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RESUMO 

A bioinformática é uma área mutidisciplinar que envolve a aplicação de técnicas 

computacionais para analisar informação biológica em larga escala. Este conjunto de 

ferramentas e técnicas computacionais foi desenvolvido para dar suporte à análise da 

crescente quantidade de dados gerados neste domínio, e em particular por técnicas de 

next-generation sequencing. Uma das áreas da biologia largamente dependente das 

ferramentas bioinformáticas é a análise do perfil do transcriptoma. Atualmente, a técnica 

de RNA-sequencing tem sido a abordagem predominante em estudos transcriptómicos 

de dados de sequenciação. Esta técnica tem sido bastante usada em estudos de 

resistência, especialmente em espécies florestais ameaçadas. 

A Floresta é um recurso natural essencial em termos globais, não apenas pela sua 

importância a nível ecológico, mas também a nível económico e paisagístico. Ela 

representa um suporte de Vida na Terra, fornecendo inúmeros benefícios fundamentais 

para o equilibrio de diversos ecossistemas. No entanto, recentemente tem vindo a 

verificar-se um preocupante declínio de várias espécies florestais, sendo o Pinheiro Bravo 

(Pinus pinaster Ait.) uma das mais afectadas. Este declínio tem causado um impacto 

negativo no equilibrio dos ecossistemas e na manutenção da biodiversidade. Um dos 

organismos com maior potencial destrutivo para a área florestal de Pinheiro Bravo é o 

nemátodo da madeira do pinheiro (Bursaphelenchus xylophilus), um verme microscópico 

responsável pela doença da murchidão do pinheiro. Numa tentativa de reduzir as perdas 

resultantes da doença, surgiram vários estudos de resistência do hospedeiro para a 

identificação de árvores com menor susceptibilidade à infecção. No entanto, parte desses 

estudos apresenta uma abordagem mais tradicional, sem recurso às novas tecnologias de 

sequenciação. Nesse sentido, o presente trabalho, baseado no estudo de dados de RNA-

sequencing produzidos pela plataforma de sequenciação Ion Proton, tem como principal 

objectivo a caracterização da resposta do Pinheiro Bravo à infecção com o nemátodo da 

madeira do pinheiro entre três diferentes estágios após inoculação. Para isso, foram 
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identificados genes diferencialmente expressos, vias metabólicas e marcadores 

moleculares potencialmente associados à resistência à doença. 

Um total de 355,287 unigenes foram obtidos a partir de um conjunto de 176,282,168 

reads sequenciadas para todas as bibliotecas, pela técnica de de novo assembly. A baixa 

percentagem de genes predictos (23.5%) a partir do conjunto de unigenes assemblados 

e o elevado número de genes sem anotação ou com anotação desconhecida, evidenciam 

as limitações existentes num estudo de RNA-Seq em espécies não-modelo, sem o genoma 

sequenciado, como é o caso do Pinheiro Bravo. Apesar disso, foram obtidos 17,533 genes 

diferencialmente expressos entre todas as comparações. No seguimento desta análise, 

há a evidência de duas fases de resposta à infecção. Em primeiro lugar, é desencadeada 

uma resposta imediata, logo após a infecção. Posteriormente, uma segunda fase de 

resposta parece acontecer aos 7 dias após a infecção. Foi ainda identificado um conjunto 

de genes candidatos envolvidos na resistência à doença nos vários estágios em estudo. 

Desse conjunto, é possível identificar genes envolvidos no metabolismo secundário, 

stress oxidativo e defesa contra infeção de agentes patogénicos. Este estudo representa 

uma nova abordagem ao nivel dos mecanismos moleculares e vias metabólicas envolvidas 

na defesa contra a infeção do nemátodo da madeira do pinheiro. Podendo assim ser um 

recurso útil para estudos ulteriores e também para programas de melhoramento com 

vista à seleção de plantas com menos susceptibilidade à doença. 

 

Palavras-chave: Bioinformática; Next-generation sequencing; RNA-Sequencing; Pinus 
pinaster; Bursaphelenchus xylophilus; doença da murchidão do pinheiro.  
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ABSTRACT 

Bioinformatics is a multidisciplinary field that involves the application of computational 

tools to analyze biological information on a large-scale. This set of computational 

techniques were developed to support the analysis of the increasing amount of data 

generated in this area, and in particular by next-generation sequencing (NGS). One of the 

main fields of biology that is largely dependent on bioinformatics tools is the 

transcriptome profile analysis. Currently, RNA-Sequencing (RNA-Seq) is the dominant 

transcriptomics approach for NGS data. RNA-Seq has been highly used in disease 

pathogenesis studies, especially in endangered forest species. 

Forests are essential resources on a global scale, not only for the ecological benefits, but 

also for economical and landscape purposes. They represent one of the Life support 

systems on Earth, providing essential resources for a range of ecosystems. However, in 

recent years there has been a worrying decline of a large number of forest species around 

the world, with maritime pine (Pinus pinaster Ait.) being one of the most affected. This 

alarming decay is caused by abiotic and biotic factors. Within this last group of factors we 

must highlight the pine wood nematode (PWN), Bursaphelenchus xylophilus as one of the 

main responsible. PWN is a microscopic organism reported for the first time in Portugal 

in 1999, being the causal agent of pine wilt disease (PWD). In an attempt to reduce losses 

arising by PWD, the study of maritime pine resistance is one of the research programs 

that recently started in Portugal, aiming to improve their resistance and select trees with 

lower susceptibility to infection. However, just a few of these studies were based on next-

generation sequencing data. Taking this into account, this study is an approach to pine 

wilt disease, using RNA-Sequencing data produced by Ion Proton platform. The aims of 

this study was to analyze RNA-Seq data to characterize the maritime pine transcriptome 

in the response to infection with Bursaphelenchus xylophilus, over three different time 

stages after inoculation of the PWN, by determining the differentially expressed genes, 
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regulatory networks and pathways, with the purpose of identifying potential genes 

involved in resistance against PWD. 

A total of 355,287 unigenes were obtained by de novo assembly from the 176,282,168 

sequenced reads for all libraries. Moreover, we obtained 17,533 differentially expressed 

genes (up and down regulated) between all comparatives. The low rate of predicted 

genes (23.5%) from the set of assembled contigs and the high number of genes without 

annotation or with "Unknown" annotation, evidences the existing limitations when 

working in RNA-Seq studies with non-model species like Pinus pinaster. Despite this, 

further analysis suggest an early response that may occur immediately after inoculation 

and a late response that may occur 7 days after inoculation.  

A set of candidate genes involved in resistance against PWN infection were identified over 

different time points. These genes were related to secondary metabolism, oxidative stress 

and defense against pathogen infection. Our results provide new insights about the 

molecular mechanism and metabolic pathways involved in resistance of Pinus pinaster 

against PWN infection. It may be a useful resource in future studies and for future 

breeding programs to select plants with lower susceptibility to PWD. 

 

Keywords: Bioinformatics; Next-generation sequencing; RNA-Sequencing; Pinus pinaster; 

Bursaphelenchus xylophilus; Pine wilt disease.  
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1. - INTRODUCTION 

Maritime pine (Pinus pinaster Ait) is one of the main forest species in southwestern 

Europe, having a high economic impact due to the value of the wood and resin. However, 

recently a serious decline of maritime pine populations has been observed, with pine 

wood nematode (Bursaphelenchus xylophilus) being one of the main agents responsible 

for the decline. Over the last years, some studies in this area were executed using 

different approaches. However, just a few of these studies were based on next-

generation sequencing (NGS) data. This study is an approach to study pine wilt disease 

(PWD), using RNA-Seq data produced by the Ion Proton platform. RNA-Seq is largely used 

in resistance studies, being especially useful to characterize transcriptome profile over 

different time points. This technique involves a set of steps to process NGS data, allowing 

the identification of candidate genes and molecular markers associated to the resistance 

against PWD. 

1.1 – Motivation 

RNA-Seq is a revolutionary technology widely used to characterize transcriptome profile 

over different time points, using deep-sequencing technologies. However, in terms of 

bioinformatics analysis, these type of approaches require to take into account some 

aspects that can limit the appropriate approaches to use. The most important limitation 

is to work with non-model organisms like Pinus pinaster, which there is no genome 

sequence available in public databases. In this sense, this study pretends to contribute to 

the bioinformatics field, providing a RNA-Seq analysis workflow for a non-model species 

that could, in future, be applied and adapted to similar studies. 
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1.2 – Objectives 

The purpose of this study was to analyze RNA-Seq data to characterize the maritime pine 

transcriptome in the response to infection with Bursaphelenchus xylophilus. In order to 

carry out this work, four libraries of RNA-Seq data were sequenced by the Ion Proton 

platform. The four libraries corresponds to three different time stages after inoculation 

of the PWN plus the control sample. So, by determining the differentially expressed genes 

over those libraries, and the regulatory networks and pathways involved, we were able 

to identify potential candidate genes associated with resistance against PWD. In this 

context, a RNA-Seq analyses workflow was established and a several bioinformatics tools 

were used to achieve these aims. In figure 1 are represented all capital stages followed in 

this study. This dissertation focuses only in the bioinformatics analysis of the sequenced 

libraries. 

 

 

Inoculation with 
PWN and sampling

cDNA libraries 
construction and 
sequencing (Ion 

Proton platform)

Pre-processing RNA-
Seq data

Assembly & 
Mapping

Differential 
expression analysis Annotation

Figure 1 - Representation of workflow applied in this study. 
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1.3 – Maritime Pine and Pine wilt disease 

Forests are much more than a large area of land covered with trees. They represent one 

of the life support systems on Earth, providing essential resources for a range of 

ecosystems. Furthermore, forests supply various products and services, generating a wide 

range of economic and social benefits. Due to the commercial value of wood products, 

maritime pine (Pinus pinaster Ait.) is one of the main conifer species in southwestern of 

Europe, covering approximately 4 million hectares in this area (Plomion et al., 2000). In 

Portugal, maritime pine has been considered by many as one of the predominant tree 

species, and by far the most widespread, mainly in the regions of Atlantic influence, 

covering over than 700 thousand hectares, that corresponds to 23% of the total forest 

surface (ICNF – IFN, 2013). 

In recent years there has been a worrying decline of a large number of forest species 

around the world, with maritime pine being one of the most affected. This alarming decay 

is caused by abiotic and biotic factors, and within this last group of factors we must 

highlight the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer, 1934) 

(Nickle, 1970) as one of the main culprits (Futai et al., 2008).  

PWN is a quarantine organism in the European Union (Directive 77/93 EEC), being the 

causal agent of the pine wilt disease (PWD), that may kill a host tree within a short period 

of time after infection (Mota et al., 1999). Mostly due to this pathogen, the total area 

occupied by P. pinaster suffered an abrupt decline in Portugal, accounting for losses of 

263,000 hectares between 1995 and 2010 (AFN, 2010). As a result, P. pinaster went from 

being the main forest species, in terms of distribution and area, to the third, behind 

eucalyptus and cork oak. Recently, it has been identified as an endangered species by the 

IUCN red list of threatened species (Farjon, 2010).  

PWN was reported for the first time in Portugal in 1999 (Mota et al., 1999), and in less 

than 10 years the whole P. pinaster area has been affected. PWN is transported between 

host trees by an insect vector, a longhorn cerambycid beetle (Monochamus 
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galloprovincialis Oliv.) (Sousa E. et al, 2001). The transmission may occur in two forms: by 

oviposition, whereby the female beetles laying their eggs under the bark of stressed or 

recently killed trees by the PWN, and the nematodes migrate to pupae just before adult 

beetles emerge, ensuring successful survival of the parasite; or via transmission by 

feeding that occurs through beetle feeding wounds (primary transmission). Nematodes 

carried by beetles move into wounds and breed in the xylem, nonetheless, the survival of 

nematodes is not guaranteed (Edwards & Linit, 1992; Fielding & Evans, 1996). This is a 

close relationship between PWN and its vector beetle, resulting in the epidemiological 

cycle of PWD (Futai et al., 2008). 

PWD expression depends not only on the pathogenicity of PWN and susceptibility of host 

trees but also on environmental conditions such as high temperature and large soil 

moisture, the optimal conditions for PWN proliferation (Fielding & Evans, 1996). The 

symptoms caused by PWD are common to other diseases, and therefore can easily be 

confused. A typical early symptom is needle discoloration. Needles turn grayish green, 

then tan, and finally brown. Then, resin flow ceases and the wood is dry when cut (Futai 

et al., 2008). 

The defensive mechanisms of host trees can be divided into early and advanced stage 

(Fukuda, 1997).  In the first stage, defensive response occurs in both susceptible and 

resistant trees, nonetheless, late response is found only in susceptible trees (Fukuda, 

1997). In the same species, it has been verified the existence of trees with different levels 

of susceptibility, some of which survive the infection, thus, constituting an opportunity 

for selective breeding. This has been the approach in breeding programs developed in 

China and Japan over the last years (FAO, 1985).  
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1.4 - Next-generation sequencing 

Before discussing the applications and impact of next-generation sequencing (NGS), also 

known as massively parallel sequencing, on genomics research, it is necessary to look back 

on the history of sequencing development, to review basic concepts and the evolution of 

NGS systems. The NGS term describes a set of platforms that represent the evolution of 

sequencing technology from the Sanger system, and has provided unprecedented 

opportunities. Their use has changed scientific approaches, enabling whole genome or 

individual genes sequencing, having applications in various fields, including plant biology 

(Liu et al., 2012).  

In 2005 the first NGS platform was launched by 454 Life Sciences (www.454.com). This 

system is based in the principle of pyrosequencing or sequencing by synthesis. In brief, 

this process starts with an emulsion PCR in which single-stranded DNA binding beads are 

encapsulated. During the pyrosequencing mechanism, a successful incorporation of a 

nucleotide is converted to light emission from the release of pyrophosphate molecules 

(Liu et al., 2012) (Mardis, 2013). Initially, the 454 system had a read length of 100-150bp, 

however, it was upgraded to 600-700bp with a 99.9% accuracy after filtering and with an 

output of 0.7Gb data per run (Liu et al., 2012). The 454 platform was a revolutionary 

technology that represented an important progress in terms of speed, throughput and 

allowed reducing the per-base cost over Sanger technology (Van Dijk, Auger, Jaszczyszyn, 

& Thermes, 2014). 

The second platform launched, and presently the most widely used, was the Illumina 

system from Solexa (www.illumina.com). Briefly, in this system, libraries are loaded into 

a flow cell and each bound fragment is amplified into a clonal cluster through bridge 

amplification. Four kinds of fluorescently labeled nucleotides are added and as they are 

incorporated a characteristic signal is emitted. This emission wavelength is recorded and 

used to identify the base (Mardis, 2013). Illumina have shorter read lengths (150-300bp) 

when compared with the 454 system, but produce more reads and have higher 
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throughput per run (~1,500Gb). The Illumina sequencing system also has a lower cost per 

base than older platforms. 

In 2006, Applied Biosystems released the SOLiD platform (Sequencing by Oligo Detection), 

a system that requires an emulsion PCR approach with small magnetic beads for DNA 

fragment amplification. The technology of two-base sequencing is used during the 

sequencing mechanism, where the libraries are sequenced by 8 base-probe ligation with 

a specific fluorescent marker, which identifies a two-base combination. The probes light 

signal is recorded and after five cycles the sequence of an entire fragment can be deduced 

(Liu et al., 2012; Zhang et al., 2011). The SOLiD system has a high accuracy (99.99%) after 

filtering, producing reads with an average length of 85bp. Nonetheless, is slightly more 

expensive than Illumina system and may take a few more days per run (Liu et al., 2012). 

One of the most recent NGS platform is the Ion ProtonTM system, developed by Ion 

Torrent in 2010. This technology differs from other existing platforms in base detection. 

It measures slight variations in pH levels, which is caused by the releasing of Hydrogen 

ions during base incorporation into a strand of DNA by a polymerase (Ion ProtonTM system 

guidelines), instead of measuring light released from fluorescent or chemiluminescent 

reagents as other platforms do. This sequencer machines use only an ion sensor, 

therefore it does not require camera scanning or light. For this approach, libraries are 

amplified by emulsion PCR and each fragment is attached to one bead. These beads are 

placed into the wells of Ion Chips (Mardis, 2013). The Ion Proton platform has a higher 

sequencing speed and lower cost per base comparing to oldest platforms. Moreover, it 

produces up to 10Gb throughput per run with a read length of up to 200bp (Ion ProtonTM 

system Documentation). 

Over the last years, some new NGS platforms emerged on the market. These 

technologies, also called third generation sequencing, promise to deliver entire genomes 

in less than a day, increasing the applicability of sequencing technologies (Schadt et al., 

2010). An example of third generation platform is the single-molecule real-time, launched 
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by Pacific Biosciences, enabling real-time observation of DNA synthesis (Schadt et al., 

2010). 

Since the introduction of the first NGS platform, there was a revolution in the biological 

research field, which allowed a fast progress in terms of reducing costs, increasing 

throughput and accuracy. Every day, more organisms are being sequenced, and lots of 

new raw data are constantly becoming available to be analyzed. This fast paced evolution 

provides new opportunities and enables additional studies and projects in genomics, 

metagenomics, epigenomics, exomics and also in transcriptomics which has contributed 

to the decline of microarrays technology. Furthermore, NGS is being used in forensic 

genetics and in clinical diagnostics for genetic diseases (Van Dijk et al., 2014; Mardis, 

2013; Liu et al., 2012). 

Taking this into account and despite some hurdles to be considered, in a near future NGS 

tools will provide us new applications in research fields and clinical diagnostics that would 

have been unthinkable some years ago.  

1.4.1 - RNA-Sequencing 

Transcriptome analysis provides information about all transcriptional activity in a cell or 

organism, and it has recently gained popularity and been applied to disease pathogenesis 

studies and identification of biomarkers (Wang et al., 2009). 

Initially, the most commonly used technique in transcriptome analysis was microarrays. 

However this technique has several limitations, like reliance upon existing knowledge of 

gene sequences or high background levels (Wang et al., 2009). Due to this and to NGS 

evolution, RNA-sequencing is nowadays the dominant transcriptomics approach for gene 

expression analysis, identifying differentially expressed genes under different conditions 

and allowing new insights in various fields such as plant biology (Wang et al., 2009). Unlike 

microarrays, RNA-Seq does not need probes or reference sequences, produces low 
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background noise and can identify novel transcripts and splicing events, among other 

advantages. RNA-Seq revolutionized the scientific approaches in transcriptome analysis, 

offering a number of advantages compared to microarrays. 

For non-model organisms like P. pinaster, for which there is no genome sequence 

available, RNA-Seq is an efficient means to generate functional genomic data (Parchman 

et al., 2010). Once RNA-Seq raw reads have been obtained, the first step of data analysis 

is to trim raw reads with low quality bases and adapters. Then, processed reads are 

assembled into contigs before aligning them to the genomic sequence to reveal 

transcription structure and finally predict candidate coding regions and annotate them 

against a database (Wang et al., 2009). An example of RNA-Seq data analysis workflow 

can be observed in figure 2. 

  

Figure 2 - Example of RNA-Seq data analysis workflow 
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1.5 - Bioinformatics tools for RNA-Seq data analysis 

Next-generation sequencing of RNA libraries has become progressively used in a huge 

variety of transcriptomic studies. However, this information needs to be processed 

appropriately, thus, a set of freely bioinformatics tools has been developed for multiple 

genomic features analysis (Kalari et al., 2014). In this context, some bioinformatics tools 

commonly used in each stage of RNA-Seq analysis are presented below. 

1.5.1 - Pre-processing data tools 

Once raw reads have been produced by NGS systems, the first challenge of data analysis 

is to check the quality of the reads and trim adaptors sequences and low quality bases. 

For this step, a set of tools like FastQC software  (Andrews, 2010) and PRINSEQ (Schmieder 

& Edwards, 2011) are frequently used, these tools apply a set of control tests on a raw 

sequence data and provides statistics which reports an overview of quality scores in our 

RNA-Seq data. FastQC tool outputs a set of graphics where potential problematic areas 

(low quality) are identified, and it also provides graphical information about GC content, 

N content, sequence length distribution and overrepresented sequences (Andrews, 

2010). Based on FastQC results, it is necessary to trim low quality bases. For this step, is 

necessary to establish a threshold value for quality and for read length. A commonly 

software used for trimming low quality reads are Sickle (Joshi & Fass, 2011) and FASTX 

Toolkit1. They take an input file in fastq format and outputs a trimmed version with a 

specific thresholds defined by user. Briefly, Sickle uses a sliding windows along approach, 

either to trim the 3’-end or the 5’-end of reads, when quality is sufficiently low or high 

respectively. Moreover, Sickle also discard reads based upon the length threshold defined 

previously (Joshi & Fass, 2011). 

                                                      
1 Website: http://hannonlab.cshl.edu/fastx_toolkit/ 
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1.5.2 - De novo assembly tools 

The genomes of a large number of organisms have been sequenced by NGS over the last 

years, but it still represents a small percentage of all known organisms. Working with non-

model species without a reference genome is challenging because it is imperative to 

determine the transcript sequences from RNA-Seq data de novo, a process known as de 

novo transcriptome assembly. A set of software packages like TransAByss (Robertson et 

al., 2010), Velvet/Oases (Zerbino & Birney, 2008) (Schulz et al., 2012) or Trinity (Grabherr 

et al., 2011) has been developed to perform de novo assemblies. Most of the available 

assemblers implement algorithms based on de Bruijn graph (De Bruijn, 1946). In brief, in 

de Bruijn graph a node is defined by a substring of a fixed length k, denoted as k-mer, 

usually shorter than the read length. The nodes are connected by edges only if their 

overlap is exactly k-1 nucleotides. This representation enumerates all possible solutions 

by which linear sequences can be reconstructed given overlaps of k-1. However, the 

adaptation of de Bruijn graph to de novo assembly may have some issues, such as working 

with large amounts of data sets or providing robustness in cases of sequencing errors that 

can introduce false nodes (Grabherr et al., 2011). 

One of the assemblers implementing the de Bruijn graph is the Trinity assembler 

(Grabherr et al., 2011). It is a widely used tool for de novo transcriptome assembly. Trinity 

includes three modules: Inchworm, that uses a greedy k-mer-based approach, assembles 

the RNA-Seq data into the unique sequences of transcripts; Chrysalis, which constructs a 

de Bruijn graph for each cluster of related contigs; Butterfly, which analyzes the paths 

taken by reads and reports all plausible transcript sequences (Grabherr et al., 2011).  
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1.5.3 - Mapping tools 

Mapping, also called alignment of reads to a reference genome or transcriptome, is an 

essential step in NGS data analysis. This challenge consists in aligning a set of sequenced 

reads against a reference genome. Numerous tools have been developed to perform this 

process, including BWA (H. Li & Durbin, 2009) RapMap (Srivastava et al., 2015), Bowtie 

(Langmead et al., 2009) or SOAP (R. Li et al., 2008), among others. Due to the use of 

different algorithms, each tool provides different trade-off between speed and quality of 

the mapping (Hatem et al., 2013). Thus, algorithms must follow some assumptions, like 

aligning single reads across splice junctions de novo, or handle paired-end reads and run 

in a reasonable amount of time (Grant et al., 2011). To evaluate RNA-Seq alignments, a 

set of metrics needs to be checked. For example, each tool provides a score relative to 

mapping quality (MAPQ), the possibility of limiting the number of allowed mismatches or 

the gap length. The mapping process is a crucial step to perform differential expression 

analysis because the latter is performed over the unique mapped reads.  From the large 

set of mapping tools referred before, RapMap is one of the most recent publicly available. 

This tool is based on the algorithm called quasi-mapping that uses a combination of data 

structures, a hash table, suffix array and efficient rank data structure, taking advantage 

of the transcriptome structure and providing read mapping information for each query 

that is useful for downstream analysis (Srivastava et al., 2015). 

1.5.4 - Differential expression for RNA-Seq data analysis 

High-throughput sequencing technologies led to a massive increase in transcriptomic 

data represented by counts. Analysis of such data is often concerned with detecting 

differential expression between different stages. The discovery of the differential 

expression data between different stages is, particularly but not exclusively, done by 

using biological replicates samples among each stage. Briefly, this type of analysis consists 

of normalizing the raw input counts and performing statistical tests to accept or reject 
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the null hypothesis of no differential expression between two or more groups of samples 

under different experimental conditions (Rashi Gupta, 2012; Soneson & Delorenzi, 2013). 

Several tools have been developed for inferring differential expression for RNA-Seq data, 

however, in this thesis we will focus only on EdgeR, an R package from Bioconductor. 

1.5.4.1 - EdgeR  

R is a programming language for statistical computing, providing a wide variety of 

statistical and graphical techniques (R Core Team, 2015). R can be extended via packages. 

The two biggest repositories for R packages are the CRAN (https://cran.r-project.org/) 

and Bioconductor (Huber et al., 2015), but only Bioconductor is relevant in this context.  

Bioconductor is an open source, open development software project to provide tools for 

the analysis and comprehension of high-throughput genomic data, based primarily on the 

R programming language (Gentleman et al., 2004; Huber et al., 2015).  

The EdgeR package provides a set of tools to identify differential gene expression in 

sequence count data from high-throughput sequencing technologies, allowing the 

analysis from different groups of data (Robinson et al.,2010). We can describe EdgeR’s 

model as a statistical software based on the negative binomial distributions, which 

includes empirical Bayes estimation, exact tests, generalized linear models and quasi-

likelihood tests. The input data is summarized into a table of counts, with rows 

corresponding to genes and columns to samples. To assess differential expression, EdgeR 

uses an exact test analogous to Fisher’s, but adapted to over dispersed data (Robinson et 

al., 2010). 

1.5.4.2 - Prediction of candidate coding regions (TransDecoder) 

Open reading frames (ORFs) are regions of nucleotide sequences between a start and a 

stop codon, and may indicate candidate protein coding regions in a DNA sequence. In 
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computational biology, identification of candidate coding regions represents a challenge 

in RNA-Seq studies conducted in species without a reference transcriptome. For this 

purpose, some software packages like TransDecoder (B. J. Haas et al., 2013) have been 

developed. 

TransDecoder was integrated into the Trinity package, being useful for the identification 

of potential protein-coding regions within reconstructed transcripts generated by de novo 

assembly using Trinity. However, it can also be used as standalone tool. TransDecoder is 

executed in several steps. Initially, it processes a FASTA file containing transcript 

sequences and extracts the long ORFs. By default it considers as long ORFs the ones that 

are at least 100 amino acids in length. Additionally, an extra step to identify ORFs by 

homology via BlastP and/or Pfam against SwissProt and/or UniRef90 databases, 

respectively, can also be executed. To finalize the prediction, TransDecoder integrates the 

results obtained in the previous steps and outputs the final set of candidate coding 

regions (B. Haas, 2014). 

1.5.5 - Transcriptome annotation 

Transcriptome annotation provides information related to the function and biological 

process of assembled transcripts and the proteins they encode. The first step to perform 

transcriptome annotation involves de novo transcriptome assembly to infer transcripts 

from RNA-Seq data, or mappping reads onto a reference genome, when it is available. 

Then, annotation can be performed using one of the available tools implemented for this 

purpose, such as InterProScan (Jones et al., 2014; Quevillon et al., 2005). 

InterProScan is one of the bioinformatics tools available for transcriptome annotation. 

This software searches protein sequences over non-redundant public domain databases, 

such as Pfam, Gene3D and Panther, providing information related to protein domains and 

important sites and classifying them into families (Jones et al., 2014). 
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Once the InterProScan results are obtained, it is possible to filter them and identify Gene 

Ontology (GO) terms or KEGG pathways. GO terms are used to describe gene function, 

classifying them into three categories: molecular function (MF), cellular component (CC) 

and biological process (BP) (Gene Ontology Consortium). There are several tools  that 

analyse and organize GO terms data sets, including CateGOrizer (Na et al., 2014). This tool 

takes GOs IDs as input and performs a step-wise classification against a GO_slim database 

(Zhi-Liang, Jie, & James, 2008). 

KEGG database  (Kanehisa et al., 2015) is an integrated database which includes genomic, 

chemical and systemic functional information. Therefore, KEGG is widely used as a 

knowledge base for interpretation of large-scale datasets generated by high-throughput 

sequencing, being a reference resource for gene and protein annotation (Kanehisa et al., 

2015). 

1.6 - SNP calling 

Single nucleotide polymorphisms (SNPs) are one of the most common type of genetic 

variation among individuals. They can be used as biological markers, helping in a set of 

research studies, which include the susceptibility and response to pathogens, such as 

maritime pine susceptibility to PWN. 

Advances in NGS technologies provided new guidelines for identification of genetic 

variants such as SNP calling, but an accurate SNP calling can be difficult if NGS data suffer 

from high error rates or low-coverage (Nielsen et al., 2011). Moreover, assembly and 

alignment processes have a crucial role in a successful SNP detection (Nielsen et al., 2011). 

The identification and filtering of SNPs from the raw data requires utilization of many 

processing steps and the application of a set of tools. Probably, the most widespread 

package for SNP calling is the genome analysis toolkit (GATK) (McKenna et al., 2010).  
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GATK package provides a wide variety of tools for variant discovery and genotyping, which 

include the Haplotype Caller and the UnifiedGenotyper, the tool used in this study. This 

tool uses a Bayesian genotype likelihood model to estimate the most likely genotypes and 

allele frequency for each sample in a population of N samples. UnifiedGenotyper 

generates an unfiltered, highly sensitive callset in variant call format (VCF). VCF is a text 

file format, containing meta-information lines about position and quality of each variant 

in genome. To filter the generated data, SelectVariants is a tool that has been widely used. 

It provides a new VCF file containing the selected subset of variants, following specific 

thresholds for quality defined by user. An useful tool for variant annotation is SnpEff 

(Cingolani et al., 2012). This software provides an annotation for variants and predicts the 

effects they produce on predicted genes.  
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2.  - MATERIAL AND METHODS 

This section describes the workflow applied in this study to perform the analysis of the 

RNA-Sequencing data produced to investigate the maritime pine response to infection 

with PWN. For this purpose, a set of maritime pine trees was inoculated with PWN and 

four sampling time points were established. RNA extraction was performed and four 

cDNA libraries were constructed. All libraries were sequenced as single-end reads on the 

Ion Proton platform. All specifications for these steps are presented in appendix. Data 

analysis workflow included the pre-processing of the raw reads and the de novo 

transcriptome assembly, mapping, differential gene expression analysis between all 

conditions, transcriptome annotation and finally the SNP calling. 

2.1 - Pre-processing RNA-Sequencing data and assembly 

The quality of the RNA-Seq reads from the four sequenced libraries was checked using 

FastQC software Version 0.11.3, a quality control tool for high throughput sequence data. 

Based on the FastQC results, a quality threshold of 12 and a read length of 80bp were 

defined.  These parameters were used to run Sickle tool Version 1.33, trimming poor 

quality bases and adapters sequences from the raw data, which produced a set of 

processed reads to proceed with the RNA-Seq analysis. Discarding low quality bases from 

the raw data allows to reduce errors in subsequent procedures, therefore, pre-processing 

of raw reads is an important step, contributing to the reliability of the final results. 

Due to the fact that there was no reference genome available for P. pinaster, it was 

necessary to perform a de novo transcriptome assembly. The processed reads from all 

libraries were assembled into contigs using Trinity 2.1.1 with the default parameters. In 

order to improve assembly by reducing gaps between contigs, clipping 5’ and 3’ low 

quality regions and obtain larger contigs, the CAP3 software (Huang & Madan, 1999) was 
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used. The resultant assembly was the basis for the next procedures, being used as the 

reference transcriptome assembly. 

2.2 - Prediction of candidate coding regions 

The sequences from the reference transcriptome were analyzed with TransDecoder-2.0.1 

software to identify the open reading frames (ORF). This software is even it is able to 

predict ORFs by itself, allowing the improvement of such predictions performing 

homology searches. Thus, the ORF transcripts identified were further scanned for 

homology to known proteins against SWISS-PROT (Boeckmann et al., 2003) and Pfam 

(Finn et al., 2015) databases by running BlastP (Altschul et al., 1990) and HmmScan (Eddy, 

1995), respectively. At the end, TransDecoder provides a final set of candidate coding 

regions, namely, predicted genes representing the basis for their annotation.  

2.3 - Mapping and differential expression analysis  

Mapping the reads against the transcriptome assembly was performed using RapMap, a 

new fast sensitive and accurate mapping tool. In brief, it consisted in building the index 

over the reference transcriptome, which was subsequently used along with a set of reads 

as input, to report the alignments in SAM format. This mapping output provided a report 

for each read (mapped or unmapped), which included the position of the mapped reads 

in the reference sequence, a quality mapping score, and was useful to infer gene 

expression information. 

Before performing a differential gene expression analysis, it is imperative to determine 

the number of unique mapped reads, which was accomplished with SAMtools -1.3 (H. Li 

et al., 2009). SAMtools provides a set of utilities for manipulating alignments in the SAM 

format. The unique mapped reads were identified from the SAM files by using the flag 
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“NH:i:1”, which is produced by RapMap and indicates solely the reads that mapped only 

once in the reference transcriptome. 

The EdgeR package of Bioconductor was used to identify transcripts that were 

differentially expressed between the conditions. To adjust for library sizes and skewed 

expression of transcripts, the estimated abundance values were normalized using the 

Trimmed Mean of M-values normalization method (Robinson & Oshlack, 2010) included 

in the EdgeR package. As our experiment did not have biological replicates, it was 

necessary to determine the biological variability. Thus, in accordance with the EdgeR 

guidelines, a BCV (biological coefficient variation) of 0.1 was assigned (McCarthy, Chen, & 

Smyth, 2012). This procedure has been successfully used previously in other studies, for 

which biological replicates were also not available (Sebastiana et al., 2014). After the 

identification of the differentially expressed (DE) genes a multiplicity correction was 

performed by applying the Benjamini-Hochberg method (Yoav & Yosef, 1995) on the p-

values, to control the false discovery rate (FDR).  Finally, in order to obtain the most 

significant DE genes, the results were filtered using a FDR value ≤ 0.01.  

2.4 - Transcriptome annotation 

The ORFs transcripts identified by TransDecoder were used for transcriptome annotation. 

This procedure was performed using InterProScan. The protein domains, GO terms and 

KEGG pathways associated with the genes annotated which are encoding enzymes were 

identified. A python script was run to filter GO’s and KEGGs from the InterProScan output. 

Categorizer was used for the analysis of the GOs. From a list of GOs IDs belonging to one 

of the GO category (BP, CC, MF), it classifies them by their corresponding subcategories 

against the GO Slim plant, counting the number of GOs within each subcategory, and 

reporting its percentage over the total set of GO IDs provided.  
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In relation to functional annotation for differential expressed genes, the contigs were 

annotated against the non-redundant NCBI plants database (version of August, 2015) 

using BlastX (e-value 1e-5). 

2.5 SNP calling 

Variant calling was performed with the GATK toolkit, which offers a variety of tools for 

variant discovery.  Similarly to differential expression analysis, the unique mapped reads 

were used for SNP calling. The first step was to create a dictionary as a reference from 

the assembly, which was done using Picard tools (Broad institute, n.d.). Once the 

dictionary was created, the next step was to produce an unfiltered highly sensitive call set 

of variants in VCF format, using the "UnifiedGenotyper" tool available in the GATK toolkit. 

This initial set of variants was then filtered, using the "SelectVariants" option with the 

parameters SNP quality (QUAL >= 60), individual coverage (DP >= 25) and genotype 

quality (GQ - phred quality >= 40), in order to produce the final set of high-confidence 

SNPs. Finally, SnpEff was used to annotate and predict effects of the filtered SNPs. 
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3. - RESULTS 

The key results of the RNA-Sequencing analyses from maritime pine response to infection 

with PWN are shown in this chapter.  These results include the most relevant metrics and 

statistics obtained in each bioinformatics analysis step described previously. 

3.1 - Pre-processing of RNA-sequencing data and assembly 

A total of 176,282,168 raw reads were generated for all libraries. After checking quality 

control using FastQC, low-quality bases were trimmed by Sickle and 144,422,207 high 

quality reads were obtained with an average range length between 119bp and 122bp (table 

1). A total of 81.9% of the original number of reads were retained after applying the quality 

control procedures. 

The de novo assembly performed with Trinity 2.1.1 produced 483,428 contigs. Additional 

clustering of these contigs was performed with CAP3 (Huang & Madan, 1999), which 

resulted in an improved assembly comprising 355,287 contigs with a total length of 

147,022,102 base pairs. Moreover, the largest contig had 7,285 base pairs. QUAST software 

(Gurevich et al, 2013) was used to obtain a set of different assembly metrics such as the 

N50, percentage of GC content, and the distribution of number of contigs above different 

length ranges. This allows a general view of the assembly status. Key results from the 

QUAST are presented in table 2. 

Regarding gene prediction for the transcriptome assembly, we used TransDecoder 

software to identify protein coding regions within the unigenes, which yielded a total 

number of 83,468 predicted genes from the 355,287 assembled contigs. 
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Table 1 - Number of sequenced reads and its average read length for each library. Number and 
percentage of processed reads after control quality. 
 

                                        

 

Table 2: Key results from QUAST software 

  

Sample 
Number of 
sequenced 

reads 

Average read 
length (bp) 

Number of 
reads after QC 

% reads after 
QC 

Pp01 – Control 47,903,109 122 39,091,399 81.6 

Pp02 – 6h+24h 38,483,969 119 30,863,177 80.2 

Pp03 – 48h 44,943,925 122 37,186,370 82.7 

Pp04 – 7 days 44,951,165 121 37,281,261 82.9 

Total 176,282,168 121 144,422,207   81.9 

Metric Value 

Total number of contigs 355,287 

Nº of contigs >=200 bp 355,287 

Nº of contigs >=500 bp 66,262 

Nº of contigs >=1000 bp 15,997 

Nº of contigs >=2000 bp 2,583 

Nº of contigs >=4000 bp 74 

Nº of contigs >= 6000 bp 3 

Total length of contigs 147,022,102 bp 

Largest contig 7,285 bp 

GC % 44.2% 

N50 408 
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3.2 - Mapping and differential expression analysis  

The mapped reads (MR) report for each library is presented in table 3. A total of 

102,863,100 pre-processed reads were mapped by RapMap against the transcriptome 

assembly for all libraries, which corresponded to an average of 71.3% of the total number 

of pre-processed reads. The lowest percentage of mapped reads were obtained for the 

control library (Pp01) and for the last sampling time point Pp04, with values of 70.6% and 

70.5%, respectively. On the other hand, for the Pp02 library, which corresponds to the 

6h+24h sampling time points after inoculation, the highest percentage of MR (73%) was 

obtained (Table 3). 

For all downstream analyses it was essential to filter the unique mapped reads (UMR) from 

this set of mapped reads. A total of 54,497,857 UMR were retained, which corresponded 

to approximately 37.8% of total processed reads (Table 3). Similarly to MR, the lower 

percentage of UMR was detected in Pp01 and Pp04 (36.9% and 37%, respectively), while 

the Pp02 library had the highest percentage of UMR (39.4%) (Table 3). 

 

Table 3: Number of mapped reads, unique mapped reads and their percentages for each library 

Sample Number of 
reads mapped 

Number of 
unique 

mapped reads 

% of mapped 
reads 

% of unique 
mapped reads 

Pp01 – Control 27,578,068 14,439,253 70.55% 36.94% 

Pp02 – 6h+24h 22,536,600 12,167,028 73.02% 39.42% 

Pp03 – 48h 26,465,242 14,086,581 71.17% 37.88% 

Pp04 – 7 days 26,283,190 13,804,995 70.50% 37.03% 

Total 102,863,100 54,497,857 71.3% 37.8% 
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Statistical analysis in EdgeR software identified a total of 17,533 differentially expressed 

genes (DEG) (adjusted P-value ≤ 0.05 and FDR value= 0.01) within the 42,606 significant 

tests. The number of tests (up and down regulated) for each comparison between two 

different stages are summarized in table 4. The highest number of tests were identified 

between the control sample and the Pp02 where 4,969 genes were up regulated and 

5,104 genes were down regulated. Moreover, 85 genes were always differentially 

expressed (up or down) in all comparisons.  

Table 5 shows the number of genes differentially expressed (up and down) uniquely for 

each comparison. These results are in agreement with the total number of significant 

tests, since the highest number of DEG were present between Pp01 and Pp02 libraries. 

 

Table 4: Total number of differentially expressed tests (up and down) between each comparison 

 Pp01 vs 
Pp02 

Pp01 vs 
Pp03 

Pp01 vs 
Pp04 

Pp02 vs
Pp03 

Pp02 vs 
Pp04 

Pp03 vs 
Pp04 

UP 4969 3354 3001 2874 4746 3235 

DOWN 5104 3549 2637 2964 3957 2216 

 

 

Table 5: Number of differentially expressed genes (up and down) uniquely for each comparison 

 Pp01 vs 
Pp02 

Pp01 vs 
Pp03 

Pp01 vs 
Pp04 

Pp02 vs 
Pp03 

Pp02 vs 
Pp04 

Pp03 vs 
Pp04 

UP 630 384 264 362 716 312 

DOWN 675 334 254 222 539 253 
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3.3 - Transcriptome annotation 

Functional annotation over the 83,468 predicted genes by TransDecoder was performed 

using BlastP against the NCBI NR-plants database, with results showing a total of 70,646 

annotated genes. However, 25,545 annotated genes had “Unknown” description, 

predominantly being associated to Picea sitchensis, a conifer of the Pinaceae family. From 

this set of annotated genes, the subset containing only the DE genes also contained 8,996 

with an “Unknown” description or no description available. Also for the DE genes, most 

of the “Unknown” descriptions were related to Picea sitchensis. 

We also carried out analysis about protein domains using InterProScan, which provided 

information related to the Gene Ontology annotations and KEGG pathways in the set of 

all predicted genes. 

Gene Ontology (GO) analysis was performed by running queries against the CateGOrizer 

plant database, providing information related to three ontologies, which include 

biological process, cellular component and molecular function. First, a GO analysis was 

performed for all predicted genes, for which the results are shown in figures 3, 4 and 5. A 

total of 38,762 (46.4%) genes were associated with at least one GO term and a total of 

1,810 different GO terms were found over the whole gene set. 

With respect to the biological process branch, we found 1,737 hits assigned to 30 GO 

terms. The most significant were cellular process (GO:0009987) (32.8%), metabolic 

process (GO:0008152) (26.9%) and biosynthetic process (GO:0009058) (11.1%) (Figure 3). 

In the case of cellular component, 690 hits were assigned to 26 terms. The largest 

proportion GOs were assigned to cell (GO:0005623) (28.84%), intracellular (GO:0005622) 

(26.96%) and cytoplasm (GO:0005737) (11.45%) (Figure 4). In the molecular function 

category, we detected 1,437 hits corresponding to 24 GO terms. In this category, the most 

representative terms were catalytic activity (GO:0003824) (44.2%), transferase activity 

(GO:0016740) (13.9%) and hydrolase activity (GO:0016787) (11.7%) (Figure 5). 
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Subsequently, to further investigate the biological response associated to PWN infection, 

we performed a GO’s analysis for DE genes between all conditions, the results are shown 

in figures 6, 7 and 8. In this analysis, we identified a total of 9,119 DE genes (52.0%) 

associated with at least one GO term and a total of 1,292 different GO terms were found. 

For the biological process term we identified 36 GO subcategories with a total of 1,477 

hits. The most representative subcategories were cellular process (GO:0009987) (27.4%), 

metabolic process (GO:0008152) (22.55%) and biosynthetic process (GO:0009058) (9.1%) 

(Figure 6). Regarding cellular component terms, 24 subcategories were found with a total 

of 486 hits. The subcategories with more hits were cell (GO:0005623) (28.6%), 

intracellular (GO:0005622) (27.4%) and cytoplasm (GO:0005737) (12.4%) (Figure 7). 

Lastly, for molecular function term we identified 24 subcategories with a total of 1,039 

hits. The most relevant subcategories were catalytic activity (GO:0003824) (42.9%), 

transferase activity (GO:0016740) (12.9%) and hydrolase activity (GO:0016787) (11.6%) 

(Figure 8).  

32.8%

26.9%

11.1%

9.6%

5.4%

3.0%
2.3%

1.7% 1.6%

5.6%

Biological Process Subcategories for all predicted genes

cellular process metabolic process

biosynthetic process nucleobase-containing compound metabolic process

protein metabolic process catabolic process

lipid metabolic process response to stress

DNA metabolic process Others BP

Figure 3 - Gene Ontology analysis of RNA-Seq data. Distribution of biological process subcategories for 
all predicted genes 
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28.8%

27.0%
11.4%

9.0%

6.7%

2.5%
2.5% 1.9%

1.4%

8.8%

Cellular Component Subcategories for all predicted genes

Cell Intracellular Cytoplasm Membrane

Nucleus Cytoskeleton Nucleoplasm Mitochondrion

Endoplasmic reticulum Others CC

44.2%

13.8%

11.7%

9.5%

3.9%

3.4%

2.4%
1.9%
1.5%

6.7%

Molecular Function Subcategories for all predicted genes

Catalytic activity Transferase activity Hydrolase activity
Binding Transporter activity Kinase activity
Protein binding Nucleic acid binding Enzyme regulator activity
Others MF

Figure 4 - Gene Ontology analysis of RNA-Seq data. Distribution of cellular component subcategories for 
all predicted genes 

Figure 5 - Gene Ontology analysis of RNA-Seq data. Distribution of molecular function subcategories for 
all predicted genes 
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27.4%

22.6%
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Biological Process Subcategories in DEG

Cellular process Metabolic process

Biosynthetic process Nucleobase-containing compound metabolic process

Cellular component organization Transport

Protein metabolic process Catabolic process

Carbohydrate metabolic process Others BP

28.6%

27.4%
12.4%

9.9%

5.1%

2.5%
2.1%

1.7%
1.7%

8.9%

Cellular Component Subcategories in DEG

Cell Intracellular Cytoplasm Membrane Nucleus

Cytoskeleton Mitochondrion Nucleoplasm Thylakoid Others CC

Figure 6 - Gene Ontology analysis of RNA-Seq data. Distribution of biological process subcategories in DEG 

Figure 7 - Gene Ontology analysis of RNA-Seq data. Distribution of cellular component subcategories in DEG 
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42.9%

12.9%

11.6%

10.4%

4.3%

3.3%
2.3%
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1.6%

8.5%

Molecular Function Subcategories in DEG

Catalytic activity Transferase activity Hydrolase activity Binding

Transporter activity Kinase activity Protein binding Nucleic acid binding

Enzyme regulator activity Others MF

Figure 8 - Gene Ontology analysis of RNA-Seq data. Distribution of molecular function subcategories in DEG 
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Similarly to the GO analysis, we performed the KEGG pathways analysis for all predicted 

genes and for the DE genes. In the predicted genes set, we identified 4,904 genes 

associated with at least one KEGG pathway and a total of 111 KEGG pathways were found. 

KEGG analysis of DE genes between stages revealed that 1,154 were associated with at 

least one KEGG pathway and a total of 102 different KEGG pathways were found over this 

set of genes. 

The ten most representative pathways for predicted genes and for DE genes with the 

number of enzymes associated are shown in table 6. 

Table 6 – Summary of most representative KEGG pathways detected in predicted genes and in DEG 

 

  

Pathways Enzymes 

Purine metabolism 35 

Pyrimidine metabolism 26 

Cysteine and methionine metabolism 20 

Aminoacyl-tRNA biosynthesis 20 

Starch and sucrose metabolism 19 

Phenylalanine, tyrosine and tryptophan biosynthesis 18 

Terpenoid backbone biosynthesis 17 

Pyruvate metabolism 17 

Porphyrin and chlorophyll metabolism 17 

Glycolysis/ Gluconeogenesis 17 
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3.4 - SNP calling analysis  

For SNP discovery and filtering, GATK was used with stringent parameters. Variants were 

called using the UnifiedGenotyper and further filtering was performed using the 

SelectVariants option. In total, 36,295 different SNPs were detected. Among these SNP’s, 

32.0% were found in exons, while 30.6% were detected in an intergenic region, a portion 

of DNA sequences located between genes (Table 7). Moreover, with respect to the SNPs 

found in each functional class, we identified 48.5% associated to missense mutations, 

50.7% associated to silent mutations and less than 1% associated to nonsense mutations 

(Table 8). 

 Table 7 - SNP calling analysis. Number and percentage of effects by region 

 

Table 8 - SNP calling analysis. Number and percentage of effects by functional class 

 

  

Region Count Percent 

Exon 15,232 31.9% 

Intergenic 14,600 30.6% 

Splice site region 1 <0.1% 

Transcript 31 0.1% 

UTR 3 Prime 9,072 19.0% 

UTR 5 Prime 8,718 18.3% 

Type Count Percent 

MISSENSE 7,410 48,5% 

NONSENSE 121 0,8% 

SILENT 7,732 50,7% 
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Table 9 - SNP calling analysis. Number and percentage of effects by type 

  

  

Type Counts Percent  

3 prime UTR variant 9,072 19.0%  

5 prime UTR premature start codon gain 
variant 

1,245 2.6%  

5 prime UTR variant 7,473 15.9%  

Initiator codon variant 8 <0.1%  

Intergenic region 14,600 30.6%  

Missense variant 7,350 15.4%  

Missense variant + splice region variant 1 <0.1%  

Splice region variant 1 <0.1%  

Start lost 23 <0.1%  

Stop gained  121 0.3%  

Stop lost 28 0.1%  

Stop retained variant 14 <0.1%  

Synonymous variant 7,718 16.2%  
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4. - DISCUSSION  

In this study, we used an approach based in RNA-Sequencing technology to generate the 

transcriptome profile of maritime pine in different stages after inoculation with PWN, 

identifying candidate genes associated to resistance mechanism.  

One of the main challenges in RNA-Seq studies for non-model organisms like maritime 

pine is the de novo transcriptome assembly.  This is a crucial step, which can yield some 

undetected errors by the error-prone nature of high-throughput sequencing reads. The 

error rate of Ion Proton sequencing is between 1% and 3% affecting the accuracy of the 

de novo transcriptome assembly, since the de Bruijn graph can introduce false nodes, 

which may have important implications for gene prediction, differential expression 

analysis and SNP calling. This fact is evidenced in this study due to the low rate of 

predicted genes from the set of assembled contigs. Only 83,468 genes were predicted 

from 355,287 assembled contigs. These results can be explained, in part, either by 

sequencing errors or by assembly errors. In particular, the Ion Proton sequencing error 

rate is larger than other sequencing platforms, which increases the probability of the 

errors mentioned previously. Another relevant factor that contributes to the low rate of 

predicted genes is the unavailability of a reference genome for P. pinaster. In RNA-Seq 

approaches, the availability of reference genome is important because it provides a full 

description of genetic sequences and other useful biological knowledge stored in 

genome. In addition, with the usage of a genome reference it is easier to analyze and 

compare regions that could be less probably achieved with the de novo assembly.  

When a reference genome is not available, the genetic description contained in the 

assembled transcripts can be successfully identified by homology only if the protein 

products have homologies in different protein databases, giving a set of predicted genes. 

From the total genes predicted in these study, 70,646 of them were annotated, providing 

a genomic resource to further deepen the study of candidate genes associated to pine 
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wood disease resistance. However, 25,545 annotated genes had “Unknown” description, 

mainly associated to Picea sitchensis. This high number of “Unknown” annotations can be 

explained again due to the unavailability of a reference genome for P. pinaster.   

Despite the limitations mentioned above related with the RNA-Seq approaches, this study 

provides new advances in the comprehension of maritime pine resistance to PWN, by 

identifying a set of candidate genes potentially involved in defensive mechanism. 

However, additional studies are required to identify the real role of each gene in this 

complex defensive system.  

Functional annotation with GO terms for predicted genes resulted in 38,762 (46,4%) 

unigenes with at least one assignment into one of the three categories of GO terms 

(BP,MF and CC). In one of the GO categories, the GO terms fell mainly into two or three 

subcategories. The GO subcategories identified with more evidences are in accordance 

with other reports (Santos et al., 2012), and may represent a typical gene expression 

profile for P.pinaster after infection with PWN. 

Most plant defensive responses to pathogens have evolved into a complex system, 

simultaneously combining a number of mechanisms and pathways. To identify pathways 

involved in defense against PWN, we performed KEGG analysis for our set of predicted 

genes. The different KEGG pathways associated with the predicted genes are in 

agreement with Physiome Project Models for P. pinaster 

(http://nsr.bioeng.washington.edu/jsim/models/kegg/organism.html?eppi) except 

pyrimidine metabolism. The most prevalent pathways were purine and pyrimidine 

metabolism.  These subunits of nucleic acids are major energy carriers and precursors for 

the synthesis of nucleotide cofactors such and NAD and SAM (Moffatt & Ashihara, 2002).  

The comparison of sequence data from all libraries revealed a total of 17,533 DEG. Note 

that this high number of genes were obtained using a FDR value of 0.01. Usually this kind 

of studies make use of a FDR value equal to 0.05. Due to the huge number of DEG found 
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with that FDR value, we were forced to decrease it in order to reduce the complexity of 

the set DEG to analyze.  

The highest number of DEG were identified in the comparison between control sample 

(Pp01) and the first time point (PP02 – 6h + 24h), suggesting an immediate response to 

PWN after inoculation. This observation is in accordance with previous results obtained 

in Pinus thunbergii Parl., that propose an early response to PWN in susceptible and in 

resistant trees (Shin et al., 2009). Within this early stage of response and comparing with 

the control sample, several genes potentially involved in the defensive response were 

detected. The “TMV resistance protein N-like” gene was down-regulated. This gene 

produces a resistance protein that guards the plant against pathogens, trigging a defense 

system, which restricts the pathogen growth (http://www.uniprot.org/uniprot/Q40392). 

We also highlighted “putative TIR-NBS-LRR protein” that belongs to disease resistance 

proteins family (http://www.uniprot.org/uniprot/Q9ZVX6). These proteins have been 

referenced as commonly involving in defensive mechanisms in various diseases. Several 

up-regulated genes for this comparison were also identified, including the “mildew 

resistance locus 6 calmodulin binding protein” gene, which triggers a response in the 

occurrence of an infection caused by a foreign body 

(http://www.uniprot.org/uniprot/B2KZI2). The processes used by the PWN to invade the 

Pinus pinaster tissues are likely to represent a very similar mechanism, hence this results 

provides further support for the involvement of the mildew resistance locus 6 calmodulin 

binding protein gene in the initial response of plants to infections with parasites or other 

agents. Also “sucrose synthase” was identified, an enzyme that provides the substrate for 

cellulose synthase, playing an important role in secondary cell wall synthesis (Nairn et al., 

2008). The over expression of this enzyme as a response to infection, gives insights that 

not just proteins related to defensive mechanism are used to fight the infection. Thus, 

some mechanisms are activated to reconstruct the cell damage originated by the PWN.  

In the (Shin et al., 2009) report it was also suggested that there is a late response in 

susceptible trees. This was observed in our data, indicating that this response may occur 
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approximately one week after inoculation, due to the large amount of DEG between Pp02 

– 6h +24h and Pp04 – 7 days after inoculation identified.  Measuring differences between 

early and late responses can elucidate the different mechanisms activated. As down-

regulated genes between Pp02 and Pp04 we identified a “dehydrin 2 partial”, which has 

been associated to plant response and adaptation to abiotic stress, such as water stress, 

being involved in a commonly mechanism developed in these stages (Hanin et al., 2011). 

This make sense, once the PWN attack the conducting vessels of the plant, affecting the 

water transportation, resulting in a water stress state.  A “putative intracellular 

pathogenesis related type 10 protein” was identified as down-regulated. This protein was 

already found in conifers, displaying a transient accumulation in needles of drought-

stressed trees (Dubos, 2001).As a consequence of the water stress, the needles became 

drought stressed, which is one of the most characteristic symptoms of PWD. As up-

regulated between Pp02 and Pp04 a “heat shock protein 81-1-like” was found. Heat shock 

proteins, also known as stress proteins, are highly conserved among different organism. 

Under stressful conditions they protect cells by stabilizing unfolded proteins, giving the 

cell time to repair damage proteins (http://www.enzolifesciences.com/). It is unclear the 

precise role that this protein is playing in the Pinus pinaster response to the PWD. A“light 

harvesting complex a protein” was also found, which is involved in light energy transfer 

to one chlorophyll a molecule at the reaction center of a photosystem. This protein is not 

directly related with defensive mechanism, but it plays an important role, trying to 

maximize the production of energy, which could be essential in helping the resistance 

system. Furthermore, due to the high number of DEG among all conditions, a set of genes 

without expression in control sample (Pp01) and highly expressed in the others conditions 

(Pp02, Pp03, Pp04) were identified. This means that these genes were induced only after 

inoculation with PWN. Within those genes we highlighted “GDSL esterase/lipase 

At5g03610” which belongs to an important lipases gene family, where most of these 

contain a signal peptide, and are potentially involved in defensive reactions (Ling, 2008; 

Oh et al., 2005).  The role of this proteins is to trigger systemic resistance signaling. 
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Moreover, we identified “translationally-controlled tumor protein homolog”, a highly 

conserved protein among many eukaryotic organisms that has been referenced as 

participant in important cellular processes like the protection of cells against various 

stress and apoptosis (Bommer & Thiele, 2004). Additionally, “jacalin-related lectin 3” 

protein was identified, which belongs to a subgroup of proteins often associated with 

biotic and abiotic stimuli.  This subgroup of proteins has been referenced as a component 

of the plant defense system (Xiang et al., 2011). In this study, the identification of several 

DEG related to biotic and abiotic stresses further validates the hypothesis that these 

mechanisms may play a crucial role in the plant defense system. 

Another interesting analysis is to monitor the evolution of defensive mechanism, thus, 

between Pp02-6h+24h and Pp03-48h, we identified as down-regulated “Cytochrome 

P720B1” that is involved in the biosynthesis of diterpene resin acids, a major component 

of the conifer oleoresin defense system (Geisler et al., 2016). It makes sense, once one of 

the main symptoms associated to PWN infection is the “tracheid cavitation” caused by 

destruction of cells surrounding the resin ducts. We also identified “auxin-induced protein 

1”, auxins hormones regulate and control vital mechanisms, being involved in growth, 

development and in defense via signaling involving different interactions of molecules 

(Carna et al., 2014). This protein seems to have an important role in the first stage of the 

response against the infection. Finally, as down-regulated in this comparison, we also 

found “putative NBS-LRR protein G6207” that has been widely referenced in plants 

disease resistance mechanism (McHale et al., 2006). On the other hand, as up-regulated 

genes between Pp02 and Pp03, we identified a “laccase” protein. This kind of proteins are  

involved in lignin biosynthesis and plant pathogenesis (Christopher, Yao, & Ji, 2014). 

Lignin forms important structural materials in the support tissues of vascular plants. It 

make sense that one of the mechanisms activated is to reinforce the cell walls, especially 

in wood and bark. 

Lastly, in Pp03 and Pp04 comparison, we highlighted “phospholipase D alpha 1-like” and 

“tau class glutathione S-transferase” being over expressed in Pp04. The first plays an 
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important role in various cellular processes, including response to stress 

(http://www.uniprot.org/uniprot/Q38882), while the second, has been associated to 

oxidative stress response mechanism (Kilili et al., 2004). One of the basal defense 

mechanism used by plants to combat pathogenic invasion is to generate oxidative stress, 

which has been already identified in the PWD as a response to the infection. 

The SNP calling analysis performed in this study confirmed that the RNA-Seq approach is 

an efficient way to identify SNPs without complete sequencing of the whole genome. 

However, in our study, SNP calling was done over pools of sequenced individuals. This 

approach has the limitation of not allowing the determination of the genotypes for each 

individual. If the SNP calling was done without pools, this could permits to relate the 

expression profiles for each individual, because may be the SNPs identified in a gene could 

provoke the over or under expression of it.  GATK package with stringent parameters 

yielded a total of 36,295 SNPs. In relation to the genomic regions where SNPs were 

identified, we not only identify SNPs in exons (31.9%), but also SNPs located in intergenic 

regions (30,6%), which have been recognized as playing important roles in gene 

regulation and disease response mechanism. Related with the effects by functional class, 

over than 50% has a silent effect, which means that SNP does not change the protein 

sequence. However, about 48.5% has a missense effect. In this situations, these changes 

are responsible for coding a different amino acids. When a new amino acid is coded, the 

sequence of the protein coded by a particular gene is also changed. These changes may 

occur between amino acids with markedly different properties, which in turn can affect 

the enzyme catalytic activity, or affect the secondary and tertiary structure of the protein, 

among others. Hence, these are very important SNPs. Moreover, about the 0.8% of the 

SNPs identified are nonsense, which provokes an unexpected stop codon truncating the 

protein function.   

Additionally, we identified 4,061 SNPs over 17,533 DEG. From this set of genes, 1,452 

have at least one SNP. These results could be promising to provide molecular markers for 

analyzing genome and identifying genomic regions that are expressed in different stages 
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of PWD resistance phenotype. It has been demonstrated that the use of molecular genetic 

markers to detect the presence of genetic loci controlling quantitative genetic variation, 

well known as quantitative trait loci (QTL), would seem to be particularly beneficial for 

improving disease resistance (Gibson & Bishop, 2005). Thus, the identification of QTLs 

would be useful for marker-assisted selection in PWN resistant breeding programs in 

Pinus pinaster because resistance tests are time consuming and laborious. 
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5. - CONCLUSIONS 

Currently, PWD, caused by Bursaphelenchus xylophilus, is the most deadly maritime pine 

disease. Several studies have been performed but only a few of them were based in NGS 

data. 

This study establishes a new approach for the understanding of the molecular response 

of maritime pine, which is susceptible to PWN, over different time points after inoculation 

with PWN. This was done using RNA-Seq data that is becoming widely used in resistance 

studies at transcriptome level.  

The low rate of predicted genes from the set of assembled contigs and the high number 

of genes without annotation or with "Unknown" annotation, evidences the existing 

limitations when working in RNA-Seq studies with non-model species like Pinus pinaster.  

Despite these limitations, we were able to find some insights related with the defensive 

mechanism of Pinus pinaster against PWN.  

The functional annotation of the predicted genes reveals the complexity of the system 

involved in the defensive mechanism against PWN, combining a number of mechanisms 

and pathways, simultaneously.   

As pointed out in previous studies, the occurrence of two phases of response against PWN 

was identified from the results of the differential expression analysis: an early response 

which may occur immediately after infection, and a late response which may occur 

approximately seven days after infection (Shin et al., 2009). Additionally, we were able to 

get a set of candidate genes involved in response to PWD related to secondary 

metabolism, oxidative stress and defense against pathogen infection, among others. 

Some of those candidate genes highlighted in this study are “TMV resistance protein N-

like”, “Putative TIR-NBS-LRR protein”, “Mildew resistance locus 6 calmodulin binding 

protein”, “Dehydrin 2 partial”, “Putative intracellular pathogenesis related type 10 

protein”, “Heat shock protein 81-1-like”, “Light harvesting complex a protein”, “GDSL 
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esterase/lipase At5g03610”, “Translationally-controlled tumor protein homolog”, 

“Jacalin-related lectin 3”, “Cytochrome P720B1”, “Tracheid cavitation”, “Auxin-induced 

protein 1”, “Putative NBS-LRR protein G6207”, “Phospholipase D alpha 1-like”, “Tau class 

glutathione S-transferase”.  

Taking all these together, our results indicate that the workflow was successfully applied 

and it can be used as a guideline for similar studies with non-model species. Furthermore, 

the results provide new insights about the molecular mechanisms and metabolic 

pathways involved in resistance of Pinus pinaster against PWN infection. 

The set of candidate genes identified over the different time points after inoculation may 

be a useful resource in future studies and for future breeding programs to select plants 

with lower susceptibility to PWD. Moreover the SNP calling results could be promising to 

provide molecular markers for identifying genomic regions that are expressed in different 

stages of PWD resistance phenotype. However, these markers need to be validated in 

large populations. Another future work opportunity based in this study is to identify gene 

clusters that share the same pattern of behavior through time after inoculation. Last but 

not least, it could be interesting to compare these results with the molecular response of 

a conifer species, which are referred as tolerant to PWN. In this sense, the workflow 

carried out in this study could be applied and adjusted to these non-model conifer 

species. 
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7. - APPENDIX 

In this section are presented the methodologies used for PWN inoculation, sampling 

procedures, RNA extraction and cDNA synthesis. All this steps were done in INIAV I.P. – 

Instituto Nacional de Investigação Agrária e Veterinária. Moreover, methodologies for 

libraries preparation and sequencing are also showed. This procedures were carried out 

in Biocant. These tasks were not my responsibility. 

7.1 - Biological Material, pine wood nematode inoculation and 
sampling 

A total of seventeen potted 3-year old Pinus pinaster trees were used in this study. These 

plants were derived from seeds and maintained in natural environmental conditions 

during the assay. Bursaphelenchus xylophilus culture was grown in PDA (Potato Dextrose 

Medium) with Botrytis cinerea. After a significant growth, a suspension of nematodes was 

transferred to test tubes with 5ml of water and barley grains previously autoclaved. Later 

they were incubated for a week at 25ºC and relative humidity of 70%, (optimal conditions 

for nematodes growth). Before inoculation, nematodes were extracted from test tubes 

using the Baermann funnel technique (Baermann, 1917). Then, the culture was placed at 

4ºC to stop multiplication and passing from juvenile stage to adult stage. 

Inoculation with PWN was conducted following the method of Futai and Furuno (1979). 

Shortly, a suspension with 2,000 nematodes was pipetted into a small vertical wound 

(1cm) made on the upper part of the main pine stem with a sterile scalpel.  A sterilized 

piece of gauze was placed around the wound site and fixed with parafilm to maintain the 

optimal humidity level. This procedure was done in fifteen P. pinaster plants, while the 

two remaining plants were used as control (inoculation with water).  
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Four sampling time points were established, including 6h, 24h, 48h and 7 days after 

inoculation. For each time point, a set of three P. pinaster plants were collected. Briefly, a 

small piece of stem tree above inoculation point was cut and flash frozen at -80ºC for 

further RNA extraction. 

7.2 - RNA extraction, cDNA synthesis, library preparation and 
sequencing 

All collected samples were ground in liquid nitrogen and a total RNA extraction was 

performed from 2g of plant material, according to an optimized method from Provost et 

al, (2007). Then, a DNase treatment was carried out following the instructions of the 

manufacturer (Kit TURBO DNA-free by life technologies).  

An amount of approximately 1 microgram of total RNA was used for cDNA synthesis, 

following the ImProm-IITM Reverse Transcription System protocol kit (Promega). Before 

sequencing, four pools of cDNA were constructed (pool 1- control; pool 2-6+24h; pool 3-

48h; pool 4- 7 days). 

cDNA libraries were constructed with the Ion Total RNA-Seq Kit v2 (Life Technologies). 

Briefly, mRNA was fragmented with RNAse III. After short fragment removal, RNA 

adapters were ligated and the cDNA first and second strands synthesized. cDNA was then 

amplified with specific barcoded primers by PCR amplification and the resulting fragments 

selected for the correct size with magnetic beads.  

Finally, the positive spheres from the four libraries were loaded into an Ion PI chip v2 and 

the transcriptomes were sequenced as single-end reads in the Ion Proton System (Life 

Technologies). All procedures were carried out according to manufacturer’s instructions. 

 


