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Resumo 

Nos últimos anos tem-se verificado um preocupante declínio dos recifes de coral, para o qual têm 

contribuído maioritariamente fatores antropogénicos. Isto permite que as algas ganhem uma 

vantagem competitiva sobre os corais, criando um desequilíbrio no ecossistema, tal como uma 

proliferação excessiva de parasitas. Os parasitas são parte natural e indispensável dos 

ecossistemas, tendo um duplo papel, já que tanto são influenciados pelo ambiente, como 

influenciam os hospedeiros dos quais se alimentam. Tem-se vindo a demonstrar que alguns 

ectoparasitas evitam ativamente o contacto com coral vivo que, com a crescente degradação dos 

recifes, tem vindo a diminuir, levando a uma maior proliferação destes organismos parasitários. 

Por outro lado, grandes densidades de peixes aumentam a proximidade entre possíveis 

hospedeiros, aumentando assim a probabilidade de contacto com ectoparasitas, o que tornaria 

espécies gregárias mais vulneráveis a infeções. De forma a contrariar o aumento da carga 

parasitária, especialmente de ectoparasitas, os peixes infetados podem raspar-se contra o 

substrato ou visitar estações de limpeza. Nestes locais residem peixes ou camarões limpadores 

que se alimentam dos ectoparasitas de peixes maiores, chamados “clientes”. Apesar de ainda 

haver alguma discussão em relação à natureza destas interações, elas são geralmente descritas 

como mutualistas. Assim, os ectoparasitas parecem ser uma variável fundamental para explicar as 

interações de limpeza, nas quais os clientes com maior carga parasitária visitam limpadores mais 

frequentemente e durante mais tempo. Estes clientes são, normalmente, aqueles que recebem 

um melhor e mais honesto serviço de limpeza. Para além de ectoparasitas, há outros tipos de 

vetores que podem levar os peixes a visitar estações de limpeza. Por exemplo, nas Caraíbas, os 

cirurgiões (Acanthurus spp.) têm sido reportados como uma família propensa ao aparecimento de 

manchas negras, normalmente associadas a infeções de parasitas dérmicos. O objetivo da 

presente dissertação foi investigar se em recifes mais degradados, ou com variações de densidade 

de peixes, a carga de ectoparasitas em donzelas (Stegastes diencaeus) e cirurgiões 

(Acanthurus tractus) seria mais elevada. Foi também investigado se os clientes mais infetados 

(quer por ectoparasitas, quer por parasitas dérmicos) investiam mais em comportamentos de 

limpeza, e se lhes era prestado um melhor serviço por parte dos limpadores. Em cinco recifes na 

ilha de Curaçao, Caraíbas, fizeram-se transectos de ponto-interceção para avaliar a degradação do 

recife. Cada ponto da comunidade bentónica foi categorizado em termos da percentagem de 

cobertura, em função da presença de coral vivo, areia e outros (englobando substrato favorável a 

ectoparasitas: coral morto, algas e esponjas). A densidade de peixes foi igualmente analisada com 

base em transectos, nos quais o número e espécie dos indivíduos encontrados foram registados. 

Os ectoparasitas de dez a onze indivíduos, tanto de donzelas como de cirurgiões, em cada recife, 
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foram obtidos através de banhos de água doce com óleo de cravinho. Já os comportamentos ditos 

de limpeza (frequência de raspagens, interações e poses) e medidas de qualidade de serviço 

(tempo de espera na estação de limpeza, tempo de interação, e jolts) advieram do seguimento e 

filmagem de nove a onze indivíduos de cada espécie nos dois recifes considerados como os mais 

diferentes (Carmabi e Water Factory). Desses mesmos peixes, mas apenas no caso dos cirurgiões, 

foi registado o número de manchas negras como medida da carga de parasitas dérmicos. As 

diferenças entre os cinco recifes foram exploradas através de testes ANOSIM, MDS, SIMPER e 

ANOVA / Kruskal-Wallis, enquanto as diferenças entre os dois recifes mais distintos e entre as 

duas espécies de clientes foram exploradas com testes Mann-Whitney. A existência de relações 

entre variáveis foi analisada com recurso a correlações de Spearman.  

Os recifes amostrados, no que se refere ao respetivo estado, revelaram algumas diferenças, tanto 

na composição da comunidade bentónica como na da comunidade de peixes, especialmente 

entre os recifes de Carmabi e Water Factory. Water Factory foi claramente o recife com maior 

cobertura de coral vivo, mas também o recife com menor cobertura de substrato favorável à 

proliferação de parasitas em relação a Carmabi e Blue Bay Left. Water Factory e Carmabi foram os 

recifes com menor densidade global de peixes, mas considerando a densidade das espécies 

estudadas, apenas Carmabi revelou ter uma menor densidade de donzelas que Blue Bay Left. 

Entre os parasitas, foram identificados exemplares de três famílias: Gnathiidae (Crustacea, 

Isopoda), Caligidae (Crustacea, Copepoda) e Capsalidae (Platyhelminthes, Monogenea). Em todos 

os cinco recifes as donzelas mostraram diferenças nas três famílias de ectoparasitas, enquanto os 

cirurgiões mostraram diferenças apenas em duas das famílias, sendo a carga de caligídeos 

semelhante entre recifes. Em ambos os casos os capsalídeos mostraram resultados mais robustos, 

sendo em Carmabi encontradas as maiores cargas deste ectoparasita. Já a comparação entre 

espécies revelou que a carga de gnatiídeos foi mais elevada nas donzelas de Blue Bay Right, a 

carga de caligídeos foi sempre mais elevada nos cirurgiões exceto em Carmabi, que foi 

semelhante, e a carga de capsalídeos foi semelhante em todos os recifes. Diferentes correlações 

foram encontradas consoante a espécie considerada. Nas donzelas, as cargas de gnatiídeos e de 

caligídeos estavam negativamente correlacionadas com a cobertura de coral vivo e com a 

densidade da espécie, respetivamente. Nos cirurgiões, só houve uma correlação, negativa, entre 

cargas de gnatiídeos e a densidade global de peixes. Considerando apenas os recifes de Carmabi e 

Water Factory (como o mais e o menos degradado, respetivamente), a carga de ectoparasitas dos 

cirurgiões foi semelhante, e a das donzelas foi superior em Carmabi, maioritariamente devido aos 

capsalídeos. Já a frequência de manchas negras nos cirurgiões (não foi possível analisar a das 

donzelas) foi claramente superior em Carmabi. Em relação aos comportamentos de limpeza os 
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cirurgiões efetuaram mais raspagens no substrato em Carmabi, e mais que as donzelas em 

qualquer dos recifes. Em Carmabi foram também os cirurgiões os que esperaram mais tempo para 

ser atendidos pelos limpadores. Os restantes comportamentos, tais como as medidas de 

qualidade de serviço prestado pelos limpadores, foram semelhantes entre recifes e entre 

espécies. Finalmente, em Carmabi, o número de manchas dos cirurgiões revelou-se positivamente 

correlacionado com a frequência de interações cliente-limpador.  

As cargas de capsalídeos, ectoparasitas com uma fase bentónica, foram superiores em Carmabi 

onde aparentemente havia uma pior qualidade de água e menor cobertura de coral vivo. Apenas 

as cargas de gnatiídeos, outro ectoparasita com fase bentónica, das donzelas foram mais elevadas 

em recifes com menor cobertura de coral vivo, provavelmente advindo de uma maior 

proximidade com substrato favorável a estes parasitas, promovido pela territorialidade destas. Os 

caligídeos foram encontrados sobretudo em cirurgiões, provavelmente devido ao seu 

comportamento gregário e móvel, utilizando mais a coluna de água na sua extensão. A densidade 

de peixes (de donzelas e global) mostrou ser um fator relevante, consoante a espécie (donzelas 

ou cirurgiões, respetivamente), na relação, negativa, com a carga de caligídeos e gnatiídeos, 

respetivamente. No entanto, a diferença na carga de ectoparasitas das donzelas não se revelou 

suficiente para uma intensificação do seu comportamento de limpeza, nem para a qualidade do 

serviço que lhes era prestado pelos organismos limpadores. Por outro lado, em Carmabi os 

cirurgiões investiram mais nos comportamentos de limpeza (raspagens e tempo de espera nas 

estações de limpeza) indo ao encontro da maior incidência de parasitas dérmicos (manchas 

negras) encontrada neste recife. Apenas no recife mais degradado a incidência de parasitas 

dérmicos revelou estar relacionada com um maior número de interações com limpadores. Assim, 

os níveis de degradação dos recifes de Curaçao parecem estar a afetar as cargas parasitárias de 

donzelas e cirurgiões, e essas mesmas cargas parasitárias parecem refletir-se especialmente numa 

intensificação do comportamento de limpeza nos cirurgiões, uma espécie aparentemente mais 

vulnerável. Estudos futuros deverão incluir uma abordagem mais integrativa, considerando, tanto 

ectoparasitas como parasitas dérmicos, a vulnerabilidade dos peixes, a frequência e qualidade dos 

comportamentos de limpeza, mas também medidas fisiológicas (como o nível de stress) e 

imunológicas. Assim, a informação resultante poderá ser importante para a monitorização da 

degradação dos recifes de coral e da saúde dos peixes que neles habitam, contribuindo para a 

conservação deste ecossistema. 

Palavras-chave: Degradação de recifes de coral, parasitas, comportamento de limpeza, 

Stegastes diencaeus, Acanthurus tractus. 
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Abstract 

Coral reefs are experiencing worrisome levels of degradation, mostly due to anthropogenic 

factors, leading to a disequilibrium in the ecosystem, such as an outbalanced parasite 

proliferation. Parasites are a natural component of the ecosystem, being influenced by the 

environment and in turn influencing their hosts. Conversely, higher fish density may also increase 

the probability of contact between parasites and possible hosts. In order to face parasitation, 

specifically by ectoparasites, highly infected fish may chafe against the substrate or engage in 

cleaning interactions more often. These so called “clients” are usually those that receive a better 

service by cleaners. There are also other sources of irritation that may lead fish to increase their 

cleaning behaviour, such may be the case of dermal parasites, visually recognized by dark 

blemishes on fish. The present study aimed to understand how reef degradation levels and fish 

density are affecting ectoparasite loads on fish, and how these ectoparasite loads, as well as 

dermal parasites, are affecting the clients’ cleaning behaviour. Five reefs in Curaçao were sampled 

for benthic community, fish density, and ectoparasite load assessment of longfin damselfish 

(Stegastes diencaeus) and ocean surgeonfish (Acanthurus tractus). The cleaning behaviour of the 

mentioned client species was also analysed in the two most different reefs. Carmabi and Water 

Factory revealed to be the two most different reefs in terms of benthic and fish community, and 

deemed as the degraded and less degraded reefs, respectively. Ectoparasites retrieved consisted 

in species of the Gnathiidae (Crustacea, Isopoda), Caligidae (Crustacea, Copepoda) and Capsalidae 

(Platyhelminthes, Monogenea) families. Except for ocean surgeonfish’s caligid loads, all 

ectoparasite families were found significantly different across the five sampled reefs, with fish 

from Carmabi experiencing the highest loads of capsalids. In four of the five reefs, ocean 

surgeonfish were more infected with caligids than longfin damselfish. Longfin damselfish’s 

gnathiid and caligid loads correlated negatively with reef live coral cover and its density, 

respectively. Regarding ocean surgeonfish, only gnathiid loads correlated negatively with global 

fish density.  

In terms of behavioural shifts, ectoparasite loads did not seem enough to produce changes in 

longfin damselfish cleaning behaviour. However, ocean surgeonfish appeared to be more 

vulnerable, as fish from Carmabi were observed to invest more in cleaning behaviour (chafing and 

waiting time at cleaning stations). This appeared to be due to significantly higher loads of dermal 

parasites in Carmabi (the degraded reef), where heavily infected fish interacted more often with 

cleaners. Future studies should include a more integrative approach, taking into consideration not 

only ectoparasite and dermal parasite loads, host vulnerability and cleaning behaviour, but also 

physiological (such as stress) and immunological measures as key variables to evaluate ecosystem 
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disequilibrium. The resulting information may be a valuable contribution to the implementation 

of monitoring programs and to help in reef conservation. 

 

Key-words: Coral reef degradation, parasites, cleaning behaviour, Stegastes diencaeus, 

Acanthurus tractus. 
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1. INTRODUCTION 

Coral reefs are among the most productive and diverse ecosystems, and although they cover only 

0.2% of the ocean floor, they support approximately 25% of the marine life (Spalding et al., 2001). 

Besides, coral reefs are vital to human societies through the goods and services provided, such as 

food, coastal protection, recreation and income, surpassing simple economic values and including 

nutritional, social and cultural values (Spalding et al., 2001). Currently, coral reefs’ intrinsic 

beauty, productivity, diversity and the values they represent are globally threatened. 

1.1. CORAL REEF DEGRADATION 

Coral reef degradation is presently a severe worldwide problem, affecting tropical and subtropical 

reefs. Both natural and anthropogenic pressures, such as storms, coral diseases, overexploitation, 

sedimentation, pollution, declining of water quality, and finally climate change, are amongst the 

main causes for reef degradation (Wilkinson, 2000; Pandolfi et al., 2003; Bellwood et al., 2004; 

Jackson, 2010). By the year 2000, 27% of reefs worldwide had come to a point of no recovery, and 

by 2030, estimates predict that 48% of the world’s coral reefs may be lost (Wilkinson, 2000). 

The Caribbean is one of the most strongly affected regions (McClanahan et al., 1999; Pandolfi et 

al., 2003; Bellwood et al., 2004; Bruno et al., 2009). Recent evidences indicate that in a 25 years 

interval, absolute hard coral cover has declined from 50% to 10% on reefs across the entire 

Caribbean basin (Gardner et al., 2003), with 47% of the existing reefs (already in 1997) exhibiting 

no recovery (Roff and Mumby, 2012). Moreover, Caribbean reefs have lower functional group 

redundancy (both in fish and coral communities) (Bellwood et al., 2004), which makes their 

resilience lower when compared to Indo-Pacific reefs. Consequently, Caribbean reefs are more 

vulnerable to threats and their recovery is even more difficult. 

As coral reefs degrade, live coral gives way to an increase of dead coral covered with macroalgae, 

turf, cyanobacteria and sponges (Mumby et al., 2007; Roff and Mumby, 2012; Artim and Sikkel, 

2013). This is often characterized as a coral-algae phase shift (Hughes et al., 2007; Mumby et al., 

2007). Usually, the consequences of reef degradation and algae phase shifts focus on corals or on 

fish, two important groups in the reef ecosystem. However, there are other reef habitants often 

ignored but no less important: the parasites. 

1.2. PARASITES IN THE ECOSYSTEM 

Although seemingly inconspicuous organisms, parasite species may comprise of up to 50% of all 

biodiversity (Hudson et al., 2006). In tropical reefs, parasites may reach 80% of the organisms 
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(Rohde, 2002), and the Caribbean, along with Australia, appear to be hotspots for parasites (Côté, 

2000). 

Indeed, parasites are a key element in the ecosystem. They have been found to be the ultimate 

missing link in food webs, dominating and capable of transforming food web designs as we know 

them (Hudson et al., 2006; Dobson et al., 2008; Lafferty et al., 2008). Parasites may be used to 

distinguish stocks, tag fish populations and identify their source (through host specificity and 

environmental requirements) (Sasal et al., 2007; Coile and Sikkel, 2013), and can also be used as 

bioindicators of anthropogenic influences. Ectoparasites are especially good indicators because, 

by infecting fish’s body surface and gills and feeding on their blood, mucus and tissue (Rohde, 

1984), they are in direct contact with the environment (Sures, 2004; Hudson et al., 2006; Sasal et 

al., 2007). However, it is important to first recognize that the sole existence of parasites does not 

mean that the environment is somehow degraded. Parasites are normally part of any healthy 

ecosystem, but drastic changes in their dynamics (parasite abundance and diversity baseline) 

should be used as key indicators (Landsberg et al., 1998; Marcogliese, 2005; Hudson et al., 2006). 

Moreover, parasites are more abundant in shallow waters, where the probability of any 

ectoparasite finding a host is higher (given the lower water volume), rather than deep waters 

(where they are more vulnerable to ocean currents) (Poulin and FitzGerald, 1989a; Grutter, 1998). 

Ectoparasites can use both physical and chemical cues to recognize their hosts (Rohde, 1984; 

Buchmann and Lindenstrøm, 2002; Sikkel et al., 2011). Physical cues, like water movements and 

visual cues, are non-specific, as they may be provided by fish movements or by resting or slow-

moving fish (i.e. shadows) (Poulin et al., 1990; Mikheev et al., 2004). Conversely, chemical cues, 

like the olfactory ones, allow host-specific recognition (Mikheev et al., 2004; Mordue (Luntz) and 

Birkett, 2009; Sikkel et al., 2011), as they are often associated with fish mucus (Buchmann and 

Lindenstrøm, 2002), thus presenting different motivations for ectoparasites towards different 

meal quality (Christe et al., 2003; Nagel and Grutter, 2007). 

On the other hand, each host species has different susceptibility to ectoparasites, which is 

influenced by host specificity, spatial and temporal activity, host defences and host ability to start 

and maintain an appropriate immunological response (Coile and Sikkel, 2013). Nevertheless, 

ectoparasites are known to cause and facilitate diseases, either through the wounds they inflict 

while feeding, or through their activity as vectors (Davies and Smit, 2001; Panek, 2005; Cook et 

al., 2015). Consequently, ectoparasites, as well as other parasites, may induce immunological and 

physiological changes in the host (Gorlick et al., 1987; Bunkley-Williams and Williams, 1998; 

Barber et al., 2000; Buchmann and Lindenstrøm, 2002). 
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Parasitic effects in the ecosystem may also be expressed though their influence on hosts’ 

behaviour, population dynamics and fitness (Finley and Forrester, 2003; Hudson et al., 2006). 

Finally, parasites can also mediate invasions (Tourchin et al., 2002) and symbiotic interactions 

(e.g. Côté, 2000). 

1.3. CLEANING INTERACTIONS 

Cleaning interactions are considered as a typical example of symbiosis, and a remarkable example 

of interspecific interactions (Poulin and Grutter, 1996; Côté, 2000). Generally, these interactions 

may be described as the removal of ectoparasites, bacteria, injured tissue and other particles of a 

co-operating organism, known as “client”, by a smaller organism, known as “cleaner” (Côté, 

2000). Cleaning symbiosis has a wide taxonomic distribution, for instance, in terrestrial systems 

some birds may act as cleaners when they inspect the body of mammals for ectoparasites (Poulin 

and Grutter, 1996). However, most cleaning interactions have been confirmed in marine systems, 

especially in the tropics (Poulin and Grutter, 1996). In coral reefs, cleaners may be small fish or 

shrimp, usually identified by their conspicuous colours and evident stripes (Côté, 2000). As for 

clients, there is a much larger range, from sharks, manta rays, turtles, to a great variety of teleost 

fishes (Côté, 2000). 

Cleaning symbioses are commonly used as examples of mutualism. Cleaning benefits cleaners, 

providing them with a food source gleaned from clients, whether they are obligate cleaners (rely 

virtually exclusively on ectoparasites) or facultative cleaners (rely only in a relatively small part on 

ectoparasites, and may only act as cleaners in part of their life history stages) (Côté, 2000). On the 

other hand, it has been harder to find significant benefits for clients. Generally, these benefits 

may be related to the removal of ectoparasites directly and/or to obtain tactile stimulation 

(Poulin and Grutter, 1996; Côté, 2000; Soares et al., 2011). Yet, not all cleaners perform tactile 

stimulation, until now only some cleaners belonging to the family Labridae (mostly Labroides spp.) 

have been recorded as doing so (Barbu et al., 2011). 

However, the true nature of this symbiosis has been a matter of discussion for the past four 

decades (Côté, 2000). Actually, the cleaner may exploit the client, as it has been showed that 

cleaners not only remove ectoparasites from their clients, but also healthy tissue, mucus and 

scales (Poulin and Grutter, 1996; Côté, 2000; Bshary and Grutter, 2002; Côté and Soares, 2011). 

When this occurs the symbiotic interaction may shift towards commensalism or, in more extreme 

cases, parasitism (Poulin and Grutter, 1996; Cheney and Côté, 2005). Indeed, Cheney and Côté 

(2005) suggested that the outcome, even of the same client-cleaner interaction, may be variable 
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over space and time, being mainly dependent on ectoparasite availability. Cleaning interactions 

where there was higher ectoparasite availability, resulted in a greater decrease in clients’ 

ectoparasite loads and less scales intake by cleaners. On the other hand, in places where 

ectoparasite availability was low, tissue and scales intake by cleaners seem to be more frequent.  

1.4. CURAÇAO, AN ISLAND IN THE CARIBBEAN 

Curaçao is an island located in the South Caribbean Sea, north to the coast of Venezuela. In 

Curaçao, water temperature varies between 26 °C and 28 °C throughout the year, usually not 

showing more than 2 °C variation regarding these values (Bak, 1975; Bak et al., 2005). The reefs 

on the southwestern shore are typically affected by calm condition, while the northeast shore is 

affected by high wave activity due to east dominant winds (van Duyl, 1985). 

Within the Caribbean region, Curaçao is where some of the best reefs can be found, turning it into 

one the five hotspots of species-diversity for the Caribbean area. In spite of this, Curaçao, like 

other places, has been subjected to an increase in coastal development, tourism overuse, 

pollution, runoff, eutrophication and overfishing which, together with climate change, resulted in 

a significant decrease in coral and fish abundance (Vermeij, 2012). Even though Curaçaoan reefs 

appear to have suffered a time-delayed coral mortality, relatively to most other Caribbean sites 

(Gardner et al., 2003), reef degradation has reached worrisome levels. So much that, at the 

current rate of decline, it is predicted that by 2060 coral reefs will have virtually disappeared 

around Curaçao (Vermeij, 2012). 

1.5. THE SPECIES STUDIED 

The Pomacentridae (damselfish) and Acanthuridae (surgeonfish) are two of the three families 

(along with Scaridae family - parrotfish) with a significant role as herbivores on coral reefs, 

maintaining ecosystem integrity and resilience (Hughes et al., 2007; Buchanan et al., 2016). 

Indeed, herbivory may be a significant controller for algal distribution and abundance, depending 

on algae growing rate and herbivorous density (McClanahan et al., 1999; Wild et al., 2014; Hixon, 

2015).  

Longfin damselfish, Stegastes diencaeus (Jordan & Rutter, 1897) (Pomacentridae), is a reef-

associated species, commonly found between 1 m and 25 m deep in the western Atlantic Ocean, 

including the Bahamas, the Gulf of Mexico, southern Florida, and throughout the Caribbean Sea 

(Humann and Deloach, 2002). Adults measure 5 - 13 cm TL (total length) and can be identified by 

distinctive features, such as dorsal and anal pointed fins, reaching well beyond the base of the 
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tail; and a thin bright blue edge on the anal fin. Additionally, they have a dark grey-brown body 

colour, often with a yellowish dorsal region, mostly on the head (Humann and Deloach, 2002). 

Longfin damselfish are considered as “farmer” herbivorous because they appear to maintain 

preferred algal species or other food items in their relatively small territories (ca. 1 m2) (Cheney 

and Côté, 2001, 2003a; Ceccarelli et al., 2005; Vermeij et al., 2015). Indeed, this solitary 

damselfish defends its territory actively and pugnaciously from intruders (Humann and Deloach, 

2002), usually other herbivorous and egg predators (Arnal and Côté, 1998; Cheney and Côté, 

2003a). 

The ocean surgeonfish, Acanthurus bahianus Castelnau, 1855, with a distribution in the Western 

Atlantic Ocean, from the Gulf of Mexico and the Caribbean to Brazil has recently been divided in 

two different species, based on genetic and phenotypic traits: A. bahianus and A. tractus (Bernal 

and Rocha, 2011). Hence, the name A. bahianus is maintained for individuals from Brazil, as 

individuals from Western Atlantic Ocean, the Gulf of Mexico and the Caribbean Sea form a 

different species, Acanthurus tractus Poey, 1860, but retain the common name as ocean 

surgeonfish (Bernal and Rocha, 2011). Ocean surgeonfish (A. tractus) can be found 5 - 25 m deep 

and are identified by their yellow-greyish blue to dark brown body with no dark vertical bars, 

translucent pectoral fin with yellow tints, and a pale band on the base of the caudal fin. 

Additionally, they have a lunate caudal fin and measure 15 - 30 cm TL (Humann and Deloach, 

2002). Ocean surgeonfish are considered relatively highly mobile (home range > 50 m2), and 

usually are not-aggressive grazers (Ceccarelli et al., 2005). Indeed, they spend most of their time 

foraging through the reef, consuming inorganic sediments with their algal food source (Wolf, 

1987). The ocean surgeonfish is a gregarious species, forming loose single, small or large 

aggregated schools (Lawson et al., 1999). 

Both species are frequently infected by ectoparasites and are well known visitors to cleaning 

stations (Arnal and Côté, 1998; Wicksten, 1998; Arnal et al., 2001; Cheney and Côté, 2001, 2003a; 

b; c; d, 2005; Côté and Molloy, 2003; Sikkel et al., 2004, 2006, 2009; Soares et al., 2007, 2008d; 

Coile and Sikkel, 2013). 

1.6. STUDY OBJECTIVES 

Based on the fact that ectoparasites are an inherent part of the ecosystem, two main objectives 

were proposed: (1) to understand how Curaçaoan reef conditions (such as loss of live coral and 

fish density) are affecting two reef fishes’ ectoparasite loads; and (2) to understand how these 

parasite loads are influencing host behaviour, as clients toward cleaning. 
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2. ARE ECTOPARASITE LOADS OF REEF FISH INFLUENCED BY BENTHIC 

COVER AND FISH DENSITY? 

2.1. INTRODUCTION 

Coral reef degradation, with loss of live coral and increase in algal cover, is a problem worldwide, 

but the Caribbean is one of the most affected regions (Roff and Mumby, 2012). These changes in 

benthic community have repercussions in the global reef ecosystem, and several studies have 

mainly focused on the effect and relation with fish and corals (e.g. McClanahan et al., 1999; 

Vermeij et al., 2010a; Wild et al., 2014; Hixon, 2015). Yet, the importance of an easily overlooked 

group in the ecosystem, the ectoparasites, cannot be ignored, as they are capable of influencing 

their host by affecting its behaviour, fitness and survival (Rosenqvist and Johansson, 1995; Finley 

and Forrester, 2003; Hudson et al., 2006; Grutter et al., 2011). Considering coral reefs, and 

especially with the increasing degradation (Wilkinson, 2000; Gardner et al., 2003; Roff and 

Mumby, 2012), ectoparasites assume an even more relevant role, as several studies have 

suggested that sites associated with higher levels of reef degradation also have higher 

ectoparasite abundance (Grutter, 1998; Sikkel et al., 2000, 2009; Sasal et al., 2007). 

In a recent study by Artim and Sikkel (2013), conducted in the Caribbean, it is concluded that not 

only the emergence rate of gnathiids (common ectoparasites with a benthic life stage) was lower 

in the presence of live coral, but also that gnathiids actively avoided contact with live coral, 

tolerating a wide range of alternative substrata (such as dead coral, sponge, algae, and even 

sand). Another study, aimed at the ectoparasite family branchiura, concluded that the percentage 

of infected fish was higher in vegetated microhabitats, as opposed to open habitats (Poulin and 

FitzGerald, 1989a). Moreover, there is evidence of the existence of more potential pathogens 

within areas with more turf algae (Casey et al., 2014), which are among the most abundant 

benthic organisms in degraded reefs (Vermeij et al., 2010b). Therefore, it seems accurate to 

assume there are favourable and unfavourable benthic compositions, at least as far as 

ectoparasite benthic stages are concerned.  

Apart from the human impact on reef degradation, some reef fish also contribute to an increase 

in favourable substratum for ectoparasites. For instance, damselfish actively maintain algae mats 

in their territories, which serve as a permanent food source. However, these algae mats are 

maintained at the expense of coral growth and fitness (Vermeij et al., 2010b; Hixon, 2015), 

whether by suffocating corals, blocking light (Nugues and Roberts, 2003), or by accumulating 

potential pathogens (Titlyanov et al., 2007), increasing the occurrence of coral diseases (Casey et 
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al., 2014; Vermeij et al., 2015). Hence, the decrease of live coral, facilitated by damselfish, gives 

way to algal colonization (Titlyanov et al., 2007) and leads to an increase in favourable substratum 

for ectoparasites with benthic stages. 

On the other hand, the hosts themselves influence the parasite community in a different way. 

Although it is important to realize that host-parasite interactions experience some level of 

specificity (Grutter, 1994; Lo et al., 1998), and susceptibility (Coile and Sikkel, 2013), in a broader 

perspective, colonization opportunities for parasites depend, to some degree, on how many hosts 

are available in a certain area, that is, on host density (Morand and Poulin, 1998). This relation is 

especially true to directly transmitted parasites, i.e. ectoparasites (Arneberg et al., 1998; Simková 

et al., 2001). With an increase in density, there is an increase in fish proximity and, therefore, 

higher probability of contact with ectoparasites in their transmission stage (egg or larva) 

(Arneberg et al., 1998; Arneberg, 2001, 2002; Finley and Forrester, 2003; Molinet et al., 2011). So, 

it is expected that gregarious species (e.g. surgeonfish and parrotfish), have higher ectoparasite 

loads than solitary species (e.g. damselfish), which means that host’s social behaviour may be an 

important factor to consider in ectoparasite studies (Caro et al., 1997; Raibaut et al., 1998; Sasal 

and Morand, 1998; Sasal, 2003; Bagge et al., 2004). Additionally, highly mobile species also seem 

to harbour more ectoparasites (Caro et al., 1997; Raibaut et al., 1998; Sasal and Morand, 1998; 

Morand et al., 2000). For instance, surgeonfish, that have a relatively large territory, showed to be 

disproportionally affected by dermal parasites in Curaçao, and the authors suggested their 

behaviour as gregarious foragers, frequently found near the bottom, as an explanation for these 

results (Bernal et al., 2015). 

Additionally to different infection opportunities, host susceptibility to ectoparasites vary with 

species, with individuals, and with changing environmental conditions (e.g. Lo et al., 1998; Christe 

et al., 2003; Sikkel et al., 2009; Coile and Sikkel, 2013). Moreover, ectoparasites themselves play 

an active role as they show host preference (e.g. Yeo and Spieler, 1980; Grutter, 1994; Sikkel et 

al., 2000; Nagel and Grutter, 2007). Considering that ectoparasites are affected by the micro- and 

macroenvironment (the host and its environment, respectively), it is important to study different 

species with distinct habits in order to better understand how reef degradation and loss of live 

coral may be affecting ectoparasite communities. 

Although the Caribbean is one of the most affected regions by coral degradation, there are still 

sites, like Curaçao, where this degradation is occurring at a lower rate, and relatively healthy reefs 

can be found (Vermeij, 2012). The aim of the present study is to understand: (1) if fish from 

different reefs have different ectoparasite loads; and (2) if these ectoparasite loads are related 
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with reef degradation or fish density. Furthermore, differences between host species will also be 

explored in order to verify how social behaviour may influence ectoparasite loads. 

2.2. MATERIALS AND METHODS 

2.2.1. Study sites and Species 

The study was carried out in Curaçao (12°N, 69°W), Netherlands’ Antilles, Caribbean (Figure 1), 

between July and August 2014.  

 

Figure 1 - Location of Curaçao in the Caribbean, and of the five reefs under study. 
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Sampling was done at five southwestern fringing reefs - Habitat, Blue Bay Right, Blue Bay Left, 

Carmabi and Water Factory (Figure 1). These reefs have approximately 60 m wide reef flat that 

gradually leads to a drop-off at 7-12 m deep, where the reef slope varies from 45° to 90° (Bak, 

1975). These reef flats substrate typically consists of small coral colonies scattered throughout the 

sand, while coral density increases towards the drop-off (Bak, 1975). The most distant reef was 

Habitat (12 500 m to Blue Bay Right). Water Factory - Carmabi and Carmabi - Blue Bay Left were 

2500 m and 2000 m apart, respectively. The closest reefs were Blue Bay Left and Right, separated 

by 300 m of sand. On each reef, the study area covered ca. 3000 m2, at a maximum depth of 

12 m, near the drop-off. 

The present study focussed on two reef fish species: the longfin damselfish, Stegastes diencaeus 

(Jordan & Rutter, 1897), and the ocean surgeonfish, Acanthurus tractus Poey, 1860, chosen for 

their abundance, ease to identify and capture, and previous inclusion in several ectoparasite 

studies (e.g. Arnal et al., 2001; Cheney and Côté, 2001, 2003d; Sikkel et al., 2004, 2009; Soares et 

al., 2007). Moreover, they strongly differ in home range size and social behaviour. While ocean 

surgeonfish are gregarious and have a relatively large territory (Lawson et al., 1999), longfin 

damselfish are solitary, and actively defend their small well-defined territories (Cheney and Côté, 

2003a). 

2.2.2. Benthic and Fish community 

The benthic community composition was assessed using line-intercept transects. Six 10 m long 

transects were followed haphazardly on each reef, parallel to the shore. Using a point-intercept 

method, the benthic cover type was recorded every 10 cm (total of 101 points per transect). 

Benthic cover included three categories: live coral, sand and other. Dead coral, algae and sponge 

were merged to create the category “other,” as they may all be considered as marks of reef 

degradation and are favourable substrata for the benthic stages of ectoparasites (Coile and Sikkel, 

2013). Each category was then expressed as the number of intercepted points falling into that 

category, divided by the total number of interception points per transect (Beldade et al., 2015), 

and converted to percentage. 

Fish density was assessed by undertaking ten transects per reef, parallel to the shore. Each 

transect was performed by two roving SCUBA divers that registered, on plastic slates, the number 

and species of fish within an area of approximately 4 m wide x 50 m long. Each diver was 

prepared to identify and register a variable set of fish families (determined a priori), to facilitate 

biodiversity assessment and to increase precision. Using the same transect, on the way back to 
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the starting point, each diver counted the number of Elacatinus evelynae (Böhlke & Robins, 1968) 

on his/her side of the transect line.  

2.2.3. Ectoparasite load assessment 

Ten to eleven individuals from each fish species under study were sampled in each reef. The 

procedure for fish capture and parasite load assessment was based on Grutter (1995), Sikkel et al. 

(2004), and Soares et al. (2007), and fish were collected whilst SCUBA diving between 10:00 and 

17:00 hours. The same method was used to capture both fish species: a barrier net was first 

strategically placed on the reef flat. The fish were then individually herded towards the barrier net 

(barrier net size, for ocean surgeonfish: 6 m x 4 m long and 5.7 cm mesh size; and for longfin 

damselfish: 1.5 m x 2.5 m long and 2 cm mesh size). Each individual was then caught with a hand 

net as quickly as possible, and immediately placed into a hermetically sealed plastic bag filled with 

seawater. Each fish, including the contents of the respective bag, was then taken to the beach and 

placed into an individual container with a variable amount of seawater and 4 to 6 drops of clove 

oil (depending on fish size), a natural anaesthetic. After approximately 5 min, or when the 

opercular movements were visibly slower, each fish was then transferred to a bucket of fresh 

water, where it was measured and gently brushed to help remove the remaining ectoparasites. 

Finally, fish were placed in seawater-filled recovery containers and then released at the respective 

capture location. All fluids left in the containers were filtered using a plankton net (50 μm mesh 

size) and ectoparasites were preserved in 70% alcohol. In the laboratory, ectoparasites retrieved 

were counted and identified to family using a binocular microscope. 

2.2.4. Statistical analysis 

To examine differences in reef benthic community and in fish assemblage, an analysis of similarity 

(ANOSIM) was performed, using PRIMER 6, Primer-E, Ltd. Abundance matrices were compiled 

(using the categories for benthic community, and fish species for fish assemblage), and the data 

was square-rooted in order to compute a Bray-Curtis resemblance matrix. ANOSIM generates a R 

statistic between 0 - as much similarity within as between reefs - and 1 - all transects within reefs 

are more similar to each other than to any transect across reefs - which is tested for differences 

from zero with a permutation test (Nmax = 999 permutations). The overall ANOSIM was followed 

by pairwise comparisons between reefs. To visualize these differences a multidimensional scaling 

(MDS) plot was used. Stress values lower than 0.1 suggest that distances among samples in an 

MDS plot accurately reflect the extent of community differences (Clarke and Warwick, 2001). To 

identify which reef pair had a higher percentage of dissimilarity in benthic community and fish 

assemblage a similarity percentage analysis (SIMPER) routine in PRIMER 6 was used. 
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Using IBM SPSS Statistics 22, differences among reefs were examined, always considering the two 

studied species separately. One-way ANOVA tests were performed for global fish density and 

followed by Tukey post-hoc tests, whenever differences were found. As parametric assumptions 

were not met for any other data set, Kruskal-Wallis tests were then performed, followed by 

Dunn´s post-hoc tests, whenever necessary. To control for potential size variations among hosts, 

in ectoparasite load analysis the number of ectoparasites was divided by fish total length (cm). 

Additionally, within each reef, differences between the ectoparasite loads of host species were 

investigated by the non-parametric Mann-Whitney test. Finally, to explore potential associations 

between the several ectoparasite loads, benthic community and fish density, Spearman 

correlations were used between each reef-specific mean values, whenever differences between 

reefs were found. Tests were always two tailed and performed after outlier exclusion. 

2.3. RESULTS 

2.3.1. Benthic community across reefs 

Overall, significant differences between reefs were found when considering all benthic categories 

- live coral, sand and other (one-way ANOSIM, R = 0.40, P = 0.001). Except for Habitat - Blue Bay 

Left (P = 0.663) and Habitat - Blue Bay Right (P = 0.136), reef pairs significantly differed from each 

other (P < 0.005). Indeed, after a MDS was performed (Figure 2) Water Factory and Carmabi 

seemed to separate from the rest with less overlap.  

 
Figure 2 - Multidimensional scaling plot of benthic community across reefs. Each point corresponds 

to a single transect done in Habitat (H), Blue Bay Right (BBR), Blue Bay Left (BBL), Carmabi (C), and 

Water Factory (WF). Sample size: 10 transects per reef. 
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As for Blue Bay Left and Blue Bay Right there was also a separation between the two, although 

not so obvious, since Habitat was overlapping with both reefs (Figure 2). 

SIMPER also showed a higher benthic dissimilarity between Carmabi and Water Factory (46.94%), 

followed by Water Factory - Blue Bay Right (33.59%), Carmabi - Habitat (30.80%), Carmabi - Blue 

Bay Left (30.92%), Carmabi - Blue Bay Right (28.71%), Water Factory - Blue Bay Left (28.47%), 

Water Factory - Habitat (27.65%), and finally Blue Bay Left - Blue Bay Right (25.86%). 

As for the evaluation of each category alone, there were also significant differences in the cover 

of live coral (Kruskal-Wallis, H4 = 29.70, P < 0.001), the category other, including favourable 

substrate (Kruskal-Wallis, H4 = 24.42, P < 0.001) and sand (Kruskal-Wallis, H4 = 14.10, P = 0.007) 

(Figure 3). Post-hoc tests revealed that Water Factory had significantly higher live coral cover than 

all remaining reefs (Dunn’s test, P < 0.044), and lower favourable substratum cover when 

compared to Blue Bay Left and Carmabi (Dunn’s test, P < 0.004). Finally, Blue Bay Right had 

significantly higher amounts of sand cover than Blue Bay Left and Water Factory (Dunn’s test, 

P < 0.019).  

 
Figure 3 - Mean percentage cover of benthic categories across the five reefs. Sample size: 10 

transects per reef. 

 

2.3.2. Fish density and community across reefs  

Overall species density was found to be significantly different amongst reefs (one-way ANOSIM, 

R = 0.51, P = 0.001) and between all reef pairs (P < 0.002). Transects from Blue Bay Left, Habitat 

and Water Factory seem to form relative cohesive groups (Figure 4). Although Blue Bay Right 

transects formed a relatively cohesive group, they partially overlapped Blue Bay Left and Habitat. 

Carmabi transects did not overlap those of other reefs, but showed a high heterogeneity among 

them (Figure 4). 
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Figure 4 - Multidimensional scaling plot considering each species density across reefs. Each point 

corresponds to a single transect done in Habitat (H), Blue Bay Right (BBR), Blue Bay Left (BBL), 

Carmabi (C), and Water Factory (WF). Sample size: 10 transects per reef. 

 

Through SIMPER analysis, the highest dissimilarity was found between Carmabi and Water 

Factory (45.82%), followed by Carmabi - Blue Bay Left (41.52%), Carmabi - Habitat (41.02%), 

Carmabi - Blue Bay Right (40.61%), Water Factory - Habitat (35.64%), Water Factory - Blue Bay 

Right (33.51%), Water Factory - Blue Bay Left (33.22%), Habitat - Blue Bay Left (27.99%), Habitat -

 Blue Bay Right (24.70%), and finally Blue Bay Right - Blue Bay Left (24.02%). 

Global fish density, considering individuals from all 88 species registered, was found to be 

significantly different amongst reefs (one-way ANOVA, F4, 22 = 10.33, P < 0.001). Specifically, they 

differed significantly between Carmabi-Blue Bay Left, -Blue Bay Right, and -Habitat, and between 

Water Factory-Blue Bay Left and -Blue Bay Right (Tukey test, P < 0.025). For all the paired 

comparisons mentioned, Carmabi (mean ± SD = 4.31 ± 2.33 ind. m−2) and Water Factory 

(mean ± SD = 6.04 ± 1.15 ind. m−2) had the lowest global fish density (Figure 5). 

Transform: Fourth root
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Figure 5 - Global fish density (ind. m−2) in Blue Bay Right (BBR), Blue Bay 

Left (BBL), Habitat (H), Carmabi (C), and Water Factory (WF). Box-plots 

represent median, minimum and maximum and 1st and 3rd quartiles. 

Mean marked as “+”. Sample size: nBBR = 4, nH = 5, nBBL = nWF = nC = 6. 

Lines below the graph group reefs with similar global fish density. 

 

Finally, regarding the two studied fish species’ density, differences were only found to be 

significant for longfin damselfish (Kruskal-Wallis, H4 = 14.23, P = 0.007), with lower density in 

Carmabi when compared with Blue Bay Left (Dunn’s test, P = 0.006) (Figure 6). On the other hand, 

ocean surgeonfish density was similar across reefs (Kruskal-Wallis, H4 = 8.89, P = 0.064) (Figure 6). 

 
Figure 6 - Density (ind. m-2) of a) longfin damselfish and b) ocean surgeonfish in Habitat (H), Blue Bay Right (BBR), 

Blue Bay Left (BBL), Carmabi (C), and Water Factory (WF). Box-plots represent median, minimum and maximum 

and 1st and 3rd quartiles. Mean marked as “+”. Sample size of 6 transects in each reef. Significant differences 

between reef pair marked: ** Dunn’s test, P < 0.010. 
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2.3.3. Ectoparasite loads across reefs  

From a total of 102 fish collected, 22 had no ectoparasites (20 damselfish and only 2 surgeonfish). 

Total ectoparasite loads significantly differed at least between two reefs for longfin damselfish 

(Kruskal-Wallis, H4 = 10.128, P = 0.038), but paired post-hoc analysis did not find reefs differing 

significantly (Dunn’s test, P > 0.060 for all reef pairs) (Figure 7a). For ocean surgeonfish 

ectoparasite loads were similar across reefs (Kruskal-Wallis, H4 = 3.30, P = 0.509) (Figure 7b). 

 

Figure 7 - Ectoparasite load (per cm of TL) of a) longfin damselfish and b) ocean surgeonfish in Habitat (H), Blue Bay 

Right (BBR), Blue Bay Left (BBL), Carmabi (C), and Water Factory (WF). Box-plots represent median, minimum and 

maximum and 1st and 3rd quartiles. Mean marked as “+”. Sample size respectively for longfin damselfish and ocean 

surgeonfish: nBBR = 9, nBBL = nH = nWF = 10, nC = 11 and nBBR = nBBL = nC = nWF = 10, nH = 11. 

 

Ectoparasites retrieved included gnathiid isopods (Gnathiidae), caligid copepods (Caligidae) and 

capsalid monogeneans (Capsalidae) (Appendix I). On 51 longfin damselfish a total of 33 gnathiids, 

26 caligids (none in Habitat) and 38 capsalids (34 just in Carmabi) were collected. As for the 51 

ocean surgeonfish a total of 165 caligids were retrieved, along with 24 gnathiids and 13 capsalids 

(11 in Carmabi). 

As it can be seen in Table 1, all ectoparasite family loads showed some significant differences 

between reefs in longfin damselfish (per centimetre of host) (Kruskal-Wallis: gnathiids, H4 = 9.73, 

P = 0.045; caligids, H4 = 10.09, P = 0.039; capsalids, H4 = 21.90, P < 0.001). However, post-hoc tests 

were only capable of revealing differences in capsalid loads, with longfin damselfish collected in 

Carmabi scoring the highest loads (median ± interquartile = 0.10 ± 0.45 ind. cm−1) when compared 

with all other reefs (Dunn’s test, P = 0.003). As for ocean surgeonfish, caligid loads were similar 

between reefs (Kruskal-Wallis, H4 = 1.42, P = 0.842), unlike gnathiid and capsalid loads (Kruskal-

Wallis: gnathiids, H4 = 11.81, P = 0.019; capsalids, H4 = 13.56, P = 0.009). Once again, post-hoc test 

solely revealed significant differences for capsalid loads, with Carmabi having ocean surgeonfish 
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with the highest infestation levels (median ± interquartile = 0 ± 0.06 ind. cm−1) compared with the 

remaining reefs (Dunn’s test, P < 0.039). 

Table 1 - Mean and maximum ectoparasite family loads per host species in each reef. Zeros represent samples in 

which the only infected fish was considered an outlier, and were thereby not considered, and “-“ represent samples 

where all fish collected had no ectoparasites. Significant differences marked: ns P >0.050, * P < 0.050, ** P < 0.010, 

*** P < 0.001 

 Habitat 
Blue Bay 

Right 
Blue Bay 

Left 
Carmabi 

Water 
Factory Significance 

between 
reefs  

Mean 
(max.) 

Mean 
(max.) 

Mean 
(max.) 

Mean 
(max.) 

Mean 
(max.) 

Gnathiid loads       

Longfin damselfish 
0.076 
(0.19) 

0.073 
(0.19) 

0.022 
(0.11) 

0.080 
(0.34) 

0 * 

Ocean surgeonfish 
0.022 
(0.06) 

0 0 
0.040 
(0.10) 

0.029 
(0.06) 

* 

Significance between 
species 

ns * ns ns ns  

Caligid loads       

Longfin damselfish - 
0.073 
(0.37) 

0 
0.103 
(0.52) 

0 * 

Ocean surgeonfish 
0.172 
(0.29) 

0.224 
(0.40) 

0.175 
(0.45) 

0.182 
(0.44) 

0.191 
(0.36) 

ns 

Significance between 
species 

*** * ** ns **  

Capsalid loads       

Longfin damselfish 0 0 0 
0.269 
(1.13) 

0 *** 

Ocean surgeonfish - 0 - 
0.034 
(0.19) 

0 ** 

Significance between 
species 

ns ns ns ns ns  

 

Within each reef, total ectoparasite loads between the two host species were similar in Blue Bay 

Right (Mann-Whitney, U17 = 24.00, P = 0.095) and Carmabi (Mann-Whitney, U19 = 60.00, 

P = 0.756), but they revealed to be different in Habitat (Mann-Whitney, U19 = 20.00, P = 0.013), 

Blue Bay Left (Mann-Whitney, U18 = 20.50, P = 0.023) and Water Factory (Mann-Whitney, 

U18 = 13.00, P = 0.004) (Table 1). As for ectoparasite family loads the results were relatively 

consistent, with few exceptions, between host species within reefs (Table 1). Longfin damselfish 

gnathiid loads were higher than ocean surgeonfish loads in Blue Bay Right (Mann-Whitney, 
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U16 = 68.00, P = 0.012), but similar in the other reefs (Mann-Whitney: Habitat, U19 = 80.00, 

P = 0.085; Blue Bay Left, U15 = 44.00, P = 0.481; Carmabi, U19 = 59.00, P = 0.809; Water Factory, 

U16 = 20.00, P = 0.083). Except in Carmabi (Mann-Whitney, U19 = 33.50, P = 0.132), ocean 

surgeonfish caligid loads were always higher than longfin damselfish loads (Mann-Whitney: 

Habitat, U19 = 5.00, P < 0.001; Blue Bay Right, U18 = 20.50, P = 0.023; Blue Bay Left, U16 = 8.00, 

P = 0.003; Water Factory, U16 = 4.00, P = 0.001). Finally, host species capsalid loads were similar in 

all reefs (Mann-Whitney: Habitat, U18 = 49.50, P > 0.050; Blue Bay Right, U16 = 40.50, P > 0.050; 

Blue Bay Left, U17 = 45.00, P > 0.050; Carmabi, U18 = 68.00, P = 0.175; Water Factory, U16 = 40.50, 

P > 0.050). 

2.3.4. Benthic community and fish density influence on fish ectoparasite loads 

A negative correlation was found between longfin damselfish’s total ectoparasite loads and live 

coral cover (Spearman correlation, rs = −0.90, n = 5, P = 0.037) (Figure 8a).  

 
Figure 8 - Longfin damselfish ectoparasite loads per host centimetre in relation with a) live coral cover (%), b) 

global fish density (per m2), and c) their longfin damselfish density (per m2). Sample size: for all n = 5. Habitat (H), 

Blue Bay Right (BBR), Blue Bay Left (BBL), Carmabi (C), and Water Factory (WF). 
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Global fish density did not seem to be correlated with longfin damselfish ectoparasite loads 

(Spearman correlation, rs = −0.30, n = 5, P = 0.624) (Figure 8b). Finally, longfin damselfish 

ectoparasite loads were found to be negatively associated with density (Spearman correlation, 

rs = −0.90, n = 5, P = 0.037) (Figure 8c). 

The same correlations that were performed for total ectoparasite load were also done separately 

per ectoparasite family. Regarding longfin damselfish, a negative correlation with live coral cover 

was found for gnathiid loads (Spearman correlation, rs = −0.90, n = 5, P = 0.037), but not for 

capsalid loads (Spearman correlation, rs = −0.71, n = 5, P = 0.182). None of the specific 

ectoparasite family loads of longfin damselfish were associated with global fish density (Spearman 

correlation (n = 5): gnathiids, rs = −0.30, P = 0.62; caligids, rs = −0.22, P = 0.718; capsalids, 

rs = −0.71, P = 0.182). Only caligids were negatively correlated with longfin damselfish density 

(Spearman correlation (n = 5): gnathiids, rs = −0.50, P = 0.391; caligids, rs = −0.89, P = 0.041; 

capsalids, rs = −0.71, P = 0.182) (Table 2).  

Table 2 - Spearman correlations of longfin damselfish ectoparasite loads (ind. per TL cm), regarding 

ectoparasite family with live coral cover (%), global fish density (per m2), and single species density 

(per m2). Sample size: all correlation n = 5. Significant correlations in boldface and marked: * P < 0.050. 

Correlation rs P 

Live coral cover 
Gnathiid loads −0.90 0.037* 

Capsalid loads −0.71 0.182 

Global fish density 

Gnathiid loads −0.30 0.624 

Capsalid loads −0.71 0.182 

Caligid loads −0.22 0.718 

Longfin damselfish density 

Gnathiid loads −0.50 0.391 

Capsalid loads −0.71 0.182 

Caligid loads −0.89 0.041* 

 

As for ocean surgeonfish, no correlation was found in relation to each ectoparasite family loads 

with live coral cover (Spearman correlation (n = 5): gnathiids, rs = −0.21, P = 0.741; caligids, 

rs = −0.10, P = 0.873; capsalids, rs = −0.71, P = 0.182). Interestingly, gnathiid loads were found to 

be negatively correlated with global fish density (Spearman correlation (n=5): gnathiids, rs = −0.98, 

n = 5, P = 0.005; capsalids, rs = −0.71, P = 0.182) (Table 3). 
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Table 3 - Spearman correlations of ocean surgeonfish ectoparasite loads (ind. per cm), regarding 

ectoparasite family with live coral cover (%), global fish density (per m2). Sample size: all correlation 

n = 5. Significant correlations in boldface and marked: ** P < 0.010. 

Correlation rs P 

Live coral cover 
Gnathiid loads −0.21 0.741 

Capsalid loads −0.71 0.182 

Global fish density 

Gnathiid loads −0.98 0.005** 

Capsalid loads −0.71 0.182 

Capsalid loads −0.71 0.182 

 

2.4. DISCUSSION 

Curaçao is known to have healthier reefs relatively to other islands in the Caribbean (Vermeij, 

2012; Jackson et al., 2014), however these are still found to be degraded (Bak et al., 2005; 

Vermeij, 2012). Indeed, Curaçao proved to be a good location for studies in which different reef 

degradation levels are required. Although ectoparasite loads did not differ as much as expected 

between reefs, it still could be found that fish species were differently infected by ectoparasites. 

Furthermore, it is important to consider ectoparasite families separately as they were affected by 

different reef characteristics. 

2.4.1. Reef characterization 

Two of the sampled reefs (Carmabi and Water Factory) demonstrated to be the most distinct 

from each other, when considering both benthic categories and overall species density. In a 

report in which these sites were included (Vermeij, 2012), Carmabi was described to be 

experiencing severe degradation and no longer forming or renewing the existing reef structure. 

Conversely, Water Factory was one of the few sites where reef structures were still forming, but it 

was not categorized as a healthy reef due to be under moderate degradation rates (rather than 

fast or severe). Additionally, the report also mentioned Habitat reef as subjected to a fast 

degradation rate and no longer forming reef structures, but with a still slightly higher calcification 

index than Carmabi (Vermeij, 2012). 

In terms of global fish density (including individuals from all 88 species registered) however, both 

Carmabi and Water Factory shared the lowest values. As fish density is usually predicted to 

increase with higher live coral cover (Bell and Galzin, 1984), this result was not expected for 
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Water Factory, since it presented the highest live coral cover values. This may partially be 

explained by reef location. During diving sessions several recreational fishermen were seen fishing 

in Carmabi, and in Water Factory the reef was close to a fishing dock, which can contribute to the 

scarcity of fish in this spot. Additionally, a local diving instructor reported that in Water Factory 

existed a second reef flat further from shore, with better reef quality and thus higher fish density. 

This alternative habitat with better conditions may be driving most of the fish community there. 

Regarding the studied species density, the only variation found was in longfin damselfish density 

between Blue Bay Left and Carmabi, with the latter revealing lower values. 

2.4.2. Ectoparasite loads 

When both host species were considered, overall ectoparasite loads did not differ much between 

reefs. The only significant difference was found in Carmabi, where longfin damselfish ectoparasite 

loads seemed to be higher than in the other reefs. This may indicate that differences between the 

sampled reefs were not sufficient to distinctly affect ectoparasite incidence. However, the 

question remained as to whether these differences in ectoparasite loads were linked to specific 

reef characteristics, such as live coral cover. Indeed, ectoparasite loads on longfin damselfish were 

higher in reefs with lower live coral cover and with lower longfin damselfish density. However, 

pooling together all ectoparasite families excludes from consideration their biologic and ecologic 

differences, which may be key factors influencing general trends. In the present study, three 

common ectoparasite families were represented: Gnathiidae, Caligidae and Capsalidae. Capsalids 

are not unusually found on fish, but gnathiids and caligids are the two most commonly found 

ectoparasite families (Bunkley-Williams and Williams, 1998; Grutter, 2002). Gnathiid isopods, the 

most well studied ectoparasites, have a parasitic phase only as larvae, during which they emerge 

from the substrate to find a suitable host, upon which they feed from 2-4 h to several days 

(Grutter, 1998) before returning to the benthos to moult into the next phase. The same process is 

repeated three times until they moult into non-parasitic adults (Smit and Davies, 2004). Capsalid 

monogeneans are oviparous with benthic eggs. Eggs hatch into active swimming larvae, a process 

that may be enhanced by host signals and cues. Finally, to our knowledge, caligid copepods have 

no dependence on the benthos. Instead, host seeking caligids are normally found closer to the 

water surface rather than the bottom of the reef (Mordue (Luntz) and Birkett, 2009).  

2.4.2.1. Gnathiidae 

With one exception, host species had similar gnathiid loads in almost all reefs. So, it was not 

surprising to see that both species had Carmabi, presumably, as the reef where fish were the 
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most infected. However, gnathiid loads correlated with different reef characteristics depending 

on host species. Mean gnathiid loads on longfin damselfish were higher in reefs with lower mean 

live coral cover. For gnathiids, there is direct evidence of their repulsion for live coral (Artim and 

Sikkel, 2013). Considering that longfin damselfish have a close relation to their territories, and 

therefore to the benthos, in which they reduce live coral cover to maintain algal mats (Hixon, 

2015; Vermeij et al., 2015), they may become more susceptible to gnathiid infestation, since their 

territories have more favourable substrate for gnathiids. However, a more appropriate way to 

find a direct relation between these two variables would be to sample the benthic cover within 

fish territories.  

Regarding ocean surgeonfish’ gnathiid loads, a negative relation with live coral cover would also 

be expected, since they spend ca. 85% of their time foraging (Wolf, 1987), which implies a 

proximity to the substratum. In turn, it was found that mean ocean surgeonfish gnathiid loads 

were higher in reefs where, in average, there were less ocean surgeonfish per square meter. This 

relation was surprising considering that previous studies have found links between higher fish 

densities and higher ectoparasite loads (Morand and Poulin, 1998; Arneberg, 2001; Sasal, 2003). 

However, because gnathiids are mobile parasites and act as predators, potential hosts seem to 

make use of their group numbers to create a dilution effect, which may protect them against 

mobile parasites (Poulin and FitzGerald, 1989b; Côté and Poulin, 1995), but not necessarily 

against other types of parasites. Additionally, because ocean surgeonfish are mobile fish, they 

may “migrate” in order to avoid more infected areas, as it happens with other species (Welicky 

and Sikkel, 2015). 

Thus, it was interesting to verify that gnathiid loads related to different variables according to 

host species, which may reflect an influence of host social behaviour, but also host specificity or 

vulnerability (Buchmann and Lindenstrøm, 2002; Sasal et al., 2005; Grutter et al., 2011; Sikkel et 

al., 2011; Coile and Sikkel, 2013).  

2.4.2.2. Capsalidae 

Capsalid monogenean loads were relatively similar among host species in every reef, except for 

Carmabi, which had higher infection levels. Moreover, in other reefs the presence of capsalid 

monogeneans was rare, which may explain the lack of a correlation with either live coral cover or 

fish density. Yet, the absence of correlation was unexpected, as other studies found higher 

monogenean abundance in sites associated with lower live coral cover (Grutter, 1998; Sikkel et 

al., 2000, 2009), and some of them even included the same host species as the present work. In 
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those studies, the differences were related or compared with distance from shore: higher 

monogenean loads were present when closer to shore. Actually, sites closer to shore tend to have 

worse water quality, either by an input of nutrients, sediments or even pollutants (Nugues and 

Roberts, 2003; Sasal et al., 2007). Water quality is, indeed, a main abiotic variable that has been 

linked with monogenean infection in captive and wild hosts (Sikkel et al., 2009). Moreover, when 

comparing capsalid monogeneans among sites, Sikkel and colleagues (Sikkel et al., 2009) found 

highly infected surgeonfish within bays (rather than non-bay sites), where reef habitats were 

more degraded and had less water circulation. In light of this new perspective, Carmabi seems to 

have perfect conditions to be a monogenean hotspot, when compared with other reefs, due to 

the presence of a canal near the dive site. Indeed, in several dives this canal’s water influx effect 

could be seen with the naked eye, as a fog-like cloud underwater. However, it is important to 

emphasize that no real data was collected, and for that this stands as a hypothesis that remains to 

be confirmed. Thereby, it is possible that monogeneans could be affected to a certain degree by 

water quality rather than substratum cover or hosts density. Additionally, an input of nutrients 

enhances algal growth (McCook, 1999), giving them an edge in space competition with live coral 

(Titlyanov et al., 2007) Also, the influx of sediments in reefs leads to coral death, either by 

suffocation or by the impact in coral-algae interaction (facilitates algae overgrowth) (Nugues and 

Roberts, 2003). Thus, water quality might be enhancing monogenean and algae abundance, which 

in turn may retain monogenean in the reef.  

2.4.2.3. Caligidae 

Overall, ocean surgeonfish had more caligids per unit of fish length than longfin damselfish. 

Differences between species were consistent with data from other studies, in which damselfish 

usually do not harbour a high number of caligids (Arnal et al., 2001; Cheney and Côté, 2001). 

Raibaut et al. (1998), found that gregarious fish (e.g. surgeonfish) have a higher parasitation index 

than solitary fish (e.g. damselfish), since during their infective stage parasitic copepods are able to 

swim actively, and host gathering further increases the encounter probability between 

ectoparasite and host (see also Arneberg et al., 1998). 

Ocean surgeonfish’s caligid loads were similar across reefs, while longfin damselfish caligid loads 

pointed to the existence of some differences: mean infection loads were higher in reefs with 

lower longfin damselfish density, on average. This relation relative to longfin damselfish was less 

clear since they are solitary fish. However, sites with a higher longfin damselfish abundance could 

be providing better nourishment and as such, the hosts would potentially resist more efficiently 

to caligid infestation (Landolt, 1989). On the other hand, longfin damselfish can be healthier due 
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to lower caligid loads. Yet, perhaps a more parsimonious possibility, may be simply related to the 

fact that caligids are mobile parasites, and as gnathiids, a dilution effect ensures that the 

probability of a host being picked by the ectoparasite decreases with host density (Côté and 

Poulin, 1995).  

2.4.3. Final remarks 

The present study points for the fact that fish from different reefs varied in ectoparasite loads, 

and those loads were related with different reef variables according to host species and 

ectoparasite family. Solitary longfin damselfish infection seems to be more severe in reefs with 

less live coral cover (gnathiids) and worse water quality (capsalids). As for gregarious ocean 

surgeonfish infection by ectoparasites, this seems to be affected by fish density (caligids) and also 

by water quality (capsalids). 

Although the recognition of ectoparasite as an important part of the ecosystem has been 

increasing over the past years, more conclusive studies are needed in order to understand what 

causes ectoparasite variation between different locations, but also throughout different time 

scales (daily and yearly), and even between different hosts. 
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3. ARE LEVELS OF PARASITISM RESPONSIBLE FOR DIFFERENCES IN 

CLEANING BEHAVIOUR OF REEF FISHES? 

3.1. INTRODUCTION 

The aggravation of reef degradation is changing the ecosystem, rapidly approaching a point of no 

recovery (e.g. Wilkinson, 2000; Gardner et al., 2003; Pandolfi et al., 2003; Vermeij, 2012). In this 

context, ectoparasites should be considered as double players, as they are influenced by the 

environment (e.g. Grutter, 1998; Barber et al., 2000; Sikkel et al., 2000; Grutter et al., 2011; Artim 

and Sikkel, 2013) and in turn affect their hosts (Barber et al., 2000). Indeed, a vast array of fish 

behaviours, such as reproduction, habitat selection, locomotion, foraging, avoidance of predation 

and of infected prey, and finally infection reduction behaviour, are influenced by ectoparasites, 

(Barber et al., 2000; Hudson et al., 2006). As for infection reduction, fish may actively search for 

ways to facilitate the removal of irritation sources (e.g. loosened scales, damaged tissue), or to 

reduce the load or severity of infection (e.g. ectoparasites) (Wyman and Walters-Wyman, 1985). 

While chafing may be a simpler way to deal with parasites, when an individual scrapes its body 

against an available substrate in an attempt to clean itself (Wyman and Walters-Wyman, 1985), 

interacting with cleaners should become a more efficient and beneficial way to reduce 

ectoparasite loads and the respective stress responses (Becker and Grutter, 2004; Ros et al., 2011; 

Soares et al., 2011). 

Cleaning interactions are conspicuous activities that involve two parties: cleaners and clients. In 

coral reefs, cleaners are small fish or shrimp that remove ectoparasites, damaged tissue, scales 

and mucus from the body surface, buccal cavity and gills of usually larger fish, known as clients 

(Losey, 1974; Côté, 2000; Becker and Grutter, 2004). Client-cleaner interactions usually take place 

at specific sites called cleaning stations (Côté, 2000), where visiting clients seeking cleaning 

service often adopt a stereotyped and immobile posture in front of the cleaner, while waiting to 

be inspected (Losey, 1972). This posing behaviour may enhance the client’s likelihood to be 

inspected by the cleaner, however clients may also leave the site without being inspected. 

However, even if the client turns out to be inspected, this inspection may vary in terms of quality 

(Côté et al., 1998). For instance, a poorer service may turn out to be slowly initiated, incomplete 

and/or dishonest, i.e. an interaction in which the cleaner does not inspect the client properly, 

and/or in which the cleaner eats healthy tissue and mucus of the client (Bshary and Noë, 2003). 

Usually, the dishonest behaviour (also referred to as cheating) is visually translated by client jolts 

as a reaction to the removal of the items mentioned above by the cleaner (Soares et al., 2008b).  
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The direct impact of ectoparasite depletion on clients has been linked to relief (Kanenko II et al., 

1988); decrease in transmission rate of other pathogenic organisms, promoted by ectoparasites 

(Davies and Smit, 2001; Panek, 2005; Cook et al., 2015); improved body condition, since it tends 

to be reduced in the presence of ectoparasites (Ros et al., 2011); and decrease in stress levels 

(Bshary et al., 2007; Soares et al., 2011; Sun et al., 2015). However, it has been difficult to 

understand how changes in parasite availability may or may not influence clients’ specific 

motivation to interact with cleaners. Some studies point towards ectoparasite loads being not 

significant in cleaners’ seeking behaviour (Losey, 1972; Grutter, 1996; Côté and Molloy, 2003) 

while others show ectoparasites as an important variable to explain cleaning interactions 

(Grutter, 1995; Sikkel et al., 2000; Côté and Molloy, 2003; Cheney and Côté, 2005), both as 

proximate, and sometimes as the ultimate cause (Arnal and Morand, 2001; Arnal et al., 2001; 

Grutter, 2001; Cheney and Côté, 2003b; Sikkel et al., 2004). In such studies, clients have been 

found to invest more in visiting cleaning stations when and where ectoparasite loads are higher, 

posing for and being inspected by cleaners more often and for longer periods of time (see Grutter, 

1995; Sikkel et al., 2000; Côté and Molloy, 2003; Cheney and Côté, 2005). Hence, it would be 

expected that more parasitized clients would have a higher tolerance for lower quality cleaning 

service, as the benefits of ectoparasite removal outweighed the interaction’s costs. 

However, the rather high controversy concerning the role of ectoparasites as drivers of fish 

behaviour may be due to other important factors acting simultaneously. Indeed, fish with fresh 

wounds, and not necessarily heavily parasitized, spend more time at cleaning stations than those 

in a more advanced stage of the healing process (Foster, 1985). 

Another irritation source may be related to other types of parasitism. Recently, two studies found 

a disproportional incidence of black blemishes on fish, especially the ocean surgeonfish 

(Acanthurus tractus), from Curaçao and Bonaire, with ca. 20% and 57% of infected individuals, 

respectively (Bernal et al., 2015; de Graaf and Simal, 2015). Such blemishes are usually associated 

with dermal parasites (e.g. digenean metacercaria, turbellarians, and/or protozoan infections) 

(Potts, 1973; Bernal et al., 2015), and cleaners have been observed attempting to feed on these 

blemishes on the client (Rosenqvist and Johansson, 1995). Loss of live coral, algae proliferation 

and decrease in water quality (all associated with reef degradation) may serve as an additional 

irritation vector to fish, as it may also facilitate conditions to the proliferation of some 

ectoparasites and other pathogens (Grutter, 1998; Sikkel et al., 2000, 2009). 

The role and impact of parasites may also be variable according to species. Not all species are the 

same when it comes to parasite incidence and disease vulnerability, nevertheless not much 
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information is available on this subject (Coile and Sikkel, 2013). Both Pomacentridae and 

Acanthuridae have an important role in coral reef ecosystem as herbivores (McClanahan et al., 

1999; Ceccarelli et al., 2005; Casey et al., 2014) and are relatively well known client fishes (Arnal 

et al., 2000; Soares et al., 2007, 2008a), which, in some places, have been found to increase their 

efforts towards cleaning according to ectoparasite load (Arnal et al., 2001; Cheney and Côté, 

2001; Sikkel et al., 2004). 

In this context, the aim of the present study was to test if differences in reef degradation and 

consequent variation on longfin damselfish (Stegastes diencaeus) and ocean surgeonfish 

(Acanthurus tractus) ectoparasite loads have an influence on client motivation and behaviour to 

engage in cleaning activities. Specifically, it was investigated (1) whether heavily infected 

individuals inhabiting these distinct reefs would seek cleaning differently (by chafing or by 

interacting with cleaners), (2) whether service quality provided to clients would vary, and (3) 

whether parasitation differently influences client species regarding cleaning behaviour. 

3.2. MATERIALS AND METHODS 

3.2.1. Study site and Species 

The study was conducted in Curaçao (12°N, 69°W), Netherlands Antilles, Caribbean, in July and 

August 2014. In a previous study (see Chapter 2) the reefs at Carmabi and Water Factory, were 

considered as the two most different reefs in terms of their fish assemblage (45.82% dissimilarity) 

and benthic community (46.94% dissimilarity). These reefs were also the two extremes in terms of 

live coral cover. Thus, Carmabi, with ca. 5% live coral cover, was considered as the degraded reef, 

while Water Factory, with ca. 43% live coral cover, the less degraded reef (Appendix II). For these 

reasons Carmabi and Water Factory reefs were selected to conduct the present study. 

3.2.2. Cleaner fish density 

Cleaner fish density in the two selected reefs (Carmabi and Water Factory) was determined in a 

previous study (see Chapter 2). Four cleaner fish species were reported: sharknose goby, 

Elacatinus evelynae; yellownose goby, Elacatinus randalli; bluehead wrasse, 

Thalassoma bifasciatum; and Spanish hogfish, Bodianus rufus. However, yellownose gobies and 

Spanish hogfish were rare, i.e. not statically different from zero (one-sample Wilcoxon: 

yellownose goby, Water Factory, W6 = 3.00, P = 0.50; Spanish hogfish, Carmabi, W6 = 1.00, P > 0.05 

and Water Factory, W6 = 3.00, P = 0.500) or absent (namely yellownose goby in Carmabi). For this 

reason, these species were not considered in the present study. Additionally, bluehead wrasse 

acts as a cleaner only as a juvenile, but as their initial and terminal phases were not recorded 
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separately during sampling transects, the species density determined was considered as 

approximate to cleaner phase density. 

3.2.3. Behavioural observations 

Observations were made between 10:00 and 17:00 hours, through 20 min focal-follow video 

recordings of 9 - 11 individual clients, per focus species, in each reef. Focal clients were selected 

haphazardly and observations began immediately upon sighting, at a minimum distance of 2 m 

(Soares et al., 2007). All ocean surgeonfish were observed alone rather than in school context, in 

order to facilitate observation. During video analysis, all visits to cleaning stations were noted, 

regardless of cleaner species. Specifically, for each interaction the following information was 

recorded: (1) whether the client posed near a cleaning station, (2) the time each client waited 

before being attended by the cleaner, (3) whether the client was in fact inspected or not, (4) 

inspection duration (with minimum duration considered as one second), and (5) the number of 

jolts by clients. Moreover, the frequency of chafing events against the substrate by each 

individual was registered. 

3.2.4. Ectoparasite loads 

Data previously collected for clients’ ectoparasite loads (see Chapter 2) was used for the two 

selected reefs. However, individuals sampled for ectoparasite load assessment were not the same 

as those observed, and were only captured after all behavioural observations were finished. 

Additionally, the number of dark blemishes on the recorded ocean surgeonfish body surface was 

noted. The same was not possible to verify for longfin damselfish due to their dark colour. 

3.2.5. Statistical analyses 

Concerning the behavioural analysis, three behavioural correlates of service quality were 

measured: (1) clients’ waiting time at cleaning stations, (2) inspection duration, and (3) client jolt 

rate, expressed as the number of jolts per 100 s of interaction time (Soares et al., 2008b). Waiting 

time, inspections duration and jolt rate were averaged per individual. Since service quality 

depends on the existence of an interaction and/or posing behaviour, the sample size had to be 

reduced to the correspondent value. Non-parametric tests were used since the data did not meet 

the parametric assumptions, even after transformation. Mann-Whitney tests were performed for 

comparisons between the two reefs and between the two client species within each reef. All 

statistical analyses were two tailed, performed without outliers and conducted using IBM SPSS 

Statistics 22. 
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3.3. RESULTS 

3.3.1. Cleaners density 

Considering cleaner fish overall density (bluehead wrasse and sharknose goby combined), and 

considering bluehead wrasse density alone, differences were found between reefs in both cases 

(Mann-Whitney, repetitively: U10 = 4.50, P = 0.028; U10 = 1.00, P = 0.004), and more cleaners were 

present in Water Factory. Sharknose goby density was similar between reefs (Mann-Whitney, 

U10 = 14.50, P = 0.619). Within each reef, cleaner species density differed from each other in 

Carmabi (the degraded reef) (Mann-Whitney, U10 = 4.00, P = 0.026), with a mean of 0.17 

sharknose gobies m-2 and 0.48 bluehead wrasses m-2, but in Water Factory (Water Factory) 

densities were similar, with a mean density for both cleaner species of 0.56 ind. m-2 (Mann-

Whitney, U10 = 17.00, P = 0.898). 

3.3.2. Parasite loads 

Overall, on 62% of longfin damselfish and 100% of ocean surgeonfish captured, at least one 

ectoparasite was retrieved. Longfin damselfish had significantly higher ectoparasite load in 

Carmabi (Mann-Whitney, U19 = 21.00, P = 0.016), contrarily to ocean surgeonfish which did not 

differ in total ectoparasite loads (Mann-Whitney, U18 = 39.00, P = 0.436). However, within reef, 

ocean surgeonfish had more ectoparasites per centimetre than longfin damselfish, in Water 

Factory (Mann-Whitney, U18 = 87.00, P = 0.004), whereas in Carmabi ectoparasite loads were 

similar between client species (Mann-Whitney, U21 = 50.00, P = 0.756) (Figure 9). 

Retrieved ectoparasites consisted in gnathiid isopods (Gnathiidae), caligid copepods (Caligidae) 

and capsalid monogeneans (Capsalidae) (Appendix I). Longfin damselfish only showed differences 

between reefs in capsalid loads (Mann-Whitney: gnathiids, U17 = 64.00, P = 0.109; caligids, 

U17 = 60.00, P = 0.206; capsalids, U18 = 76.50, P = 0.038), which were higher in Carmabi (Figure 9). 

Contrary, for ocean surgeonfish no ectoparasite family loads showed to differ between reefs 

(Mann-Whitney: gnathiids, U18 = 59.50, P = 0.481; caligids, U18 = 45.00, P = 0.739; capsalids, 

U18 = 54.00, P = 0.258) (Figure 9). As for differences between client species, these were significant 

only in Water Factory regarding caligids, with ocean surgeonfish harbouring more caligids per 

centimetre than longfin damselfish (Mann-Whitney: Carmabi, gnathiids, U19 = 60.00, P = 0.756; 

caligids, U19 = 33.50, P = 0.132; capsalids, U18 = 68.50, P = 0.175; Water Factory, gnathiids, 

U16 = 20.00, P = 0.083; caligids, U16 = 4.00, P = 0.001; capsalids, U16 = 40.50, P < 0.050) (Figure 9). 
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Figure 9 - Mean ectoparasite loads retrieved from both study client species in Carmabi (degraded reef) and 

Water Factory (less degraded reef). Bars are divided by ectoparasite families retrieved. Sample size: 11 

longfin damselfish in Carmabi and 10 in Water Factory, and 10 ocean surgeonfish in each reef. 

 

Additionally, ocean surgeonfish living in Carmabi had a higher number of dark blemishes 

(Appendix III) on their bodies when compared with those from Water Factory (Mann-Whitney, 

U17 = 13.50, P = 0.008) (Figure 10). 

 
Figure 10 - Number of dark blemishes on ocean surgeonfish body and fins 

between Carmabi (degraded reef) and Water Factory (less degraded reef). 

Sample size: 10 ocean surgeons in Carmabi and 9 in Water Factory. 

Significant differences between reefs marked: ** Mann-Whitney, P < 0.010. 

 

3.3.3. Cleaning behaviour 

Focal clients were mostly observed interacting with sharknose gobies and juvenile bluehead 

wrasses (Appendix IV and V). Ten longfin damselfish had no cleaning stations inside their territory 
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(6 and 4 in Carmabi and Water Factory, respectively), nevertheless longfin damselfish were 

inspected by sharknose gobies in 31 of a total of 36 events, and by bluehead wrasses only on four 

events. Just once an interaction with a cleaner shrimp was observed, namely with a longfin 

damselfish. However, the shrimp species was not possible to identify due to bad visibility (possibly 

Pederson, Ancylomenes pedersoni, or spotted cleaner shrimp, Periclimenes yucatanicus). Ocean 

surgeonfish were inspected by sharknose gobies nine times and by bluehead wrasses eleven 

times, in a total of twenty events. However, not all focal clients interacted with cleaners during 

the observation time: nine out of 19 longfin damselfish (5 and 4 in Carmabi and Water Factory, 

respectively), and nine out of 21 ocean surgeonfish (4 and 5 in Carmabi and Water Factory, 

respectively) did not interact with cleaners (Table 4). Additionally, in Carmabi seven longfin 

damselfish and three ocean surgeonfish did not pose to any cleaner, and in Water Factory the 

respective number of individuals that were not observed posing was six longfin damselfish and 

five ocean surgeonfish (Table 4). Regarding chafing events, five longfin damselfish, in Carmabi, 

and eight longfin damselfish and three ocean surgeonfish, in Water Factory, did not chafe against 

the substrate (Table 4). 

Table 4 - Summary of focal-follow observations of client species in the two reefs 

(Carmabi - degraded reef, and Water Factory - less degraded reef), including number of 

individuals observed, number of individuals with no chafing events, total number of 

chafing events, number of individuals that did not pose, total number of posing events, 

number of individuals with no client-cleaner interaction, total number of client-cleaner 

interactions. 

 Longfin damselfish Ocean surgeonfish 

 
Carmabi 

Water 
Factory 

Carmabi 
Water 

Factory 

Nr. ind. observed 10 9 10 11 

Nr. ind. with no 
chafing events 

5 8 0 3 

Total no. of chafing 
events 

9 2 48 19 

Nr. ind. with no pose 7 6 3 5 

Total no. of poses 12 14 13 9 

Nr. ind. with no 
interactions 

5 4 4 5 

Total interaction 
number 

19 17 14 7 
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Ocean surgeonfish chafed more frequently than longfin damselfish in both reefs (Mann-Whitney: 

Carmabi, U18 = 88.50, P = 0.002; Water Factory, U17 = 76.00, P = 0.007), but, between reefs, only 

ocean surgeonfish had higher chafing frequency, in Carmabi (Mann-Whitney, U19 = 26.00, 

P = 0.043), whereas longfin damselfish chafing was similar (Mann-Whitney, U17 = 20.00, P = 0.083) 

(Figure 11a). The number of poses in both reefs was similar for longfin damselfish (Mann-

Whitney, U19 = 58.50, P = 0.809) and for ocean surgeonfish (Mann-Whitney, U19 = 38.50, 

P = 0.251). Pose frequency was also similar when comparing client species within reef (Mann-

Whitney: more degraded reef, U19 = 68.00, P = 0.387; less degraded reef, U19 = 53.00, P = 0.918) 

(Figure 11b). Interaction frequency with cleaner organisms were similar between reefs for longfin 

damselfish (Mann-Whitney, U17 = 46.50, P = 0.905), and for ocean surgeonfish (Mann-Whitney, 

U19 = 42.00, P = 0.387), as it was similar between client species within each reef (Mann-Whitney: 

Carmabi, U18 = 51.00, P > 0.050; Water Factory, U18 = 41.00, P = 0.552) (Figure 11c). 

 
Figure 11 - Cleaning behaviours, a) chafing frequency, b) pose frequency, and c) interaction frequency with cleaners 

of longfin damselfish and ocean surgeonfish in Carmabi (degraded reef) and Water Factory (less degraded reef). 

Box-plots represent median, minimum and maximum, and 1st and 3rd quartiles. Sample sizes: longfin damselfish in 

Carmabi, na = nb = nc = 10, and in Water Factory, na = nb = nc = 9; ocean surgeonfish in Carmabi, na = nb = nc = 10, and 

in Water Factory, na = nb = nc = 11. Significant differences for client species between reefs and within reef between 

client species marked: * Mann-Whitney, P < 0.050; ** Mann-Whitney, P < 0.010. 

 

0

2

4

6

8

1 0

1 2

1 4

1 6

C
h

a
fi

n
g

 f
re

q
u

e
n

c
y

L o n g f in  d a m s e lfis h O c e a n  s u r g e o n fis h

*

a

**

**

0

1

2

3

4

5

6

P
o

s
e

s
 f

re
q

u
e

n
c

y

L o n g f in  d a m s e lfis h O c e a n  s u r g e o n fis h

b

0

2

4

6

8

1 0

In
te

ra
c

ti
o

n
 f

re
q

u
e

n
c

y

L o n g f in  d a m s e lfis h O c e a n  s u r g e o n fis h

c

C a r m a b i

W a t e r  F a c to r y



 

33 
 

3.3.4. Differences in service quality 

Whenever longfin damselfish were observed posing at a cleaning station, the waiting time to be 

cleaned was similar in the two reefs (Mann-Whitney, U4 = 9.00, P = 0.100), the same happened 

when ocean surgeonfish were considered (Mann-Whitney, U10 = 11.50, P = 0.343), and when the 

client species waiting time was compared within Water Factory (Mann-Whitney, U6 = 6.00, 

P = 0.786). However, ocean surgeonfish waited more to be attended than longfin damselfish after 

posing in Carmabi (Mann-Whitney, U8 = 20.00, P = 0.033) (Figure 12a).  

 
Figure 12 - Service quality measures: a) clients waiting time (s), b) interaction duration (s) and c) client jolt rate 

(100 s−1) for longfin damselfish and ocean surgeonfish in Carmabi (degraded reef) and Water Factory (less 

degraded reef). Box-plots represent median, minimum and maximum, and 1st and 3rd quartile. Sample size: 

longfin damselfish in Carmabi, na = 3, nb = nc = 4, and in Water Factory, na = 3, nb = nc = 5; ocean surgeonfish in 

Carmabi, na = 7, nb = nc= 6, and in Water Factory, na = 5, nb = 6, nc = 5. Significant differences for client species 

between reefs and within reef between client species marked: * Mann-Whitney, P < 0.050. 

 

Client-cleaner interaction duration was similar between reefs for both species (Mann-Whitney: 

longfin damselfish, U7 = 7.00, P = 0.556; ocean surgeonfish, U9 = 15.50, P > 0.050), as well as 

between client species within each reef (Mann-Whitney: Carmabi, U7 = 12.50, P = 0.556; Water 

Factory, U9 = 21.00, P = 0.329) (Figure 12b). Finally, client species jolt rates were also similar 
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between reefs (Mann-Whitney: longfin damselfish, U9 = 19.00, P > 0.050; ocean surgeonfish, 

U9 = 5.00, P = 0.151), and between species within reef (Mann-Whitney: Carmabi, U7 = 11.00, 

P > 0.050; Water Factory, U9 = 5.00, P = 0.151), even when compared with ocean surgeonfish that 

did not jolt in Water Factory (Figure 12c). 

3.3.5. Parasite influence in cleaning behaviour 

In Carmabi, ocean surgeonfish with more dark blemishes interacted more often with cleaners 

(Spearman correlation, interaction frequency, rs = 0.782, n = 10, P = 0.007), but no other 

significant correlation was found between the frequency of blemishes and the cleaning measures 

analysed (Spearman correlation: chafing frequency, rs = −0.453, n = 10, P = 0.188; pose frequency, 

rs = 0.370, n = 10, P = 0.292; waiting time, rs = 0.234, n =7, P = 0.613; interaction duration, 

rs = 0.600, n = 5, P = 0.285; jolt rate, rs = 0.294, n = 6, P = 0.572). In Water Factory no significant 

correlations between dark blemishes and all cleaning measures were found (Spearman 

correlation: interaction frequency, rs = −0.272, n = 9, P = 0.479; chafing frequency, rs = −0.067, 

n = 9, P = 0.864; pose frequency, rs = 0.523, n = 9, P = 0.148; waiting time, rs = 0.949, n =4, 

P = 0.051; interaction duration, rs = −0.410, n = 5, P = 0.493; there were no jolts). 

3.4. DISCUSSION 

Although several factors may underlie clients’ motivation to seek cleaning, ectoparasites are more 

often proposed as a main driver (Grutter, 2001; Cheney and Côté, 2003b; Sikkel et al., 2004). This 

study shows that two important herbivore species in coral reefs appear to diverge in terms of 

vulnerability and react differently to parasite infection towards cleaning, showing that different 

patterns and motivations towards cleaning may depend on ectoparasites, but also on other 

parasite infections, such as dermal parasitation. 

3.4.1. Longfin damselfish 

Overall, only longfin damselfish ectoparasite loads varied significantly between reefs, and were 

higher in Carmabi (degraded reef), mostly due to capsalid monogenean loads. Carmabi was also 

the reef where fewer cleaner fish were found. As a result, less cleaning stations were available to 

clients, which, along with reef degradation, may contribute to an increase of clients’ ectoparasite 

loads (Grutter, 1998; Sikkel et al., 2000, 2009; Artim and Sikkel, 2013). Nevertheless, the increase 

of ectoparasite loads was not translated into significant behavioural shifts regarding cleaning 

motivation. Such results came as a surprise, as in other locations more parasitized longfin 

damselfish showed to pose to and visit cleaners more often and for longer periods of time 

(Grutter, 1995, 2001; Sikkel et al., 2000, 2004; Arnal et al., 2001; Côté and Molloy, 2003; Cheney 
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and Côté, 2005). However, most of these studies considered only gnathiids as a measure, which in 

the present study showed no difference between reefs. 

Gnathiids are one of the most well studied ectoparasite families. Gnathiids are present in marine 

environments almost worldwide (Tanaka, 2007) and, along with caligids, are the most frequently 

found ectoparasites (Grutter and Poulin, 1998; Grutter, 2002). Gnathiids are the preferred 

ectoparasite ingested by cleaners (Losey, 1974; Grutter, 2002) and are vectors to other 

pathogens, such as blood parasites (Cook et al., 2015), and they are capable of killing their host 

(Grutter et al., 2011). However, other parasites may also share a relevant influence on species 

behaviour. For instance, capsalid monogeneans are also eaten by cleaners, both fish and shrimps 

(Grutter and Bshary, 2003; Becker and Grutter, 2004; McCammon et al., 2010; Souza et al., 2014), 

although they are harder to find in gut contents due to their soft, easily digested body (Becker 

and Grutter, 2004). Monogeneans are similarly capable of causing irreversible damages to hosts, 

facilitating secondary infections and being potentially lethal (Kanenko II et al., 1988). In the 

present study, capsalid monogenean loads were found to be higher in Carmabi (the degraded 

reef). However, no cleaning behaviour differences were found to be significant.  

Hence, two questions emerged. First, if different ectoparasites induce or influence cleaning 

behaviour in different ways. This could explain why no behavioural changes were observed where 

longfin damselfish had heavier capsalid loads, but similar gnathiid and caligid loads Surprisingly, 

no comparative studies on the matter were found. Second, if there is a threshold of irritability or 

health deterioration that must be reached in order to promote a necessity to be cleaned. In 

Grutter (2001) this same question arose, but if such threshold exists is still unknown. However, 

there might exist some clues pointing to this direction, as Soares et al. (2008b) found differences 

in cleaning behaviour only where client fish gnathiid loads were higher, and in Cheney and Côté 

(2003b) the authors advance the hypothesis that at low densities ectoparasites probably cause 

minimal deleterious effects, and that solely in places with more ectoparasite infections the 

benefits from visiting a cleaning station are greater. 

In the case of longfin damselfish, territoriality is a crucial factor to be taken into account. Costs 

involved in visiting a cleaning station within territory boundaries are lower, since there is no need 

to leave the territory unguarded in order to seek cleaning. Therefore, as Cheney and Côté (2001; 

2003b) found, longfin damselfish with a cleaning station within their territory were less infected 

with gnathiids, and were also more frequently cleaned. In the present study nine individuals did 

not have a cleaning station in the territory, which may have introduced confounding information. 

Additionally, because the main cleaning activity, together with heavily infected fish, occurs during 
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dawn and dusk (Chambers and Sikkel, 2002; Sikkel et al., 2004, 2006) future studies should focus 

sampling efforts during the mentioned periods. Then, the effects on cleaning behaviour and 

associate benefits might be more pronounced or easily detected, due to a greater ectoparasite 

reduction (Cheney and Côté, 2003b). 

3.4.2. Ocean surgeonfish 

Ocean surgeonfish’ ectoparasite loads were not significantly different between reefs. However, 

this species was still experiencing behavioural differences and a seemingly increase in dermal 

parasites (using dark blemishes as a proxy). In Carmabi, the degraded reef, ocean surgeonfish 

chafed more against the substrate (than longfin damselfish, and, than ocean surgeonfish from 

Water Factory) as a self-cleaning attempt, waited longer to be cleaned (than longfin damselfish), 

and those with more dark blemishes interacted more often with cleaners. This chain of results led 

to the conclusion that ocean surgeonfish seem to be a more vulnerable species and more willing 

to invest in cleaning events. Indeed, previous studies have reported high rates of infection by 

monogeneans, turbellarians, and parasitic copepods in Acanthuridae (Sikkel et al., 2009; 

McCammon et al., 2010; Bernal et al., 2015; de Graaf and Simal, 2015), and they are known to be 

a quite sensitive fish family. 

Ectoparasites are expected to be a stressful factor for their hosts (Ros et al., 2011). Nevertheless, 

it is possible that the parasitism associated with the dark blemishes found on ocean surgeonfish 

could be more efficient in stress increase, being in turn capable of supressing the immune system 

and leaving infected fish more prone to other infections and diseases (Yada and Nakanishi, 2002). 

However, the full impact of dermal parasite infection remains unknown. Thus, further work on 

this topic should consider focusing its sampling effort on ocean surgeonfish from the most 

degraded reef (i.e. Carmabi), due to their apparent vulnerability. 

3.4.3. Final remarks 

This study shows that two important herbivorous species in coral reefs react differently to 

parasite infection towards cleaning. Ocean surgeonfish appeared to be more vulnerable than 

longfin damselfish, and more willing to invest in cleaning, either by chafing or by attending 

cleaning stations. Interestingly, underlying this investment seemed to be dermal parasites (with 

dark blemishes as proxy), even more than ectoparasite loads. However, a joint action of factors 

cannot be ruled out. Future work is clearly needed to further investigate how ectoparasites and 

dermal parasites are affecting fish’s behaviour and health, and how reef degradation is 

contributing to it.  
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4. FINAL CONSIDERATIONS 

Coral reefs are under increasing pressure and reef degradation has reached worrisome levels 

(Wilkinson, 2000; Gardner et al., 2003; Pandolfi et al., 2003). The crescent decrease in live coral 

allows the proliferation of some ectoparasites (Grutter, 1998; Sikkel et al., 2000; Artim and Sikkel, 

2013). A good way to face this significant rise in parasitation, is for host fish to increase their 

investment on cleaning activities (e.g. Arnal et al., 2001; Cheney and Côté, 2001; Sikkel et al., 

2004). The present study focused on parasites by first trying to establish a link between parasite 

loads and loss of live coral (recognizing other factors with potential influence on parasite 

abundance, such as fish density) (Chapter 2), and finally linking host parasite loads to cleaning 

behaviour response (Chapter 3). 

In Curaçao, degraded reefs appear to provide favourable conditions for benthic stage ectoparasite 

proliferation, i.e. gnathiids and capsalids, at least when longfin damselfish are considered. This 

seems particularly true in Carmabi, where low live coral cover (ca. 5%) is clearly outweighed by a 

high cover of dead coral, algae and sponges (ca. 75%), substrate favourable to benthic 

ectoparasites, and where the near canal seems to favour the input of nutrients and sediments 

into the reef, decreasing its water quality. Host density was also shown to affect ectoparasite 

loads (caligids loads in the longfin damselfish, and gnathiid loads in the ocean surgeonfish) 

through a dilution effect (Côté and Poulin, 1995). However, ectoparasite loads found in the two 

most different reefs (Carmabi and Water Factory) were not enough to significantly change longfin 

damselfish behaviour as clients. In turn, ocean surgeonfish invested more in cleaning behaviour 

and it seemed to be a more vulnerable species to reef degradation, since poor environmental 

conditions together with parasite infection, may turn out to have a deleterious influence to fish 

health, putative stress response increase and immunological shifts (Yada and Nakanishi, 2002). 

In the past few decades several studies have contributed to the body of work regarding reef 

degradation - parasites - cleaning interactions (Grutter, 1998; Côté, 2000; Sikkel et al., 2000, 2009; 

Cheney and Côté, 2003d, 2005), however there are still plenty of questions to be answered. This 

becomes especially relevant with the crescent impact of climatic change on reef ecosystems, 

which harbour most of the biodiversity and have an intrinsic value to human populations. Indeed, 

parasites are a naturally occurring component, and have an important role in the ecosystem, but 

when their numbers get outbalanced they may have devastating impacts, both on hosts and in 

the ecosystem as a whole (Hudson et al., 2006). In 1980’s, the Caribbean region suffered a mass 

mortality of long spined black sea urchins, Diadema antillarum, among the most important 

herbivore organisms. Although the causes of this mass mortality are unknown, a pathogen 
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infection of some kind seems to be the most probable cause (Bak et al., 1984). After this event, 

algal cover increased dramatically (in some places up to 95%), and other herbivores were not able 

to occupy the sea urchin role in the ecosystem, due to overfishing (Bak et al., 1984). This may 

come as a good example as to why herbivores should be monitored in coral reef. Thus, in addition 

to Pomacentridae and Acanthuridae, future works should also consider the Scaridae family, in 

order to achieve a wider perspective of the main herbivores of the Caribbean, especially focusing 

on more vulnerable species. As an improvement to the present study, future research should also 

increase sample size; consider using the same fish for ectoparasite assessment and behaviour 

observation, to have a more precise link between the two variables, as well as using the surface 

area instead of fish total length for ectoparasite load estimation; collecting data regarding reef 

abiotic variables, as these also affect the ectoparasites and the fish themselves (Landsberg et al., 

1998; Marcogliese, 2005; Sasal et al., 2007); and collecting data regarding ectoparasite 

emergence from the reef directly. 

Finally, parasites, specifically the ectoparasites and dermal parasites (through blemishes), and 

cleaning behaviour (as a way to understand how fish are reacting) may be used to monitor coral 

reef degradation, having the advantage to have a relatively low impact on the fish population, 

since there is no necessity to kill sampled individuals. Additionally, with the contribution of future 

studies regarding parasites and cleaning behaviour contribution to fishes’ stress levels and 

immunological response, these same variables may also be used to monitor reef fish health, and 

thus contribute to reef conservation. 
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6. APPENDICES 

Appendix I - Example of ectoparasite found on fish, a) Gnathiidae, b) Caligidae, and 

c) Capsalidae. 

 

 

Appendix II - Visual comparison of benthic cover between (a, b) Carmabi, degraded reef, and 

(c, d) Water Factory, less degraded reef. 
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Appendix III - Dark blemishes (yellow arrows as example) on infected ocean surgeonfish 

(Acanthurus tractus) 

 

 

Appendix IV - Cleaning interaction between longfin damselfish (Stegastes diencaeus) and 

sharknose goby (Elacatinus evelynae) 
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Appendix V - Cleaning interaction between ocean surgeonfish (Acanthurus tractus) and 

juvenile bluehead wrasses (Thalassoma bifasciatum) 

 

 


