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Resumo

A fiabilidade dos sistemas informáticos é uma preocupação fundamental em qualquer
organização que dependa das suas infraestruturas de tecnologias de informação. Particu-
larmente, a ocorrência de desastres introduz sérios obstáculos à continuidade de negócio.
Ao contrário das falhas individuais de componentes, os desastres tendem a afetar toda a
infraestrutura que suporta o sistema [1]. Consequentemente, a aplicação de técnicas de
recuperação de desastres (Disaster Recovery ou DR) é crucial para assegurar alta dispo-
nibilidade e proteção de dados em sistemas de informação.

As estratégias tradicionais para recuperação de desastres baseiam-se na realização pe-
riódica de cópias de segurança utilizando dispositivos de armazenamento em fita, que são
armazenados numa localização distante (de modo a não serem suscetíveis aos mesmos
desastres que a infraestrutura do sistema). As abordagens mais recentes, por sua vez,
passam por replicar os recursos computacionais que compõem o sistema numa infraestru-
tura remota que pode ser utilizada para dar continuidade ao serviço em caso de desastre.
Mais uma vez, a distancia geográfica entre as infraestruturas deve ser tão grande quanto
possível.

Tendo em conta estes requisitos, as clouds publicas surgem como uma excelente opor-
tunidade para a concretização de sistemas de recuperação de desastres [2]. A elasticidade
da cloud elimina a necessidade da replicação completa do serviço na infraestrutura se-
cundária, permitindo que apenas os serviços mínimos sejam executados na ausência de
falhas, e que os custos operacionais do sistema sejam pagos apenas em caso de necessi-
dade, i.e., aquando da ocorrência de desastres. Isto possibilita ganhos substanciais quando
comparado com os custos fixos (e.g., hardware, gestão, energia, conectividade) de uma
infraestrutura dedicada [3].

A criação de uma estratégia de recuperação de desastres na cloud requer a defini-
ção de um conjunto de instancias computacionais a executar os serviços sem estado que
compõem o serviço (e.g., servidores web, middleboxes, servidores de aplicação) e um
outro conjunto de instâncias a executar os componentes do sistema com estado persis-
tente, normalmente composto por um sistema de gestão de bases de dados (SGBD). Nas
soluções atuais para recuperação de desastres na cloud, os serviços sem estado permane-
cem inativos durante a operação normal, enquanto os serviços com estado são mantidos
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em execução, mas em modo passivo, apenas recebendo atualizações das suas cópias pre-
sentes na infraestrutura primária. Estas atualizações podem ser concretizadas através da
replicação oferecida pelos próprios SGBDs ou por funcionalidades concretizadas ao nível
do sistema operativo ou da camada de virtualização [4–6].

Neste trabalho propomos o GINJA, um sistema de recuperação de desastres que re-
corre exclusivamente a serviços de armazenamento na cloud para replicar uma importante
classe de sistemas – os sistemas de gestão de bases de dados. O GINJA atinge três prin-
cipais objetivos que tornam a proposta inovadora: reduzir os custos da recuperação de
desastres; permitir um controlo preciso sobre os compromissos de custo, durabilidade e
desempenho; e adicionar um overhead mínimo ao desempenho do SGBD.

O principal fator que permite ao GINJA reduzir custos prende-se com o facto de este
ser completamente centrado no uso de serviços de armazenamento da cloud (e.g., Ama-
zon S3, Azure Blob Storage). Esta decisão elimina a necessidade de manter máquinas
virtuais em execução na cloud para receber atualizações da infraestrutura primária, o que
resultaria em elevados custos monetários e de manutenção. Deste modo, o GINJA define
um modelo de dados (concebido especificamente com o intuito de reduzir custos mone-
tários e permitir uma realização eficiente de backups), e sincroniza para a cloud os dados
gerados pelo SGBD de acordo com esse modelo. Em caso de desastre, uma instancia
computacional é executada em modo de recuperação com o fim de descarregar os dados
armazenados na cloud e dar continuidade ao serviço. É de referir que o tempo de recu-
peração pode ser reduzido drasticamente se o processo de recuperação for executado em
recursos computacionais presentes na infraestrutura utilizada para armazenar dados (e.g.,
Amazon EC2, Azure VM).

A execução do GINJA é baseada na configuração de dois parâmetros fundamentais: B
e S. B define o número de alterações nas bases de dados que são incluídas em cada sin-
cronização com a cloud, pelo que tem efeitos diretos no custo monetário (dado que cada
carregamento de dados para a cloud tem um custo associado). S define o número máximo
de operações de escrita no SGBD que podem ser perdidas em caso de desastre. De modo
a garantir que nunca são perdidas mais do que S operações nas bases de dados, o GINJA

bloqueia o SGBD sempre que necessário. Por consequência, este parâmetro relaciona-se
diretamente com o desempenho do sistema. Conjuntamente, os parâmetros B e S for-
necem aos nossos clientes um controlo preciso relativamente ao custo e durabilidade do
SGBD no qual o GINJA é integrado.

O GINJA foi implementado sob a forma de um sistema de ficheiros ao nível do uti-
lizador [7], que intercepta as chamadas ao sistema de ficheiros efetuadas pelo SGBD e
realiza sincronizações com a cloud de acordo com os parâmetros B e S. Esta decisão
torna o GINJA numa solução bastante portável, dado que não necessita que sejam efetua-
das quaisquer alterações ao SGBD, e permite que sejam criadas extensões com o fim de
suportar outros sistemas de gestão de bases de dados.
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Neste projeto realizamos também uma avaliação extensiva ao nosso sistema, que ana-
lisa tópicos como custos monetários, eficiência e utilização de recursos. Os resultados
obtidos ilustram os compromissos fundamentais de custo, desempenho e limite de perda
de dados (i.e., durabilidade em caso de desastre), e mostram que a utilização do GINJA

leva a uma perda de desempenho negligenciável em configurações nas quais alguma perda
de dados é aceitável.

O trabalho desenvolvido neste projeto resultou na publicação: Joel Alcântara, Tiago
Oliveira, Alysson Bessani; Ginja: Recuperação de Desastres de Baixo Custo para Siste-
mas de Gestão de Bases de Dados, no INForum 2016, na track “Computação Paralela,
Distribuída e de Larga Escala” [8]. Além disso, o software desenvolvido será utilizado
na demonstração do projeto H2020 SUPERCLOUD, juntamente com o sistema de gestão
de análises clínicas da MAXDATA, a ser realizada na avaliação intermédia do projeto, em
meados de Setembro.

Palavras-chave: Recuperação de Desastres, Tolerância a Faltas, Computação na Cloud,
Sistemas de Gestão de Bases de Dados, Replicação
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Abstract

Disaster recovery is a crucial feature to ensure high availability and data protection in
modern information systems. The most common approach today consists of replicating
the services that make up the system in a set of virtual machines located in a geographi-
cally distant public cloud infrastructure. These computational instances are kept executing
in passive mode, receiving updates from the primary infrastructure, in order to remain up
to date and ready to perform failover if a disaster occurs at the primary infrastructure.
This approach leads to expressive monetary and management costs for keeping virtual
machines executing in the cloud.

In this work, we present GINJA – a disaster recovery system for transactional database
management systems that relies exclusively on public cloud storage services (e.g., Ama-
zon S3, Azure Blob Storage) to backup its data. By eliminating the need to keep servers
running on a secondary site, GINJA reduces substantially the monetary and management
costs of the disaster recovery. Furthermore, our solution also includes a configuration
model that allows users to have a precise control about the cost, durability and perfor-
mance trade-offs, and introduces a minimum overhead to the performance of the database
management system.

Additionally, GINJA is implemented as a specialized file system in user space, which
brings major benefits in terms of portability, and allows it to be easily extended to support
other database management systems.

Lastly, we have performed an extensive evaluation of our system, that covers aspects
such as performance, resource usage and monetary costs. The results show that GINJA is
capable of performing disaster recovery with small monetary costs (less than 5 dollars for
certain practical configurations), while introducing a minimum overhead to the database
management system (12% overhead for the TPC-C workloads with at most 20 seconds of
data loss in case of disasters).

Keywords: Disaster Recovery, Fault-Tolerance, Cloud Computing, Database
Management Systems, Replication.

ix





Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Publications and Exploitation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Disaster Recovery Concepts . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Cloud-based Disaster Recovery . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Virtual Machine Replication . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Filesystem Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 DBMS Recovery Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Cloud-Backed Storage Systems . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 I/O in Database Systems 17
3.1 Implementation of Input/Output in Database Systems . . . . . . . . . . . 17

3.1.1 Failure Recovery in Database Systems . . . . . . . . . . . . . . . 18
3.2 The PostgreSQL Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Utility Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Table-File Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Input/Output Operations . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



4 GINJA: A Low-cost Database Disaster Recovery Solution 33
4.1 Principles and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Using Cloud Storage Services . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Implementation 47
5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Integration of GINJA with the DBMS . . . . . . . . . . . . . . . . . . . . 48
5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Evaluation 55
6.1 Economical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 GINJA Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Cloud Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Database Server Resource Usage . . . . . . . . . . . . . . . . . . 62
6.2.4 Recovery Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion 65
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 72

xii





xiv



List of Figures

1.1 Work plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Architecture of a remote mirroring DR system. . . . . . . . . . . . . . . 8

3.1 Example of a B-Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Architecture of PostgreSQL. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Relation between the PostgreSQL databases and the file system. . . . . . 26

4.1 General architecture of GINJA. . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Influence of B and S in the execution of GINJA . . . . . . . . . . . . . . 38
4.3 Cloud data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Interaction between PostgreSQL and the file system. . . . . . . . . . . . 49
5.2 Detailed architecture of GINJA. . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 UML class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Effect of different configurations and workloads in GINJA’s monetary cost. 58
6.2 Influence of the number of threads in GINJA’s throughput. . . . . . . . . 60
6.3 Influence of different configurations in GINJA’s performance. . . . . . . . 60
6.4 Effect of compression and cryptography in GINJA’s performance. . . . . 61
6.5 Recovery times of GINJA. . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv





List of Tables

3.1 Contents of PGDATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 System calls performed by each database operation. . . . . . . . . . . . . 29

4.1 GINJA’s configuration parameters. . . . . . . . . . . . . . . . . . . . . . 37

5.1 Number of lines of code in each module of GINJA. . . . . . . . . . . . . 47
5.2 Configuration parameters of GINJA. . . . . . . . . . . . . . . . . . . . . 48

6.1 Pricing of cloud storage services. . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Costs of performing DR using GINJA or database replication with VMs. . 59
6.3 GINJA’s storage cloud usage. . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 PostgreSQL server resource usage with and without GINJA. . . . . . . . . 62

xvii





Chapter 1

Introduction

Computer systems have a huge role in modern society. Not only ordinary services are in-
creasingly adopting digital solutions, as new IT services and business models are emerg-
ing. Such systems have very strict data protection and high availability (HA) requirements
as, generally, even partial data loss or short periods of downtime can lead to severe con-
sequences (such as financial loss). Such systems have very strict data protection and high
availability (HA) requirements since, generally, even short periods of downtime can lead
to severe consequences (such as financial loss).

Achieving high availability and data protection is not an easy task. It involves apply-
ing fault tolerance techniques in order to ensure that the system continues to perform its
functions despite the occurrence of failures. Such failures can have several sources such
as hardware failures, power outages or disasters.

The occurrence of disasters introduces some serious challenges to the task of achiev-
ing high availability and data protection. In opposition to other sources of failures, dis-
asters affect the whole (or at least a big part of the) infrastructure where the system is
hosted, causing a greater damage to the service provided. Consequently, the ability to
tolerate disasters requires a careful planning [1].

In order to tolerate disasters, a system must have backup resources placed in a remote
site that is not vulnerable to the same disasters as the primary infrastructure. Such re-
sources, used to replicate the state of the system and perform failover, result in additional
costs for the enterprises that host IT services. Using cloud computing for integrating
disaster recovery solutions is an excellent way of reducing costs [3]. Its pay-as-you-go
model, available on demand resources and high degree of automation are extremely attrac-
tive features for disaster recovery systems. Additionally, the fact that the cloud providers
carefully manage and maintain their infrastructures lowers the management efforts of
hosting our backup resources in the cloud.

Cloud providers offer a broad range of different services. Consequently, a variety of
cloud-based disaster recovery solutions exists today, differing in the services they use, the
layer at which they perform DR and the requirements they focus on.
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1.1 Motivation

Unfortunately, data loss is currently a common event that may lead to disastrous con-
sequences. Although statistics about data losses and its effects are sometimes mislead-
ing [9, 10], recent surveys showed that data loss costs $1.7 Trillion per year for medium
and big companies [11]. For small businesses the situation might be even worse. Few
years ago a survey by Symantec showed that 40% of small and medium companies do not
do regular backups [12]. We believe that this situation improved in the last years, but it is
unlikely that this protection gap disappeared. A more recent survey showed that 58% of
small and medium companies could not sustain any amount of data loss [13]. However,
the same survey shows that 62% of these companies does not backup their data on a daily
basis. These numbers clearly show that even simple backup routines are still a challenge
for small and medium companies, and demonstrate the fact that fully automated disaster
recovery are not yet widely deployed. Lack of budget and automation are usually pointed
as key challenges for implementing effective business continuity plans [14].

Traditional disaster recovery approaches range from periodic tape backups kept in
remote sites, to continuous replication of data to distant secondary datacenters [6]. Such
solutions usually require expensive facilities (such as a secondary infrastructure and high
bandwidth links connecting both sites) that are only used in the unlikely event of a disaster.

Fortunately, the emergence of cloud computing allowed the creation of low-budget
disaster recovery solutions [3]. The enterprises no longer need to invest in redundant
infrastructures to ensure high availability and data protection during disasters. Instead,
they rely on cloud services to host a portion of their system and, in the occurrence of a
disaster, they can quickly initiate more resources.

Cloud based disaster recovery solutions vary on many levels. First, it is possible to
implement it in different layers such as within the application [15], in the virtualization
platforms [5, 6] or in the filesystem or block device levels [16, 17]. Additionally, we can
rely on different cloud services to host our DR resources (virtual machine and storage
instances are the most common approaches) [2]. Lastly, there are several replication
techniques for propagating the application state to the backup site: some systems apply
synchronous replication to protect data, whereas others prefer to ensure higher perfor-
mance during normal operation and opt by an asynchronous scheme [6].

Despite the existing variety of disaster recovery approaches, we consider that there is
still room for innovation in this area. We believe that cloud services have the potential of
reducing costs even more for certain disaster recovery scenarios if properly used. Further-
more, we argue that allowing the users to decide the balance between performance and
data loss is necessary to create a flexible DR solution.
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1.2 Objectives

In this project, we aim to create a low cost cloud based disaster recovery solution. Since
most of the systems rely on DBMS to store and manage its data, we have decided to focus
our work in these systems. Specifically, our solution will be integrated in the file system
layer, and will rely on cloud storage services to protect the database information from
disasters.

We focus on four main objectives for our disaster recovery system.
First, we want to leverage the cloud storage pricing model to create an extremely low-

cost disaster recovery solution. By studying how cloud providers charge for their storage
services (which are already cheap) and understanding how DBMS manage their data, we
can optimize our backups to be as cheap as possible.

Second, our solution reduces substantially the operational costs of deploying and
maintaining a disaster recovery system. By using storage resources rather than comput-
ing services, our system automates the integration and management of the cloud resources
that compose the secondary infrastructure.

The third objective of this work is to provide its users with a fine-grained control
over the data that is protected from disasters. We believe that this feature is important
because, unlike us, the users can take decisions based on how critical their data is and
how they are willing to sacrifice data protection to achieve better performance (or the
other way around). By allowing the users to configure our system according with their
requirements, we can build a more flexible solution.

Lastly, we intent to optimize our service so that it adds the less overhead possible
to the application it protects under failure-free operation. Obviously, the performance
impact that our system causes depends on its configurations. Nevertheless, it must be the
least intrusive possible in order to be an attractive solution for most applications.

It should be noted that minimizing the recovery time is not one of our primary goals.
This means that this factor will not be decisive during he design of our solution. Never-
theless, we will to take this element into account as much as possible, as long as it does
not have a negative impact on our main objectives.

1.3 Contributions

In this work we have devised GINJA: a solution that relies in cloud storage services to
enable database management systems to recover from disasters. The main features that
distinguish our work from the existing DR approaches are: low monetary costs, high
degree of automation, fine grained control over data loss in the event of a disaster, and
low performance overhead during failure-free execution.

Additionally, we have implemented a prototype of GINJA to prove the feasibility of
our solution. Although our present implementation only provides disaster recovery to
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PostgreSQL [18], it was specifically designed in a modular way in order to be easily
extended to support other database management systems.1

Finally, we have also performed an evaluation of GINJA both in terms of performance
and monetary costs. The results suggest that our proposal is capable of performing dis-
aster recovery in a cheap and efficient way, while allowing our users to have a strict tight
control over the data that can be lost when a disaster occurs.

1.4 Publications and Exploitation

The work described in this dissertation resulted in the publication of a paper in INForum
2016, in the track "Parallel, distributed and large scale computing" [8]. Furthermore,
GINJA will be a key demonstration in the intermediate review of the SUPERCLOUD
H2020 project. In this demonstration, the system will be integrated with the MAXDATA

clinical software.

1.5 Planning

The Gantt chart present in Figure 1.1 illustrates the project schedule of this dissertation.

Figure 1.1: Work plan.

Let us now provide a brief description of each task that compose this project:

• Task 1 (October and November of 2015): Study the related work and learn to use
the tools required to this project.

• Task 2 (November of 2015): Write the preliminary report.

• Task 3 (December of 2015 and January of 2016): Devise and analyse the algo-
rithms necessary to implement GINJA.

• Task 4 (January, February and March of 2016): Implement and test GINJA.

• Task 5 (March and April of 2016): Conduce experiments on GINJA.
1In fact, a researcher at LaSIGE is currently developing a module that enables our system to perform

disaster recovery for MySQL [19]
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• Task 6 (April and May of 2016): Analyse and evaluate GINJA based on the results
collected in the previous task.

• Task 7 (May and June of 2016): Write the dissertation.

The last tasks present in this schedule were slightly delayed by the iterative process of
optimizing and evaluating our algorithms.

1.6 Document Organization

The remaining of this document is organized in the following way:

• Chapter 2 – covers the works that are related to this project. The two initial sub-
sections of this chapter expose the main disaster recovery concepts and how cloud
services can be used to create DR solutions. The remaining subsections distinguish
different approaches for tolerating disasters and cover relevant works in the field.

• Chapter 3 – presents the I/O in Database Systems. In this chapter we start by cov-
ering the database concepts that are relevant to our work, then we include a long
section that describes the internals of PostgreSQL.

• Chapter 4 – an in-depth description of the solution we have devised in this project,
as well as the reasoning behind our design decisions. We start by exposing the
principles and assumptions and the general architecture of our solution. Then we
present our configuration parameters. After that we explain the data model our sys-
tem uses to manage data in the cloud. At last we explain the algorithms employed
by our system to perform disaster recovery.

• Chapter 5 – covers the most relevant technical details related to the implementation
of GINJA. Such details include the architecture of our software system, as well as
its integration with the database management system.

• Chapter 6 – includes an evaluation of our solution. We start by presenting an evalu-
ation of the monetary costs inherent in the usage of our system, and then we present
and discuss the results of our practical experiments.

• Chapter 7 – summarizes the conclusions of this project.
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Chapter 2

Related Work

This chapter includes a set of systems and approaches that are somehow related to this
work. In the first two sections we introduce the most important disaster recovery con-
cepts and explore how cloud services can be used to implement disaster recovery. Then,
we present solutions that provide high availability and disaster recovery services at the
virtualization level (Section 2.3) and at the file system level (Section 2.4). Afterwards, in
Sections 2.5 and 2.6, we explore how other types of solutions (specifically DBMS recov-
ery mechanisms and systems that rely on cloud storage services to store data) can be used
to achieve disaster recovery. Finally in Section 2.7 we conclude with a discussion of the
disadvantages and benefits of the solutions previously described.

2.1 Disaster Recovery Concepts

A Disaster is any event that has a negative impact on a company’s business continuity or
finances [2]. Examples of disasters include network and power outages, hurricanes, earth-
quakes, floods, and so forth. Disaster Recovery (DR) is the area that allows IT systems to
tolerate or recover from the damage caused by disasters. Specifically, DR solutions aim to
protect application data from being lost and minimize de downtime caused by disasters.

The infrastructure used to provide services to users during normal operation is located
in the Primary Site [20]. Since disasters can affect wide areas, the only way to toler-
ate them is by having our data replicated in a geographically distant location that is not
vulnerable to the same disasters. This alternative location is called Secondary Site (or
Backup Site).

There are several ways of performing disaster recovery [1]. The most traditional ap-
proach for disaster recovery is Tape Backup and Restore [21]. This technique consists
of periodically taking consistent snapshots of the data (optionally interspersed with in-
cremental backups), storing it into tape drives and sending those tapes offsite. When a
disaster occurs, the most recent data backups are loaded to a new server that hosts the
system from that point onward. Although this approach is attractive for being low-cost,
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Figure 2.1: Architecture of a remote mirroring DR system.

it has the disadvantages of having long recovery and restoring the systems to an outdated
state (because the backup intervals are typically long). An alternative strategy to perform
disaster recovery is Remote Mirroring [17]. In this approach, the system continuously
replicates its data to an online remote mirror placed in a secondary site. If a disaster oc-
curs in the primary site, the resources in the secondary site can be configured to become
primary. Despite being expensive, this DR technique is favourable because it allows IT
systems to tolerate disasters, while reducing substantially the recovery time. The general
architecture of a Remote Mirroring disaster recovery system is represented in Figure 2.1.

The data replication between sites can be performed essentially in two ways: syn-
chronously or asynchronously [6, 22]. In Synchronous Replication the primary site can
only return successfully from a write operation after it has been acknowledged by the
secondary site. Although this replication scheme guarantees that no data is ever lost, it
introduces a high performance overhead to the system being replicated, specially when
there is a long distance between the primary and secondary sites (which is desirable in
DR solutions). In Asynchronous Replication the primary site is allowed to proceed its
execution without waiting for the replication to be completed at the secondary site. This
type of replication overcomes the performance limitations of synchronous replication at
the expense of allowing data to be lost if a failure occurs.

Besides managing state replication, a disaster recovery solution must also be able to
perform failover and failback [3]. Failover consists of detecting when the primary infras-
tructure is down and activating the backup site as primary in order to guarantee system
continuity. When the disaster terminates, the control of the system must be reverted to its
original site. This procedure is called Failback.
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In order to tolerate disasters a system has to have extra resources (such as a secondary
infrastructure and high bandwidth links between sites) which involves monetary costs.
Furthermore, there are several requirements for disaster recovery that vary from system
to system [16]. Such requirements include: recovery time, consistency degree of the
data recovered, performance impact during normal operation, distance between sites and
costs. For this reason, it is very important to plan a disaster recovery solution suitable for
each system.

There are two time parameters that need to be defined during DR planning [20].
Recovery Point Objective (RPO) is the number of updates (in terms of time) that can be
lost due to a disaster. Recovery Time Objective (RTO) refers to the amount of downtime
that is acceptable before a system recovers from a disaster. Although the definition of
RTO and RPO is hard for most systems, there are variables that help establishing these
time parameters. Examples of such variables are: the type of the computer system we
intend to protect (e.g., real-time control systems typically need tighter RTO and RPO
values than back-office applications) and how fast and severe are the impacts of a disaster
in a system (e.g., one hour outages have different impacts on different applications).

2.2 Cloud-based Disaster Recovery

Cloud computing is extremely attractive for disaster recovery solutions. The use of cloud
infrastructures for disaster recovery can lower costs (due to its pay-as-you-go model)
and reduce recovery times (since cloud resources are available on demand and can be
automatically allocated).

Public clouds provide us with a set of basic services, such as storage, computing, net-
working, database, deployment and security services that are available in various regions
so the user can choose the most appropriate. This variety of services are building blocks
from which we can build disaster recovery solutions suitable for each situation (taking
into account aspects such as our objectives and budget) [2]. Here are some examples of
possible cloud based DR solutions:

• Storing data backups in a cloud storage object and, if a disaster occurs, the backed
up data can be transferred to an alternative site or to a cloud computing instance in
order to ensure availability. The data transfer to and from the storage object can be
performed over the internet or using cloud networking services (for instance with
increased bandwidth throughput).

• Having a minimal version of our environment (the most critical core elements) ex-
ecuting in the cloud and, when a failure occurs, provision the rest of the infrastruc-
ture around that core in order to restore the complete system. The remainder of
the infrastructure can be quickly provisioned if we have our preconfigured virtual
machine images ready to be started.
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These were only two possible approaches to perform disaster recovery using general
cloud services. The second solution achieves a quicker recovery time than the first one,
since some pieces of the system are already running in the cloud when a disaster occurs,
but it is also more expensive.

Some public clouds also provide specific disaster recovery services that typically use
their infrastructures as a secondary site. Examples of such services are Azure Site Recov-
ery [23] and vCloud Air Disaster Recovery [24].

It is also possible to run the primary site of a system entirely in a cloud. However,
this approach does not eliminate the need for disaster recovery since cloud-wide outages,
although rare, are a potential threat to systems that rely entirely on one cloud infrastructure
to perform its functions [3].

The more cloud resources a system requires in failure-free operation, the higher will
be the costs of the DR solutions. Even if the costs during failover are slightly higher in
cloud based solutions, the overall costs can still be smaller since failover is supposed to
be seldom performed.

2.3 Virtual Machine Replication
The virtualization of IT resources has the potential of decreasing recovery times and sim-
plifying the management of DR solutions. Virtualization features such as hardware inde-
pendency and ease of automating tasks (such as backing up and restoring the state of a
VM) led to the development of numerous VM based disaster recovery systems.

Remus [25] is a system that provides high availability as a service for unmodi-
fied applications running within virtual machines (on the Xen hypervisor) in commodity
hardware. In this system, the primary VM issues fine-grained checkpoints of its entire
state (including CPU, memory, disk and network device state) and replicates them asyn-
chronously to a backup host, while executing speculatively between checkpoints. On the
event of failure of the primary host, the backup VM transparently resumes the execution
from the last valid checkpoint with only seconds of downtime (in a local network). Remus
ensures that no externally visible state is ever lost since it is never exposed - the outgoing
packets generated speculatively by the primary VM are only sent to the client upon the
completion of the next checkpoint.

RemusDB [4] is a Remus based system that provides high availability for database
management systems (DBMS) in a transparent manner. In this solution, the DBMS is
executed in a virtual machine and the virtualization layer is responsible for performing
the high availability tasks such as capturing the state of primary VM’s and disseminating
it to the backup VM, detect failures and perform failover.

The authors found that the use of Remus on DBMS introduces a significant perfor-
mance overhead due to the facts that database systems use memory intensively and that
their workloads are sensitive to network latency, and designed solutions for that problem.
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These solutions include facilities that reduce the latency on the client-server communica-
tion, and a DBMS aware checkpointing system that reduces the volume of data transferred
during checkpoints. RemusDB provides a fast failover with low performance overhead
that preserves full ACID transactional guarantees.

SecondSite [5] is a Remus-based disaster recovery service for virtual machines run-
ning in cloud environments. This system continuously replicates the entire state of several
virtual machines to backup images in a different geographic location. If the primary site
fails, the backup site is capable of reconfiguring the network and resuming the execu-
tion of the protected virtual machines from the last consistent checkpoint in a completely
transparent manner.

Although SecondSite’s general idea is similar to Remus, the latter was designed for
operating in Local Area Networks (LAN) whereas SecondSite operates in a Wide Area
Network (WAN) environment. This allows SecondSite to tolerate disasters, but intro-
duces new challenges such as network constraints (lower bandwidth and higher latency),
and harder failure detection and recovery. The authors coped with these challenges by
implementing a more efficient use of bandwidth (this includes techniques like checkpoint
compression), placing quorum servers in a different network that act as arbitrators during
failure detection, leveraging BGP multi-homing to achieve failure recovery, and building
a resynchronization module that synchronizes the storage between sites after a crashed
site comes back online.

It should be noted that, like Remus, this system buffers the outgoing packets gener-
ated by the primary server until the checkpoints are acknowledged by the backup server.
However, in SecondSite the backup server is located in a remote site. The fact that this
system operates in a WAN environment increases the protected server’s response time.

PipeCloud [6] is a cloud-based disaster recovery system for client server applications.
This system runs in the virtual machine manager of each physical server and replicates all
disk writes to geographically distant backup servers.

PipeCloud uses a replication scheme called Pipelined Synchronous Replication that
combines the performance benefits of asynchronous replication with the consistency guar-
antees of synchronous replication. In this replication scheme the remote writes are per-
formed asynchronously, allowing subsequent processing to proceed in parallel, however
any externally visible event (such as an outgoing packet) must be blocked until all pending
writes it depends on are committed both at primary and backup sites.

Pipelined Synchrony replication must guarantee a causal ordering between the exter-
nally visible events and the write requests they depend on. Since PipeCloud has no ap-
plication visibility (it simply protects the disks of virtual machines), those dependencies
are tracked by conservatively marking as dependent all writes issued before an outgo-
ing packet (although some independent writes may be mistakenly marked, no dependent
writes will ever be seen as independent).
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All this virtualization-based approaches have the advantage of performing fast failover
since they include a backup VM executing in a secondary site ready to take over when a
disaster is detected in the primary infrastructure. On the other hand, they require virtual
computing resources placed in a remote location, which implies high financial costs.

2.4 Filesystem Mirroring

Another common way of performing disaster recovery is by replicating data at the file
system level. By continuously backing up the relevant files to remote storage facilities, a
system is no longer susceptible to losing all its data if a catastrophic failure occurs in its
primary infrastructure.

SnapMirror [16] is an asynchronous mirroring DR solution for network appliance file
servers that make use of no-overwrite file systems (such as WAFL [26] and LFS [27]).
This system periodically transfers and updates consistent file system snapshots to an on-
line mirror capable of serving read only requests and becoming primary if a disaster oc-
curs. It operates at the block level, and uses file system metadata to quickly identify the
blocks that need to be synchronized with the remote mirror, leaving out data that was
deleted or overwritten. By only transferring the relevant blocks, SnapMirror reduces the
network bandwidth cost of the system and increases its performance. The benefits of
this optimization are proportional with the update frequency, which is configured by the
system administrators according with the performance, network bandwidth and data pro-
tection requirements of the system. SnapMirror also uses snapshots to make sure that the
mirror remains in a consistent state, ready to come online, regardless of the moment when
the primary site fails.

Seneca [17] is a robust asynchronous remote-mirroring protocol that provides re-
silience to disasters with low data loss. In this solution, a primary Seneca instance repli-
cates its writes to a secondary Seneca instance placed at a remote location. The primary
instance delays sending a batch of updates to the remote site, in order to perform write
coalescing (reducing the volume of data to be propagated). It should be noted that this de-
lay is limited in order to keep the copies as closely synchronized as possible. Afterwards,
the writes are propagated to the secondary instance in an atomic way to avoid inconsis-
tent states. This process of batching and coalescing write operations increases the overal
performance of the system, and allows an efficient use of the WAN bandwidth between
the primary and the secondary infrastructures. Finally, in order to tolerate crash faults,
the authors propose that each Seneca instance include an active and a shadow node. The
changes must be propagated to both nodes so that, when the active fails, the shadow can
perform fail over.

The two file system mirroring solutions previously described have the advantage of
allowing any application to protect its data, without requiring changes to its source code.
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On the other hand, this solutions do not consider the semantics of the applications, which
can result in inconsistent states after recovery. Additionally, these two solutions can only
be deployed in infrastructures with computational power capable of executing their spe-
cific protocols (e.g., virtual machine instances in the cloud).

2.5 DBMS Recovery Solutions

Most of the Database Management Systems include features that can be used to perform
disaster recovery. As PostgreSQL [18] is the DBMS studied in the scope of this project,
we will now briefly present its recovery mechanisms [15], show how they can be used to
tolerate disasters, and discuss their pros and cons. Such mechanisms will be explored in
more detail in Section 3.2.3.

The first recovery mechanism is called Continuous Archiving and consists of perform-
ing a file-system-level backup of the database directory and setting a process (the archiver)
that periodically backs up the completed WAL segments by executing a predefined shell
command or script.1

This PostgreSQL functionality could be used to tolerate disasters by configuring the
archiver process to copy the log files to a geographically remote facility such as a cloud
storage service. One drawback of this approach is that the archiver process only operates
over completed WAL segments, therefore it is not possible to have a tight control over the
data that can be lost when a disaster occurs.

The other recovery feature of PostgreSQL is Streaming Replication. This feature con-
sists of having a sender process in a primary server that streams the changes made to
the database as they are generated to a receiver process hosted in one or several backup
servers. These standby servers are kept synchronized with the primary by executing the
received database changes. It is relevant to mention that, although this feature is asyn-
chronous by default, it can be configured to function in a synchronous way.

This technique could also be used as a disaster recovery solution by placing one or
more standby servers in a geographically distant site, for example in a virtual machine
running in a cloud environment. However, this approach would have to include a remote
computing instance capable of executing a PostgreSQL standby server (which may re-
quire a reasonable capacity). As a result, the monetary costs of this solution would be
fairly high.

1Write Ahead Log (or WAL) [28] is a log that keeps records of every change made to the database. This
log is stored in files called WAL Segments. When a WAL Segment is completed (i.e., it does not have room
for more records) the following database changes are registered in another WAL segment. This will be
covered in more detail in Chapter 3.
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2.6 Cloud-Backed Storage Systems

In this section we will present solutions that rely on cloud storage services to store its
data. Although the following solutions were not explicitly conceived to perform disaster
recovery, we will discuss how they can be used to meet this goal.

Cumulus [29] is a system designed to perform efficient file system backups to cloud
storage services over the internet. Cumulus makes very little assumptions about the re-
mote service it uses (assumes only an interface with four basic operations over entire
files). This aspect makes the system highly portable to any kind storage service.

The authors adopted a write-once model in which after a file is stored it can never be
modified, only deleted. This model allows the clients to keep snapshots at different points
in time and prevents snapshot corruptions due to failed backups. Furthermore, during
recovery, this system supports both restoring entire snapshots and smaller selections of
files.

Cumulus also issues a set of optimizations that include aggregating data from small
files into larger files at the server (avoiding inefficiencies and lowering costs in the storage
server and the network protocols) and dividing files into chunks (allowing it to store only
the portions of a file changed since the previous snapshot). In short, Cumulus uses a
specific data format that can be accessed in a very efficient way by its backup operations.

SCFS [30] is a file system that provides strong consistency and a near-POSIX seman-
tics in a cloud-of-clouds environment. Besides the good durability grantees provided, this
solution also allows its users to share files in a secure and fault tolerant way.

This file system is composed by the SCFS agents executing at the clients, the cloud
storage services and a fault-tolerant coordination service. The coordination service is used
to manage the metadata and to support synchronization (SCFS uses this service to build
strong consistency on top of the eventually consistent cloud storage services).

The fact that this file system uses multiple clouds to store its data enables it to tolerate
file corruptions and cloud unavailability [31]. In addition, this aspect eliminates the need
of trusting any single cloud provider, avoiding problems such as lock-in. On the other
hand, this decision increases the volume of data kept in the several clouds, which has
negative consequences in terms of monetary cost. To mitigate this problem, the authors
employ erasure coding techniques to reduce the size of the data stored.

SCFS also employs a set of optimizations in order to achieve high performance and
scalability. These optimizations include storing the metadata of the files that are not
shared in the cloud rather than in the coordination service, and implementing a local cache
at the client. In terms of security, SCFS performs access control both at the cloud and the
coordination service level. It should be noted that all the access control verifications are
employed without trusting the SCFS agents executed in the client side. Additionally, all
the data is encrypted before uploaded to the cloud, in order to achieve confidentiality.
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In the work "Building a Database on S3" [32] the authors used a cloud storage ser-
vice (specifically Amazon S3) as an underlying infrastructure to build a general-purpose
database application. In this system the clients can: retrieve pages from S3, buffer them
locally in memory or disk, update them, and write them back. All these remote opera-
tions are coordinated by a page manager, on top of which there is a record manager that
provides a record-oriented interface to the applications.

The authors also devised a set of protocols that implement read and write operations
at different levels of consistency and support a large number of concurrent clients (de-
pending on the cloud capacity). The authors decided to sacrifice strict consistency and
some ACID transaction properties (such as isolation) in order to achieve higher levels of
scalability and availability. However, it should be noted that the protocols designed in this
work offer some desired properties such as eventual consistency and atomicity.

All the previously described systems rely on cloud storage services to backup their
data to remote locations. Although this approach is advantageous for being low-cost, it
introduces some challenges, such as: all the logic must be implemented on the client
side (because this type of cloud service can only be accessed through a narrow interface
containing only basic operations); and in order to perform failover, it is necessary to have
a computing facility that updates itself with the cloud storage.

Both Cumulus and SCFS can be used as a simple and reliable way to protect appli-
cation data from disasters, by storing snapshots in a remote cloud infrastructure. This
kind of approach has the disadvantages of not having control over the data that can be lost
when a disaster occurs, and decreasing the performance of the application (since taking
a consistent snapshot may require the system to stop operating for a short time). Build-
ing a Database on S3 is a very interesting work that proves that it is possible to run a
database system with loose consistency guarantees entirely on a cloud storage service.
However, the performance of this kind of solution is orders of magnitude slower than
existing production-level database management systems.

2.7 Discussion
In this chapter we covered a set of systems and approaches that are related to the work we
performed in this thesis.

We stated by introducing the essential disaster recovery concepts, and by exploring
how cloud services can be used to integrate diverse DR solutions suitable for different
objectives.

Then we presented a series of solutions that can be used to perform disaster recovery.
Most of these approaches require the existence of computing instances placed at the sec-
ondary infrastructure (e.g., a virtual machine running in the cloud). Although this aspect
has the benefit of lowering the recovery time, it substantially increases the monetary and
management costs.
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In addition, the solutions described in this chapter were not specifically conceived to
allow database management systems to recover from disasters. As a result, using such
systems to meet this goal might bring severe consequences in terms of performance.

In this work we intend to develop a disaster recovery solution that introduces minimal
monetary and management costs. This will be achieved by relying merely in cloud stor-
age services to backup our data. Additionally, our solution will be specific to database
management systems. This allows us to achieve better levels of performance, and to pro-
vide our clients with a tight control of the maximum amount of data that can be lost in a
disaster.



Chapter 3

I/O in Database Systems

Databases are structured collections of interrelated data that are managed by software
systems named Database Management Systems (DBMS). Database systems are widely
used for storing and managing data in all kinds of applications.

In this chapter we will address how the input/output is performed in database systems
and discuss the details of PostgreSQL [18]: the database management system in which
our work will focus.

3.1 Implementation of Input/Output in Database Systems

DBMS typically deal with large amounts of information [33]. It is not possible to keep
this amount of data completely in main memory, so the database management systems
store its data in data files on disk and copy it to main memory as needed.

Disks are organized in blocks (also called pages), which are logical units of data that
can be copied to and from main memory. A database element (such as a tuple or an object)
is represented by a record, which is a set of consecutive bytes in a block (a block may
contain multiple records). There are several types of records with different purposes (e.g.,
fixed length records, records with variable length fields, records with repeating fields, etc)
that have different internal structures and thus must be handled differently.

Since the movement of data between disk and memory is very slow, the database
systems use certain index structures to manage its data efficiently (for instance to mini-
mize this data copies and to provide fast access to data items). The most common type
of database index is the B-Tree [34] (represented in Figure 3.1). This index is a self-
balancing tree data structure optimized for systems that read and write large blocks of
data. The B-Trees are made of blocks with N keys and N+1 pointers to blocks in the level
below, and only the leaf blocks point to the records.

The B-Trees are self-balanced and use blocks with many branches, this allows its
height to grow slowly even for huge numbers of records. This is particularly interesting
for systems like DBMS where some blocks of the tree (typically the lower ones) are stored
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Figure 3.1: Example of a B-Tree (the circles and its numbers represent the records and its
corresponding keys).

on disk, since it will allow the records to be found by accessing fewer blocks. For this
reason, the B-Trees are excellent data structures for storing huge amounts of data for fast
retrieval.

3.1.1 Failure Recovery in Database Systems

Computer systems fail for a variety of reasons. Consequently, database systems must pro-
tect its data from being lost in the occurrence of faults. The main technique for supporting
data resilience is logging [28, 33].

Logging consists of safely storing all the database changes in a durable log. When a
failure occurs, the log can be used to reconstruct the database during recovery. This tech-
nique is preferable over writing the changes directly to the data files because it performs
sequential writes, increasing its performance. There are the following three different types
of logging for database systems:

• Undo Logging: consists of writing to disk the log records that contain the changes
to the database elements and its former values, then writing to disk the changed
database elements themselves, and finally write to the log file the commit record.
During recovery, the database state is restored by undoing all the uncommitted
transactions. By requiring the data to be written to disk immediately after a trans-
action finishes, undo logging has the disadvantage of having a high I/O load.

• Redo Logging: in this form of logging the database elements can only be written
to the data files after the changes to the database along with its new values and the
commit record have reached the log files (this rule is called the write-ahead logging
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rule). The recovery in redo logging involves redoing all the committed transactions.
Although this logging scheme has a lower I/O load compared to the undo logging, it
requires more memory per transaction since it has to buffer all the modified blocks
until the transaction commits and the log records are flushed.

• Undo/Redo Logging: in this method the log records of the database changes, con-
taining both its former and new values, are written to disk before the changes them-
selves (the commit record might reach disk before or after the database changes).
The recovery is performed by redoing all the committed transactions and undoing
all the uncommitted transactions. Undo/Redo Logging provides some flexibility
regarding the order in which the writes are performed, but has the disadvantage of
having larger log records.

Independently of the logging method used, the log files continuously record all the
write operations issued on a database. This causes the log files to grow indefinitely, which
is particularly undesirable because it will increase the amount of log records examined
during recovery, thus increasing the recovery time. For this reason, database systems use
a technique called checkpointing, in order to limit the length of log that must be examined
during recovery.

Checkpointing consists of periodically making sure that all the operations present in
the log are reflected in the data files. Consequently, at recovery time, the database system
only needs to inspect the log records that follow the last performed checkpoint. In addition
to reducing the recovery time, this technique allows the DBMS to reuse the disk space
occupied by log records prior to the last checkpoint.

3.2 The PostgreSQL Case

PostgreSQL [18, 35] (or Postgres) is an open source object-relational database manage-
ment system. Its extensibility and reliability are some of the reasons why this DBMS is
widely used.

In this section, we provide an overview of PostgreSQL focusing on its interaction with
the file system.

3.2.1 Architecture

PostgreSQL uses a client/server model. Its overall architecture [36–38] is represented in
Figure 3.2.

The client side is composed by one application that connects remotely or locally to the
server side through an API and issues commands to one or several databases. The client
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Figure 3.2: Architecture of PostgreSQL.

applications, also called frontends, can be very diverse (from command line administra-
tion tools to web servers that access databases) and are often developed by users as long
as they follow the PostgreSQL protocol.

The server side is composed by a set of processes with different purposes, which
access files and shared memory structures in order to provide a database service for the
clients.

The main process in the server side is called postgres (or postmaster). Postgres
is the first process that is started and it is always active. When launched, this process ini-
tializes the shared memory data structures, starts the utility processes (see Section 3.2.3)
and then listens at a specified port for TCP or SSL client connections. When a client in-
tends to connect to the server it firstly contacts the postgres process. Then, postgres
performs authentication and, if the connection is valid, it spawns a new backend process
to serve that client. From this point on, the backend is entirely responsible for that client
session, thus the postgres process resumes listening for incoming client connections.
When the client session is over, the backend process ends its execution.

PostgreSQL prefers this process per user model over a thread based solution mainly
because it provides a greater level of isolation regarding memory access. Consequently,
this design decision allows PostgreSQL to achieve higher levels of reliability and simplic-
ity (since in the processes everything is private by default and the shared data structures
are specifically defined by the programmers).

The postgres process is also responsible for other important functionalities such
as performing recovery, managing the database files and initializing the shared memory
structures.
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3.2.2 Shared Memory

PostgreSQL uses shared memory to store database information that needs to be accessed
by its processes [38]. This shared memory area includes many data structures with dif-
ferent purposes. We will only cover the shared memory areas that we consider relevant
to our work, leaving out structures related with features such as vacuuming (see Section
3.2.3) or mutual exclusion (i.e., locking data items).

When a PostgreSQL instance is started, the postgres process allocates and initial-
izes the shared memory data structures. Then, when spawning other processes, postgres
ensures that they have access to those structures.

The biggest shared memory structure is the shared buffers. This memory region can
be seen as an array of pages (by default 8kB long each) that store tuples from the database
tables. When a backend server process intends to seek data, it begins by searching for
the desired page into the shared buffers (there is a shared memory structure called buffer
descriptors that tracks who is using each buffer and where they are located). If the desired
page is not in memory, it is copied from the file system to the shared buffers. The backend
process can then access the desired tuples in memory (each page has a structure containing
pointers that allow us to quickly find the tuples we want). In PostgreSQL it is possible
to create indexes such as B-Trees (recall section 3.1) that allow the backend processes to
find the desired pages in a more efficient way.

As a consequence, all PostgreSQL I/O activity is performed through the shared mem-
ory. The fact that the backend processes can only access the database through the shared
buffers ensures that they all have the same view of the database (the updates are made
visible to all the processes).

Another important part of the shared memory are the WAL buffers.
PostgreSQL records all the changes made to the database in a redo log called Write

Ahead Log (or WAL). Although the main purpose of the WAL is to perform recovery
(i.e., restore the committed transactions that did not make it to the data files on the event
of crash), the write ahead log has other applications such as point in time recovery (which
is restoring a previous file system snapshot and executing WAL records until a specific
point in time) and performing streaming replication (see Section 3.2.3).

When a client performs write operations to the database, those operations are not
written to the data files immediately. Instead, they are performed in the shared buffers and
records of those changes are written into the WAL buffers. The WAL buffers are flushed to
permanent storage, specifically to the WAL segments, at every transaction commit (unless
the asynchronous mode is enabled). The data files are later updated by the writer process
or the checkpointer process (see next section). This is safe since all the write operations
are in the WAL files and can thus be replayed during recovery in the event of crash.

The last shared memory structure we will cover here is the CLOG buffers. The Com-
mit Log (or simply CLOG) holds the current status data of each transaction (a transaction
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can be either in progress, committed, or aborted). When the CLOG buffers are filled, the
least recently used buffer is flushed to permanent storage. Note that the CLOG only keeps
the status of each transaction in progress, in opposition to the WAL, which registers all
the transactions that were committed in the database.

3.2.3 Utility Processes

The utility processes are a set of processes that the postgres initiates when a Post-
greSQL server is started [36–38]. These processes have different purposes and can be
mandatory or optional. This section provides a brief description of each utility process.

Writer Process. The Writer process, also known as Background Writer (or BG Writer),
is a mandatory process.

This process wakes up from time to time (the period is configurable), selects some
specific dirty pages (i.e., pages in memory containing modifications that are not in disk
yet) in the shared buffers, writes them to disk and removes them from the shared buffers.
The algorithm that determines what pages to write uses information such as memory
usage and which blocks were recently used. Afterwards, the BG Writer sleeps until its
next timeout.

The Writer process ensures that free buffers are available for use and avoids spikes of
I/O during the checkpoint (since it flushes dirty pages to disk between checkpoints).

WAL Writer Process. The WAL Writer is a mandatory process whose function is to
periodically write and flush to disk the WAL records in the WAL buffers. By default, the
WAL writer wakes up every 200 milliseconds to perform its activity, but this period is
configurable.

Checkpointer Process. The Checkpointer is a mandatory process that is responsible
for automatically performing checkpoints when a certain number of WAL segments is
exceeded or when a timeout occurs (this two parameters are configurable, and their default
values are respectively three segments and five minutes).

A checkpoint is a point in the transaction sequence at which all the data files are
updated to reflect the information in the WAL. At checkpoint time, all the dirty pages in
the shared memory are written and flushed to disk. The checkpointer process also marks
those pages as clean and adds a special checkpoint record to the current WAL segment. In
the event of a crash, the recovery module inspects the latest checkpoint record in order to
determine the point in the WAL from which it must start to perform the redo operations.

It is important to mention some differences between the checkpointer and the writer
process. First, the writer is responsible for writing specific dirty buffers to disk (based
on an algorithm that considers the memory usage, which blocks were recently used, and
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so fourth), whereas the checkpointer writes all the dirty buffers. Furthermore, the writer
process only seeks dirty pages in the shared buffers while the checkpointer also inspects
other areas of the shared memory such as the CLOG buffers.

Archiver Process. A possible strategy for backing up databases is to take a snapshot of
the PostgreSQL file system and to set up a process that archives the WAL segments. In
the event of recovery, the system can be brought to a consistent state by restoring the file
system backup and executing the backed up WAL files.

The archiver is an optional process that is disabled by default. This process is respon-
sible for capturing the data in the WAL files as soon as they are filled, and saving that
data somewhere else before the files are recycled (i.e., renamed and reused as future WAL
segments).

After activating this feature, the database administrator can define the archive timeout
(which dictates how often the archiver checks for WAL segments ready to be archived)
and specify the archive command. The latter is a shell command or script that will be
executed by the archiver process in order to copy the segment files to the archive (this can
be a tape drive, an NFS-mounted directory on another machine, and so on).

When WAL archiving is enabled, once a WAL segment is filled the WAL writer
creates a file (named after the original segment file adding the suffix ".ready") in the
PGDATA/pg_xlog/archive_status directory. When the archiver times out, it
looks for ".ready" files and, if they exist, it executes the archive command parameterized
with the name of the segment file (i.e., without the ".ready" suffix). Finally, the archiver
renames the <segment_filename>.ready file to <segment_filename>.done.

Streaming Replication Processes. PostgreSQL includes a replication functionality for
high availability called Streaming Replication. This functionality consists of having one
primary server that serves clients and continuously replicates its WAL records to one or
several standby servers. The standby servers can both reply to read-only requests and
perform failover when the primary server fails.

The processes responsible for performing streaming replication are the WAL Sender
and the WAL Receiver. In the primary server, the WAL Sender reads the WAL records
as they are generated and streams them to the standby servers over TCP connections. In
each standby server is running a WAL Receiver process that receives the WAL records
from the primary server and executes them in order to remain synchronized.

Note that the sender process streams WAL records rather than sending WAL segments
(like the archiver process does) because this way, the standby servers are kept more up-to-
date. Furthermore, although PostgreSQL streaming replication is asynchronous by default
(which means that when the primary server crashes some committed transactions may be
lost), it is possible to configure this feature to be synchronous.
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Autovacuum Launcher Process. The Autovaccum Laucher (also called Autovaccum
Daemon) is an optional process which is enabled by default.

This process spawns worker processes (one can configure how many and how often
those processes will perform its functions) whose function is to automate the execution
of the VACCUM and ANALYSE commands. It uses the statistics generated by the Stats
Collector process (described later) to decide which tables need to be vacuumed or anal-
ysed.

In PostgreSQL, when a UPDATE or DELETE command is executed, the tuples are
not immediately removed from the data files. Instead, they are marked as deleted but the
previous versions of those records remains in the data file so that the active transactions
can see the data as it was before. When those tuples (often called dead tuples) become
irrelevant, they should be marked as reusable so that the space they occupy in the data
file can be used by subsequent write operations. This process of reclaiming the storage
occupied by dead tuples by marking them as reusable is performed through the VACCUM
command.

The ANALYSE command collects statistics related to the data distribution of the ta-
bles in the database. The number of distinct values or the most common values in one
column are examples of statistics collected through this command. These statistics are
used to help the query planner to determine more efficient execution plans for queries.

Stats Collector Process. The Stats Collector is an optional process (enabled by default)
whose function is to collect information about the PostgreSQL server activity. The infor-
mation this process collects is both permanently stored in cluster-wide tables and reported
to other PostgreSQL processes (such as the backends and the autovacuum launcher).

The Stats Collector tracks the cluster activity and collects information such as the
total number of rows in each table, how often the tables and indexes are accessed and
data related to vacuum actions in each table. Although the activity of this process may
introduce some additional overhead, it has advantages such as identifying objects that
need to be vacuumed and provide systems administrators with information that can be
helpful to configure the database server.

Logger Process. The Logger process (also called Logging Collector) is an optional
utility process that is disabled by default. This process is responsible for logging the
details of activity of the PostgreSQL instance.

All the other PostgreSQL processes (this includes the remaining utility processes, the
backends and the postgres process) communicate with the Logger process in order
to provide it with information about their activities. The Logger process writes the log
messages it captures into log files according to its configuration.
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Directory Description
PG_VERSION Text file containing the version number of PostgreSQL.

base Directory that contains the database files.
global Directory that contains tables that keep track of the cluster.
pg_clog Directory that contains the CLOG files.

pg_multixact Directory that contains multitransaction status data.
pg_notify Directory that contains LISTEN/NOTIFY status data.

pg_serial
Directory that contains information about committed serial-
izable transactions.

pg_snapshot Directory that contains exported snapshots

pg_stat_tmp
Directory that contains temporary files used by the stats col-
lector process to communicate with the other processes.

pg_subtrans Directory that contains subtransaction status data.
pg_tblspc Directory that contains symbolic links to tablespaces.
pg_twophase Directory that contains state files for prepared transactions.

pg_xlog Directory that contains the WAL segments.

postmaster.opt
Text file containing the command line options the server
was last started with.

postmaster.pid

Lock file recording the current postmaster process ID (PID),
cluster data directory path, postmaster start timestamp, port
number, Unix-domain socket directory path (empty on Win-
dows), first valid listen_address (IP address or *, or empty
if not listening on TCP), and shared memory segment ID
(this file is not present after server shutdown).

Table 3.1: Contents of PGDATA (Adapted from PostgreSQL Documentation: "Database
File Layout" [38]).

3.2.4 Table-File Mapping

All the data that a PostgreSQL server manages is located in a directory known as PGDATA
(one machine can host several servers and thus have several PGDATA directories) [38].
Table 3.1 presents all the files and directories contained in PGDATA, as well as a short
description of their purpose.

Let us now introduce briefly how the file system is used to store databases. Figure 3.3
represents the relation between the PostgreSQL databases and the file system (we have
not included all the PGDATA subdirectories and files for a sake of simplicity).

At the top of this figure we can see two databases, the left one is zoomed in so that
we can see its relation to the files in the base subdirectory. The object identifier (OID) of
database 1 is 16386 so its data will be written in the directory PGDATA/base/16386.

As we can see, each table stores its data in a file named after its OID (e.g., the OID
of Table 1 is 16428). In addition, each table may have a free space map (stored in the
<OID>_fsm file) which is a binary tree that tracks the unused space inside the table,
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Figure 3.3: Relation between the PostgreSQL databases and the file system.
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a visibility map (stored in the <OID>_vm file) which is a bitmap that keep track of the
pages which have only tuples that are visible to all active transactions (and therefore do
not need to be vacuumed), and other indexes such as the primary key index (stored in a
file named after its own OID).

In the PGDATA/global directory we can observe some examples of cluster-wide
tables and note that they also may have its vm and fsm files.

PGDATA/pg_xlog is one of the most important directories in PostgreSQL. As de-
scribed before, PostgreSQL continuously produces WAL records and stores them into
WAL segments (which, by default, are 16MB files that contain blocks of 8kB) within this
directory. These files have numeric names that reflect their position in the WAL sequence.
PostgreSQL switches to the next segment file when the current one is filled up or when
it is forced to do so (e.g., when a system administrator executes the pg_switch_xlog
function). PostgreSQL keeps a set of WAL segments and recycles them when they are
no longer needed (e.g., the WAL segments that precede a checkpoint) by renaming and
reusing them.

3.2.5 Input/Output Operations

Understanding exactly how PostgreSQL performs its I/O operations in the file system is
crucial to devise an efficient disaster recovery solution for this system. In this subsection,
we will expose this subject regarding some of the most common database functionalities.
The following data was collected through direct observation (using observability tools
such as strace [39] and lsof [40]) as well as through the reading of documentation
and the source code of PostgreSQL.

Table 3.2 shows the relation between the database operations and the invoked system
calls (the most relevant calls are represented in bold). To simplify the presentation, we
have not represented the open() calls, since they are issued whenever is necessary to
access a closed file. In this table we have represented the current WAL segment as WAL,
the current CLOG file as "CLOG", the data file of the table on which we are operating as
table_name, and the primary key index files of the table_name as table_pkey.
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Database Disk OperationsOperations

CREATE
TABLE

for each file in [table_file, table_pkey] {
lseek(file, 0, SEEK_END)

}
write(table_pkey, 8192);lseek(table_pkey, SEEK_END)
fsync(table_pkey)

lseek(table_file,SEEK_END);lseek(table_pkey,SEEK_END)
close(table_file); close(table_pkey)

lseek(WAL, <lastPage>, SEEK_SET)
write(WAL, 8192)
fdatasync(WAL)

INSERT
lseek(WAL, <lastPage>, SEEK_SET)
write(WAL, 8192)
fdatasync(WAL)

DELETE and
UPDATE

lseek(table_file, 0, SEEK_END)
lseek(table_pkey, 0, SEEK_END)

lseek(WAL, <lastPage>, SEEK_SET)
write(WAL, 8192)
fdatasync(WAL)

SELECT (with
the tables in
memory)

lseek(table_file, 0, SEEK_END)
lseek(table_pkey, 0, SEEK_END)

SELECT (with-
out the tables in
memory)

for each file in [pg_namespace,
pg_namespace_nspname_index,
(...), table_pkey, table_file] {

for i in nTimes {
lseek(file, <desiredPage>, SEEK_SET)
read(file, 8192)

}
}
lseek(table_file, 0, SEEK_END)
lseek(table_pkey, 0, SEEK_END)

INSERT,
DELETE and
UPDATE (inside
a transaction)

lseek(table_file, 0, SEEK_END)
lseek(table_pkey, 0, SEEK_END)
lseek(table_file, 0, SEEK_END)

COMMIT
lseek(WAL, <lastPage>, SEEK_SET)
write(WAL, 8192)
fdatasync(WAL)
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Database Disk OperationsOperations

Checkpoints

for each file in [CLOG, pg_subtrans/0003,
pg_multixact/offsets/0000, table_file,
table_pkey, table_vm, table_fsm] {

for page in [dirtyPages] {
lseek(file, page, SEEK_SET)
write(file, 8192)

}
fsync(file)
close(file)

}
lseek(WAL, <lastPage>, SEEK_SET)
write(WAL, 8192)
fdatasync(WAL)
close(WAL)

write(pg_control, 232)
fsync(pg_control)
close(pg_control)

for each x in [WAL segments] {
stat(x)

}

for each file in [WAL, subtrans,
pg_multixact/offsets/0000,
pg_multixact/members/0000]{

openat(AT_FDCWD, file, O_RDONLY|O_NONBLOCK|
O_DIRECTORY|O_CLOEXEC)

getdents(file, /* 5 entries */, 32768)
getdents(file, /* 0 entries */, 32768)
close(file)

}

Table 3.2: System calls performed by each database operation (assuming that the
tables are already in memory unless otherwise specified).

Note that, as discussed previously, PostgreSQL performs most of its read and write
operations in pages of 8kB. Let us now present a brief explanation of this operations.

CREATE TABLE. When creating a table, PostgreSQL begins by creating the files in
which the table will be stored. In order to determine the filenames for this table, this step
may require opening and reading several files in the PGDATA/base directory, if such
information is not in memory yet.

Then the backend process performs the required initialization writes in the files it
just created (for instance if the table has a primary key column, it writes the pkey B-tree
structure to the pkey file) and closes them.

Lastly, a write operation in the WAL file is issued and flushed to disk.
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DELETE, INSERT and UPDATE. These three operations exhibit very similar behaviours.
First, the backend process rewrites the last page of the WAL including the operation

performed (DELETE, INSERT or UPDATE) and its arguments (if the current WAL seg-
ment is full, this write operation is performed in the first page of a new WAL segment).
Afterwards, the operation is executed in memory and a response is sent to the client.

SELECT. When the table containing the data we are willing to retrieve is in memory,
this operation performs no read operations at all. If, on the other hand, the desired data
is not in memory yet, the backend process reads the files related to the tables accessed
by the query (it may also be necessary to read some specific PostgreSQL files in order to
determine which files store the tables and indexes we are looking for).

Transactions. A transaction is a sequence of database operations (typically SQL com-
mands) whose results (either all or nothing) will be made visible only when the transaction
commits. In PostgreSQL a transaction can be issued through the commands BEGIN and
COMMIT.

When executing BEGIN commands, the backend process do not perform any I/O op-
eration whatsoever. For that reason, we have not included this operation in Table 3.2.

Inside a transaction, we have observed the operations: INSERT, UPDATE, DELETE
and SELECT. When an INSERT command is executed, the backend process does not is-
sue any relevant system call. The remaining three operations observed led to the execution
of lseek’s over the table_file and table_pkey files.

When the command COMMIT is executed, the backend process writes to the current
WAL file and flushes it to the storage device. This is the only write operation that we have
observed during transactions.

We can notice that a transaction leads to the same writes as an operation like UPDATE.
The only difference is that a transaction batches the writes of several operations and exe-
cutes them once, after the transaction is committed.

Checkpoints. In the operations seen so far no write is issued in the files that store the
tables. That is because those files are updated during checkpoints (or when the writer
process wakes up). Recall from Section 3.2.3 that the checkpointer process is responsible
for flushing the dirty pages from the shared memory to disk from time to time (or when
the number of WAL segments exceed a certain threshold).

The checkpointer starts by writing and flushing the dirty buffers to the appropriate
files. Notice that the files to be written depend on the database operations that were
performed since the last checkpoint, so some of the data in Table 3.2 is relative to our spe-
cific executions. Then, the checkpointer writes one page in the WAL file (containing the
checkpoint record) and a few bytes in the pg_control file (containing the checkpoint’s
position).
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3.3 Final Considerations

In this chapter we have covered how Input/Output operations are performed in database
systems, focusing on the database management system our work will use. The subjects
discussed in this chapter will dictate the decisions we will take when designing our disas-
ter recovery system.



Chapter 3. I/O in Database Systems 32



Chapter 4

GINJA: A Low-cost Database Disaster
Recovery Solution

In this chapter we describe GINJA: a low-cost disaster recovery solution for database
management systems that provides fine-grained control over the data that can be lost
when a disaster strikes, while introducing a minimal performance overhead to the DBMS.

In Section 4.1 we state the principles and assumptions of GINJA. In Section 4.2 we
present our general architecture. Afterwards, in Section 4.3 we introduce the usage and
pricing model of the cloud storage services. Section 4.4 presents our configuration param-
eters and explore how they allow a tight control over the maximum data loss caused by
disasters. In Section 4.5 we explain the data model used to store information in the cloud
and argue that it provides the right balance between cost and efficiency. Then, in Section
4.6 we explain in detail the algorithms that dictate how GINJA operates (specifically how
it affects the DBMS workflow and performs cloud synchronizations). Finally, in the last
section we end up with a few considerations that summarize this chapter.

4.1 Principles and Assumptions

The most essential design principle behind GINJA is minimizing monetary costs. Conse-
quently, we used one of the cheapest services available to build our secondary infrastruc-
ture, and used this service in the most cost-efficient way possible (taking into account its
pricing model).

Another fundamental factor that influenced GINJA was providing a fine-grained con-
trol over the data that can be lost due to a disaster. This resulted in the creation of a
flexible configuration model that allows the users to take decisions in terms of durability,
performance and monetary cost.

Additionally, GINJA was designed to be as portable as possible. As a result, we did
not perform modifications to the DBMS, and created a modular solution that can be easily
extended to support other database management systems.

33
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Finally, it must be mentioned that GINJA is a DR solution for transactional database
management systems. Specifically, GINJA assumes that the DBMSs it protects use a
Write-Ahead Log [28] to register its database updates, and perform checkpoints period-
ically (recall Chapter 3). Examples of such database systems are PostgreSQL [18] and
MySQL using the InnoDB Storage Engine [41].

4.2 Architecture

The general architecture of GINJA is represented in Figure 4.1. Our solution is a spe-
cialized file system in user space that intercepts the operations called over the files of the
DBMS and backs the relevant data up to a cloud storage service in a cost-efficient manner.

An alternative solution would consist of modifying the DBMS to include our DR
strategies. This approach has the disadvantage of being less portable, as we would have
to alter the code of all the database management systems we intend to support (and this
process would be repeated every time a new version was released). Furthermore, it would
be impossible to use GINJA to protect proprietary database systems from disasters.

Another possible approach would pass by employing our algorithms at the block de-
vice level just like other DR systems [16, 17]. This abstraction level allows us to handle
indistinct data blocks, without providing us with any application visibility. Consequently,
as one of our goals is to support a fine grained control over the database operations that
can be lost due to a disaster, we chose not to adopt this approach.

For the previous reasons, we believe that the file system is the right level of abstraction
to implement our disaster recovery solution. First, implementing GINJA at this level is
advantageous because it eases its integration with the DBMS: the administrator only needs
to mount the file system in the database directory and perform some configurations. In
addition, this design decision allows our system to be easily extended to provide its service
to other DBMSs such as MySQL [19] or Oracle [42]. On the other hand, implementing
our DR solution as a file system introduces the challenge of identifying the operations
that are being performed on the database just from the file system calls that are captured.
To cope with that, we used the information covered in Sections 3.2.4 and 3.2.5 to devise
a set of algorithms that define the actions to perform when certain events occur (such as
writing to a WAL segment and performing a checkpoint).

GINJA relies on cloud storage services (e.g., Amazon S3, Azure Blob Storage) to store
its data in a remote site. We choose such services as a secondary infrastructure because
they have the potential of lowering both our monetary and our management costs.1

This decision has a great impact on the design of our solution. First, storage clouds
provide narrow REST interfaces containing only a few basic operations. As a conse-

1Besides being cheaper, the cloud storage services are substantially easier to manage than computing
cloud instances, which require setting up a firewall, a public IP address, and so forth.
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Figure 4.1: General architecture of GINJA.

quence, we have to implement all the logic of our system in the client side using only the
available cloud operations. Second, we must make as few assumptions as possible about
the underlying storage clouds, so that our clients can choose the cloud provider they want
with few or no modifications to our code. Finally, it is crucial that we take into account the
pricing model of the cloud storage services when performing cloud operations, to reduce
costs as much as possible.

It should also be noted that building our secondary infrastructure entirely on top of
a service with no computational power can brings consequences in terms of recovery
time. This is because in order to perform failover it is necessary to install GINJA in a
computational instance, and execute it in recovery mode to download all the data present
the cloud. This procedure can be quite expensive in terms of time, specially when there is
a large amount of data to be downloaded. Fortunately, this can be solved by performing
failover using a virtual machine placed in the cloud infrastructure that stores GINJA’s data,
which substantially reduces the download time.

4.3 Using Cloud Storage Services

Cloud Storage Services provide a virtually infinite storage facility that can be accessed
remotely through a REST interface. In this paradigm, data is stored in binary objects
associated with keys. The keys are used to access the objects present in the cloud, thus
each key can be associated with at most one object.

The fundamental operations supported by this kind of service are:

• PUT(key, object) – Upload a cloud object associated with a given key to the cloud;

• GET(key) – Download the object associated with the given key from the cloud;
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• DELETE(key) – Delete the object associated with the given key from the cloud;

• LIST() – List the available objects stored in the cloud.

The pricing model of these services takes into account the volume of data stored in the
cloud, the number of operations executed and the amount of data downloaded from the
service (the upload traffic is free as an incentive to put more data in the cloud). Different
cloud operations have different prices: PUT and LIST are the most expensive operations,
GET is fairly cheaper, and DELETE is free.

During normal operation, GINJA will only execute PUTs. As this is one of the most
expensive operations, we must batch our cloud writes as much as possible before per-
forming cloud synchronizations.

The GET operation will only be used during recovery. This means that the overall cost
of our solution is higher when it is necessary to perform recovery (which is advantageous
because disasters are rare events). In that situation, GINJA will download the relevant
objects from in the cloud, which brings costs relative to the number of GET operations
executed and the volume of data transferred in those operations.

As the volume of data kept in the cloud influences the price of our solution, and there
is no cost associated to the execution of DELETEs, GINJA will leverage this operation to
reduce the amount data maintained in the cloud. Of course this removal has to be done in
a safe manner (i.e., only cloud objects that are no longer relevant can be deleted), so that
the DBMS files can be consistently reconstructed during recovery.

4.4 System Parameters

We deal with the trade-off between performance and data protection [6] by allowing the
users to decide the maximum amount of data that can be lost when a disaster occurs.
Thus, instead of following a completely synchronous or asynchronous approach, we have
defined a model that allows our users to define the desired level of synchrony. Further-
more, as sending data to the cloud has its costs, our model also delegates to our users the
performance vs cost trade-off. This model includes the following concepts:

• Batch – defines the database updates included in each cloud synchronization;

• Safety – defines the database updates that can be lost in the event of a disaster.

Batch dictates how the DBMS data is backed up to the cloud, whereas Safety defines
the durability guarantees provided by our solution, i.e., the RPO of the DBMS.

These variables can be defined both in terms of time and number of database updates,
which results in the four configuration parameters presented in Table 4.1. This aspect
allows users to have a tighter control over the behaviour of our system. The variables B
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Parameter Description

B
The maximum number of database updates that can be included in each
cloud synchronization.

TB
The maximum amount of time to start a cloud synchronization for a
non-empty set of database updates.

S
The maximum number of database updates that can be lost in the event
of a disaster.

TS
The maximum amount of time in which the updates can be lost in the
event of a disaster.

Table 4.1: GINJA’s configuration parameters.

and S define a threshold of database updates that trigger GINJA to perform its actions,
even when the database system receives bursts of write requests. For situations in which
the DBMS receives a low rate of write requests, the variables TB and TS establish a maxi-
mum amount of time in which our solution must replicate data to the cloud and block the
DBMS, respectively. More specifically, each cloud synchronization includes B database
updates, or the (non-empty) set of database updates executed in the last TB seconds. Like-
wise, GINJA blocks the DBMS when more than S updates are executed but not uploaded
to the cloud or more than TS seconds have passed since the last successful cloud synchro-
nization. For a sake of simplicity, from this point forward we will refer mostly to the B
and S parameters, as they are the ones that matter when the DBMS is under a significant
load.

Figure 4.2 illustrates an example of how the parameters B and S influence the exe-
cution of GINJA. Whenever B operations are executed in the DMBS, GINJA performs a
cloud synchronization and allows the database management system to proceed its normal
operation. On the other hand, when the Sth database update since the last successful syn-
chronization is submitted, our system blocks the DBMS until a positive acknowledgement
is received from the pending cloud synchronizations.

Ideally, B should be substantially lower than S, so that GINJA does not block or inter-
fere with the DBMS performance during regular operation. If some adverse conditions
occur (such as network instability or cloud errors), then the S parameter ensures that no
more than a certain threshold of data is ever lost due to a disaster.

To summarize, GINJA’s configuration model allows its users to perform a proper con-
figuration according to their specific application requirements. S defines the degree of
data protection that our system provides, which as a negative impact in the performance
of the DBMS. B allows our users to control how the cloud synchronizations are per-
formed, which influences the monetary cost of the system and smooths the performance
limitations introduced by the S parameter.
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Figure 4.2: Influence of B and S in the execution of GINJA. In this example B=2, thus
each cloud backup includes two database updates. It is possible to observe that GINJA

blocks the DBMS whenever more than 20 database updates (which is the value of S) are
executed without being acknowledged by the cloud.

4.5 Data Model
As we have previously mentioned, one of the drawbacks of using storage clouds is the
narrow interface they provide. Specifically, one of the main limitations introduced by
using this type of service is the fact that it does not support updating parts of existing
objects in the cloud.

As a consequence, we have developed a specialized data model that allows our DR
solution to synchronize file updates as they are issued locally, and reconstruct those files
from the objects present in the cloud when necessary. This model is optimized to reduce
the total volume of data kept in the cloud and to minimize the number of cloud operations
executed (as these are the only factors that influence GINJA’s monetary cost in the absence
of disasters).

Our data model includes the following two types of cloud objects:

• WAL Objects – which contain chunks of information present in the local WAL
segments. This means that the content of each local WAL segment is stored in
several cloud objects. The WAL objects are named following the format WAL/
<timestamp>_<filename>_<offset>, in which timestamp is a sequential
number that establishes total order on the WAL objects, filename is the name of
the corresponding WAL segment (i.e., the name of the log file segment), and off-
set is the position of its content in the WAL segment. This way, initially the
whole content of a local WAL segment is stored in a cloud object called WAL/

0_<filename>_0 and, as writes are made to that file, new objects (such as WAL/
1_<filename>_8192, WAL/1_<filename>_16384, etc) are uploaded to
the cloud.
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Figure 4.3: Cloud data model.

• DB Objects – which store information relative to all the relevant database files
excluding the WAL segments. There are two types of DB objects: dumps and
incremental checkpoints. The dumps store a snapshot of the state of the local
database files in a certain moment. The checkpoint DB objects store incremen-
tal updates relative to the previous dump object present in the cloud. The DB ob-
jects are named following the format DB/<timestamp>_<type>_<size> that
contains its timestamp, its type ("dump" or "checkpoint"), and its size. The
timestamp of a DB object is the timestamp of the last WAL object uploaded to the
cloud before the beginning of the checkpoint that originated this DB object. This
means that after a DB object with the timestamp ts is successfully uploaded, all
the WAL objects with a timestamps lesser than ts can be safely deleted from the
cloud, as they are no longer relevant (i.e., their WAL data will not be used during
recovery).

It is important to mention that we limit the maximum volume of each DB cloud
object to 1GB (e.g., a dump of a 10GB database results in 10 DB cloud objects).2

Note that while the DB objects store data from several local files, each WAL object
store data relative to only one WAL segment. This is because, as covered in Chapter 3,
the WAL contains records of all the database updates executed in the DBMS, which can
be used to recover from failures. Hence, we use the write operations performed over the
WAL segments to backup the database updates according to the parameters described in
the previous section.

Figure 4.3 presents an example of the objects that can be in the cloud during an execu-
tion of GINJA. Initially the entire content of the database files was uploaded to the cloud in

2This parameter can be configured with other values.
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the form of a 800MB dump DB object (instant T1). In addition, the whole content of the
current WAL segment was uploaded as a WAL cloud object (instant T2). Then, B database
updates were executed, which resulted in the second WAL object visible in our example
(instant T3). At last, the database management system executed some write operations to
the database files during a checkpoint, triggering GINJA to generate the checkpoint DB
object DB/1_checkpoint_2097152, and upload it to the cloud (instant T4).

Finally, it is relevant to mention that GINJA supports compressing and encrypting all
the data sent to the cloud. Compression reduces the volume of data uploaded, which
reduces the synchronization latencies as a consequence. Encryption can be employed to
ensure the confidentiality of the database information stored in the cloud infrastructure.

4.6 Algorithms
As discussed in Chapter 2, data replication over wide area networks is not an easy task, as
it affects aspects such as performance, cost and reliability. In this section we describe the
algorithms used by GINJA to cope with such challenges in a safe and efficient manner.

All the algorithms use a data structure named cloudView to keep track of the existing
objects in the cloud. This structure is very important to upload, delete and download
cloud objects. cloudView is initialized when the system is started and updated every time
a cloud operation is performed. This way, we make sure that cloudView remains updated
without having to continuously execute LIST operations to the cloud.

Initialization. Algorithm 1 describes the steps performed by GINJA during initializa-
tion.

First, GINJA initializes all the data structures, threads and variables necessary to the
system (Lines 1-6). Afterwards, GINJA performs the actions relative to the configured
initialization mode. The available modes are: Init, Reboot and Recovery.

The Init mode is used for the system to create a cloud backup of an existing database.
In this case all the relevant database files are uploaded to the cloud before the file system
is mounted and the DBMS starts operating. This type of initialization results in one WAL
object for each local WAL segment (Lines 7-11) and one dump DB object (Lines 12-16).

The Reboot mode is meant to be used when a system administrator performs a safe
reboot of the system. This mode assumes that the data in the cloud is synchronized with
the local files of the database. Hence, when GINJA is initialized in this mode, it simply
executes a LIST operation to discover the objects present in the cloud and updates the
cloudView data structure with that information (Lines 17-19). For only requiring the
execution of one LIST operation, this is the fastest initialization mode of the three.

The Recovery mode is used to rebuild the database files from the objects in the cloud.
In this mode, the system downloads all the relevant data from the cloud, and reconstructs
the DBMS’s files as they were after the last successful synchronization. During Recovery,
GINJA starts by discovering the objects present in the cloud and updates the cloudView
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data structure with such information (Lines 20-22). Then, it downloads the most recent
dump DB object in the cloud, and writes its data in the corresponding local files (Lines
23-25). Afterwards, the local database files are updated with the incremental checkpoint
objects in the cloud that follow the dump object downloaded (Lines 26-32). Finally,
GINJA obtains the WAL data written after the last checkpoint from the WAL objects
present in the cloud (Lines 33-36).

Database Commits. Algorithm 2 describes how GINJA reacts to committed database
operations. In this algorithm we ensure that the parameters described in Section 4.4 are
respected.

As can be seen in the algorithm, when a commit is written to the WAL, we add this
write to a queue for processing in background and check if the S and TS parameters are
not violated (Lines 4-6). If the commit queue increases too much (i.e., the uploads take
too long), the S or the TS parameters will be reached and GINJA will block the DBMS
until the pending database updates are safely replicated in the cloud.

The writes are consumed from the queue asynchronously and uploaded to the cloud.
First, the writes are consumed respecting the B and TB parameters (Lines 8-9). The up-
dates read from the commitQueue are aggregated into only one for each WAL segment
(Line 10), and written to the cloud (Lines 11-14).3 This is really important because most
databases write pages in the log, and many times pages are overwritten with more up-
dates. Consequently, by aggregating them we coalesce many updates in a single cloud
object upload. This reduces the storage used and the total number of PUT’s executed in
the cloud and, as a result, the monetary cost of our DR solution decreases.

Note that it is possible to have several threads uploading cloud objects in parallel,
which brings great benefits in terms of performance (see Chapter 6). On the other hand,
it is no longer guaranteed that the WAL cloud objects are uploaded by ts order. This
introduces serious consequences that must be taken into account.

First, in the worst case scenario, a disaster may occur at a moment when the most
recent WAL updates are replicated in the cloud, while others with smaller timestamps are
still in transmission. During Recovery, GINJA deals with this incomplete state by down-
loading only the WAL cloud objects that have consecutive timestamps (see Line 34 of
Algorithm 1). Consequently, to guarantee that the maximum amount of updates lost in
case of disaster respect the S and TS parameters, GINJA unblocks the DBMS only after
uploading all WAL objects with consecutive ts numbers. This can be observed in Algo-
rithm 2: the variables that control these parameters (specifically commitQueue.size,
timeoutTS and the timer of TaskTS) are only reset to unlock the DBMS if and only
if the WAL object previously uploaded can be used to recover from a disaster that would
occur immediately (Lines 17-20).

3 Note that the WAL segments are typically large files (e.g., 16MB in PostgreSQL, 48MB in MySQL).
Consequently, this aggregation results normally in only one cloud object.
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Algorithm 1 Initialization.
Initialization:

1: cloudView← ∅ . Used in all Algorithms
2: TaskTB.startTimer(TB) . Used in Algorithm 2
3: TaskTS.startTimer(TS) . Used in Algorithm 2
4: for i=1 to nThreads do . nThreads is configurable
5: runInBackground(CommitThread) . Used in Algorithm 2
6: runInBackground(CheckpointThread) . Used in Algorithm 3

Init:
7: currentTs← 0
8: for each file in Local WAL Segments, in increasing order do
9: cloud.PUT("WAL/"+currentTs+"_"+file.name+"_0", file.content)

10: cloudView.addWAL(currentTs, file.name, 0)
11: currentTs← currentTs + 1
12: dbObject← ∅
13: for each file in Local DB Files do
14: dbObject.add(file.name, file.content)
15: cloud.PUT("DB/0_dump_"+dbObject.size, dbObject)
16: cloudView.addDB(0, "dump", dbObject.size)
Reboot:
17: cloudObjects← cloud.LIST()
18: for each obj in cloudObjects do
19: cloudView.add(obj)

Recovery:
20: cloudList← cloud.LIST()
21: for each object in cloudList do
22: cloudView.add(object)
23: dump← cloud.GET(mostRecentDump(cloudList.dbObjects))
24: for each file in dump do
25: writeLocally(file.name, 0, file.content)
26: checkpoints← newerThan(cloudList.dbObjects, dump.ts)
27: maxCkptTs← dump.ts
28: for each obj in checkpoints, in increasing ts order do
29: currentCkpt← cloud.GET(obj)
30: for each file in currentCkpt do
31: writeLocally(file.name, file.offset, file.content)
32: maxCkptTs← obj.ts
33: segments← newerThan(cloudList.walObjects, maxCkptTs)
34: for each obj in segments, in increasing ts order and with no gaps do
35: content← cloud.GET(obj)
36: writeLocally(obj.filename, obj.offset, obj.content)
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Algorithm 2 Database Commits.
Variables:

1: commitQueue← ∅ . Holds all the pending synchronizations
2: timeoutTS ← false
3: timeoutTB ← false

Upon write(WAL_segment, offset, content) do:
4: writeLocally(WAL_segment, offset, content)
5: commitQueue.put(〈WAL_segment, offset, content〉)
6: wait until commitQueue.size ≤ S and timeoutTS = false

CommitThread:
7: loop
8: wait until commitQueue.size ≥ B or timeoutTB = true
9: updates← commitQueue.getNextBatch() . Does not remove from the queue

10: aggUpdates← aggregateUpdates(updates)
11: for u in aggUpdates do
12: ts← cloudView.getNextWALts()
13: cloud.PUT("WAL/"+ts+"_"+u.filename+"_"+u.offset, u.content)
14: cloudView.addWAL(ts, u.filename, u.offset)
15: TaskTB.resetTimer()
16: timeoutTB ← false
17: wait until commitQueue.lastBatchElements() = updates
18: commitQueue.removeLastNElements(updates.size) . Removes from the queue
19: TaskTS.resetTimer()
20: timeoutTS ← false

TaskTB (upon timeout):
21: if commitQueue.size > 0 then
22: timeoutTB ← true . Trigger the commitThread to start uploading

TaskTS (upon timeout):
23: if commitQueue.size > 0 then
24: timeoutTS← true . Block the DBMS
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Checkpoints and Garbage Collection. Our model assumes that the database manage-
ment system performs periodic checkpoints that consist of writing dirty pages in memory
to the database files and marking the WAL as applied up to that point (recall Chapter 3).

Algorithm 3 describes how GINJA handles checkpoints. As performance is one of
our key concerns, we decouple the local checkpoints with the cloud synchronization of
the database files (Lines 5, 19-20). As all the database updates are written to the WAL
segments and synchronized as described in Algorithm 2, no database update will ever be
lost due to this decision. However, we must be cautious when dealing with the checkpoint
records (marking a checkpoint completion) in the WAL segments as these records mark
the starting point for replaying the log after a failure.

When a checkpoint is finished, PostgreSQL writes a checkpoint record to the current
WAL segment and then writes the position of that WAL record in the pg_control

file (this can be observed in Table 3.2). When the DBMS is initiated after a failure, it
starts by reading the pg_control file and then executes the WAL from the checkpoint
record on. Therefore, if a disaster occurs after a checkpoint has been finished locally but
not in the cloud, there will not be any problem because, although the WAL in the cloud
may contain the last checkpoint record (writes WAL segments are handled by Algorithm
2), the pg_control file present in the cloud will not be up to date. As a result, during
recovery PostgreSQL will start executing the WAL from the checkpoint record pointed by
the pg_control file in the cloud (which may not be the last checkpoint record present
in the WAL).

Going back to the algorithm, all the checkpoint synchronizations are performed in
background by the CheckpointThread (Lines 17-20).

Recall from Section 4.5 that there are two types of DB objects that can be uploaded
during checkpoints: dumps and checkpoints. During normal execution, GINJA keeps
the write operations performed by the DBMS during a checkpoint and, as soon as the
checkpoint is finished locally, submits those writes to be uploaded in one checkpoint DB
object (Lines 6, 11-14). In this situation, all the write operations are aggregated in order to
reduce the volume of data uploaded to the cloud (Line 6). On the other hand, whenever the
total size of the DB objects in the cloud is greater or equal to 150% of the local database
size, GINJA creates a new database dump and submits it to the CheckpointThread (Lines
8-10, 13-14). In this situation, GINJA will not execute any write in the DB objects while
the dump object is being created, to guarantee that the database is dumped in a consistent
way. This is not a problem because checkpoints are sporadic events that are performed in
background (i.e., do not interfere with the execution of operations in the databases).

After uploading a new checkpoint, GINJA deletes objects that are no longer relevant
from the cloud. This Garbage Collection is performed to reduce monetary costs (recall
that cloud providers charge for the volume of storage used). We are aggressive in remov-
ing cloud objects as the DELETE operation is free in all clouds we are aware of.
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Every time a DB object is completely uploaded to the cloud, GINJA removes all WAL
objects with timestamps smaller than the current DB object uploaded since the last check-
point (Lines 3-4 and 21-23). This is safe as such WAL objects contain information that
will not be used in a recovery situation (i.e., WAL records previous to a WAL checkpoint
record). Additionally, when the DB object uploaded is a dump, all the previous DB ob-
jects (including both incremental checkpoints and other dumps) are deleted as well (Lines
24-27).

Algorithm 3 Checkpoints and Garbage Collection.
Variables:

1: checkpointQueue← ∅
2: timestamp← ∅

Upon write(dbFile, offset, content) do:
3: if 〈dbFile, offset, content〉 is the first write in checkpoint then
4: timestamp← cloudView.getLastWALts()
5: writeLocally(dbFile, offset, content)
6: dbObject← addAndAggregate(〈dbFile, offset, content〉)
7: if 〈dbFile, offset, content〉 is the last write in checkpoint then
8: if cloudView.getTotalDBSize() ≥ 150% × local DB size then
9: dbObject← create dump from local DB files

10: dbObject.type← "dump"
11: else
12: dbObject.type← "checkpoint"
13: dbObject.ts← timestamp
14: checkpointQueue.add(dbObject)
15: dbObject← ∅
CheckpointThread:
16: loop
17: wait until checkpointQueue.size > 0
18: obj← checkpointQueue.remove()
19: cloud.PUT("DB/"+obj.ts+"_"+obj.type+"_"+obj.size, obj)
20: cloudView.addDB(obj.ts, obj.type, obj.size)
21: for each walObject in cloudView such that walObject.ts < obj.ts do
22: cloud.DELETE(walObject.objectName)
23: cloudView.delete(walObject)
24: if obj.type = "dump" then
25: for each dbObject in cloudView such that dbObject.ts < obj.ts do
26: cloud.DELETE(dbObject.objectName)
27: cloudView.delete(dbObject)
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4.7 Final Considerations

In this chapter we presented in detail the design of our solution, which seeks to reduce the
monetary and management costs, while adding as few performance overhead as possible.
To meet such objectives we have studied how DBMS manage data and how storage cloud
providers charge for their services. This information was used to design and optimize our
data and configuration model, as well as our algorithms.

The key design decisions covered here include: implementing GINJA at the file sys-
tem level (which brings great benefits in terms of portability), using cloud storage services
(as they allow the conception of very low-cost backup systems if used properly), creat-
ing a data model that makes a cost-efficient use of such services, and finally devising a
powerful configuration system allows our users to have a tight control over the durability,
performance and monetary costs of GINJA.

In the next chapter we will present some details about the implementation of our
prototype.
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Implementation

In this chapter we cover the most relevant details behind the implementation of GINJA.
We will start by presenting a few general considerations on the implementation and con-
figuration of GINJA. Afterwards, we explore how GINJA is integrated with the DBMS,
and present its architecture. Finally we include an UML diagram that addresses the struc-
ture of GINJA’s code, and close this chapter with a few additional considerations.

5.1 General Considerations

All the software components that make up GINJA were implemented in JAVA within ap-
proximately 3700 lines of code distributed in 30 files. Table 5.1 states the number of lines
of code that make up each module of GINJA.

It is possible to observe that GINJA is implemented in a generic way, as all the DBMS
specific processing is performed in the PostgreSQL processor, which is a very small mod-
ule (only 200 lines of code).

The largest module is the Initialization, which parses the system configuration, exe-
cutes Algorithm 1, and initializes all the data structures and threads. The second largest
module is the Commit mechanism, which implements the behaviour specified by the con-

Module Lines of Code
Initialization 808
File System Interpreter 544
PostgreSQL Processor 200
Commit Mechanism 753
Checkpoint Mechanism 416
Cloud Synchronization 248
Cloud View 254
Other Data Structures 516

Total 3739

Table 5.1: Number of lines of code in each module of GINJA.
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figuration parameters B and S. Note that the File System Interpreter also has a considerable
amount of code, as it implements all the operations performed by the file system on the
local storage device. Lastly, it should be mentioned that the Cloud Synchronization mod-
ule is minimal because we use an external library to execute cloud operations (specifically
we use DepSky’s cloud storage drivers [31]).

The configuration parameters of GINJA are described in Table 5.2. The first two pa-
rameters are relative to the integration of GINJA (which will be covered in the next sec-
tion), the following four are relative to our configuration model (described in Section 4.4),
and the remaining ones cover aspects relative to the cloud synchronizations.

To perform compression we used the Deflater JAVA class, configured with the fastest
compression level (for performance reasons). Regarding encryption, we used the JAVA

Cipher class to encrypt data using the AES algorithm.

Parameter Description

pg_old
Directory where the DMBS used to store its data before be-
ing integrated with GINJA.

pg_new Directory where GINJA is mounted.
B B system parameter (recall Table 4.1).
tB TB system parameter (recall Table 4.1).
S S system parameter (recall Table 4.1).
tS TS system parameter (recall Table 4.1).

nThreads Number of threads used to upload WAL objects to the cloud.

mode
Initialization mode. There are the following available
modes: init, reboot and recovery (see Algorithm 1).

cloud The cloud provider used to store data.
cloudAccessKey Access key of the cloud service account.
cloudSecretKey Secret key of the cloud service account.
compression Whether the data should be compressed before uploaded.
encryption Whether the data should be encrypted before uploaded.

encryptionKey Key used to perform encryption.

Table 5.2: Configuration parameters of GINJA.

5.2 Integration of GINJA with the DBMS

GINJA is implemented as a specialized file system that intercepts the calls issued by the
database management system and backs up the relevant information to a cloud storage
service.

In order to operate correctly, GINJA needs to access the data managed by the DBMS
(which in PostgreSQL is located in the PGDATA directory). However, we chose not to
mount GINJA directly in this location. Instead, our mount point will be an empty directory
in which the database directory will be mapped, i.e., all the system calls that are to be
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Figure 5.1: Interaction between PostgreSQL and the file system. The image on the left
shows the DBMS using the native file system. In the right it is possible to observe the
DBMS using GINJA.

issued in our mount point are performed in the PGDATA instead. This way, our system
will be able to access the data that was previously in the DBMS.

Afterwards, the DBMS has to be configured to change its data directory to the one in
which GINJA was mounted, so that its subsequent operations can be intercepted by our file
system. This step requires a reboot of the DBMS, which reduces slightly the availability
of the system.

Figure 5.1 shows how a DBMS interacts with the file system normally (in the left),
and how a DBMS interacts with the file system when integrated with GINJA (in the right).

5.3 Architecture

Figure 5.2 presents the internal architecture of GINJA. Let us now briefly explain each of
its components.

FS Interpreter. We implemented GINJA as a file system in user space using the FUSE
(File system in USEr space) framework [7, 43]. FUSE is a kernel module that registers
itself with the Virtual File System (VFS) as a regular file system, and communicates with
a user space library. This library can be used by user space applications to implement file
systems without performing modifications to the kernel.

As FUSE is implemented in C, we used a JAVA implementation of FUSE called
FUSE-J [44]. This system is basically an API that uses Java Native Interface (JNI) bind-
ings to FUSE and enables writing Linux file systems in JAVA language.
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Figure 5.2: Detailed architecture of GINJA.

The FS Interpreter module presented in Figure 5.2 is an implementation of the FUSE-J
interface Filesystem3. This module simply acts as a regular file system except that it
performs the indirection explained in Section 5.2, and passes the file system calls received
to the processor.

Processors. In order to make our DBMS Disaster Recovery Solution as generic and
portable as possible, we have created the concept of Processor.

The Processor is a JAVA abstract class that contains all the operations defined in
Filsesystem3. Each processor extension corresponds to a specific database management
system, and is responsible for converting the file system calls received to a generic data
format used by the remaining components of GINJA. This way, GINJA can be easily
extended to support other DBMS by implementing new processors.

The implementation of a processor is a relatively simple and straightforward proce-
dure. However, this requires an in depth knowledge of the internals of the DBMS (specif-
ically of how the data is managed at the file system level), which can take more effort.

In the scope of this project we have implemented only one processor, which is relative
to PostgreSQL. However, a MySQL processor is currently being developed at LaSIGE.

Internals. As it can be observed in Figure 5.2, the processor uses two different queues
to put the data received from the file system: one to treat the WAL writes and other to
treat the checkpoint writes.

The write operations performed in the Write-Ahead Log (WAL) are sent to a spe-
cialized queue named CommitQueue. This data structure has a maximum capacity of S
elements, and only supports getting B elements at a time. Any attempt to put an ele-
ment into a full CommitQueue will block. Likewise, attempts to take elements from a
CommitQueue with less than B elements will result in the operation blocking.
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A thread called Aggregator is responsible for getting sets of B write operations from
this queue (without removing them), aggregating those writes into a single object for
each WAL segment, and submitting the resulting data in a second queue.1 A number of
Uploader threads will retrieve elements from this queue and upload them in parallel as
WAL objects, submitting acknowledgement to a third queue whenever a cloud upload
completes. At last, a thread called Unlocker will remove sets of B elements from the head
of CommitQueue, according to the acknowledgements received by the Uploader threads.

The write operations performed during checkpoints are submitted to a thread called
Checkpointer that aggregates the data received and uploads it to the cloud in the form of
DB cloud objects.

Note that Algorithm 2 is implemented in the Aggregator, Uploader and Unlocker
threads, whereas Algorithm 3 is implemented in the Checkpointer thread. The Algo-
rithm 1 is implemented in an initialization module not included in Figure 5.2.

5.4 Class Diagram

Figure 5.3 presents the UML class diagram of GINJA. The diagram was cleaned to present
only the most important classes of the system.

FSInterpreter is an implementation of the FUSE-J’s interface Filesystem3. This class
performs the file system calls locally, and passes them to the Processor. The Processor
performs a DBMS aware processing to those calls, submitting the results in the form of
FileWrite instances to the CommitQueue and CheckpointQueue. GINJA’s threads then
take care of aggregating and uploading the data present on these queues as described in
the previous section.

CommitQueue is the class that implements the coordination between the file system
and the threads, by ensuring that the B and S parameters are respected (specifically, this
queue uses the TaskController class to make sure that the effects of TB and TS are ful-
filled).

The Synchronizer class is responsible for performing all the cloud synchronizations. It
uses the implementation of the interface IDepSkyDriver (obtained from DepSky [31]) that
corresponds to the desired cloud provider, and uses the classes Compressor and Cipher to
compress and encrypt the data, respectively.

Finally, note that the cloudView data structure used to keep track of the objects existent
in the cloud (recall Section 4.6) is divided in two classes: WalView and DbView. WalView
is relative to the WAL objects, whereas DbView tracks the DB cloud objects. These classes
are kept up to date by the AggregatorThread and the CheckpointerThread.

1This aggregation process reduces substantially the amount of information uploaded to the cloud by
discarding all the data that was overwritten.
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Figure 5.3: UML class diagram.
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5.5 Final Considerations

In this chapter we have presented some details about the implementation of GINJA. We
started by explaining how the integration and architecture of GINJA works, then we pre-
sented two diagrams that cover the structure of our code.

Although most of the details covered here may seem straightforward, they result from
a long iterative process of analysis, design and evaluation. This process allowed us to
create a modular prototype capable of performing disaster recovery for PostgreSQL in a
cost-efficient way, as will be demonstrated in the next chapter.
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Chapter 6

Evaluation

This chapter presents a detailed evaluation of the disaster recovery system developed in
this project. In Section 6.1 we start with an analytical evaluation of GINJA in terms
of monetary costs. Then, in Section 6.2, we present an experimental evaluation of our
prototype that covers topics such as performance and cloud usage. Finally, in Section 6.3
we report the conclusions that can be drawn from the obtained results.

6.1 Economical Evaluation
The only element that introduces monetary costs to our solution is the use of cloud storage
services. The prices of such services using different cloud providers are presented in Table
6.1. It is evident that the pricing model of this kind of services considers the volume of
data in the cloud, the number and type of operations executed, and the bandwidth of data
transfers. As a result, an economic evaluation of GINJA must consider these three factors.

Regarding the database size, we are going to explore how GINJA’s data model influ-
ences the amount of storage used in the cloud. Performing an economical evaluation in
terms of the cloud operations executed is way more complex. It involves studying the
relation between the algorithms described in Section 4.6 and the performed operations. In
terms of bandwidth, cloud providers only charge for the download traffic, which is used
by GINJA only during recovery. As disasters are rare events, we focus this evaluation
in GINJA’s normal operation. For this reason, the bandwidth is not considered in this
evaluation.

Storage Service Storage Bandwidth Operations
Upload Download PUT LIST GET DEL

Amazon S3 30 000 0 90 000 10 10 1 0
Azure Blob Storage 24 000 0 87 000 5 5 0.4 0
Google Cloud Storage 26 000 0 120 000 10 10 1 0

Table 6.1: Pricing of cloud storage services in microdollars (10−6) . The storage and
bandwidth prices are charged monthly per-GB, whereas the operational costs are relative
to each executed operation.
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It should be noted that for this evaluation it is necessary to identify the factors that
influence the usage of the cloud. Such factors can be either related to GINJA (e.g., the
configuration used) or to the database system itself (e.g., workload, size of the database).

6.1.1 GINJA Cost Model

The factors that influence the operational cost of GINJA are the storage used to keep WAL
and DB objects in the cloud, as well as the amount of PUT operations used to upload
the WAL and DB data. Thus, the monthly operational cost of our system is given by the
following equation:

CostTotal = CostDB_Storage + CostDB_PUT + CostWAL_Storage + CostWAL_PUT

Let us now explore in detail how each of the four components that make up this equa-
tion can be calculated.

Storage of DB Objects. As covered in Section 4.5, GINJA uploads the information of
the database files in the form of DB objects. The storage cost relative to this kind of
objects is given by the following formula:

CostDB_Storage = DB_Size × 125%× Comp × StorageCost

The DB_Size is measured in GB and the StorageCost in $/GB per month. The main
factor that influences this cost is the size of the database. Recall that GINJA ensures that
the maximum volume that the DB objects can take in the cloud is 150% of the local
database size (due to the incremental checkpoints). As a result, in average, the amount of
DB data in the cloud will be 25% greater that the database size. Additionally, the amount
of DB data uploaded can be reduced by using compression (represented as Comp), which
decreases the value of CostDB_Storage .

PUT Operations of DB Objects. The second factor that influences the total cost of our
DR solution is the number of PUT operations used to upload DB objects. This depends
essentially on how often the checkpoints occur, the average checkpoint size, and the price
of each PUT operation. The cost of this component can be calculated as follows:

CostDB_PUT =
30× 24× 60

CkptPeriod

×
⌈
Ckpt_Size

1GB

⌉
× PUT_Cost

The first fraction of this equation gives us the number of checkpoints that the DBMS
performs per month (note that CkptPeriod is given in minutes). The second fraction de-
termines the number of PUT operations executed in each checkpoint. Recall that, in our
data model, the maximum DB object size is 1GB. Consequently, for checkpoints greater
than this amount of data, GINJA uploads several DB objects to the cloud.
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Storage of WAL Objects. The third cost factor considered is relative to the volume of
the WAL objects present in the cloud, and can be calculated as follows:

CostWAL_Storage =

(⌈
Workload × CkptT ime

RecordsPerPage

⌉
+ 1

)
×PageSize×Comp×StorageCost

The first part of the equation determines the maximum number of WAL pages that can
be in the cloud at any moment. Recall that all the WAL objects previous to a checkpoint
are deleted from the cloud as soon as that checkpoint is completely uploaded. Conse-
quently, the amount of storage is directly proportional to the number of updates per minute
(Workload – assuming that each update uses a record), and to the CkptTime, which in-
cludes the checkpoint period, plus its duration, plus the time it takes to be uploaded to the
cloud.

The total number of updates performed between checkpoints is divided by the number
of records per page (RecordsPerPage), reaching the number of WAL pages uploaded to
the cloud. The ”+1” covers the worst case scenario – the situation in which the first WAL
write after a checkpoint is performed in the ending of a WAL page.

Finally, PageSize is the size in GB of each WAL page, and Comp represents the
compression rate (i.e., the percentage of data reduced through compression).

PUT Operations of WAL Objects. Finally, the cost associated with the number of
PUT operations of WAL cloud objects is represented by CostWAL_PUT . This cost depends
essentially on the database workload and the value of the B parameter, and it is given by
the following formula:

CostWAL_PUT =
Workload × 60× 24× 30

B
× PUT_Cost

Every time B database updates are executed in the DBMS, a WAL object is uploaded
to the cloud. Thus, CostWAL_PUT is obtained by calculating the number of database up-
dates executed per month (note that Workload is measured in requests per minute) and
multiplying this value by the price charged for each PUT operation.

Discussion. We have analysed in detail all the components that influence the operational
cost of GINJA.

The element that has major influence in the monetary cost of our solution is the execu-
tion of PUT operations of WAL objects. The cost of storing DB objects in the cloud can
also be considerable, but only when considering very large databases. As GINJA targets
small to medium sized databases, we expect the value of CostDB_Storage to be very low.

The remaining components considered result in negligible monetary costs. The cost
of uploading DB objects will be minimal, as our system executes very few PUT opera-
tions per checkpoint (generally only one), and checkpoints are sporadic events in database
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management systems. The cost of storing WAL objects in the cloud is also minor, as some
of these objects are deleted from the cloud after a checkpoint is issued.

When recovering from a disaster, the monetary cost of GINJA depends on the number
of objects downloaded and the volume of data present in those objects.

6.1.2 Evaluation

Figure 6.1 presents the operational monetary costs of GINJA (without compression) with
different values of B and under different workloads. The values presented consider the
usage of Amazon S3, and a database of 10GB with pages of 8KB that contain 75 WAL
records. We also consider that a checkpoint happens every 60 minutes, and have a duration
of 20 minutes.
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Figure 6.1: Effect of different configurations and workloads in GINJA’s monetary cost
considering Amazon S3.

It is possible to note that, as expected, the B parameter has a severe impact on the
total monetary cost of our solution. This can be explained by the fact that B reduces the
number of PUT operations executed in the cloud. Additionally, we can observe that this
relation is even more evident when considering large workloads. Nevertheless, note that
there are plenty of possible configurations that result in a total cost of less than to $3 per
month.

Let us now present an evaluation of a real use case, considering two databases used in
a clinical analysis system.

Table 6.2 presents the monetary costs of performing disaster recovery in the cloud
(specifically Amazon Web Services) using GINJA, and using database replication with
virtual machines.1 We consider two database configurations: one hospital with a 1TB of
data and a workload of 840 updates per minute, and a Medical Laboratory with a 10GB-
database that processes 48 updates per minute.

In the hospital scenario, GINJA has a cost approximately 4× smaller than the cost of
using virtual machines. Note that in this situation the major portion of our cost is relative

1Values calculated using https://calculator.s3.amazonaws.com/index.html.

https://calculator.s3.amazonaws.com/index.html
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Configuration GINJA VMs in Amazon
Hospital $39.7 (data loss < 1 min) 38 (VM t2.medium) +116 (EBS
(1TB, 840 up/min) $63.4 (data loss < 5 sec) 500IOS) +36.6 (VPN) = $190.6
Laboratory $2.5 (data loss < 1 min) 19 (VM t2.small) +18 (EBS
(10GB, 48 up/min) $10.7 (data loss < 5 sec) 100IOS) +36.6 (VPN) = $61.6

Table 6.2: Costs of performing cloud-based disaster recovery with AWS using GINJA or
database replication with VMs.

to the DB objects maintained in the cloud infrastructure. In the second scenario, GINJA

presents a cost gain of 25× (with a maximum data loss of one minute) and 6× (with a
maximum data loss of 5 seconds) in relation to running VM instances in the cloud. Here,
the dominant cost is originated by uploading WAL objects to the cloud. It should be
noted that besides the economical advantages presented, our system is also way easier to
manage than the alternative solution, which requires configuring a firewall, setting up a
public IP and so forth.

6.2 Experimental Evaluation

In this section we present a detailed experimental evaluation of GINJA using the Pot-
greSQL 9.3 database management system [18]. The experiments were executed in two
Dell Power Edge R410 machines equipped with two Intel Xeon E5520 CPUs (quad-core,
HT, 2.27Ghz), 32GB of RAM and a 146GB Hard Disk Drive with 15k RPMs. The oper-
ating system used was Ubuntu Server Precise Pangolin (12.04 LTS, 64-bits), with kernel
3.5.0-23-generic and Java 1.8.0 (64-bits). The cloud storage service used was Amazon S3
(US Standard).

The results presented come from the average of five executions, applying a TPC-C
workload [45] during 5 minutes, using the BenchmarkSQL 4.1.1 tool [46]. The metrics
observed were the total number of transactions per minute (Tpm-Total), and the number
of a specific type of update transaction (newOrder) processed per minute while the DBMS
is processing other types of transactions (Tpm-C).

6.2.1 Performance

As we have previously described, GINJA performs cloud synchronizations in parallel.
One factor that influences the performance of our system is the number of threads used to
perform such synchronizations.

Figure 6.2 shows the total number of transactions per minute achieved by GINJA for
different values of B and S, and number of uploader threads. The results show that, for
all the configurations used, increasing the number of threads raises the throughput of
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Figure 6.2: Influence of the number of threads in GINJA’s throughput.

the database management system. However, this benefit is not significant when using
more than 5 threads. These results are consistent with existing literature [47]. For this
reason, we used 5 threads to perform cloud synchronizations in all the other experiments
presented in this evaluation.

Figure 6.3 shows the effect that different configurations of B and S have in the through-
put of the DBMS. Using the native file system, the DBMS processes a total of 8290
transactions per minute. When using a similar file system implemented with FUSE, the
database system decreases its throughput by 7%, achieving a total of 7690 transactions
per minute. As GINJA is implemented using FUSE, this will be our baseline.
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Figure 6.3: Influence of different configurations in the performance of GINJA. The values
of B are expressed immediately below the columns. Exceptions are the first two columns,
which are relative to the native file system and to FUSE, and the last column, which
reefers to the configuration: B = 1, S = 1.

The figure clearly shows that the B and S parameters have an influence in the total
amount of transactions per second that the system can process. The value of S has an im-
pact on GINJA’s performance because, when this parameter is reached, the DBMS blocks.
B also has an effect on this matter because GINJA uses a finite number of threads to up-
load WAL objects, each one containing B database updates. For this reason, using small
values of B causes the S parameter to be reached earlier, which decreases the performance
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Figure 6.4: Effect of compression and cryptography in the performance of GINJA. The
columns are grouped by configuration, and the values immediately below de columns
specify whether Compression and Cryptography are active (in the columns "C+C" both
compression and cryptography are active).

of the DBMS. The results also show that, for high values of B and S, GINJA introduces a
minimal performance overhead (in the order of 4.5%).

Note that it is possible to use GINJA while guaranteeing a durability level of 100%.
This corresponds to synchronous replication, and can be achieved by using the configura-
tion: B=1, S=1. As expected, this configuration brings a substantial performance degra-
dation that can be observed in the last column of Figure 6.3, with a Tpm-Total value of
242.

Figure 6.4 shows how compression and encryption influence the performance of our
system. First, it is evident that compression increases the throughput of GINJA. This is
because it reduces the amount of data uploaded to the cloud, which causes a decrease
in the synchronization latency (this will be covered in Section 6.2.2). Second, note that
encryption introduces a minimal overhead in the performance of GINJA. This can be
observed by comparing the columns "Normal" and "Crypt", and the columns "Comp" and
"C+C".

It should be noted that, even though we have presented the values of Tpm-Total and
Tpm-C in Figures 6.3 and 6.4, our discussion only mentioned the metric Tpm-Total. This
is because, in our results, these two metrics present a similar behaviour.

6.2.2 Cloud Usage
Table 6.3 shows the number of PUT operations executed, the size of the objects written
and the latency of this cloud operation.

The results show that increasing the B parameter from 10 to 100 decreases the number
of PUT operations performed during a TPC-C execution by 80%, while an additional
tenfold increase in B further decreases this number by almost 70%. In the same way,
increasing B increases the object size and, consequently, the latency to write objects to
the cloud infrastructure. However, due to the page coalescing of the system, the observed
increase in the size of the objects is smaller than the B increase.
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Configuration Num. PUTs Object Size PUT latency
(B/S mode) (TPC-C, 5 min) (kB) (milliseconds)

10/100 plain 1789 386 692
10/100 Comp 2002 239 549
10/100 Crypt 1767 387 592
10/100 C+C 1990 237 562
100/1000 plain 364 3018 2880
100/1000 Comp 383 1903 1932
100/1000 Crypt 354 3002 3198
100/1000 C+C 383 1908 2007
1000/10000 plain 119 10081 7707
1000/10000 Comp 118 6366 6328
1000/10000 Crypt 111 10043 9494
1000/10000 C+C 119 6339 4422

Table 6.3: GINJA’s storage cloud usage. All results are average collected during five
executions of five minutes of TPC-C, with standard deviations under 12%.

The table also shows the consequences that the encryption and compression modes
have in GINJA’s cloud usage. It is possible to observe that using compression reduces
the volume of data uploaded in each cloud object, which reduces the latency as a conse-
quence. This results in the performance benefits discussed before. It is also evident that
using compression and encryption leads to more PUT operations executed, which is due
to the fact that such configuration achieve higher throughput levels.

6.2.3 Database Server Resource Usage

Table 6.4 presents the resource usage of a PostgreSQL server serving a TPC-C workload
under different configurations with and without GINJA.

The table shows that using a Native or FUSE-J file system already requires around 7%
of the machine CPU and less than 1.6GBs of memory (< 5%). When adding GINJA’s dis-
aster recovery FS, the server CPU and memory usage increase 1% and 2%, respectively,

Configuration CPU Memory
Native FS 6.4% 4.3%
FUSE-J FS 6.9% 4.9%
100/1000 7.8% 6.9%
100/1000 Comp 11.6% 9.7%
100/1000 Crypt 9.1% 7.2%
100/1000 C+C 13.4% 9.9%

Table 6.4: PostgreSQL server (eight cores with hyper-threading and 32GB of RAM) re-
source usage with and without GINJA.
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when compared with a FUSE-J FS, mostly due to the queues, buffers and data structures
used in its implementation. Additionally, compression and cryptography introduce sig-
nificant CPU usage: +3.8% and +1.3%, respectively. In terms of memory, these features
increase the memory usage by 2.8% (compression) and 0.3% (encryption). When com-
pression and encryption are used together, the overheads of these features are summed
up.

In the end, using GINJA with compression and encryption requires +7% of CPU (less
than a core in our server) and +5.6% of memory (less than 2GB) of our 8-core server and
32GB of memory. We consider these costs would not be a deterrent for using GINJA.

6.2.4 Recovery Time

Now we are going to present our last experiment, which evaluates the recovery time of our
DR solution. To do these experiments we executed a TPC-C workload for five minutes,
and then injected a fault. After that, we executed GINJA in recovery mode and measured
the time it took to download and reconstruct the database. We conducted this experiment
for three different database sizes (by varying the number of warehouses in TPC-C [45])
and executed the recovery process in a machine located in our lab (in Lisbon), and in an
Amazon EC2 virtual machine (located in the same region where GINJA’s data is backed
up).

Figure 6.5 shows that the recovery time grows with the database size. This is ex-
pected, as recovering bigger databases involves downloading a greater volume of data. It
is also evident that the recovery time can be significantly reduced by executing GINJA in
a computing instance located in the same cloud infrastructure where the data is. Although
we consider these results adequate, they can be improved by reducing the maximum DB
object size and using several threads to download cloud objects in parallel.
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Figure 6.5: Recovery times of GINJA for different database sizes using a local server and
a VM instance in the cloud.
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6.3 Discussion

In this chapter we presented an in depth evaluation of GINJA covering topics such as
monetary costs, performance, and resource utilization.

The economical evaluation shows that GINJA allows database management systems
to perform cloud-based disaster recovery with very low associated monetary costs (e.g.,
a 10GB database with a workload ≤ 48 updates/minute can tolerate disasters with less
than one minute of data loss for only $0.9). The main factor that introduces costs during
normal operation is the upload of WAL objects to the cloud. This cost can be reduced by
choosing configurations with higher B values. The storage of cloud DB objects can also
introduce significant costs, but only for large databases.

Regarding the experimental evaluation, we concluded that GINJA is capable of per-
forming disaster recovery with very low performance overhead if properly configured. We
have analysed the consequences that the parameters B and S have in GINJA’s cloud usage.
Additionally, we have showed that compression can bring some performance benefits by
reducing the volume of data uploaded to the cloud (besides lowering the synchroniza-
tion latency, this also reduces the monetary costs relative to storing objects in the cloud)
at the expense of increasing the resource consumption in the database server. We have
also demonstrated that using cryptography to ensure confidentiality introduces a minor
overhead in the performance of the database management system. Lastly we showed that
GINJA’s recovery time is quite large, but can be reduced by using a computational in-
stance (such as virtual machine) located in the same cloud infrastructure used by GINJA

to backup its data.
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Conclusion

In this thesis we presented GINJA: a low-cost disaster recovery system for database man-
agement systems that relies entirely on cloud storage services to backup its data.

The main factors that differentiate GINJA from the existing DR solutions are: very
low monetary cost, fine-grained control over the data that can be lost during disasters,
high level of portability, and low performance overhead under failure-free operation. We
coped with such challenges by:

1. Studying the internal functioning of the database management systems, with special
focus on it interaction with the file system;

2. Understanding the pricing model of cloud storage services;

3. Creating a configuration model that allows our users to define precisely the levels of
cost, durability and performance, in accordance with their application requirements;

4. Devising a data model that allows an efficient use of the cloud storage services both
in terms of performance and monetary costs;

5. Developing the necessary algorithms to perform disaster recovery in a safe way,
based on all the information covered in the previous items;

6. Implementing these algorithms at the file system level (for portability reasons).

We have conducted a series of experiments that seek to evaluate GINJA in terms of
performance, monetary costs, resource usage and recovery time. The results obtained
from our evaluation show that it is possible to implement disaster recovery for DBMS in
a safe, cheap and efficient way, relying exclusively on cloud storage services. Our evalua-
tion also show the effects caused by GINJA’s features (e.g., compression and encryption)
and configuration parameters in the resulting throughput and monetary cost

65
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7.1 Future Work

As future work we plan to extend GINJA to support other database management systems.
Although this can be easily achieved by implementing new processors, it requires an in
depth understanding of the internals of other DBMSs.

Additionally, we intend to create a module capable of performing an autonomic con-
figuration of parameters such as the number of threads used to upload data, and how many
database updates are included in each cloud synchronization (i.e., the B parameter). In
this way, the system administrator would only have to define the desired level of durabil-
ity (i.e., the S parameter), and GINJA would dynamically adjust the remaining parameters
in the most efficient way possible.

Finally, the software developed in this project will be a key demonstration in the in-
termediate review of the SUPERCLOUD H2020 project. In this demonstration, our sys-
tem will be integrated with CLINIDATA (MAXDATA intelligent management system for
clinical laboratories). For this reason, we will test GINJA extensively with the database
schemas used by this application, and prepare an integrated demonstration of our product,
which will be presented next September.
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