	direct	impact	on	the	study	of	biological	networks.	For	more	detailed	discussion	we	suggest	
several	reviews	(Newman	2003;	Przulj	2011;	Raman	2010;	Winterbach	et	al.	2013)	
	
Erdös–Rényi’s	 random	 graph	 (Erdös	 &	 Rényi	 1960)	 is	 the	 earliest	 random	 graph	model	 in	
which	edges	are	drawn	between	pairs	of	nodes	uniformly	at	random	with	the	same	probability	
(Figure	1.2A).	Random	molecular	networks	can	serve	as	a	null	model	against	which	to	compare	
biological	network	data	results.	The	assumption	is	that	the	likelihood	of	an	observed	feature	is	
determined	by	considering	its	distribution	in	randomly	generated	networks.	In	order	to	be	more	
realistic	we	can	apply	some	constraints	in	the	randomization	process.	The	network	feature	most	
commonly	maintained	is	the	nodes'	degree.		
	
Scale-free	 networks	 (Barabasi	 &	 Albert	 1999)	 	 are	 characterized	 by	 a	 power-law	 degree	
distribution.	This	means	that	most	of	the	nodes	have	relatively	low	degree	while	there	are	other	
nodes	with	an	unusually	high	degree	 (Figure	1.2B).	These	highly	 connected	nodes	are	usually	
called	hubs	and	 they	may	have	 key	 roles	 in	 the	network	 functionality	maintenance	 and	hence	
have	a	high	biological	relevance.		
	
Hierarchical	 networks	 (Ravasz	&	 Barabasi	 2003)	 have	 a	 scale-free	 topology	with	 additional	
local	 modular	 structure	 (Figure	 1.2C).	 These	 features	 are	 common	 in	 biological	 networks	
(Barabási	 &	 Oltvai	 2004),	 thus	we	 can	 focus	 on	 the	 biological	 features	 that	 emerge	 from	 the	
hierarchical	networks’	topology	(Pavlopoulos	et	al.	2011).	
	
	

	
	
Figure	1.2	Network	models	 that	have	a	direct	 impact	on	understanding	biological	networks.	The	
figure	 illustrates	 Erdös–Rényi	 (ER)	 model	 of	 a	 random	 network	 (part	 A)	 in	 which	 edges	 are	 drawn	
between	pairs	of	nodes	uniformly	at	random	with	the	same	probability.	Then	Scale-free	networks	(part	B)	
are	characterized	by	a	power-law	degree	distribution.	Finally	hierarchical	networks	(part	C)	have	a	scale-
free	topology	with	additional	local	modular	structure.	Figure	adapted	from	(Barabási	&	Oltvai	2004).	
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Network	biology	
	
	
As	Emile	Zuckerkandl	and	Linus	Pauling	stated	in	1962,	“life	is	a	relationship	between	molecules,	
not	a	property	of	any	molecule”	(Zuckerkandl	&	Pauling	1962).	This	means	today	that	biological	
characteristics	 only	 arise	 from	 intricate	 interactions	 between	 the	 cells’	 constituents,	 such	 us	
DNA,	RNA,	proteins	and	small	molecules.		
	
Network	 biology	 is	 the	 combination	 of	 systems	 biology	 and	 network	 theory	 principles	 with	
computational	 and	 statistical	 analyses	 in	 which	 the	 topology	 of	 the	 graphs	 representing	
molecular	 interaction	 networks	 themselves	 became	 the	 subjects	 of	 study	 (Barabási	 &	 Oltvai	
2004).	 The	 main	 objective	 of	 network	 biology	 is	 the	 modeling	 of	 biological	 networks	 and	
identification	of	relevant	structures	(Mason	&	Verwoerd	2007).		As	potential	applications	we	can	
refer	drug	 target	 identification,	 protein’s	 or	 gene’s	 function	prediction,	 or	 the	 identification	of	
new	biomarkers	to	provide	early	disease	diagnosis	(Pavlopoulos	et	al.	2011).	
	
In	biological	networks,	nodes	can	represent	molecules	like	genes,	proteins,	drugs	or	conditions	
like	phenotypes	 or	diseases.	 Edges	 represent	 interactions	or	 associations	between	 two	nodes.	
According	 to	 the	 type	of	biological	data	 that	we	 integrate,	 there	are	several	kinds	of	biological	
networks	(Laukens	et	al.	2015;	Pavlopoulos	et	al.	2011;	Winterbach	et	al.	2013)	.	
	
Metabolic	networks	are	formed	by	macromolecules;	enzymes,	cofactors	and	other	metabolites	
needed	 for	 catalyzing	 biochemical	 reactions.	 These	 usually	 are	weighted	 and	 directed	 graphs.	
Moreover,	they	are	typically	scale-free	networks.	
	
Signaling	 networks	 represent	 series	 of	 interactions	 between	 different	 bioentities	 such	 as	
proteins,	 chemicals	 or	 macromolecules.	 They	 are	 also	 usually	 directed	 graphs	 and	 are	
characterized	by	the	presence	of	many	feedback	loops.	
	
Co-expression	networks	are	constructed	with	genes	as	nodes	that	are	linked	by	edges	when	a	
similar	 co-expression	 pattern	 is	 found.	 They	 are	 directed	 networks	 and	 are	 not	 necessarily	
weighted.	
	
Transcriptional	 regulatory	 networks	 contain	 information	 concerning	 the	 control	 of	 gene	
expression	 in	 cells.	 These	 networks	 are	 imperatively	 directed	 graphs.	 Moreover,	 they	 are	
typically	 sparsely	 connected	 graphs	 because	 genes	 are	 usually	 regulated	 by	 few	 transcription	
factors	(Leclerc	2008).		
	
Protein	 interaction	 networks	 hold	 the	 information	 of	 how	proteins	 operate	 in	 coordination	
with	 others	 to	 enable	 the	 biological	 processes	within	 the	 cell.	 These	 are	 typically	 unweighted	
and	undirected	graphs.	
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Network	structure	and	robustness	
	
	
Biological	 robustness	 is	 a	 property	 that	 allows	 a	 system	 to	 maintain	 its	 functions	 despite	
external	 and	 internal	 perturbations.	 It	 is	 considered	 to	 be	 a	 fundamental	 feature	 of	 complex	
evolvable	systems	(Kitano	2004).	In	the	context	of	network	theory,	robustness	is	the	resilience	
against	 node	 removal.	 Thus	 intuitively,	 a	 network	 is	 robust	 if	 its	 basic	 functionality	
(connectivity)	is	maintained	even	after	the	lost	of	some	of	its	components.		
	
Many	biological	networks	have	been	described	as	scale-free	or	hierarchical	networks	(Khanin	&	
Wit	 2006;	 Barabasi	 &	 Albert	 1999;	 Ravasz	 &	 Barabasi	 2003).	 This	 apparent	 universality	 of	
topological	features	in	biological	networks	does	not	seem	a	merely	matter	of	chance.	It	is	more	
likely	the	result	of	a	high	degree	of	internal	order	governing	the	cells’	molecular	organization	in	
pursuit	 of	 a	 close	balance	between	 robustness	 and	 evolvability	 (Jeong	 et	 al.	 2000;	Barabási	&	
Oltvai	 2004;	 Kirschner	 &	 Gerhart	 1998).	Evolvability	 is	 the	 capacity	 of	 biological	 systems	 to	
generate	 a	 heritable	 phenotypic	 variation,	 that	 can	 potentially	 disrupt	 system’s	 robustness	
(Kirschner	&	Gerhart	1998).		
	
Therefore,	identification	of	the	basic	architecture	of	a	robust	system	and	its	associated	trade-offs	
is	essential	for	understanding	the	strengths	and	weaknesses	of	a	given	network.	In	a	biological	
system	 these	 weaknesses	 can	 be	 translated	 as	 nodes'	 essentiality.	 In	 random	 networks	 if	 a	
critical	 fraction	 of	 nodes	 is	 removed,	 the	 network	 disintegrates	 into	 multiple	 non-
communicating	 islands	of	nodes.	On	 the	contrary,	 scale-free	networks	do	not	have	 this	critical	
threshold	for	disintegration.	Even	if	80%	of	randomly	selected	nodes	fail,	networks’	integrity	is	
maintained	 (Albert	 et	 al.	 2000).	 This	 happens	 because	 the	 random	 failure,	 by	 chance,	mainly	
affects	low	degree	nodes.	However	this	simultaneously	means	that	the	targeted	removal	of	a	few	
hubs	could	produce	a	catastrophic	effect.	
	
Robustness	 against	 perturbations	not	 only	 depends	 on	nodes’	 degree	but	 also	 in	 the	modules	
architecture	 and	 components’	 dispensability.	 Besides,	 modularity	 itself	 seems	 to	 be	 a	
mechanism	 for	 limiting	 the	 effects	of	 local	perturbations	 in	 cellular	networks.	The	 failure	of	 a	
cluster	 blocks	 a	 particular	 function	 but	 avoids	 the	 general	 breakdown	 (Kitano	 2004).	
Furthermore,	it	has	been	observed	that	protein	complexes	generally	are	composed	of	uniformly	
essential	or	non-essential	molecules	(Dezso	et	al.	2003).	Therefore,	the	functions’	dispensability	
is	usually	determined	by	the	whole	cluster	essentiality	(Barabási	&	Oltvai	2004).	
	
It	is	also	intuitive	that	those	nodes	with	central	localization	in	the	network	have	a	greater	impact	
in	the	network	connectivity	and	then,	can	be	defined	as	essential	nodes	for	networks	robustness	
maintenance.		
	
Node	 prioritization,	 that	 consists	 in	 identifying	 or	 ranking	 the	 most	 central	 nodes	 in	 the	
network	 is	 one	 of	 the	 most	 challenging	 aims	 in	 network	 theory	 (Mason	 &	 Verwoerd	 2007;	
Freeman	 1978).	 The	 key	 difficulty	 is	 the	 identification	 of	 a	 representative	 measure	 of	
essentiality.	Furthermore,	some	nodes	may	not	be	necessarily	central	but	hold	crucial	roles	for	
particular	functions	on	the	networks	(Mason	&	Verwoerd	2007).		
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Some	authors	proposed	 that	node	degree	and	essentiality	might	be	related	 (Jeong	et	al.	2001)	
however	relationship	between	centrality	and	essentiality	is	still	under	discussion	(Zotenko	et	al.	
2008).	Besides,	node	degree	alone	seems	to	be	a	poor	measure	of	essentiality	due	to	the	fact	that	
available	 data	 sets	 are	 biased	 toward	 essential	 proteins	 because	 they	 are	 more	 frequently	
studied	(Przulj	2011).	
	

Protein-protein	interaction	networks	
	
Among	 the	 multiple	 types	 of	 biological	 networks,	 protein-protein	 interaction	 (PPI)	 networks	
combine	 the	 availability	 of	 abundant	 data	 and	 the	 potential	 to	 uncover	 novel	 molecular	
mechanisms.	 Proteins	 are	 the	 main	 catalysts,	 structural	 elements,	 signaling	 messengers	 and	
molecular	 machines	 of	 biological	 tissues.	 Thus,	 protein-protein	 interactions	 are	 extremely	
important	in	orchestrating	the	events	in	a	cell.	In	other	words,	PPI	networks	provide	a	simplified	
overview	of	the	web	of	interactions	that	take	place	inside	the	cell	(Raman	2010).		
	
A	protein-protein	interaction	usually	refers	to	a	binary	relationship	between	one	protein	and	
another.	 However,	 the	 term	 “protein	 interaction”	 can	 include	 a	 great	 range	 of	 events	 such	 as	
transient	and	stable	complexes,	as	well	as	physical	and	functional	 interactions.	And	likewise,	a	
wide	variety	of	 approaches	have	been	developed	 to	detect	protein-protein	 interactions.	These	
associations	may	be	direct	physical	interactions	identified	by	experimental	methods	or	indirect	
functional	 linkages	predicted	on	 the	basis	of	 computational	analyses.	For	detailed	 information	
about	the	PPI	prediction	techniques	we	suggest	two	reviews	(Raman	2010;	Xie	&	Nice	2014).	
	
Eventually,	 all	 this	 information	 is	 stored	 in	 numerous	 publicly	 available	 databases.	 We	 can	
classify	 the	PPI	databases	 into	 three	main	 categories	based	on	 the	methods	used	 to	 collect	 or	
generate	the	data:	
	
i) Repositories	 of	 experimental	 data	 collected	 through	 manual	 curation,	 computational	

extraction	or	direct	deposit	by	the	authors	[MINT	(Licata	et	al.	2012),	IntAct	(Orchard	
et	al.	2014)]	

ii) Predicted	PPI	interactions	[I2D	(new	version	of	OPHID)	(Brown	&	Jurisica	2005)]	
iii) Portals	 that	provides	unified	access	 to	a	variety	of	PPI	databases	 [STRING	 (Snel	et	al.	

2000),	GeneMANIA	(Warde-Farley	et	al.	2010)	or	mentha	(Calderone	et	al.	2013)]	
	
Here	 we	 describe	 those	 that	 were	 used	 in	 this	 thesis	 work.	 For	 further	 information	 about	
available	databases	we	suggest	(Ooi	et	al.	2010;	Raman	2010;	Tranchevent	et	al.	2010).	
	
IntAct	(Orchard	et	al.	2014)	is	a	molecular	interaction	database	that	contains	manually	curated	
data	from	public	literature	or	direct	user	submission.	Most	of	the	interaction	data	is	PPI	but	also	
captures	non-protein	molecular	interactions	such	as	DNA	and	RNA.	The	detection	methods	and	
type	 of	 interactions	 are	 described	 together	 with	 all	 binary	 interaction	 and	 have	 assigned	 a	
weight	 to	 estimate	 its	 relevance.	 Moreover,	 IntAct	 is	 updated	 frequently	 and	 can	 also	 be	
downloaded	(http://www.ebi.ac.uk/intact/).	
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mentha	 (Calderone	 et	 al.	 2013)	 is	 a	 Search	 Tool	 that	 integrates	 high	 confidence	 interaction	
information	 curated	 by	 IMEx	 (Orchard	 et	 al.	 2012)	 databases.	 These	 primary	 databases	 are	
manually	 curated	 but	 its	 literature	 coverage	 is	 not	 complete.	 Besides,	 mentha	 is	 focused	 on	
experimentally	determined	direct	protein	interactions,	avoiding	information	extracted	from	text	
mining.	These	facts	limit	the	number	of	results	obtained	from	mentha	when	comparing	to	other	
search	 tools	 such	as	STRING	 (Snel	 et	 al.	 2000)	 that	 is	more	 focused	on	 retrieving	 information	
with	 predictive	 tools	 from	 heterogeneous	 databases.	 Results	 are	 also	 returned	 as	 weighted	
interactions,	which	provide	a	confidence	measure	(http://mentha.uniroma2.it/).	
	
GeneMANIA	 (Warde-Farley	 et	 al.	 2010)	 is	 a	 gene	 function	prediction	 server	 that	 uses	 a	 gene	
function	prediction	algorithm	to	reconstruct	a	composite	network	from	several	PPI	databases.	It	
also	returns	co-expression	interactions	and	other	interaction	types	that	can	be	merged	with	PPI	
data	in	a	unique	network	(http://genemania.org/).	
	
CCSB	 Database	 (Rolland	 et	 al.	 2014)	 is	 a	 compendium	 of	 high-throughput	 datasets	 that	 are	
focused	 on	 the	 prediction	 of	 high-quality	 binary	 PPIs.	 Most	 interactions	 gathered	 on	 these	
datasets	were	mainly	mapped	 in	a	 systematic	approach	and	 thus	unbiased	by	 the	preferential	
study	 of	 proteins	 with	 biomedical	 or	 technological	 interest	 (Rual	 et	 al.	 2005;	 Yu	 et	 al.	 2011;	
Venkatesan	 et	 al.	 2009;	 Rolland	 et	 al.	 2014).	 These	 datasets	 are	 complemented	 with	 high	
confidence	binary	associations	from	the	literature	(Rolland	et	al.	2014).	Therefore,	CCSB	results	
in	a	non-biased	high	confidence	database	that	homogeneously	covers	the	human	interactome.	
	
In	 all	 the	 cases,	 it	 should	 be	 pointed	 that	 the	 already	 identified	 PPI	 collection	 forms	 a	 small	
portion	of	the	assumed	total	interactome	(Rolland	et	al.	2014).	Besides,	the	relation	of	PPI	data	
quality	 with	 biological	 significance	 is	 not	 direct.	 	 It	 should	 also	 be	 remembered	 that	 PPI	
databases	contain	lots	of	interactions	of	proteins	with	ubiquitins,	chaperons,	ribosomal	proteins	
and	 other	 similarly	 sticky	 proteins	 that	 might	 not	 be	 biological	 meaningful	 for	 the	 specific	
problem	under	study	(Ooi	et	al.	2010).		
	

Network	medicine	
	
	
The	subcellular	intricate	connectivity	implies	that	the	impact	of	a	specific	genetic	perturbation	is	
not	restricted	to	the	activity	of	 its	gene	product	but	can	spread	along	the	links	of	the	network.	
Thus,	a	disease	phenotype	is	rarely	a	consequence	of	an	abnormality	of	a	single	gene	but	reflects	
the	perturbations	of	the	complex	intracellular	network	(Barabási	et	al.	2011).	
	
Furthermore,	 this	 complexity	 causes	 a	 deviation	 of	 the	 correlation	 between	 genotype	 and	
phenotype.	There	 exist	 pleiotropic	 genes	 that	 can	produce	multiple	 phenotypes	 and	 there	 are	
numerous	environmental	factors	that	can	also	influence	the	gene	expression	patterns	in	similar	
genetic	 backgrounds	 (Kann	 2007).	 Therefore,	 integrative	 analysis	 of	 interactions	 such	 as	
network-based	 approaches	 can	 help	 us	 to	 understand	 the	 organizing	 principles	 that	 govern	
cellular	networks	and	their	role	in	disease.			
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Network	 medicine	 is	 then	 the	 application	 of	 networks-based	 approaches	 into	 biomedical	
problems.	 Is	 the	 set	 of	 methodologies	 that	 aims	 to	 understand	 diseases	 through	 theirs	
underlying	molecular	interactions	(Barabási	et	al.	2011).	
	
Biological	functions	are	accomplished	by	the	coordinated	participation	of	biological	components	
(metabolites,	 proteins	 or	 genes)	 (Zuckerkandl	 &	 Pauling	 1962),	 thus	 as	 “guilt	 by	 association”	
principle	claims,	those	proteins	that	physically	interact	are	strongly	suspected	to	be	involved	in	
similar	 functions	(Gillis	&	Pavlidis	2011;	Oliver	2000).	Likewise,	proteins	 involved	in	the	same	
disease-phenotype	show	a	high	propensity	to	interact	with	each	other	(Goh	et	al.	2007;	Gandhi	
et	al.	2006;	Oti	&	Brunner	2007).		
	
According	to	this,	we	can	distinguish	three	types	of	interrelated	modules:	
	
i) topological	modules	that	gather	highly	connected	and	close	nodes,	
ii) functional	 modules	 that	 are	 conformed	 by	 nodes	 with	 similar	 functions	 on	 the	

neighborhood	of	the	network	(Spirin	&	Mirny	2003)	and	
iii) disease	modules	that	represents	groups	of	nodes	that	together	contribute	to	a	cellular	

function	disruption	that	results	in	a	particular	phatophenotype	(Barabási	et	al.	2011).	
	
Thus,	 it	 is	 accepted	 that	 gene	 products	 related	 to	 a	 particular	 pathophenotype	 tends	 to	 be	
located	 in	 a	 close	neighborhood	within	 the	protein-protein	 interaction	network	 and	 these	 are	
usually	related	to	similar	functions	(Gandhi	et	al.	2006;	Oliver	2000)	and	vice-versa.	Conversely,	
if	a	same	gene	 is	 linked	to	 two	different	disease	phenotypes	 this	 linkage	 is	often	an	 indication	
that	the	two	diseases	have	a	common	genetic	origin	(Barabási	et	al.	2011).		
	
Furthermore,	 there	 is	 evidence	 from	many	 sources	 that	 similar	 phenotypes	 are	 the	 result	 of	
functionally	 related	 clusters	 of	 genes	 and	 this	 is	 even	more	 obvious	 in	 the	 case	 of	 genetically	
heterogeneous	 diseases	 (Oti	 &	 Brunner	 2007).	 Moreover,	 genes	 associated	 with	 a	 disease	
preferentially	interact	with	other	disease-causing	genes	over	those	without	any	known	disease	
association	(Aravind	2000).	Thus,	different	disease	modules	are	more	prone	to	overlap,	so	that	
perturbations	 caused	by	one	Disease	Associated	Gene	 (DAG)	 can	affect	other	disease	modules	
(Goh	et	al.	2007).	
	
The	 presence	 of	 hubs	 in	 biological	 networks	 suggests	 that	 these	 highly	 interconnected	 nodes	
may	play	 essential	 roles	 in	biological	 functions.	However,	hubs’	 essentiality	 suggest	 that	 these	
nodes	cannot	be	directly	associated	to	disease	causative	genes.	Hubs	inactivation	could	cause	the	
network	systemic	 failure	and	possibly	 the	early	death	of	 the	 individual.	Thus,	 it	 is	 improbable	
that	such	genetic	alterations	can	persist	in	the	population	(Barabási	et	al.	2011).	Consequently,	
disease	causative	genes	are	expected	to	be	found	on	the	network	periphery	where	they	can	be	
more	easily	tolerated	and	inherited	by	the	progeny	(Goh	et	al.	2007).	Additionally,	disease	genes	
seem	to	be	tissue-specific	while	essential	genes	are	expressed	in	multiple	tissues	(Barabási	et	al.	
2011)	.	
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All	 these	 observations	 can	 be	 exploited	 to	 predict	 novel	 DAGs	 on	 the	 basis	 of	 the	 particular	
location	 of	 candidate	 genes	 within	 the	 studied	 networks.	 As	 such,	 DAGs	 prediction	 (or	
prioritization)	has	become	one	of	the	most	popular	applications	of	network	medicine.		
	
Computational	methods	 for	 gene	prioritization	 are	 necessary	 to	 effectively	 translate	 the	 high-
throughput	 derived	 experimental	 data	 into	 legible	 disease-gene	 associations	 (Moreau	 &	
Tranchevent	2012).		
	
DAGs	 prioritization	methods	 typically	 use	networks	where	 the	nodes	 are	 genes	 or	 proteins	
and	 the	 aim	 is	 to	prioritize	 the	nodes	 that	 are	more	 important	 for	 a	 given	disease	 (Bromberg	
2013).	In	these	networks	data	is	integrated	by	attributing	weights	to	nodes	and	by	defining	the	
edges	and	associated	weights.	Edges	can	reflect	PPI,	co-expression	patterns	or	other	molecular	
interaction	 information.	 Centrality	 measures,	 distances	 between	 nodes	 or	 diffusion-based	
algorithms	can	 then	be	used	 to	 rank	all	 the	nodes	 in	 the	network,	prioritizing	 the	nodes	most	
relevant	for	the	disease	that	are	not	part	of	the	initial	set	of	DAGs	(Tényi	et	al.	2016;	Köhler	et	al.	
2008;	Simões	et	al.	2015;	Wu	et	al.	2015;	Calderone	et	al.	2016).		
	
Others	 build	 phenotypic	 networks	 in	 which	 the	 nodes	 are	 diseases.	 In	 particular,	 Goh	 and	
colleagues	constructed	a	highly	detailed	diseasome	network	(Goh	et	al.	2007).	Disease	networks	
can	 helps	 us	 comprehend	 why	 and	 how	 certain	 groups	 of	 diseases	 arise	 together,	 share	
molecular	 mechanisms	 or	 have	 common	 phenotypic	 properties	 (Piro	 2012).	 In	 disease	
networks,	 edges	 can	 represent	 varied	 type	 of	 data	 such	 as	 comorbidities	 (disease	 co-
occurrences),	common	phenotypic	features	or	common	DAGs.	
	
Network	 based	 disease-gene	 prioritization	 methods	 require	 interactomic	 data	 and	 also	 a	
minimum	set	of	known	DAGs.	There	are	numerous	collections	of	human	DAGs	(Kann	2007)	but	
we	will	only	describe	the	two	that	were	used	in	this	work.	
	
OMIM	 database	 (Hamosh	 et	 al.	 2002)	 is	 knowledge	 based,	 manually	 curated	 and	 frequently	
updated.	 Initially	 focused	on	monogenic	disorders,	nowadays	 includes	 information	of	 complex	
and	multifactorial	diseases.	As	part	of	 the	NCBI	Entrez	database,	OMIM	 is	 freely	available	and	
contains	 over	 15	 000	 genes	 with	 known	 sequence	 and	 over	 6000	 phenotypes.	 As	 other	
comparable	 databases,	 it	 does	 not	 constitute	 a	 standard	 library	 for	 describing	 disease	
phenotypes.	 The	 lack	 of	 a	 controlled	 vocabulary	 and	 consistent	 annotations	 hampers	 the	
information	retrieval.	
	
DisGeNET	(Pinero	et	al.	2015)	is	one	of	the	largest	repositories	currently	available	of	its	kind.	It	
integrates	expert-curated	databases	with	text-mining	data	covering	information	of	monogenetic	
and	complex	diseases.	Besides,	it	has	implemented	a	score	based	on	evidence	to	prioritize	gene-
disease	associations.	 It	provides	standardized	annotations	of	entities	(genes	and	diseases)	and	
their	relationships	(ontologies),	which	helps	in	the	retrieval	and	analysis	of	information.	
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Motor	neuron	degeneration-related	diseases	(MND)	
	
	
Spinal	 Muscular	 Atrophy	 (SMA)	 and	 Amyotrophic	 Lateral	 Sclerosis	 (ALS)	 are	 both	 Motor	
Neuron	 Diseases	 (MNDs),	 a	 group	 of	 progressive	 neurological	 disorders	 that	 destroy	motor	
neurons.	 These	 cells	 control	 essential	 voluntary	 muscle	 activity	 such	 as	 speaking,	 walking,	
breathing,	 and	 swallowing.	 	 Normally,	 messages	 from	 nerve	 cells	 in	 the	 brain	 (upper	 motor	
neurons)	are	transmitted	to	nerve	cells	in	the	brain	stem	and	spinal	cord	(lower	motor	neurons)	
and	from	them	to	particular	muscles.	Upper	motor	neurons	coordinate	the	lower	motor	neurons	
to	 produce	 movements	 such	 as	 walking	 or	 chewing	 whereas	 lower	 motor	 neurons	 control	
movement	in	the	arms,	legs,	chest,	face,	throat,	and	tongue.	
	
In	general,	affected	individuals	lose	strength	and	the	ability	to	move	their	arms	and	legs,	and	to	
hold	the	body	upright.	When	muscles	of	the	diaphragm	and	chest	wall	fail	to	function	properly,	
individuals	 lose	the	ability	to	breathe	without	mechanical	support.	 In	the	most	severe	cases	of	
SMA,	children	never	sit	or	stand	and	the	vast	majority	usually	dies	of	respiratory	failure	before	
the	age	of	2.	On	the	other	hand,	ALS	patients	usually	die	within	3	to	5	years	 from	the	onset	of	
symptoms	(typically	on	the	third	decade	of	life).	
	
The	 molecular	 causes	 of	 motor	 neurons'	 degeneration	 are	 still	 unclear,	 limiting	 therapeutic	
options	and	consequently	patients’	life	expectancy.		
	
Spinal	 Muscular	 Atrophy	 (SMA)	 is	 a	 childhood	 onset	 disease	 characterized	 by	 the	
degeneration	of	lower	motor	neurons	(localized	in	the	spinal	chord).	It	is	an	autosomic	recessive	
disease	caused	by	mutations	in	the	Survival	Motor	Neuron	(SMN1)	gene	(Lefebvre	et	al.	1995).	
	
Besides	 SMN1,	 SMN2	 gene	 also	 codifies	 SMN	protein.	 SMN1	 and	 SMN2	 share	more	 than	 99%	
nucleotide	identity,	and	both	are	capable	of	encoding	a	functional	SMN	protein.	How	ever,	due	to	
a	 silent	 substitution	 in	 exon	 7,	 ~75-90%	 of	 SMN2	 transcripts	 encode	 for	 a	 truncated	 and	
unstable	splicing	 isoform	of	SMN,	and	thus	a	very	small	amount	of	 full	 length-active	protein	 is	
actually	being	produced	from	this	gene	(Lefebvre	et	al.	1995;	Kashima	et	al.	2007;	Wirth	2000).	
Henceforth	we	will	only	refer	to	SMN	as	a	conjunction	of	both	genes.	
	
The	 SMN	 protein	 generates	 the	 core	machinery	 for	 varied	 RNA-metabolism	 related	 functions	
pathways	including	pre-mRNA	splicing,	histone	mRNA	3’-end	processing	and	cytoplasmic	mRNA	
decay	 (Li	 et	 al.	 2014).	 The	 SMN1	 gene	 product	 forms	 the	 SMN	 complex	 together	with	 Gemin	
proteins.	 SMN	 complex	 in	 turn	 plays	 a	 critical	 role	 in	 the	 assembly	 of	 small	 nuclear	
ribonucleoproteins	(snRNPs)	that	constitute	the	spliceosome	machinery	(Lefebvre	et	al.	1995).	
The	spliceosome	 is	a	macromolecular	ribonucleoprotein	(RNP)	complex	responsible	 for	 intron	
removal	 from	pre-mRNAs	(a	process	commonly	known	as	splicing).	This	process	 is	critical	 for	
the	 production	 of	 correct	 mRNAs	 and	 also	 for	 generating	 transcripts’	 diversity	 through	
alternative	splicing	events.		
	
Among	the	snRNPs,	SMN	low	levels	also	affects	to	U7snRNP	biogenesis	(Tisdale	et	al.	2013).	This	
snRNP	is	crucial	for	the	histone	mRNA	3’end	processing.	Most	histone	transcripts	are	not	poly-
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Adenylated	 and	 their	 3’	 ends	 are	 produced	 by	 an	 endonucleolytic	 cleavage	 mediated	 by	
U7snRNP.	Besides,	SMN	is	also	knwon	to	recognize	methylation	marks	in	histones	(Sabra	et	al.	
2013).	On	the	other	hand	SMN	also	is	involved	in	axonal	mRNA	transport.	It	regulates	the	mRNA	
vesicles	assembly	(Zhang	et	al.	2006)	and	 interacts	with	axonal	 transport	machinery	by	direct	
association	with	acting-binding	proteins	and	neuronal	RBPs	(Fallini	et	al.	2012).	
	
Amyotrophic	Lateral	Sclerosis	(ALS)	in	the	other	hand	is	an	adult	onset	disease	characterized	
by	the	degeneration	of	both	lower	and	upper	motor	neurons	(localized	in	the	spinal	chord	and	
brain	 respectively).	 In	 90%	 of	 the	 cases	 it	 is	 a	 sporadic	 disease	 but	 there	 are	 also	 familial	
subtypes	caused	by	mutations	in	numerous	genes	related	to	diverse	cell	 functions	as	oxidative	
stress	 (SOD1),	 RNA	 metabolism	 (TARDBP,	 FUS,	 Senataxin,	 Ataxin2,	 HNRNPA2/B1,	 ELP3,	
HNRNPA1),	 vesicle	 trafficking	 (Alsin,	 FIG4,	 OPTN,	 VABP,	 CHMP2B)	 and	 proteasomal	 function	
(UBQLN2,	VCP)	(Siddique	&	Siddique	2008;	Carrì	et	al.	2015).	
	
SOD1	was	the	first	and	one	of	the	best-known	familial	ALS-causative	genes	(Rosen	et	al.	1993).	
SOD1	gene	encodes	the	superoxide	dismutase	1	protein,	which	is	responsible	for	destroying	free	
superoxide	radicals	produced	by	the	oxidative	metabolism.	Therefore	when	it	 is	mutated,	cells	
suffer	oxidative	stress	that	induce	mitochondrial	and	endoplasmic	reticulum	stress	that	usually	
results	 in	 protein	 aggregation	 and	 apoptosis	 pathway	 activation	 (Carrì	 et	 al.	 2015).	 However,	
should	be	listed	that	SOD1	mutation	only	causes	the	1%	of	ALS	cases	(Marangi	&	Traynor	2015).		
	
TDP43	 (the	 TARDBP	 gene	 product)	 was	 firstly	 associated	 to	 ALS	 in	 2008	 (Sreedharan	 et	 al.	
2008;	Rutherford	et	al.	2008).	 It	 is	 a	DNA	and	RNA	biding	multifunctional	protein	 that	 can	be	
localized	 in	 the	 nucleus	 or	 cytoplasm	 according	 to	 the	 function	 in	which	 it	 is	 involved.	 It	 has	
been	related	 to	 several	 steps	of	 the	gene	expression	pathway	 including	 transcription,	 splicing,	
RNA	transport	and	localization,	mRNA	decay	(stabilization)	and	translation	(Lagier-Tourenne	et	
al.	2010).		
	
FUS	 also	 identified	 as	 ALS-causal	 gene	 (Kwiatkowski	 Jr	 et	 al.	 2009)	 is	 as	 well	 a	
nucleocytoplasmic-shuttling	multifunctional	protein	that	not	only	binds	to	RNA	but	also	to	DNA.	
Thus	 it	 is	 involved	 in	 DNA	 and	 RNA	 metabolism	 including	 DNA	 repair,	 regulation	 of	
transcription,	RNA	splicing	and	RNA	export	to	cytoplasm(Lagier-Tourenne	et	al.	2010).	
		
Senataxin	(SETX)	was	firstly	related	to	a	juvenile	form	of	Amyotrophic	Lateral	Sclerosis	(ALS4)	
(Chen	 et	 al.	 2004).	 It	 belongs	 to	 the	 superfamily	 I	 of	DNA-RNA	helicases	 and	 it	 is	 involved	 in	
diverse	aspects	of	RNA	metabolism	and	genome	integrity	maintenance.	
Senataxin	 coordinates	 the	 binding	 of	 RNA	 polymerase	 II	 (pol	 II)	 to	 chromatin	 and	 therefore,	
regulates	the	transcription	in	all	steps.	The	nascent	RNA	is	coated	by	RBPs	that	protect	it	from	
the	template	DNA-strand.	This	potential	DNA/RNA	hybrid	structure	is	called	R-loop	and	pauses	
pol	 II	 progression	 allowing	 the	 correct	 termination	 of	 transcription.	 In	 absence	 of	 R-loop	
structure,	 transcription	 continues	 leading	 to	 read-through	 intergenic	 products	 (Richard	 &	
Manley	2016).	Additionally,	for	the	proper	ending	of	transcription	it	is	also	necessary	the	R-loop	
resolution	conducted	by	Senataxin.	Lack	of	SETX	activity	induces	genome	damage	and	instability	
(Skourti-Stathaki	et	al.	2011).	To	simplify	we	refer	SETX	both	to	gene	and	Senataxin	protein.	
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RNA-metabolism	 events	 are	 ubiquitous	 and	 necessary	 for	 all	 cells’	 survival	 thus,	 we	 are	 still	
missing	 the	 molecular	 link	 between	 RNA	 related	 functions	 and	 MNs	 specific	 degeneration.	
Within	this	set	of	functions	associated	to	MND-DAGs,	splicing	seems	to	be	the	central	piece.	SMN	
is	the	main	causal	gene	of	SMA	disease	and	is	directly	involved	in	splicing	function	maintenance	
(Lefebvre	et	al.	1995).	On	the	other	hand,	ALS	related	gene	products	of	FUS	and	TDP43	are	also	
involved	 in	 splicing	 related	 functions.	 Furthermore,	 nervous	 tissue	 has	 an	 extremely	 high	
alternative	splicing	activity,	which	is	believed	to	have	a	great	relevance	for	neural	development	
and	 differentiation	 (Madgwick	 et	 al.	 2015).	 However,	 these	 DAG-products	 are	multifunctional	
proteins,	 thus	 it	 is	not	clearly	evident	which	 is	 the	key	function	that,	when	perturbed,	 leads	to	
the	MND	phenotype.	
	
Moreover,	 there	 are	 further	 non-RNA	metabolism	 related	 functions	 directly	 associated	 to	 the	
MN	death.	Some	authors	believe	that,	due	to	the	high	sensitivity	of	the	nervous	tissue	to	reactive	
oxygen	 species	 (Friedman	 2011),	 oxidative	 stress	 could	 be	 the	 main	 disturbing	 agent.	 The	
oxidative	 stress	 may	 be	 produced	 by	 SOD1	 dysfunction	 that	 leads	 to	 protein	 aggregation,	
mitochondrial	and	endoplasmic	reticulum	stress	and	eventually	 induces	apoptosis	 (Carrì	et	al.	
2015).		
	
Others	 claim	 that	 the	 main	 cause	 is	 the	 genotoxic	 stress	 induced	 by	 deregulation	 of	 histone	
expression	 as	 a	 consequence	 of	 SMN	 dysfunction	 (Tisdale	 et	 al.	 2013)This	 hypothesis	 is	 also	
plausible	 due	 to	 the	 critical	 role	 of	 chromatin	 remodeling	 in	 nervous	 tissue	 development	 and	
differentiation	 (Pattaroni	 &	 Jacob	 2013).	 Therefore,	 although	 several	 hypotheses	 about	 MN	
degeneration	 initiation	 causes	 have	 been	 proposed,	 the	 specific	 pathomechanisms	 are	 still	
unknown.	
	
Phenotypic	and	genetic	similarity	between	ALS	and	SMA	suggest	the	presence	of	closely	related	
disease	modules	and	opens	the	door	to	the	study	of	their	common	molecular	pathomechanisms	
using	network-based	approaches.		
	
	

Objectives	
	
ALS	and	SMA	are	diseases	with	different	causes	but	common	complex	phenotypes.	In	both	cases	
the	molecular	mechanisms	that	link	the	causes	of	disease	with	motor	neuron	degeneration	are	
not	 completely	 known.	 This	 thesis	 work	 aims	 to	 apply	 network	 biology	 approaches	 to	
characterize	 common	 molecular	 pathways	 involved	 in	 ALS	 and	 SMA.	 In	 particular	 this	
thesis	will:	
	

1	–	Analyze	a	protein	interaction	network	around	proteins	known	to	be	involved	in	both	
diseases	and	in	a	common	molecular	pathway	–	RNA	processing		(Chapter	2)	

	
2	 –	 Develop	 a	 network-based	 prioritization	 method	 to	 identify	 relevant	 proteins	
specifically	connecting	genes	associated	with	both	diseases	(Chapter	3)	
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Chapter	2:	FTSS-focused	network	
	
	

Introduction	
	
	
ALS	 and	 SMA	 show	 great	 phenotypic	 and	 molecular	 similarities.	 FUS,	 TARDBP	 (TDP43)	 and	
SETX	are	ALS-associated	genes	(Rutherford	et	al.	2008;	Sreedharan	et	al.	2008;	Kwiatkowski	Jr	
et	al.	2009;	Chen	et	al.	2004)	while	loss	of	SMN	activity	is	the	main	cause	of	SMA	(Lefebvre	et	al.	
1995).		
	
These	 four	 genes	 (FTSS)	 are	 known	 to	 physically	 interact	 (Sun	 et	 al.	 2015;	 Tsuiji	 et	 al.	 2013;	
Yamazaki	 et	 al.	 2012;	 Skourti-Stathaki	 et	 al.	 2011;	 Zhao	 et	 al.	 2016;	 Suraweera	 et	 al.	 2009;	
Bennett	&	La	Spada	2015).	Furthermore,	all	four	proteins	are	involved	in	RNA	processing,	which	
may	have	direct	implications	on	MND	common	phenotype	(Cooper	et	al.	2009).	
	
Gems	 are	 nuclear	 structures	 that	 contain	 SMN	 complex	 components	 but	 not	 snRNPs.	 Both	
TDP43	and	FUS	have	been	found	to	bind	SMN	and	accumulate	in	Gems	thus	seem	that	they	are	
required	 for	 the	 maintenance	 of	 these	 structures	 (Ishihara	 et	 al.	 2013;	 Tsuiji	 et	 al.	 2013;	
Yamazaki	et	al.	2012).	Gems’	function	is	still	unknown	but	probably	they	are	directly	related	to	
snRNP	maturation	processes	(Liu	&	Dreyfuss	1996;	Cioce	&	Lamond	2005;	Clelland	et	al.	2009).	
Additionally,	it	was	found	that	Gems	assembly	is	disrupted	in	ALS	model	SOD1	deficient	mutant	
mice	(Kariya	et	al.	2012).	All	these	evidences	place	Gems	structures	at	the	core	of	ALS	and	SMA-
related	events,	being	the	snRNP	immaturity	a	potential	key	factor	in	MN	degeneration.	
	
Together	with	SMN,	FUS	has	been	found	to	interact	with	U7snRNP	and	therefore,	it	is	suspected	
to	be	involved	in	histone	mRNA	biogenesis	(Raczynska	et	al.	2015).	This	fact	is	relevant	in	MND	
context	 because	 it	 is	 known	 that	 transient	 histones	modifications	 can	produce	 lasting	 cellular	
changes	 that	 influence	 the	 synaptic	 plasticity	 (Levenson	 &	 Sweatt	 2005).	 Moreover,	 histone	
biogenesis	 perturbation	 can	 also	 lead	 to	 global	 chromatin	 changes	 that	 eventually	 induce	
cellular	genotoxicity	(Tisdale	et	al.	2013).	
	
Additionally,	FUS	is	also	involved	in	DNA	damage	response	events	(Rulten	et	al.	2014)	together	
with	SMN	that	at	the	same	time	acts	as	intermediary	between	SETX	and	RNA	Pol	II	to	coordinate	
R-loop	 formation	 in	RNA	elongating	 complexes	 (Zhao	et	 al.	 2016).	 In	 the	 same	way,	 SETX	has	
been	 directly	 related	 to	 the	 immune	 response	 depression	 and	 when	 mutated	 to	 a	 hyper-
sensitivity	to	infections	(Miller	et	al.	2015).	This	fact	may	be	key	in	MND	because	SETX	is	already	
associated	to	ALS4	(ALS	type	4)	and	ataxia	with	oculomotor	apraxia	(AOA2)	(Chen	et	al.	2004).	
Besides	 it	 is	 known	 that	 the	 prolonged	 immune	 response	 and	 expression	 of	 inflammatory	
mediators	leads	to	cell	death	and	neurodegeneration	(Amor	et	al.	2010;	Friedman	2011).	 	
	
	
On	 the	other	hand,	 it	has	been	observed	 in	mice	 that	 the	 increase	of	SMN	 levels	 improves	 the	
neuromuscular	 function	altered	by	 the	oxidative	 stress	produced	by	 the	 lack	of	 SOD1	activity,	
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typical	 in	 ALS	 (Turner	 et	 al.	 2014).	 Likewise,	 SETX	 and	 FUS	 are	 involved	 in	 DNA	 damage	
response	 generated	 by	 oxidative	 stress	 (Suraweera	 et	 al.	 2007;	 Rulten	 et	 al.	 2014)	 and	 thus,	
their	concurrent	failure	could	lead	to	fatal	perturbations.	
	
These	 evidences	 strongly	 suggest	 that	 FTSS	 proteins	 are	 tightly	 interrelated	 and	 physically	
interact	 to	 perform	 functions	 mainly	 related	 to	 RNA	 metabolism.	 Though	 RNA	 metabolism	
seems	to	have	a	central	role,	it	has	not	been	explained	yet	how	RNA-related	ubiquitous	functions	
may	 lead	 to	 the	 death	 of	 MN	 in	 particular.	 Furthermore,	 some	 authors	 suggest	 that	 the	
widespread	 changes	 in	 splicing	 are	 an	 indirect	 feature	 of	 the	 delayed	 neuronal	 development	
(Garcia	 et	 al.	 2013)	 caused	by	 the	 perturbation	 of	 synaptogenesis	 (Zhang	 et	 al.	 2013).	On	 the	
same	theme,	the	evidences	of	perturbations	in	varied	functions	non-related	to	RNA-metabolism	
raises	further	doubts	about	the	initial	steps	on	MND.	
	
To	answer	these	questions,	we	have	constructed	a	PPI	network	focused	only	on	FTSS	genes	and	
its	common	interactors	(FTSS-focused	network)	and	performed	a	functional	enrichment	analysis	
to	 characterize	 this	 protein	 set.	We	 expect	 that,	 the	 overrepresented	 functions	 resulting	 from	
this	analysis	may	bring	clues	about	MND-related	pathomechanisms.		
	
	

Methodology	
	

PPI	data	retrieval		
	
	
FUS,	 TDP43,	 SMN	 and	 SETX	 (FTSS)	 protein	 physical	 interactors	 were	 retrieved	 from	mentha	
(Calderone	 et	 al.	 2013)	 (http://mentha.uniroma2.it/),	 IntAct	 (Orchard	 et	 al.	 2014)	
(http://www.ebi.ac.uk/intact/),	 GeneMANIA	 (Warde-Farley	 et	 al.	 2010)	
(http://genemania.org/)	and	literature	references	(Sun	et	al.	2015;	Tsuiji	et	al.	2013;	Yamazaki	
et	al.	2012;	Skourti-Stathaki	et	al.	2011;	Zhao	et	al.	2016;	Suraweera	et	al.	2009;	Bennett	&	La	
Spada	2015).	The	referred	databases	where	accessed	during	November	2015.		
	
To	 facilitate	 the	 retrieval	 of	 SMN	 PPIs,	 the	 physical	 interactions	 found	 with	 both	 SMN1	 and	
SMN2	genes	were	included.	We	only	selected	PPIs	 identified	in	Homo	sapiens	and	described	as	
physical	interactions	(Figure	2.1-1).	From	the	initial	set	of	interactor	proteins,	only	the	proteins	
that	interacted	with	at	least	two	of	the	FTSS	proteins	were	retained	(Figure	2.1	step	1).	All	raw	
and	curated	datasets	are	available	in	Supplementary	data	S-2.1.	
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FTSS-focused	network	functional	enrichment	and	functional	clustering	
	
Functional	enrichment	analysis	and	functional	clustering	were	performed	simultaneously	using	
Gene	 Term	 Linker	 (GTLinker)	 algorithm	 (Aibar	 et	 al.	 2015)	 available	 within	 the	 FGNet	 R-
package	and	through	http://gtlinker.cnb.csic.es/.	
The	 functional	enrichment	was	constrained	 to	Biological	Processes	(BP)	Gene	Ontology	Terms	
(GOTs)	 annotated	 in	 Homo	 sapiens	 proteins.	 GOT	 enrichment	 was	 considered	 statistically	
significant	with	a	False	Discovery	Rate	(FDR)	adjusted	p-value	less	than	0.05	(Figure	2.1-2).	
	
	

	
	
Figure	 2.1	 Flowchart	 describing	 FTSS-focused	 network	 construction	 methodology.	 FTTS-focused	
network	 is	 constructed	using	PPI	 related	 to	FTSS	proteins.	Proteins	were	maintained	 if	 interact	with	at	
least	two	of	the	FTSS	proteins	(step	1).	Then,	there	was	performed	a	functional	enrichment	analysis	using	
GTLinker	 and	 TopGO	 algorithms	 (step	 2).	 Metagroups	 created	 by	 GTLinker	 algorithm	 were	 manually	
edited	(step	3)	and	finally	FTSS-network	with	functional	annotation	was	constructed	(step	4).	

	
	
The	 GTLinker	 clustering	 algorithm	 was	 applied	 to	 annotations	 with	 at	 least	 4	 associated	
proteins	 (minimum	support)	 (Figure	2.1-3).	 Since	GTLinker	metagroups	are	 formed	by	varied	
GOTs,	we	manually	 assigned	 general	 titles	 to	 each	 cluster.	 Besides,	 GTLinker	 does	 not	 return	
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functional	information	from	proteins	excluded	by	the	clustering	algorithm	so,	we	also	performed	
an	 additional	 functional	 enrichment	 analysis	 using	 topGO	 R	 function	 (Alexa	 &	 Rahnenfuhrer	
2010)	 (Figure	 2.1-2).	 We	 used	 this	 functional	 data	 to,	 when	 possible;	 manually	 include	 the	
remaining	 proteins	 into	 the	metagroups	 suggested	 by	GTLinker	 result	 (Figure	 2.1-3).	 All	 data	
relative	to	functional	enrichment	and	clustering	analyses	are	available	in	Supplementary	data	S-
2.2.	
	

FTSS-focused	network	construction	
	
The	 PPI	 data	 and	 functional	 information	 collected	 in	 previous	 steps	 was	 finally	 plotted	 as	 a	
network	using	Cytoscape	software	version	3.4.0	(Shannon	et	al.	2003)	(Figure	2.1-4).	

	

Results	and	Discussion	
	

PPI	data	retrieval		
	
The	 initial	 sets	 of	 interactions	 originated	 a	 network	with	 636	 proteins	 and	 1007	 interactions	
with	the	FTSS	proteins.	Only	proteins	that	interact	with	at	least	two	of	the	four	studied	proteins	
were	retained,	resulting	in	a	final	set	of	136	proteins	and	377	interactions.	
	
	

	
	

Figure	 2.2	 Venn	 diagram	 describing	 retrieved	 FTSS-related	 PPIs:	 Each	
overlapping	 area	 describes	 the	 number	 of	 intermediary	 proteins	 interacting	
simultaneously	with	FUS,	TDP43,	SMN	and/or	SETX.	Those	non-overlapping	areas	
describe	 the	 number	 proteins	 that	 interact	 only	with	 a	 single	 FTSS	 protein	 and	
thus	were	removed	from	the	FTSS-focused	network.	

	
	
According	 to	Figure	2.2,	 FUS	 is	 the	most	promiscuous	protein	having	described	a	 total	of	436	
PPIs.	 Besides	 it	 is	 the	 protein	 that	 more	 PPI	 losses	 (322)	 when	 filtering	 which	 reflects	 FUS	
multifunctionality	and	plus	demonstrates	that	it	is	also	involved	in	many	functions	non-related	
to	those	associated	to	FTSS	proteins.	SMN	and	TDP43	show	the	same	behavior	as	FUS	but	in	a	
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lesser	extent.	Finally,	SETX	despite	of	being	the	protein	with	less	PPIs	described	(62),	is	also	the	
protein	 that	 less	PPI	 losses	relatively.	This	suggests	 that	SETX	 is	more	specialized	 in	 functions	
simultaneously	related	to	those	of	FTSS	proteins.	
	
On	 the	 other	 hand,	 looking	 to	 the	 Venn's	 diagram	 intersecting	 areas,	 there	 are	 11	 proteins	
interacting	with	all	FTSS	proteins	(FTSS	clique).	The	existence	of	this	clique	underlines	the	close	
interactomic	relationship	among	FUS,	TDP43,	SMN	and	SETX	and	evidences	their	common	role	
in	certain	functions.		
	
Now	comparing	SMN	(as	SMA-associated	protein)	against	FUS,	TDP43	and	SETX	(as	ALS-related	
proteins)	we	can	see	that	SMN	and	FUS	are	the	most	closely	related	proteins	sharing	the	highest	
number	of	interacting	proteins	(there	are	59	proteins	intersecting	SMN	and	FUS	areas	in	Figure	
2.2).		
	
The	 existence	 of	many	 common	 interactors	 between	 SMN	 and	 FUS	 reinforce	 the	 evidences	 of	
their	common	role	on	Gems	maintenance	(Ishihara	et	al.	2013;	Tsuiji	et	al.	2013;	Yamazaki	et	al.	
2012)	and	therefore,	their	impact	on	snRNPs	maturation	(Liu	&	Dreyfuss	1996;	Cioce	&	Lamond	
2005;	 Clelland	 et	 al.	 2009).	 Furthermore,	 the	 close	 relationship	 of	 FUS	 and	 SMN	 also	 sustain	
their	combined	impact	on	snRNPU7	biogenesis	and	on	histone	mRNA	processing	(Raczynska	et	
al.	2015;	Tisdale	et	al.	2013).	
	
SMN	and	TDP43	also	share	a	high	number	of	interacting	proteins	(35	proteins	intersecting	SMN	
and	TDP43	areas	 in	Figure	2.2).	This	observation	could	correspond	to	the	 fact	 that	TDP43	has	
been	also	found	interacting	with	SMN	and	FUS	on	Gems	(Ishihara	et	al.	2013;	Tsuiji	et	al.	2013;	
Yamazaki	et	al.	2012)	and	thus,	TDP43	might	be	also	necessary	for	Gems	stability	and	snRNPs	
maturation.		
	
Finally	 SMN	 and	 SETX	 share	 14	 interactors	 (Figure	 2.2),	 despite	 being	 a	 lower	 number	 it	
represents	a	great	fraction	of	total	interactions	associated	to	SETX.		
SETX	is	known	to	have	an	active	part	on	R-loops	formation.	SMN	has	also	been	found	as	direct	
interactor	 between	 RNA	 pol	 II	 and	 SETX	 (Zhao	 et	 al.	 2016).	 Thus,	 their	 close	 relationship	
highlights	 the	 additional	 role	 of	 SMN	 on	 transcription	 termination	 and	 therefore,	 SMN	 lower	
activity	might	not	only	lead	to	splicing	pattern	alterations	(Skourti-Stathaki	et	al.	2011)	but	also	
to	DNA	damage	and	genomic	instability.	
	
	

FTSS-focused	network	
	
From	 the	 initial	 set	 of	 136	 proteins,	 GTLinker	 enrichment	 and	 clustering	 algorithm	 created	 8	
functional	metagroups	 including	70	proteins.	The	remaining	proteins	were	manually	classified	
according	to	the	results	of	TopGO	enrichment	algorithm.	It	was	needed	to	create	an	additional	
metagroup	 to	 englobe	 proteins	 related	 to	 cell	 death	 and	 apoptosis.	 There	 were	 18	 proteins	
without	known	GOT	that	were	not	included	in	any	metagroup.	
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Figure	 2.3	 FTTS-focused	 network:	 Nodes	 represent	 FUS,	 TDP43,	 SMN,	 SETX	 proteins	 and	 direct	
interactors.	 Edges	 describe	 physical	 interactions.	 Annotations	 of	 the	 proteins	 in	 the	 network	 where	
functionally	 enriched	 using	 TopGo	 and	 clustered	 using	 GTLinker	 algorithm	 to	 simplify	 the	 functional	
characterization.	Functional	clusters	are	identified	by	node	color	and	summarized	in	the	attached	legend.	
With	the	exception	of	FTSS	proteins,	nodes	without	color	are	proteins	without	known	functions.	Proteins	
that	were	 included	 in	more	 than	one	 cluster	 are	 assigned	 to	 the	 cluster	with	 the	 lowest	 enrichment	 p-
value	and	identified	with	a	bold	border.	

	
It	is	noteworthy	that	the	interactors	of	FTSS	proteins	are	related	to	a	variety	of	functions	(Figure	
2.3),	which	again	emphasizes	the	FTSS	proteins'	multifunctionality.		
	
Since	 RNA	 processing	 is	 a	 very	 general	 concept,	 it	 is	 expected	 that	 this	 cluster	 embraces	 the	
highest	 number	 of	 proteins	 (Figure	 2.3	 yellow	 nodes).	 Moreover,	 they	 are	 homogeneously	
distributed	in	the	network.	Furthermore,	the	majority	of	proteins	that	constitute	the	FTSS	clique	
(that	 interact	 simultaneously	with	 all	 FTSS	 proteins)	 are	 related	 to	 RNA	processing	 and	 thus,	
possibly	 form	 a	 protein	 complex.	 Most	 of	 these	 proteins	 are	 heterogeneous	 nuclear	
ribonucleoproteins	(hnRNPs)	known	by	their	 involvement	in	pre-mRNA	processing	and	mRNA	
transport.		
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As	 expected,	 splicing	 related	 functions	 are	 over-represented	 in	 FTSS-focused	 network	 (Figure	
2.3	red	nodes).	In	particular,	proteins	involved	in	splicing	are	more	closely	related	to	FUS,	SMN	
and	TDP43	than	to	SETX.	 	Likewise,	 the	translation	elongation	and	termination	cluster	(Figure	
2.3	 orange	 nodes)	 shows	 a	 similar	 distribution	 to	 spliceosome	 assembly	 cluster.	 Thus,	 FTSS	
proteins	seem	to	participate	in	translation	as	well.	
	
Ubiquitin	 dependent	 function	 cluster	 also	 forms	 a	 small	 and	widely	distributed	 group	 (Figure	
2.3	 light	 green	 nodes).	 It	 is	 worth	 mentioning	 that	 ubiquitin-dependent	 degradation	 can	 be	
involved	in	varied	regulatory	processes	such	us	mRNA	nuclear	transport,	DNA	repair,	cell	cycle,	
immunity	and	signal	 transductions	 (Muratani	&	Tansey	2003;	Peng	et	 al.	2003).	Furthermore,	
protein	 degradation	 has	 many	 critical	 roles	 in	 synaptic	 plasticity	 (Diantonio	 &	 Hicke	 2004).	
Nevertheless	 we	 should	 be	 careful	 and	 recall	 that	 ubiquitin	 proteins	 are	 intrinsically	
promiscuous	and	thus	these	results	may	be	unspecific.	
	
Conversely,	there	are	few	proteins	associated	to	microtubule	related	functions	(Figure	2.3	dark	
pink	nodes)	that	may	have	a	critical	role	in	MN	degeneration.	It	is	known	that	microtubules	are	
involved	in	fast-axonal	transport	and	then	are	required	for	axons'	and	synapses'	structural	and	
regulatory	maintenance	(Griffin	&	Watson	1988;	Poulain	&	Sobel	2010).		
	
Moreover,	SMN	has	been	directly	involved	in	the	axonal	transport	failure	in	two	main	ways.	The	
first	hypothesis	is	that	SMN;	together	with	other	RNA	binding	proteins	is	key	to	form	the	mRNA	
vesicles	 that	will	be	 transported	 through	 the	axons	 (Zhang	et	al.	2006).	Therefore	 it	has	a	key	
role	in	the	maintenance	of	axons	and	in	turn	synapses.	The	second	striking	evidence	is	that	the	
assembly	 dynamics	 of	 the	 cytoskeleton	 and	 particularly	 microtubules	 is	 mediated	 by	 tissue-
specific	 alternative	 splicing	 events	 that	 in	 turn	 have	 direct	 impact	 on	 nervous	 tissue	
development	 (Madgwick	 et	 al.	 2015).	 Strikingly,	 FUS	 is	 the	 common	 interactor	 between	
microtubule-associated	proteins	in	the	network	(Figure	2.3)	thus,	FUS	appears	again	as	a	central	
element	in	MN	degeneration.	
	
Despite	 FUS	 and	 SETX	 are	 both	 involved	 in	 DNA	 repair	 (Rulten	 et	 al.	 2014;	 Suraweera	 et	 al.	
2009)	proteins	associated	 to	 the	DNA	repair	 cluster	 (Figure	2.3	dark	green	nodes)	are	mainly	
interacting	with	FUS.	We	might	hypothesize	that	although	both	being	related	to	DNA	repair,	only	
FUS	and	its	interactors	are	involved	in	the	DNA	repair	failure	in	MND	while	SETX-mediated	DNA	
repair	could	possibly	be	activated	through	other	non-related	pathways.		
	
Finally,	 transcription	 termination	 cluster	 (Figure	 2.3	 dark	 blue	 nodes)	 and	 rRNA	 processing	
(Figure	 2.3	 light	 blue	 nodes)	 clusters	 are	 the	 smallest	 groups.	 However,	 it	 is	 important	 to	
highlight	that	many	proteins	were	related	to	more	than	one	cluster	(Figure	2.3	nodes	with	bold	
border).	Thus,	RNA	processing,	spliceosome	assembly	or	translation	elongation	and	termination	
clusters	grew	at	the	expense	of	more	specific	clusters	such	as	transcription	termination	cluster	
or	rRNA	processing.	
		
	
	
	



	 22	

Conclusions	
	
	
FTSS-focused	 network	 architecture	 demonstrates	 that	 FUS,	 TDP43,	 SMN	 and	 SETX	 are	 very	
closely	 interacting.	 This	 is	 a	 very	 important	 fact	 because	 they	 are	 directly	 related	 to	 ALS	 and	
SMA	pathomechanisms	and	thus	may	serve	as	a	bridge	to	link	both	MNDs.		
	
Despite	 of	 being	 multifunctional	 proteins,	 FTSS-focused	 network	 functional	 characterization	
suggests	that	RNA-metabolism	has	a	central	role	among	these	proteins.	In	broad	terms,	the	RNA	
processing	 cluster	 is	 the	 most	 over-represented	 functional	 group	 followed	 by	 the	 expected	
spliceosome	assembly	related	cluster.	In	particular,	hnRNP	complex	dominates	the	FTSS	clique.	
Since	 this	 clique	 represents	 the	 closest	 interactomic	 and	 functional	 relationship	 among	 FTSS	
proteins	 and	 hypothetically	 the	 ALS	 and	 SMA	 phenotypes,	 pre-mRNA	 processing	 and	 mRNA	
transport	functions	acquire	great	relevance	in	MNDs.	
	
On	the	other	hand,	FTSS-focused	network	also	brought	more	insights	into	the	understanding	of	
motor	 neuron	 degeneration	 mechanism.	 Namely,	 microtubule-related	 functions	 acquire	 new	
relevance	 in	 the	 degeneration	 of	 motor	 neurons.	 Microtubule-associated	 proteins	 act	 as	
important	 regulators	 in	 the	 development	 of	 neurite,	 axon	 and	 dentrite	 formations	 (Poulain	&	
Sobel	 2010).	 Besides,	 cytoskeleton	 dynamics	 seems	 to	 be	 highly	 dependent	 of	 tissue-specific	
splicing	activity.	Additionally	to	SMN's	role	in	spliceosomal	assembly,	it	is	also	involved	in	mRNA	
vesicles	 microtubule-dependent	 transport	 through	 axons.	 Furthermore,	 in	 FTSS-focused	
network	 FUS	 is	 closely	 interacting	 with	 microtubule-assembly	 related	 proteins.	 Thus,	 the	
functional	link	between	SMN	(as	SMA-DAG	and	FUS	(as	ALS-DAG)	sets	microtubule-based	axonal	
transport	in	the	center	of	the	board	as	the	phenomenon	that	possibly	links	the	observed	genetic	
and	phenotypic	features	of	MNDs.	
	
FUS	 seems	 to	 be	 a	 very	 influential	 protein	 not	 only	 due	 to	 the	 large	 number	 of	 PPIs	 but	 also	
because	 of	 its	 interactors-associated	 functions.	 Together	 to	 the	 prior	 evidences	 of	 its	
involvement	in	Gems	structure	maintenance	or	histones	mRNA	processing,	we	show	that	FUS	is	
also	interacting	with	proteins	related	to	splicing,	microtubule-based	movement	and	DNA	repair	
among	 others.	 Furthermore,	 FUS	 promiscuity	 (the	 existence	 of	 a	 high	 number	 of	 other	
interactors	 not	 related	 to	 FTSS)	might	 be	 an	 interesting	 fact	 considering	 that	 its	 perturbation	
could	lead	to	the	alteration	of	a	number	of	varied	functions	within	the	cell	as	observed	in	MND	
phenotypes.	
	
The	perturbation	of	histone	mRNA	biogenesis	 induced	by	U7snRNP	dysfunction	 (produced	by	
FUS	 and	 SMN	mutations)	 can	 have	 a	 great	 impact	 on	 synapse	 plasticity.	 Conversely,	mutated	
SETX	 is	also	directly	 involved	 in	 immune	hyper-response	and	 therefore	 in	neurodegeneration.	
Despite	 being	 directly	 related	 to	 neuron	 survival,	 these	 perturbations	 are	 still	 too	 general	 to	
address	 motor	 neuron	 death	 specifically.	 Histone	 biogenesis	 changes	 can	 produce	 global	
perturbations	in	chromatin	patterns	and	therefore,	overall	changes	in	gene	expression	and	cell	
physiology.	Besides,	 these	proteins	are	also	essential	 for	damaged	DNA	repair	and	 thus,	when	
altered	can	produce	fatal	changes	in	the	genotype	of	any	cell	type.		
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We	 are	 aware	 of	 many	 other	 MND-DAGs	 that	 were	 not	 considered	 and	 thus,	 the	 over	
representation	of	RNA-metabolism	related	functions	could	be	a	result	of	this	bias.	Besides,	this	
research	is	based	on	the	existence	of	PPIs	and	ignores	the	MND	diseasome	structure.	
	
Despite	the	referred	limitations,	we	have	shown	that	this	simple	approach	to	construct	a	FTSS-
focused	network	is	able	to	retrieve	relevant	information	about	motor	neuron	degeneration	and	
provide	novel	cues	for	further	MNDs	research.	
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Chapter	3:	S2B	method	
	
	

Introduction	
	
	
Biological	 entities	 are	 extremely	 complex	 systems	 and	 biological	 properties	 only	 arise	 from	
intricate	 interactions	 among	 the	 cells’	 constituents,	 such	 as	 DNA,	 RNA,	 proteins	 and	 small	
molecules	 (Barabási	&	Oltvai	2004).	Likewise,	diseases	are	 the	phenotypic	 result	of	genetic	or	
environmental	alterations	that	perturb	the	interactome	(Barabási	et	al.	2011).		
	
Thanks	 to	high	 throughput	 technologies,	we	 currently	have	 at	 our	disposal	 a	 large	number	of	
disease-gene	 associations.	 However	 they	 need	 to	 be	 computationally	 analyzed	 to	 effectively	
obtain	new	biological	knowledge.	Conversely,	due	to	the	 intrinsic	properties	of	biological	data,	
one	 of	 the	 best	 ways	 of	 representing	 it	 is	 in	 the	 form	 of	 complex	 networks.	 Furthermore,	
biological	 networks	 present	 a	 highly	 conserved	 architecture	 that	 enables	 the	 use	 of	 network	
theory	principles	to	 infer	biological	 information	and	associations	(Newman	2003;	Przulj	2011;	
Raman	2010;	Winterbach	et	al.	2013).	
	
Amongst	the	applications	of	networks	theory	in	biomedical	research,	Disease-Associated	Genes	
(DAGs)	 prioritization	 is	 one	 of	 the	most	 common	 goals	 particularly	 because	 it	 is	 necessary	 to	
filter	 the	 large	 lists	 of	 DAG	 candidates	 returned	 by	 high-throughput	 derived	 experiments	
(Moreau	&	Tranchevent	2012).	 	There	are	varied	 types	of	network-based	DAG	methods	being	
the	 most	 usual	 those	 that	 represent	 disease	 molecular	 details	 through	 Protein-Protein	
Interaction	(PPI)	networks.		
	
Generally	 they	 work	 under	 “guilt	 by	 association”	 assumption,	 which	 states	 that	 network	
neighbors	of	disease	genes	tend	to	cause	similar	diseases	(Oliver	2000).	The	majority	is	focused	
on	 the	 integration	 of	 heterogeneous	 networks	 to	 better	 characterize	 the	 disease	 context	 and	
therefore	obtain	the	best	results.	Chain	Rank	method	(Tényi	et	al.	2016)	for	example	allows	the	
implementation	of	user-defined	scores	to	integrate	signaling,	regulation	or	interactomic	data	.	
	
Typically,	 DAG	 prioritization	 methods	 explore	 the	 topology	 of	 networks	 in	 order	 to	 identify	
nodes	that	have	more	impact	on	connectivity	and	therefore,	may	have	more	biological	relevance.	
These	in	turn	can	be	classified	according	to	the	type	of	centrality	measures	they	use.	The	method	
developed	by	Shunyao	Wu	and	colleagues	(Wu	et	al.	2015)	exploit	global	topology	analyzing	
how	a	particular	 flow	propagates	through	network.	 	 It	works	under	the	assumption	that	DAGs	
are	preferentially	not	well	connected	to	essential	proteins	(Goh	et	al.	2007).	Then,	 the	method	
classifies	 and	 assigns	 weights	 to	 nodes	 according	 to	 if	 they	 are	 associated	 to	 disease	 genes	
(positive)	 or	 on	 the	 contrary	 are	 essential	 genes	 (negative	 weight).	 Eventually	 the	 algorithm	
performs	a	network	propagation	analysis	to	identify	the	most	recurrent	paths.	
	
On	the	other	side	we	find	methods	focused	on	exploiting	local	topological	characteristics	such	as	
nodes'	degree,	length	of	shortest	paths	or	nodes'	betweenness	centrality.	NERI	method	(Simões	
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et	al.	2015)	for	example	constructs	a	heterogeneous	network	with	PPI	and	gene	expression	data.	
Then,	 it	 prioritizes	 DAGs'	 neighbors	 according	 to	 their	 presence	 in	 shortest	 path	 and	 the	
existence	 of	 similar	 gene	 expression	 patterns	 to	 the	 observed	 for	 DAGs	 between	 control	 and	
disease	contexts.		
	
DAGs	 can	 also	 be	 used	 to	 assess	 similarities	 between	 diseases.	 These	methods	 study	 disease-
disease	relationships	at	genotypic	 level	representing	diseases	as	nodes	 in	a	network	 linked	by	
common	 DAGs	 or	 comorbidities.	 The	 first	 of	 its	 type	 was	 the	 "human	 disease	 phenome"	
constructed	 by	 Goh	 and	 colleagues	 (Goh	 et	 al.	 2007).	 They	 used	 a	 systematic	 approach	 to	
represent	the	diseasome	that	links	all	the	genetic	disorders	of	known	molecular	basis.	
	
There	is	however	a	scarcity	of	methods	to	explore	the	networks	of	DAGs	of	two	phenotypically	
similar	diseases.	This	exploration	could	identify	common	molecular	mechanisms	and	expand	in	
this	way	the	current	knowledge	about	the	two	diseases.	The	method	constructed	by	Calderone	
and	 coleagues	 (Calderone	 et	 al.	 2016)	 follows	 this	 approach	 and	 tries	 to	 identify	 functional	
commonalities	 between	 Alzheimer	 and	 Parkinson	 diseases.	 First,	 it	 extracts	 topological	
communities	 in	 PPI	 networks	 containing	 each	 disease	DAGs.	 Then	 it	 performs	Gene	Ontology	
(G0)	 functional	 enrichment	 in	 each	 community.	 Finally,	 it	 compares	 the	 enriched	 functions	
detected	in	communities	from	the	Alzheimer	network	with	the	ones	found	in	communities	from	
the	Parkinson	network.	Although	it	is	initially	based	on	topological	communities	extraction,	it	is	
more	 focused	on	 function	 similarity	 analysis	 and	does	not	 attempt	 to	 build	 a	 unique	network	
that	integrates	DAGs	from	both	diseases.	
	
In	 this	work	we	 propose	 a	 new	 method,	 called	Double	 Specific	 Betweenness	 (S2B)	 that	
builds	an	interaction	network	connecting	DAGs	from	two	diseases	and	prioritizes	proteins	that	
specifically	link	the	network	modules	of	both	diseases.		
	
S2B	method	relies	on	the	assumptions	that	1)	proteins	involved	in	the	same	disease	phenotype	
tend	 to	 interact	 with	 each	 other	 (disease	modules)	 (Oti	 et	 al.	 2006),	2)	 disease	modules	 are	
prone	to	overlap	(Goh	et	al.	2007)	and	3)	hub	nodes	are	less	likely	related	to	phatophenotypes	
(Goh	 et	 al.	 2007).	 To	 exploit	 these	 principles	 we	 implemented	 a	 variant	 of	 betweenness	
centrality	specific	 for	cross	DAG	shortest	paths	 filtering	out	unspecific	highly	central	nodes	by	
randomization-based	statistics.		
	
	
The	standard	betweenness	count	computes	the	number	of	times	a	node	is	part	of	a	shortest	path	
between	any	two	nodes	in	the	network.	In	S2B,	the	count	is	measured	using	only	shortest	paths	
that	 link	DAGs	 from	 one	 disease	 to	 DAGs	 from	 the	 other	 disease.	 In	 this	way,	 it	 can	 estimate	
nodes'	 relevance	 connecting	 the	pathomechanisms	of	 both	diseases.	 Conversely,	 knowing	 that	
nodes	with	high	degree	are	more	frequently	found	in	any	shortest	path,	we	have	implemented	
two	scores	to	filter	those	nodes	that	may	be	relevant	but	are	not	specifically	related	to	the	two	
diseases	under	study.	
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As	a	study-case,	we	applied	the	S2B	method	to	study	two	Motor	Neuron	Diseases	(MNDs),	
known	to	share	phenotypic	and	genotypic	properties.	Both	Amyotrophic	Lateral	Sclerosis	(ALS)	
and	Spinal	Muscular	Atrophy	(SMA)	are	characterized	by	the	Motor	Neuron	(MN)	degeneration	
and	successive	muscular	atrophy.	Besides,	several	of	their	DAGs	are	involved	in	common	cellular	
activities,	 being	 RNA	 metabolism	 an	 outstanding	 example.	 However,	 RNA	 homeostasis	 is	
essential	 for	 the	 survival	 of	 any	 type	 of	 cell.	 Thus	we	 are	 still	 missing	 the	 key	 elements	 that	
eventually	 induce	 the	 particular	 motor	 neuron	 death.	 This	 suggests	 there	 are	 more	 disease-
associated	 functions	 non-related	 to	 RNA	 processing	 that	 may	 have	 relevant	 roles	 in	 MN	
degeneration.		
	
Therefore,	ALS	and	SMA	are	ideal	study	subjects	on	which	to	apply	S2B	method	and	evaluate	the	
performance	 of	 the	 implemented	 algorithms.	 	 Additionally,	 it	 will	 allow	 us	 to	 obtain	 further	
knowledge	about	MN	degeneration	mechanisms.	
	

Methodology	
	
	

S2B	method	

MND-focused	network	construction	
	
We	 retrieved	 all	 the	 ALS	 and	 SMA-DAGs	 described	 on	 OMIM	 (Hamosh	 et	 al.	 2002)	
(http://www.omim.org/)	 and	 DisGeNET	 (Pinero	 et	 al.	 2015)	 (http://www.disgenet.org/)	
databases	 (MND	 DAGs	 sets)	 in	 September	 2015	 (Figure	 3.1–1).	 DisGeNET	 collects	 not	 only	
manually	curated	DAGs	from	experimental	evidences	but	also	predicted	associations	and	DAGs	
described	 in	other	 animal	models	 (Mus	musculus	 and	Ratus	norvegicus).	We	 took	all	DAG	data	
without	any	score	 filtering	 to	 retrieve	 the	maximum	amount	of	 information.	OMIM	gathers	all	
the	information	about	genotypic-phenotypic	relationships	for	all	the	disease	subtypes	together	
under	the	classical	disease	names.		
	
However,	DisGeNET	makes	distinctions	among	the	disease	subtypes	so	we	retrieved	from	MeSH	
Browser	 (https://www.nlm.nih.gov/mesh/MBrowser.html)	 all	 the	 UMLS	 (Unified	 Medical	
Language	 System)	 CUI	 (Concept	 Unique	 Identifier)	 identifiers	 corresponding	 to	 ALS	 and	 SMA	
disease	subtypes	and	used	them	to	query	DisGeNET.	DAGs	related	with	disease	subtypes	were	
joined	 in	 the	 corresponding	 ALS	 and	 SMA	 general	 sets.	 We	 used	 PPI	 datasets	 (Rolland	 et	 al.	
2014;	Rual	et	al.	2005;	Venkatesan	et	al.	2009;	Yu	et	al.	2011)	available	in	CCSB-Human	binary	
Interactome	as	a	model	of	the		human	interactome	network	(Figure	3.1–1).	We	manipulated	the	
interactome	 network	 using	 the	 Igraph	 R-package	 (Csárdi	 &	 Nepusz	 2006).	 Particularly,	 we	
eliminated	loop	(when	a	protein	 interacts	with	 itself)	and	multiple	(when	there	are	more	than	
one	interaction	describes	for	the	same	pair	of	proteins,	only	one	is	retained)	edges	and	selected	
only	the	network's	main	component.	Finally,	DAGs	were	labeled	as	ALS	and/or	SMA	seed	nodes.	
We	supply	the	disease	subtypes	CUI	list	and	the	used	PPI	network	as	supplementary	data	S-3.1	
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Figure	3.1	Flowchart	describing	 the	workflow	of	S2B	method.	MND-focused	network	is	constructed	
using	CCSB	derived	PPI	data	and	MND-DAGs	retrieved	from	DisGeNET	and	OMIM	(step	1).	Following	S2B	
method	is	applied.	Betweenness	count	is	measured	(step	2)	and	network	is	shuffled	using	BRC1	and	BRC2	
algorithms	(step	3)	to	obtain	the	statistical	relevance	needed	to	return	the	protein	ranking	and	construct	a	
S2B	network	using	the	prioritized	nodes	(step	4).	

	

Betweenness	count	(BC)	
	
We	searched	the	network	for	the	shortest	paths	linking	every	possible	pair	of	ALS	and	SMA	seed	
nodes.	In	cases	where	there	were	multiple	shortest	paths	between	two	seed	nodes,	all	of	them	
were	 considered.	 Whereas	 shortest	 paths	 that	 had	 a	 higher	 length	 than	 the	 whole	 network	
average	 shortest	 path	 length	 were	 discarded.	 For	 each	 node	 in	 the	 network	 we	 counted	 the	
number	of	times	it	was	part	of	the	shortest	paths	between	ALS	and	SMA	seed	nodes.	Eventually,	
we	did	not	count	the	presence	of	the	actual	seed	nodes	(initial	and	terminal	DAGs	nodes)	of	each	
shortest	path.	The	resulting	count	was	called	the	Betweenness	count	(BC)	(Figure	3.1-2).	
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Randomization-based	statistics	(BRC)	
	
Following,	we	 implemented	two	algorithms	to	 filter	out	nodes	with	unspecific	high	BC	(Figure	
3.1-3).	 Both	 algorithms	 generate	 random	 networks	 that	 are	 used	 to	 compute	 betweenness	
random	 counts	 (BRC)	 for	every	node.	As	 for	BC,	BRCs	are	computed	 from	the	shortest	paths	
between	 each	 ALS	 and	 SMA	 seed	 but	 according	 to	 the	 new	 random	 network.	 In	 the	 first	
algorithm,	 network	 edges	 are	 shuffled	 maintaining	 their	 nodes'	 degree	 (Figure	 3.2).	 We	
performed	 250	 randomizations	 and	 determined	 for	 each	 node	 the	 fraction	 of	 times	 that	 BC	
(computed	with	the	original	network)	is	higher	than	BRC1.	This	fraction	was	named	Score	1.	In	
the	 second	 algorithm,	 only	 seeds’	 identity	 is	 shuffled.	We	 also	performed	250	 randomizations	
and	for	each	node	Score	2	measures	the	fraction	of	times	BC	is	higher	than	BRC2.		
Score	 1	 and	 Score	 2	 values	 for	 the	 same	 nodes	 are	 not	 highly	 correlated.	 The	 first	 kind	 of	
randomization	creates	new	shortest	paths,	but	maintains	the	degree	of	 the	seed	nodes.	On	the	
other	hand,	the	second	kind	of	randomization	varies	the	degrees	of	seed	nodes	but	maintains	the	
network	 shortest	 paths,	 and	 consequently	 each	 node	 global	 betweenness.	 The	 R	 script	 of	 BC,	
BRC1	and	BRC2	algorithms	is	available	in	supplementary	data	S-3.2	
	
	

	

	
Figure	3.2	Illustration	of	BRC1	and	BRC2	shuffling	procedure.	Comparing	to	the	
original	 network	 in	 the	 left,	 the	 top	 right	 network	 nodes	 change	 their	 edges	 but	
maintain	their	degree	(BRC1	shuffling)	while	 in	bottom	right	network,	seed	nodes	
(encircled	 with	 a	 diamond)	 change	 but	 the	 network	 structure	 does	 not	 change	
(BRC2	shuffling).	
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Node	prioritization	
	
We	selected	the	nodes	that	were	present	at	least	in	one	shortest	path	(BC	higher	or	equal	to	1)	
and	 showed	 in	 both	 scores	 values	 higher	 or	 equal	 to	 0.95.	 Selected	 proteins	were	 called	 hbn	
nodes	(high	betweenness	nodes).	Finally,	we	constructed	the	S2B-network	extracting	the	induced	
subgraph	of	hbn	nodes	 and	MND	DAGs	 from	 the	 interactome	network	 	 (Figure	3.1-4)	Besides	
this	network,	S2B	method	returns	a	list	with	all	nodes’	betweenness	count	(BC),	score	1	(BRC1)	
and	score	2	(BRC2)	values.	The	results	obtained	from	S2B	method	for	MND-focused	network	are	
available	in	supplementary	data	S-3.2.	
	

Functional	enrichment	comparisons	
	
To	 evaluate	 the	 results	 obtained	with	 the	 S2B	method,	we	 compared	 the	 biological	 processes	
enriched	in	the	set	of	hbn	nodes	with	the	ones	enriched	1)	simultaneously	in	the	initial	sets	of	
ALS	and	SMA	DAGs	and	2)	in	a	manually	curated	PPI	network	built	around	four	proteins	(FUS,	
TDP43,	SMN	and	SETX)	known	to	be	associated	with	ALS	and	SMA	(FTSS-focused	network).	To	
facilitate	these	comparisons	we	developed	a	common	workflow	that	removes	the	redundancy	in	
enriched	Gene	Ontology	 Terms	 (GOTs)	 clustering	 them	by	 annotated	 gene	 sets	 co-occurrence	
and	by	semantic	similarity	(Figure	3.3).		

Functional	enrichment		
The	 comparison	workflow	receives	as	 inputs	 two	gene	 sets	A	and	B	 (Figure	3.3-1).	Both	gene	
sets	are	functionally	enriched	using	EnrichGO	R	function	available	in	ClusterProfiler	R-package	
(Yu	 et	 al.	 2012).	 The	 functional	 enrichment	 is	 constrained	 to	 Biological	 Processes	 (BP)	 GOTs	
described	in	Homo	sapiens.	An	FDR	adjusted	p-value	smaller	than	0.05	is	considered	statistically	
significant	(Figure	3.3-2).		

GOT	filter	by	specificity	
The	 initial	 GOT	 sets	 are	 depurated	 leaving	 out	 the	 terms	 that	 show	 a	 background	 frequency	
equal	or	higher	to	10%	(Figure	3.3-3).	A	GOT	background	frequency	is	the	percentage	of	genes	
annotated	with	that	GOT	in	the	background	list	used	in	the	enrichment	analysis	(Homo	sapiens	
genome	 in	our	 case).	The	 resulting	pair	of	 filtered	GOT	 is	merged	 into	a	 single	 list	 and	sorted	
according	 to	GOT	 fold	enrichment	 in	decreasing	order.	Fold	 enrichment	 is	 the	 ratio	between	
the	frequency	of	the	GOT	in	the	gene	list	and	the	frequency	of	the	same	GOT	in	the	background	
gene	list.		

GOT	fusion	by	gene	co-occurrence	
GOTs	 in	 the	merged	 list	 are	 analyzed	 according	 to	 their	 associated	 gene	 sets.	 Two	 GOTs	 are	
fused	if	the	intersection	of	the	associated	gene	sets	is	at	least	75%	of	the	smaller	gene	set.	The	
new	 GOT	 groups	 maintain	 the	 official	 ID	 and	 descriptor	 of	 the	 GOT	 that	 shows	 higher	 fold	
enrichment	(Figure	3.3-4).	Each	GOT	is	compared	with	all	GOT	with	lower	fold	enrichment.	Each	
time	 two	 terms	 are	 fused,	 the	 GOT	 with	 higher	 fold	 enrichment	 collects	 the	 other	 GOT	 and	
associated	gene	sets	and	the	GOT	with	 the	 lower	 fold	enrichment	 is	 immediately	deleted	 from	
the	list.	In	this	way,	each	GOT	can	only	be	fused	once	with	a	GOT	with	higher	fold	enrichment.	On	
the	other	hand,	one	GOT	can	fuse	with	multiple	GOTs	with	lower	fold	enrichment.		
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Figure	3.3	Flowchart	describing	the	standard	workflow	of	functional	characterization	on	any	pair	
of	protein	sets.	Two	proteins	or	gene	sets	(step	1)	are	functionally	enriched	(step	2).	Then	the	GOTs	are	
filtered	by	their	specificity	(step	3),	fused	by	gene	co-ocurrence	(step	4)	and	semantic	similarity	(step	5),	
resulting	in	three	final	GOT	sets:	unique	GOTs	associated	to	gene	set	A,	unique	GOTs	associated	to	gene	set	
B	and	common	GOTs	associated	to	both	gene	sets	(step	6).	
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Figure	3.4	Comparison	of	S2B	results	with	FTSS-focused	network	and	MND-DAGs.	Firstly,	S2B	and	
FTSS	 networks	 were	 constructed	 (Steps	 1	 and	 2).	 Then,	 S2B	 (B),	 FTSS	 (C)	 networks'	 proteins	 were	
functionally	 enriched.	Conversely	ALS	and	SMA	DAGs	were	 functionally	 enriched	 independently	 so	 that	
matching	 results	 (intersection)	 are	 joined	 to	 form	 the	 SEEDS	 functional	 result	 (A)	 (left	 middle	 part	 of	
figure).	These	merged	GOT	sets	were	compared	SEEDS(A)	vs	S2B(B)	and		FTSS(C)	vs	S2B(B)	(bottom	box)	
to	return	the	final	GOT	sets.	

	

GOT	fusion	by	semantic	similarity	
After	 fusion	 by	 gene	 co-occurrence,	 resulting	 GOTs	 are	 fused	 by	 semantic	 similarity	 using	
REVIGO	(Supek	et	al.	2011)	(http://revigo.irb.hr).	The	input	set	is	conformed	by	single	GOTs'	ID	
and	fold	enrichment	scores	as	a	significance	measure.	The	semantic	similarity		
measurement	 is	 performed	 using	 Lin’s	 algorithm	 (Lin	 1998)	 in	Homo	 sapiens	 GOT	 database.	
GOTs	 are	 fused	with	 a	minimum	 allowed	 similarity	 of	 0.5,	which	 returns	 a	 small	 sized	 result	
(Figure	3.3-5).	
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Functional	clusters	comparison		
The	fused	GOTs	returned	by	REVIGO	are	separated	according	to	their	provenience	which	results	
in	three	final	GOT	sets:	GOTs	uniquely	enriched	in	gene	set	A,	GOTs	uniquely	enriched	in	gene	
set	B	and	those	GOTs	commonly	enriched	in	both	sets	(Figure	3.3-6).	

	

Comparison	of	S2B	results	with	FTSS-focused	network	and	MND-DAGs	
	
In	 order	 to	 assess	 S2B	 method's	 success	 retrieving	 biologically	 relevant	 information	 we	
performed	 two	 functional	 enrichment	 comparison	 analyses	 using	 as	 controls	 MND-DAGs	
(SEEDS)	and	the	FTSS-focused	network	proteins	(Figure	3.4).	
	
With	 the	 first	 comparison	we	 asked	 if	 the	 S2B	method	 retrieves	 further	 information	 than	 the	
resulting	from	the	functional	enrichment	of	isolated	DAGs	(SEEDS).	Moreover,	we	also	intended	
to	 verify	 that	 S2B	 retrieves	 biologically	 significant	 information.	 Therefore,	we	 used	 the	 FTSS-
focused	 network	 as	 a	 positive	 control	 under	 the	 premise	 that	 it	 was	 constructed	 semi-
automatically	using	previously	MND-knowledge.	
	

	

Results	and	discussion	
	

MND-focused	network	
	
We	can	see	on	Table	3.1	that	ALS	has	more	related	DAGs	than	SMA	(290	against	96	respectively).	
This	 imbalance	 was	 expected	 because	 unlike	 SMA,	 ALS	 is	 considered	 a	 heterogenic	 disease.	
DisGeNET	 holds	 more	 DAGs	 than	 OMIM	 for	 these	 two	 diseases.	 DisGeNET	 retrieves	 DAGs	
predicted	from	text	mining	and	DAGs	identified	in	animal	models	such	as	Mus	musculus	or	Ratus	
norvegicus	 (Pinero	 et	 al.	 2015),	 whereas	 OMIM	 collects	 manually	 curated	 data	 about	 human	
diseases,	which	leads	to	a	smaller	DAGs	set	(Hamosh	et	al.	2002).	From	290	total	ALS	DAGs,	only	
43	were	present	in	both	databases	and	likewise	from	96,	16	were	redundant	in	SMA	set	(Table	
3.1).	However,	not	all	DAGs	have	PPIs	described	 in	the	CCSB	network.	This	narrowed	the	 final	
MND	DAGs	list	(commonly	referred	in	this	work	as	seed	genes)	to	163	DAGs	associated	to	ALS,	
43	SMA-DAGs	and	21	DAGs	associated	with	both	diseases	(Table	3.1).		
	
	

Table	3.1	Summary	of	MND	DAGs	retrieval.		

	 ALS	 SMA	 Common	

DisGeNET	 219	 35	 	

OMIM	 114	 77	 	

DisGeNET	and	OMIM	(union)	 290	 96	 	

DisGeNET	and	OMIM	(intersection)	 43	 16	 	

MND-focused	network	 163	 43	 21	
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S2B	method	results'	topological	analysis	
	
Once	the	MND-focused	network	was	constructed	we	applied	S2B	method.	It	identified	211	hbn	
proteins	 that	 appeared	 specifically	 in	 shortest	 paths	 connecting	 ALS	 and	 SMA	 DAGs.	 We	
constructed	 a	 S2B	 subnetwork	 using	 hbn	 nodes	 and	 seed	 genes	 (Figure	 3.5).	 All	 the	 data	
returned	by	S2B	is	available	in	supplementary	data	S-3.2	S2B	method.	

	

	
	

Figure	 3.5	 Subnetwork	 resulted	 from	 the	 S2B	 method	 prioritization.	 The	 network	
gathers	all	the	hbn	nodes	whereas	blue	nodes	are	seed	genes	associated	to	ALS,	red	nodes	are	
associated	to	SMA,	purple	nodes	are	associated	to	both	ALS	and	SMA	and	eventually,	orange	
nodes	 correspond	 to	hbn	nodes	without	previous	disease-causative	 relation.	Node	sizes	are	
proportional	to	S2B	count	(BC).	

	
	
As	can	be	seen	in	Figure	3.5,	nodes	with	higher	S2B	counts	are	more	central	in	S2B	subnetwork,	
which	may	 suggest	 a	 stronger	 relation	with	molecular	mechanisms	 common	 to	ALS	 and	 SMA.	
Therefore	S2B	count	(BC)	could	be	used	to	rank	hbn	proteins.	
Before	 exploring	 the	 biological	 processes	 associated	 with	 hbn	 proteins,	 we	 asked	 if	 the	 S2B	
count	and	the	selection	of	hbn	proteins	through	specificity	scores	was	not	simply	reflecting	node	
centrality	in	the	overall	interactome	network.	
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Figure	 3.6	 Centrality	 analyses	 of	 proteins	 prioritized	 by	 S2B	 method.	 	We	measured	 the	 degree,	
betweenness	centrality	and	S2B	count	for	all	the	nodes	of	the	CCSB	interactome	network	using	Igraph	R-
package	functions	and	S2B	algorithm	respectively.	Each	black	empty	dot	represents	a	protein/node	of	the	
CCSB	interactome	whereas	red	filled	dots	identify	those	nodes	that	exceeded	S2B	thresholds	(hbn	nodes).	
A)	Log-log	plot	comparing	degree	and	S2B-betweenness	count	(S2B	count)	of	all	nodes	 in	MND-focused	
network.	B)	 Log-log	 plot	 comparing	 general	 betweenness	 and	 S2B	 count	 of	 all	 nodes	 in	MND-focused	
network.	C)	Log-log	plot	comparing	degree	and	S2B	count	of	the	nodes	retained	on	the	S2B	subgraph.	In	
this	case,	black	dots	represent	those	seed	genes	that	did	not	exceed	the	S2B	thresholds.	

	
In	 broad	 terms	we	 can	 observe	 a	 positive	 correlation	 between	 S2B	 count	 and	 degree	 (Figure	
3.6A)	and	between	S2B	count	and	betweenness	(Figure	3.6B),	weaker	for	low	S2B	count	values	
and	stronger	 for	higher	S2B	count	values.	The	correlation	between	standard	betweenness	and	
S2B	count	is	particularly	weak	for	log(S2B	count)	between	0	and	5	(Figure	3.6B).	This	happens	
because	 S2B	 count	 only	 takes	 into	 consideration	 those	 shortest	 paths	 from-to	 seed	 nodes,	
excluding	many	nodes	with	high	values	of	standard	betweenness.	
Nodes	 that	 were	 considered	 specific	 by	 the	 S2B	 method	 (hbn	 nodes)	 have	 generally	 lower	
degree	and	standard	betweenness	when	compared	with	unspecific	nodes.	However,	the	fact	that	
S2B	method	does	not	reject	automatically	all	nodes	with	high	degree	(Figure	3.6A)	nor	with	high	
betweenness	 scores	 (Figure	3.6B)	demonstrates	 its	ability	 to	distinguish	 those	general	 central	
nodes	with	actual	MND	linking	nodes.	
Finally,	we	analyzed	the	degree	centrality	within	the	S2B	subnetwork	formed	by	hbn	nodes	and	
all	seed	genes.	As	can	be	seen	on	Figure	3.6C,	S2B	counts	show	a	wide	variation	for	nodes	with	
similar	S2B	network	degree.	Thus,	S2B	count	has	a	higher	discriminatory	power,	even	in	the	S2B	
network	context.		
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As	 expected,	 proteins	with	highest	 S2B	 count	 values	have	 also	 the	highest	degrees	 in	 the	 S2B	
network,	highlighting	their	high	centrality	in	the	context	of	ALS	and	SMA	diseases.	Moreover,	we	
can	 observe	 that	 S2B	 method	 discards	 many	 seed	 genes	 with	 high	 S2B	 counts	 presumably	
because	of	their	high	degree.		
	
Conversely,	 hbn	 nodes	 do	 not	 have	 to	 necessarily	 be	 very	 central	 in	 S2B	 network	 to	 be	
considered	specific	in	the	MND-context.	
	

S2B	method	functional	analysis	
	
	
We	performed	GOT	functional	enrichment	analysis	with	the	set	of	hbn	proteins	selected	by	the	
S2B	method.	Moreover,	we	compared	the	enrichment	analysis	results	with	similar	analysis	made	
with	 the	 sets	 of	 MND-DAGs	 (SEEDS)	 and	 with	 the	 proteins	 of	 the	 FTSS-focused	 network.	 To	
make	 fair	 and	 non-redundant	 comparisons	 we	 applied	 an	 analysis	 workflow	 that	 fused	 GOT	
associated	with	many	common	genes	or	with	a	high	 semantic	 similarity.	All	 the	 files	 resulting	
from	 each	 step	 are	 available	 in	 Supplementary	 data:	 	 S-3.3	 Functional	 characterization	 raw	
results	and	the	numeric	summary	is	shown	in	figure	3.7.		
	

	
	
Figure	3.7	Descriptive	summary	of	functional	enrichment	comparison	between	S2B	and	SEEDS	(A)	
and	 S2B	 and	 FTSS	 (B)	 results.	Each	bar	describes	 from	left	 to	right	each	 functional	 filtering	or	 fusion	
step.	 The	 initial	 set	 of	 genes	 are	 functionally	 enriched	 (initial	 GOT)	 and	 filtered	 by	 their	 specificity	
retaining	only	 those	GOT	with	a	background	 frequency	 lower	 than	10%	(initial	GOT	bg<0.1).	Following	
GOT	are	fused	when	they	show	a	gene	co-occurrence	higher	than	75%	(Gene	merge	GOT).	Finally,	GOTs	
are	merged	by	semantic	similarity	using	REVIGO	resulting	in	the	final	GOT	sets	(semantic	merge	GOT).	At	
the	 same	 time	each	bar	 is	divided	by	1)	genes	or	GOTs	uniquely	 related	 to	S2B	 (blue),	2)	associated	 to	
FTSS	or	SEEDS	(in	red),	and	3)	genes	or	terms	common	to	both	sets	(in	orange).	
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The	 first	 fact	 to	 take	 into	 consideration	 is	 that	 initial	GOT	 set	 of	 SEEDS	 is	 constituted	only	by	
GOT	intersection	between	ALS	and	SMA	seeds	enrichment.	As	such,	although	the	SEEDS	set	
being	larger	than	the	FTSS	one	(364	and	139),	initial	GOT	set	was	smaller	(150	versus	483).		
	
During	the	GOT	fusion	process	 in	both	cases	(Figure	3.7),	 there	 is	a	general	 trend	towards	the	
increase	of	S2B-related	and	common	GOT	sets.	Looking	to	the	progression	of	bars	in	Figure	3.7B,	
the	 vast	 majority	 of	 FTSS-related	 initial	 GOTs	 could	 be	 considered	 specific	 because	 with	 the	
exception	of	one	term,	they	show	a	background	frequency	smaller	than	10%.	However	these	are	
considerably	redundant,	because	when	filtering	by	gene	co-occurrence	78%	of	terms	are	lost.	At	
least,	the	final	subset	resulting	from	semantic	merge	contained	12	functions	uniquely	related	to	
FTSS.	
On	the	contrary,	in	Figure	3.7A,	we	see	that	SEEDS-related	initial	GOT	set	is	constituted	by	more	
general	 functions	 but	 less	 redundant.	 However,	 SEEDS	 final	 subset	 is	 even	 smaller	 than	 the	
respective	FTSS-subset.		
Conversely,	 both	 S2B-related	GOT	 subsets	 (Figure	 3.7A	 and	B)	 are	 constituted	 by	 specific	 but	
redundant	GOTs	loosing	only	12%	and	7%	when	background	threshold	is	applied	while	93%	of	
GOT	 terms	 are	 lost	 after	 gene	 co-occurrence	 and	 semantic	 fusions.	 Common	 FTSS-S2B	 and	
SEEDS-S2B	GOT	sets	gather	GOTs	with	higher	background	frequencies	and	gene	co-occurrences,	
thus	more	general	and	redundant	functions.	
Most	 strikingly,	 S2B	 specific	 GOT	 are	 the	 majority	 in	 both	 comparisons	 (Figure	 3.7A	 and	 B),	
which	suggests	that	the	S2B	method	is	able	to	retrieve	many	novel	biological	processes	linking	
these	two	diseases.	 It	 is	also	reassuring	to	find	a	high	fraction	of	GOT	in	common	between	the	
S2B	 results	 and	 the	FTSS-focused	network,	 since	 the	 latter	provided	a	 sample	of	 true	positive	
findings.	
	

Functional	comparison	between	SEEDS	and	S2B	results	
	
The	comparison	of	functional	enrichment	between	S2B	results	and	SEEDS	set	resulted	in	4	GOT	
clusters	 specific	 for	 SEEDS	 (Figure	 3.8),	 9	 clusters	 related	 to	 both	 SEEDS	 and	 S2B	 proteins	
(Figure	3.9)	and	50	clusters	only	associated	to	S2B	protein	set	(Figure	3.10).	
	
	

	
	

	
Figure	3.8	Overview	unique	functional	clusters	found	in	S2B	comparing	to	SEED	genes’	results.	This	
bar	 plot	 only	 describes	 those	 functions	 uniquely	 associated	 to	 SEEDS	 genes	 set	 functional	 enrichment	
results.	At	the	same	time,	each	function	corresponds	to	a	functional	group	constituted	by	the	GOTs	merged	
by	gene	co-occurrence	and	or	semantic	similarity	and	receives	the	descriptor	of	the	GOT	with	highest	fold	
enrichment.	Bars	represent	the	GOT	associated	gene	frequency	within	the	SEEDS	subset.	Red	lined-points	
represent	 the	 fold	enrichment	average	of	(up	to)	 the	5	highest	 fold	enrichment	scores’	among	the	GOTs	
merged	in	the	respective	function	cluster.	
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The	 functions	uniquely	associated	 to	SEEDS	are	not	very	 specific	 (Figure	3.8),	which	prevents	
the	formulation	of	clear	hypothesis	for	disease	molecular	mechanisms.		
	
	
	
	
	

	
	
Figure	 3.9	 Overview	 of	 common	 functional	 clusters	 between	 S2B	 and	 SEED	 genes.	 This	 bar	 plot	
describes	 those	 functions	 common	 to	 S2B	 and	 SEEDS	 genes	 sets	 functional	 enrichment	 results.	 At	 the	
same	time,	each	function	corresponds	to	a	functional	group	constituted	by	the	GOTs	merged	by	gene	co-
occurrence	 and	 or	 semantic	 similarity	 and	 receives	 the	 descriptor	 of	 the	 GOT	 with	 highest	 fold	
enrichment.	Bars	represents	relative	gene	frequency	(dark	grey	for	S2B	and	light	grey	for	SEEDS).	Lined-
points	represent	the	fold	enrichment	average	of	(up	to)	the	5	highest	fold	enrichment	scores’	among	the	
GOTs	merged	in	the	respective	functional	cluster	(blue	for	S2B	and	red	for	SEEDS).	

	
Among	 the	 GOT	 clusters	 that	 appear	 in	 S2B	 and	 SEEDS	 results	 simultaneously,	 we	 can	 find	
processes	more	easily	connected	with	the	studied	pathologies,	such	as	“regulation	of	dendritic	
spine	morphogenesis”	or	apoptosis	related	processes	(Figure	3.9).	
	
In	 the	 functions	 uniquely	 associated	 to	 S2B	 proteins'	 set	 (Figure	 3.10)	 there	 are	 also	 many	
functions	 related	 to	 neuromuscular	 functions	 such	 as,	 “skeletal	 myofibril	 assembly”,	 “brain	
morphogenesis	 “or	 “membrane	 repolarization	 during	 action	 potential”	 which	 already	
demonstrates	that	S2B	method	prioritizes	biologically	consistent	information.	
	
snoRNAs	(small	nucleolar	RNAs)	3'	end	processing	is	a	function	with	simultaneously	high	gene	
frequency	 and	 high	 fold	 enrichment.	 snoRNAs	 are	 known	 to	 guide	 other	 RNAs'	 biochemical	
modifications	and	thus	regulate	tRNA,	rRNA	or	snRNAs	functionality	(Dragon	et	al.	2006).	These	
snoRNAs	 are	 synthetized	by	RNA	pol	 II	 thus,	 their	 biogenesis	 could	be	 affected	by	 the	 lack	 of	
activity	of	RNA	pol	 II-binding	proteins	such	us	FUS	or	SETX	(Jorjani	et	al.	2016).	Besides	RNA	
stabilization	 also	 shows	 up	 in	 this	 GOT	 cluster,	 a	 key	 event	 that	 could	 be	 also	 affected	 by	
snoRNAs	perturbation.	
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Figure	3.10	Overview	unique	 functional	 clusters	 found	 in	S2B	comparing	 to	SEED	genes’	 results.	
This	bar	plot	only	describes	functions	uniquely	associated	to	S2B	genes	set	functional	enrichment	results.	
Each	bar	corresponds	to	a	functional	group	constituted	by	the	GOTs	merged	by	gene	co-occurrence	and	or	
semantic	 similarity	 and	 receives	 the	 descriptor	 of	 the	 GOT	 with	 highest	 fold	 enrichment.	 Bar	 length	
represents	relative	gene	frequency.	Blue	lined-points	represent	the	fold	enrichment	average	of	(up	to)	the	
5	highest	fold	enrichment	scores’	among	the	GOTs	merged	in	the	respective	function	cluster.	

	
	
Surprisingly,	 there	 is	 a	 great	 number	 of	 functions	 related	 to	 inflammation	 and	 host-pathogen	
responses	such	as	“tumor	necrosis	factor-mediated	signaling”,	“anti-fungical	humoral	response”,	
“regulation	of	interferon”	and	“NT	K	cell	differentiation”.	These	could	be	directly	related	to	the	
immune	hyper-sensitivity	caused	by	perturbations	on	SETX	activity	(Miller	et	al.	2015).	Likewise,	
it	 is	 known	 that	 prolonged	 inflammatory	 responses	 lead	 to	 neurodegeneration	 (Amor	 et	 al.	
2010).	Other	well-known	neurodegeneration	inducer	is	the	oxidative	stress	(Friedman	2011).	It	
can	 be	 produced	 for	 example	 by	 isquemic	 events	 or	 nitric	 oxide	 overloads	 (Friedman	 2011;	
Xiong	et	al.	2007),	two	events	described	in	S2B	specific	GOT	clusters	(Figure	3.10).	The	oxidative	
stress	 usually	 induces	 the	 protein	 aggregation	 and	 extracellular	 accumulation,	 apoptosis	 or	
necrotic	cell	death	(Carrì	et	al.	2015),	four	processes	identified	by	the	S2B	method	(Figure	3.10).		
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Interestingly,	 oxidative	 stress	 and	 the	 subsequent	 perturbations	 are	 directly	 related	 to	 ALS-
related	 gene	 SOD1,	 responsible	 for	 the	 elimination	 of	 free	 superoxide	 radicals	 (Rosen	 et	 al.	
1993).	 Furthermore,	 when	 genes	 involved	 in	 damaged	 DNA	 repair	 such	 as	 FUS	 or	 SETX	 are	
mutated,	 genome	 aberrations	 are	 accumulated	 and	 eventually	 boost	 oxidative	 stress	 (Lagier-
Tourenne	et	al.	2010;	Skourti-Stathaki	et	al.	2011)	
	

Functional	comparison	between	FTSS-network	and	S2B	results	
	
We	 also	 compared	 functional	 enrichment	 results	 obtained	 with	 the	 FTSS-focused	 network	
proteins	(FTSS)	with	the	ones	obtained	with	S2B	method	selected	proteins	(S2B).	It	resulted	in	
12	 GOT	 clusters	 specific	 for	 FTSS	 (Figure	 3.11),	 20	 clusters	 related	 to	 both	 FTSS	 and	 S2B	
proteins	(Figure	3.12)	and	39	clusters	only	associated	to	S2B	protein	set	(Figure	3.13).	
	
		

	
Figure	3.11	Overview	unique	functional	clusters	found	in	S2B	comparing	to	FTSS-network	genes’	
results.	 This	 bar	 plot	 only	 describes	 functions	 uniquely	 associated	 to	 FTSS	 genes	 set	 functional	
enrichment	results.	Each	function	corresponds	to	a	functional	group	constituted	by	the	GOTs	merged	by	
gene	co-occurrence	and	or	 semantic	 similarity	and	receives	 the	descriptor	of	 the	GOT	with	highest	 fold	
enrichment.	 Bars	 represent	 relative	 gene	 frequency.	 Red	 lined-points	 represent	 the	 fold	 enrichment	
average	of	 (up	to)	5	highest	 fold	enrichment	scores’	among	the	GOTs	merged	 in	 the	respective	 function	
cluster.	

	
Unlike	 SEEDS	 four	 unique	 functions	 (Figure	 3.8),	 FTSS	 set	 specifically	 gathers	more	 functions	
with	more	 information	 content	 (Figure	3.11).	Most	 are	DNA	or	RNA	 related	 functions.	Among	
them,	spliceosome	assembly	is	the	most	over-represented	showing	the	highest	gene	frequency	
and	 fold	 enrichment.	 It	 also	 identifies	 histones	H3	 and	H4	methylation	 regulation	 and	3'	UTR	
mediated	mRNA	stabilization.	
	
Due	to	the	fact	that	FTSS	network	was	constructed	using	known	MND	causative	genes,	we	can	
assume	 that	 great	 part	 of	 the	 returned	 functions	 are	 closely	 related	 to	 this	 pathomechanisms	
and	 likewise,	 those	 functions	 common	between	S2B	and	FTSS	may	 certainly	be	 related	 to	MN	
degeneration.	
Surprisingly,	 despite	 of	 the	 low	 number	 of	 common	 genes	 between	 FTSS	 and	 S2B	 subsets	
(Figure	 3.7),	 there	 are	 more	 common	 functions	 between	 FTSS	 and	 S2B	 (Figure	 3.12)	 than	
between	SEEDS	and	S2B	(Figure	3.9).	This	fact	shows	that	even	using	different	type	of	DAG	sets,	
network-based	approaches	can	reach	similar	information	and	therefore	more	robust	biologically	
insights.		
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Figure	3.12	Overview	of	common	functional	clusters	between	S2B	and	FTSS	-network	genes.	This	
bar	 plot	 describes	 functions	 common	 to	 S2B	 and	 FTSS	 genes	 sets	 functional	 enrichment	 results.	 Each	
function	corresponds	to	a	functional	group	constituted	by	the	GOTs	merged	by	gene	co-occurrence	and	or	
semantic	similarity	and	receives	the	descriptor	of	 the	GOT	with	highest	 fold	enrichment.	Bars	represent	
relative	 gene	 frequency	 (dark	 grey	 for	 S2B	 and	 light	 grey	 for	 FTSS).	 Lined-points	 represent	 the	 fold	
enrichment	average	of	(up	to)	5	highest	fold	enrichment	scores’	among	the	GOTs	merged	in	the	respective	
function	cluster	(blue	for	S2B	and	red	for	FTSS).	

	
	
Amongst	 these	 20	 common	 functions	 (Figure	 3.12)	 it	 is	 noteworthy	 that	 neuron	 related	
functions	appears	again	and	now	in	more	abundance.	Among	them	we	can	highlight	as	a	novelty	
tetrahydrobiopterin	 biosynthetic	 process.	 This	 compound	 is	 a	 critical	 cofactor	 for	 the	
biosynthesis	of	serotonin,	melatonin,	dopamine	or	nitric	oxide	among	others	(Thöny	et	al.	2000).	
This	can	possibly	establish	a	link	to	oxidative	stress	and	neurodegeneration	(Xiong	et	al.	2007).		
Moreover	there	are	also	over	represented	RNA	pol	 II-mediated	transcription	termination,	host	
viral	 transcription	 and	 microtubule	 based	 processes	 (Figure	 3.12).	 Functions	 previously	
highlighted	in	FTSS-focused	network	functional	enrichment	(Chapter	2).		
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Figure	3.13	Overview	unique	functional	clusters	found	in	S2B	comparing	to	FTSS-network	genes’	
results.	 This	 barplot	 describes	 functions	 uniquely	 associated	 to	 S2B	 genes	 set	 functional	 enrichment	
results.	 Each	 function	 corresponds	 to	 a	 functional	 group	 constituted	 by	 the	 GOTs	merged	 by	 gene	 co-
ocurrence	and	or	semantic	similarity	and	receives	the	descriptor	of	the	GOT	with	highest	fold	enrichment.	
Bars	represent	relative	gene	frequency.	Blue	lined-points	represent	the	fold	enrichment	average	of	(up	to)	
5	highest	fold	enrichment	scores’	among	the	GOTs	merged	in	the	respective	function	cluster.	

	
	
The	39	S2B	unique	 functions	 found	when	compared	with	FTSS	 (Figure	3.13)	are,	 as	expected,	
very	similar	to	the	set	of	50	functions	uniquely	enriched	in	the	S2B	set	when	compared	with	the	
SEEDS	set	(Figure	3.10).	Globally,	these	functions	demonstrate	the	capacity	of	the	S2B	method	to	
uncover	 new	 processes	 that	 potentially	 link	 the	 molecular	 mechanisms	 involved	 in	 ALS	 and	
SMA.		
	
	
	

Conclusions	
	
	
Topological	analysis	of	S2B	results	has	shown	that	 it	effectively	 identifies	central	nodes	within	
the	 MND-focused	 network.	 It	 prioritizes	 nodes	 specifically	 linking	 ALS	 and	 SMA	 and	 besides	
filters	 general	 hub	 nodes,	 even	 if	 they	 are	 MND-associated.	 This	 discriminative	 power	 is	
essential	 to	 discover	 new	 DAG	 candidates	 and	 furthermore	 avoid	 trivial	 data	 that	 could	
overshadow	the	biological	inference.	
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Looking	to	the	commonalities	observed	between	FTSS	and	S2B	functional	sets,	we	confirm	that	
S2B	method	not	only	retrieves	biologically	relevant	information	but	also	specific	functions	with	
MND-related	congruence.	Furthermore,	 it	 is	pleasingly	surprising	that	even	with	very	low	DAG	
overlap,	FTSS	and	S2B	approaches	obtain	similar	conclusions.	This	 fact	 together	with	the	poor	
performance	of	SEEDS	functional	characterization	reinforces	our	conviction	of	the	usefulness	of	
network-based	approaches	towards	the	study	of	complex	diseases.		
	
This	 goes	 along	 the	 observation	 done	 by	 Calderone	 and	 colleagues,	 claiming	 that	 topological	
commonalities	imply	the	existence	of	similar	biological	processes	and	not	vice-versa	(Calderone	
et	 al.	 2016).	 Thus,	 even	 though	 S2B	 and	 Calderone’s	 methods	 share	 the	 goal	 of	 finding	
similarities	between	diseases,	Calderone’s	method	retrieves	distinct	functional	communities	for	
both	diseases	and	thus	cannot	extract	the	common	molecular	pathomechanisms	linking	a	pair	of	
diseases.	
	
On	the	other	hand,	NERI	method	has	a	very	similar	approach	to	S2B	but	seeks	a	different	goal.	It	
tries	to	identify	disease	modules	of	a	single	disorder	exploiting	the	“guilt	by	association”	concept.	
S2B	method	 instead,	 proposes	 a	 new	betweenness	 count	 specifically	 constructed	 to	 prioritize	
nodes	linking	two	diseases.	
	
S2B,	 as	 the	method	 constructed	 by	 Shunyao	Wu	 and	 colleagues,	works	 under	 the	 assumption	
that	essential	genes	are	less	prone	to	appear	involved	in	a	particular	disease.	However,	it	is	also	
focused	 on	 the	 identification	 of	 disease	 pathways	 of	 a	 single	 disorder	 exploiting	 in	 this	 case	
global	topological	measures	that	can	return	very	dissimilar	results.	
		
Calderone’s	method	and	NERI	use	DAGs	retrieved	from	specialized	databases	for	the	particular	
diseases	studied.	This	could	be	troublesome	considering	that	the	majority	of	diseases	lack	such	
databases.	 We	 instead	 took	 all	 the	 available	 DAG	 data	 from	 OMIM	 (Hamosh	 et	 al.	 2002)and	
DisGeNET,	which	we	believe	 could	also	be	 feasible	 for	many	other	disease	examples.	PPI	data	
sources	 can	 also	 introduce	 errors,	 especially	 when	 using	 predicted	 PPIs,	 as	 in	 the	 case	 of	
Shunyao	Wu	and	colleagues’	method	that	uses	STRING.	Besides,	it	 is	known	that	PPI	databases	
have	 an	 intrinsic	 bias	 toward	 proteins	 with	 biomedical	 interest.	 In	 our	 case,	 we	 selected	 the	
CCSB	 human	 interactome	 database	 due	 to	 its	 non-biased	 approach	 complemented	 with	 high	
confidence	literature	curated	PPI	source.	
	
As	for	S2B	method	functional	results,	neuromuscular	processes	appear	both	in	common	SEEDS-
S2B	and	FTSS-S2B	subsets	maintaining	naturally	a	key	position	in	MNDs.	We	have	also	identified	
interesting	 new	 functions	 possibly	 related	 with	 MN	 degeneration.	 Host	 pathogen	 responses,	
inflammation	 or	 nitric	 oxide	 overload	 arise	 in	 unique	 S2B	 sets	 as	 potential	MN	 degeneration	
inducers.	These	functions	are	highly	related	to	MND	causative	genes	such	as	SOD1	or	SETX	and	
besides	are	well-known	neurodegeneration	inducers.	
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Likewise,	knowing	the	critical	role	of	FTSS	proteins	in	MND,	functions	specifically	described	in	
FTSS-S2B	common	set	gain	great	relevance	because	they	are	also	associated	to	S2B	prioritized	
proteins.	 Among	 the	most	 relevant,	we	 find	 host	 pathogen	 responses	 (again),	 RNA	 pol	 II	 and	
microtubule-based	 functions.	 	Once	we	have	 confirmed	 the	S2B	method	ability	 to	 recapitulate	
most	of	 the	FTSS	 functional	 context,	 it	 is	 reasonable	 to	presume	 that	 those	 functions	 found	 in	
FTSS	but	not	by	S2B	could	be	molecular	events	more	remotely	related	to	MND	pathogenesis.	
	
Proteins	 generally	 interact	 with	 a	 high	 number	 of	 other	 macromolecules	 and	 thus	 may	 have	
multiple	functions.	This	is	one	of	the	reasons	why	diseases	are	complex	events	in	which	such	a	
high	number	of	elements	take	part.	However,	this	simultaneously	means	that	each	function	of	a	
given	protein	can	show	different	grades	of	relevance	 in	the	disease	context.	 	This	could	be	the	
case	of	spliceosome	assembly	and	histones	H3	and	H4	modification	regulation	processes.	Both	
functions	are	associated	to	SMN	(MND-causing	gene)	and	are	critical	for	cell	survival	and	thus	it	
is	difficult	to	explain	how	their	perturbation	could	only	lead	to	MN	degeneration.		
	
Conversely,	the	role	of	microtubules	on	axonal	transport,	together	with	the	involvement	of	SMN-
mediated	neuron-specific	alternative	splicing	on	cytoskeleton	dynamism	seems	to	better	match	
with	the	particular	phenotype	of	MND	diseases.	
	
On	balance,	we	have	confirmed	that	S2B	method	returns	different	 information	to	the	expected	
from	 standard	 centrality	 measures	 such	 as	 degree	 or	 betweenness.	 Additionally	 S2B	method	
was	 useful	 to	 confirm	 the	 relevance	 of	 previously	 described	 processes	 and	 supplement	 new	
hypotheses	 about	 the	 functions	 of	 FTSS	 genes	 and	 proteins	 prioritized	 by	 S2B	method	 in	MN	
degeneration.		
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Chapter	4.	General	discussion	and	conclusions		
	
	
Amyotrophic	Lateral	Sclerosis	(ALS)	and	Spinal	Muscular	Atrophy	(SMA)	are	both	Motor	Neuron	
Diseases	(MND)	and	thus	show	similar	phenotypic	characteristics.	This	enabled	researchers	to	
hypothesize	that	common	molecular	mechanisms	are	shared	between	these	two	diseases.		
	
FTSS-focused	 network	 construction	 was	 useful	 to	 confirm	 the	 tight	 interatomic	 relationship	
among	 FUS,	 TDP43,	 SMN	 and	 SETX	 (FTSS)	 proteins.	 These	 proteins	 are	 directly	 associated	 to	
ALS	and	SMA	(Chen	et	al.	2004;	Rutherford	et	al.	2008;	Kwiatkowski	Jr	et	al.	2009;	Lefebvre	et	al.	
1995)	and	besides	are	physically	interacting	(Sun	et	al.	2015;	Tsuiji	et	al.	2013;	Yamazaki	et	al.	
2012;	Skourti-Stathaki	et	al.	2011;	Zhao	et	al.	2016;	Suraweera	et	al.	2009;	Bennett	&	La	Spada	
2015)	 what	 provides	 new	 insights	 into	 the	 putative	 common	 pathomechanisms	 in	 MNDs.	
Besides,	the	functional	characterization	of	FTSS-network	has	made	possible	the	identification	of	
functions	 closely	 related	 to	 FTSS	 proteins	 and	 thus	 possibly	 related	 to	 Motor	 Neuron	 (MN)	
degeneration.	 Among	 them	 we	 could	 highlight	 spliceosome	 assembly,	 microtubule-based	
movement	and	DNA	repair	processes.	
	
According	 to	 the	 topological	analysis	of	S2B	method	results,	 the	method	 identified	nodes	with	
high	betweenness	between	Disease	Associated	Gene	(DAG)	seeds	and	additionally	rejected	those	
non-specific	hubs	(nodes	with	high	degree).	Therefore,	we	can	state	that	it	is	an	efficient	method	
to	 prioritize	 nodes	 linking	 two	 disease	 modules	 within	 a	 Protein-Protein	 Interaction	 (PPI)	
network.	
	
Noteworthy,	 although	MND-focused	network	was	 constructed	using	CCSB	human	 interactome	
network	(Rolland	et	al.	2014)	and	DAGs	from	DisGeNET	(Pinero	et	al.	2015)	and	OMIM	(Hamosh	
et	al.	2002)	databases,	S2B	is	a	flexible	method	that	can	be	used	with	diverse	data	sources.	We	
consider	that	CCSB	database	was	an	appropriate	PPI	source	because	it	was	constructed	using	a	
proteome	scale	mapping	procedure	enriched	with	curated	 literature	knowledge.	This	provides	
one	of	the	less	biased	PPI	interactome	networks	available.		
	
Moreover,	the	functional	characterization	of	S2B	selected	proteins	has	retrieved	many	functions	
with	biological	congruence	and	therefore	possibly	causal	of	MN	degeneration.	Thus,	we	can	also	
affirm	that	S2B	method	is	useful	to	prioritize	proteins	linking	ALS	and	SMA	disease.	Additionally,	
the	comparison	of	functional	results	obtained	with	the	analysis	of	MND-DAGs	alone	(SEEDS),	has	
proved	that	network-based	methods	(FTSS	and	S2B)	are	able	to	extract	much	more	information	
related	to	complex	pathomechanisms.		
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Figure	4.1	MNDs	hypothetic	mechanisms.	FTSS	and	SOD1	genes	dysfunction	are	considered	as	MNDs	
possible	 causes	 (boxes	 with	 blue	 border)	 and	 final	 neuromuscular-related	 functions	 as	 phenotypic	
outputs	(boxes	with	green	border).	Each	box	corresponds	to	a	function	resulted	from	this	research	(white	
boxes)	 or	 described	 in	 literature	 (grey	 boxes).	 Functions	 found	 only	 through	 the	 analysis	 of	 the	 FTSS-
focused	network	are	labeled	with	a	red	border.	

	
Figure	4.1	summarizes	the	main	hypothesis	retrieved	from	FTSS	and	S2B	network	analysis	and	
related	literature	knowledge	that	may	have	a	great	impact	on	MN	degeneration.	We	can	divide	
the	 general	mechanism	 in	 five	 different	 pathways	 (from	 left	 to	 right	 in	 Figure	 4.1):	1)	DNA	
damage	and	apoptosis	induced	by	R-loop	deregulation,	2)	inflammation	and	neurodegeneration	
induced	by	immune	hyper-sensitivity,	3)	chromatin	deregulation	and	genotoxicity	produced	by	
histone	 biogenesis	 perturbation,	4)	 splicing	 patterns	 alteration	 and	 genotoxicity	 produced	 by	
spliceosome	assembly	 failure	 and	5)	 deregulation	of	microtubule	 related	processes	 leading	 to	
morphological	problems	in	axon	and	synapse	formation.		
	
In	 the	 light	 of	 these	 results,	 splicing	 and	 histones	 perturbation	 may	 not	 be	 as	 central	 as	
previously	 was	 thought.	 As	 can	 be	 seen	 on	 Figure	 4.1,	 these	 pathways	 are	 only	 based	 on	
literature-knowledge	 (grey	 colored	 boxes)	 and	 data	 resulted	 from	 FTSS-focused	 network	
(described	in	Chapter	2).	Besides,	these	processes	are	not	specific	for	MN	cells.		
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On	the	opposite	side,	it	is	well	known	that	oxidative	stress	is	very	damaging	for	nervous	tissue	
(Friedman	 2011).	 Besides,	 it	 produces	 protein	 aggregation	 that	 is	 directly	 involved	 with	
neurodegeneration	 as	 well	 (Carrì	 et	 al.	 2015).	 Within	 this	 context	 these	 processes	 can	 be	
triggered	 by	mutations	 in	 SETX	 and	 FUS.	 These	 are	 involved	 in	 R-loops	 formation	 that	when	
disturbed,	 induce	DNA	 damage	 (Rulten	 et	 al.	 2014;	 Zhao	 et	 al.	 2016).	 FUS	 and	 SETX	 are	 also	
involved	in	DNA	repair	(Rulten	et	al.	2014)	that,	when	dysfunctional,	 lead	to	genotoxicity.	This	
directly	 induces	 mitochondrial	 stress	 that	 in	 turn	 also	 produces	 endoplasmic	 reticulum	 ER	
stress.	 These	 perturbations	 eventually	 trigger	 protein-folding	 problems,	 which	 results	 in	
massive	 protein	 aggregations	 that	 also	 feedback	 to	 oxidative	 stress.	 Finally,	 cytochrome	 C,	
localized	in	mitochondria	activates	the	irreversible	apoptosis	cascade	(Carrì	et	al.	2015).	
	
Additionally,	 the	 functional	 characterizations	 done	 in	 Chapter	 3	 identified	 numerous	 nitric	
oxide-related	 processes.	 It	 is	 an	 important	 neurotransmitter	 that	 in	 excess,	 it	 also	 produces	
oxidative	 stress	 (Friedman	 2011;	 Xiong	 et	 al.	 2007).	 Furthermore,	 this	 hypothesis	 is	 greatly	
supported	 by	 the	 fact	 that	 SOD1,	 the	 best-known	 ALS-causative	 gene	 (Rosen	 et	 al.	 1993)	 is	
involved	in	destroying	superoxide	radicals	and	thus,	when	mutated	is	directly	associated	to	the	
oxidative	stress	increase.	
	
SETX	 is	 also	known	 to	be	 involved	 in	 the	 immune	suppression	and	 thus,	when	disturbed	may	
lead	to	a	hyper-sensitivity	to	pathogens	which	causes	in	turn	a	excessive	inflammatory	response	
(Miller	et	al.	2015).	This	 fact	 could	be	very	relevant	 in	MNDs	because	chronic	 inflammation	 is	
also	 directly	 involved	 in	 oxidative	 stress	 (Amor	 et	 al.	 2010),	 protein	 aggregation	 and	
neurodegeneration	(Carrì	et	al.	2015).	
	
Another	 interesting	hypothesis	highlighted	by	our	results	 is	 that	SMN-MN	degeneration	causal	
dysfunction	 is	 not	 the	 spliceosome	 assembly	 but	 its	 involvement	 in	mRNA	 transport	 through	
axons.	Firstly	 it	 is	known	 that	 the	 cytoskeleton	dynamism	needed	 for	axonal	growth	 is	 tightly	
orchestrated	 by	 neuron-specific	 alternative	 splicing	 (Madgwick	 et	 al.	 2015).	 Secondly,	 fast	
axonal	transport	is	mediated	by	microtubules	(Poulain	&	Sobel	2010)	and	in	the	case	of	mRNAs,	
requires	 the	 collaboration	 of	 SMN	 for	 mRNA	 vesicles	 formation	 (Zhang	 et	 al.	 2006)	 and	 is	
required	for	synapse	maintenance	(Griffin	&	Watson	1988).		
Thus	 when	 mutated,	 there	 is	 a	 concurrent	 alteration	 of	 the	 splicing	 patterns	 needed	 for	
microtubules'	 growth	and	also	 the	mRNA	vesicles	disassembly	which	produces	an	 irreparable	
axon	injury.	It	seems	reasonable	that	when	it	takes	place	in	motor	neurons	possibly	causes	the	
lack	 of	muscle	 innervation	 and	 thus	 the	 general	 perturbation	 of	 neuromuscular	 processes.	 As	
shown	 on	 Figure	 4.1	 this	 hypothesis	 is	 highly	 supported	 with	 functional	 data	 obtained	
simultaneously	form	FTSS	and	S2B	sets	(Chapter	3).	Additionally,	we	also	demonstrated	in	the	
preliminary	FTSS-focused	functional	analysis	(Chapter	2)	that	FUS	interacts	with	a	high	number	
of	proteins	involved	in	microtubule-related	processes,	which	reinforces	the	putative	key	role	of	
microtubules	on	MNDs.	
	
Nevertheless,	these	are	predictive	results	and	thus	should	be	confirmed	experimentally.	In	any	
case,	it	shows	the	great	value	of	network-based	methods	towards	the	understanding	of	complex	
diseases	and	discovery	of	associated	drug	targets	and	biomarkers.	
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Future	remarks	
	
The	 proposed	 S2B	 method	 can	 still	 be	 subject	 to	 further	 improvements.	 Firstly	 we	 should	
implement	training	sets	to	evaluate	the	specificity	and	sensitivity	with	which	S2B	identifies	real	
DAGs.	Due	to	the	fact	that	no	disease	is	fully	molecularly	described,	we	must	resort	to	artificial	
training	 sets	 where	 disease	 modules	 would	 be	 forced	 to	 partially	 overlap.	 Then,	 we	 would	
randomly	 take	 subsets	 of	 these	modules	 to	 run	 S2B	 and	 compare	 prioritized	 nodes	 with	 the	
expected	module	intersection.	
	
Furthermore,	 we	 could	 also	 improve	 the	 algorithms	 of	 S2B	 method	 to	 assign	 more	 accurate	
weights.	Similarly	to	Chain	Rank	(Tényi	et	al.	2016)	or	NERI	(Simões	et	al.	2015)	methods,	we	
could	integrate	into	our	PPI	network	gene	expression,	transcription	regulation	and/or	signaling	
data.	Nevertheless,	the	integration	strategy	should	be	thoroughly	designed	and	at	the	same	time	
S2B	method	should	be	adapted	to	effectively	apply	S2B	count	on	a	weighted	and/or	directed	PPI	
network.	
	
Shortest	path	lengths	are	biologically	relevant	and	thus,	it	would	be	interesting	to	implement	a	
new	score	 to	 increase	 the	weight	of	 smaller	shortest	paths.	Currently,	when	a	shortest	path	 is	
detected,	 S2B	method	 automatically	 takes	 out	 from	 S2B	 count	 the	 "from-to"	 seed	 nodes.	 This	
was	initially	done	to	avoid	DAGs	overestimation	but	it	might	be	excessively	dismissing	as	well.	
Therefore,	 we	 will	 implement	 another	 score	 that	 will	 assign	 to	 each	 "from-to"	 seed	 node	 a	
weight	inversely	proportional	to	the	length	of	the	detected	shortest	path.		
	
Thereupon,	 S2B	 method	 could	 be	 automatized	 and	 applied	 in	 all	 the	 diseases	 with	 known	
molecular	 causes,	 constructing	a	new	 "human	diseasome	network".	 	Unlike	Goh	and	 colleagues	
that	 used	 gene	 co-occurrence	 and	 comorbidities	 data	 (Goh	 et	 al.	 2007),	we	 could	 exploit	 S2B	
count	statistics	to	link	and	analyze	closeness	between	diseases.	
	
In	a	different	but	related	topic,	proteins	interact	with	numerous	macromolecules	within	the	cell	
and	thus	can	be	considered	multifunctional.	This	is	one	of	the	reasons	why	proteins	are	usually	
assigned	 with	 varied	 types	 of	 functional	 terms	 in	 Gene	 Ontology	 (GO)	 databases.	 It	 does	 not	
necessarily	 mean	 that	 these	 proteins	 are	 wrongly	 annotated.	 However,	 one	 should	 note	 that	
proteins'	 multifunctionality	 is	 restricted	 to	 its	 singular	 moment	 in	 the	 interactomic	 context.	
Thus,	 when	 a	 functional	 enrichment	 analysis	 is	 performed,	 retrieved	 functions	 can	 have	
different	relevance	depending	on	the	study	context.	As	it	is	illustrated	on	Figure	4.1,	this	fact	is	
highly	 relevant	when	 the	main	goal	 is	 to	discover	novel	pathomechanisms.	Besides,	 functional	
enrichment	 algorithms	 are	 known	 to	 retrieve	 noisy	 results	 that	 usually	 require	 the	 use	 of	
further	depuration	and	simplifying	methods	such	as	REVIGO	(Supek	et	al.	2011).		
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Figure	 4.2	 Illustration	 of	 the	 differing	 grades	 of	 relevance	 of	 functions	 according	 to	
particular	diseasome	 contexts.	Nodes	represent	particular	proteins	and	each	one	has	several	
associated	 GO	 Terms	 (GOTs).	 Nodes	 are	 linked	 by	 PPI	 data	 and	 they	 are	 clustered	 in	 two	
overlapping	disease	modules	(A	and	B).	According	to	the	module	that	is	considered,	black	node's	
GOTs	have	different	 relevance	due	 to	 the	different	 functions	of	 their	 interactors.	Most	 relevant	
GOTs	of	the	black	node	according	to	the	disease	are	shown	above	the	respective	disease	module.	

	
	
To	 solve	 these	 difficulties,	 we	 propose	 the	 construction	 of	 a	 network-based	 method	 for	 GO	
Terms	 (GOT)	 prioritization	 similar	 to	 S2B	 count	 in	 order	 to	 find	 which	 are	 the	 GOTs	 more	
closely	 related	 to	 the	 particular	 studying	 context.	 To	 do	 that	 we	 would	 firstly	 implement	 a	
simplifying	 workflow	 similar	 to	 the	 used	 in	 this	 work	 (Chapter	 3)	 and	 secondly	 we	 would	
construct	 an	 algorithm	 to	 identify	 which	 are	 the	 functions	 overrepresented	 in	 a	 particular	
neighborhood	within	the	PPI	network.	
	
Throughout	this	document	we	have	discussed	systems	biology	principles	applied	in	biomedicine	
and	also	demonstrated	 the	usefulness	of	networks-based	approaches	 in	DAGs	prioritization	 in	
the	context	of	two	phenotypically	related	diseases.		
	
Genes	 are	 not	 isolated	 entities	 but	 interact	 in	 complex	 pathways	 and	mechanisms.	 Thus,	 the	
properties	 that	 emerge	 from	 these	 interactions	 cannot	 be	 identified	 only	 with	 reductionist	
approaches.	This	fact	is	reasonably	also	applied	to	the	progression	of	all	pathologic	phenotypes,	
which	is	particularly	evident	in	the	degeneration	of	motor	neurons	on	ALS	and	SMA.		
	
Therefore,	we	credit	network-based	approaches	applied	 in	biomedicine	may	bring	many	clues	
for	MNDs	pathomechanisms	identification	and	thus,	may	contribute	towards	the	development	of	
more	 effective	 drugs	 to	 improve	 the	 quality	 of	 life	 of	 patients	 and	 besides	 increase	 their	 life	
expectancy.		
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Supplementary	data	description	(CD)	
	

S-2.1	PPI	data	retrieval	
FUS,	 TDP43,	 SMN	 and	 SETX	 protein	 physical	 interactors	were	 retrieved	 from	mentha,	 IntAct,	
GeneMANIA	and	literature	references.	All	raw	PPIs	with	the	source	information	are	described	in	
ALL_PPI.csv.	 Information	 of	 the	 PPIs	 obtained	 from	 literature	 is	 expanded	 in	
ftss_literature_PPI.xlsx.	
After	 the	 data	 depuration,	we	 only	 retain	 the	 proteins	 that	 interact	with	 at	 least	 two	 of	 FTSS	
proteins	resulting	in	a	smaller	set	gathered	in	Selected	PPI.csv	and	ftss_NODES.csv.	
	

S-2.2	FTSS-network	functional	enrichment	and	functional	clustering	
FTSS-focused	 network	 functional	 enrichment	 result	 of	 topGO	 R	 function	 is	 described	 in	
topGO_ftss.txt	 (GTLinker	 server	 does	 not	 return	 the	 functional	 enrichment	 results)	 and	 the	
functional	 clustering	 performed	 using	 GTLinker	 algorithm	 is	 resumed	 in	
genetermlinker_metagroups.xlsx.		
	

S-3.1	MND-focused	network	construction	
ALS	and	SMA	diseases	subtypes	UMLS	CUI	identifiers	according	to	MeSH	Browser	used	to	
retrieve	DAG	data	from	DisGeNET	are	gathered	in	
DISGENET_DiseaseSubtypes_nomenclature.docx.	
	
The	 raw	 DAGs	 collected	 from	 DisGeNET	 are	 described	 in	 ALS_0912_DISGENET_raw.zip	 and	
those	 retrieved	 from	 OMIM	 in	 ALS_1_OMIM_raw.txt	 and	 SMA_1_OMIM_raw.txt	 files.	 Finally	
joined	 results	 are	 described	 in	 genedt_ALS.csv,	 SMA_genedt.csv	 and	 genedt_ALSSMA.csv	
respectively.	Continuing,	PPI	datasets	provided	in	CCSB	Download	Page	were	joined	and	cleaned	
resulting	 in	 the	 CCSB	 human	 interactome.	 Then	 the	 MND-focused	 network	 summarized	 in	
int_file.csv	 in	 was	 constructed	 using	 these	 PPI	 and	 MND	 DAGs	 retrieved	 in	 the	 previous	
subsection.		
	

S-3.2	S2B	method	
S2B	 method	 was	 applied	 in	 MND-focused	 network	 resulting	 in	 the	 scores	 summarized	 in	
S2B_250_res.csv.		

S-3.3	Functional	characterization	raw	results	
Here	 we	 list	 all	 the	 functional	 results	 returned	 in	 each	 step	 of	 functional	 characterization	
process	of	FTSS-S2B	and	SEEDS-S2B	sets	comparison.	
	
Functional	 enrichment:	 Raw	 functional	 enrichment	 results	 of	 individual	 sets	 performed	with	
EnrichGO	R	function.	
	 ftss_enrichGOdf.csv	
	 ALS_enrichGOdf.csv	

SMA_enrichGOdf.csv	
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	 S2B_enrichGOdf.csv	
	
Functions	 filter	 by	 specificity:	 Raw	 functional	 enrichment	 results	 of	 joined	 sets	 after	 the	
discarding	of	GOTs	with	background	frequency	higher	or	equal	to	10%.	

S2Bseeds_GOT_total_RAW.csv	
	 S2Bftss_GOT_total_RAW.csv	
	
Functions	merge	by	gene	coincidence:	Raw	 functional	enrichment	results	of	 joined	sets	after	
the	merge	of	GOTs	with	a	gene	co-occurrence	equal	or	higher	to	75%.	
	 S2Bseeds_GOT_genesmerge_RAW.csv	
	 S2Bftss_GOT_genesmerge_RAW.csv	
	
Functions	merge	by	semantic	similarity:	Raw	functional	enrichment	results	of	joined	sets	after	
the	REVIGO's	merge	by	GOTs	by	semantic	similarity.		

S2Bseeds_GOT_semantmerge_RAW.csv	
	 S2Bftss_GOT_semantmerge_RAW.csv	
	


