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Summary 

Agri-environmental schemes (AES) have been designed to counteract the 

dramatic decline in farmland biodiversity across Europe driven by agricultural 

intensification. Despite protection efforts, many species of conservation concern 

are showing ongoing decline, opening the debate regarding the efficiency of 

current measures applied. This study aimed to shed light on these aspects for the 

specific case of fallow fields located in a semi-arid region of the north-eastern 

Iberian Peninsula. Farmers traditionally managed fallow lands with the aim to 

control diseases, pests or serious weeds that could affect the future crop. 

However, today the important role of these temporal semi-natural areas as 

suitable habitats for the enhancement of farmland biodiversity and ecosystem 

service development make it necessary to plan specific management regimes 

from a conservationist perspective. Knowledge of  the vegetation assembly 

response (in terms of functionality) to the different agricultural management and 

landscape conditions improves understanding of their effect on higher trophic 

levels, and may potentially contribute to enhancing their viability. In this study, 

different management practices were experimentally tested to show their effects 

on the habitat suitability of two groups of species which represent farmland 

biodiversity and ecosystem services: steppe bird species insect pollinators, 

respectively. Moreover, the surrender area assemblage was also taken into 

account.  

The presence of semi-natural habitats around fallow fields improves the diversity 

of flower features available for insect pollinators, and additionally, is related with 

a more active presence of steppe birds. However, a highly heterogeneous 

configurational landscape composed of irregular fields with many boundaries is 
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avoided by the majority of steppe bird species mainly because of the high 

predation risk associated with this type of environment.   Also, the high 

disturbance pressure suffered in field border areas by the neighboring crops leads 

to a homogenization of the functional weed communities, represented by annual 

graminoids which are not at all attractive to pollinators. Within fallow fields, there 

is the need for field practices on account of the lack of suitability shown in non-

managed fallows. Tillage management leads to weed colonization of ruderal 

species, which thereof promotes floral features related with generalist pollinators, 

but enhances plant material palatability and seed ground availability as a result of 

the open habitats created.  This habitat type fits into the requirements of Pin-

tailed sandgrouse (Pterocles alchata), Black-bellied sandgrouse (Pterocles 

orientalis), Short-toed lark (Calandrella brachydactyla) and Stone-curlew 

(Burhinus oedicnemus). Little bustard males (Tetrax tetrax) also prefer these 

conspicuous areas for their sexual display activity during breeding time. While 

alfalfa sowing was not a successful treatment, shredding and herbicide action 

encouraged a denser vegetation habitat structure related with a high invertebrate 

biomass. Little bustard females and Calandra lark (Melanocorypha calandra) 

respond positively to these habitat characteristics. The heterogeneous patchy 

habitat configuration resulting from the selective action of an early herbicide 

application (February) promotes the coexistence of diverse plant phenotypes 

which in turn allow for a longer period of forage availability for pollinators. 

Management effects, however, often follow a common trend leading to 

homogenization of vegetation cover over the years.  Due to this, a maximum of 

three years under the same management is recommended to maintain habitat 

suitability. 

This study aims to improve current conservation measures by providing valuable 

information about the different aptitudes of   management strategies, according 
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to the preferences of the target species studied. Moreover, an economic analysis 

was taken into account to merge effective conservation strategy goals with 

feasible budgets for farmers.  
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Resumen 

El diseño de las medidas agroambientales tiene como principal objetivo  frenar la 

importante pérdida de biodiversidad asociada a la intensificación agrícola que ha 

tenido lugar en Europa. A pesar de los esfuerzos, muchas de las especies de 

interés para la conservación continúan en descenso abriendo el debate sobre la 

eficacia de las actuales medidas aplicadas. Este estudio tiene como objetivo 

contribuir a incrementar dicho conocimiento para el caso específico de los 

barbechos en las zonas semi-áridas del noreste de la Península Ibérica. De forma 

tradicional, el manejo de los barbechos tenía como finalidad controlar plagas y 

malas hierbas perjudiciales para los cultivos posteriores. Sin embargo, estas áreas 

semi-naturales transitorias juegan un importante papel contribuyendo a mejorar 

el hábitat de numerosas especies y el desarrollo de servicios ecosistémicos, 

poniendo de manifiesto la necesidad de planificar gestiones específicas enfocadas 

a la conservación. Conocer las respuestas de la comunidad vegetal –en cuanto a 

variaciones en sus características funcionales- a diferentes manejos agrícolas y 

condiciones del paisaje permite una mejor comprensión de sus efectos sobre 

niveles tróficos superiores, pudiendo contribuir a mejorar su viabilidad. En el 

presente estudio fueron evaluadas de forma experimental diferentes prácticas 

agrícolas con el objetivo de determinar la idoneidad del hábitat de dos grupos de 

especies representantes de la biodiversidad en zonas agrícolas –aves esteparias- y 

servicios ecosistémicos –polinizadores- y la influencia del hábitat circundante.  

La presencia de áreas semi-naturales en las proximidades de los campos en 

barbecho incrementa la disponibilidad de diversidad de formas florales, 

favoreciendo el hábitat para los insectos polinizadores. Además están 

relacionadas positivamente con la presencia de aves esteparias. Sin embargo, 
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paisajes de una alta heterogeneidad configuracional compuestos por campos 

irregulares y gran cantidad de bordes son evitados por éstas aves debido 

principalmente a riesgos de depredación. La continua e intensiva presión de 

perturbación de los campos aledaños en estas zonas de borde origina una 

homogeneización en la comunidad funcional de malas hierbas, representada por 

especies graminoides anuales, que no aportan ningún atractivo para los 

polinizadores. A nivel de campo, la falta de aptitud de los barbechos no 

manejados confirma la necesidad de su gestión mediante prácticas agrícolas. La 

acción del arado conforma hábitats abiertos que promueven la colonización de 

especies ruderales relacionadas con formas florales que atraen a polinizadores 

generalistas, mejoran la palatabilidad foliar además de la disponibilidad y 

accesibilidad de las semillas. Este tipo de hábitat se ajusta a los requisitos de la 

ganga (Pterocles alchata), la ortega (Pterocles orientalis), la terrera (Calandrella 

brachydactyla) y el alcaraván (Burhinus oedicnemus). Los machos de sisón (Tetrax 

tetrax) también muestran preferencia por estas zonas de alta visibilidad para 

realizar el display sexual durante la época de cría. La siembra de alfalfa no resultó 

ser un tratamiento exitoso, sin embargo el tratamiento con picadora y herbicida 

dió lugar a una estructura de vegetación densa relacionada con el incremento en 

la biomasa de invertebrados, asociada positivamente con  las hembras de sisón y 

la calandria (Melanocorypha calandra). La acción selectiva del herbicida genera 

una configuración de hábitat heterogénea permitiendo la coexistencia de 

diversidad de fenologías vegetales, lo que ofrece una amplia disponibilidad de 

alimento para los polinizadores. Sin embargo el efecto de los manejos sobre la 

vegetación a lo largo del tiempo suele confluir en la homogeneización de su 

cobertura, por lo que para mantener unas condiciones de hábitat adecuadas es 

recomendable no realizar un mismo tipo de manejo más de tres años. 
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Este estudio proporciona información valiosa sobre la adecuación de los 

diferentes manejos agrícolas en barbechos de acuerdo a las preferencias de las 

especies de interés para la conservación y así contribuir en la mejora y efectividad 

de las medidas aplicadas en la actualidad. A su vez, la inclusión del análisis 

económico permite establecer el balance entre conservación y producción.  
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Resum 

El disseny de  mesures agroambientals en espais agrícoles té com a principal 

objectiu frenar l'important pèrdua de biodiversitat associada a la intensificació de 

l'agricultura que ha tingut lloc a Europa en els darrers decennis. Tot i els esforços, 

moltes de les espècies d'interès per a la conservació continuen encara en 

regressió, fet que planteja  un debat sobre l'eficàcia d’aquestes  mesures. El 

treball que aquí es presenta té com a objectiu aportar nou coneixement en aquest 

àmbit, en concret sobre la gestió dels guarets en les zones semi-àrides del nord-

est de la Península Ibèrica. De forma tradicional, el maneig dels guarets ha tingut 

com a objectiu la prevenció de l’aparició de plagues i  el control de les males 

herbes perjudicials per als cultius posteriors. No obstant això, aquestes àrees 

semi-naturals transitòries juguen un important paper contribuint a millorar 

l'hàbitat de nombroses espècies i en l’establiment  de serveis ecosistèmics, ficant 

de manifest la necessitat de planificar gestions específiques enfocades a la 

conservació. Així, el coneixement de la resposta de la comunitat vegetal -pel que 

fa a variacions en les seves característiques funcionals- a diferents manejos 

agrícoles i a condicions del paisatge, ha de permetre  una millor comprensió dels 

seus efectes sobre nivells tròfics superiors i contribuir a millorar la seva viabilitat. 

En aquest sentit, en el present estudi han estat avaluades, de forma experimental, 

diferents pràctiques agrícoles amb l'objectiu de determinar la idoneïtat de 

l'hàbitat per a dos grups d'organismes: d’una banda les aus estepàries, com a 

representants de la biodiversitat en aquestes zones agrícoles, i d’una altra, els 

pol·linitzadors, indicadors de l’eficiència dels serveis ecosistèmics. En aquest 

context, la configuració paisatgística de l’hàbitat de l´entorn ha estat també  

tinguda en compte. 
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La presència d'àrees semi-naturals en les proximitats dels camps en guaret 

incrementa la disponibilitat de diversitat de formes florals, afavorint l'hàbitat per 

als insectes pol·linitzadors. A més, aquestes àrees estan relacionades positivament 

amb la presència d'aus estepàries. Malgrat tot, els paisatges amb una configuració 

molt heterogènia i compostos per camps irregulars i amb gran quantitat de 

marges no són adequats per a aquestes aus pel seu risc de depredació. D’altra 

banda, la contínua i intensa pertorbació dels camps limítrofs origina una 

homogeneïtzació en la comunitat funcional de males herbes, representada per 

espècies graminoides anuals, que no aporten cap atractiu per als pol·linitzadors. A 

nivell de camp, la manca d'aptitud estructural dels guarets sense un  maneig 

específic confirma la necessitat de la seva gestió mitjançant pràctiques agrícoles. 

L'acció de les labors del sòl conforma hàbitats oberts que promouen la 

colonització d'espècies ruderals relacionades amb formes florals que atrauen 

pol·linitzadors generalistes, milloren la palatabilitat foliar a més de afavorir la 

disponibilitat i accessibilitat de les llavors com a recurs tròfic.  Aquest tipus 

d'hàbitat s'ajusta als requisits de la ganga (Pterocles alchata), la xurra (Pterocles 

orientalis), la terrerola (Calandrella brachydactyla) i el torlit (Burhinus 

oedicnemus). Els mascles de sisó (Tetrax tetrax) també mostren preferència per 

aquestes zones en afavorir una alta visibilitat per a poder realitzar el display 

sexual durant l'època de cria. La sembra d'alfals no ha esdevingut  un tractament 

exitós, però el tractament amb picadora i herbicida ha  donat lloc a una estructura 

de vegetació densa relacionada amb l'increment en la biomassa d'invertebrats, 

associada positivament amb els requisits d’hàbitat de les femelles de sisó i de la 

calàndria (Melanocorypha calandra). L'acció selectiva de l'herbicida genera una 

configuració d'hàbitat heterogènia i permet la coexistència de diversitat de 

fenologies vegetals, fet que ofereix una àmplia disponibilitat d'aliment per als 

pol·linitzadors. En qualsevol cas l'efecte dels manejos sobre la vegetació sol 
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confluir al llarg del temps en l'homogeneïtzació de la seva cobertura, de manera 

que per mantenir unes condicions d'hàbitat adequades és recomanable no incidir 

en un mateix tipus de maneig durant més de tres anys seguits. 

Aquest estudi proporciona informació acurada sobre l'adequació dels diferents 

manejos agrícoles als requisits i preferències de les espècies d'interès per a la seva 

conservació en aquests espais, i alhora aporta propostes de millora per assolir una 

major efectivitat de les mesures agroambientals fins ara implementades. L’estudi 

inclou, a més, una  anàlisi econòmica que permet als agents involucrats 

(agricultors, assessors, gestors...) prendre decisions dins el crític balanç entre 

producció i conservació. 
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Chapter 1 

General introduction 





General introduction 

Framework 

Globally, agricultural lands cover approximately 38% of the planet’s surface and 

about 60% of that of the EU (Gillings et al., 2010). Traditional agricultural systems 

based on low intensive farming and extensive grazing historically resulted in 

highly heterogeneous landscapes capable of supporting species-rich communities 

(Benton et al., 2002). As a result of thousands of years of agricultural expansion, a 

large number of wild species now rely on land dedicated to human food 

production and their preservation strongly depends on traditional low-intensity 

practices (Cardador et al., 2014; Moreno et al., 2010). The demands for food of an 

increasing population promoted the application of new farming technologies 

which became more noticiable since the so-called “Green Revolution” in the 

1960´s allowing significant yield increases on roughly the same amount of land 

(Tilman et al. 2002). These technologies included new synthetic fertilizers, 

herbicides and pesticides, the development of high yielding cereal cultivars, 

improved methods of seed cleaning, among others. However, agricultural 

intensification to increase food production is one of the major drivers of 

ecosystem change leading to a global biodiversity loss and to the deterioration of 

valuable goods and services provide by the agroecosystems such as provision of 

resources for pollinators, soil fertility, regulation of climate conditions as well as 

biocontrol by natural predators of crop pests, among others (Balvanera et al., 

2006; Díaz et al., 2006; Foley et al. 2011; Gabriel et al., 2013; Green et al. 2005). 

Consequently, farmland habitat in many industrialized countries is being 

profoundly altered, decreasing the ability of communities to respond to 

environmental change and disturbance. 

Agriculture intensification is operating at different spatial scales, both landscape 

scale and field scale (Benton et al. 2003; Gámez-Virués et al. 2015; Tscharntke et 

al. 2005). The simplification process suffered at landscape scale is guided by the 

reduction in land cover types´ diversity and specialization in few (arable) crops 

(reducing compositional landscape heterogeneity) and also by increasing farm 

size, natural habitat fragmentation, disappearance of non-crop areas, such as 
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fallow, or destroying edge habitats (reducing configurational landscape 

heterogeneity) (Fahring et al. 2011; Gámez-Virués et al. 2015; Tscharntke et al. 

2005). Intensification at field scale is related with species loss and biotic 

homogenization due to the high intensity of field management by means of 

application of fertilizers, use of agro- chemicals (herbicides and pesticides), 

intensive mechanization or plantation of monocultures, among others (Gámez-

Virués et al. 2015).  

Because of the rising demand for food from a growing global population, 

agricultural production is set to double again by 2050 (Green et al., 2005). Within 

this context, new sustainable agricultural practices are required to limit the 

decline of farmland biodiversity and portions of the world’s species that are 

threatened with extinction, in order to preserve the ecosystem services they are 

capable of providing (Butler et al., 2007; Tscharntke et al., 2007).  

Within Mediterranean Europe, vast regions of the Iberian Peninsula are covered 

by agricultural landscapes known as pseudo-steppes, characterized by a mosaic of 

land cover including cereal crops, dry legumes, ploughed fields, and grasslands 

(pastures and fallows) (Moreira et al., 2012). Compared with the other European 

regions that have an average cereal yield of 6000 kg ha-1, these areas represent 

low productivity systems, with a yield of only 2500 kg ha-1 (Oñate et al., 2007). 

Thus, managing the effects of these agricultural changes requires the 

development of frameworks that allow for the quantification of their potential 

threats and opportunities, while working towards a suitable and multi-functional 

agricultural system whereby the needs of agricultural production are reconciled 

with objectives for environmental protection, including biodiversity conservation. 

To guide this process, appropriate biodiversity conservation targets must be 

identified (Butler et al., 2009; Cardador et al., 2014). Following this idea, we have 

selected three important groups within agroecosystems as biodiversity indicators 

for this study: arable weeds, steppe birds and insect pollinators.  

Arable weeds 

Although arable weed have traditionally been considered as harmful species for 

agronomic and socio-economic processes, they are in fact key primary producers 
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and of central importance to the arable system food web (Hyvonen and Huusela-

Veistola 2008; Moretti et al., 2013). They belong to the group of species with high 

ecosystemic relevance, whose losses lead to major changes in the system (Pocock 

et al., 2012). Furthermore, they play an important role in supporting biodiversity, 

on account of their multiple interactions within and among trophic levels in 

agroecosystems, serving as immediate food sources by providing nectar, pollen, 

seeds and vegetative organs, and by providing shelter and suitable reproduction 

sites (Marshall et al., 2003). Such species inhabiting arable fields have, however, 

suffered a reduction of their richness, abundance and diversity because they are 

directly affected by intensification processes (Chamorro et al., 2016). High 

sensitivity to arable practices, together with a strong relationship to other 

organism groups make arable weeds a suitable indicator for evaluating 

management effects on wildlife diversity in arable fields (Albrecht, 2003; Gerowitt 

et al., 2003). Also, surrounding habitats are known to influence the plant 

community in a given habitat. A complex landscape, formed by a high proportion 

of semi-natural habitats may enhance dispersal-diversity relationships and 

therefore survival of populations (Ma et al., 2002; Myers et al., 2009; Tscharntke 

et al., 2005). Species pool of these areas can also provide environmental benefits 

and maximize important ecosystem services such as pollination and biological 

pest control and furthermore, provide forage and shelter for fauna (Batary et al., 

2011; Ma et al., 2002). 

Biotic and abiotic factors influence and change the structure and composition of 

weed communities, selecting species according to certain characteristics related 

to shifts in ecosystem function (Fried et al., 2012; Lavorel et al., 2013). The 

linkages between a disturbance factor, via vegetation, and certain ecosystem 

functions or processes, appear to be strongly controlled by plant traits (Pakeman 

and Stockan, 2013; Sebastià et al., 2011). A trait can be defined as a 

morphological, physiological or phenological characteristic of a species (that is 

measurable in an individual), referring to a function and indirectly affecting the 

phenotypic fitness (Violle et al., 2007; Wood et al., 2015). 

Many recent studies have shown that plant functional traits can be used to 

predict the response of plant assemblages to management or other 

environmental changes and the effect on upper trophic levels, leading to a greater 

understanding of the impacts of biodiversity in ecosystems (Lavorel et al., 2013; 
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Verheyen et al., 2003). Focusing entirely on species identity is problematic in that 

it results in a loss of generality regarding patterns and processes across 

geographical areas (Fukami et al., 2005). In contrast, the trait-based methodology 

enables us to identify more general patterns of species response between regions 

with different environmental conditions, allowing for the prediction of vegetation 

changes in response to future variation (Kahmen 2005; Pakeman 2013; Sandel et 

al., 2010).  Thus, the application of functional approaches to understanding 

ecosystem processes is highlighted (Wood et al., 2015). 

Pollinators 

Pollinators are key-species in ecosystem functioning, as they ensure the provision 

of vital ecosystem services both in wild habitats and in major crop yields, so are 

responsible for producing enormous economic benefits to food production 

(Firbank et al., 2013; Rands 2014). It has been reported that 84% of the species 

cultivated in Europe depend on pollinator insects (Ricou et al., 2014). The positive 

relationship between floral abundance or diversity and pollinators means that 

spatial and temporal changes in abundance, diversity, or distribution of flowering 

plants may strongly affect the pollinator populations that depend on them, and 

vice versa (Kohler et al., 2007; Tadey 2015).  

The transformation of agriculture has caused the widespread decline of native 

insect pollinators (Nicholls et al., 2012). The loss of suitable habitat and the 

removal of weeds that provide forage are the major contributing factors to 

pollinator decline within agroecosystems, which is directly related to the loss of 

functional plant–pollinator interactions (Steffan-Dewenter et al., 2005). The 

negative impact of changes in pollinator abundance on the reproductive success 

of flowering and plant production is because not all insect species are equally 

efficient as pollinators (Fontaine et al., 2006; Tadey 2015). Diverse floral and 

insect phenotype adaptations reflect specialization, resulting in better pollination 

services. However, the loss of species diversity often results in the loss of trait 

diversity, which is responsible for complementary pollination services, thus having 

likely consequences for communityfunctioning with its loss (Fenster et al., 2004; 

Forrest et al., 2015; Whelan et al., 2008). Since specialists are often more 
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vulnerable to environmental changes than generalist species, this pattern of 

change and loss could lead to considerable decline in pollinator efficiency as  a 

result of genetic impoverishment of plant species (Díaz et al., 2006; Potts et al., 

2010). 

The conservation of pollinator diversity represents an important issue because of 

their contribution to maintaining rich floral diversity (Ricou et al., 2014). The loss 

of pollination services not only affects the survival of viable populations of 

pollinators and wild plant diversity but also of beneficial entomofauna which act 

as natural enemies against pests, leading to substantial decreases in the quantity 

and quality of seeds produced; an early step in the demographic collapse of plant 

populations (Ashworth et al., 2004; Kohler et al., 2007; Potts et al., 2010).  

Steppe-birds 

Steppe birds comprise a highly heterogeneous community of species (De Juana 

2005) and are thought to be good indicators of overall farmland biodiversity (Gil-

Tena et al., 2015; Tryjanowski et al., 2011) since they are easily monitored, 

located high in the food web and have many key ecological functions. The decline 

of farmland birds across Europe is well documented in many studies (Bracken and 

Bolger 2006; Devictor and Jiguet 2007; Donal et al., 2001; Whittingham et al., 

2006). Their populations have almost halved since 1970 and are at present the 

most threatened bird group in Europe with 83% of the species possessing 

unfavourable status (Benítez-López et al., 2013). It is widely accepted that these 

declines have been driven by agricultural intensification based on the knowledge 

that a large number of such species are not supported by any other habitat on 

account of their highly specialized requirements (Butler et al., 2007; Wretenberg 

et al., 2010). Butler et al. (2007), distinguishing them in their degree of 

specialization over farmland bird species. According to this definition, steppe birds 

may be within the group of specialists, with narrower niche requirements, making 

them highly vulnerable to the effects of agricultural change. The Iberian Peninsula 

holds the most important breeding populations of several species classified as 

endangered at the European level (Ponce et al., 2014) and hence, stands as an 

indicator of bird biodiversity health in farmland areas. Evaluating the status of the 
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most threatened bird species populations and understanding their response to 

widely accepted farming practices is necessary to enhance their population 

viability in an area. Steppe bird habitat selection is based on a trade-off between 

energy gain and predation risk that maximizes their fitness (Sanza et al., 2012). 

Vegetation structure can influence in both and therefore strongly determines 

habitat selection (Whittingham et al., 2006). High breeding success is also 

associated with the availability of key supplies, such as alternative plant or 

invertebrate food, highlighting the necessity of considering the quantity and 

quality of the resources in determining habitat suitability (Butler et al., 2013; 

Cardador et al., 2014). 

Due to the nature of the birds' preferred habitat, productive and economic 

interests are in permanent conflict. It is therefore necessary to allocate special 

effort not only towards maintain agricultural landscapes for the conservation of 

biological diversity, but also to generate benefits for productive agriculture 

(Morgado et al., 2010).  

Agri-environmental schemes and Fallow lands 

The semi-permanent habitat patches of fallow land have always been recognized 

as having the potential as opportunities to provide environmental benefits and 

reverse biodiversity decline (Boatman et al., 2011; Toivonen et al., 2013). In 

contrast to other agri-environmental measures which have been specifically 

designed with biodiversity goals in mind, fallow/set-aside land was first 

introduced by the European Common Agricultural Policy (CAP) as a voluntary 

measure to reduce surpluses of arable crops. With the aim to improve the 

competitiveness of European agriculture, this measure became obligatory after 

the MacSharry reform in 1992 and led to the widespread implementation of agri-

environmental measures under the CAP (Burton et al., 2008; Hodge et al., 2006; 

Institute for European Environmental Policy, IEEP 2008). As a result of these 

reforms, farmers were compensated for their projected income losses via the 

introduction of direct payments (Gillings et al., 2010; Salonen and Hyvönen 2006).  

Since then, agri-environment schemes (AES) have become a key policy instrument 

that is broadly implemented by European governments to counteract the 
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detrimental effects of modern agriculture and to conserve and enhance the 

quality of the environment (Kleijn et al., 2006). The “greening” measure proposed 

by the European Commission in the 2013 CAP reform promotes the incorporation 

of non-crop strips within fields in order to achieve a win-win situation, generating 

benefits both for biodiversity conservation and for productive agriculture (EIP-

Agri, 2016). Despite this investment, nowadays there has been considerable 

debate as to whether these schemes actually deliver the expected biodiversity 

benefits, suggesting that more elaborate and efficient measures than the ones 

currently applied are required (Batáry et al., 2015; Mccracken et al., 2015). 

In AES programs, there are several options offered to farmers for managed fallow 

fields. Within semi-arid north-eastern Spain, fallow lands included in AES 

programs  that also fall within the Natura 2000 network must be managed by 

shredding, sowing with a competitive grass, ploughing, grazing or by spraying out 

with herbicide (BirdLife International 2008). All these practices must be conducted 

outside of the restriction period, which coincides with the farmland bird breeding 

time (from the 15th of April to the 1st of September).  

Management modifies habitat features to discriminate against the use of the 

patches by the different species (Whittingham et al., 2006). Arable weeds are 

primary producers and the base of foodchains in agroecosystems. Their 

importance in supporting biodiversity at higher trophic levels has been 

demostrated (Hyvonnen et al., 2008; Marshall et al., 2003). Plant traits determine 

how primary producers response to different environmental factors and so the 

evolution of a community assembly that affect other trophic levels and influence 

ecosystem processes and services (Kattge et al., 2011). 

Vegetation structure and the availability of high quality food reservoirs are key 

elements strongly influencing habitat choice of steppe birds (Sanza et al., 2012). 

However, and because of the birds' different optimal habitat requirements, the 

same management action can produce opposite effects, so it is often more 

effective for conservationists and managers to implement strategies for individual 

species at the local level (Mcmahon et al., 2010; Moreira et al., 2005).  

The presence of semi-natural habitats is also outstanding as a key factor for 

achieving pollination sustainability, however, there is little information as to the 
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impact of AES on pollination and especially on pollinator food resources (i.e. 

insect-pollinated plants) (Kohler et al., 2007; Ricou et al., 2014). The potential to 

utilize weed vegetation management as a tool to encourage pollinator diversity 

and abundance may prove to be a cost- effective means of maximizing crop yield. 

Therefore, an interesting task would be to define a habitat management strategy 

in which weed manipulation enhances pollinator resources, especially since there 

is a gap in knowledge in terms of this issue (Nicholls et al., 2012).  

Objectives 

In this study, we investigated how vegetation assembly on fallow lands responds 

to different abiotic factors such as management practices and surrounding 

habitats, and analyzed the effect of the resulting plant community on higher 

trophic levels. Thereby, the particular objectives addressed in this thesis are:  

1- Investigate the effect of abiotic filters on plant features that modify the 

attractiveness for pollinator insects through a functional trait framework. 

2- Predict the habitat suitability in terms of structure and food availability for 

steppe birds according different management practices. 

3- Evaluate the economic cost of the implemented management practices on 

fallow lands. 

4- Assess the response of steppe birds to contrasting fallow habitats with the aim 

to validate the previous predictions. 

5- Explore the preferred landscape characteristics for steppe birds´ establishment, 

differentiating between configurational and compositional habitat heterogeneity. 

6- Estimate changes in the spatial and temporal distribution of vegetation 

structure and food resources among different management practices. 

7- Quantify the suitability habitat available for steppe birds along fallow habitat 

changes. 
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These particular objectives are addressed in different chapters of this thesis in the 

form of several scientific papers (i.e., with the corresponding sections: 

introduction, methods, results, discussion and references), allowing readers to 

understand each one independently from the others. Finally, and to address the 

main goal of the thesis, results from the different chapters are integrated and 

jointly discussed, leading to the main conclusions.  

Methodology 

All the field experiments of this research were conducted in Catalonia (NE Iberian 

Peninsula) during spring time (May) between the years 2011-2015, always 

coinciding with the breeding period of the bird species. This dry-land cereal area 

of the Ebro basin is a flat to slightly undulated terrain, characterized by low annual 

rainfall (mean of 350 mm) that is mainly concentrated in spring and autumn 

(Servei Meteorològic de Catalunya). All of the area surveyed was included in 

Special Protection Areas (SPA); sites established under the 2009/147/EC Birds 

Directive and included in the Natura 2000 network (the European network of 

protected natural areas) and presented a homogeneous landscape. 

To accomplish objectives 1, 2 and 3, three cultural practices which highlight as the 

most commonly applied were arranged in a randomized complete-block design 

(200 m2 per each experimental plot) with three replications and were 

experimentally tested in four fallow fields during three agronomic seasons (Figure 

1, Chapters 2 and 3). The practices carried out in each experimental plot were: 

chisel plough -a minimum tillage down of ten cm-; shredding -cutting and removal 

off the biomass-; herbicide spray -glyphosate at a 1.5 l ha-1 dosage-; alfalfa sowing 

-Aragon seed variety at 30 kg ha-1 dose-.  The applications were administered at 

different times according to common practices: “early dates” (February) for chisel 

and herbicide, and “late dates” (April) for chisel, herbicide and shredding. Alfalfa 

was sown once in October of the first season. In addition, some plots were 

untreated (control), giving a total of seven treatments in each study area. This 

field experiment was conducted from 2012 to 2014 agronomic season (Figure 2).  
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Figure 1. The four study sites selected to place the experimental design (Chapeters 2 and 

3): Mas de Melons, Balaguer, Ballobar and Montcortés. 

Figure 2. Scheme of the randomized complete-block design carried out in Chapters 2 and 

3. Each management technique was applied in a 10 x 20m plot, with three replicates each.

In each plot, five 50 x 50cm quadrants were established as sampling points. 

38



Changes in plant characteristics caused by the different management regimens, 

age of fallow and surrender habitats structure and their influence on pollinator 

insect attractiveness was explored by a response-effect framework by identifying 

specific plant traits and discussed in Chapter 2. Carry out a proper management of 

the high number of field practices tested in the experimental design makes 

impossible to establish a landscape gradient that would entail increasing the 

sampling points and reducing the number of practices tested. The four sites are 

placed within a homogeneous landscape, however, the effect of the surrounding 

elements over the vegetacion assembly in untreated plots has been assessed. 

Unlike the managed plots, where the vegetation composition is strongly 

influenced by the impact of the agricultural practice, in the untreated ones we are 

able to study the effect of other abiotic factors, such as age of fallow or 

surrounding elements. As an approach to the surrounding area characteristics, the 

percentage of semi-natural habitat and total field edge length were assessed 

within a 500 m radius of each experimental design unit (Figure 3). To assess the 

functional approach, Rao’s quadratic entropy of functional diversity (FD (Rao), 

which takes into account intraspecific trait variability) (Lepš et al., 2006) and the 

community-weighted mean (CWM, which reflects the average trait value of the 

most dominant species in a community) (Garnier et al., 2004) were used.  

Figure 3. Orthophotomaps of the 500 m buffer around each experimental design to 

measure the percentage of semi-natural habitats and total border lengths as a 

surrounding area approach, taken into account in Chapter 2 (pictures of Mas de Melons 

on the left and Balaguer on the right). 
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Furthermore, as a plant species characterization complementarity, two taxonomic 

metrics were calculated: species richness (S) and the Shannon entropy index (H), 

presented as the exponential of Shannon-Weaver index (H') to allow comparison 

with species richness (Jost, 2006).  

In Chapter 3, we predict the habitat suitability for six of the most threatened 

steppe bird species -Little Bustard (Tetrax tetrax), Stone-curlew (Burhinus 

oedicnemus), Calandra Lark (Melanocorypha calandra), Short-toed lark 

(Calandrella brachydactyla), Black-bellied sandgrouse (Pterocles orientalis) and 

Pin-tailed sandgrouse (Pterocles alchata)- by comparing variations in vegetation 

structure (coverage and height) and food supply with their suitable habitat range 

according to bibliographic data. Availability of seeds and green material as trophic 

resources were estimated by creating indexes using both field data and functional 

traits information from databases. Moreover, a cost-evaluation of the field 

practices was two-fold in that it was carried out in order to create ideal fallow 

habitat scenarios and also devise plans for less costly field work. 

To meet objectives 4 and 5, a total of 241 fallow fields from six regions (included 

in protected bird areas, IBAs) were selected in the year 2015. These regions were: 

Mas de Melons-Alfés (7618.63 ha), Belianes-Preixana (6521.12 ha), Bellmunt-

Almenara (4039.48 ha), Granja d’Escarp (1800 ha), Plans de Sió (10382.69 ha) and 

Segria-Utxesa (7727.27 ha), where most of the steppe bird species of conservation 

concern are coexisting. The surrounding habitat heterogeneity, which is the 

compositional and configurational approach of taking a 200 m radius around each 

fallow field, along with bird censuses and vegetation surveys (structure and 

trophic availability) were used to develop models for assessing bird responses to 

different habitats (Chapter 4). The bird species selected in this study were: the 

Little bustard (Tetrax tetrax), Stone-curlew (Burhinus oedicnemus) and Calandra 

lark (Melanocorypha calandra). We measured plant coverage and height as 

vegetation structure and the availability of seeds and green material were 

estimated following the indexes developed in Chapter 3. Also, as an important 

food resource for chick survival, invertebrate supplies were estimated by 

recording the presence of grasshoppers, creating an insect biomass index. Proper 

knowledge of the effects of applied management allows for the construction of 

ties between bird preferences and certain practices.  
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To achieve objective 6 and 7, two adjacent plots measuring 50 x 150 m were 

established in one fallow field located in Conill. Each plot was managed using a 

different method: shredding or herbicide application for three consecutive 

agronomic seasons (from 2012 to 2014). Samples were taken every 10 m (with a 

total of 150 units per plot) georeferencing each point following a grid pattern 

(Figure 4). Spatial and temporal variation of the vegetation structure and food 

resources (seeds and green material, in accordance with the indexes developed in 

Chapter 3) was analyzed using semivariograms. Maps achieved by kriging technics 

were used as visual representation to study the spatial and temporal changes of 

the variables analized. A vegetation threshold (in terms of structure: cover and 

height) was fixed to calculate the suitable habitat available for steppe birds in 

each stage and per treatment. Pitfall traps were used to estimate the abundance 

of terrestrial invertebrates (Chapter 5). 

Figure 4. Scheme of the 50 x 150 m grid design implemented in Chapter 5 to compare the 

effect of two management treatments in the locality of Conill.  Sampling was conducted 

every 10 m in each 50 x 50 cm quadrant (a total of 150 sample points per grid). 
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Using the response – effect trait framework to quantify 

the value of non-crop patches in agricultural landscapes 

to pollinators 

Summary 

Pollination services contribute to the production of valuable goods for humans 

but recently pollinator abundance and diversity has declined because of habitat 

destruction and land use intensification. Achieving the sustainability of this 

important service will not only depend on implementing management practices 

that alter local habitat conditions, but also understanding the importance of 

landscape structure. Fallowing is a well-recognized agro-environmental scheme to 

preserve biodiversity within the agro-system, however the potential for enhancing 

these areas for greater provisioning of ecosystem services has been poorly 

explored. In our study, we tested if plant functional traits can be related to fallow 

management to develop a response-and-effect trait approach to link plants and 

insects for the enhancement of pollination attractiveness in the non-crop areas of 

two semiarid Mediterranean agricultural regions. The linkages between the 

selected plant traits were analyzed using community-weighted mean-RDA (CWM-

RDA) using region, landscape complexity, fallow field age and management 

practices as explanatory variables - capturing different spatial scales that interact 

with each other affecting pollination communities. The presence of semi-natural 

areas is shown to enhance the value of non-crop patches for pollinators, providing 

a source of diverse flower forms. We found that field edges act as a poor reservoir 

for flowering plant species in these areas. Land-use practices must focus on 

promoting mid-successional plant communities that combine the coexistence of 

diverse life forms which overlap flowering periods and have a range of flower 

morphologies supporting a diverse pollinator community An early-herbicide 

application (February) join with a shredding are expected to be the best fallow-

practices for enhancing plant-pollinator interactions. The construction of this 

framework helps policy makers to identify key factors that most benefit plant 

configuration to pollination attractiveness in fallows. 

Keywords: Fallow lands; Agri-environment schemes; Functional traits; Ecosystem 

services; Pollinator attractiveness; Environmental filters. 
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1. Introduction

Agricultural intensification is one of the main factors driving ecosystem change 

and global biodiversity loss as a consequence of the specific drivers of land 

conversion, habitat fragmentation and agro-chemical application  (Tscharntke et 

al., 2005). The resulting loss of farmland biodiversity threatens the sustainability 

of ecosystem goods and services delivered within agricultural landscapes, apart 

from provisioning of food (Zhang et al.,2007) such as pollination, biological pest 

control and climate regulation among others (Marshall et al., 2006). 

In recognition of the unintended environmental consequences of the drive for 

increased productivity of agricultural land, the European Union’s Agri-

Environmental Regulation Initiative has promoted various Agri-Environmental 

Schemes (AES) to enhance levels of biodiversity on farmland (Whittingham 2011). 

Fallowing is one of the most promising approaches to support and enhance 

biodiversity in the agro-ecosystems (Toivonen et al., 2013; Ma and Herzon 2014). 

As opposed to perennial field margins, fallows presents the opportunity to 

manage larger areas of ruderal habitat in field centres that provides a habitat for 

species adapted to frequently disturbed environments. Although AESs design has 

tended not to be explicitly linked with ecosystem services, these non-crop 

habitats are important landscape elements which may provide key ecosystem 

services such as  provision of resources for pollinators and there is now a drive to 

optimize the multi-functionality of AES habitats (Huusela-Veistola et al., 2011; 

Kuussaari et al., 2011; Toivonen et al., 2013).  

Characteristic arable plant species, adapted to the disturbed habitat of crop fields, 

differ from the other generalist species that tent to be found in the boundary 

features of arable landscapes in being more sensitive to perturbations but also in 

having high intrinsic values as component of biodiversity that provide a distinct 

resources and functions in agroecosystems (Rotchés-Ribalta et al., 2015). As a 

consequence, the value of the above-ground flora on fallow lands will be 

influenced by the historical management pressure imposed on the field crop and 

on the specific conditions generated by the standing management on the fallow. 

A poor seed bank resulting from an intensively managed land will require seeds 

from outside the field to increase plant diversity, therefore the surrounding 

landscape may also play  a key role, acting as a reservoir for propagules (Kohler et 
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al., 2008). A complex landscape, with a high percentage of natural and semi-

natural habitats, is likely to act as a refuge for weed species that are most 

sensitive to intensive agriculture and supply pollinator sources (Smart et al., 2002; 

Gaba et al., 2010; Solé-Senan et al., 2014). 

It has been long noted that weeds have a positive role in enhancing beneficial 

insect survival, and their removal from the landscape through herbicide use, along 

with habitat destruction and the decrease in crop diversity, has been identified as 

a driver of both pollinator declines and losses of pollination services (Steffan-

Dewenter and Westphal 2008; Nicholls and Altieri 2012). Greater plant 

biodiversity on farmland through the provision of areas of land managed 

specifically for is likely to increase the provision of a range of ecosystem services, 

however it is difficult to successfully quantify the enhancement of pollinator 

habitat (Whittingham 2011; Wratten et al., 2012). All plant species do not 

contribute equally to varied ecosystem processes and delivery of services, and 

thus the sustainability and resilience of these processes depend on aspects of 

diversity beyond the number of species present in a community (Stuart-Smith et 

al., 2013). Different pollinators promote selection for diverse floral forms that 

produce an array of "pollination syndromes”, defined as a suite of floral traits that 

function as an advertisement and reward for pollinators (Fenster et al., 2004; 

Poveda et al., 2005). Changes in floral characters such as morphology, colour and 

odor or food quality can influence pollinator visits (Wratten et al., 2012; Ricou et 

al., 2014). Developing models for quantifying the relative value of different 

habitats in the context of these floral traits is a clear research need for assessing 

contrasting habitats and management recommendations. The most often used 

management techniques to enhance pollinator habitat on farmland consist of 

field margin manipulation, including non-crop buffer strips which can provide 

nesting sites and encourage forage plant growth and the restoration of native 

plants in adjacent natural areas, among others (Wratten et al., 2012).  However 

the role of fallow land as a temporary patch habitat in dryland Mediterranean 

systems has been seldom explored in studies. A proper habitat management 

within this non-crop system can provide resources needed for pollinators´ 

conservation, therefore, progress in research is required.  

The use of functional traits has been an important conceptual advance in linking 

biodiversity with ecosystem processes and associated services (Ma and Herzon 
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2014). A trait can be defined as a morphological, physiological or phenological 

characteristic of a species, measurable in an individual, referring to a function and 

indirectly affecting the phenotypic fitness (Violle et al., 2007). A conceptual 

framework following the idea of Lavorel et al., (2002 and 2013) has been 

developed differentiating traits associated with response to environmental and 

management filters –response traits- from those that determine the effect of that 

change on ecosystem services -predicted by effect traits-. The overlaps or 

correlation between relevant response and effect traits determined the trait pool 

of plant communities responsible for the different dynamics that influence the 

relation with higher trophic levels and provision of ecosystem services. This 

framework has recently been extended to systems where services are delivered 

by higher trophic groups. 

Various studies have also highlighted the importance of the surrounding 

landscape on the effectiveness of AESs due to both habitat fragmentation and 

land use intensification, affect pollinator communities at different spatial scales 

that interact with each other (Steffan-Dewenter and Westphal 2008; Whittingham 

2011). Arable landscape composition together with management at field scale act 

as filters selecting between a diversity of ecological strategies (Raevel et al., 2012; 

Duflot et al., 2014). Determining the variation on biological communities, 

therefore, requires linking these multiple scales. 

The goal of this study was to populate a framework based on plant species 

abundance and traits to identify the effects of landscape, age of fallow and field 

management as a series of filters acting on pollination service following the model 

described by Lavorel et al., (2013). By selecting target traits and based on our 

knowledge, this study set out to 1) examine the response of plant vegetation 

traits to abiotic factors; 2) explore the impact on traits driving the response of 

higher  trophic levels; and 3) evaluate their interaction to predict the impact on 

pollinator attractiveness.  
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2. Material and methods

2. 1 Study area and experimental design

Trials were located in the Catalan part of the Ebro basin (north-eastern Iberian 

Peninsula), an area with a flat or slightly undulating topography, Mediterranean 

continental climate and average annual rainfall of 350 mm. A total of four 

separate fallow  lands with different ages were selected as study areas: 

Montcortes (41°42'35.22''N; 1°13'52.33''E) and Ballobar (41°32'55.37''N; 

0°5'59.06''E), were new fallows following a crop rotation and Balaguer 

(41°44'38.92''N; 0°45'21.63''E)  and Mas de Melons (41°30'14.26''N; 

0°42'40.18''E), have remained as fallow for five and four years respectively. All the 

study sites were selected because they were located in areas dominated by dry 

cereal crops and are also included in a special protection area of the Natura 2000 

network, a key policy instrument for continental wide biodiversity protection in 

Europe. 

We conducted a three-year field experiment (from 2012 to 2014 agronomic 

season) to examine the succession of vegetation communities on fallow lands and 

the impact of contrasting management. The different starting points of the fallow 

fields in terms of the successional stage of vegetation allowed the effect of 

management treatments to be tested in the context of the natural plant 

succession from more ruderal to more competitive communities (from one, in 

case of the first year of fallow field, to seven, the oldest ones). In each of the four 

study sites, one fallow field was divided into 21 plots of 200 m2 as a randomized 

complete block design with three replicates for each of the treatments which 

reproduce some of the most common cultural practices. The following treatments 

were applied: 1) chisel plough -a minimum tillage resulting in soil disturbance 

down to ten cm-, 2) shredding –cutting and removal of the biomass-, 3) herbicide 

spray –glyphosate at 1.5 l ha-1 dose- and 4) alfalfa sowing. The treatments had 

different timings: “early dates” –February-, for chisel and herbicide, “late dates” –

April-: again for chisel, herbicide and shredding, and October for alfalfa sowing). 

Additionally, some plots were untreated (control), giving a total of seven 

treatments repeated three times in each study area: early chisel (EChi), late chisel 

(LChi), early herbicide (EHer), late herbicide (LHer), late shredding (Shre), early 

alfalfa (Alf) and untreat/control (Cnt). At the end of each agronomic season 
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(October), the vegetation of all experimental plots was cut in order to remove an 

excess of organic matter while maintaining the cumulative effect of the previous 

treatments.  

2. 2 Vegetation sampling

Plant data were collected from five quadrats of 0.25 m2 located on each 

experimental plot in May, 15-20 days after the last management was done and 

when AES restrictionscame into force. Coverage of each species was visually 

estimated as a percentage of the area of the entire quadrat. Vegetation richness 

was recorded as the number of plant species identified in each quadrat.  

2. 3 Surrounding area information

According to numerous evidences, landscape patterns influence over the 

vegetation assembly at field scale (Albrecht, 2003; Concepción et al. 2008; Duflot 

et al., 2014; Gabriel et al. 2006).  However, the effect of local processes can only 

be detected at appropriately small local scales where often converge under 

similar physical conditions and so, plant composition is strongly shaped by the in-

field management (Petit et al. 2012). For this reason, and although the selected 

experimental areas shared a homogeneous landscape, the effect over vegetation 

assembly in the untreated plots can be inferred by characterizing the surrounding 

area of each of the four fallow fields to identify either structural or compositional 

differences between them. From an aerial orthophoto SIGPAC (MARM [Sistema 

de Información Geográfica de Parcelas Agrícolas] 2006) and measured within 

circles 500 m radius around the centre of each experimental field, identified as 

the appropriate scale at which weeds are most strongly associated with landscape 

structure (Gaba et al., 2010; Marshall et al., 2006). Two variables were calculated: 

percentage of semi-natural habitats (compositional) and length of field edges 

(configurational), which previous studies have shown are relevant to plant 

diversity and weed community composition in the study region, providing 

quantified information regarding the surrounding area (Solé-Senan et al., 2014). 

Semi-natural habitats were identified as all non-cropped land uses and edge 

length was calculated by summing all the boundaries of the fields in that area 

(Table 1).     
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Table 1.  Summary of the site characteristics. 

Location 
Semi-natural habitats* 

(ha) 
Length of field edges 

(m) 

Age of fallow 

2012 2013 2014 

Mas de Melons 20.12  8981.26 4 5 6 

Montcortes 1.77  8575.42 1 2 3 

Balaguer 4.52  8322.89 5 6 7 

Ballobar 5.23  9588.63 1 2 3 
*500 m buffer = 78.54 ha (100%)

2. 4 Plant traits selection

According to the model proposed by Lavorel et al. (2013), we first identified the 

plant traits that are expected to respond directly to the environmental drivers 

described (response traits) (Table 2). Growth forms together with flowering onset 

were included as they have been associated with persistence in disturbed habitats 

(Mcintyre et al., 1995; Cornelissen et al., 2003; Gunton et al., 2011) and have been 

related to management practices, specifically the intensity of tillage (Fried et al., 

2012). Seed dispersal plays an important role as it affects plant colonization, 

related with landscape structure and disturbance level, therefore modulating 

community assembly in space and time (Mcintyre et al., 1995; Critchley et al., 

2004). Plant height is expected to respond directly to management practices 

(Lavorel et al., 2013) as well as specific leaf area (SLA, the ratio of leaf surface to 

leaf dry mass), associated with faster resource-use strategies sensu Westoby 

(1998). SLA is also related to plant competition, which will vary with the 

succession stage.  

Secondly, we classified the plant traits that can influence interactions with 

pollinator communities (effect traits/trophic response traits) (Table 3). It has long 

been noted that changes in floral features are highly linked with this function 

(Wratten et al., 2012; Ricou et al., 2014). So-called by Fenster et al. (2004), 

"pollination syndromes", such as corolla morphology and colour were selected as 

traits that promote pollination interaction. Discrimination between different 

corolla shapes are associated with accessibility (Gomez et al., 2008),

distinguishing among generalists (pollinated by several to many animal species 

from different taxa) and specialist (pollinated by one or a few taxonomically 
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similar animal species) flowers (Ashworth et al., 2004). This is likely to be 

correlated with morphometric parameters of pollinators (body size and 

mouthparts length) (Fenster et al., 2004). Flower colour is also under selection by 

pollinators. It is related to UV reflection and the ability of perception, thus it is 

associated with visual attractiveness (Menzel and Shmida 1993; Ricou et al., 

2014). Flowering duration also influences pollination visitation, determining 

reward (nectar and/or pollen) availability period (Bosch et al., 1997). 

Trait values for each of the species were obtained from the literature and from 

open access databases (summarized in Tables 2 and 3). 

Plant community characterization was calculated based on taxonomic and 

functional indexes. Two taxonomic metrics were selected: the total species 

richness (S) and the Shannon entropy index (H), presented as the exponential of 

Shannon-Weaver index (H'). With this transformation, species are weighted in 

proportion to their frequency in the sampled community and thus it can be 

interpreted as the number of equally-common species in the community and 

eases the interpretation and comparison of diversity among communities (Jost, 

2006). To assess the functional approach we used the community-weighted mean 

(CWM) trait value (Garnier et al., 2004), which expresses the mean trait value in 

the community weighted by the relative abundance of the species. CWM reflects 

the average trait value of the most dominant species in a community, being the 

ones which exert the greatest effect on ecosystem functions (Díaz et al., 2007). 

Furthermore, we quantified the degree to which trait values differ in a community 

by the Rao’s quadratic entropy of functional diversity, FD (Rao), defined as the 

sum of the dissimilarities in the trait space among all possible pairs of species 

weighted by the product of relative species abundances (Botta‐Dukát, 2005). FD 

(Rao) is associated with the complementary resource use hypothesis and, unlike 

CWM which is calculated per each trait separately, FD is based on the combining 

of multiple traits (Leps et al. 2006; Moretti et al., 2013). 
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Table 2. Summary of plant response traits used in the analysis. 

Response Traits Categories Source* 

Growth form Annual forbs 
Perennial forbs 
Annual graminoids 
Perennial 
graminoids 
Legumes 
Shrubs 

a 

Seed dispersal Anemochory 
Autochory 
Zoochory 
Unassisted 

b 

Average height (cm) continuous a 

SLA (mm
2
 mg-

1
) continuous c 

Flowering onset (month) 1-12 a 

*(a) de Bolòs and Vigo (1984–2001); (b) LEDA (Kleyer et al., 2008); 

  (c) TRY Database (Kattge et al., 2011). 

Table 3. Summary of plant effect traits used in the analysis. 

Effect Traits Categories Source* 

Flower shape Anemophilous 
corolla 
Open entomophilous 
Tubular 
Zygomorphic 

a 

Flower colour Purple 
Blue 
Yellow 
White 
Other colour 
(greenish-brownish) 

a 

Flowering duration (month) 1-12 a 

*(a) de Bolòs and Vigo (1984–2001) 
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2. 5 Statistical analysis

Firstly, variation partitioning using partial redundancy analysis (RDA) was used to 

evaluate the effects of landscape (semi-natural areas and length of field edges), 

age since fallow and field treatments on the species composition. The partitioning 

result was represented by a Venn diagram, as has previously been done in other 

studies (Vincent et al., 2006). 

Species richness, H and FD (Rao) indexes were used to describe changes in plant 

communities among the different habitats. We performed General Linear 

Modelling (GLM) with Poisson error distribution to investigate the relationship 

with landscape features and fallow-age taking into account only data from control 

plots. The effect of field treatments on diversity and species richness were tested 

by ANOVA using all data. 

To quantify the innate correspondence between response-effect traits values in 

the study species pool, a Principal Components Analysis (PCA) was carried out to 

characterize the patterns of correlations among them. Variance in trait values 

between species were standardized to zero mean and unit standard deviation to 

give them all equal weight in the analysis before performing the PCA. To assess 

how the variability of individual traits changes along the environmental gradients 

we performed a CWM-RDA analysis following Kleyer et al., 2012. This technique 

uses multiple linear regressions (ordinary least squares) among response variables 

(traits) and predictors (environmental data). Because Medicago sativa cover was 

manipulated, this species was excluded from the analysis in alfalfa´s plots, 

therefore only testing the indirect effect of the cultivation and additional 

competition on the background flora. 

T-value biplots were used to identify the functional traits that can, on their own, 

explain a significant amount of variation using the environmental factors. These 

ordination diagrams are based on reduced-rank regression, combining multiple 

regressions between species traits and a particular site factor, and the model 

defined by the RDA. The interpretation of reduced-rank regression biplots is 

facilitated by so-called Van Dobben circles, which enclose the traits arrows of 

those traits with a strong relation to the environmental variables tested, as 

indicated by t-value biplots (t-value<|2|). 
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Statistical analyses were performed with the R program, 3.0.2 (R Foundation for 

Statistical Computing, Vienna, AT) with the package vegan (R Core Development 

Team, R Foundation for Statistical Computing, Vienna, AT) and with CANOCO 5.0 

for Windows (Microcomputer Power, Ithaca, NY, US). 

3. Results

According to the Venn diagram (Fig. 1), 7.1% of the variation in plant species 

composition was explained by a pure effect of landscape features, 1.6% by a pure 

age effect, and 7.5% by a pure field treatment effect. About 83% of the variation 

remains unexplained.  

Figure 1. Venn diagram representing the partition of the variation of species composition 

among region, age since fallow and field treatment. 

An increase in Shannon entropy index (H), species richness and FD (Rao) was 

observed when the percentage of semi-natural habitat in the area increased (F= 

5.441***; F= 8.241***; F= 4.958*) and on older fallows (F= 4.487***; F= 

3.634***; F= 15.35**) while the total length of field edges had no effect (Table 4). 

ANOVA analysis did not find significant differences either for the taxonomical 

indices (Shannon entropy index and species richness) or for the functional 

diversity index (FD Rao) between different treatments (data not shown). However 

the late management interventions (chisel and herbicide) resulted in lower values 

of H and richness (around 5±1.3 and 15±3 respectively). In constrast, shredding 
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and early herbicide were the treatments with highest values (7.8±2 for H and 

21±4 for richness), more similar to those of the control. As regarding FD (Rao), the 

highest values were related to early-herbicide and late-chisel treatments (2.08 ± 

0.14 and 1.99 ± 0.14 respectively) (Table 5). 

Table 4. General linear modelling (GLM) of the changes in species richness, Shannon 

entropy index (H) and Rao’s quadratic entropy of functional diversity, FD (Rao) in relation 

to landscape features (percentage of semi-natural habitat and length of field edges) and 

age since fallow using Poison error distribution.  

Environmental factors Indexes F 

Semi-natural habitat Richness 8.24*** 

H 5.44*** 

FD (Rao) 4.96* 

Edges lenght Richness 0.71 

H -0.62 

FD (Rao) 3.67 

Age since fallow Richness 3.63*** 

H 4.49*** 

FD (Rao) 15.35** 

* P <0.05; ** P <0.01; ***P <0.001

Table 5. Summary of the mean species richness, Shannon entropy index (H) and Rao’s 

quadratic entropy of functional diversity, FD (Rao) (±S.E.) per field treatment. 

Management Richness H FD (Rao) 

Alfalfa 19 ± 4 5.304 ± 1.361 1.73 ± 0.19  
Early chisel 21 ± 4 6.483 ± 1.39 1.89 ± 0.18 
Late chisel 14 ± 3 5.349 ± 1.176 1.99 ± 0.14  
Early herbicide 22 ± 4 7.879 ± 1.841 2.08 ± 0.14  
Late herbicide 16 ± 2 5.293 ± 1.641 1.94 ± 0.18  
Shredding 21 ± 5 7.86 ± 2.946 1.95 ± 0.18  
Control 21 ± 4 7.316 ± 2.107 1.96 ± 0.18  

Not significant differences in ANOVA test 
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The first PCA axis identified the trade-off between plant response traits related by 

a ruderal strategy and more competitive ones also reflecting a successional 

gradient from annuals to perennials. This axis was also indicative of a contrast in 

plant effect traits that determine the preference of generalist vs. more specialists 

pollinator insects (Fig. 2). Contrast between, on the one hand: species with high 

SLA, early flowering or annual cycle of life,common characters in disturbed 

habitats (ruderal communities), and graminoids forms, white-greenish-brownish 

flower colours with anemophilous and open entomophilous shapes, characters 

that are have poor pollination attractiveness and the option to be pollinated by a 

larger spectrum of insects (generalistists). Polycarphy (capacity to produce several 

seed set per life time) is also a character related with ruderal species which can 

explain their long flowering duration. On the other hand: zygomorphic and 

tubular corollas, that restrict insect accessibility, and yellow and blue flower 

colours are characteristics more related with specialists pollinators. Perennial life 

form, late flowering time, tall stature and autochory seed dispersal are indicative 

of competitive plant communities. 

Trait relationships from Van Dobben circles results have been summarized in 

Table 6, for those plant traits which response to the environmental factors 

(response traits), and in Table 7 for the traits underpinning interactions between 

plants and pollinators (effect traits/trophic response traits). Traits positively 

related are represented by a +, and the ones with a negative relation by a –. 

3.1a Surrounding area and age since fallow 

Fallow lands within an area with a high percentage of semi-natural habitats had a 

community with a higher proportion of legumes, autochory seed dispersal and 

later flowering species, characters correlated with zygomorphic corolla and blue 

flower colour. Whilst a greater length of field edges promoted a community 

dominated by annual graminoid species and an anemochory and unassisted seed 

dispersal, related positively with characteristics as white-greenish-brownish 

flower colours and negative with purple and yellow corolla ones and long 

flowering duration. The successional pattern of the vegetation became clear as 

the age since fallow increased, leading to plant communities dominated by 

perennial forbs, as hemicryptophytes and geophytes, and autochory seed 
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dispersal, in turn positively correlated with tubular corollas, yellow flower colour 

and negatively correlated with open entomophilous corolla and purple flowers. 

Figure 2. Correlation among plant functional traits represented by a Principal Components 

Analysis. Percentage variance accounted for first two axes = 36.3%. Primary axis for the 

response traits represents trade-off between ruderal traits (fast cycle of life, high specific 

leaf area, annuality) and competitive traits (late flowering time, perennial life-forms, tall 

stature) and for the effect traits is associated with the complexity of floral structures, 

traits related with generalists pollinators (white-greenish-brownish flower colours, 

anemophilous and open entomophilous corollas) and traits linked with more specialists 

insects (yellow and blue flower colours, zygomorphic and tubular corollas). 
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3.1b Field management practices 

Among field management treatments, a promotion of annual plants by early 

interventions was observed together with the presence of shrubs on early-

herbicide treatment. Late herbicide and shredding increased the presence of 

perennial forms (mainly hemicryptophytes). Graminoids forms were more 

prevalent on early-chisel and alfalfa treatments than forbs. A late flowering onset 

was observed on the early-herbicide practices while in late herbicide treatments, 

a positive relation with taller plants and early flowering time was observed. The 

characteristics of plant communities resulting from the different field treatments 

were correlated with traits which are likely to determine pollinator interaction 

such as anemophilous corollas, positive related with alfalfa, chisel and shredding 

practices. Early-herbicide and shredding treatments were positively correlated 

with open entomophilous corollas and negatively with tubular ones, as was 

observed in alfalfa and early-chisel treatments. Yellow flowers showed a positive 

correlation to late-herbicide and other flower colours (such as greenish and 

brownish) were positive correlated with alfalfa, chisel treatments and shredding. 

Finally, a longer period of flowering was related to late chisel and early herbicide 

treatment.
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Table 6. Summary of Van Dobben circles results for response plant traits, representing the positive (+) or negative (-) relation to the abiotic 

variables. 

Abiotic filters 

Landscape features Age of 
fallow 

Field managements 

Semi-natural 
habitats 

Length of 
field edges 

Alfalfa 
Early 
chisel 

Late 
chisel 

Early 
herbicide 

Late 
herbicide 

Shredding 

G
ro

w
th

 f
o

rm
 

Annual forbs + - 
Perennial forbs - + - - + + 
Annual graminoids + - + + 
Perennial graminoids + 
Legumes + 
Shrubs + 

Se
e

d
 d

is
p

er
sa

l 

Anemochory + - 

Autochory + + 

Zoochory 

Unassisted + 

Average height + 
SLA - 
Flowering onset + + - 



Table 7. Summary of Van Dobben circles results for effect plant traits, representing the positive (+) or negative (-) relation to the abiotic 

variables. 

Abiotic filters 

Landscape features Age of 
fallow 

Field managements 

Semi-natural 
habitats 

Length of 
field edges 

Alfalfa 
Early 
chisel 

Late 
chisel 

Early 
herbicide 

Late 
herbicide 

Shredding 

C
o

ro
lla

 s
h

ap
e

 

Anemophilous + + + + + 

Open 
entomophilous - + + 

Tubular 
+ - - - 

Zygomorphic 
+ 

Fl
o

w
er

 c
o

lo
u

r 

Purple - - 
Blue + 
Yellow - + + 
White + 
Other colour + + + + + 
Flowering 
duration 

- + + 



4. Discussion

The aim of this study was to understand the relationship between environmental 

variability and human-associated disturbances with the provision of resources for 

pollinators through plant trait information. Several analyses were used to quantify 

how altering the ecological scenario can influence the functional trait composition 

of the vegetation. From the shifts in response and effect traits we predicted the 

change in the attractiveness for pollinators. Following the response-effect 

framework, we now discuss each step described by the model (Fig. 3). 

As shown by our results, linking multiple scales is required to understand the 

processes determining the variation in biological communities in habitats 

managed as part of agri-environment schemes. Both management strategies and 

landscape characteristics are playing an important role by benefiting certain plant 

species. Despite the lack sampling on both field edges and semi-natural habitats, 

the homogeneity conditions (land use and climate conditions) between the field 

experiments (Cardador et al. 2014; McMahon et al. 2010) make us to suggest that 

the changes in the plant composition of the untreated plots, can be inferred by 

the landscape variables calculated. To reinforce these preliminary results it would 

be necessary to plan a landscape study by increasing the sample points and 

determining a complexity gradient (from complex to simple landscape). However, 

the high number of field practices tested in this study did not permit the 

establishment of an elevated number of sampling sites. 

Increasing the diversity of weeds would be expected to result in an increase in 

diversity pollinators (Carvalheiro et al., 2011), nevertheless it is related to 

functional characteristics since changes in the diversity would lead to the 

substitution of many specialist species by generalists, inducing a functional 

homogenization of the communities which may also lead to competition among 

pollinators for resources (Clavel et al., 2010; Tadey 2015). According to our 

results, an increase of semi-natural areas around fallow-fields would led to 

greater species diversity and richness, also reflected in an increase of functional 

differentiation (FD (Rao)) among species  (Steffan-Dewenter and Westphal 2008). 

However, an opposite trend would be observed with the presence of field edges 

in the landscape context. In our study system, field edges were not managed for 

biodiversity and only provided a narrow range of plant habitats that contributed 

69



little to enhancing the resource value of fallow land to pollinators. Successional 

studies highlight the idea that old communities tends to be more competitive, 

leading to uniform landscapes which provide fewer niches for weeds or insects 

(Lososova et al., 2006; Huusela-Veistola et al., 2011; Kuussaari et al., 2011). 

Nevertheless, our results show a contrasting trend, where a coexistence of species 

with dissimilar functionality was observed. Low disturbances rate, the chance to 

develop different resource acquisition strategies or the unpredictable natural 

regeneration mainly dependence on the seed bank, may be the causes of high 

valuable flower species persistence (Wratten et al., 2012). It may also be that as 

the fallows age further, the dominance of a few, more competitive species may 

increase. 

4. 1 Response of plant community to abiotic features (Figure 3A)

To explore landscape effects on plant community assembly, other studies take a 

buffer from 1000 to 200 m (Gabriel et al., 2005), but recent work suggest that 

weed flora should be influenced by landscape context within a circle of radius of 

500 m or smaller (Gaba et al., 2010; Marshall et al., 2006). A complex agricultural 

landscape generally results from extensive field margins and a high proportion of 

non-crop habitat (Gaba et al., 2010; Gabriel et al., 2005). These areas represent 

the least disturbed habitat within arable systems, acting as a sink which provide 

shelter and refugia for weed species which are unable to persist in the harsh 

conditions of intensely cultivated habitats (Fried et al., 2009) and as a source, 

allow immigration fluxes of plant species either to crop fields or new uncultivated 

patches as fallow lands (Gabriel et al., 2005; Tscharntke et al., 2005; Kleijn et al., 

2011). Semi-natural habitats are areas of poorly mineral fertilizer likely to harbor 

legumes forms, a plant morphology which is increased under these conditions 

(van Elsen 2000) represented by Coronilla, Medicago or Retama genera, among 

others. It is the type of growth form that is suggested to be favored on the fallow 

fields studied, together with other specific characteristic linked with stable plant 

communities such as late time of first flowering (Pinke and Gunton 2014) or 

autochory seed dispersal. Autochory is a short-distance dispersal mechanism and 

the low colonizing capacity over space suggests that species are in an optimal 

area. Field edges are also more susceptible to be colonized by external propagules 

and act as a reservoir of species (Fried et al., 2009), however the repeated 
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Figure 3. The response–effect trait framework based on Lavorel et al. (2013). A) identifies the response of plant traits to the environmental 

driver of interest; B) identifies the trophic effect plant traits which affect to pollination; C) linkages among the different response and effect 

traits across trophic levels.



disturbances here compromises the high potential of this habitat. Extremely 

narrow boundaries have no capacity to buffer negative effects from neighboring 

areas due to the high intensity of agricultural practices resulting in a 

homogenization of the flora (Aavik and Liira 2010; Ma et al., 2002). According to 

our results, regular disturbance in these arable habitats would lead to a 

community composed mainly of graminoid forms with annual character. 

Succession along fallow age also reveals a gradient of plant strategies (Garnier et 

al., 2004). Early fallow stages, coming from previous agricultural disturbances, 

show a community dominated by opportunistic ruderal species highlighting traits 

associated with fast growth: annual cycle of life and high SLA. Anemochory seed 

dispersal is related most strongly to distance that increase the ability of a species 

to colonize new patches (Dupre and Ehrlen 2002; Kohler et al., 2008). 

Hemicryptophytes and geophytes appear as the dominant life forms on late 

successional fallow stages mainly represented by Asterceae family (genus as: 

Crepis, Silybum or Carduus) and autochory seed dispersal. 

Among the management regimens tested in this study, early herbicide application 

is the one that led to a habitat occupied by both annual and woody plants 

diversifying vegetation structures and so, ecological strategies. Glyphosate is a 

non-selective contact herbicide that can affects a wide range of weeds. However, 

phanerophytes, chamaephytes and most of the hemicryptophytes are the less 

harmed, leading to a more heterogeneous habitat. The role of these biological 

forms against annuals allows a sparse and patchy habitat with a lower density of 

vegetation. Blooming is shown to be adapted to the intensity and frequency of 

soil disturbances in herbicide treatments (Gaba et al., 2013).  

Tillage promoted a pioneer annual plants with fast life cycles (Sojneková and 

Chytrý 2015). It is also noteworthy that the annual graminoid dominance on 

alfalfa and early- chisel, both related to an early soil disturbance, while late-chisel 

managements are characterized with a predominance of perennial 

rhizomatous/stoloniferous graminoids such as Cynodon dactylon which permit an 

effective colonization of bare ground sites (Kahmen et al., 2002). Although we 

have shown that the effect of herbicides can be interpreted in the context of a 

disturbance regime and so related to plant traits, it is also the case that herbicide 

selectivity will play as well a major part in the structuring of communities in 
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agricultural landscapes. These effects may ultimately have to be modelled at the 

level of individual species. 

4.2 Response-and-effect traits interaction (Figure 3B) 

Identifying key plant traits which influence the interaction with pollinators will be 

useful to understand the effect of the different environmental changes to the 

pollination service. Pollinators were not directly measured in this study, however, 

well established published relationships between flowering traits and 

attractiveness to pollinators allowed us to predict the impact of the landscape and 

treatments on the value for different plant communities to pollinators. Floral 

traits are associated with the attraction of pollinators and the differentially 

selective pressure on vegetation may be expected to impact their abundance and 

diversity (Fenster et al., 2004). Specific families´ growth forms are promoting the 

existence of different floral morphology and colours, traits that affect insect 

choice (Ibanez 2012). As well, flower duration would be increasing insect-foraging 

time as is strongly related with the plant life form. Perennial plants provide 

greater continuity and predictability of foraging resources overlapping flowering 

periods (Isaacs et al., 2009) while the value of annuals will depend on their limited 

flowering in the context of their short life cycle. Both growth and life form are 

linked with abiotic factors (response traits) and in turn are contributing to change 

the scenario of suitability for pollinators.  

4.3 Response-and-effect framework as a tool for enhance pollination service 

(Figure 3C) 

Corolla shape is a flower characteristic related to insect-body size and proboscis 

type, insect-pollination syndromes which in turn predict a convergent selection 

pressures on floral traits, excluding one type of pollinator in favor to another 

(Fenster et al., 2004; Gomez et al., 2008). Flower colour and blooming duration 

are also linked to attractiveness. Highly visible colours which contrast to the 

background and other flowers can encourage interaction with the pollinator 

(Menzel and Shmida 1993). However is known that response to color depends on 

their taxa (Ibanez 2012). The suggested proliferation of legumes forms in 

response to seminatural habitats was linked with zygomorphic corolla and blue 

flower colour in our data, well-known syndromes of complex flowers that reflect 
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selection by narrower functional group associated with pollination by long-

tongued bees (Corbet 1995; Fenster et al., 2004). However, the high functional 

divergence showed in the results may indicate that, although pollinators 

specializing in zygomorphic flowers are promoted to a greater extent, there are 

also plants which provide resources to generalist pollinators. So, the presence of 

these patches of relatively high-contrast habitat types, commonly conceived as 

ecotones, are enhancing the fallow flora for pollinators. But, not all the so-called 

ecotones´ elements are acting in the same way. The high level of disturbance 

generated by the farm practices would be leading into a decrement erosion of the 

habitat value of field edges, acting as a source of undesirable kind of species such 

as graminoids. Poaceae family is considered to be inaccessible and so less 

frequently visited by pollinators (Ricou et al., 2014), leading to a reduction of 

flower features which promote pollinator-plant interaction (Fenster et al., 2004). 

Along the age-gradient succession, the dominance of more generalist flower 

features in early stages such as open entomophilous corollas is notable and  

suggests that all pollinator fauna are functionally equivalent (Fenster et al., 2004). 

As other studies underline, ruderal communities harbor proportionally more 

invertebrates than later successional communities (Storkey et al., 2013) and so, a 

broad taxonomic diversity of pollinator visitors. On the other hand, late stages are 

mainly dominated by flowers with tubular corollas, promoting interaction with 

specialist pollinators. The source-sink function of the surrounding semi-natural 

habitats may be the origin of this flower traits and the reason of their stabilization 

on fallows with late successional stages.  

As expected, different habitat stages are not functionally equivalent and one 

approach to management would be to design interventions that aim to maintain 

communities in the successional stage that delivers the most value to pollinators. 

Maintaining mid-successional communities would be ideal to host a wide range of 

pollinator. To achieve this type of habitat, intermediate levels of disturbance may 

be required (Wratten et al., 2012). Early-herbicide treatments, because they 

promote a heterogeneous habitat structure allow a high coexistence of life forms 

phenotypes and so an overlapping of flowering periods, allowing a high foraging 

availability during the year. The presence of flowers with open enthomophilous 

corollas as opposed to anemophilous ones, represented by the other 

management treatments, is an important component of the potential 
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attractiveness to pollinators of this community. However, the use of pesticides in 

agriculture as causing pollinator declines is well documented, especially where 

spraying time coincides with flowering time (Nicholls and Altieri 2012). Here the 

application was made in early February, out of the flowering peaks of most of the 

species.  

Open entomophilous and anemohilous corollas were promoted by shredding 

management, while anemophilous ones dominated in chisel and alfalfa 

treatments, offering a poor habitat quality in terms of attractiveness for 

pollination. Alfalfa is generally considered as a temporary pollinator-friendly cover 

crop (Wratten et al., 2012) because of it beneficial flower features.  Nevertheless, 

this area presents a low productivity index (Oñate et al., 2007) and alfalfa crop 

without an irrigation supply, is often not very successful. At the same time, the 

early soil removal caused by the alfalfa sowing is favoring the germination of 

Poaceae´s species, the less attractive family for insects. 

Previous studies suggest that agri-environmental management is more effective in 

simple landscapes than in complex ones (Tscharntke et al., 2012). Here we induce 

that a higher amount of semi-natural habitats provides new plant features to the 

system that would not been achieved with fallow field managements by itself, 

enhancing the habitat attractiveness for pollinators. Moreover, semi-natural 

habitats are the place to nest and hibernate for the major pollinator groups 

(Batáry et al., 2011) making them and essential element in the landscape to make 

effective the insect-plant interaction. 

As a next step to further assess ways to enhance pollinator habitats in fallow 

lands, a validation of the results of the study would be desirable to determine the 

relationships between our predictions and information on insect species´ 

distribution. Furthermore, increasing the number of sampling points as well as 

considering new landscape metrics such as field shape, may help to understand 

the interface between semi-natural patches and fallow lands. Also, here we have 

tested the field practices which are most commonly developed in these non-crop 

habitats; however other practices could also be applied. Hence, if sowing is an 

option, and important issue to take into account for enhance its efficiency is to 

have a good knowledge about the abundance and diversity of groups of pollinator 

in the region before choosing plant species (Pywell et al., 2011). This would need 
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to be combined with the appropriate management to maintain the sown 

community in the desired proportions. 

4. 4 Conservation implications

A landscape perspective is needed to achieve conservation goals on fallow lands. 

The effect of local management can only be detected appropriately at small local 

scales where converge under similar physical conditions. However, it is dependent 

upon regional scales that aggregate environmental heterogeneity and allow to 

quantify the ecosystem services delivered by the system. 

Our results suggest the importance of splitting between the landscape elements 

must be made. Focussing the attention on improving field edges areas would be 

necessary to promote their contribution to enhance pollinator habitat. On the 

other hand, the preservation of semi-natural is suggested to be an essential 

component of the landscape to harbor pollination rich plant communities, acting 

as a source-sink of important traits for farmland habitats. Planning priority 

managements that promote the persistence of mid-successional communities 

which include perennial species together with less competitive plant communities 

(ruderal species) would allow the presence of high value flowers traits that 

enhance pollinator services. An early herbicide application (February) and 

shredding on fallow lands are, among the treatments tested in our study, the ones 

that leads to this specific rich-habitat. 
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Fallow management for steppe bird conservation: the 

impact of cultural practices on vegetation structure and 

food resources

Summary 

The potential of fallow lands to favor farmland bird conservation is widely 

recognized. Since fallows provide key resources for birds within the agricultural 

matrix, such as nesting sites, shelter and forage, complete understanding of the 

effect of field-management strategies on vegetation structure and food is 

essential to fulfill bird requirements and improve habitat management. In this 

study we experimentally compare the most common field practices (ploughing, 

shredding, herbicide application and cover cropping) on fallow lands by assessing 

the resources they provide for birds in terms of vegetation structure and food 

resources (leaf and seed availability), as well as the economic costs of their 

implementation. Fallow management treatments are ranked for six target species 

in a lowland area of the north-eastern Iberian Peninsula, according to the 

available information on their requirements. The different agronomic practices 

offer various quantities and types of resources, highlighting the importance of 

fallow management in bird conservation. Shredding and early herbicide 

application (February) are estimated to be good practices for Little Bustard 

(Tetrax tetrax) and Calandra Lark (Melanocorypha calandra), providing both 

favorable habitat and foraging conditions, while being economical. Meanwhile, 

superficial tillage in spring is found to be optimum for the rest of the species 

tested, despite being among the poorest food providers. Alternating patches of 

the best treatments would improve the effectiveness of agri-environmental 

schemes by maximizing the harboring habitat for the endangered species. 

Keywords: Non-cropped land; Habitat suitability; Farmland birds conservation; 

Field practices; Agri-environmental schemes. 
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1. Introduction

Thousands of years of agricultural expansion have led to the reliance of wild 

species on land dedicated to human food production. Thus, their preservation 

strongly depends on traditional low-intensity practices (Tscharntke et al., 2005). 

Throughout Europe, the effects of farm management on breeding birds are well 

documented, and intensified practices as well as the simplification of agricultural 

landscapes have been identified as the main causes of the decline of farmland 

bird populations (Benton et al., 2003; Donald et al., 2001). In order to slow and 

eventually halt this decline, farmland biodiversity has been the focus of important 

conservation efforts in Europe in recent decades, including various common policy 

tools and agri-environment schemes (AES) devoting great amounts of money to 

the process (Kleijn et al., 2006). Despite these efforts, the negative effects of 

agricultural intensification on European farmland biodiversity persist (Donald et 

al., 2006), and it is still unknown how the extensive European agri-environmental 

budget for conservation on farmland contributes to the policy objectives aimed at 

stopping biodiversity decline (Guerrero et al., 2014; Kleijn et al., 2011; Vickery et 

al., 2004) . Kleijn et al. (2006) found that the European schemes had limited 

usefulness for the conservation of endangered farmland species and, therefore, 

suggested that the measures currently applied would require elaboration as well 

as designs more tailored to the needs of these species.  Furthermore, appropriate 

biodiversity conservation targets and measures must also be identified, and 

modulated according to the landscape characteristics of each region (Concepción 

et al., 2008; Butler et al., 2009; Cardador et al., 2014).  

Cereal pseudo-steppes of the Iberian Peninsula are distinctive agricultural 

landscapes characterized by open areas with flat or slightly undulated 

topography, dominated by winter cereal crops and a Mediterranean continental 

climate (Suárez et al., 1997). These areas also represent a low yield farming 

system due to climatic and soil limitations, with an average cereal supply of 2500 

kg ha-1; compared with the 6000 kg ha-1 represented by the European Union (EU) 

as a whole (Delgado and Moreira 2000; Oñate et al., 2007). Steppe birds that 

inhabit this landscape are thought to be good indicators of overall farmland 

diversity due to their narrow niche requirements, strongly linked with these 

habitats (Butler et al., 2007; Stoate et al., 2001). Their populations have been 

reduced by almost half since 1970 and are at present the most threatened bird 
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group in Europe; 83% of the species has unfavourable status since it is highly 

vulnerable to the effects of agricultural change (Benítez-López et al., 2013; 

Burdfield 2005). In this context, the Iberian Peninsula is home to the most 

important populations of these endangered species within Europe (Santos and 

Suárez 2005).  

Establishment of temporary habitat patches such as fallow land is one of the most 

promising approaches to compensate for the loss of semi-natural habitat and 

mitigate the negative effects of agricultural intensification (Huusela-Veistola et al., 

2011). Fallow land is an essential substrata during breeding and winter seasons 

for a variety of steppe land bird species (McMahon et al., 2010; Vickery et al., 

2004). Hence, leaving a different proportion of arable land fallow is one of the 

most common commitments when creating AES (Oñate et al., 2007). Although 

many of these species can live in similar habitats, differences in microhabitat 

selection between species or even between different sexes of the same species 

may explain coexistence in steppe bird communities (Morales et al., 2008; Traba 

et al., 2015). Therefore, the maintenance and provision of microhabitat structure 

according to different species' needs should be considered a priority in the 

management of agricultural environments (Traba et al., 2015). 

Fallow habitat is extremely variable in terms of structure and composition, thus 

allowing for the existence of different microhabitats within the same habitat type. 

Agronomic practices applied on fallow land are key factors in understanding that 

variability, and determining its value for birds since they strongly affect the 

vegetation development, microhabitat characteristics, and food availability. 

Management practices act as a filter, changing the composition and structure of 

weed communities which species select based on certain characteristics (Fried et 

al., 2012). Shredding, sowing with a competitive grass, ploughing, grazing or 

spraying out with herbicide are among the preferred options for farmers, who 

mainly aim to control weeds and prevent diseases. Regulating the timing and 

frequency of agricultural labors can also modify the vegetation response. Yet 

there is a lack of information regarding the most appropriate type of fallow 

management required to foster a suitable habitat for farmland bird conservation, 

and particularly in steppe-land bird species (Hyvönen and Huusela-Veistola 2011; 

Morgado et al., 2010). Research emphasizes that the availability of the nesting 

site, diet, foraging habitat, as well as easy access to food and shelter from 
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predators are the most important resources that explain habitat selection 

(Cardador et al., 2014; Delgado et al., 2009; Green et al., 2000; Toivonen et al., 

2013; Traba et al., 2015). Thus, if habitat associations are largely dictated by the 

availability of key resources, it is crucial to consider the habitat suitability (both 

the quantity and quality of the resources provided), rather than the habitat per se 

(Butler and Norris 2013; Ponce et al., 2014).  

While previous studies are mostly based on correlating bird presence with habitat 

or land-use availability, here we utilized an experimental approach to compare 

the resources provided for birds among the most common management practices 

allowed in AES programs. Apart from assessing the cover and height provided by 

each fallow treatment, we combined information from multiple functional plant 

traits and vegetation characteristic to create trophic indexes that seek to inform 

about leaf and seed availability. Due to the particular situation of Iberian pseudo-

steppes as a low productivity system, the adoption of the proposed schemes or 

certain fallow treatments by farmers would be more attractive if they were to 

combine environmental improvements with cost-minimization. So to address this 

reality, and since considering the farmer’s economy is critical to making progress 

towards maximizing AES efficiency, the economic cost associated with each 

treatment or agronomic practice was estimated.  

In summary, i we aim to 1) experimentally compare the effects of the most 

common agronomic practices on bird resources provided by fallows; 2) predict 

habitat suitability among these practices for several steppe birds during the 

breeding period through a structural and functional approach; 3) identify fallow 

management treatments that better optimize bird benefits, taking the economic 

cost of implementation into account ; 4) contribute to progress in improving AES 

effectiveness and farmland bird conservation goals. 

2. Material and methods

2.1 Study area and species 

Our study area is located in the NE Iberian Peninsula, in a flat area of the Ebro 

basin with a Mediterranean continental climate and only 300–400 mm of annual 

rainfall. A total of four separate fallow lands sites were selected as study areas: 

Montcortes (41°42'35.22''N; 1°13'52.33''E), Ballobar (41°32'55.37''N; 0°5'59.06''E), 
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Balaguer (41°44'38.92''N; 0°45'21.63''E) and Mas de Melons (Castelldans) 

(41°30'14.26''N; 0°42'40.18''E) owing to the homogeneous nature of the 

landscape. 

All are included in Special Protection Areas (SPA), which are sites established 

under the 2009/147/EC Birds Directive and included in the Natura 2000 network 

(i.e., the European network of natural protected areas). These sites are classified 

as such due to the coexistence of many steppe bird species of conservation 

concern in the region (Brotons et al., 2004; Estrada et al., 2004), and so they  

benefit from an AES focused on steppe land bird conservation. According to 

regional AES, a fallow scheme provides interruption of cereal production for ≥1 

years (the agreement can be renewed annually) with no agricultural activities 

allowed during the breeding period which is from the 15th of April to the 1st of 

September. The potential beneficiary species include Black-bellied sandgrouse 

(Pterocles orientalis) and Little Bustard (Tetrax tetrax), species classified as 

endangered and vulnerable respectively at a European level (BirdLife International 

2015), and other species of conservation concern or protected species at the 

European, national or regional level: Stone-curlew (Burhinus oedicnemus), Short-

toed lark (Calandrella brachydactyla), Calandra Lark (Melanocorypha calandra) 

and Pin-tailed sandgrouse (Pterocles alchata). All are ground-nesting species with 

specialized habitat requirements but depend on set-aside to a greater or a lesser 

extent during breeding period. Previous studies have described the vegetation 

structure and main food requirements where the considered species populations 

tend to be greater(Cardador et al., 2014; Giannangeli et al., 2004; Green et al., 

2000; Homem de Brito 1996; Jiguet et al., 2002; Martin et al., 2010; Martinez 

1994; McMahon et al., 2010; Morales et al., 2008; Morgado et al., 2009; Sanza et 

al., 2012; Silva 2010; Silva et al., 2013; Suarez et al., 1997; Suárez et al., 2009; 

Traba et al., 2013; Traba et al., 2015). From this information, a range of habitat 

suitability for the selected species has been defined in terms of vegetation cover 

and height, and food resources (Table 1).  

2.2 Experimental design 

We conducted a 3-year field experiment (from the 2012 to the 2014 agronomic 

season) to examine the development of vegetation communities on fallow lands 

under different cultural practices. In each of the four study sites, one fallow field 
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(ranging from 14.54 to 5.18 ha) was divided into 21 plots of 200 m2. With the aim 

to reproduce some of the most common cultural practices, the following 

treatments were applied in each experimental plot: chisel plow, set to a minimum 

tillage of 10 cm; shredding; a glyphosate herbicide spray at a 1.5 l ha-1 dosage; 

alfalfa sowing, with Aragon seed variety at 30 kg ha-1 dose.  The applications were 

administered at different times according to common practices: “early dates” 

(February) for chisel and herbicide, and “late dates” (April) for chisel, herbicide 

and shredding. Alfalfa was sown once in October of the first season. Furthermore, 

some plots were untreated (control), giving a total of seven treatments repeated 

three times in each study area: early-chisel (EChi), late-chisel (LChi), early-

herbicide (EHer), late-herbicide (LHer), late-shredding (Shre), early-alfalfa (Alf) and 

untreated/control (Cnt). At the end of each agronomic season (October), the 

vegetation of all experimental plots was mowed in order to remove an excess of 

organic matter while maintaining the cumulative effect of the previous 

treatments.  

2.3 Vegetation sampling 

Plant data were collected from five fixed quadrates of 0.25 m2 located on each 

experimental plot each year in May, 15-20 days after the previous management. 

This timing coincides with AES enforcement as well as with the breeding season of 

the target bird species. Vegetation structure (cover and height) was measured per 

each 0.25 m2 quadrate. Coverage of each species was visually estimated as a 

percentage of the area of the entire quadrate. Vegetation height was obtained by 

averaging the five measures of maximum height taken in each quadrate. A total of 

118 plant species were identified to species level wherever possible. 
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Table 1. Habitat requirements of the bird species studied. 

Bird species Trophic resources Structure patterns 
Food Cover Height 

Little bustard 
(Tetrax tetrax) 

Mainly green plants 
(Jiguet et al., 2002) 

25-75% 
(McMahon et al., 2010; 
Silva 2010) 

Less than 50 cm 
(Martinez 1994;Morales et 
al., 2008; Silva 2010; Silva et 
al., 2013) 

Stone-curlew 
(Burhinus oedicnemus) 

Plant material, terrestrial 
invertebrates and occasionally 
small mammals 
(Giannangeli et al., 2004; Green et 
al., 2000 ; Traba et al., 2015) 

Not exceed 50% 
(McMahon et al., 2010; 
Traba et al., 2013) 

Less than 35 cm 
(Homem do Brito 1996) 

Pin-tailed sandgrouse 
(Pterocles alchata) 

Mainly seeds  
(Suarez et al., 1997; Martin et al., 
2010) 

Not exceed 50% 
(Martin et al., 2010) 

Less than 30 cm 
(Martin et al., 2010) 

Black-bellied sandgrouse 
(Pterocles orientalis) 

Mainly seeds 
(Suarez et al., 1997; Martin et al., 
2010) 

Not exceed 50% 
(Martin et al., 2010; Traba 
et al., 2013) 

Less than 30 cm 
(Martin et al., 2010) 

Calandra lark 
(Melanocorypha calandra) 

Mainly invertebrates and seeds 
(Sanza et al., 2012) 

50-95% 
(Morgado et al., 2009) 

10-45 cm 
(Cardador et al., 2014; 
Morgado et al., 2009) 

Short-toed lark 
(Calandrella brachydactyla) 

Mainly seeds  
(Suárez et al., 2009) 

25-50% 
(McMahon et al., 2010) 

Less than 30 cm 
(McMahon et al., 2010) 



2.4 Trophic indexes 

By using functional traits information obtained from different data bases along 

with field data, seed and leaf availability indexes were calculated to estimate the 

foraging value of each management type. Because of the lack of data for 

invertebrates, we could not calculate a trophic index for this food component, 

though it may also be relevant for chick survival or form an important part of the 

adults' diet during the breeding period (Delgado et al., 2009; Holland et al., 2006; 

Jiguet 2002). Nevertheless, invertebrate availability could be positively correlated 

with the herbivory index across management treatments given that most 

invertebrates and particularly the most abundant ones (usually the phytophagous 

group) are highly dependent on primary production (Di Giulio et al., 2001; Hoste-

Danyłow et al., 2010).  

2.4.1 Leaf availability index 

To define leaf availability index, each plant species was given a value according to 

the data f (coverage x height x Specific Leaf Area (SLA, mm2 mg-1). The index of 

each plot was the result of summing each species´ index value. As a vegetation 

volume approach, cover and height data were taken into account. Coverage data 

was obtained by field sampling for each species. However, height data was taken 

in the field as a unique value, and the total of all the species was averaged. To 

avoid overestimation, the height value of each species was obtained from 

literature (de Bolòs et al., 1993), field data was utilized if the literature measure 

was higher than the average plot height, and vice versa when literature data was 

smaller than the average height of the plot. SLA is a plant leaf trait obtained from 

literature (Kattge et al., 2011), which is directly related to palatability, or the 

degree of toughness (low SLA) or softness (high SLA) of leaves´ tissues. This 

measurement ultimately determines the leaves' value to be assimilated by 

herbivories (Storkey et al., 2013; Weiher et al., 1999).  

2.4.2 Seed availability index 

In a similar way, seed availability was quantified for each species as the product of 

its coverage x seed mass (average of 1000 seed weight, g) and weighted by 

flowering period (months). The seed availability index was finally obtained by the 

summation of each species´ index, which had been previously calculated. Cover 
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information was taken per species and seed mass data obtained from databases 

(Klotz et al., 2002; Royal Botanic Gardens Kew 2014). According to regional AES, it 

is prohibited to exercise management in these areas from the 15thof April to the 

1st of September. Per this rule, we weighted the index highlighting the species in 

flower during this period (de Bolòs et al., 1993), giving 0 to species with no flower 

during the AES period and values 1, 2, 3 or 4, depending on the months in bloom. 

Considering the coverage and months of blossom (most were between two and 

four months) during birds´ breeding period gives an idea of the plants' fecundity 

and available resources. This assumption is based on studies in the region which 

confirm that both invertebrates (mainly harvester ants) and vertebrates remove 

seeds available on the soil surface during this period, causing a strong weed 

suppressive effect (Baraibar et al., 2009). This makes it necessary to consider the 

species in bloom in order to estimate the actual seed availability of the system at 

a specific time. High seed availability index values are not linked with an increase 

in seed mass. Due to the lack of information on the number of seeds produced by 

a plant and following the ecological rule directly relating the trade-off between 

seed size and number of seeds produced (Leishman 2001), we assume that 

species with similar seed mass will produce a comparable number of seeds. 

Averaging the seed weight of the most common plant species present in the study 

(Figure 3) reveals that all of them have a comparable seed weight (1.2 ± 0.20 mg) 

and thus similar seed production. 

Both trophic indexes were standardized, resulting in typed variables with zero 

mean and a standard deviation of one.  

2.5 Economical evaluation 

Economic cost data of the implemented managements was provided by the 

agricultural services company CUPASA and supported by the data obtained in 

technical study which summarizes the information of costs practices in the Ebro 

Valley (Lloveras and Cabasés 2014). All the data was taken according to the 

average price of the season 2013-2014.With these values, we calculated the 

estimated annual cost of each treatment per hectare. 
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2.6 Statistical analysis 

In a first step, we analyzed the differences in vegetation structure, coverage (in %) 

and height (in cm), between field managements. A linear mixed model (LMM) and 

a post-hoc Tukey´s pairwise comparison was utilized to determine differences 

among treatments, including locality as a random factor. The same analysis was 

done to estimate differences among treatments on dietary availability. Both 

trophic indexes values were square-root transformed. 

Information provided from previous studies was used to build habitat suitability 

range models for the selected birds in terms of vegetation structure and food 

availability (Table 1). The degree of overlap between the mean values (±CI) of 

each variable per field treatment and the bird species requirements was 

quantified. To analyse flora community patterns in more detail, rank-abundance 

curves were constructed for each of the seven field treatments at species level. 

Statistical analyses were performed using R (R Development Core Team, 2011) 

with VEGAN (Oksanen et al., 2011), lme4 (Bates et al., 2008) and BiodiversityR 

(Kindt and Coe 2005) packages. 

3. Results

Plant cover shows a significantly positive correlation to height (R=0.465; P<0.001) 

and management practices display different habitats regarding vegetation 

structure (Figure 1). Late chisel differs significantly from the other treatments, 

leading to less plant coverage and height (a mean of 35% and ±30 cm, 

respectively) (Table 2). Early chisel application shows  higher cover and height 

values (up to 50% and 55 cm, respectively) compared to late chisel management, 

while we found similar structural values between early and late herbicide 

applications (65-61% coverage and 41-43 cm height). We observe similar height 

values between late chisel and late herbicide treatments, whilst not in coverage. 

Shredding management is not significantly different from alfalfa sowing, late 

herbicide and early chisel and herbicide treatments. Alfalfa and unmanaged plots 

(control) are significantly different in both structural variables under late chisel 

management and they provide the highest values of cover and height (80-79% 

and 52-61 cm). 
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Figure 1. Average (and the 95% confidence interval) of vegetation coverage and plant 

height experimentally obtained across several fallow treatments (black dots) and optimal 

habitat range obtained from bibliography for the selected bird species (overlapping 

rectangles).  Sample sites are marked with white dots. 

The observed differences in vegetation structure greatly determine the fallow 

suitability for the different target species. Control plots and alfalfa sowed fields do 

not fit into the vegetation structure requirement of any of the target species, 

while the early chisel treatment partially does soon account of resulting tall, 

dense vegetation (Figure 1; Table 2). Moreover, the late chisel treatment provided 

fallows with a vegetation structure adequate for all species, except Calandra Lark. 

Furthermore, four species (Stone-curlew, Short-toed lark, Pin-tailed sandgrouse 

and Black-bellied sandgrouse) would only find an optimal habitat under this 

treatment. Finally, shredding and chemical treatments resulted in vegetation 

structure that fit the main requirements for two species: Little bustard and 

Calandra lark. Food availability indexes were positively correlated (R=0.804; 

p<0.001), indicating that the birds were finding more palatable leaves when there 

were more seeds available in the system (Figure 2). Since vegetation structure of
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Table 2. Average of cover and height per treatment and post-hoc Tukey test results from linear mixed model between vegetation 

structures of the management practices. 

Average per 
treatment 

Post-hoc test between field treatments 

Coverage 
(%) 

Height 
(cm) 

Control 
Early-
chisel 

Early-
herbicide 

Late-
chisel 

Late-
herbicide 

Shredding 

Alfalfa 
80 

(± 7.4) 
52 

(± 8.5) 

C: ns C: *** C: ns C: *** C: ns C: ns 

H: ns H: ns H: ns H: * H: ns H: ns 

Control 
79 

(± 8.8) 

61 
(±13) 

C: *** C: ns C: *** C: ns C: ns 

H: ns H: ns H: *** H: ns H: * 

Early-chisel 
50 

(±13.8) 
55 

(±14.6) 

C: ns C: ns C: ns C: ns 

H: ns H: * H: ns H: ns 

Early-herbicide 
65 

(± 7.7) 

41 
(± 7.4) 

C: *** C: ns C: ns 

H: ns H: ns H: ns 

Late-chisel 
35 

(± 8.1) 
28 

(± 8.8) 

C: *** C: *** 

H: ns H: ns 

Late-herbicide 
61 

(± 9.7) 
43 

(± 6.9) 

C: ns 

H: ns 

Shredding 
63 

(± 21) 
38 

(±13.3) 

Mean values (± SE), C: coverage, H: height, ns: non-significant result, * = <0.05, ** = <0.01 and*** = <0.001 



alfalfa and control plots was not suitable for birds, trophic indexes were not 

calculated for these treatments. Both trophic index values were determined by 

management timing. Early treatments (February) led to significantly higher 

foraging values than treatments applied in April (around 2.5 ± 0.5 and 1.5 ± 0.5, 

respectively) (Table 3). However, shredding (only applied on April) supplied 

significantly comparable seed resources when compared with early chisel and 

early herbicide. Early chisel is the treatment which offers the greatest amount of 

food resources (2.7±0.7 and 2.5 ± 0.7 seed and leaf availability index values, 

respectively). Despite being the only valuable treatment in terms of vegetation 

structure for Stone curlew, Short-toed lark and both sandgrouse species, late 

chisel management is among the poorest regarding food resources (1.5 ± 0.4 and 

1.3 ± 0.3 seed and leaf availability index values, respectively). 

Figure 2. Leaf and seed availability indexes along field managements (95% confidence 

limits) in black dots. White dots indicate surveyed sites. 
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Table 3. Average of seed and leaf availability indexes per treatment and post-hoc Tukey 

test results from linear mixed model between trophic indexes of the management 

practices. 

Average per treatment Post-hoc test between field treatments 
Seed 

availability 
index 

Leaf 
availability 

index 

Early-
herbicide 

Late-
chisel 

Late-
herbicide 

Shredding 

Early-
chisel 

2.7 (±0.7) 2.5 (±0.7) 
S.I.: ns S.I.: *** S.I.: ***  S.I.: ** 
L.I.: ns L.I.: *** L.I.: *  L.I.: ns 

Early-
herbicide 

2.5 (±0.6) 2.1 (±0.4) 
S.I.: ** S.I.: **  S.I.: ** 
L.I.: * L.I.: ns  L.I.: ns 

Late-chisel 1.5 (±0.4) 1.3 (±0.3) 
S.I.: ns  S.I.: ns 
L.I.: ns  L.I.: ns 

Late-
herbicide 

1.4 (±0.3) 1.5 (±0.4) 
 S.I.: ns 
 L.I.: ns 

Shredding 1.6 (±0.4) 1.8 (±0.7) 

Mean values (± SE), S.I.: seed availability index, L.I.: leaf availability index, 

ns: non-significant result, * = <0.05, ** = <0.01 and *** = <0.001 

Among the patterns of rank-abundance, there was pronounced dominance of 

Anacyclus clavatus (Figure 3) in all seven treatments. . However, its dominance is 

less noticeable in early treatments (herbicide and chisel), comprising only around 

30% of the total abundance, while it later increases by around 60% (70% in 

control plots). The presence of Salsola kali as the second abundant species in early 

treatments shows that the intervention time is a key factor for the germination of 

this late-spring species. Furthermore, late management led to the appearance of 

Malva sylvestris as a common species. Soil remotion seemed to promote 

graminoid species, such as Lolium rigidum that is always present as an important 

species in this type of management including alfalfa (after Medicago sativa). An 

increase in hemicryptophyte forms was observed in shredding treatment (Seseli 

tortuosum and Crepis sp.) since they have a greater likelihood of surviving due to 

the possession of perennial buds at ground level. 

The economic cost of the agricultural work carried out reveals that shredding and 

herbicide application are the cheapest treatments (26€/ha and 26.7 €/ha, 

respectively), while alfalfa sowing is the most expensive one (295 €/ha). Alfalfa is, 
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however, a perennial forage crop that is normally sown every two-four years 

(Table 4). Based on previous analysis, we constructed a ranking to 1) consider 

both the most suitable treatments for the target species selected, based on the 

vegetation structure and trophic resources, and 2) weigh the economic side (Table 

5). Taking vegetation structure and food resources into account, the optimal 

treatments for the target species appear to be early herbicide application, 

shredding and chisel (early or late). If we consider both suitability for birds and 

the economic cost of each treatment, the shredding and herbicide treatments 

seem to be the best options. However, in the case of Stone-curlew, Short-toed 

lark, Pin-tailed sandgrouse and Black-bellied sandgrouse, only the effects of late 

chisel is suitable to their optimal habitat range. 

Table 4. Economic cost of the management implemented. 

Management Type Dose/ha €/u €/ha Total (€/ha) 

Chisel 1 40 40 40 
Shredding 1 26 26 26 
Herbicide 

Glyphosate 45% 
Application 

1.5 
1 

7.8 
15 

11.7 
15 

26.7 

Alfalfa 
sowing Subsoiler 

Seeder (Precision Planting) 
Alfalfa seed (Aragon) 

1 
1 
30 

65 
50 
6 

65 
50 
180 

295 
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Figure 3. Rank abundance curves representing the accumulate proportional abundance (as 

a percentage) of the most common plant species present per management. The X-axis 

indicates the total number of plant species. Each point in a curve represents a plant 

species. 
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Table 5. Summary of the most effective treatments according to vegetation structure, foraging availability and economic cost for the bird 

species considered in the study. 

     Ranking of the best treatments 

Bird species 
Provides good vegetation structure Provides 

more food 
resources* 

Cheapest Final Ranking 
Treatment name Coverage 

suitability 
Height 

suitability 

Little bustard 

1. E. Herbicide
L. Chisel
L. Herbicide

2. Shredding
3. E. Chisel

100% 
100% 
100% 
89% 
0% 

100% 
100% 
72% 
98% 
34% 

1. E. Chisel
E. Herbicide
Shredding

2. L. Herbicide
L. Chisel

1. Shredding
Herbicide

2. Chisel

1. Shredding
Early Herbicide

2. Late Herbicide
3. Late Chisel
4. Early Chisel

Calandra lark 

1. E. Herbicide
L. Herbicide 2.

Shredding 
3. E. Chisel

100% 
100% 
71% 
0% 

100% 
100% 
98% 
17% 

1. E. Chisel
E. Herbicide

2. Shredding
L. Herbicide

1. Shredding
Herbicide

2. Chisel

1. Early Herbicide
2. Shredding

Late Herbicide
3. Early Chisel

Stone-curlew 
1. L. Chisel 100% 100% 1. L. Chisel 1. L. Chisel 1. L. Chisel

Short-toed lark 
Pin-tailed sandgrouse 
Black-bellied sandgrouse 

1. L. Chisel 100% 67 % 1. L. Chisel 1. Chisel 1. L. Chisel

*according to the food preferences per species (i.e. Little bustard mainly herbivorous)



4. Discussion

Our results reveal that field management and timing can play a key role in the 

aptitude of fallows for steppe birds during the breeding season. Through an 

experimental approach, we show how different fallow agronomic practices and 

timings determine the vegetation structure, as well as the amount and type of 

food resources; two key factors behind bird habitat selection.  

Among analysed managements, alfalfa sowing and untreated plots presented the 

greatest coverage and vegetation height. At the other end of the spectrum, we 

find the late chisel plots with twice lower values for the same variables. Early 

chisel, shredding and both herbicide treatments presented intermediate values. 

Application time appears to be an important factor in determining trophic 

availability, while early management provided more seed and leaves resources 

than late practices. This difference is reflected by the breaking of Anacyclus 

clavatus´ prominence, allowing for the recovery of that species, and leading us to 

believe that early management promoted diversity enhancement. 

Plant succession dynamics after different disturbance practices are the key to 

explaining the contrasting result between two treatments made at the same time. 

It is known that life forms are relevant to discriminate weeds according to physical 

or chemical disturbances (Gaba et al., 2013). Ploughing allows for equal weed 

expansion dominated by pioneer annual plants with fast life cycles (Sojneková and 

Chytrý 2015). Meanwhile, herbicides favour the establishment of perennial 

species as well as ones with a short interval between recruitment and anthesis 

(Gaba et al., 2013; Gulden et al., 2010). Glyphosate is a non-selective contact 

herbicide that can affect a wide range of weeds. However, phanerophytes, 

chamaephytes and most of the hemicryptophytes are less harmed, resulting in a 

rather heterogeneous habitat. The role of these biological forms against annuals 

allows for a sparse and patchy habitat with lower density vegetation. This diverse 

structure is also promoted by the layer of dead organic matter that remains on 

the soil surface after the herbicide treatment. 

No treated fallows (control plots) and alfalfa-sowed ones offered vegetation cover 

and height values above the habitat selection ranges of the objective species. The 

over fertilization with pig slurry detected in many areas of the Ebro Valley 
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(Berenguer et al., 2008) may explain the lack of fitness, characteristic to the non-

managed fallows, while the high nutrient load may be responsible for the 

overdevelopment of the vegetation. Areas that are encroached on by dense 

vegetation result in the loss of farming habitat and cause weed problems in future 

crop seasons, so it is usually a non-preferred scenario for farmers. This implies 

that in other circumstances (considering different climate or soil fertilization), the 

results could be lower than the ones obtained in our region. Even if our 

experimental approach is conditioned by the soil fertilization levels of the study 

area, all treatments should be affected in the same way by those soil conditions, 

allowing us to assume that the differences in vegetation structure we found 

between treatments would remain constant, or at least very similar, in other 

areas where steppe and birds reside.  

Previous studies described the importance of legume fields as a good habitat for 

steppe birds and particularly for Little Bustard (Bretagnolle et al., 2011; Ponce et 

al., 2014). Here, alfalfa was not as successful as expected, probably due to dry 

weather conditions after sowing. This undermined the competitive capacity of 

alfalfa against other weeds that, along with the absence of any other treatment 

after the sowing date, led to an evolution similar to that of the control plot 

vegetation. Maybe an annual reseeding in these dryland areas could enhance 

alfalfa growth. Early chisel has the highest trophic index values, but it is above the 

optimal range of all the bird species in terms of vegetation height, suggesting that 

the latter would restrict the access to those food resources.   

We predict that the early and late herbicide application together with shredding 

would offer the best conditions for Little Bustard and Calandra Lark, as these 

treatments match their optimal habitat range for both cover and height, 

according to bibliography. Nevertheless, if we also consider food resouces, only 

early herbicide application and shredding remain the best treatments for Little 

Bustard, while Calandra Lark prefers the former. It seems paradoxical to suggest 

an herbicide treatment as one of the best ways to achieve the optimal conditions 

on fallows for Little Bustard, considering that its diet is based on green leaf 

resources (Jiguet 2002), so shredding seems to be a more conservative option 

than any chemical treatment. Also, and based on the provided information, 

shredding and herbicide are among the less expensive farmland practices. The 

controversial role of herbicide in conservation is mainly because of its negative 
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influence on floristic diversity and the invertebrate community (Boatman et al., 

2004; Wilson et al., 1999), as some insect groups are important food sources for 

chicks. Pollination decline is a well-documented consequence of agricultural 

pesticide application, especially in places where spraying time coincides with 

flowering time (Nicholls and Altieri 2012). Nevertheless, previous studies have 

found that reduced herbicide inputs allow for the maintenance of a diverse 

invertebrate community (Vickery et al., 2002). In summary, we do not know the 

extent to which the benefits of early chemical application for some of the target 

species exceed the potential damage that application could cause to the insects or 

wildlife in general, which is why more specific studies are needed to explore the 

short and long-term effects of chemical treatments in fallows. Furthermore, it 

would be necessary to assess the invertebrate availability under different 

agronomic practices in future studies because breeding success for some bird 

species may be dependent on this kind of food supply (Holland et al., 2006; 

Holland et al., 2014; Jiguet 2002).  

According to our results, the other four bird species (Stone-curlew, Short-toed 

lark, Pin-tailed sandgrouse and Black-bellied sandgrouse) would only find suitable 

vegetation structure conditions in late chisel treated fallows. Thus, even if this 

treatment does not offer the highest food resources that early treatments appear 

to provide, the microhabitat requirements of those species strongly limit the 

choices to manage fallows for them. Short vegetation height and low cover is 

reported by other studies as the optimal habitat for sandgrouse species (Martín et 

al., 2014), probably to better detect predators and reduce predation risk (Butler 

and Gillings 2004). The short toed lark also shows a positive response to bare 

ground, selecting low shrub cover, more herbaceous plants and low vegetation 

height (Moreira 1999; Suárez et al., 2002). It mainly feeds on seeds found on the 

ground, so this type of open microhabitat following mechanical treatment favors 

food accessibility and visibility (Llusia and Oñate 2005; Moreira 1999). Both 

processes (anti-predator behaviour and foraging strategy) would be favoured by 

late chisel treatments on fallows.  
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4.1 Conservation implications 

Temporary non-crop habitat establishment specifically designed with biodiversity 

goals in mind are reported by several studies to offer suitable habitats for species 

of conservation concern (Cardador et al., 2014; Gillings et al., 2010; Huusela-

Veistola et al., 2011; McMahon et al., 2010). To improve the effectiveness of 

management actions, conservation guidelines for steppe birds should consider 

microhabitat preferences giving importance not only to the amount of habitat 

provided but also to vegetation structure and food availability. Moreover, it is also 

necessary for managers and farmers to know how to achieve the desired 

microhabitats if biodiversity goals exist. This study contributes to better 

understanding of how to attain the most suitable vegetation structure and food 

availability in fallows designed for steppe bird conservation, whilst providing 

economic assessment of each agronomic practice, essential to maintaining an 

environmentally-concerned farming culture with conservative aims. Although it 

may be possible to find other ways to manage fallows, such as grazing (Kruess and 

Tscharntke 2002; Hoste-Danyłow et al., 2010), in our experiment we reproduce 

the most common agricultural practices so these results can be useful for other 

regions and farmland landscapes.  

Our study shows that early management applications (February) play a relevant 

role in fostering habitats with more food resources for birds than applications 

made in early spring. A good example of effectiveness maximization would be the 

shredding and early-herbicide application treatment for Little bustard and 

Calandra lark, respectively, offering greater food resources and optimal habitat 

parameters at a minimum cost. In contrast, managing fallows for the other four 

target species (Greater short-curlew, Stone-curlew, Pin-tailed sandgrouse and 

Black-bellied sandgrouse) is more constrained by the sparse vegetation 

requirement of those species, only achieved through ploughing in early spring. It 

is clear from our results that for suiting the needs of different target species in the 

geographical same area, it is necessary to combine different types of management 

techniques and avoid the over implementation of a particular treatment at 

landscape scale. Instead, alternating patches with management that promote 

suitable habitat for foraging, such as early chisel, with others that offer good 

shelter and breeding conditions, such as herbicide applications, shredding and 
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late chisel, could lead to the ideal heterogeneous mosaic needed to sustain a high 

diversity of bird species. 

The main contribution of this study has been to experimentally assess how 

different microhabitats can be achieved through fallow management and to make 

predictions on how the resulting vegetation structures and food availability 

matches the main requirements of steppe land birds, one of the more threatened 

groups of farmland birds. Now, as a next step, a validation of the study results will 

be required to confirm the relationships between fallow management and our 

predictions on habitat suitability. Our study focuses on the breeding period, which 

is a crucial step in the life cycle of any species or population, but in future studies 

it would be desirable to explore the effects of fallow management on habitat 

suitability during the whole year, given that species' habitat requirements may be 

season dependent (Marfil-Daza et al., 2013). 
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Steppe bird responses to different management 

practices in fallow lands: towards an enhancement of 

agri-environmental schemes efficiency

Summary 

Agricultural practices act as a filter modulating vegetation communities and thus, 

their structure and the potential to provide food resources, which primarily 

determines the habitat selection of steppe birds. In a previous study we 

experimentally identified the effect of different fallow field management on 

vegetation development. By analyzing the optimal steppe bird´s habitat range 

according to bibliography, we assessed the suitability of the habitat resulting from 

management implementation. With the aim to validate these results with actual 

data, we designed this study to analyze the response of three steppe bird species: 

Little bustard, Stone-curlew and Calandra lark to different management practices 

in 241 fallow fields of Catalonia (NE Iberian Peninsula) during breeding period. 

Bird censuses, vegetation surveys and surrounding habitat information were 

taken into account to construct the models. Tillage was related with sparse 

habitat structure, facilitating predator detection and conspicuousness for 

courtship, as well as ruderal vegetation, which provides for plentiful seeds and 

green plant availability.  Little bustard males and Stone-curlews showed a positive 

response to this habitat type, while Little bustard females had a high propensity 

to find more dense areas to place their nests. Shredding, herbicide application or 

sowing were associated with a more compacted vegetation structure and 

invertebrate biomass availability; an important food resource for chicks and the 

basis of the Stone-curlew diet, which makes nocturnal excursions for food but 

prefers open habitats during the day. Calandra lark was also positively correlated 

with a denser vegetation habitat, preferring to fly than hide to avoid predators. 

However, all the species showed common preferences in terms of surrounding 

habitat characteristics: selecting open fields and avoiding the presence of 

numerous edges, linked with higher predation risk.  This study shows that efficient 

fallow management to improve the steppe bird community is guided by 

understanding the response of vegetation to abiotic disturbances. 
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1. Introduction

In recent decades, agri-environmental schemes (AES) are intended to counteract 

the environmental impacts of modern farming techniques on biodiversity (Kleijn 

et al., 2006; Stoate et al., 2009). Strong consequences have been shown for the 

steppe avifauna, ranked as the most threatened group of birds in Europe with 

83% of species having unfavorable conservation status and becoming the focus of 

important conservation efforts (Benítez-López et al., 2013; Guerrero et al., 2014; 

Tucker and Heath 2004). The agricultural pseudo steppes of the Iberian Peninsula 

houses a significant concentration of steppe bird populations that are classified as 

endangered at a continent-wide scale (Moreira 1999; Ponce et al., 2014). Because 

of their specialist character, this group of birds is strongly associated with dry 

cereal farmland habitats and traditional agriculture practices (Cardador et al., 

2014; Moreira et al., 2012). Numerous studies have valued fallow lands as one of 

the most important measures related with biodiversity enhancement in agro-

ecosystem and have further described it as a preferred habitat by most steppe 

birds (Cardador et al., 2014; Moreno et al., 2010; Siriwardena et al., 2000). 

Numerous studies have indicated differences in the microhabitat preferences 

among steppe bird species during breeding season (MacDonald et al., 2012; 

Morales et al., 2008; Traba et al., 2015). Vegetation structure and composition is 

associated with the foraging availability, nesting site or shelter from predators 

(Cardador et al., 2014; Delgado et al., 2009; Green et al., 2000; Toivonen et al., 

2013; Traba et al., 2015), key factors that strongly determine the birds' habitat 

suitability. Agricultural practices are directly regulating the vegetation response 

and thus the habitat value for birds (Fried et al., 2012), however, the main 

management adaptations prescribed often do not take their requirements into 

account, resulting in useless conservation efforts for endangered farmland 

species. 

As cereal pseudo-steppes of Iberian Peninsula represent low productive areas 

(Delgado et al., 2000; Oñate et al., 2005) proper knowledge regarding the 

effectivity of management practices to enhance steppe bird population viability in 

an area must be required before taking a percentage of arable land temporarily 

out of production. The abandonment to revert to a more natural condition often 

results in the loss of valuable farmland habitats due to encroachment by dense 

vegetation (Morgado et al., 2010). Also, the over fertilization with pig slurry which 
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has been detected in some areas (i.e. the NE Iberian Peninsula) (Berenguer et al., 

2008) accelerates the overdevelopment of the vegetation. Informed management 

is therefore necessary, as the knowledge of its effect on plant communities is key 

to ensuring high efficiency AES in fallow lands. However, most studies are based 

on describing bird habitat preferences without including information of the most 

suitable management practice(s) to achieve it. The translation of scientific 

knowledge into management strategies which are beneficial to wildlife and that 

can be implemented is necessary to progress towards an effective AES design and 

development. 

In previous work, we assessed the vegetation structure and trophic resources 

provided by different fallow managements from an experimental approach 

(Chapter 3 thesis). The information of the specialized habitat requirements for the 

steppe bird species was supported by other studies in order to identify the 

management practices that will assist in maximizing the potential of fallow habitat 

to support their populations. In the foregoing work, we aim to validate the habitat 

suitability predictions made at field scale with real data for three ground-nesting 

steppe bird species: Little bustard, Stone-curlew and Calandra lark. Furthermore, 

although impacts at finer spatial grains have been shown to determine bird 

abundance, landscape structure and composition of the matrix is deeply 

influencing population dynamics (Devictor and Jiguet 2007; Gil-Tena et al 2015; 

Moreira et al 2005). Therefore, the study adopted here in is a multi-scale 

approach including information from surrounding habitats to adequately assess 

the requirements of steppe birds within a given habitat. 

2. Methods

2.1 Study area and bird species 

The study area was located in the Lleida Plains, on the eastern edge of the Ebro 

basin (north- east Iberian Peninsula); characterized by low annual rainfall 

(between 300 and 450 mm) and a contrasted continental climate. Trials were 

carried out in six agricultural regions within Important Bird Areas (IBAs) and 

included in the Natura 2000 network. These regions were: Mas de Melons-Alfés 

(7618.63 ha), Belianes-Preixana (6521.12 ha), Bellmunt-Almenara (4039.48 ha), 
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Granja d’Escarp (1800 ha), Plans de Sió (10382.69 ha) and Segrià-Utxesa (7727.27 

ha), where most of the steppe bird species of conservation concern are coexisting 

in the region (Brotons et al., 2004; Estrada et al., 2004).  The three selected steppe 

bird species have high-conservation value at the European level (Annex I Directive 

2009/147/EC), and include; the Little bustard (Tetrax tetrax), Stone-curlew 

(Burhinus oedicnemus) and Calandra lark (Melanocorypha calandra). Study areas 

are devoted predominately to extensive cultivation cereal crops (mainly barley 

and wheat), followed by tree crops, such as almonds and olives, and finally, 

fallows.  

2.2 Sampling methods 

A total of 241 fallow fields were surveyed, standardizing the number according to 

the region sizes as follows: Mas de Melons-Alfés, n= 54; Belianes-Preixana, n= 51; 

Bellmunt-Almenara, n=26; Granja d’Escarp, n=23; Plans de Sió, n= 71; Segrià-

Utxesa, n=16. Only fallows higher than 1 ha were considered. Surveys were 

carried out in 2015 between the end of April and end of May, coinciding with the 

breeding and high activity period of these bird species.  

2.2.1 Bird censuses 

Bird censuses were performed once per each fallow field from 6 a.m. to noon, 

only in periods with good weather conditions and typically lasted for a duration of 

10 minutes. A fixed point was located as a listening station by randomly selecting 

a boundary for the fallow field and establishing a buffer zone of 200 m. Each point 

was spaced at least 400 m from the nearest one. Furthermore, transect lines were 

performed, adapting length proportionally to the field size in order to maximize 

the efficiency in detecting bird species. The maximum number of individuals of 

each species recorded either acoustically or visually was used as an estimate of 

species abundance per fallow field.  

2.2.2 Vegetation sampling 

Habitat sampling was performed after the bird survey. A global characterization of 

the vegetation structure was developed on each fallow field by defining 10 

categories from the combination of cover (0-5% (bare ground); 5-25%; 25-50%; 

>50%) and height (0-20 cm; 20-40 cm; >40 cm) data to describe structural 
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heterogeneity. Additionally, detailed vegetation surveys were carried out by 

assessing and recording between 3 and 10 2x2 m plots per fallow field. Vegetation 

cover and average height of the plot was measured, in addition to the coverage of 

the main plant species (considered as any species occupying more than 20%).  

2.2.3 Trophic resources 

The availability of trophic resources such as seeds and leaves were calculated 

from the plant species information following the methodology developed in 

Chapter 3 of the thesis. Chick survival is highly dependent on invertebrate food 

supplies (Delgado et al., 2009; Holland et al., 2006) and many studies highlight 

grasshoppers as an important food type (Bretagnolle et al., 2011; Jiguet et al., 

2002). Hence, the presence of the orthopteran species were recorded by two 

transects lines once per each fallow field. Body size of every individuals observed 

was also considered and included in one of the three groups of size categories: <2 

cm, 2-4 cm, >4 cm.  After averaging data from the two transect lines, the final 

number of individuals were multiplied by their size category (i.e.: <2 cm category= 

x1; 2-4 cm category= x3; >4 cm category= x5) to estimate an index of insect 

biomass by the relation of length and mass (Wardhaugh, 2013). 

2.2.4 Management practices 

Management practices performed in each fallow field during the 2014-2015 

season was obtained by conducting farmer interviews. Furthermore, the crop 

types of the fields inside the 200 m buffer were categorized using Geographical 

Information Systems (GIS). 

2.3 Explanatory variables 

According to previous studies, we grouped the available information into three 

sets of explanatory variables which mainly determine bird habitat selection: 

vegetation structure, trophic availability and habitat structure (Table 1). 

Vegetation structure includes the different cover-height combinations registered 

in the field sampling. Habitat structure is divided into landscape composition and 

landscape configuration (McGarigal and McComb 1995). Based on our data, the 

predictors selected to explain landscape composition (inside the 200 m buffer) 

were: the Shannon Diversity Index (SHDI) of crop types, the percentage of non-
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crop areas (edges, fallow, oak wood, pinewood, plowed, reeds, riparian forest, 

set-aside, scrub and stubbles) and the percentage of suitable areas for the target 

species taken into account in our study (fallow, set-aside and scrub). To describe 

the configurational landscape heterogeneity, we focused on both field scale 

parameters, such as fallow field area and shape (perimeter area-1), and buffer 

scale, characterized as the mean of the perimeter area-1 (PAR) and the total 

border length (TBL) of the field patches within the 200 m buffer. Finally, as trophic 

availability we included: seed, leaf and insect (grasshopper) indexes. 

Table 1. List of the explanatory variables used for the statistical analysis. 

Vegetation structure Habitat structure Trophic availability 

Bare ground (0-5% cover) Configurational Leaf availability index 

Level 1 (5-25% cover, 0-20 cm height) Field area Seed availability index 

Level 2 (5-25% cover, 20-40 cm height) Field shape Insect availability index 

Level 3 (5-25% cover, >40cm height) TBL  

Level 4 (25-50% cover, 0-20 cm height) PAR  

Level 5 (25-50% cover, 20-40cm height) Compositional 

Level 6 (25-50% cover, >40cm height) SHDI  

Level 7 (>50% cover, 0-20 cm height) % non-crop areas 

Level 8 (>50% cover, 20-40 cm height) % suitable areas 

Level 9 (>50 % cover, >40 cm height) 

TBL: total border length; PAR: mean of the perimeter area
-1

 ratio; SHDI: Shannon diversity 

of crop types 

2.4 Statistical analysis 

To summarize environmental variation of vegetation structure and habitat 

structure data, two Principal Component Analysis (PCA) were conducted using 

varimax normalized rotation to maximize the correlations between the axes of the 

PCA and explanatory variables. The principal components (PCs) were taken as 

niche dimensions and used as predictors in our models. 
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General Linear Mixed Models (GLMM) using zero-inflated Poisson distribution (for 

zero-heavy account data) and log-link error terms were performed to study the 

influence of the vegetation structure (PCveg), trophic availability and habitat 

structure (PChab) on the selected steppe bird´s occurrence. As vegetation 

structure is the main determining factor in a bird´s habitat choice (Whittingham et 

al., 2006), PCvegs were tested separately to discriminate the optimum habitat 

range for each of the species. Secondly, new models were constructed taking the 

interaction of this previous selection with trophic availability variables into 

account. PChab´s dealing with birds´ abundance were analyzed independently. 

Models were compared using the adjusted Akaike information criterion (AIC) 

(Burnham and Anderson 2002). The most parsimonious model was selected by 

fitting the lowest AIC scores and we only considered models with ΔAICc < 2 as the 

best fitted models for each predictive variable. Region was treated as a random 

factor. 

To test the hypothesis that contrasting field management had selected for plant 

communities, a Canonical Correspondence Analysis (CCA) was performed (after 

first performing a Detrended Correspondence Analysis, DCA, to quantify the 

length of gradient and confirm that a unimodal model was appropriate). The 

analysis was conducted among field practices and vegetation structure variables 

(PCvegs). Analysis were carried out using Canoco 5.0 package (ter Braak and 

Smilauer, 2012) and R software (R Development Core Team, 2011) with LME4 

packages (Bates et al.,, 2008) for mixed models. 

Table 2. Percentages of ocurrence, mean and maximum bird density in fallow lands. 

Sample size corresponds to the number of surveyed fields. 

Bird Species 
Regions with 

presence 
% of occurrence 

in fallow field 
Mean ± se density 

(n=birds/ha) 

Region with maximum 
density in fallow fields 

(n=birds/ha) 

Little Bustard All regions 25.3 (n=241) 1.54 ± 1.18 
Belianes-Preixana 
6.7 ± 5.58 (n=51) 

Stone-curlew All regions 21.9 (n=241) 0.8 ± 0.59 
Belianes-Preixana 

3 ± 2.8 (n=51) 

Calandra lark All regions 35.3 (n=241) 0.9 ± 0.12 
Belianes-Preixana 

2 ± 0.38 (n=51) 
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3. Results

The three target species studied were recorded in all the study regions and 

showed differences in their occurrence (Table 2). The major species density is 

outstanding by Little bustard (1.54 ± 1.18). 

PCA analysis resulted in five principal components that explain 68.8% of the total 

variance for the vegetation structure variables (PCveg´s) while it was summarized 

into four components accounting for 90.6% of the total variance for the habitat 

structure variables (PChab´s). The loading factors, eigenvalues and percentage of 

variation explained by the PCA are shown in Tables 3 and 4, and the interpretation 

of each axis on the basis of the loadings of each variable is given in Tables 5 and 6 

for PCveg and Pchab, respectively. 

Results of GLMMs showed that the responses of steppe bird abundance to the 

different environmental factors changes among species (Tables 7, 8 and 9). The 

abundance of Little bustard were positively associated with open sparse 

vegetation areas, linked with leaf availability resource, and an avoidance of dense 

vegetation structure patches is shown (Tables 7 and 8). The models for Stone-

curlew indicated that their abundance were positively influenced by a 

heterogeneous vegetation structure, represented by cleared areas and short plant 

heights. However, dense and homogeneous vegetation significantly increased 

Calandra lark abundance, which is also associated with an increment of insect 

biomass availability. 

Regarding habitat structure (Table 9), common requirements were shared 

between the three bird species, explained by a positive association with increased 

field area and a reduction of crop diversity and length of field boundary in the 

surrounding landscape. Calandra lark abundance is also related with an increment 

of non-crop and suitable habitat areas, sharing their preference for regular field 

shapes with Stone-curlew.  

In the CCA ordination diagram, the first axis reveals a 2.94% variation in 

management practices and 39.98% in the practices-habitat characteristics 

relationship (Fig. 1). The first two axes then depict 68.38% of the variance of the 

practices-habitat characteristics relationship. In the Monte Carlo test, the 

significance for the first axis was P = 0.011 (F = 4.8) and for all axes P = 0.009 (F = 
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1.6). The first CCA axis is guided by the effect of field practices on vegetation 

structure and the second revealed a gradient of vegetation density. A positive 

relationship is shown between grazing and sowing treatments and short 

vegetation height (PCveg2). Both herbicide applications combined with other 

practices, as well as shredding, promote other vegetation types. On the other 

hand, sparse vegetation (PCveg5) is positive correlated with the availability of 

leaves and seeds as trophic resources, while increased insect biomass is more 

closely related to areas of medium and high density cover. 

Figure 1. Canonical correspondence analysis biplot diagram displays the relationship of vegetation 

structure (principal components, PCvegs´s) and food availability (leaf, seed and insect indexes) in 

fields (arrows) with management practices (M: mowing/shredding; T: tillage; H: herbicide; G: 

grazing; S: sowing; O: others) (dots). Eigenvalues for axes 1 and 2 are 0.3237 and 0.2299 

respectively. 
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Table 3. Factor loadings and eigenvalues resulting from the Principal Component Analysis 

(PCAveg´s) for eleven variables that explained vegetation structure. Loading values greater 

than 0.4 are in bold. 

Variables PCveg1 PCveg2 PCveg3 PCveg4 PCveg5 

Bare ground -0.24 -0.05 0.21 -0.27 0.71 
Level 1 -0.46 0.27 -0.11 -0.25 -0.11 
Level 2 -0.39 -0.03 -0.46 -0.09 -0.13 
Level 3 -0.23 -0.23 -0.55 0.24 0.26 
Level 4 -0.13 0.58 0.24 -0.02 0.39 
Level 5 -0.26 -0.12 0.49 0.48 -0.04 
Level 6 -0.23 -0.42 0.15 0.38 0.04 
Level 7 0.33 0.39 -0.23 0.27 -0.24 
Level 8 0.42 -0.07 -0.17 0.26 -0.35 
Level 9 0.28 -0.45 0.11 -0.52 0.24 

Eigenvalue 2.12 1.51 1.18 1.1 0.97 
Explained 

variance (%) 
21.2 36.3 48.1 59.1 68.8 

Table 4. Factor loadings and eigenvalues resulting from the Principal Component Analysis 

(PCAhab´s) for seven variables that explained habitat structure. Loading values greater 

than 0.4 are in bold. 

Variables PChab1 PChab2 PChab3 PChab4 

SHDI 0.13 0.23 0.79 -0.02 
% non-crop areas -0.58 -0.15 0.18 -0.22 
% suitable areas -0.58 -0.17 0.16 -0.21 

Field area -0.46 0.38 -0.79 0.38 
Field shape 0.13 -0.13 -0.09 -0.85 

PAR 0.15 -0.74 -0.19 0.11 
TBL 0.20 -0.57 0.51 0.13 

Eigenvalue 1.56 1.24 1.16 1.04 
Explained variance 

(%) 
34.7 56.6 75.9 91.6 

SHDI: Shannon diversity of crop types; TBL: total border length; PAR: mean of the 

perimeter area
-1

 ratio 
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Table 5. Interpretation of the Principal Components that grouped vegetation structure´s  

variables. PC´s have been coded as PCveg´s. 

PCveg Positive correlated Negative correlated Description 

PCveg1 Level 8 Level 1, Level 2 
Gradient running from high-

dense vegetation areas towards 
open habitats 

PCveg2 Level 4, Level 7 Level 6, Level 9 
Areas of short height vegetation 
(0-20 cm) vs highest height (>40 

cm) 

PCveg3 Level 5 Level 2, Level 3 
Associated with mean values of 

cover and height vs low 
percentage of plant cover 

PCveg4 Level 5, Level 6 Level 9 
Mean values of plant coverage  

vs dense vegetation 

PCveg5 
Bare ground, Level 
4 

Bare ground, mean coverage 
and short height vegetation 

areas 

Table 6. Interpretation of the Principal Components that grouped habitat structure´s 

variables. PC´s have been coded as PChab´s. 

PChab Positive correlated Negative correlated Description 

PChab1 
% of non-crop and 

suitable areas, Field 
area 

Negatively correlated with big 
field sizes and landscapes with 
high percentage of both non-

crop and suitable areas for bird 
species 

PChab2 Field area PAR, TBL 
Big field sizes vs landscapes 
composed by irregular field 

shapes and long border lengths 

PChab3 SHDI, TBL Field area 
Long border lengths and high 

diversity of crop vs big field size 

PChab4 Field shape 
Show a negative correlation 
with irregular field shapes 
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Table 7. Model selection details of the relationship between the three steppe bird species (Little bustard, Stone-curlew and Calandra lark) 

and the principal components extracted from the vegetation structure variables (PCveg´s). Only models which Δi < 2 are showed. The AIC, 

delta weight and the model selection probability (Wi) are listed; the selection probabilities are also summed for each parameter across all 

models across 95% confidence for the data set by summing all the W i scores for all models in which the predictor was included; the 

parameter estimates (β) presented are the averages across all models (weighted by selection probabilities); the models represent 95% 

confidence for the data set. 

Vegetation structure variables (PCveg´s) 

Variable Intercept PCveg1 PCveg2 PCveg3 PCveg4 PCveg5 AICc Δi Wi 

Little bustard X X X 458.23 0.00 0.36 
X X X 459.92 1.69 0.15 

β (CI) 0.44 
(0.37,0.5) 

-0.06 
(-0.09,-0.03) 

0.19 
(0.15,0.23) 

Stone-curlew X X X 474.01 0.01 0.081 
X X 474.05 0.06 0.079 
X 474.07 0.07 0.078 
X X 474.43 0.44 0.065 
X X 474.97 0.98 0.050 
X X 475.37 1.37 0.041 
X X 475.44 1.45 0.039 
X X 475.60 1.61 0.036 
X X 475.63 1.64 0.036 
X X 475.94 1.94 0.030 

β (CI) 0.77 
(0.69,0.85) 

-- 0.024 
(0.003,0.04) 

-- 0.028 
(0.006,0.05) 



Vegetation structure variables (PCveg´s) 

Variable Intercept PCveg1 PCveg2 PCveg3 PCveg4 PCveg5 AICc Δi Wi 

Calandra lark X X X 1105.61 0.00 0.126 
X X 1105.81 0.19 0.114 
X X X 1106.23 0.62 0.093 
X X X 1106.30 0.69 0.089 
X X 1106.66 1.05 0.075 
X X X 1106.67 1.06 0.074 
X X X 1106.72 1.11 0.072 
X X X 1107.09 1.48 0.060 
X X X X 1107.12 1.51 0.059 
X X X 1107.41 1.80 0.051 

β (CI) 1.45 
(1.37,1.52) 

0.073 
(0.05,0.09) 

-- -- -- -- 



Table 8. Model selection details of the relationship between the three steppe bird species (Little bustard, Stone-curlew and Calandra lark) 

and the principal components extracted from the vegetation structure variables (PCveg´s) with trophic resources variables as interaction. 

Only models which Δi < 2 are showed. The AIC, delta weight and the model selection probability (W i) are listed; the selection probabilities 

are also summed for each parameter across all models across 95% confidence for the data set by summing all the Wi scores for all models 

in which the predictor was included; the parameter estimates (β) presented are the averages across all models (weighted by selection 

probabilities); the models represent 95% confidence for the data set. 

Vegetation structure (PCveg´s) * Trophic resources variables 

Variable Model selected AICc Δi Wi 

Little bustard PCveg5 x Leaf I. 458.01 0.00 0.58 
Intercept PCveg5 Leaf I. PCveg5 x Leaf I. 

β (CI) 0.71 
 (0.64,0.78) 

-- -0.19                  
   (-0.23,-0.15) 

0.18 
(0.13,0.22) 

Stone-curlew PCveg5 x Leaf I. 450.24 0.00 0.94 
Intercept PCveg5 Leaf I. PCveg5 x Leaf I. 

β (CI) 1.67 
(1.6,1.72) 

0.49 
(0.44,0.55) 

-0.71 
 (-0.75,-0.66) 

-- 

Calandra lark 
PCveg1 x 
Insects I. 

1087.53 0.00 0.99 

Intercept PCveg1 Insects I. 
PCveg1 x Insects 

I. 

β (CI) 1.75 
(1.72,1.78) 

0.08 
(0.05,0.1) 

0.04 
 (0.02,0.04) 

-- 



Table 9. Model selection details of the relationship between the three steppe bird species (Little bustard, Stone-curlew and Calandra lark) 

and the principal components extracted from the habitat structure variables (PChab´s). Only models which Δi < 2 are showed. The AIC, 

delta weight and the model selection probability (Wi) are listed; the selection probabilities are also summed for each parameter across all 

models across 95% confidence for the data set by summing all the W i scores for all models in which the predictor was included; the 

parameter estimates (β) presented are the averages across all models (weighted by selection probabilities); the models represent 95% 

confidence for the data set. 

Habitat structure variables (PChab´s) 

Variable Intercept PChab1 PChab2 PChab3 PChab4 AICc Δi Wi 

Total species X X X X X 2170.45 0.00 1.00 

β (CI) 1.97 
(1.91,2.02) 

-0.12 
(-0.13,-0.1) 

-- -0.29 
(-0.3,-0.26) 

0.28 
(0.25,0.3) 

Little bustard X X 459.64 0.00 0.36 
X X X 461.18 1.54 0.16 
X X X 461.52 1.88 0.14 
X X X 461.54 1.91 0.13 

β (CI) 0.52 
(0.47,0.56) 

-- -- -0.23 
(-0.27,-0.19) 

Stone-curlew X X X X X 449.37 0.00 0.80 

β (CI) 0.51 
(0.46,0.55) 

-- -- -0.31 
(-0.34,-0.27) 

0.24 
(0.2,0.28) 

Calandra lark X X X X 1053.56 0.00 0.64 

β (CI) 1.11 
(1.02,1.18) 

-0.09 
(-0.12,-0.07) 

0.05 
(0.03,0.07) 

-0.17         
(-0.2,-0.13) 



4. Discussion

The results presented here support the predictions made in the previous study 

based on bibliographic data. Furthermore, considering the surrounding habitat 

preferences (configuration and composition) allows for the development of more 

detailed ideas in order to improve conservation actions. 

Little bustard is a sexually dimorphic species during mating time (Morales et al., 

2008). Microhabitat selection of Little bustard females is guided by the need of 

shelter, finding well protected areas to place their nests, and the need for food; 

thus selection is positively related to vegetation density (Morales et al., 2008). By 

contrast, males are associated with highly conspicuous points, with no or very 

little vegetation cover, to make their sexual display at leks (Jiguet 2002; Traba et 

al., 2008). Our results associate a major abundance of Little bustards to this open 

vegetation structure, and because of the secretive behavior of females linked with 

their difficulty for detection (Mcmahon et al., 2010), we can assume that the 

majority of the individuals detected were males; and typical lek areas are being 

selected. These sparse vegetation habitats were also related to green weed 

availability, the major component of the adult Little bustard diet (Jiguet 2002).  

According to our results, tillage is the main field practices that promote this 

habitat type; for instance, the degree of disturbance has an important role in 

assembling plant communities (Armengot et al., 2016; Hernández-Plaza et al., 

2015). Soil tillage leads to an increase of niche availability, promoting the 

colonization of species with ruderal traits, which increase their fitness in disturbed 

environments (Gaba et al., 2013; Storkey et al., 2013). Ruderal communities are 

characterized by: high proportions of annual species with high specific leaf area 

(SLA), which is in turn directly related to the leaf palatability responsible for 

determining the assimilation value of the leaves by herbivores (Storkey et al., 

2013; Weiher et al., 1999), a short life cycle, early flowering and small seeds 

(Albrecht and Auerswald 2009). These characteristics aid in increasing seed supply 

in the system, and thus their availability as a food resource. In contrast, other 

managing practices such as grazing, shredding or spraying herbicide favor the 

presence of perennial and biennial species (phanerophytes, chamephytes or 

hemicryptophytes) because of their selectivity action. These life forms are linked 

with a competitive behavior, associated with a high seed mass and lower SLA 
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(Storkey et al., 2013). Although perennial plants provide greater continuity of seed 

resources by overlapping blooming periods during the year (Isaacs et al., 2009), 

here we are assessing a specific period within this system: breeding time. 

Accordingly, the seed availability index is weighted to highlight the species in 

flower during the regional AES period (where management practices are 

prohibited from the 15th of April to the 1st of September), coinciding with the 

time of flowering/fructification of the majority of annual species, and so we 

assume that ruderal communities are able to provide a higher quantity of forage 

(seeds and leaves) than other competitive communities during spring-summer 

time. Moreover, polycarpy, highlighted as a characteristic trait of ruderal species, 

allows the plants to flower and produce several seed sets during their lifetime 

(Storkey et al., 2013). It must be taken into account, however, that regulating the 

timing of agricultural labor is key to adequately modifying vegetation structure. 

This fact was reflected in our previous study, where early treatments (applied in 

February) provided richer foraging habitat during breeding period than later ones 

(April) (Fig. 2).  

Figure 2. Result obtained in the previous study showing the average (and the 95% 

confidence interval) of leaf and seed availability indexes per field management (black 

dots). Sample sites are marked with white dots. 
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By comparing predicted range-values of vegetation structure to the ones got from 

bibliography is shown the bias on microhabitat selection is due to the differential 

sexual behaviour of Little bustard (Fig. 3). The range established by other studies 

depicted a clear difference between the optimum habitat for males vs females, 

and also differentiated between field practices. As we have shown in our results, 

tillage was linked with a sparse habitat where males are able to make their sexual 

display, and denser vegetation structures were associated with herbicide and 

shredding treatments, a preferred habitat for females. 

Our results indicate that Stone-curlew is favored by similar microhabitats as Little 

bustard males, characterized by sparse vegetation and bare ground areas (Green 

et al., 2000). Flat terrains and stone coverage are the preference of Stone-curlew, 

as plants might constitute an obstacle in detecting and escaping from predation 

risk (Butler and Gillings 2004; Mcmahon et al., 2010). However, these species 

differ from one another in the trophic resources required. While Little bustard is 

an herbivorous species and only chicks and juveniles feed exclusively on 

invertebrates (Green et al., 2000), the diet of the Stone-curlew is based on little 

mammals, mollusks, earthworms and mainly arthropods (Green at al., 2000; Traba 

et al., 2013). These slightly dietary differences may facilitate their coexistence and 

avoid competition in environments where resources are scarce. Previous studies 

have found a strong positive correlation between vegetation volume (height and 

cover) and invertebrate biomass (Hoste-Danyłow et al., 2010; Stoate et al., 2009; 

Tscharntke et al., 2002) as opposed to the areas selected by Stone-curlew in our 

models. The outstanding elusive and nocturnal habits reported by other 

researchers (Traba et al., 2013) is associated with their feed patterns. Stone-

curlew frequently makes foraging expeditions to higher density areas in order to 

profit off concentrations of insect prey (Green et al., 2000). This habitat selection 

is backed by the range previously established by literature (Fig. 3) and again, 

related with tillage treatments. Nevertheless, it is possible that they might have a 

wider habitat range due to that their feeding needs are linked with having enough 

vegetation (Traba et al., 2013), but are difficult to detect because of their 

nocturnal behavior. 

In contrast to the previous species, the abundance of the Calandra lark increased 

with the height and cover of vegetation, as reported previously in other studies 

(Morgado et al., 2010; Sanza et al., 2012) (Fig. 3). This specie flies over the fields 
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instead of hiding in vegetation to avoid predators (Mcmahon et al., 2010). For this 

reason, they are able to stay around high density fields and just land to eat when 

they are out of danger. Shredding and herbicide application treatments are also 

related to denser vegetation and among the practices linked with suitable habitat 

range for Calandra lark in the foregoing study. These findings are in agreement 

with results from our previous study.  

Although local vegetation structure strongly influences habitat suitability, areas 

adjoining fallow fields have also an important role in determining the abundance 

of steppe birds. The reduction in habitat complexity has been linked to the 

declines in farmland biodiversity (Benton et al., 2003; Donald et al., 2001). A 

complex landscape with a high percentage of natural and semi-natural habitats 

and field boundaries appear to function as refuge for intensive agriculture 

practices for mammals (Smith et al., 2005), plants (Solé-Senan et al., 2014) or 

invertebrates (Asteraki et al., 2004), however, the contrasting response shown in 

our results are related to the habitat specialization character of this group of birds 

with most restrictive niche requirements. Landscapes with large fields and fewer 

margins have been reported to positively influence steppe bird abundance. These 

species are highly sensitive to habitat fragmentation, probably due to the 

connection between an increment of field edges and increased predation risks. 

Furthermore, they have a propensity to avoid tall structures and woody 

vegetation borders, requiring large open fields with clear views (Morgado et al., 

2010; Vickery and Arlettaz 2012). Ground-nester species suffer higher predation in 

or close to field margins because predator density is often higher in edges and 

used as corridors to move around (Hamer et al., 2006; Vickery and Arlettaz 2012), 

therefore large and homogeneous patches allow steppe birds to exploit resources 

with unobstructed views, which aids in predator detection and a lower risk. 

More frequent field use or higher crop diversity is closely related with the 

increase of edges, which can explain its negative influence on bird abundance. 

Farmland birds do however seem to use multiple habitat patches within the 

landscape mosaic, requiring fewer vertical boundaries structures within the area 

(Gil-Tena et al., 2015; Hamer et al., 2006). Evidence of this fact is shown in the 

results for Calandra lark, where their abundance is favored by expansive areas of 

non-cropped land or suitable habitats in the surrounding landscape.  
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Figure 3. Comparison between the suitable range of vegetation structure obtained from 
bibliography (dashed square) and the one predicted by the models (continuous square) for Little 
bustard, Stone-curlew and Calandra lark. Average (and the 95% confidence interval) of vegetation 
coverage and plant height experimentally obtained per field treatment overlapping the suitable 
range is also shown (Lchi: late chisel (tillage); EHer: early herbicide; LHer: late herbicide; Shre: 
shredding). 
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4.1 Conservation implications 

The results of this study reinforce the idea that steppe bird species show different 

preferences for local field characteristics during breeding time (Cardador et al., 

2014; Concepción and Díaz 2011), revealing the importance of considering 

microhabitats before planning management strategies.  

Determining field practices that provide a suitable habitat for birds regarding 

good vegetation structure and food resources is key for efficient fallow 

management. Possessing an understanding of how plant communities respond to 

abiotic factors is therefore necessary to modify the potential contribution of an 

area for the establishment of bird species. Here we identify that sparse vegetation 

areas derived from tillage management programs are linked with ruderal plant 

species, which supply ample green material and provide for ground availability of 

seeds. Furthermore, these areas of good detectability are preferred during the 

sexual display, as for Little bustard males, or to camouflage from predators, in the 

case of Stone-curlew. A denser or more irregular vegetation, consequence of 

shredding, herbicide, grazing or sowing, is often required for shelter and foraging 

–mainly invertebrates-, and has been directly related with the needs of Little

bustard females, Calandra lark and Stone-curlew (during the night). Management 

timing must also be taken into account since it has been shown to strongly 

influence the plant community assembly. By knowing these effects, we are not 

only able to improve the habitat for the priority species, but also provide benefits 

to other non-target species that share similar microhabitat conditions or 

functional groups (such as herbivorous, granivorous, insectivorous, etc.).  

Despite these local-habitat differences, all the species studied showed common 

habitat structure preferences, such as landscapes composed of big fields and 

homogeneous areas. Therefore, the identification of suitable areas which can 

potentially contribute to enhancing the species population viability at landscape 

scale must be required before developing appropriate management practices for 

a selected fallow field.  
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Spatial distribution of vegetation modifies the suitability 

of farmland birds' habitat in fallow lands 

Summary 

Fallow fields have been proposed as one of the main agri-environmental schemes 

to support the conservation of farmland biodiversity. However, little is known 

about the effect of common management practices on the vegetation 

configuration which is responsible for determining the establishment of steppe 

bird species, a group considered to be a good indicator of overall farmland 

diversity. Understanding the spatial distribution variability of weeds may be 

important for addressing effect(s) that the management practices have on 

vegetation structure and food availability, the two major factors determining bird-

habitat selection. In this study, we compared two management techniques 

(herbicide application and shredding) in adjacent fallow fields for three agronomic 

seasons. 150 samples were taken from 50 m × 150 m grids in each field every 

May. Despite the common trend highlighted by an increase in coverage and a 

decrease in height for both techniques, herbicide treatment promoted a 

heterogeneous scenario because of its selectivity and efficacy for different plant 

species. This type of diverse habitat configuration is known to be suitable as 

shelter, foraging and nesting areas for farmland birds. The optimal structure-

threshold was exceeded in the shredded fallow field compared to the herbicide 

treated one.  Plant resources (leaves and seeds) that did not show variations, as 

well as insect availability, was related with taller vegetation, though birds 

exhibited preference for habitats with shorter plants. The most important role of 

vegetation structure is therefore as a primary filter for bird establishment, rather 

than providing a habitat with available trophic resources. Knowledge of the 

impacts of fallow vegetation distribution is important for enhancing the 

effectiveness of management plans, and improving the viability of bird species 

populations. To avoid plant encroachment with time, it is proposed that fallow 

should be maintained under the same management regime for a maximum of 

three years. 
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1. Introduction

Intensification of crop production in recent decades has lead to a decline of 

biodiversity in arable habitats (Storkey and Westbury, 2007), with detrimental 

effects on arable plants, pollinators and/or farmland birds (Marshall et al., 2003). 

One of the main interests of the European Union is to develop productive 

agricultural-management methods which aim to sustainably manage biodiversity 

through programs such as agri-environmental schemes (AES) (EEA 2004; Kleijn et 

al., 2006).  

Some organisms are thought to be good indicators of overall farmland diversity 

because they belong to groups of species with high ecosystemic relevancy (Pocock 

et al., 2012). Farmland birds, for example, represent a group which is highly 

vulnerable to the effects of agricultural change. Their narrower niche 

requirements make them suitable indicators to be evaluated for management 

effects on wildlife diversity in arable fields (Butler et al., 2007; Stoate et al., 2001). 

A number of arable plant species are also considered “key species”, the loss of 

which indicates major changes in the agri-ecosystem. Besides being of intrinsic 

value, they have also been shown to assume an important ecological function as a 

resource for higher trophic groups (Albrecht 2003; Gerowitt et al., 2003). The 

decline of abundance and diversity of arable plants is associated with a reduction 

in farmland birds (Storkey and Westbury, 2007). This relationship is largely 

dictated by the availability of the most important resources, which directly 

influence farmland bird species' distribution; quantified as their nesting site and 

foraging habitat (Cardador et al., 2014; Delgado et al., 2009).  

The arable plant communities resulting from the different management strategies 

differ markedly in their community composition and structure, influencing bird 

habitat choice (Bracken and Bolger, 2006; Firbanck et al., 2003; Storkey and 

Westbury 2007). It has special interest in temporary non-crop habitat patches 

such as fallow lands, a measure that incentives the enhancement of farmland 

biodiversity by satisfying a set of wildlife requirements (Huusela-Veistola et al., 

2011). 

Within this agroecosystem scenario, land abandonment constitutes a serious 

threat for many species because the lack of regular disturbances promotes 
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habitats dominated by perennials and shrub expansion, which lead to the loss of 

farming habitat and a homogenization of the surface flora (Firbank et al., 2003; 

Hyvönen et al., 2011). Low-intensity management is required to achieve an 

optimum environment where vegetation structure and foraging areas will 

constitute a suitable habitat for farmland birds (Whittingham et al., 2006). 

However, plants are distributed unevenly within fields and the effect of a certain 

management technique is not expected to be homogeneous from one site to 

another (Izquierdo et al., 2009). The resulting vegetation structure influences bird 

habitat choice for breeding success and anti-predator behavior. Also, it affects 

energy gain (foraging), as seeds, invertebrates and leaves are the main food 

resources for steppe-birds (Evans et al., 2011; Delgado and Moreira 2000). Many 

studies report that high vegetation densities are often negatively correlated with 

bird selection (Benton 2003; Hoste-Danyłow 2010; Vickery 2001). As the Iberian 

Peninsula is home to a large proportion of Europe´s endangered birds (Delgado et 

al., 2000), several studies have focused on identifying their optimum habitat 

patterns (Cardador et al., 2014; Martín et al., 2010; McMahon et al., 2010; 

Morgado et al., 2010; Serrano and Astrain 2005; Silva et al., 2013; Traba et al., 

2008). 

It is known that management practices are modulating vegetation assembly in 

space and time on fallows, and consequently, the habitat's suitability for farmland 

birds (Mcmahon et al., 2010; Whittingham et al., 2006). Due to the lack of 

knowledge regarding the most suited management techniques in the context of 

bird conservation, here we aim to compare two of the most commonly utilized 

techniques on fallow lands: shredding and spraying with herbicide.  

Owing to the fact that community structure is scale-related (Podani 2006), we aim 

to 1) quantify space-time changes in structure and food provided by the 

vegetation across two large fallow areas monitored during three years and 

comparing mechanical vs. chemical treatment; 2) differentiate optimum and 

unsuitable areas for farmland birds by setting optimal structure thresholds based 

on birds' habitat requirement information. 
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2. Material and Methods

The study was conducted at the Catalan Ebro basin (north-eastern Spain, 41° 42’ 

24” North and 1° 08’ 93” West) over the course of three growing seasons (2012-

2014). The field explored had been fallow for four years and was included in the 

Natura 2000 European Network due to its establishment as a Special Protection 

Area (SPA), under the 2009/147/EC Birds Directive. The landscape is 

predominantly flat and at a low altitude, has a semiarid Mediterranean 

continental climate and 300–400 mm of annual rainfall. We studied two adjacent 

50 x 150 m plots (a total of 1.5 ha). Different treatments were implemented on 

each surface: either shredding or an herbicide spray (glyphosate at 1.5 l/ha dose), 

both applied in late winter/early spring. At the end of each agronomic season 

(October), the vegetation was cut in order to remove excess organic matter 

though maintaining the cumulative effect of the previous treatments. Sampling 

was performed in a 10 × 10 m2 grid pattern, resulting in 150 sample units. 

In each sample unit, vegetation structure (cover and height) was measured. 

Coverage of each species was visually estimated as a percentage of a surface area 

of 0.25 m2. Vegetation height was obtained by averaging five measures of 

maximum height taken in each quadrant. Samples were taken once per year, at 

approximately the same time that AES are implemented (May-June), and sampling 

points were geo-referenced. The homogeneity in species composition and 

vegetation structure of the experimental fallow field was confirmed before any 

treatment was done in the first year of the experiment (data not shown). In 2012, 

the vegetation height and dead matter cover area were not taken into account, 

and as a consequence, we only represent 2013 and 2014 data for the structure 

analysis. 

According to previous studies (Cardador et al., 2014; Martín et al., 2010; 

McMahon et al., 2010; Morgado et al., 2009; Serrano and Astrain 2005; Silva et 

al., 2013; Traba et al., 2008), we are able to determine a suitable habitat range 

regarding habitat structure requirements for the most vulnerable bird species 

present in our region, such as: Little bustard (Tetrax tetrax), Stone-curlew 

(Burhinus oedicnemus), Short-toed lark (Calandrella brachydactyla), Calandra lark 

(Melanocorypha calandra), Pin-tailed sandgrouse (Pterocles alchata) and Black-
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bellied sandgrouse (Pterocles orientalis). All are ground-nesting species, 

depending primarily on fallow land for breeding. 

A maximum of 50% cover and 50 cm height fit into the optimal range of the 

selected species. This suitability threshold was applied for each field treatment 

and year to estimate the real useable area for birds. 

2.1. Trophic availability information 

2.1.1. Seed and leaf availability indexes 

Following the criteria developed in Chapter 3 of this thsesis, trophic indexes were 

calculated using functional trait information (de Bolòs et al., 1993; Kattge et al., 

2011; Klotz et al., 2002; Royal Botanic Gardens Kew, 2014) and field data. The leaf 

availability index was estimated as: [coverage x height x SLA (specific leaf area, 

mm2 mg-1)]. Leaf availability was quantified for each species as: [the product of its 

coverage x seed mass (the average individual weight of 1000 seeds)], weighted by 

the flowering period (months in bloom during the AES regional restriction, which 

is from April 15th to September 1st).  

2.1.2. Invertebrate sampling 

Pitfall trapping were used to sample ground dwelling arthropods in order to 

measure bird food availability. Although pitfall traps only capture a small 

proportion of the invertebrate fauna, previous studies have shown that are 

sufficient to catch the preys most frequently eaten by steppe birds (Green et al. 

2000; Traba et al. 2008). Five traps were set along each fallow plot of 50 m by 150 

m, ensuring proper reflection of the plots' features. The traps were exposed for 

six days in May to relate insect availability with vegetation structure and plant 

trophic indexes (seeds and leaves). Traps were filled with a mixture of propylene 

glycol (antifreeze) and water, and were active for seven days. The invertebrates 

were then collected and kept in 70% alcohol until taxonomic determination in the 

laboratory (to Order), after which they were classified by size into three groups: 

>1.5 cm (group 1), 1.5 cm – 5 mm (group 2), <5 mm (group 3). This process was 

performed in May of 2013 and 2014. 
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2.2. Statistical analysis 

A geostatistical semivariance analysis was used to examine the spatial 

heterogeneity pattern and spatial distribution of plant cover, height and trophic 

indexes. Spherical, exponential, and gaussian models were applied for fitting the 

semivariance data by using the GS+ software program, version 5.0 (Robertson 

2000). Model parameters were then used in kriging to provide estimates of the 

variables at a non-sampled location (Table 1). 

To examine the spatio-temporal stability of each variable analyzed, the Cramér-

von Mises test developed by Syrjala (1996) was used to test the null hypothesis 

that the same variable has similar distribution. We compared the spatial pattern 

of site occurrence between pair of years and treatments within the same year. 

The analysis was performed in R (R Development Core Team 2011), using the R 

package “ecespa” (De la Cruz 2008). From the fitted semivariance data, the “area 

exceeding the suitable habitat threshold for birds” was calculated using the 

“simulation” function of the GS+ program. Areas with more than both 50% of 

cover and 50 cm height were labelled as “unfavorable habitats”. The new maps 

obtained by simulation were used to estimate the percentage of land surface area 

that would exceed the defined threshold with 90% probability. Calculations were 

made by the Map Comparison kit (MCK) software (Visser and de Nijs 2006). 

Relative differences between variables’ values (cover, height and trophic indexes) 

were performed to get a new representation showing areas of increase or 

decrease over years and between treatments. The percentage of increase was 

also calculated by the MCK software. 

3. Results and Discussion

Maps of vegetation height showed a decrease from 2013 to 2014 in both 

treatments, while coverage increased (Fig. 1A and 1B). Nevertheless, the values in 

the field treated with herbicide were always lower than those subjected to the 

shredding treatment. 

In 2013, the shredded field was dominated by the Poaceae family, with Hordeum 

murinum as one of the main species (Table 2). In the following year, H. murinum 

remained just as abundant, but the vegetation composition changed and species 
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from the Asteraceae family (Lactuca serriola, Crepis vesicaria) and Galium 

parisiens stood out. These species are opportunistic rosette and prostrate 

hemicryptophytes adapted to the shredding disturbance and frequently present in 

areas without mechanical soil disturbance (direct drilling) (Royo-Esnal et al., 

2011). On the herbicide treated field, species from the Poaceae (Lolium rigidum) 

and Asteraceae (Silybum marianum and Sonchus oleraceous) families dominated 

in 2013, while in 2014 there was a clear predominance of the Chenopodiaceae 

family, represented by Salsola kali.  

Table 1. Semivariogram model parameters as determined in GS+. Range - the separation 

distance over which spatial dependence is apparent; Nugget - the y-intercept of the 

model; Sill - the model asymptote; RSS - Residual Sums of Squares; R
2 

- coefficient of 

determination; C/(Co+C) - spatial dependence. 

Semivariogram parameters 

Variable Year Treatment 
Fitted 
Model 

Range Nugget Sill RSS R2 C/(Co+C) 

Height 2013 Herbicide Exponential 20.4 114.4 374.8 801 0.62 0.69 

Shredding Spherical 53.3 109 218 655 0.91 0.50 

2014 Herbicide Exponential 48.3 27.6 54.6 189 0.46 0.49 

Shredding Gaussian 18.8 32.5 113 663 0.85 0.71 

Coverage 2013 Herbicide Exponential 26.8 221.3 363.6 5301 0.28 0.39 

Shredding Exponential 38.7 274.1 
548.

3 
4049 0.52 0.50 

2014 Herbicide Spherical 46.2 176.7 722.6 2127 0.95 0.78 

Shredding Exponential 676 84.6 200 320 0.75 0.57 

Herbivory 
Index 

2013 Herbicide Exponential 176 0.67 1.34 0.96 0.56 0.50 

Shredding Exponential 28.2 0.19 1.07 0.02 0.80 0.81 

2014 Herbicide Exponential 29.4 0.37 1.46 0.18 0.55 0.74 

Shredding Spherical 13.1 0.53 1.50 0.46 0.30 0.64 

Granivory 
Index 

2013 Herbicide Exponential 32 0.75 1.66 0.11 0.46 0.55 

Shredding Exponential 25.2 0.37 0.94 0.10 0.39 0.58 

2014 Herbicide Exponential 15.6 0.36 1.42 0.08 0.27 0.74 

Shredding Exponential 13.2 1.17 1.58 0.24 0.01 0.26 
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Figure 1. Kriged maps of vegetation for height (cm), coverage (%), leaf availability index and seed 

availability index in 2013 and 2014. Values increase from white to black colours.  
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Table 2. Most frequent plant species of the weed community and their relative abundance 

(%) for each year and treatment. 

Shredding 2013 Shredding 2014 

Hordeum murinum 36.5 Lactuca serriola 17 
Lolium rigidum 14 Hordeum murinum 15 
Bromus madritensis 13 Galium parisiense 14 
Bromus rubens 11 Crepis vesicaria 12.5 

Leontodon taraxacoides 10.5 

Herbicide 2013 Herbicide 2014 

Lolium rigidum 39 Salsola kali 66.5 
Silybum marianum 12.5 Sonchus oleraceous 10 
Sonchus oleraceous 10 Lactuca serriola 9 

Table 3. Monthly total rainfall and mean temperature for the growing periods in north-

eastern Spain in two consecutive seasons (from September to May). 

Month - Year Rainfall (mm) 
Trimestral 

(mm) 
Temperature 

(ºC) 
Trimestral 

(ºC) 
September 2012 33.6 - 19.7 - 

October 2012 78.3 - 15.4 - 

November 2012 38 149.9 9.5 14.9 
December 2012 4.2 - 6.0 - 

January 2013 36.6 - 4.7 - 

February 2013 13.2 54 5.3 5.3 
March 2013 52.7 - 9.2 - 

April 2013 76.5 - 11.5 - 

May 2013 45.1 174.3 12.9 11.2 
September 2013 3.1 - 19.3 - 

October 2013 13.2 - 16.4 - 

November 2013 85 101.3 8.5 14.8 
December 2013 10.8 - 3.5 - 

January 2014 61.9 - 6.7 - 

February 2014 24.9 97.6 6.7 5.7 
March 2014 6.7 - 9.6 - 

April 2014 73.3 - 14.0 - 

May 2014 14.9 94.9 15.5 13.0 
Source: Servei Meteorològic de Catalunya. 

156



The inter-annual difference of species composition was an expected effect 

derived from the weather differences. Total rainfall from September 2012 to May 

2013 was  more abundant than during the same period the following season 

(378mm > 294mm) (Table 3), with significant differences in rainfall distribution 

throughout the season: winter 2013 was drier than in 2014 (a total rainfall from 

December to February of 54 mm in 2013, and 98 mm in 2014). Moreover, the 

mean annual temperature in 2014 was 2°C and 1.4°C higher in January and 

February, respectively, while the temperature in April and May was approximately 

2.5°C higher in 2014 than in 2013. These conditions (a milder, wetter winter and 

hotter, drier spring) might have provoked the earlier development of grass species 

in 2014, compared to the same dates in 2013. Rainfall and temperature 

differences result in vegetation cover and height variation (De Juana and García, 

2005). At the sampling dates, we did not identify dead species and their 

abundance when we measured total coverage and height. As a consequence, in 

2014 less drought-sensitive species were found at the sampling dates. Shredded 

fields were characterized by graminoid forms, undetected in 2014 as dominant 

but equally present, and uniform in coverage. In the case of the fallow field 

treated with herbicide, we found a different scenario characterized by unequal 

plant growth. The post-treatment weed communities result from their inherently 

different (and heightened) tolerance to the herbicide (Gaba et al., 2013). This 

treatment also favored species with extended germination periods (after the 

application date), or germination of seeds dispersed from plants in the 

surrounding areas. An alternation of uniform short vegetation cover was later 

observed to be primarily graminoids like Lolium rigidum intermixed with biennial 

shrub species such as Silybum marianum or fast growing therophytes, such as 

Salsola kali. As L. rigidum is well controlled by glyphosate, its unexpected 

domination in 2013 could be partially explained by the high density of this species 

the year before, which might have prevented a good wettability of the herbicide, 

hence affecting its effectiveness (García et al., 2014). S. kali is typically a spring-

summer germinating species favored by warm weather in Mediterranean climates 

(Borger et al., 2009), that became dominant in 2014. It was also present in 2013, 

but masked by other species which were found dead in 2014 because they had 

already completed their life cycle. These characteristics turned the herbicide 

treated field into a heterogeneous mosaic. 
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Table 4. Differences between the spatial distributions of vegetation height, coverage and 

trophic indexes using the Cramer-von Mises type test (Ψ, Syrjala, 1996) and percentage of 

structural variable increments in 2013 and 2014. Ns: non-significant; * P < 0.05; ** 

P<0.001. In parenthesis: the percentage of increase. 

Along years 
Between 

managements 

2013 2014 2013-2014 

H
ei

gh
t Herbicide - - Ψ= 12.7** (1 % ) 

Shredding - - Ψ= 5.2** (18 %) 

Herbicide-Shredding Ψ= 3.6** (100 %) Ψ= 20.8**  (100 %) - 

C
o

ve
ra

ge
 Herbicide - - Ψ= 19.2** (99 %) 

Shredding - - Ψ= 7.4** (100 %) 

Herbicide-Shredding Ψ= 19.8** (100 %) Ψ= 8.2** (100 %) - 

Le
af

 a
va

. 

In
d

ex
 Herbicide - - Ψ= ns 

Shredding - - Ψ= ns 

Herbicide-Shredding Ψ= ns Ψ= ns - 

Se
ed

 a
va

. 

In
d

ex
 Herbicide - - Ψ= ns 

Shredding - - Ψ= ns 

Herbicide-Shredding Ψ= ns Ψ= ns - 

The comparison of the distribution function (Table 4) indicated that differences in 

height and coverage were statistically significant between 2013 and 2014 for the 

herbicide (ψ = 12.7, P< 0.05; ψ = 19.2, P< 0.05, respectively) and shredding 

treatments (ψ = 5.2, P< 0.05; ψ = 7.4, P< 0.05, respectively). As a consequence, 

the percentage of increase or decrease was measurable. The increase of height 

values over the years was 1% in the herbicide treated plot and 18% in the 

shredded one. With respect to the coverage, the increase over time was 99% in 

the herbicide plot and 100% in the shredded plot. Differences between 

treatments within a year were statistically significant in all cases and showed a 

100% increase in coverage and height values in the shredded plots compared to 

the herbicide treated ones. However, no statistical differences were found 

between field treatments tested or over time for any of the trophic indexes (Fig. 

1C and 1D; Table 4).  
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Table 5. Percentage of threshold exceeded for birds´ habitat suitability. 

% of threshold exceeded 

2013 2014 

Height (>50cm) 

Herbicide 0.16 0 
Shredding 0.20 0.03 

Coverage (>50%) 

Herbicide 0.07 34 
Shredding 11 95.5 

Birds have varying vegetation structure requirements that determine their 

establishment because they affect the accessibility and visibility required to make 

an active nest defense (Benton et al., 2003; Vickery et al., 2001). By setting height 

and coverage thresholds (>50% of coverage and >50 cm of height) it has been 

possible to quantify the field area potentially unsuitable for the majority of bird 

species. Our results showed an opposite trend between these two variables over 

time (Table 5). Vegetation height decreased, making the area unfit for bird use; 

from 0.16% to 0% in 2013 and from 0.20% to 0.03% in 2014 for herbicide and 

shredding treatment, respectively. Coverage showed a greater change leading to 

an increase of the unsuitable area over time, from 0.07% to 34% in the herbicide 

treated field and from 11% to 96% in the case of the shredding treatment.  

Foraging is also crucial for patching selection, and food availability is similarly 

influenced by the changes of habitat structure (Cardador et al., 2014; Mcmahon et 

al., 2010). However, differences in seed and leaf availability were not found. 

These results suggested that the vegetation changes along succession were 

providing similar trophic services to farmland birds that the ones before. Spatial 

architecture of the vegetation is the primary determinant of bird establishment, 

thus responsible for restricting their potential territory availability (Giralt et al., 

2008; Hoste-Danylow et al., 2010; Toivonen et al., 2013). It is the first filter for the 

birds' habitat selection, and is strongly conditioned by management practices.  
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Table 6. Number of invertebrates trapped per size group in the fallow treated with herbicide in 2013 and 2014. Mean values±SD. 

Herbicide 2013 Herbicide 2014 

Treatment 
Taxonomic 

order 
Abundance 

Total 
abundance 

Treatment 
Taxonomic 

order 
Abundance 

Total 
abundance 

Group 1 
(>1.5cm) 

Arachnida 5 (±1.73) 30 
(±3.84) 

Group 1 
(>1.5cm) 

Hymenoptera 1 (±0.5) 1 
(±0.5) Coleoptera 10 (±2.55) 

Hymenoptera 15 (±4.06) 

Group 2 
(5mm-1.5cm) 

Arachnida 13 (±1.14) 9 
(±1.54) 

Group 2 
(5mm-
1.5cm) 

Arachnida 4 (±1.41) 26.8 
(±10.03) Coleoptera 11 (±1.92) Coleoptera 33 (±7.41) 

Diptera 7 (±1.67) Diptera 3 (±1.5) 

Hymenoptera 5 (±1.22) Hymenoptera 80 (±15.25) 

Isopoda 14 (±0.45) 

Group 3 
(<5mm) 

Arachnida 6 (±0.44) 3 
(±0.91) 

Group 3 
(<5mm) 

Arachnida 2 (±0.7) 21 
(±8.94) Coleoptera 6 (±1.64) Coleoptera 4 (±1.15) 

Dermaptera 
Hymenoptera 
Orthoptera 

1 (±0.45) 
1 (±0.44) 
1 (±0.45) 

Hymenoptera 57 (±11.35) 



Table 7. Number of invertebrates trapped per size group in the shredded fallow in 2013 and 2014. Mean values±SD. 

Shredding 2013 Shredding 2014 

Treatment 
Taxonomic 

order 
Abundance 

Total 
abundance 

Treatment 
Taxonomic 

order 
Abundance 

Total 
abundance 

Group 1 
(>1.5cm) 

Arachnida 3 (±0.54) 15 
(±6.09) 

Group 1 
(>1.5cm) 

Arachnida 4 (±1.3) 4.25 
(±1.22) Coleoptera 2 (±0.52) Coleoptera 8 (±1.82) 

Hymenoptera 40 (±9.08) Hymenoptera 4 (±0.83) 

Orthoptera 1 (±0.45) 

Group 2 
(5mm-1.5cm) 

Arachnida 10 (±1.73) 5.25 
(±1.35) 

Group 2 
(5mm-
1.5cm) 

Arachnida 19 (±2.49) 26.67 
(±8.95) Coleoptera 2 (±0.51) Coleoptera 18 (±2.61) 

Embioptera 1 (±0.44) Diptera 1 (±0.45) 

Hymenoptera 8 (±0.45) Hemiptera 4 (±1.3) 

Hymenoptera 107 (±15.6) 

Isopoda 11 (±0.84) 

Group 3 
(<5mm) 

Arachnida 7 (±1.52) 3.67 
(±1.03) 

Group 3 
(<5mm) 

Arachnida 4 (±0.83) 40 
(±11.7) Dermaptera 1 (±0.45) Hymenoptera 110 (±10.37) 

Orthoptera 3 (±0.54) Isopoda 6 (±1.79) 



Arachnida, Coleoptera and Hymenoptera were the taxonomic orders of 

invertebrates most represented in pitfall traps, both for the two different 

treatments and for the selected size groups (Table 6 and 7). It has been 

demonstrated that breeding success and chick growth are highly correlated with 

invertebrate food supplies (Holland et al., 2014; Delgado et al., 2009). Studies 

highlight Coleoptera, Arachnida and Orthoptera as the preys that mainly influence 

chick survival (Marshall et al., 2003; Jiguet 2002). The foraging efficiency is also 

influenced by prey size; the larger the prey, the more profitable (Vickery et al., 

2001). Furthermore, many researchers have found a strong positive correlation 

between vegetation height and invertebrate biomass (Hoste-Danyłow et al., 2010; 

Tscharntke et al., 2002). This is in accordance with our results, which showed a 

decrease in larger invertebrates (>1.5 cm) along with a decrease in vegetation 

height. On the contrary, medium and small invertebrates (5 mm-1.5 cm and <5 

mm, respectively) increased in abundance. The large number of medium size 

individuals (group 2) registered in 2014 was, however, mainly due to ants. The 

presence of ants and their role as a food supply for birds during breeding has been 

controversial because the formic acid they produce has toxic effects on birds 

(Herrera, 1984; Judson and Bennett, 1992).  

Birds show a clear preference to foraging in open habitats with short vegetation, 

which allow them to have better accessibility to insect prey as well as better 

detection of their predators (Hoste-Danyłow et al., 2010). The higher availability 

of invertebrates in taller vegetation contrasts with bird habitat structure choice, 

suggesting that vegetation structure plays a more important role than food 

abundance. This is in agreement with the main role of vegetation structure on 

birds' habitat predilection. 

3.1 Conclusions 

Management practices in fallow lands are key factors in the modification of 

vegetation structure, thus providing resources for farmland birds, and leading to a 

more suitable, or unsuitable, habitat. In our study, we tested herbicide application 

and shredding as the most common field treatments developed in these non-crop 

areas. Herbicide application in late winter (March) provided a heterogeneous 

habitat structure, offering good shelter and breeding conditions by combining 

short vegetation with tall scrubs together with a good foraging habitat. This 
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particular treatment also maintains a larger land area suitable for birds, compared 

with the shredding treatment. As herbicide spraying can modify the population 

density and habitat use of birds, it is a controversial scheme that is often contrary 

to conservation patterns. Fallow lands are frequently considered as conservation-

worthy, but even still, belong to agro-systems and hence, are susceptible to be 

treated as arable lands. However, if herbicide application is done during the birds' 

breeding off-season, this would provide both improved habitat structure and a 

reduction of its environmental impact. 

In spite of the significant differences between herbicide application and 

shredding, there was a common trend, irrespective of the treatment, towards 

higher coverage and structure homogenization, hence worsening the habitat 

suitability for farmland bird species over time. Furthermore, the observed 

reduction of the vegetation height was also related with the decrease of large 

invertebrates, an important resource for birds during their breeding period. 

Although these changes were not shown in the vegetable trophic resources, the 

design of conservation management programs requires an understanding of their 

influence in the short- and mid-term. According to our results, a maximum of 

three years of fallow under the same management would be the limit for 

maintaining a suitable habitat for farmland birds. Therefore, the alternation of 

management practices is proposed, as it could achieve a break in the normal 

vegetation trend, providing a richer and more appropriate landscape for birds. 
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Chapter 6 

General discussion 

and main conclusions 





General discussion 

The experimental work presented in this thesis achieves a more complete 

understanding of fallow lands as an important habitat within the agricultural 

matrix for supporting farmland biodiversity, and to provide vital ecosystem 

services (Donald et al., 2006; Stoate et al., 2009). Agricultural intensification has 

been identified as a major cause of wildlife decline across Europe during the last 

three decades, a process which encompasses a wide range of components 

including land consolidation, increased mechanization and chemical use or the 

spread of monocultures, leading to species loss and biotic homogenization 

(Benton et al., 2003; Ma and Herzon 2014; Tscharntke et al., 2005). The role of 

fallow lands as an agri-environmental scheme to slow and eventually halt this 

decline was assessed by focusing on steppe birds as group representative of 

farmland diversity; mainly because of their strong association with farmland 

habitats and unfavorable conservation status on a European scale (Benítez-López 

et al., 2013; Butler et al., 2007). The threats to biodiversity are also affecting the 

supply of basic wildlife services (Kremen 2005), and as such, the provision of 

attractive structures for pollinators was also estimated to identify the inherent 

capacity of fallow lands for providing necessary ecosystem services. Many studies 

have related landscape complexity/heterogeneity with higher biodiversity in the 

farmed landscape, whether measured at a small or large scale (Benton et al., 

2003; Fahrig et al., 2011).  Complex spatial patterns of fields, with different sizes, 

variable patch arrangements, and longer field borders, is likely to offer shelter 

from agricultural practices, thus increasing species diversity known as 

“configurational heterogeneity”, while different cover crops or land uses (i.e. 

different field crops and semi-natural habitat availability) result in higher 

landscape complementation and is expected to increase species or species 

groups, or “compositional heterogeneity” (Gaba et al., 2010; Gabriel et al., 2005; 

Gámez-Virués et al., 2015; Fahrig et al., 2011). This generalization, however, 

cannot be assigned to all groups of species. 

Steppe birds have a specialized character, and are highly sensitive to habitat 

fragmentation. They exhibit preference for open landscapes composed of big 

fields and limited edges that obstruct views for predator detection; especially in 
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the case of ground-nesting species (Morgado et al., 2010; Vickery and Arlettaz 

2012) (Chapter 4).  Field edges are in fact negative structures for providing 

valuable plant characteristics that would enhance pollinator numbers in fallow 

lands (Chapter 2). Although field edges have been reported as an important 

reservoir of plant species biodiversity (José-María et al., 2010; Solé-Senan et al., 

2014), the recurrent disturbances on these habitats leads to a homogenization of 

the floral community (mainly represented by graminoid-ruderal species) with little 

attractiveness for pollinators. Nevertheless, the presence of semi-natural habitats 

around fallow field acts as a source-sink of weed species, increasing their diversity 

on flower types (Chapter 2). These less disturbed habitats favored the presence of 

stable plan communities, providing resources for both specialist insect pollinators, 

and for generalists.. Non-crop habitats and crop patch diversity in the surrounding 

landscape are also related with the positive response by birds; though the 

presence of multiple habitat patches is compromised by more edges (Gil-Tena et 

al., 2015; Hamer et al., 2006) (Chapter 4). 

Even though linking multiple scales are required to determine the variation on 

biological communities and regional scale aggregates environmental 

heterogeneity, conservation strategies are often implemented at small local sites 

(Gabriel et al., 2006; Rundlöf et al., 2007). Abiotic disturbances at field scale such 

as management practices, act as filters selecting for the best plant ecological 

strategies (Raevel et al., 2012; Duflot et al., 2014), thus allowing for the existence 

of different microhabitats which strongly determine the value, both for birds by 

modifying habitat structure and food resources availability,  (Butler and Norris 

2013; Cardador et al., 2014; Green et al., 2000) and for pollinator insects, by 

selecting floral syndromes that determine the supply of pollinator resources 

(Fenster et al., 2004; Poveda et al., 2005). The use of functional traits 

(morphological, physiological or phenological characteristic of a species) as a 

means of classification is an effective approach to relate the responses and effects 

of the environmental changes with the plant community responsible for 

influencing the relationship between higher trophic levels and ecosystem service 

availability (Fried et al., 2012; Ma and Herzon 2014). Through this approximation, 

we are able to understand the functional mechanism that modifies microhabitat 

suitability and satisfies the requirements of the species in managed fallow lands, 

in order to improve conservation measures. 
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Our results reveal the importance of management on fallow habitats for steppe 

bird populations; especially since the over fertilization with pig slurry in many 

abandoned areas of the Ebro Valley (Berenguer et al., 2008) is encouraging the 

overdevelopment of much of the vegetation (Chapter 3). Shrub encroached areas 

did not fit into the range of habitat suitability for the steppe bird species selected; 

neither for the habitat ranges obtained from bibliography (Chapter 3) nor for the 

responses collected from field censuses (Chapter 4). These 

vegetationdevelopment is also noticeable along the age-gradient succession for 

pollination interaction (Chapter 2). Early fallow stages, characterized by ruderal 

species linked with floral characteristics that promote the attraction of generalist 

pollinators, as well as late stages, are represented by perennial and competitive 

species which promote the interaction with specialist pollinators, and correspond 

to functional homogenous phases. Mid-successional communities have the 

capacity to host a wide range of pollinators based on the coexistence of plant 

forms and phenologies. This prototypical mid-successional community model can 

be achieved by imposing intermediate levels of disturbance on the system. Hence, 

the need for management, together with the proper knowledge of its effects on 

vegetation configuration and functionality are highlighted here.  

Soil tillage promotes the colonization of pioneer ruderal species, increasing their 

fitness in disturbed areas (Gaba et al., 2013; Sojneková and Chytrý 2015; Storkey 

et al., 2013), and leading to an open vegetation habitat structure (Chapter 2, 3 

and 4). According to literature, the requirements of the Stone-curlew, Short-toed 

lark, Pin-tailed sandgrouse and Black-bellied sandgrouse are more constrained by 

sparse vegetation, so late chisel treatment (April) was shown as the most accurate 

practice for them (Chapter 3). High specific leaf area (SLA) related with the 

palatability of plants, fast life cycles, and polycarpy (which allows for the 

production of several seed sets in their lifetime) are among the characteristic of 

this group of ruderal plant species (Albrech and Auerswald 2009; Storkey et al., 

2013) related with food supply availability. The ruderal character of the plant 

community after tillage treatment is reflected in the dominance of graminoid 

forms, offering poor habitat quality in terms of attractiveness for pollinators 

(Ricou et al., 2014) (Chapter 2), but considered to be one of the most important 

plant families for bird diet (Holland et al., 2006).   

173



According with the validation study (Chapter 4), Little bustard and Stone-curlew 

showed a positive response towards this habitat type. Little bustard is mainly an 

herbivorous species and males prefer conspicuous areas for courtship during the 

breeding period. Females, however, exhibit extremely secretive behavior, 

selecting protected areas with high vegetation density and good food resources 

composed mainly of insects, a key source for chick survival (Jiguet 2002; Morales 

et al., 2008; Traba et al., 2008). The marked sexual dimorphism of the species 

suggests that the field census results provide more pertinent information for Little 

bustard males, corroborating previous studies that report on the detection 

difficulty of females (Mcmahon et al., 2010; Morales et al., 2008). Therefore, the 

practices selected as suitable for Little bustard according to literature data 

(shredding and herbicide) (Chapter 3) are describing female preferences during 

breeding time, while tillage would provide a good structure and foraging habitat 

(green plant material) for Little bustard males (Chapter 4). The avoidance of plant 

coverage and the preference for flat and bare-ground areas constitute the habitat 

available after tillage, like that which is also chosen by the Stone-curlew (Green et 

al., 2000; Mcmahon et al., 2010) (Chapter 3 and 4). However, their diet 

preferences of mainly arthropods, together with their crepuscular habits (Green 

et al., 2000; Traba et al., 2013) suggest that Stone-curlews usually make 

excursions to denser vegetation areas to feed during the night (Chapter 4). 

Alternatively, the selective action of shredding and herbicide spraying favor the 

presence of perennial or biennial forms (Chapter 2, 3 and 5); reflecting the 

densest vegetation scenario. However, these management techniques do not 

modulate the vegetation assembly in the same way. After shredding, species that 

concentrate their leaves near the ground, such as rosette and prostrate 

hemicryptophytes, have more likelihood of surviving (Juárez-Escario et al., 2013). 

Meanwhile, the typical scenario after herbicide application is characterized by 

unequal plant growth (Chapter 2, 3 and 5). The inherently different tolerance 

levels to herbicides allows for a diversification of plant structures (Gaba et al.,, 

2013). Phanerophytes, chamaephytes and most hemicryptophytes are less 

harmed, whereas effects on annuals creates contrasting patchy habitats 

intermixed with perennial-shrub species. The coexistence of various plant forms 

and phenologies favours the overlapping of flowering periods, allowing for a 

higher foraging availability of pollinators during the year. The predominance of 
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open entomophilous corolla plant forms occurring in this community also posed a 

certain attractiveness for pollinators (Chapter 2). This scenario of heterogeneous 

vegetation would coincide with the suitable mid-disturbance level previously 

discussed. By contrast, shredded fallow fields showed an equally plant growth, 

leading to a denser and more homogeneous vegetation structure (Chapter 5). 

Even still, the dominance of anemophilous corollas, mainly related with graminoid 

species, and open entomophilous flowers was also highlighted (Chapter 2). It can 

thus be said that both herbicide and shredding practices lead to a denser 

vegetation structure, compared with tillage management (Chapter 4). 

Several studies have indicated a positive correlation between vegetation volume 

(height and cover) and invertebrate biomass (Hoste-Danyłow et al., 2010; Stoate 

et al., 2009; Tscharntke et al., 2002), and this pattern was further confirmed by 

our results (Chapter 4 and 5). Breeding success and chick growth are highly 

dependent on the availability of insect supply (Holland et al.,, 2014; Delgado et 

al.,, 2009), which would explain the choice of these closed areas by Little bustard 

females during the breeding period and by Stone-curlews for nocturnal 

expeditions (Chapter 4). Calandra lark also found these areas to be a suitable 

habitat, as reported by other studies (Morgado et al., 2010; Sanza et al., 2012) 

(Chapter 3 and 4). Although this specie flies over fields to detect predators, they 

often avoid areas with more borders, as this reduces visibility and requires more 

vigilance (Mcmahon et al., 2010; Sanza et al., 2012); behavior reported by the 

majority of the species within the steppe birds group (Chapter 4).  

The use of herbicides in a conservation study often causes controversy because of 

its negative influence on floristic diversity and the invertebrate community 

(Boatman et al., 2004; Wilson et al., 1999). Here, we aim to present selectivity 

patterns following the most common practices conducted within agricultural 

areas and allowed by the agri-environmental schemes. Although chemical 

application could presumably be beneficial for some target species, future 

assessment of its potential damage to insects or wildlife in general is first 

required. 

Forage crops in fallow lands, such as alfalfa, have been described as a pollinator-

friendly cover and as a good habitat for steppe birds, particularly for Little Bustard 

(Bretagnolle et al., 2011; Ponce et al., 2014; Wratten et al., 2012).  However, the 
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dry weather conditions after sowing compromised the competitive capacity of 

alfalfa against other weeds, leading to a habitat with cover and height values 

above the suitable range of the target bird species (Chapter 3). Also, the very early 

soil removal caused by sowing (October) favored the germination of graminoid 

species and reduced the area's attractiveness to potential pollinators (Chapter 2). 

We can therefore confirm that both management type and disturbance timing are 

key to modifying the vegetation response, and are what ultimately determine 

both the fitness of the fallow lands, as well as the provision of ecological functions 

(Chapter 2 and 3).  

Grazing was suggested as an alternative management practice in fallows to avoid 

accumulation of herbaceous biomass and shrub encroachment, characteristic 

conditions of non-managed areas (Chapter 3). Other studies have assessed the 

impacts of grazing on plant community structure, concluding that the selective 

action of the livestock leads to a patchy distribution and irregular pattern 

contributing to vegetation heterogeneity on a local scale (Azcárate et al., 2011; 

Erdós et al., 2011; Lin et al., 2010). This idea is mostly corroborated by our results 

(Chapter 4). Although the responses of spatial distribution of vegetation are 

dependent on the grazing pressure, their mode of selectivity promotes the 

maintenance of open areas, and the development of ruderal species (fast-

growing, high SLA, etc.), thus providing a suitable foraging habitat for a wide 

range of taxa (Erdós et al., 2011; Frenette-Dussault et al., 2012).  

Our results highlight that, due to the different microhabitat requirements of the 

steppe bird species, it is necessary to combine types of management techniques 

and avoid the over implementation of any particular treatment. Furthermore, 

habitat homogenization achieved after three years under the same management 

practice, confirm the importance of taking implementation timing into account 

(Chapter 5). However, a conservation scheme will never succeed if it only 

considers the needs of a target group or priority individual species, and does not 

address the possible problems or difficulties that farmers must face. Although 

there is economic support via AES to compensate for the yield losses during fallow 

time, these cereal pseudo-steppe areas are low producing systems and so 

considering the farmer’s economy is critical to making progress towards 

maximizing AES efficiency. Providing economic assessment of each agronomic 
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practice is essential to maintaining an environmentally-concerned farming culture 

with conservative aims (Chapter 3). 

The most important contribution of this study was to experimentally unravel the 

influence of current management practices and landscape features over the 

assembly of plant communities, which are strongly interlinked with 

conservationist goals. The relevance of these findings are supported by the 

intense social debate recently emerged in this region because of the stoppage of 

irrigation due to the critical status of some steppe bird species. New and effective 

management plans are therefore required to reverse this situation. 

Moreover, a replication of the same study during the post-fledging stage and 

winter season, critical survival periods for many species, would complement our 

findings. 

Main conclusions 

In this thesis, the role of fallow lands as a suitable temporal habitat for steppe 

birds and insect pollinators has been further confirmed. As the improvement over 

biodiversity is explained on the basis of the arable weed community, the crucial 

importance in understanding their biological strategies as a response to 

disturbances to make valuable predictions of their effect on higher trophic levels 

is highlighted. These studies allowed us to propose the promotion of more 

effective conservation measures in fallow lands according to the different target 

group needs.   

- The importance of fallow lands for higher trophic levels in semi-arid 

regions is contingent upon the effect of different biotic and abiotic factors 

that modify vegetation structure and functional characteristics of these 

uncropped areas. 

- A high proportion of non-cropped areas in a landscape favor the presence 

of steppe bird species. Nevertheles, compositional heterogeneity must be 

linked with big field size. 

177



- Steppe birds often avoid areas with high proportion of field borders 

because it reduces their visibility and thus increases predation risk. This 

group of birds shows preference towards landscapes composed of big 

fields and regular shapes. 

- The presence of graminoid species in fallow lands is promoted by the 

increment of field borders length in the surroundings, a group that 

impoverishes habitat for pollinators.  Alternatively, the presence of 

valuable plant species is encouraged by a high percentage of seminatural 

habitats around fallow fields. 

- The overdevelopment of vegetation in unmanaged fallows point up the 

key role of the field practices as a means to achieve a profitable habitat 

for the conservation target species studied. Timing of management 

operations is also strongly associated with the phenology and functional 

characteristics of the future vegetation assembly. 

- Utilizing management strategies that lead to mid-successional plant 

communities is the most optimal for enhancing pollinator interactions. 

However, steppe birds show a marked variance in microhabitat 

requirements among species, especially during breeding time.   

- The selective action of herbicide application promotes the coexistence of 

plant species that follow different ecological strategies leading to a 

heterogeneous vegetation structure which coincides with the preferred 

mid-successional habitat predicted.  

- Both herbicide and shredding practices, generate a medium-dense 

vegetation habitat related with a high invertebrate biomass. They 

constitute a suitable habitat for Calandra lark (Melanocorypha calandra), 

Little bustard (Tetrax tetrax) females, and are probably used as a forage 

area by Stone-curlew (Burhinus oedicnemus) during the night. Also, 

herbicide application and shredding are among the cheapest practices, 

contributing to generate both a cost-effective and conservation-worthy 

design that could serve as an incentive to farmers. 
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- Tillage management promotes an open vegetation habitat associated with 

the homogenous colonization of ruderal plant species. Pin-tailed 

sandgrouse (Pterocles alchata), Black-bellied sandgrouse (Pterocles 

orientalis), Short-toed lark (Calandrella brachydactyla), Stone-curlew 

(Burhinus oedicnemus) and Little bustard males (Tetrax tetrax) are 

positively related with these conspicuous areas which provide for good 

predator detection, seed accessibility and more palatable plant material.  

- Alfalfa sown in fallow fields of dry-land areas does not demonstrate 

effective competition with the weed community and thus does not 

provide a suitable habitat for the biodiversity conservation targets in 

these areas. 

- A combination of the optimal management practices within the same 

areas will be ideal for meeting the needs of the different target species. 

Moreover, alternation of the field treatments after a maximum of three 

years of the same implementation is recommended to maintain suitable 

habitat conditions.  
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