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The need of ensure the proper performance of the structures in service has made of struc-
tural health monitoring (SHM) a priority research area. Researchers all around the world have
focused efforts on the development of new ways to continuous monitoring the structures and
analyze the data collected from the inspection process in order to provide information about
the current state and avoid possible catastrophes. To perform an effective analysis of the data,
the development of methodologies is crucial in order to assess the structures with a low com-
putational cost and with a high reliability. These desirable features can be found in biological
systems, and these can be emulated by means of computational systems. The use of bio-inspired
algorithms is a recent approach that has demonstrated its effectiveness in data analysis in dif-
ferent areas. Since these algorithms are based in the emulation of biological systems that have
demonstrated its effectiveness for several generations, it is possible to mimic the evolution pro-
cess and its adaptability characteristics by using computational algorithms. Specially in pattern
recognition, several algorithms have shown good performance. Some widely used examples
are the neural networks, the fuzzy systems and the genetic algorithms. This thesis is concerned
about the development of bio-inspired methodologies for structural damage detection and clas-
sification. This document is organized in five chapters. First, an overview of the problem
statement, the objectives, general results, a brief theoretical background and the description of
the different experimental setups are included in Chapter 1 (Introduction). Chapters 2 to 4 in-
clude the journal papers published by the author of this thesis. The discussion of the results,
some conclusions and the future work can be found on Chapter 5. Finally, Appendix A includes



ii

other contributions such as a book chapter and some conference papers.
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La necesidad de asegurar el correcto funcionamiento de las estructuras en servicio ha he-
cho de la monitorización de la integridad estructural un área de gran interés. Investigadores en
todas las partes del mundo centran sus esfuerzos en el desarrollo de nuevas formas de moni-
torización continua de estructuras que permitan analizar e interpretar los datos recogidos du-
rante el proceso de inspección con el objetivo de proveer información sobre el estado actual
de la estructura y evitar posibles catástrofes. Para desarrollar un análisis efectivo de los datos,
es necesario el desarrollo de metodologı́as para inspeccionar la estructura con un bajo coste
computacional y alta fiabilidad. Estas caracterı́sticas deseadas pueden ser encontradas en los
sistemas biológicos y pueden ser emuladas mediante herramientas computacionales. El uso
de algoritmos bio-inspirados es una reciente técnica que ha demostrado su efectividad en el
análisis de datos en diferentes áreas. Dado que estos algoritmos se basan en la emulación de
sistemas biológicos que han demostrado su efectividad a lo largo de muchas generaciones, es
posible imitar el proceso de evolución y sus caracterı́sticas de adaptabilidad al medio usando
algoritmos computacionales. Esto es ası́, especialmente, en reconocimiento de patrones, donde
muchos de estos algoritmos brindan excelentes resultados. Algunos ejemplos ampliamente us-
ados son las redes neuronales, los sistemas fuzzy y los algoritmos genéticos. Esta tesis involucra
el desarrollo de unas metodologı́as bio-inspiradas para la detección y clasificación de daños es-
tructurales. El documento está organizado en cinco capı́tulos. En primer lugar, se incluye una
descripción general del problema, los objetivos del trabajo, los resultados obtenidos, un breve
marco conceptual y la descripción de los diferentes escenarios experimentales en el Capı́tulo
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1 (Introducción). Los Capı́tulos 2 a 4 incluyen los artı́culos publicados en diferentes revistas
indexadas. La revisión de los resultados, conclusiones y el trabajo futuro se encuentra en el
Capı́tulo 5. Finalmente, el Anexo A incluye otras contribuciones tales como un capı́tulo de
libro y algunos trabajos publicados en conferencias.
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Chapter 1

Introduction

Structural health monitoring (SHM) is an important research area which seeks to assess the
proper performance of a structure. To achieve this objective, SHM makes use of sensors
permanently installed in the structure for inspecting and defining its current state based on the
analysis of structural responses. As a result, the collected structural responses are analysed
and compared with baseline patterns in order to detect abnormal characteristics and define the
structural integrity. The obtained information can be used to define whether the structure can
operate and under which conditions.

In general, the damage identification can be performed by two main approaches: the first
consists in obtaining a reliable physics-based model of the structure, while the second is based
on data-driven approaches which normally tackle the problem as one of pattern recognition.
One advantage of the use of data-driven approaches is the reliability in the analysis since the
indication of damage could be directly determined with the comparison between a baseline
and the collected data. However, to ensure the reliability of the analysis performed to the
signals collected in several experiments, it is necessary to ensure the proper functioning of
the sensors, actuators and hardware used to inspect the structure. Among the big quantity of
damages that can be presented in the normal service of a structure, the following categories can
be distinguished [1, 2]:

• Gradual damage such as fatigue, corrosion and aging.

• Sudden and predictable damage like aircraft landing and planned explosions in confine-
ment vessels.

• Sudden and unpredictable damage originating from foreign-object-impact, earthquakes
and wind loads.

At the same time, these different kinds of damage can also be classified depending on its
severity in three big groups [3]:

• Light damage. This corresponds to the initial stage of a damage, which can be relatively
easily-repairable and is not dangerous for the normal operation of the structure.

• Moderate damage. With respect to the previous one, this damage requires major repairs
and needs to be evaluated more carefully in order to define if the structure can operate in
normal conditions.

1



2 1. Introduction

• Severe damage. This type of damage, unlike previous damages, requires big reparations
or the replacement of the structure.

The variability of the dynamic properties of an in-service structure, can result in changing
the environmental and operational conditions. [4, 5]. Some of the environmental conditions to
consider are humidity, wind loads, temperature, pressure, among others. Operational conditions
include loading conditions, operational speed and mass loading [4]. The damage identification
techniques need, in this way, to consider several variables and in most of the cases the damage
identification procedure depends on the critical damage admissible in the structure.

The damage diagnosis is often grouped in four levels [6], starting by the damage detection.
In this level the objective is to know whether there are some changes in the structure and if these
changes are due to a damage. The second level considers the damage localization. The third
level is used to define the type of damage and its size. The last level is defined for calculating
the remaining lifetime of the structure. Recently, an extra level is considered which includes
intelligent structures with self-healing [7] (Figure 1.1).

Damage Detection

Damage Localization

Type and extent
of damage

Remaining
lifetime

Smart
Structures

Figure 1.1: Levels of damage diagnosis in structural health monitoring [6]

In this thesis, the damage detection and classification are tackled by using bio-inspired
data-driven approaches. These bio-inspired approaches are applied to analyze the signals
collected by several experiments from a piezoelectric system which is permanently attached to
the structures.
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1.1 Main contribution
As a contribution to solve the problem of damage detection and classification in structural health
monitoring, this thesis presents the development of two bio-inspired methodologies for damage
detection and classification by using signals from a piezoelectric system which is permanently
attached to the structure under test. These methodologies consider these tasks as a pattern
recognition problem by comparing the data collected from the structures without damages and
the structure under different structural states (with and without damages) using bio-inspired
data-driven algorithms.

The developed methodologies have been tested with different experimental setups at real
and small-scale structures and the results show promising developments for implementing in
continuous monitoring tasks. All the results are included and discussed in each section and in
the conclusions.

1.2 Objectives
The main objective of this thesis is to develop a methodology for the detection and classifica-
tion of damages in mechanical structures using bio-inspired systems. This damage identifica-
tion methodology will work under the paradigm that any damage in the structure will produce
changes in the vibrational responses and these damages can be quantified by pattern recognition
techniques.

1.2.1 Specific Objectives
1. To study the problem of monitoring and damage detection in structures.

2. To study the application of bio-inspired algorithms for the damage identification as a tool
for pattern recognition.

3. Design and validate a damage detection and classification methodology based on bio-
inspired systems.

4. Design and validate a methodology for damage detection and classification under tem-
perature changes.

5. To validate and adapt the proposed methodologies using experiments with small-scale
structures or components.

6. To validate the methodologies using aircraft and aerospace structures in real-scale.

1.3 General results
All the proposed objectives were achieved and presented within the framework of this thesis.
However some brief comments about each result associated to each objective are summarized
below.
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To study the problem of monitoring and damage detection in structures.

The damage detection problem and the need for continuous monitoring have been studied along
this thesis. In particular, the research stage and the international conferences where all these
works have been presented served as scenario to understand the need for the application and
development of structural health monitoring systems. As a result of this study, a state-of-the-art
with the more relevant works on bio-inspired systems is presented in each chapter of this thesis.

To study the application of bio-inspired algorithms for the damage identification as a tool
for pattern recognition.

The bio-inspired algorithms are built mimicking some biological systems functions such as
processing of information, decision-making and others. In this thesis the artificial immune
system (AIS), fuzzy clustering and self organized maps (SOM) are studied in order to know
and learn their principles and performance in the nature. As it will be shown in the following
chapters, these algorithms require to build the feature space to apply the algorithm.

Design and validate a damage detection and classification methodology based on bio-
inspired systems.

The damage detection and classification problems were addressed by means of three method-
ologies, the self organized maps (SOM), fuzzy clustering and artificial immune systems (AIS).
The first one is used in a methodology to detect and classify structural changes under temper-
ature variations. This methodology was evaluated using an aluminium plate and a simplified
aircraft skin panel. In both structures, the damages were detected and classified. The second
and third methodologies were used to detect and classify damages in an aircraft skin panel. The
published results using the bio-inspired algorithms are listed below:

1. M. Anaya, D.A. Tibaduiza, F. Pozo. Structural damage assessment using an artificial im-
mune system. In: Emerging Design Solutions in Structural Health Monitoring Systems,
IGI-Global, 2015, doi: 10.4018/978-1-4666-8490-4.ch005.

2. M. Anaya, D.A. Tibaduiza, M.A. Torres-Arredondo, F. Pozo, M. Ruiz, L.E. Mujica,
J. Rodellar and C.P. Fritzen. Data-driven methodology to detect and classify structural
changes under temperature variations. Smart Materials and Structures, 23(4):045006,
2014, doi:10.1088/0964-1726/23/4/045006.

3. M. Anaya, D.A. Tibaduiza, F.Pozo. Detection and classification of structural changes us-
ing artificial immune systems and fuzzy clustering. International Journal on Bio-Inspired
Computation, to appear.

4. M. Anaya, D.A. Tibaduiza, F.Pozo. A bioinspired methodology based on an artificial im-
mune system for damage detection in structural health monitoring. Shock and Vibration
(Special issue on Structural Dynamical Monitoring and Fault Diagnosis), 2015, article ID
648097, 15 pages, 2015, doi:10.1155/2015/648097.

5. M. Anaya, D.A. Tibaduiza, F. Pozo. Data driven methodology based on artificial immune
systems for damage detection. 7th European Workshop on Structural Health Monitoring.
Nantes (France), July 8-11, 2014.
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6. M. Anaya, D.A. Tibaduiza, F. Pozo. Structural damage classification using artificial
immune system and fuzzy clustering. 6th World Conference on Structural Control and
Monitoring, Barcelona (Spain), July 15-18, 2014.

7. M. Anaya, D.A. Tibaduiza, F. Pozo. Artificial immune systems for damage detection. 6th
World Conference on Structural Control and Monitoring, Barcelona (Spain), July 15-18,
2014.

Design and validate a methodology for damage detection and classification under temper-
ature changes.

A methodology for the detection and classification of damages under temperature variations
was developed. The proposed scheme is partially based on a previous methodology developed
by [3]. This methodology uses self-organizing maps (SOM) and a special unfolding to consider
temperature variations and to produce most robust baselines. The results have been published
in the following journal paper:

1. M. Anaya, D.A. Tibaduiza, M.A. Torres-Arredondo, F. Pozo, M. Ruiz, L.E. Mujica,
J. Rodellar and C.P. Fritzen. Data-driven methodology to detect and classify structural
changes under temperature variations. Smart Materials and Structures, 23(4):045006,
2014, doi:10.1088/0964-1726/23/4/045006.

2. M. Anaya, D.A. Tibaduiza, M.A. Torres-Arredondo, F. Pozo. Principal component anal-
ysis and self-organizing maps for damage detection and classification under temperature
variations. 10th International Workshop on Structural Health Monitoring. Stanford Uni-
versity (Palo Alto), California, USA, 1-3 September, 2015.

Validate and adapt the proposed methodologies using experiments with small-scale struc-
tures or components.

Two small-scale structures were used to validate the proposed methodologies, the description
of all of them is included in Chapter 4. These two structures correspond to a simplified aircraft
skin panel made of carbon fibe reinforced plastic (CFRP) and an aluminium plate structure from
the University of Siegen (Siegen, Germany).

Validate the methodologies using aircraft and aerospace structures in real-scale.

A real-scale structure was used to validate the methodologies. This structure corresponds to
an aircraft skin panel located at the Universidad Politécnica de Madrid (Madrid, Spain). More
details about this structure can be found in Chapter 4.

1.4 Theoretical background
The damage detection and classification methodologies presented in this thesis are based on
data driven analysis. This means that the damage identification is developed by analyzing the
data collected by several experiments from the structures under test. To perform this analysis,
bio-inspired methodologies that are based on features extraction for pattern recognition have
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been developed. More precisely, the developed methodologies apply several methods such as
discrete wavelet transform (DWT), multiway principal component analysis (MPCA), damage
indices, self-organizing maps (SOM) and artificial immune systems (AIS). In this sense, the
key concepts that are used within the proposed methodologies are presented in the subsequent
sections.

Control
chart
analysis

Outlier
detection

Neural
networks

Hypothesis
testing

Supervised
learning

Unsupervised
learning

Response
surface
analysis

Fisher’s
discriminant

Neural
networks

Genetic
algorithms

Support
vector
machines

Figure 1.2: A state-of-the-art classification of the statistical models developed to enhance the
SHM process

1.4.1 Bioinspired systems

The adaptation of the different living beings of the planet in harsh environments and the de-
velopment of skills to solve the inherent problems in the interaction with the world of nature
has resulted in the evolution of the species in order to survive and avoid their extinction. Some
examples are the communication abilities, the reasoning, the physical structures design or the
response of the body to external agents, among others [8].

Taking advantage of the fact that nature provides robust and efficient solutions to many
different problems, more and more researchers on different areas work in the development of
biologically inspired hardware and algorithms. The inspiration process is called biomimetic
or bioinspired and aims to apply the developments in the field of biology to the engineering
developments [9].
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1.4.2 Natural immune systems
The human immune system is a complex and robust defense mechanism which is composed
by a large network of specialized cells, tissues and organs. The system further includes an
elevated number of sensors and a high processing capability. This system has demonstrated its
effectiveness in the detection of foreign elements by protecting the organism against disease.
The principal skills of the human immune system are:

• to distinguish between its own cells (self) and foreign cells (non-self).

• to recognize different invaders (called antigen) in order to ensure the protection of the
body.

• to learn from specific antigen and adapt to them in order to improve the immune response
to this kind of invader.

In general, when a foreign particle wants to access to the organism, it has to break several
defense levels provided by the immune system that protects the organism, as shown in Figure
1.3. This levels are [10]:

• External barriers. These are the first and the major line of defense into the human body.
These include elements such as the skin, the mucus secreted by the membranes, the tears,
saliva and urine which present different physiological conditions that are harmful to the
antigens as the temperature and the Ph level, among others. The response of these barriers
is equal for any foreign invader [11].

• Innate immune system. This barrier refers to the defense mechanisms that are activated
immediately or within a short lapse of time of an antigen’s arrival in the body. The
innate immune system operates when the first barrier has been broken. This system, in
opposition to the adaptive immune system, is not adaptive [10].

• Adaptive immune system. This is the last defense level and reacts to the stimulus of foreign
cells or antigens that evade both the external barriers and the innate immune defense [10].
Adaptive immunity creates some sort of memory that leads to an improved response to
future encounters with this antigen.

With respect to different type of cells, the immune system includes cells born in the bone
marrow that are usually called white blood cells, leukocytes or leucocytes [12]. Among the
white blood cells, it is possible to highlight the T-cells and the B-cells. On one hand, the T-cells
are so called since their maturation takes place in the thymus.Besides, this kind of cells have
high mobility and can also be found in the blood and the lymph [13]. One can distinguish three
types of T-cells:

• the T-helper cells, involved in the activation of B-cells;

• the T-killer cells that destroy the invaders; and finally

• the T-suppressor cells that avoid the allergic reactions [14].
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Figure 1.3: System Defense Barriers

On the other hand, the B-cells produce and secrete a special protein called antibody, which
recognizes and binds the antigen. The responsibility of each B-cell is the production of a specific
antibody. This protein is then used for signaling other cells what elements have to be removed
from the body [13]. When the antigen passes over the first barrier of the immune system, the
HIS performs the following steps to eliminate the invader [13]:

1. The specialized cells of the immune system, called antigen presenting cells (APCs)
(macrophages, for instance). These cells active the immune response by ingesting the
antigen and dividing it into simple substances known as antigenic peptides.

2. These peptides are joined to the molecules called major histocompatibility complex
(MHC), inside of the macrophage, and the result passes to the immune cell surface.

3. The T-cells have receptor molecules able to identify and recognize different combinations
of MHC-peptide. When the receptor molecule recognizes the combination, the T-cell is
activated and sends a chemical signal to other immune cells.

4. The B-cells are activated by chemical signals and they initiate the recognition of the
antigen in the bloodstream. This process is performed by the receptor molecules in the
B-cells.

5. The mission of the B-cells –when they are activated– is to secrete antibodies to bind the
antigens they find, and to neutralize and eliminate them from the body.

The T- and B-cells that have recognized the antigen proliferate and, some of them, become
memory cells. These memory cells remain in the immune system to eliminate the same antigen
–in the future– in a more effective manner [8, 13].
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Three immunological principles are used in artificial immune systems [8, 13, 15]:

• Immune network theory. This theory was first introduced by Niels Jerne in 1974 and
describes how the immune memory is built by means of the dynamic behaviour of the
immune system cells. These cells can recognize by themselves, detect invaders, as well
as interconnect between them to stabilize the network [10].

• The negative selection. The negative selection is a process that allows the identification
and eradication of the cells that react to the own body cells. This ensures a convenient
operation of the immune system since it is able to distinguish between foreign molecules
and self-molecules thus avoiding autoimmune diseases. This process is similar to the
maturation of T-cells carried out in the thymus [8].

• The clonal selection. This is a mechanism of the adaptive immune responses in which
the cells of the system are adapted to identify an invader element [13]. Antibodies that
are able to recognize or identify an antigen can proliferate. Those antibodies unable to
recognize the antigens are eliminated. The new cells are clones of their parents and they
are subjected to an adaptation process by mutation. From the new antibody set, the cells
with the greatest affinity with respect to the primary antigen are selected as memory cells
therefore excluding the rest.

1.4.3 Artificial Immune System

Artificial immune systems (AIS) are an adaptive and bio-inspired computational systems based
on the processes and performance of the human immune system (HIS) and its properties
–diversity, error tolerance, dynamic learning, adaptation, distributed computation and self-
monitoring– [16]. Nowadays, these computational systems are used in several research areas
such as pattern recognition [17], optimization [13], computer security [18], among others [19].
Table 1.1 presents the analogy between the natural and artificial immune systems applied to the
field of structural health monitoring.

In the implementation of an artificial immune system, it is fundamental to bear in mind two
important aspects:

• To define the role of the antigen (ag) and the antibody (ab) in the context of the appli-
cation. Both are represented or coded in the same way. This representation is generally
given by a vector of binary or real numbers [14].

• To define the mechanism that measures the degree of correspondence between an antigen
and an antibody. This measure is usually related to the distance between them [8]. If both
an antigen and an antibody are represented by L−dimensional arrays,

ab = (ab1, . . . , abL) ∈ RL,

ag = (ag1, . . . , agL) ∈ RL,

the distance d between them can be computed using, for instance, the Euclidean distance
(related to the 2−norm) or the so-called Manhattan distance (related to the 1−norm) as
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Table 1.1: Analogy between the biological immune system and artificial immune system [15].

Biological Immune System Artificial Immune System in SHM

antibodies a detector of a specific pattern
antigens structural health or damage condition

matured antibodies database or information system for damage detection
recognition of antigens identification of health and damage condition

process of mutation training procedure
immune memory memory cells

in equations (4.1) and (4.2), respectively [12]:

d(ab, ag) = ‖ab− ag‖2 =

√√√√ L∑
i=1

(abi − agi)2 (1.1)

d(ab, ag) = ‖ab− ag‖1 =
L∑
i=1

|abi − agi| (1.2)

However, when both the antibody and the antigen are represented by a sequence of binary
values, the distance between them is obtained by means of the Hamming distance in
equation (1.3):

d(ab, ag) =
L∑
i=1

δi, δi =

{
1, abi = agi

0, abi 6= agi
(1.3)

Finally, there exists the adaptation process of the molecules in the artificial immune sys-
tem. This adaptation allows to include the dynamic of the system, for instance, the antibodies
excitation, cloning all the excited antibodies and the interconnection between them. All these
elements are adapted from the three immunologic principles previously introduced.

1.4.4 Discrete Wavelet Transform
The discrete wavelet transform (DWT) is a powerful tool specially used in areas dealing with
the analysis of transient signals. This transform provides sufficient information for both the
analysis and synthesis of the original signal with a significant reduction in the computational
time cost compared with the analysis of the wavelet in continuous time domain normally called
continuous wavelet transform (CWT) [20]. Roughly speaking, the characteristics of the given
function at a specified time and scale are represented by the transformation coefficients. In
other words, each wavelet coefficient represents time and frequency information of the signal.
The DWT analysis can be performed by means of a fast, pyramidal algorithm related to a two-
channel subband coding scheme using a special class of filters called quadrature mirror filters
as proposed by Mallat [21]. In this algorithm, the signal is analyzed at different frequency
bands with different resolution by decomposing the signal into approximation and detail coef-
ficients. This is achieved by successive high-pass (HP) and low-pass (LP) filtering of the input
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signal. The optimum number of level decompositions could be determined, for example, based
on a minimum-entropy decomposition algorithm [22]. Figure 1.4 shows the structure of the
decomposition of the signal and the corresponding frequency bandwidths for the details (Di)
and approximations (Ai) [21]. Each level is obtained by the decomposition of the signal with
high and low pass filtering and a down-sampling of the input signal. The approximations rep-
resent the high-scale, low-frequency components of the signal. The details are the low-scale,
high-frequency components. The frequency fmax represents the maximum frequency contained
in the recorded signal and n is the decomposition level. Discrete wavelets are often associated
with dilation equations and scaling functions. The basic scaling function can be defined as:

γ(i) =

j∑
m=0

cmγ(2i−m), (1.4)

where the values cm, m = 0, . . . , j are the wavelet coefficients. These coefficients must satisfy
certain conditions that are discussed in [23]. The scaling functions are then used to construct
the corresponding wavelets ϕ(i) from the following formula:

φ(i) =

j∑
m=0

(−1)mcmγ(2i+m− j + 1). (1.5)

The approximation and detail coefficients can be calculated as follows:

An,k = 2−n/2
j∑
i=1

x(i)γ(2−nj − k), (1.6)

Dn,k = 2−n/2
j∑
i=1

x(i)ϕ(2−nj − k), (1.7)

where γ is called the scaling function, j is the number of discrete points of the input signal, n and
k are considered to be the scaling (dilation) index and the translation index, respectively. Each
value of n allows analyzing a different resolution level of the input signal. Scaling functions
are similar to wavelet functions except that they have only positive values and are designed to
smooth the input signal [21, 24].

1.4.5 Multiway Principal Component Analysis (MPCA)
MPCA is a very common practice in multivariate statistical procedures for monitoring the
progress of batch processes [25, 26] and it is based in the fact that the data are inherently cor-
related [27]. This is similar to the use of PCA on a large two-dimensional matrix constructed
by unfolding the three-way data matrix [28]. In this work the original data are expressed in a
matrix whose dimensions are I experiments, K time instants and J sensors. This three-way
data matrix is decomposed into a large two-dimensional matrix X as shown in Figure 1.5.

1.4.6 Principal Component Analysis (PCA)
Principal component analysis (PCA) is a classical method used in applied multivariate statistical
analysis with the goal of dimensionality reduction and, more precisely, feature extraction and



12 1. Introduction

Figure 1.4: DWT Decomposition tree

Figure 1.5: The collected data arranged in a three dimensional matrix is unfolded in a two
dimensional matrix [3]

data reduction. It was developed by Karl Pearson in 1901 and integrated to the mathematical
statistics in 1933 by Harold Hotelling [29]. The general idea in the use of PCA is to find a
smaller set of variables with less redundancy [30]. To find these variables, the analysis includes
the transformation of the current coordinate space to a new space to re-express the original data
trying to filtering the noise and redundancies. These redundancies are measured by means of
the correlation between the variables.

Matrix unfolding

The application of PCA starts –for each actuation phase– with the collected data arranged in a
three dimensional matrix n × L × N . The matrix is subsequently unfolded –as illustrated in
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Figure 1.5–in a two dimensional n× (N · L) matrix as follows:

X =


x111 x112 · · · x11L x211 · · · x21L · · · xN11 · · · xN1L

...
... . . . ...

... . . . ... . . . ... . . . ...
x1i1 x1i2 · · · x1iL x2i1 · · · x2iL · · · xNi1 · · · xNiL
...

... . . . ...
... . . . ... . . . ... . . . ...

x1n1 x1n2 · · · x1nL x2n1 · · · x2nL · · · xNn1 · · · xNnL

 (1.8)

Matrix X ∈ Mn×(N ·L)(R) –whereMn×(N ·L)(R) is the vector space of n × (N · L) matrices
over R– contains data from N sensors at L discretization instants and n experimental trials.
Consequently, each row vector xTi = X(i, :) ∈ RN ·L, i = 1, . . . , n represents, for a specific
experimental trial, the measurements from all the sensors. Equivalently, each column vector
X(:, j) ∈ Rn, j = 1, . . . , N · L represents measurements from one sensor in the whole set of
experimental trials.

In other words, the objective is to find a linear transformation orthogonal matrix P ∈
M(N ·L)×(N ·L)(R) that will be used to transform the original data matrix X according to the
following matrix multiplication

T = XP ∈Mn×(N ·L)(R). (1.9)

Matrix P is usually called the principal components of the data set or loading matrix and matrix
T is the transformed or projected matrix to the principal component space, also called score
matrix. Using all the N · L principal components, that is, in the full dimensional case, the
orthogonality of P implies PPT = I, where I is the (N ·L)×(N ·L) identity matrix. Therefore,
the projection can be inverted to recover the original data as

X = TPT .

Group scaling

Since the data in matrix X come from experimental trials and could have different magnitudes
and scales, it is necessary to apply a preprocessing step to scale the data using the mean of all
measurements of the sensor at the same time and the standard deviation of all measurements of
the sensor.

More precisely, for k = 1, 2, . . . , N we define

µkj =
1

n

n∑
i=1

xkij, j = 1, . . . , L, (1.10)

µk =
1

nL

n∑
i=1

L∑
j=1

xkij, (1.11)

σk =

√√√√ 1

nL

n∑
i=1

L∑
j=1

(xkij − µk)2, (1.12)

where µkj is the mean of the n measures of sensor k at the time instant j; µk is the mean of
all the measures of sensor k; and σk is the standard deviation of all the measures of sensor k.
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Therefore, the elements xkij of matrix X are scaled to define a new matrix X̌ as

x̌kij :=
xkij − µkj
σk

, (1.13)

i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N.

When the data are normalized using equation (1.13), the scaling procedure is called variable
scaling or group scaling.

For simplicity, and throughout the rest of the paper, the scaled matrix X̌ is renamed as
simply X. The mean of each column vector in the scaled matrix X can be computed as

1

n

n∑
i=1

x̌kij =
1

n

n∑
i=1

xkij − µkj
σk

=
1

nσk

n∑
i=1

(
xkij − µkj

)
=

1

nσk

(
n∑
i=1

xkij − nµkj

)
=

1

nσk
(
nµkj − nµkj

)
= 0.

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate the covariance
matrix as follows:

CX =
1

n− 1
XTX ∈M(N ·L)×(N ·L)(R). (1.14)

The covariance matrix CX is a (N ·L)× (N ·L) symmetric matrix that measures the degree of
linear relationship within the data set between all possible pairs of variables (sensors).

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance
matrix as follows:

CXP = PΛ (1.15)

where the columns of P ∈ M(N ·L)×(N ·L)(R) are the eigenvectors of CX. The diagonal terms
of matrix Λ ∈ M(N ·L)×(N ·L)(R) are the eigenvalues λi, i = 1, . . . , N · L, of CX whereas the
off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . , N · L
Λij = 0, i, j = 1, . . . , N · L, i 6= j

The eigenvectors pj, j = 1, . . . , N ·L, representing the columns of the transformation matrix P
are classified according to the eigenvalues in descending order and they are called the principal
components or the loading vectors of the data set. The eigenvector with the highest eigenvalue,
called the first principal component, represents the most important pattern in the data with the
largest quantity of information.

However, the objective of PCA is, as said before, to reduce the dimensionality of the data
set X by selecting only a limited number ` < N · L of principal components, that is, only the
eigenvectors related to the ` highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |p`) ∈MN ·L×`(R),
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matrix T̂ is defined as

T̂ = XP̂ ∈Mn×`(R).

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to fully
recover X although T̂ can be projected back onto the original m−dimensional space to get a
data matrix X̂ as follows:

X̂ = T̂P̂
T ∈Mn×m(R). (1.16)

The difference between the original data matrix X and X̂ is defined as the residual error
matrix E or X̃ as follows:

E = X− X̂, (1.17)

or, equivalenty,

X = X̂ + E = T̂P̂
T

+ E. (1.18)

The residual error matrix E describes the variability not represented by the data matrix X̂, and
can be also expressed as

E = X(I− P̂P̂T ). (1.19)

1.4.7 Damage detection indices based on PCA
Several damage detection indices based on PCA have been proposed and applied with excellent
results in pattern recognition applications. In particular, two damage indices are commonly
used: (i) the Q index (also known as SPE, square prediction error) and (ii) the Hotelling’s T 2

index.
The Q index of the ith experimental trial xTi measures the magnitude of the vector x̃Ti :=

X̃(i, :), that is, the events that are not explained by the model of principal components [31], and
it is defined as follows:

Qi = X̃(i, :)X̃(i, :)T = xTi (I− P̂P̂T )xi. (1.20)

The T 2 index of the ith experimental trial xTi is the weighted norm of the projected vector
t̂Ti := T̂(i, :) = xTi P̂, that is, a measure of the variation of each sample within the PCA model
and it is defined as follows:

T 2
i =

∑̀
j=1

t̂2i,j
λj

= t̂Ti Λ−1t̂i = xTi (P̂Λ−1P̂T )xi (1.21)

1.4.8 Self-organizing maps (SOM)
The self-organizing map (SOM) is a kind of unsupervised neural network also known as Ko-
honen network [32] in honor to the professor Teuvo Kohonen. This neuronal network is spe-
cialized in visualization and analysis of high dimensional data and has the special property of
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generating one organized map in the output based on the inputs, grouping input data with simi-
lar characteristics in clusters [33, 34]. To do that, the SOM internally organizes the data based
on features and their abstractions from input data. In particular, these maps have been used
in practical speech recognitions [35], robotics [36], control [37] and telecommunications [38],
among others [39].

Figure 1.6: The self-organizing map (SOM)

The structure of the SOM is a single feed forward network and each node in the input layer
is connected to all the output neurons [40]. The connection between the input layer and the
output layer is defined by a weighting matrix (see Figure 1.6). In general, the inputs to the
network are defined in the input layer and a weighting matrix relates each input with each
cluster in the output layer.

The result of the SOM is an organised map which contains the final clustering of the
input data. This information can be visualised by using the cluster map. The distance matrix
techniques are widely used in the visualization of the cluster structure of the SOM. One of
these techniques is the unified distance matrix, called U-matrix, which shows the separation
between prototype vectors and neighbouring map units. The U-matrix is related with the
linkage measure and can be visualized using a colour scale [40].

1.5 Cases studies

1.5.1 Aircraft skin panel
This structure corresponds to an aircraft skin panel and is one of the structures from the Uni-
versidad Politécnica de Madrid (Madrid, Spain). The skin panel is divided in small sections by
means of stringers and ribs as it is shown in Figure 1.7. To test the proposed approaches, two
sections of this structure were used. The dimensions of each section and the damage description
are depicted in Figure 1.8. These sections were instrumented with 6 piezoelectric transducers
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(PZT), two in the upper section, two in the lower section and two in the rib. The transducers
dimensions are: diameter 26 mm and thickness 0.4 mm.

Figure 1.7: Sections tested with the PZT location.

(a) (b)

Figure 1.8: Damage description.

As excitation input, a BURST signal with 205 kHz as central frequency and nine peaks
was used. Four different states of the structure were analyzed: the healthy structure and the
structure with three different damages. Damages were simulated by adding a mass at three
different positions (Figure 1.8), two of them on the skin and the other on the stringer. 100
experiments were performed and recorded: 25 with the undamaged structure and 25 more per
damage. To ensure a good signal to noise ratio each signal was averaged 10 times. To apply
and collect the signals to the PZT transducers, a chassis PXI 1033 from National Instruments
r was used. Due to the complexity and the size of this structure, a wideband power amplifier
model 7602M of Krohn-Hite corporation is used to amplify the signal applied to the actuators.
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1.5.2 Simplified aircraft skin panel
This structure corresponds to a simplified aircraft composite skin panel made of carbon fibre
reinforced plastic (CFRP) located at the University of Siegen (Siegen, Germany). The structure
is illustrated in Figure 1.9. The overall size of the plate is approximately 500 mm × 500 mm
× 1.9 mm and its weight is about 1.125 kg. The stringers are 36 mm high and 2.5 mm thick.
The properties of the unidirectional (UD) material are vFIBRE = 60% , E1 = 142.6GPa,
E2 = 9.65, v12 = 0.334, v13 = 0.328, v23 = 0.54 and G12 = G13 = 6.0GPa. The plate and
the stringers consist of nine plies. All plies are aligned in the same direction. Damage on the
tested composite plate was simulated by localized masses at different positions . To determine
the carrier central frequency for the actuation signal in each structure, a frequency sweep was
performed and the spectral content of each signal was analysed. The carrier frequencies were
found to be 50 kHz. The carrier frequency was chosen to maximize the propagation efficiency.
This type of excitation generates a dominant A mode that is propagated along the structure
allowing a better interaction of the guided wave with the simulated damage.

Figure 1.9: Simplified aircraft skin panel.

1.5.3 Aluminium plate with reversible damages and temperature varia-
tions

This structure corresponds to an aluminium plate with dimensions 200 mm × 200 mm
instrumented with 5 PZT transducers (PIC-151). This structure was one of the structures tested
at the University of Siegen during the research stage. Damages in the structure were simulated
by adding masses at four different positions on the surface as it is shown in Figure 1.10.

To assess the structure, the Handyscopes HS3 and HS4 without pre-amplification were
used. As excitation, a BURST signal of 50 kHz as central frequency was used and each
collected experiment was averaged 100 times to ensure a good signal to noise ratio.
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(a) (b)

Figure 1.10: Damages in the aluminium plate.

This structure was subjected to temperature changes. To perform these experiments, the
structure was introduced in a oven with controlled temperature and data from the structure
under six different temperatures (24, 30, 35, 40, 45 and 50 ◦C) for each structural state were
collected. To avoid the contact between the metallic surfaces and eliminate the noise in the
experiments, some plastic elements are used. For each temperature, 100 experiments were
collected for each state.

1.5.4 Vertical axis wind generator ALEKO WGV75W

This experimental setup consists of a blade from a wind turbine which is instrumented with an
active piezoelectric system that works in several actuation phases [41]. The wind turbine is a
vertical axis wind generator ALEKO WGV75W which is designed to produce 50 W as nominal
power and its maximum power is 75 W with 24 volts in direct current (see Figure 1.11). Some
features for this wind turbine generator are: speed for nominal power: 10 meters per second;
operation range: 3 m/s to 20 m/s; survival wind speed: 35 m/s, above this range damages
can be appear, so for this reason SHM systems need to be ready to detect any change in the
structure. The wind generator has a full weight of 10.5 kg, its rotor diameter is 560 mm, it has
five blades made in aluminium alloy with a length of 745 mm. Figures 1.11 and 1.12 show the
wind turbine and the blade.

The inspected blade was instrumented by means of 4 PZT transducers which are distributed
over one face as it is shown in Figure 1.12. As excitation input, a BURST signal with 1 MHz
as central frequency, 5 peaks and 8 volts of amplitude was used. Eight different states of the
structure were analyzed: a healthy state and seven damages. Damages were simulated by adding
a mass at seven different positions of the structure (see Figure 1.12). 40 experiments for healthy
state and 20 experiments per damage were performed and collected. The acquisition modules
are two TiePie HS4 oscilloscopes and the arbitrary signal generator is a TiePie HS5.
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Figure 1.11: Vertical axis wind generator ALEKO WGV75W

1.6 Research framework

The research group Control, Dynamics and Applications (CoDAlab,
codalab.ma3.upc.edu) currently in the Department of Applied Mathematics at the
Universitat Politècnica de Catalunya (UPC) has been working in structural health monitoring
since 2009 through the projects Intelligent aircraft structures: Development and validation of
defect detection techniques based on pattern recognition (2009-2011), Intelligent structures:
monitoring and damage detection systems with applications in aeronautics and offshore
wind energy plants (2011-2014, code number DPI2011-28033-C03-01) and Development and
validation of failure detection and localization systems and design of fault-tolerant control
strategies with application in offshore wind energy plants (WinTurCoM) (2014-2016, code
number DPI2014-58427-C2-1-R) all of them funded by the CICYT Ministerio de Economı́a y
Competividad de España. This thesis is linked to this research and makes use of bio-inspired
methodologies and statistical methods for the detection and classification of damages in
structures.

Currently, the author does not have any scholarship to perform her thesis. However, she
had the support from the Spanish Ministry of Education through Movilidad de estudiantes en
programas de doctorado con mención hacia la excelencia for her 3 months research stage at the
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Figure 1.12: Instrumented Blade

University of Siegen (Germany) in 2012.

1.7 Organization
This thesis is organized in five chapters starting with this introduction where the main contri-
bution, the objectives, the general results, a theoretical background, the case studies and the
research framework of this thesis are included. Chapters 2 to 4 include the three journal pa-
pers published in relevant journals describing the bio-inspired methodologies and its results.
Finally, Chapter 5 presents the conclusions and includes a discussion of the directions of the fu-
ture work. In addition, Appendix A includes a complete list of the publications in conferences,
journals and chapter books as a result of the development of this thesis and in collaboration with
other related research groups.
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Data-driven methodology for damage de-
tection and classification under tempera-
ture changes

This paper presents a methodology for the detection and classification of damages
under different temperature scenarios using a statistical data-driven modelling
approach by means of a distributed piezoelectric active sensor network at different
actuation phases. An initial baseline pattern for each actuation phase for the
healthy structure is built by applying Multiway Principal Component Analysis
(MPCA) to wavelet approximation coefficients calculated using the Discrete
Wavelet Transform (DWT) from ultrasonic signals which are collected during
several experiments. In addition, experiments are performed with the structure in
different states (simulated damages), pre-processed and projected into the different
baseline patterns for each actuator. Some of these projections and Squared
Prediction Errors (SPE) are used as input feature vectors to a Self-Organizing Map
(SOM) which is trained and validated in order to build a final pattern with the aim
of providing an insight into the classified states. The methodology is tested using
ultrasonic signals collected from an aluminium plate and a stiffened composite
panel. Results show that all the simulated states are successfully classified no
matter the kind of damage or the temperature in both structures.

Keywords: Damage Classification, Damage Index, Discrete Wavelet Transform
(DWT), Principal Component Analysis (PCA), Self-Organizing Maps (SOM),
Structural Health Monitoring (SHM), Temperature Effects.

2.1 Introduction
Structural Health Monitoring (SHM) is an important discipline which attempts to assess the
proper performance of a structure. To achieve this objective, SHM systems make use of sensors
permanently installed in the structure for inspecting and defining its current state based on the
analysis of structural responses. As a result, the collected structural responses are analysed
and compared with baseline patterns in order to detect abnormal characteristics and define the
structural integrity. The obtained information can be used to define whether the structure can
operate under safe and reliable conditions.

In general, the damage identification can be performed following two main approaches. The
first approach consists in obtaining a reliable physics-based model of the structure, while the
second is based on data-driven approaches which normally tackle the problem as one of pattern
recognition. One advantage of the use of data-driven approaches is the reliability in the analysis
since the indication of damage could be directly determined with the comparison between a
baseline and the data collected. However, to ensure the reliability of the analysis performed
to the signals collected in several experiments, it is necessary to consider the variation in the
environmental and operational conditions, the proper functioning of the sensors, actuators and
hardware used to inspect the structure.
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Among the big quantity of damage types that can be found in the normal service of a struc-
ture, the following categories can be distinguished [1, 2]:

• Gradual damage such as fatigue, corrosion and aging.

• Sudden and predictable damage coming from aircraft landing and planned explosions in
confinement vessels.

• Sudden and unpredictable damage originating from foreign-object-impact, earthquakes
and wind loads.

At the same time, these different kinds of damage can also be classified depending on their
severity in three big groups [3]:

• Light damage: This corresponds to the initial stage of a damage, which can be relatively
easily-repairable and is not dangerous for the normal operation of the structure.

• Moderate damage: In comparison with the previous one, this damage requires major
repairs and needs to be evaluated more carefully in order to define if the structure can
operate in normal conditions.

• Severe damage: This type of damage unlike the previous damages requires big reparations
or the replacement of the structure.

For a structure in service, the variability in its dynamic properties can be a result of time-
varying environmental and operational conditions [4]. Some of the environmental conditions
to consider are humidity, wind loads, temperature and pressure, among others. Operational
conditions include loading conditions, operational speed and mass loading [4]. The design of
methodologies to improve the damage identification including environmental and operational
conditions is currently an area of active research interest. This interest is motivated by the
fact that new designs in civil, aeronautics and astronautics include the use of more complex
structures subjected to variable environmental and operational conditions. To assess the struc-
tural integrity it is necessary to have a reliable continuous monitoring that allows avoiding false
alarms resulting from these variable conditions. Since a structure in normal operating condi-
tions undergoes temperature variations and different forces by the environmental conditions, it
is necessary to understand the effects of such conditions and test the developed methodologies
under these conditions. In this sense, several works from different authors can be found in lit-
erature. For instance, in the work by Fritzen et al. [5] an existing subspace-based identification
method is modified including temperature compensation for damage diagnosis. In this work,
the detection is focused on the detection of small delaminations in composite materials and the
excitation is performed by random noise to collect the system’s vibration response at different
temperatures. Konstantinidis et al. [6] applied optimal baseline subtraction (OBS) to investigate
its robustness under temperature changes for damage localization by using an aluminium plate,
piezoelectric discs and temperature changes in the range of 22◦C to 32◦C. Sohn [4], presented a
review of the environmental and operational variation effects on real structures focused on data
normalization progresses. Moll et al. [7] studied the compensation of environmental influences
using a simulation model and a laboratory structure. Raghavan and Cesnik [8] reported studies
for the selection of suitable bonding agent for piezoelectric transducers on aluminium plates.
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These studies were conducted in the temperature range of 20◦C to 150◦C and the identified ther-
mally sensitive variables in the experiments were used to model the experimentally observed
changes under temperature variation. Lu and Michaels [9] used ROC curves in order to find
selective features which are sensitive to damage but insensitive to the applied surface wetting.
Deraemaeker et al. [10] used factor analysis to treat the environmental changes and statistical
process control for damage detection. In the study, a numerical example of a bridge subjected
to environmental changes is used. More recently, Mujica et al. [11] studied the use of PCA,
extended PCA, T 2-statistic andQ-statistic to detect and distinguish damages in structures under
varying operational and environmental conditions. Croxford et al. [12] evaluated two different
methods to compensate the temperature effect, namely optimal baseline selection (OBS) and
baseline signal stretch (BSS). A combination of these methods was proposed to improve the ef-
fective temperature compensation. The methodology was tested in two independent long-term
experiments using both fundamental modes of propagation (A0 mode and S0 mode). In 2011,
Kraemer et al. [13] proposed an approach based on Artificial Neural Networks (ANN) using
Self Organizing Maps (SOM) in order to compensate the temperature effects on different fea-
tures obtained from measured time data of a Carbon Fiber Reinforced Polymer plate (CFRP).
Torres and Fritzen [14] presented theoretical developments, numerical and experimental results
on the effects of variable temperature and operation conditions (EOC) on wave propagation
in composite materials. Increase in time-of-flight, effects of surface wetting and changes in
sensor response magnitude with temperature were analyzed and discussed. Recently, Dodson
and Inman [15] studied the physics of thermal effects on Lamb waves in plates. This work
included the discussion and experimental verification in a thin plate of the thermal sensitivity of
dispersion curves.

In the present paper, the authors suggest the use of Discrete Wavelet Transform (DWT),
Multiway Principal Component Analysis (MPCA) and Self-Organizing Maps (SOM) to detect
and classify damages in structures using signals collected from acousto-ultrasonics tests by
considering temperature changes. The methodology is tested using an aluminium plate instru-
mented with five piezoelectric transducers and a simplified aircraft composite skin panel which
is instrumented with four piezoelectric transducers. On the one hand, seven different states are
studied in the classification in the first structure: the undamaged state, 4 simulated damages (by
adding a mass at different positions of the structure) and two damages in a sensor (25% and
50% breakage). On the other hand, six states are studied in the second structure: these states
include the undamaged structure and 5 simulated damages by means of adding a mass in differ-
ent locations. The experimental results show that all these states are successfully detected and
classified no matter the kind of damage or the temperature in both structures. In difference with
previous works by the authors this work includes a study about the temperature effects in the
damage detection and classification methodology. Also, it is proposed the use of a type unfold-
ing to consider the data from all the temperatures evaluated in order to define a robust baseline
for detection and classification damage. In this work, the term “robust baselines” is considered
to define baselines obtained from different temperatures. Finally, it is also included the use of
the U-matrix surface as a tool for visualizing the results. In this way, the U-matrix surface as
an output of the SOM allows validating the results obtained by the cluster-map. The paper is
organised as follows: Section 2.2 presents the experimental setup followed by the basic theo-
retical background on the concepts of Discrete Wavelet Transform, PCA and Self-Organizing
Maps in the section 2.3. The methodologies for the damage detection and classification are
presented in the Section 2.4. The results of the application of the methodology to the different
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specimens are presented in the section 2.5. Finally, conclusions are drawn in Section 2.6.

2.2 Experimental setup
The validation of the methodology is carried out by using data collected from experiments
performed on two different specimens. The first specimen corresponds to an aluminium plate
with dimensions 200 mm 200 mm which is instrumented with 5 PZT transducers (PIC-151)
bonded on the surface as shown in Figure 2.1. Six damages have been simulated on the structure.
The first four damages are simulated by placing magnets on both sides of the structure by using
a mass at different positions on the structure and the other two damages correspond to a broken
sensor with a different percentage of breakage. More precisely, damage 5 refers to a 25%
breakage and damage 6 corresponds to a 50% breakage. The location of the damages is shown
in Figure 2.1.

Figure 2.1: Aluminium plate and damage description.

To inspect the structure, a 12V Hanning windowed cosine train signal with 5 cycles and 50
KHz as central frequency was used. This structure was subjected to temperature changes. To
perform these experiments, the structure was placed in an oven with controlled temperature.
Data from the structure under six different temperatures (24◦C, 30◦C, 35◦C, 40◦C, 45◦C and
50◦C) for each structural state were collected. To avoid the contact between the metallic sur-
faces and eliminate the noise in the experiments, plastic elements are used. 100 experiments
were collected for each state and for each temperature.

The second structure is a simplified aircraft composite skin panel made of carbon fibre re-
inforced plastic (CFRP).The structure is depicted in Figure 2.2.. The overall size of the plate is
approximately 500× 500× 1.9 mm and its weight is about 1.125 kg. The stringers are 36 mm
high and 2.5 mm thick. The properties of the unidirectional (UD) material are VFibre = 60%,
E1=142.6GPa, E2=9.65GPa, v12=0.334, v13= 0.328, v23 = 0.54 and G12 = G13 = 6.0GPa. The
plate and the stringers consist of 9 plies. All plies are aligned in the same direction. Damage
on the tested composite plate was simulated by localized masses at different positions as in the
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previous case. Figure 2.2. outlines the coordinates for the simulated damage on the composite
skin panel. The excitation voltage signal is a 12V Hanning windowed cosine train signal with 5
cycles; 120 experiments were recorded per sensor-actuator configuration at five different tem-
peratures (35◦C, 45◦C, 55◦C, 65◦C and 75◦C). To determine the carrier central frequency for
the actuation signal in each structure, a frequency sweep was performed and the spectral con-
tent of each signal was analyzed. The carrier frequencies were found to be 50 kHz. The carrier
frequency was chosen to maximize the propagation efficiency. This type of excitation generates
a dominant A0 mode that is propagated along the structure allowing a better interaction of the
guided wave with the simulated damage.

Figure 2.2: Simplified Aircraft Composite Skin Panel: Setup and Damage Positions.

2.3 Theoretical background

The damage detection and classification methodology presented in this work is based on the use
of data-driven analysis. The analysis is performed by pre-processing the data collected from
the structures using Discrete Wavelet Transform and applying Multiway Principal Component
Analysis and damage indices as pattern recognition techniques. Finally the results obtained
in the statistical modelling with PCA and the damage indices are included in a classifier to
perform the final analysis. As classifier, Self-Organizing Maps are used. Details about how
these steps are applied will be explained in the section 2.4. However, a brief introduction to
each method used in this methodology is included in this section. More details can be consulted
in the references included in each method.
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2.3.1 Discrete Wavelet Transform
The discrete wavelet transform (DWT) is a powerful tool specially used in areas dealing with
the analysis of transient signals. This transform provides sufficient information for both the
analysis and synthesis of the original signal with a significant reduction in the computational
time cost compared with the analysis of the wavelet in continuous time domain normally called
Continuous Wavelet Transform (CWT) [16]. Roughly speaking, the characteristics of the given
function at a specified time and scale are represented by the transformation coefficients. In
other words, each wavelet coefficient represents time and frequency information of the signal.
The DWT analysis can be performed by means of a fast, pyramidal algorithm related to a two-
channel subband coding scheme using a special class of filters called quadrature mirror filters
as proposed by Mallat [17]. In this algorithm, the signal is analyzed at different frequency
bands with different resolution by decomposing the signal into approximation and detail coef-
ficients. This is achieved by successive high-pass (HP) and low-pass (LP) filtering of the input
signal. The optimum number of level decompositions could be determined, for example, based
on a minimum-entropy decomposition algorithm [18]. Figure 2.3 shows the structure of the
decomposition of the signal and the corresponding frequency bandwidths for the details (Di)
and approximations (Ai) [17]. Each level is obtained by the decomposition of the signal with
high and low pass filtering and a down-sampling of the input signal. The approximations rep-
resent the high-scale, low-frequency components of the signal. The details are the low-scale,
high-frequency components. The frequency fmax represents the maximum frequency contained
in the recorded signal and n is the decomposition level. Discrete wavelets are often associated
with dilation equations and scaling functions. The basic scaling function can be defined as:

γ(i) =

j∑
m=0

cmγ(2i−m), (2.1)

where the values cm, m = 0, . . . , j are the wavelet coefficients. These coefficients must satisfy
certain conditions which are discussed in [19]. The scaling functions are then used to construct
the corresponding wavelets φ(i) from the following formula:

φ(i) =

j∑
m=0

(−1)mcmγ(2i+m− j + 1). (2.2)

The approximation and detail coefficients can be calculated as follows:

An,k = 2−n/2
j∑
i=1

x(i)γ(2−nj − k) (2.3)

Dn,k = 2−n/2
j∑
i=1

x(i)ϕ(2−nj − k) (2.4)

where γ is called the scaling function, j is the number of discrete points of the input signal, n and
k are considered to be the scaling (dilation) index and the translation index, respectively. Each
value of n allows analyzing a different resolution level of the input signal. Scaling functions
are similar to wavelet functions except that they have only positive values and are designed to
smooth the input signal [20, 17].
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Figure 2.3: DWT Decomposition Tree.

2.3.2 Multiway Principal Component Analysis (MPCA)

MPCA is a very common practice in multivariate statistical procedures for monitoring the
progress of batch processes [21, 22] and it is based in the fact that the data are inherently cor-
related [23]. This is similar to the use of PCA on a large two-dimensional matrix constructed
by unfolding the three-way data matrix [24]. In this work the original data are expressed in a
matrix whose dimensions are I experiments, K time instants and J sensors. This three-way
data matrix is decomposed into a large two-dimensional matrix X as shown in Figure 2.4.

Figure 2.4: Unfolding the original data.
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2.3.3 Principal Component Analysis
Principal Component Analysis (PCA) is a useful technique of multivariable and megavariate
analysis [25] that provides arguments to reduce a complex data set to a lower dimension and
reveals some hidden and simplified structure/patterns that often underlie it. The goal of PCA is
to discern which information are more important in the system by determining a new space (co-
ordinates) to re-express the original data based on the variance-covariance structure. PCA can
be also considered as a simple, non-parametric method for data compression and information
extraction which finds combinations of variables or factors that describe major trends in a con-
fusing data set. In order to develop a PCA model, it is necessary to arrange the collected data in
a matrix X. This n ×m matrix contains information from m sensors and n experiments [26].
Since physical variables and sensors have different magnitudes and scales, each data-point is
scaled using the mean and the standard deviation of all measurements of the sensor at the same
time and the standard deviation of all measurements of the sensor. Once the variables are scaled,
the covariance matrix CX is calculated as follows:

CX =
1

n− 1
XTX. (2.5)

This is a square symmetric m×m matrix that measures the degree of linear relationship within
the data set between all possible pairs of variables (sensors). The subspaces in PCA are defined
by the eigenvectors and eigenvalues of the covariance matrix as follows:

CXP̃ = P̃Λ, (2.6)

where the eigenvectors of CX are the columns of P̃, and the eigenvalues are the diagonal terms
of Λ (the off-diagonal terms are zero). Columns of matrix P̃ are sorted according to the eigen-
values by descending order and they are called principal components of the data set or loading
vectors. The eigenvectors with the highest eigenvalue represents the most important pattern in
the data with the largest quantity of information. Choosing only a reduced number r < m of
principal components, those corresponding to the largest eigenvalues, the reduced transforma-
tion matrix could be imagined as a model for the structure. In this way, the new matrix P (P̃
sorted and reduced) can be called as PCA model. Geometrically, the transformed data matrix
T (score matrix) represents the projection of the original data over the direction of the principal
components P:

T = XP. (2.7)

In the full dimension case (using P̃), this projection is invertible (since P̃ P̃T=I ) and the
original data can be recovered as X = TP̃T . In the reduced case (using P), with the given T, it
is not possible to fully recover X, but T can be projected back onto the original m-dimensional
space and obtain another data matrix as follows:

X̂ = TPT = (XP)PT . (2.8)

Therefore, the residual data matrix (the error when not all the principal components are used)
can be defined as the difference between the original data and the projected back:

E = X− X̂ = X(I−PPT ). (2.9)
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There are several kinds of indices that can give information about the accuracy of the model
and/or the adjustment of each experiment to the model. Two well-known indices are commonly
used to this aim: the Q-statistic (or SPE-index) and the Hotelling’s T 2-statistic (D-index)
[27, 28, 26, 29]. In a previous work by the authors [30], it was demonstrated that the use of
the SPE-index and the scores allow a good classification, since the T 2-statistic is a measure
calculated from the scores, and its use in the methodology in combination with the scores
introduces redundancies to the analysis. The former is based on analyzing the residual data
matrix to represent the variability of the data projection within the residual subspace. Denoting
ei as the i-th row of the matrix E, the Q-statistic for each experiment can be defined as its
squared norm as follows:

Qi = eie
T
i = xi(I−PPT )xTi . (2.10)

2.3.4 Self-Organizing Map (SOM)
The Self Organizing Map (SOM) is a kind of unsupervised neural network also known as Ko-
honen network [31] in honour to professor Teuvo Kohohenen. This neuronal network is spe-
cialized in visualization and analysis of high dimensional data and has the special property of
generating one organized map in the output based on the inputs, grouping input data with simi-
lar characteristics in clusters [32, 33]. To do that, the SOM internally organizes the data based
on features and their abstractions from input data. In particular, these maps have been used
in practical speech recognitions [34], robotics [35], control [36] and telecommunications [37],
among others [38].

The structure of the SOM is a single feed forward network and each node in the input layer
is connected to all the output neurons [39]. The connection between the input layer and the
output layer is defined by a weighting matrix as shown in Figure 2.5. In general, the inputs to
the network are defined in the input layer and a weighting matrix relates each input with each
cluster in the output layer.

Figure 2.5: The Self-organized map.

The result of the SOM is an organised map which contains the final clustering of the input
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data. This information can be visualised by using the cluster map. The distance matrix tech-
niques are widely used in the visualization of the cluster structure of the SOM. One of these
techniques is the unified distance matrix, called U-matrix, which shows the separation between
prototype vectors and neighbouring map units. The U-matrix is related with the linkage measure
and can be visualized using a colour scale [40].

2.4 Damage detection and classification

In this paper, a methodology is proposed for damage detection and classification, which is partly
based on a methodology previously developed by the authors [30],[3]. The proposed methodol-
ogy considers the use of a multi-actuator piezoelectric system (distributed piezoelectric active
network) working in several actuation phases, Discrete Wavelet Transform, Multiway Principal
Component Analysis (PCA), SPE-index and Self-Organizing Maps for the classification of dif-
ferent structural states by considering temperature changes using robust baselines. In this case,
a robust baseline is defined as a baseline with the data from the healthy structure at different
temperatures. The multi-actuator piezoelectric system consists of several piezoelectric trans-
ducers attached to the surface of the structure under test working in several actuation phases.
In each actuation phase, one lead zirconium titanate (PZT) transducer is selected as actuator
and a signal is applied to produce Lamb waves in the structure. The signals propagated through
the structure are collected in different points using the rest of the sensors and pre-processed
by using the DWT in order to obtain the approximation coefficient. In this work the family of
Daubechies wavelet basis function ’db8’ was chosen for the methodology presented here since
it proved to be adequate to encode and approximate the ultrasonic waveforms. This was accom-
plished by means of different trial and error tests by evaluating different mother wavelets and
levels of decomposition so that the signal could be properly reconstructed from the calculated
wavelet coefficients. The chosen ’db8’ wavelet is an orthogonal wavelet with the advantage of
avoiding phase shifts and allowing exact reconstruction of the signal. The index number refers
to the number of coefficients. The number of vanishing moments for each wavelet is equal to
half the number of coefficients, so the ’db8’ has 4 vanishing moments. A vanishing moment
confines the ability of the wavelet to represent polynomial behaviour [41, 20]. Special attention
was paid to selection of the optimum decomposition level in order to avoid removing important
information that could be related to some of the modes of propagation contained in the signal.
The optimum number of level decompositions is determined based on both a minimum-entropy
decomposition algorithm and systematic trials [18]. The entropy-based methods perform a sys-
tematic comparison of the signal and noise using the Shannon information theory [20]. It has
been shown that a pure noise signal has the largest entropy while a systematic signal has zero
entropy [42].

Figures 2.6, 2.7 and 2.8 show the scheme of the methodology. In a first step, when working
with one temperature, the dynamic responses collected from each actuator phase are stored by
the data acquisition system into a matrix with dimensions (IK), where I represents the number of
experiments and K the number of sampling times. Denoting J as the number of PZT transducers
that are receiving the dynamical responses for each experiment, J matrices with the information
from each sensor by each actuator phase are finally stored. Therefore, the whole set of the data
collected in each actuator phase and with a specific temperature can be organized in a three-
dimensional matrix (IKJ) or in a two-dimensional unfolded matrix (IJK), where data from each
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sensor are located besides the other sensors as in the Figure 2.4. This is a very common practice
in multivariate statistical procedures for monitoring the progress of batch processes [21, 22].
To manage the use of different temperatures, in this paper the data (approximation coefficient)
from each temperature are unfolded and organized in a matrix as shown in Figure 2.6 in order
to obtain a matrix by each actuator phase with the information from all the sensors at different
temperatures.

Figure 2.6: Unfolding the collected data in the actuation phase 1 using n temperatures.

The collected data in each actuation phase must be pre-processed before the computation
of the PCA model. For this kind of data sets (unfolded matrices), several ways of scaling have
been presented in the literature: continuous scaling (CS), group scaling (GS) and auto-scaling
(AS) [43]. According to these references, GS is selected for this work because this method
considers changes between sensors and these sensors are not processed independently. Using
this normalized data, a PCA model is built by each actuator phase. This way, the data are
reduced by selecting a reduced number of components according to the cumulative percent
variance (CPV) approach. The CPV approach guarantees the minimal model dimension that
captures the desired variance.

In a second step, the experiments are performed by evaluating the structure in the different
possible states or scenarios (undamaged and with different kind of damages) under different
temperatures. The collected signals are pre-processed and organized in the same manner as
in the first step. Afterwards, these signals are projected onto the corresponding PCA model
(equation (2.7.)), and the scores and the SPE-index (Q− index) are obtained, as represented in
Figure 2.7.
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Figure 2.7: Calculation of the baseline pattern using PCA and calculation of scores and SPE-
index in the actuator phase 1.

With a predetermined number of scores and with the SPE-index, combining the results of all
the actuator phases, a feature vector is built. This vector is used to apply data fusion and obtain
a pattern with the information for the classification using all the structural states as shown in
Figure 2.8. This feature vector is then introduced as the input to a classifier. A SOM has been
chosen as classifier because its characteristics can provide a good support for the classification
and graphical representation and grouping input data with similar features in clusters [30]. One
important characteristic of this kind of ANN is that it does not need previous knowledge about
the state of the structure (healthy or with some damage) to obtain the final clustering.

To visualize the results of the classification the U-matrix surface and the cluster map are
used. The U-matrix surface allows the visualization of the distances between neurons by means
of colours between adjacent neurons and the cluster map corresponds to another representation
that can be used as a tool to show the different data set grouped with similar characteristics
showing the clustering tendency. However, it is not possible to provide a multi-damage detec-
tion which is able to identify several occurring damages independently. Multi-damage scenarios
will just be detected as an additional damage and generate an additional cluster into the SOM.

The proposed methodology is indeed a qualitative approach since a quantitative assessment
of damage is not provided in the presented work.
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Figure 2.8: Final pattern for damage classification.

2.5 Analysis and discussion of the results

2.5.1 Aluminium plate
The following three studies were conducted in order to verify and determine the approach sen-
sitivity and the influence of the temperature variations in the detection and classification of
damage:

• Classification of baselines at different temperatures

• Damage detection and classification at each temperature level

• Damage detection and classification using all temperatures

Classification of baselines at different temperatures

Firstly, the classification of the different baselines at the different temperatures is evaluated. In
particular, data from the structure at six different temperatures (24◦C, 30◦C, 35◦C, 40◦C, 45◦C
and 50◦C) were used to evaluate the approach.

Following the scheme described in Section 2.4, the wavelet approximation coefficients from
the data of the healthy structure at different temperatures are computed. These approximation
coefficients are organized as in Figure 2.4 and then the baselines (PCA models) are built. To
determine the number of principal components that will be used to project the new data, the
variance captured by each principal component was computed for each temperature in order to
determine the number of principal component. This analysis is fundamental in order to ensure
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that enough variance is captured by the model, therefore, allowing an optimal reduction. The
distribution of the retained variance along the principal components in two of these actuator
phases is depicted in Figure 2.9. Only the components with a significant variance value are
shown. The components with the highest variance represent variables or factors that describe
major trends in a confusing data set. Similar results are obtained in the other actuation phases.
From this analysis, the first ten principal components are selected and used to define the PCA
model by each actuator phase. This number of components considers more than 90% of variance
in the statistical modelling.

Figure 2.9: Percent of variance in the aluminium plate in (a) actuation phase 1 and (b) actuation
phase 5.

New data from the structure to be diagnosed, in different states (healthy and damaged), are
then collected and projected into the corresponding PCA model. These projections (scores) and
the SPE-index are calculated by each actuation phase and used to define the feature vector and
perform the data fusion as follows:

Fi = [scoreki Qk
i ], (2.11)

where score = [score1, . . . , scoren] with n principal components, k corresponds to the number
of actuator phase and i is the number of the experiment.

In order to define the optimal set of parameters to configure the map such as the normal-
ization, the shape of the cluster map and its size, several SOMs are trained and validated. As a
result, normalization type histD is selected to normalize the feature vector. Normalization type
histD is a discrete histogram equalization that sorts the values of the feature vector and replaces
each value by its ordinal number [44]. Finally, it scales the values in such a way that they lie
between the range [0,1]. From this analysis, an hexagonal lattice with a flat sheet shape is also
defined. Different shapes such as sheet, cylinder or toroid can be chosen. For ease, a flat sheet
shape is considered here. Finally, a cluster size of 30× 10 is obtained to train the SOM.

The results of the training are presented by means of both the cluster map, in Figure 2.10,
and the U-matrix surface in Figure 2.11. The analysis of these plots allows one to find differ-
ences between the data from the healthy structure at different temperatures. In this case six
clusters seem to have been well identified in the cluster map and in the U-matrix surface. More
precisely, the observations of the cluster map shows that the data from the structure when the
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temperature is 24◦C are better organized. This fact can be inferred by reviewing the number of
output neurons occupied in the cluster map. In the U-matrix surface the boundaries represent
the separation between the clusters and the colour shows the magnitude of the differences be-
tween the clusters. In this sense, higher value colours according to the colour scale imply large
separations. According to the colours in the boundaries, it can be seen that there are not sig-
nificant differences between the first four temperatures. However, this difference is remarkable
with respect to the last two temperatures. Another important issue is related to the management
of the outliers. In the cluster map presented in Figure 2.10, there is an outlier that corresponds
to the structure at 45◦C. In this case, it is worth noting that the U-matrix surface (Figure 2.11)
allows the isolation of the outlier by the separation between the different areas. This separation
represents the different zones delimited by boundaries, where the colours with low magnitude
according to the colour scale depict these zones. The colours with high magnitude into these
boundaries can be interpreted as the zones with a high separation between the clusters or the
zones where the outliers appear. The result of this first study demonstrates the influence of the
temperature despite the fact that the data comes from the healthy structure. These differences
are not so evident with respect to the first temperatures.

Figure 2.10: Classification of the different baselines at different temperatures using 10 scores
and the SPE-index using the cluster map.

Damage detection and classification by each temperature

In the second study, the maps were trained using the data from seven different states (healthy
state and six damages). The normalization, the hexagonal lattice and the cluster size were
defined as in the previous study. Four damages were simulated in the tested plate by adding
a mass at different locations on the surface of the structure. In addition, two real damages in
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Figure 2.11: Classification of the different baselines at different temperatures using 10 scores
and the SPE-index using the U-matrix surface.

a sensor were performed. These damages correspond to a breakage at 25% and 50% of the
sensor 3. Figures 2.12 to 2.17 show the classification results when the structure is exposed to a
temperature of 24◦C, 40◦C and 50◦C.
When the structure is exposed to a temperature of 24◦C, seven zones seem to have been well
identified, as can be seen in Figures 2.12 and 2.13. The boundaries between the clusters in the
U-matrix surface show that there is a clear separation between all the states. Moreover, and
according to the cluster map, there are no outliers.

Figures 2.14 and 2.15 show the results when the structure is exposed to a temperature of
40◦C. As it can be seen, there are seven clusters well identified in the cluster map and the U-
matrix surface. As in the previous case, there is no presence of outliers. However, the damage
distribution across the map is different.

The results when the structure is exposed to 50◦C (Figures 2.16 and 2.17) show that all the
states are clearly classified. The lowest boundary is presented between the data from the un-
damaged state and damage 2 in the U-matrix surface. If the results of the classification are
compared with respect to all the temperatures, it can be concluded that the damages have been
correctly classified. Moreover, the way the outliers have been treated does not imply the cre-
ation of a new cluster. The undamaged state in all the temperatures is clearly separated from
the rest of the damages although the number of output neurons in the cluster map is different
for each temperature.

The results in the previous two studies have shown that the proposed methodology applied
to data coming from dynamic responses at different temperatures allows a proper final
classification in the cluster map and the U-matrix surface. However, these results change from
one temperature to another and the distribution at each temperature is different. Therefore,
these results suggest that changes in the temperature during the inspection can probably lead to
false results in the final classification.
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Figure 2.12: Classification of the different states at 24◦C using 10 scores and the SPE-index
using the cluster map.

Figure 2.13: Classification of the different states at 24◦C using 10 scores and the SPE-index
using the U-matrix surface.



46
2. Data-driven methodology for damage detection and classification under temperature

changes

Figure 2.14: Classification of the different states at 40◦C using 10 scores and the SPE-index
using the cluster map.

Figure 2.15: Classification of the different states at 40◦C using 10 scores and the SPE-index
using the U-matrix surface.

Damage detection and classification using all temperatures

The third study with the aluminium plate is aimed to solve the question about how it is possible
to improve the final classification pattern by considering the data covering different temperature
ranges. As a possible solution, in order to improve the robustness of the methodology to tem-
perature changes, the data from the different temperatures are organized and processed as it has
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Figure 2.16: Classification of the different states at 50◦C using 10 scores and the SPE-index
using the cluster map.

Figure 2.17: Classification of the different states at 50◦C using 10 scores and the SPE-index
using the U-matrix surface.

been explained in Section 2.4. In the previous cases, we have just used ten scores. However, the
use of data from all the temperatures increases the number of scores that have to be considered.
In this case, the optimal set of parameters to configure the map was found to be as follows:
150 scores, normalization histD, a hexagonal lattice with a flat sheet shape and a cluster size of
30 × 30. In spite of the number of scores is high, the feature vector built with this number of
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scores and the SPE-index corresponds to a reduced version compared with the use of the raw
signals or all the approximation coefficients.

Figure 2.18: Classification of the different states using all temperatures, 150 scores, SPE-index,
normalization type histD and map size 30 x 30 in the cluster map.

The results are presented in the Figures 2.18 and 2.19 by means of the cluster map and the
U-matrix surface. Results show a clear distinction between the different structural states in
both figures. This distinction can be observed by the different data sets with different colours
in the cluster map. The main difference with the previous results is that the damage 3 is now
separated in two groups. This result can also be confirmed by evaluating the U-matrix surface.
It is also worth remarking the presence of small zones inside of each damage case in the
U-matrix surface and the cluster map. In the U-matrix surface, the damage cases are separated
by the highest boundaries, the sub-groups are represented by the dark blue colour and the
separation between these sub-groups is represented by the light blue colour. More precisely,
six sub-cases can be identified for each damage case. These six cases correspond to the data at
the six temperatures. These results confirm that the methodology allows a proper identification
of the different type of damage despite the changes of the temperature.
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Figure 2.19: Classification of the different states using all temperatures, 150 scores, SPE-index,
normalization type histD and map size 30 x 30 in the U-matrix surface.
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2.5.2 Multi-layered composite plate
The evaluation of the damage detection and classification methodology using this specimen was
performed by means of the following three studies:

• Damage detection and classification at different temperature levels.

• Damage detection and classification of different damages at different temperatures when
the baseline is built using the data from all temperatures.

• Damage detection and classification of the same damage at different temperatures when
the baseline is built using the data from all the temperatures.

To define the optimal set of parameters to configure the map in each study, several SOMs are
again trained and validated. As a consequence, a defined number of scores and the SPE-index
are used by each actuation phase to define the feature vector. To train the SOM, a normalization
type histD is applied to the feature vector, and a hexagonal lattice with a flat sheet shape and a
cluster size of 30× 10 are used.

Damage detection and classification at different temperatures

Results from the first study are presented in Figures 2.20-2.25. These figures illustrate the
results when the plate is exposed to temperatures of 35◦C, 55◦C and 75◦C. Similar results are
obtained with the rest of the temperatures, but the figures are omitted for space reasons.
Figures 2.20 and 2.21 show the results obtained by means of the cluster map and the U-matrix
surface at 35◦C, respectively. These results show that six structural states are well identified.
As it can be shown in the U-matrix surface (Figure 2.21), there is a clear separation between the
undamaged state and the rest of damages at this temperature.

Figures 2.22 and 2.23 show the results when the multi-layered composite plate is exposed
to a temperature of 55◦C. As it has been discussed previously, the cluster map and the U-matrix
surface present six clusters well defined. The biggest boundary can also be found between the
undamaged state and the rest of damages. However, in this case, the boundary between the
damage 4 and damage 2 is less evident.

Figures 2.24 and 2.25 present the results obtained when the temperature is 75◦C. As well
as the previous cases, the undamaged state is clearly separated from the damaged cases.
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Figure 2.20: Classification of the different states at 35◦C using 5 scores and the SPE-index.

Figure 2.21: Classification of the different states at 35◦C using 5 scores and the SPE-index.
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Figure 2.22: Classification of the different states at 55◦C using 9 scores and the SPE-index
using the cluster map.

Figure 2.23: Classification of the different states at 55◦C using 9 scores and the SPE-index
using the U-matrix surface.
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Figure 2.24: Classification of the different states at 75◦C using 11 scores and the SPE-index in
the cluster map.

Figure 2.25: Classification of the different states at 75◦C using 11 scores and the SPE-index in
the U-matrix surface.
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Damage detection and classification of different damages at different temperatures when
the baseline is built using the data from all temperatures.

Results from the second study are depicted in Figures 2.26 and 2.27. In this case, the baseline
is built using data from all temperatures. Moreover, 5 different damages from different temper-
atures are used. In this respect, damage 1 corresponds to damage 1 when the plate is exposed to
a temperature of 35◦C; damage 2 is the damage 2 at 45◦C; damage 3 is the damage 3 at 55◦C;
damage 4 is the damage 4 at 65◦C; and damage 5 is the damage 5 at 75◦C. The feature vector is
formed by 30 scores and the SPE-index of each actuation phase. The observation of the cluster
map and the U-matrix surface allows us to identify the different states despite the presence of
two outliers (in the undamaged case and in the damage 1). In contrast to the previous results,
the boundary in the undamaged state is less clear with respect to the rest of boundaries in the
U-matrix surface.

Figure 2.26: Classification using the Baseline with all temperatures and Damages at different
temperatures and Positions.

Damage detection and classification of the same damage at different temperatures when
the baseline is built using the data from all the temperatures.

Figures 2.28 and 2.29 show the results from the third study. In this case, the baseline is built
using the data from all the temperatures. The objective is now to classify the same damage
(damage 1) at different temperatures. The feature vector is composed by 30 scores and the
SPE-index of each actuation phase. The results in the cluster map and the U-matrix surface
show that it is possible to perform the damage detection because there is a clear distinction
between the healthy state and the damaged states. Nevertheless, the clusters with damaged
states cannot be clearly separated, and some outliers are present in the cluster map. The last
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Figure 2.27: Classification using the Baseline with all temperatures and Damages at different
temperatures and Positions.

remark can be validated using the U-matrix surface since its boundaries do not have a signifi-
cant value. As a conclusion, a proper classification of all damages from this case is not possible.

Figure 2.28: Classification using the Baseline with all temperatures and Damage 1 as damage
at all temperatures in the cluster map.
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Figure 2.29: Classification using the Baseline with all temperatures and Damage 1 as damage
at all temperatures in the U-matrix surface.
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2.6 Conclusions
An automatic method was proposed for the analysis of ultrasonic signals for the purpose of
damage detection and classification under temperature variations. The results obtained showed
that there is an influence of the temperature in the variability of the dynamics in the data gathered
from the structure when it is subjected to environmental changes in spite of the structural state
studied. This result demonstrates that the temperature is an important environmental effect to
bear in mind in the design of a SHM system. The first study indicated that the use of the
approach enables to detect and classify damages in the structure and the breakage at different
percentage in the sensor when the data is collected under the same temperature conditions. In
the specific cases presented, the pre-processing with DWT, the use of the scores and the SPE-
index by each phase and the data fusion by means of a Self-Organizing Map presented the best
result in the detection and classification in both structures.

The use of the robust baselines as those presented in this paper allowed in all the cases
the damage detection in spite of temperature changes and complexity and type of material of
the evaluated structures. According to the results, in all the evaluated cases there was a clear
separation between the healthy state and the damage states in the cluster map and the U-matrix
surface.

In the classification problem, the use of the robust baselines allowed the classification in
most of the cases with the exception of the same damage at different temperatures in the simpli-
fied aircraft composite skin panel where the use of scores and the SPE-index do not allow the
classification. In this specific case, additional studies need to be performed to obtain a better
classification of all the damaged states.

Finally, it is significant to highlight that the presented approach solves the problem of eval-
uating all the phases to define the existence of damage. This is especially relevant for large
structures instrumented with several PZT transducers. Now, the solution implies only the eval-
uation of the cluster map or the U-matrix surface obtained by data fusion.
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A bio-inspired methodology based on an
artificial immune system for damage detec-
tion in SHM

Among all the aspects that are linked to a structural health monitoring (SHM) sys-
tem, algorithms, strategies or methods for damage detection are currently playing
an important role for improving the operational reliability of critical structures in
several industrial sectors. This paper introduces a bio-inspired strategy for the de-
tection of structural changes using an artificial immune system (AIS) an a statistical
data-driven modeling approach by means of a distributed piezoelectric active sen-
sor network at different actuation phases. Damage detection and classification of
structural changes using ultrasonic signals is traditionally performed using meth-
ods based on the time of flight. The approach followed in this paper is a data-based
approach based on AIS, where sensor data-fusion, feature extraction and pattern
recognition are evaluated. One of the key advantages of the proposed methodology
is that the need to develop and validate a mathematical model is eliminated. The
proposed methodology is applied, tested and validated with data collected from two
sections of an aircraft skin panel. The results show that the presented methodology
is able to accurately detect damages.

Keywords: Artificial immune systems; principal component analysis; damage indices.

3.1 Introduction
Structural health monitoring (SHM) is a discipline that makes use of sensors permanently at-
tached to a structure together with different software analysis developments in order to detect
damages and assess the proper performance of structures. An SHM system traditionally in-
cludes continuous monitoring, data processing algorithms and pattern recognition techniques
for a robust analysis. Different methodologies have been developed in the last years in the
field of SHM. However, with the use of bio-inspired algorithms, promising results have been
obtained, mainly due to its adaptive, distributed and autonomous features.

This work presents a damage detection methodology that is mainly based on an artificial
immune system (AIS) as a pattern recognition technique and affinity plots to discriminate the
different structural states of the structure. This methodology is applied to the collected data by
a piezoelectric system. The artificial immune system has been proposed and used in several
applications. However, in structural health monitoring, this methodology is relatively new. A
brief state-of-the-art in chronological order is presented in the next lines highlighting the most
representative works with respect to AIS in structural health monitoring.

The use of non-destructive inspection methods (NDT) has proved to be a very useful tool for
damage detection tasks. However, in some situations where it is impossible to manually inspect
a structure –as in the inspection of large-scale structures–, the use of automated methods present
significant advantages. Some of these advantages can be summarized as follows: (i) continu-
ous monitoring, since the sensors are permanently attached to the structure; (ii) early damage
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detection; (iii) damage identification, among others. In this sense, structural health monitor-
ing (SHM) extends the limits of the NDT methods by including the use of data processing
algorithms, pattern recognition and continuous monitoring because the sensors are permanently
attached to the structure. This is one the reasons why the development of improvements in data
processing algorithms is a current demand. The contribution of the present work is the devel-
opment of a methodology for data-driven damage classification using a bio-inspired algorithm,
which is applied to data that comes from a piezoelectric system. More precisely, this work uses
an artificial immune system that allows the use of this methodology as a pattern recognition
approach. The use of artificial immune systems (AIS) is relatively new in the literature and,
compared with the application of other approaches in SHM, there are still a reduced number
of works. In the next lines we briefly compile in chronological order the most representative
works in the use of AIS.

In 2003 Costa et al. [1] developed three module algorithms called T-module, B-module
and D-module. These algorithms are based on immunologic principles to detect anomalous
situations in a squirrel-cage motor induction. The T-module distinguishes between self and
non-self conditions, the B-module analyzes the occurrence of both cells (self and non-self) and
finally the D-module is similar to a T-module but with a reduced space. In this work, the normal
operation condition of the machine (self) is represented by the frequency spectrum, that can
include or not include harmonics.

In 2007, Da Silva et al. [2] presented a damage detection algorithm applying an auto-
regressive model and auto-regressive model with exogenous input (AR-ARX). This algorithm
is based on the structural vibration response measurements and the residual error as damage
sensitive index. Data compression is used by means of principal component analysis (PCA)
and the fuzzy c-means clustering method is used to quantify the damage sensitive index. In
this paper, the authors used a benchmark problem with several damage patterns to test the al-
gorithm. As the main result, a structural diagnosis was obtained with high correlation with the
actual state of the structure. Later on 2008, Da Silva et al. [3] developed a strategy to perform
structural health monitoring. This strategy included three different phases: (i) the use of prin-
cipal component analysis to reduce the dimensionality of the time series data; (ii) the design of
an autoregressive-moving-average (ARMA) model using data from the healthy structure under
several environmental and operational conditions; and finally (iii) the identification of the state
of the structure through a fuzzy clustering approach. In this paper, the authors compared the
performance of two fuzzy algorithms, fuzzy c-means (FCM) and Gustafson-Kessel (GK) algo-
rithms. The proposed strategy was applied to data from a benchmark structure at Los Alamos
National Laboratory. The work showed that the GK algorithm outperforms the FCM algorithm,
because the first algorithm considers an adaptive distance norm and allows clusters with several
geometrical distributions.

Also in 2008, Zhang et al. [4] used a clonal selection algorithm to solve a combinatorial
optimization problem called sensor optimization. This problem consists in choosing an appro-
priate distribution of a set of sensors in a structure to detect impacts. To test the algorithm, the
authors used a composite plate instrumented with 17 lead zirconium titanate (PZT) transducers.

De Moura et al. [5] presented a fuzzy based meta-model to detect damages in a flat structure
under corrosion conditions. This work considers data obtained from a SHM approach based
on electro-mechanic impedance. Chen [6], in 2010, applied an agent-based artificial immune
system for adaptative damage detection. In the approach, a group of agents is used as immune
cells (B-cells) patrolling over a distributed sensor network installed in the structure. The damage
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diagnosis is based on the analysis of structural dynamic response data. Each mobile agent
inspects the structure using agent based cooperation protocols. In 2010, Tan et al. [7] presented
a damage detection algorithm based on fuzzy clustering and support vector machines (SVM).
In this work, as a first step, the wavelet packet transform is used to decompose the accelerator
data from the structure and extract the energy of each wavelet component. Consequently, this
energy is used as a damage index. In further steps, damages are classified by means of fuzzy
clustering. As a final phase, damages are identified using a vector machine. The numerical
example illustrated in this work shows that the proposed method is able to identify the damage
from the spatial truss structure. In 2011, Chen and Zang [8] presented an algorithm based on
immune network theory and hierarchical clustering algorithms. Chilengue et al. [9] presented
and artificial immune system (AIS) approach to detect and diagnose failures in the stator and
rotor circuits of an induction machine. In the approach, the dynamic of the machine is compared
before and after the fault condition. Similarly, the alpha-beta (αβγ) transformation (also known
as the Clarke transformation) was applied to the stator current to obtain a characteristic pattern
of the machine that is finally applied to the pattern recognition algorithm.

In 2012, Zhou et al. [10], inspired by Chen’s work, developed a damage classifier in struc-
tures based on the immune principle of clonal selection. Using evolution algorithms and the
immune learning, a high quality memory cell is generated in the classifier generated able to
recognize several damage patterns. In 2012, Xiao [11] developed a structural health monitoring
and fault diagnosis system based on artificial immune system. In this approach, the antigen
represents the structural state (health or damage), whereas the antibody represents database in-
formation to identify a damage pattern. In this work, the feature space is formed by natural
frequencies and modal shapes collected by simulation of the structure in free vibration and seis-
mic response. Quite recently, Liu et al. [12], in 2014, proposed a structural damage detection
method using semi-supervised fuzzy c-means clustering method, wavelet packet decomposi-
tion and data fusion. This method is applied to detect damage in a four-level benchmark model.
The data that was used include 11 damage pattern and 9 samples per damage. The method
uses a Daubechies wavelet filter and 6 decompositions levels. According to the results, the
method can achieve a reasonable detection performance. Huang et al. [13], in 2014, proposed
an automatic methodology to know the status of a machine. The introduced method includes
a semi-supervised fuzzy-based method to detect the faults or anomalies in the machine and to
classify the unknown faults. The authors described two steps for the learning procedure: (i) a
fuzzy c-means clustering to get candidates of labels (fuzzy centers); and (ii) a label matching
by filtering out of the unreasonable labels candidates. The proposed method is validated in a
roller bearing test top diagnose the state of the machine.

Compared with the works previously reviewed, the methodology described on the current
work presents a new point of view, since this uses an artificial immune system (AIS) and some
damage indices to define feature vectors which represents the structure under different condi-
tions by allowing that the damage detection process can be understood as a pattern recognition
approach. More precisely, damage detection and classification using ultrasonic signals have
been traditionally performed using methods based on the time of flight. The approach followed
in this paper, that complements and completes the initial work by Anaya et al. [14], is rather dif-
ferent because is a data-based approach based on AIS (artificial immune system), where sensor
data-fusion, feature extraction and pattern recognition are evaluated. A clear major advantage of
the methodology is that the development and validation of a mathematical model is not needed.
Additionally, and in contrast to standard Lamb waves-based methods, there is no necessity of
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directly analyzing the complex time-domain traces containing overlapping, multi-modal and
frequency dispersive wave propagation which distorts the signals and makes difficult their anal-
ysis. However, using the proposed methodology, it is not possible to provide a multi-damage
detection able to identify several occurring damages independently unless the model baselines
are built with the structural responses that have interacted with previously detected and existing
damage.

This paper is organized as follows. Section 3.2 describes the theoretical background that
includes basic concepts about the methods and elements used in the methodology. Section 4.3
includes the damage detection methodology followed by the description about the experimental
setup and the experimental results in Section 3.4. Finally, some conclusions are drawn in section
3.5.

3.2 General framework
The current work is based on data-driven analysis. This means that the damage detection will
be developed by analyzing and interpreting the data collected in several experiments from the
structures under to diagnose. To perform this analysis, a bio-inspired methodology based on
features extraction for pattern recognition is developed. For the sake of clarity, basic concepts
and fundamentals about the methods that will be used are presented in the following subsections.

3.2.1 Bio-inspired systems

The adaptation of the different living beings of the planet in harsh environments and the de-
velopment of skills to solve the inherent problems in the interaction with the world of nature
has resulted in the evolution of the species in order to survive and avoid their extinction. Some
examples are the communication abilities, the reasoning, the physical structures design or the
response of the body to external agents, among others [15].

Taking advantage of the fact that nature provides robust and efficient solutions to many
different problems, more and more researchers on different areas work in the development of
biologically inspired hardware and algorithms. The inspiration process is called biomimetic
or bioinspired and aims to apply the developments in the field of biology to the engineering
developments [16].

3.2.2 Natural immune systems

The human immune system (HIS) is a complex and robust defense mechanism composed by a
large network of specialized cells, tissues and organs. The system further includes an elevated
number of sensors and a high processing capability. The human immune system has proved its
effectiveness in the detection of foreign elements by protecting the organism against disease.
The principal skills of the human immune system are:

• To discriminate between its own cells (self) and foreign cells (non-self).

• To recognize different invaders (called antigens) in order to ensure the protection of the
body.
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• To learn from specific antigens and adapt to them in order to improve the immune re-
sponse to this kind of invader.

In general, when a foreign particle wants to gain access to the organism, it has to break
several defense levels provided by the immune system that protects the organism. The idea of
several defense levels is illustrated in Figure 3.1. These levels can be summarized as follows
[17]:

• External barriers. These are the first and the major line of defense into the human body.
This level can include elements such as the skin, the mucus secreted by the membranes,
the tears, the saliva and the urine. All of these elements present different physiological
conditions that are harmful to the antigens, as the temperature or the pH level, among
others. The response of these barriers is equal for any foreign invader [18].

• Innate immune system. This barrier refers to the defense mechanisms that are activated
immediately or within a short lapse of time of an antigen’s arrival in the body. The innate
immune system operates when the first barrier has been broken This system, in opposition
to the adaptive immune system, is not adaptive[17].

• Adaptive immune system. This is the last defense level and reacts to the stimulus of foreign
cells or antigens that evade both the external barriers and the innate immune defense [17].
Adaptive immunity creates some sort of memory that leads to an improved response to
future encounters with this antigen.

Adaptative 
Immune 
Response 

Foreing cell / antigens 

Skin 

Physiological 
Conditions 

Phagocyte Innate Immune 
Response 

Lymphocyte 
B-Cell 

Figure 3.1: Schematic representation of a system’s defense barriers.

With respect to different type of cells, the immune system includes cells born in the bone
marrow that are usually called white blood cells, leukocytes or leucocytes [19]. Among the
white blood cells, it is possible to highlight the T-cells and the B-cells. On one hand, the T-cells
are so called since their maturation takes place in the thymus.Besides, this kind of cells have
high mobility and can also be found in the blood and the lymph [20]. One can distinguish three
types of T-cells:
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• the T-helper cells, involved in the activation of B-cells;

• the T-killer cells that destroy the invaders; and finally

• the T-suppressor cells that avoid the allergic reactions [21].

On the other hand, the B-cells produce and secrete a special protein called antibody, which
recognizes and binds the antigen. The responsibility of each B-cell is the production of a specific
antibody. This protein is then used for signaling other cells what elements have to be removed
from the body [20]. When the antigen passes over the first barrier of the immune system, the
HIS performs the following steps to eliminate the invader [20]:

1. The specialized cells of the immune system, called antigen presenting cells (APCs)
(macrophages, for instance). These cells active the immune response by ingesting the
antigen and dividing it into simple substances known as antigenic peptides.

2. These peptides are joined to the molecules called major histocompatibility complex
(MHC), inside of the macrophage, and the result passes to the immune cell surface.

3. The T-cells have receptor molecules able to identify and recognize different combinations
of MHC-peptide. When the receptor molecule recognizes the combination, the T-cell is
activated and sends a chemical signal to other immune cells.

4. The B-cells are activated by chemical signals and they initiate the recognition of the
antigen in the bloodstream. This process is performed by the receptor molecules in the
B-cells.

5. The mission of the B-cells –when they are activated– is to secrete antibodies to bind the
antigens they find, and to neutralize and eliminate them from the body.

The T- and B-cells that have recognized the antigen proliferate and, some of them, become
memory cells. These memory cells remain in the immune system to eliminate the same antigen
–in the future– in a more effective manner [15, 20].

Three immunological principles are used in artificial immune systems [11, 15, 20]:

• Immune network theory. This theory was first introduced by Niels Jerne in 1974 and
describes how the immune memory is built by means of the dynamic behaviour of the
immune system cells. These cells can recognize by themselves, detect invaders, as well
as interconnect between them to stabilize the network [17].

• The negative selection. The negative selection is a process that allows the identification
and eradication of the cells that react to the own body cells. This ensures a convenient
operation of the immune system since it is able to distinguish between foreign molecules
and self-molecules thus avoiding autoimmune diseases. This process is similar to the
maturation of T-cells carried out in the thymus [15].

• The clonal selection. This is a mechanism of the adaptive immune responses in which
the cells of the system are adapted to identify an invader element [20]. Antibodies that
are able to recognize or identify an antigen can proliferate. Those antibodies unable to
recognize the antigens are eliminated. The new cells are clones of their parents and they
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Table 3.1: Analogy between the biological immune system and artificial immune system [11].

Biological Immune System Artificial Immune System in SHM

antibodies a detector of a specific pattern
antigens structural health or damage condition

matured antibodies database or information system for damage detection
recognition of antigens identification of health and damage condition

process of mutation training procedure
immune memory memory cells

are subjected to an adaptation process by mutation. From the new antibody set, the cells
with the greatest affinity with respect to the primary antigen are selected as memory cells
therefore excluding the rest.

3.2.3 Artificial immune systems
Artificial immune systems (AIS) are an adaptive and bio-inspired computational systems based
on the processes and performance of the human immune system (HIS) and its properties
–diversity, error tolerance, dynamic learning, adaptation, distributed computation and self-
monitoring– [22, 23]. Nowadays, these computational systems are used in several research
areas such as pattern recognition [16], optimization [20, 24], computer security [25], among
others [26]. Table 3.1 presents the analogy between the natural and artificial immune systems
applied to the field of structural health monitoring.

In the implementation of an artificial immune system, it is fundamental to bear in mind two
important aspects:

• To define the role of the antigen (ag) and the antibody (ab) in the context of the appli-
cation. Both are represented or coded in the same way. This representation is generally
given by a vector of binary or real numbers [21].

• To define the mechanism that measures the degree of correspondence between an antigen
and an antibody. This measure is usually related to the distance between them [15]. If
both an antigen and an antibody are represented by L−dimensional arrays,

ab ∈ RL,

ag ∈ RL,

the distance d between them can be computed using, for instance, the Euclidean distance
(related to the 2−norm) or the so-called Manhattan distance (related to the 1−norm) as
in equations (3.1) and (3.2), respectively [19]:

d(ab, ag) = ‖ab− ag‖2 =

√√√√ L∑
i=1

(abi − agi)2 (3.1)

d(ab, ag) = ‖ab− ag‖1 =
L∑
i=1

|abi − agi| (3.2)
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Finally, there exists the adaptation process of the molecules in the artificial immune system.
This adaptation allows to include the dynamic of the system, for instance, the antibodies
excitation, cloning all the excited antibodies and the interconnection between them. All these
elements are adapted from the three immunologic principles previously introduced.

3.2.4 Principal Component Analysis (PCA)
Principal component analysis (PCA) is a classical method used in applied multivariate statistical
analysis with the goal of dimensionality reduction and, more precisely, feature extraction and
data reduction. It was developed by Karl Pearson in 1901 and integrated to the mathematical
statistics in 1933 by Harold Hotelling [27]. The general idea in the use of PCA is to find a
smaller set of variables with less redundancy [28]. To find these variables, the analysis includes
the transformation of the current coordinate space to a new space to re-express the original data
trying to filtering the noise and redundancies. These redundancies are measured by means of
the correlation between the variables.
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Figure 3.2: The collected data arranged in a three dimensional matrix is unfolded in a two
dimensional matrix [29].

The application of PCA starts –for each actuation phase– with the collected data arranged
in a three dimensional matrix n × L × N . The matrix is subsequently unfolded –as illustrated
in Figure 3.2–in a two dimensional n× (N · L) matrix as follows:

X =


x111 x112 · · · x11L x211 · · · x21L · · · xN11 · · · xN1L

...
... . . . ...

... . . . ... . . . ... . . . ...
x1i1 x1i2 · · · x1iL x2i1 · · · x2iL · · · xNi1 · · · xNiL
...

... . . . ...
... . . . ... . . . ... . . . ...

x1n1 x1n2 · · · x1nL x2n1 · · · x2nL · · · xNn1 · · · xNnL

 (3.3)

Matrix X ∈ Mn×(N ·L)(R) –whereMn×(N ·L)(R) is the vector space of n × (N · L) matrices
over R– contains data fromN sensors at L discretization instants and n experimental trials [30].
Consequently, each row vector xTi = X(i, :) ∈ RN ·L, i = 1, . . . , n represents, for a specific
experimental trial, the measurements from all the sensors. Equivalently, each column vector
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X(:, j) ∈ Rn, j = 1, . . . , N · L represents measurements from one sensor in the whole set of
experimental trials.

In other words, the objective is to find a linear transformation orthogonal matrix P ∈
M(N ·L)×(N ·L)(R) that will be used to transform the original data matrix X according to the
following matrix multiplication

T = XP ∈Mn×(N ·L)(R). (3.4)

Matrix P is usually called the principal components of the data set or loading matrix and matrix
T is the transformed or projected matrix to the principal component space, also called score
matrix. Using all the N · L principal components, that is, in the full dimensional case, the
orthogonality of P implies PPT = I, where I is the (N ·L)×(N ·L) identity matrix. Therefore,
the projection can be inverted to recover the original data as

X = TPT .

Group scaling

Since the data in matrix X come from experimental trials and could have different magnitudes
and scales, it is necessary to apply a preprocessing step to scale the data using the mean of all
measurements of the sensor at the same time and the standard deviation of all measurements of
the sensor [30].

More precisely, for k = 1, 2, . . . , N we define

µkj =
1

n

n∑
i=1

xkij, j = 1, . . . , L, (3.5)

µk =
1

nL

n∑
i=1

L∑
j=1

xkij, (3.6)

σk =

√√√√ 1

nL

n∑
i=1

L∑
j=1

(xkij − µk)2, (3.7)

where µkj is the mean of the n measures of sensor k at the time instant j; µk is the mean of
all the measures of sensor k; and σk is the standard deviation of all the measures of sensor k.
Therefore, the elements xkij of matrix X are scaled to define a new matrix X̌ as

x̌kij :=
xkij − µkj
σk

, (3.8)

i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N.

When the data are normalized using equation (3.8), the scaling procedure is called variable
scaling or group scaling [30]. According to former studies of the authors [29, 31, 32], group
scaling presents a better performance than other kind of normalizations. The reason is that
group scaling considers changes between sensors and does not process them independently.
Further discussion on this issue can be found in [30, 33].
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For simplicity, and throughout the rest of the paper, the scaled matrix X̌ is renamed as
simply X. The mean of each column vector in the scaled matrix X can be computed as

1

n

n∑
i=1

x̌kij =
1

n

n∑
i=1

xkij − µkj
σk

=
1

nσk

n∑
i=1

(
xkij − µkj

)
=

1

nσk

(
n∑
i=1

xkij − nµkj

)
=

1

nσk
(
nµkj − nµkj

)
= 0.

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate the covariance
matrix as follows:

CX =
1

n− 1
XTX ∈M(N ·L)×(N ·L)(R). (3.9)

The covariance matrix CX is a (N ·L)× (N ·L) symmetric matrix that measures the degree of
linear relationship within the data set between all possible pairs of variables (sensors).

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance
matrix as follows:

CXP = PΛ (3.10)

where the columns of P ∈ M(N ·L)×(N ·L)(R) are the eigenvectors of CX. The diagonal terms
of matrix Λ ∈ M(N ·L)×(N ·L)(R) are the eigenvalues λi, i = 1, . . . , N · L, of CX whereas the
off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . , N · L
Λij = 0, i, j = 1, . . . , N · L, i 6= j

The eigenvectors pj, j = 1, . . . , N · L, representing the columns of the transformation
matrix P are classified according to the eigenvalues in descending order and they are called the
principal components or the loading vectors of the data set. The eigenvector with the highest
eigenvalue, called the first principal component, represents the most important pattern in the
data with the largest quantity of information.

However, the objective of PCA is, as said before, to reduce the dimensionality of the data
set X by selecting only a limited number ` < N · L of principal components, that is, only the
eigenvectors related to the ` highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |p`) ∈MN ·L×`(R),

matrix T̂ is defined as

T̂ = XP̂ ∈Mn×`(R).

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to fully
recover X although T̂ can be projected back onto the original m−dimensional space to get a
data matrix X̂ as follows:

X̂ = T̂P̂
T ∈Mn×m(R). (3.11)
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The difference between the original data matrix X and X̂ is defined as the residual error
matrix E or X̃ as follows:

E = X− X̂, (3.12)

or, equivalenty,

X = X̂ + E = T̂P̂
T

+ E. (3.13)

The residual error matrix E describes the variability not represented by the data matrix X̂, and
can be also expressed as

E = X(I− P̂P̂T ). (3.14)

Even though the real measures obtained from the sensors as a function of time represent
physical magnitudes, when these measures are projected and the scores are obtained, these
scores no longer represent any physical magnitude [34].

3.2.5 Damage detection indices based on PCA
Several damage detection indices based on PCA have been proposed and applied with excellent
results in pattern recognition applications. In particular, two damage indices are commonly
used: (i) the Q index (also known as SPE, square prediction error) and (ii) the Hotelling’s T 2

index.
The Q index of the ith experimental trial xTi measures the magnitude of the vector x̃Ti :=

X̃(i, :), that is, the events that are not explained by the model of principal components [35], and
it is defined as follows:

Qi = X̃(i, :)X̃(i, :)T = xTi (I− P̂P̂T )xi. (3.15)

The T 2 index of the ith experimental trial xTi is the weighted norm of the projected vector
t̂Ti := T̂(i, :) = xTi P̂, that is, a measure of the variation of each sample within the PCA model
and it is defined as follows:

T 2
i =

∑̀
j=1

t̂2i,j
λj

= t̂Ti Λ−1t̂i = xTi (P̂Λ−1P̂T )xi (3.16)

3.3 Damage detection methodology
The damaged detection methodology that we present in this paper involves an active piezo-
electric system to inspect the structure. This active system consists of several piezoelectric
transducers (lead zirconium titanate, PZT) distributed on different positions of the structure and
working both as actuators or sensors in different actuation phases. Each PZT is able to produce
a mechanical vibration if some electrical excitation is applied (actuator mode). Besides, the
PZT are able to detect time varying mechanical response data (sensor mode). In each phase of
the experimental stage, just one PZT is used a the actuator (exciting the structure). Then, the
propagated signal through the structure is collected by using the rest of PZT, which are used as
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sensors. This procedure is repeated in as many actuation phases as the number of PZT on the
structure.

To determine the presence of damage in the structure, the data from each actuation phase
will be used in the proposed artificial immune system. The proposed methodology is performed
in three steps: (i) data pre-processing and feature extraction; (ii) training process and; (iii)
testing. More precisely, in the first step the collected data is organized, pre-processed and di-
mensionally reduced –by means principal component analysis– to obtain relevant information.
The damage indices in equations (3.15)-(3.16) are used to define the feature vectors. The train-
ing step includes the evolution of the data to generate good representatives for each pattern,
damage or structural condition. A good accuracy in the damage detection using AIS depends
on a good training. Finally, the testing step includes new data to evaluate the training step and
the knowledge of the current state of the structure.

3.3.1 Data pre-processing, PCA modeling and feature extraction

For each different phase (PZT1 will act as an actuator in phase 1, PZT2 will act as an actuator
in phase 2 and so on) and considering the signals measured by the sensors, the matrix X is
defined and arranged as in equation (3.3) in Section 3.2.4 and scaled as stated in Section 3.2.4.
PCA modeling basically consists of computing the projection matrix P for each phase as in
equation (3.5). Matrix P, renamed Pmodel, provides an improved and dimensionally limited
representation of the original data X. The number of principal components retained at each
different phase account for at least 90% of the cumulative variance.

Subsequently, the data from different structural states are projected into each PCA model in
order to obtain the scores and calculate the damage detection indices T 2 and Q as in Sections
3.2.4 and 3.2.5. This way, for each experiment, a two dimensional feature vector

f i = (T 2
i , Qi)

T ∈ R2, i = 1, . . . , ν (3.17)

is defined, where ν is the total number of experiments. The feature vector could include more
components, as the scores, for instance. Several test were then performed in this sense with the
combination of scores and damage indices. However, the results indicated that the single use of
T 2 and Q lead to the best results. One of the reasons about the use of the damages indices can
be found in [35]. In this paper, Rodellar et al. showed that the use of scores is not sufficient for
damage detection when two scores do not account for a high cumulative variance. This result
implies that it is necessary to use another type of measurement or statistic to obtain an accurate
discrimination of the presence of damage in a structure.

To keep the affinity values within the range [0, 1], the norm of the feature vectors fi, i =
1, . . . , ν is normalized to the unit circle. The normalization process uses the maximum norm of
the feature vectors, that is,

M := max
i=1,...,ν

‖f i‖,

where

‖f i‖ =

√
(f i1)

2
+ (f i2)

2
,
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and therefore the normalized feature vector f inorm of f i = (T 2
i , Qi)

T is as follows

f inorm =

(
T 2
i

M
,
Qi

M

)
.

Since all the feature vectors are located within a unit circle, the Euclidean distance between any
feature vectors is less than or equal to 2. The healthy data set (HDS) is defined as

HDS =
ν⋃
i=1

{f i}. (3.18)

3.3.2 Training step
This step can be modified according to different goals. For instance, in the most basic case in
damage identification –the detection–, the training only needs to consider the feature vectors
that come from data of the healthy structure. However, in a more complex analysis –the clas-
sification, for instance–, the training process must include the feature vectors of data coming
from the structure in different and known structural states. The steps to perform the training in
the basic case are summarized as follows:

Experimental	  
Data	  per	  Phase	  

Healthy	  Data	  Set	  
(v	  experiments)	  

Training	  Set	  	  
(2k	  experiments)	  

AB_training	  	  
(k	  experiments)	  

AG_training	  	  
(k	  experiments)	  

Test	  Set	  (v-‐2k	  
experiments)	  

Damage	  Data	  Set	  
(v	  experiments	  
per	  damage)	  

Figure 3.3: Random selection of the antibody (ABtraining) and antigen (AGtraining) training sets.

• Randomly select 2k ∈ N, 2k < ν, feature vectors. The remaining ν − 2k feature vectors
will be used in the testing process. This set of 2k feature vectors is divided in two sub-
sets of the same size k, the antibody training set (ABtraining) and the antigen training set
(AGtraining). This step is represented in Figure 3.3.

• Compute the affinity between the antibodies and antigens of the ABtraining and AGtraining

sets, respectively. The affinity between an antibody and an antigen is defined as

aff(ab, ag) := 1− 1

2
d(ab, ag),
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where d(ab, ag) is the distance –defined in equation (3.1)– between the feature vectors of
ab and ag, respectively. Since the Euclidean distance between any feature vectors is less
than or equal to 2, their affinity lies within the range [0, 1].

• Evolve the antibodies. The evolution of the antibodies is performed when these are stim-
ulated by an invading antigen invader and it consists on the mutation of the antibody. The
mutation is performed by mutating the feature vectors of the cloned antibodies as shown
in equation (3.19)

abevolved = ab+MV · φ, (3.19)

where abevolved is the mutated antibody and MV represents the mutation value –a value
used to indicate the mutation degree of the feature vector of an antibody–. In the present
implementation, the mutation value is defined as in equation (3.20)

MV = 1− CV, (3.20)

where CV is the clonal value –a value that measures the response of an artificial B-cell to
an antigen– and is equal to the affinity between the antibody and the stimulating antigen.
The vector

φ = (φ1, φ2)
T ∈ R2

in equation (3.19) is a randomly generated vector. Each element φi, i = 1, 2 of the
random vector is a normally distributed random variable with mean zero and standard
deviation σ = 0.5.

The mutated antibody feature vectors must lie within the unit circle. Therefore, the norm
of the feature vector for each mutated antibody is immediately checked after the mutation
according to the following procedure:

◦ if ‖abevolved‖ ≤ 1, then no normalization is performed.

◦ if ‖abevolved‖ > 1, then

abevolved = (‖ab‖+ U · (1− ‖ab‖)) · abevolved

‖abevolved‖
,

where U is a uniform random function with a value within the range of [0, 1].

The norm of the mutated antibody is greater than the norm of the original antibody and
less than 1.

The clonal rate (CR) is an integer value used to control the number of antibody clones
allowed. The number of clones (NC) is defined in equation (3.21)

NC = bCR · CV c, (3.21)

where b·c is the floor function. In this paper the value of CR is 8.

The highest affinity antibody is chosen as the candidate memory cell for possible updating
of memory cell set.



3.3. Damage detection methodology 79

• Define the threshold. A threshold Th is defined in order to update the memory cell set to
improve the representation quality of memory cells for the healthy state of the structure.
This threshold is defined as a weighted affinity of the two elements in the healthy data set
(HDS) in equation (3.18) with the maximum Euclidean distance. That is,

∆ = max
i,j=1,...,n

‖f i − f j‖ (3.22)

δ =
7

25
∆ (3.23)

Th = 1− 1

2
δ (3.24)

Then a comparison between the candidate memory cell and all the elements in the healthy
data set (HDS) is performed through the affinity. If the affinities are greater than or equal
to the threshold, the candidate memory cell becomes memory cell of the healthy state of
the structure. Otherwise, the candidate memory cell is eliminated. The main outcome
of this step is the memory cell set of the healthy state (MCSH) of the structure. This
algorithmic training process is represented in Figure 3.4.

AB_train AG_train

aff(ab_t,ag_t)

Evolution AB_train
Mutate(AB_train,aff)

Healthy state
MC_C

INITIALIZE MEMORY
CELLS HEALTHY STATE

TRAINING
PROCESS

HEALTHY DATA SET
(D experiments)

Define the
threshold (Th)

aff(MC_C,HD_set)

aff<Thno yes

MCH_SET
HEALTH STATE

Eliminate
MC_C

Figure 3.4: Training process in an artificial immune system applied (AIS) to structural health
monitoring (SHM).

3.3.3 Testing step
The damage detection algorithm is finally illustrated in Figure 5. The damage detection is based
on the affinity values between the elements in the memory cell set of the healthy state (MCSH)
–acting as antibodies– and the data coming from the structure to test (TD, test data) –acting as
antigens–. A detection threshold (DTh) is defined in equation (3.25) for this purpose,

DTh = min
ab∈MCSH
i∈{1,...,ν}

aff(ab, f i), (3.25)
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that is, the minimum affinity between the elements in the memory cell set of healthy state
(MCSH) and the elements in the healthy data set (HDS).

When the affinity is less than the threshold DTh, we say that the data has been collected
from a damaged state of the structure. Otherwise, the data comes from an undamaged structure.

no	  

MEMORY	  CELL	  SET	  OF	  
THE	  HEALTHY	  STATE	  

Test	  Data	  
(TD)	  

	  
aff(MCSH,TD)	  

	  

aff	  <	  DTh	  

HEALTHY	  	  
STATE	  

DAMAGE	  
STATE	  

TEST	  
PROCESS	  
DAMAGE	  
DETECTION	  

no	   yes	  

Figure 3.5: Damage detection process

3.4 Experimental setup and experimental results

3.4.1 Experimental setup
To test the proposed methodology, data from an aircraft skin panel is used. The structure is
divided in small sections by means of stringers and ribs as shown in Figure 3.6. To validate the
proposed methodology, two sections of this structure were used. The dimensions of each section
and the damage description are depicted in Figure 3.7. These sections were instrumented with
6 PZT transducers: two in the upper section; two in the lower section; and two in the rib. The
transducers dimensions are: 26 mm diameter and 0.4 mm thickness.

Figure 3.6: Aircraft skin panel
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100 mm

85 mm

85 mm
D3

D1

D2

PZT1 PZT2

PZT3 PZT4

PZT5 PZT6

(a) a. (b) b.

Figure 3.7: Damage description.

3.4.2 Experimental results

As said in Section 3.3.1, the experiments are performed in 6 independent phases: (i) piezoelec-
tric transducer 1 (PZT1) is configured as actuator and the rest of PZTs as sensors; (ii) PZT2 as
actuator; (iii) PZT3 as actuator; (iv) PZT4 as actuator; (v) PZT5 as actuator; and (vi) PZT6 as
actuator.

To apply the proposed methodology, and for each phase, the collected data is arranged in a
matrix as in equation (3.3) in Section 3.2.4. With this unfolded data, the PCA model P is built
as explained in Sections 3.2.4 and 3.3.1 using data from the healthy structure. In Figure 3.8 the
amount of variance accounted for by each principal component is illustrated, for phases 1, 3, 5
and 6.

For each actuator phase, the number of principal components adopted varies since the prin-
cipal components retained must account for at least 90% of the cumulative variance. Although
there is not an accurate criterion to state a percentage of cumulative variance to be retained for
a good representation, a high percentage can ensure that most of the variability is incorporated
into the statistical model.

Figure 3.9 show the projections onto the two first principal components of several exper-
iments that come from the undamaged and damaged structure under consideration. It can be
clearly observed that no separation of damaged/undamaged can be determined using the scatter
plot. These are then two motivating depictions in the sense that with the proposed methodology
we will be able to both detect damage in the structure as well as classify it.

Damage detection

After the baseline modeling, the data coming from the structure to be diagnosed is projected
onto the PCA model. Then, for each experiment, the feature vector in equation (3.17) formed
by the two damage indices T 2 and Q is defined.

The ability of the proposed method to detect damages in the structure is illustrated in Figures
3.10 to 3.15. In these figures, the affinity of a memory cell from the memory cell set of the
healthy state (MCSH) and the data coming from the structure to diagnose is depicted. The
25 first experiments correspond to data that come from the undamaged structure, while the
remainder 75 experiments come from the damaged structure. More precisely, experiments 25
to 50 correspond to damage 1 (D1), experiments 51 to 75 to damage 2 (D2) and experiments



82
3. A bio-inspired methodology based on an artificial immune system for damage

detection in structural health monitoring

0 5 10 15 20 25
0

5

10

15

20

%

principal components

Variance accounted for by each PC (phase 1)

0 5 10 15 20 25
0

5

10

15

20

25

%

principal components

Variance accounted for by each PC (phase 3)

5 10 15 20 25
0

5

10

15

20

%

principal components

Variance accounted for by each PC (phase 5)

0 5 10 15 20 25
0

5

10

15

20

%

principal components

Variance accounted for by each PC (phase 6)

Figure 3.8: Amount of variance accounted for by each principal component, for phases 1, 3, 5
and 6.
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Figure 3.9: Projections onto the two first principal components of several experiments in actu-
ator phases 1 (up) and 3 (down).
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76 to 100 to damage 3 (D3). The purple solid horizontal line delimits the detection threshold
(DTh). It can be clearly observed that experiments with an affinity value less than DTh –from
the damaged structure– are correctly defined as ‘damaged’. Similarly, experiments with an
affinity value greater than or equal to DTh –from the healthy structure– are correctly defined as
‘healthy’.
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Figure 3.10: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 1).
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Figure 3.11: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 2).

Actuation phases 1 to 5 show that it is possible to distinguish the healthy and unhealthy
states, in addition it can be observed that different affinity values represent the differences be-
tween the group of data which indicate that it is possible to determine the presence of three
damages. In contrast to the affinity in the rest of the actuation phases, Figure 3.15 is show-
ing that it is possible to detect abnormal situations, however it is not possible to determine the
different structural states.
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Figure 3.12: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 3).
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Figure 3.13: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 4).



86
3. A bio-inspired methodology based on an artificial immune system for damage

detection in structural health monitoring

experiments
0 10 20 30 40 50 60 70 80 90 100

af
fin

ity
 v

al
ue

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.14: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 5).
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Figure 3.15: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 6).



3.5. Concluding remarks 87

As it was shown, results from each actuation phase showed different affinity values to the
different structural states, this is because the actuators are distributed by the structure in different
positions and to different distance to the damages.

3.5 Concluding remarks
In this paper, a new methodology to detect structural changes has been introduced. The method-
ology includes the use of an artificial immune system (AIS) and the notion of affinity for the
damage detection.

One of the advantages of the methodology is the fact that to develop and validate a model
is not needed. Additionally, and in contrast to standard Lamb waves-based methods, there is no
need to directly analyze the complex time-domain traces containing overlapping, multimodal
and frequency dispersive wave propagation that distorts the signals and difficult the analysis.
Results shown that different actuation phases present different results

The proposed methodology has been applied to data coming from two sections of an aircraft
skin panel. The results indicate that the proposed methodology is able to accurately detect dam-
ages by means of the analysis of the affinity values. However, within the proposed methodology,
it is not possible to provide a multidamage classification able to identify several simultaneous
damages. To ensure the proper performance of the methodology, a study of the effect of chang-
ing environmental and operational conditions need to be considered, which is considered as a
future work. The methodology can be improved by applying data fusion in order to obtain a
only plot with the information from the actuation phases. In this sense, the use of SOM or fuzzy
clustering will allow the data fusion and to estimate more information from the data.
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Detection and classification of structural
changes using artificial immune systems
and fuzzy clustering

Among all the elements that are integrated into a structural health monitoring
(SHM) system, methods or strategies for damage detection and classification are
nowadays playing a key role in enhancing the operational reliability of critical
structures in several industrial sectors. The main contribution of this paper is the
application of a new methodology to detect and classify structural changes. The
methodology is based on: (i) an artificial immune system (AIS) and the notion of
affinity is used for the sake of damage detection and (ii) a fuzzy c-means algorithm
is used for damage classification.

One of the advantages of the proposed methodology is the fact that to develop and
validate the strategy, a model is not needed. Additionally, and in contrast to stan-
dard Lamb waves-based methods, there is no need to directly analyze the complex
time-domain traces containing overlapping, multimodal and frequency dispersive
wave propagation that distorts the signals and difficult the analysis.

The proposed methodology is applied to data coming from two sections of an air-
craft skin panel. The results indicate that the proposed methodology is able to
accurately detect damage as well as classify those damages.

Keywords:Artificial Immune Systems; Principal Component Analysis; Damage Indices;
Fuzzy Clustering, Affinity Value.

4.1 Introduction
The use of non-destructive inspection methods (NDT) has proved to be a very useful tool for
damage detection tasks. However, in some situations where it is impossible to manually inspect
a structure –as in the inspection of large-scale structures–, the use of automated methods present
significant advantages. Some of these advantages can be summarized as follows: (i) continu-
ous monitoring, since the sensors are permanently attached to the structure; (ii) early damage
detection; (iii) damage identification, among others. In this sense, structural health monitor-
ing (SHM) extends the limits of the NDT methods by including the use of data processing
algorithms, pattern recognition and continuous monitoring because the sensors are permanently
attached to the structure. This is one the reasons why the development of improvements in data
processing algorithms is a current demand. The contribution of the present work is the devel-
opment of a methodology for data-driven damage classification using a bio-inspired algorithm,
which is applied to data that comes from a piezoelectric system. More precisely, this work uses
an artificial immune system that allows the use of this methodology as a pattern recognition
approach. The use of artificial immune systems (AIS) is relatively new in the literature and,
compared with the application of other approaches in SHM, there are still a reduced number
of works. In the next lines we briefly compile in chronological order the most representative
works in the use of AIS.
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In 2003 Costa et al. [1] developed three module algorithms called T-module, B-module
and D-module. These algorithms are based on immunologic principles to detect anomalous
situations in a squirrel-cage motor induction. The T-module distinguishes between self and
non-self conditions, the B-module analyzes the occurrence of both cells (self and non-self) and
finally the D-module is similar to a T-module but with a reduced space. In this work, the normal
operation condition of the machine (self) is represented by the frequency spectrum, that can
include or not include harmonics.

In 2007, Da Silva et al. [2] presented a damage detection algorithm applying an auto-
regressive model and auto-regressive model with exogenous input (AR-ARX). This algorithm
is based on the structural vibration response measurements and the residual error as damage
sensitive index. Data compression is used by means of principal component analysis (PCA)
and the fuzzy c-means clustering method is used to quantify the damage sensitive index. In
this paper, the authors used a benchmark problem with several damage patterns to test the al-
gorithm. As the main result, a structural diagnosis was obtained with high correlation with the
actual state of the structure. Later on 2008, Da Silva et al. [3] developed a strategy to perform
structural health monitoring. This strategy included three different phases: (i) the use of prin-
cipal component analysis to reduce the dimensionality of the time series data; (ii) the design of
an autoregressive-moving-average (ARMA) model using data from the healthy structure under
several environmental and operational conditions; and finally (iii) the identification of the state
of the structure through a fuzzy clustering approach. In this paper, the authors compared the
performance of two fuzzy algorithms, fuzzy c-means (FCM) and Gustafson-Kessel (GK) algo-
rithms. The proposed strategy was applied to data from a benchmark structure at Los Alamos
National Laboratory. The work showed that the GK algorithm outperforms the FCM algorithm,
because the first algorithm considers an adaptive distance norm and allows clusters with several
geometrical distributions.

Also in 2008, Zhang et al. [4] used a clonal selection algorithm to solve a combinatorial
optimization problem called sensor optimization. This problem consists in choosing an appro-
priate distribution of a set of sensors in a structure to detect impacts. To test the algorithm, the
authors used a composite plate instrumented with 17 lead zirconium titanate (PZT) transducers.

De Moura et al. [5] presented a fuzzy based meta-model to detect damages in a flat structure
under corrosion conditions. This work considers data obtained from a SHM approach based on
electro-mechanic impedance. Chen [6], in 2010, applied an agent-based artificial immune sys-
tem for adaptative damage detection. In the approach, a group of agents is used as immune
cells (B-cells) patrolling over a distributed sensor network installed in the structure. The dam-
age diagnosis is based on the analysis of structural dynamic response data. Each mobile agent
inspects the structure using agent based cooperation protocols. In 2010, Tan et al. [7] presented
a damage detection algorithm based on fuzzy clustering and support vector machines (SVM). In
this work, as a first step, the wavelet packet transform is used to decompose the accelerator data
from the structure and extract the energy of each wavelet component. Consequently, this energy
is used as a damage index. In further steps, damages are classified by means of fuzzy cluster-
ing. As a final phase, damages are identified using a vector machine. The numerical example
illustrated in this work shows that the proposed method is able to identify the damage from the
spatial truss structure. Also in 2010, Casciati [8, 9] presented two statistical approaches for the
problem of damage detection and localization. In [8], the detection is based on comparing the
SSE (sum of squares errors) histograms of the undamaged case and the new set of data which
could either represent an undamaged or damaged case. A similar approach is introduced in
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[9], where the comparison is performed using linear response surface (RS) models to represent
the different structural states of the structure. In both works, the localization of the damages
is based on the identification of the largest discrepancies resulting from the comparison. In
2011, Chen and Zang [10] presented an algorithm based on immune network theory and hier-
archical clustering algorithms. Chilengue et al. [11] presented and artificial immune system
(AIS) approach to detect and diagnose failures in the stator and rotor circuits of an induction
machine. In the approach, the dynamic of the machine is compared before and after the fault
condition. Similarly, the alpha-beta (αβγ) transformation (also known as the Clarke transfor-
mation) was applied to the stator current to obtain a characteristic pattern of the machine that is
finally applied to the pattern recognition algorithm.

In 2012, Zhou et al. [12], inspired by Chen’s work, developed a damage classifier in struc-
tures based on the immune principle of clonal selection. Using evolution algorithms and the
immune learning, a high quality memory cell is generated in the classifier generated able to
recognize several damage patterns. In 2012, Xiao [13] developed a structural health monitoring
and fault diagnosis system based on artificial immune system. In this approach, the antigen
represents the structural state (health or damage), whereas the antibody represents database in-
formation to identify a damage pattern. In this work, the feature space is formed by natural
frequencies and modal shapes collected by simulation of the structure in free vibration and seis-
mic response. Quite recently, Liu et al. [14], in 2014, proposed a structural damage detection
method using semi-supervised fuzzy c-means clustering method, wavelet packet decomposi-
tion and data fusion. This method is applied to detect damage in a four-level benchmark model.
The data that was used include 11 damage pattern and 9 samples per damage. The method
uses a Daubechies wavelet filter and 6 decompositions levels. According to the results, the
method can achieve a reasonable detection performance. Huang et al. [15], in 2014, proposed
an automatic methodology to know the status of a machine. The introduced method includes
a semi-supervised fuzzy-based method to detect the faults or anomalies in the machine and to
classify the unknown faults. The authors described two steps for the learning procedure: (i) a
fuzzy c-means clustering to get candidates of labels (fuzzy centers); and (ii) a label matching
by filtering out of the unreasonable labels candidates. The proposed method is validated in a
roller bearing test top diagnose the state of the machine.

The previous methods can be classified differently according to the algorithms that operate
on the extracted features to detect, quantify or localize the damage state of the structure [16].
This statistical discrimination of features for damage detection can be classified in two main
groups: (i) supervised learning and (ii) unsupervised learning. The unsupervised learning is
applied to data that does not contain examples from the damaged structure. If the data from
both the undamaged and damaged structure is available, the supervised approach can be used to
classify and quantify damage.

Compared with the works previously reviewed, the methodology described on the current
work presents a new point of view, since we use an artificial immune system (AIS) as a pattern
recognition approach for structural damage classification. We also use some other techniques
such as PCA –both for data reduction and to compute damage indices to create the feature
vectors from the healthy structure and under different states– or fuzzy clustering –for damage
classification–.

This paper is organized as follows. Section 2 describes a theoretical background that in-
cludes basic concepts about the methods and elements used in the methodology. Section 3
includes the damage detection methodology followed by the description about the experimental
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Figure 4.1: A state-of-the-art classification of the statistical models developed to enhance the
structural health monitoring process [16].

setup in Section 4. The experimental results are included in Section 5. Finally, some conclu-
sions are drawn.

4.2 General framework
The current work is based on data-driven analysis. This means that the damage detection will
be developed by analyzing and interpreting the data collected in several experiments from the
structures under to diagnose. To perform this analysis, a bio-inspired methodology based on
features extraction for pattern recognition is developed. For the sake of clarity, basic concepts
and fundamentals about the methods that will be used are presented in the following subsections.

4.2.1 Bio-inspired systems
The adaptation of the different living beings of the planet in harsh environments and the de-
velopment of skills to solve the inherent problems in the interaction with the world of nature
has resulted in the evolution of the species in order to survive and avoid their extinction. Some
examples are the communication abilities, the reasoning, the physical structures design or the
response of the body to external agents, among others [17].

Taking advantage of the fact that nature provides robust and efficient solutions to many
different problems, more and more researchers on different areas work in the development of
biologically inspired hardware and algorithms. The inspiration process is called biomimetic
or bioinspired and aims to apply the developments in the field of biology to the engineering
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developments [18].

4.2.2 Natural immune systems
The human immune system (HIS) is a complex and robust defense mechanism composed by a
large network of specialized cells, tissues and organs. The system further includes an elevated
number of sensors and a high processing capability. The human immune system has proved its
effectiveness in the detection of foreign elements by protecting the organism against disease.
The principal skills of the human immune system are:

• To discriminate between its own cells (self) and foreign cells (non-self).

• To recognize different invaders (called antigens) in order to ensure the protection of the
body.

• To learn from specific antigens and adapt to them in order to improve the immune re-
sponse to this kind of invader.

In general, when a foreign particle wants to gain access to the organism, it has to break
several defense levels provided by the immune system that protects the organism. The idea of
several defense levels is illustrated in Figure 4.2. These levels can be summarized as follows
[19]:

• External barriers. These are the first and the major line of defense into the human body.
This level can include elements such as the skin, the mucus secreted by the membranes,
the tears, the saliva and the urine. All of these elements present different physiological
conditions that are harmful to the antigens, as the temperature or the pH level, among
others. The response of these barriers is equal for any foreign invader [20].

• Innate immune system. This barrier refers to the defense mechanisms that are activated
immediately or within a short lapse of time of an antigen’s arrival in the body. The innate
immune system operates when the first barrier has been broken This system, in opposition
to the adaptive immune system, is not adaptive[19].

• Adaptive immune system. This is the last defense level and reacts to the stimulus of foreign
cells or antigens that evade both the external barriers and the innate immune defense [19].
Adaptive immunity creates some sort of memory that leads to an improved response to
future encounters with this antigen.

With respect to different type of cells, the immune system includes cells born in the bone
marrow that are usually called white blood cells, leukocytes or leucocytes [21]. Among the
white blood cells, it is possible to highlight the T-cells and the B-cells. On one hand, the T-cells
are so called since their maturation takes place in the thymus.Besides, this kind of cells have
high mobility and can also be found in the blood and the lymph [22]. One can distinguish three
types of T-cells:

• the T-helper cells, involved in the activation of B-cells;

• the T-killer cells that destroy the invaders; and finally
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Figure 4.2: Schematic representation of a system’s defense barriers.

• the T-suppressor cells that avoid the allergic reactions [23].

On the other hand, the B-cells produce and secrete a special protein called antibody, which
recognizes and binds the antigen. The responsibility of each B-cell is the production of a specific
antibody. This protein is then used for signaling other cells what elements have to be removed
from the body [22]. When the antigen passes over the first barrier of the immune system, the
HIS performs the following steps to eliminate the invader [22]:

1. The specialized cells of the immune system, called antigen presenting cells (APCs)
(macrophages, for instance). These cells active the immune response by ingesting the
antigen and dividing it into simple substances known as antigenic peptides.

2. These peptides are joined to the molecules called major histocompatibility complex
(MHC), inside of the macrophage, and the result passes to the immune cell surface.

3. The T-cells have receptor molecules able to identify and recognize different combinations
of MHC-peptide. When the receptor molecule recognizes the combination, the T-cell is
activated and sends a chemical signal to other immune cells.

4. The B-cells are activated by chemical signals and they initiate the recognition of the
antigen in the bloodstream. This process is performed by the receptor molecules in the
B-cells.

5. The mission of the B-cells –when they are activated– is to secrete antibodies to bind the
antigens they find, and to neutralize and eliminate them from the body.

The T- and B-cells that have recognized the antigen proliferate and, some of them, become
memory cells. These memory cells remain in the immune system to eliminate the same antigen
–in the future– in a more effective manner [17, 22].

Three immunological principles are used in artificial immune systems [13, 17, 22]:
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Table 4.1: Analogy between the biological immune system and artificial immune system [13].

Biological Immune System Artificial Immune System in SHM

antibodies a detector of a specific pattern
antigens structural health or damage condition

matured antibodies database or information system for damage detection
recognition of antigens identification of health and damage condition

process of mutation training procedure
immune memory memory cells

• Immune network theory. This theory was first introduced by Niels Jerne in 1974 and
describes how the immune memory is built by means of the dynamic behaviour of the
immune system cells. These cells can recognize by themselves, detect invaders, as well
as interconnect between them to stabilize the network [19].

• The negative selection. The negative selection is a process that allows the identification
and eradication of the cells that react to the own body cells. This ensures a convenient
operation of the immune system since it is able to distinguish between foreign molecules
and self-molecules thus avoiding autoimmune diseases. This process is similar to the
maturation of T-cells carried out in the thymus [17].

• The clonal selection. This is a mechanism of the adaptive immune responses in which
the cells of the system are adapted to identify an invader element [22]. Antibodies that
are able to recognize or identify an antigen can proliferate. Those antibodies unable to
recognize the antigens are eliminated. The new cells are clones of their parents and they
are subjected to an adaptation process by mutation. From the new antibody set, the cells
with the greatest affinity with respect to the primary antigen are selected as memory cells
therefore excluding the rest.

4.2.3 Artificial immune systems

Artificial immune systems (AIS) are an adaptive and bio-inspired computational systems based
on the processes and performance of the human immune system (HIS) and its properties
–diversity, error tolerance, dynamic learning, adaptation, distributed computation and self-
monitoring– [24, 25]. Nowadays, these computational systems are used in several research
areas such as pattern recognition [18], optimization [22, 26], computer security [27], among
others [28]. Table 4.1 presents the analogy between the natural and artificial immune systems
applied to the field of structural health monitoring.

In the implementation of an artificial immune system, it is fundamental to bear in mind two
important aspects:

• To define the role of the antigen (ag) and the antibody (ab) in the context of the appli-
cation. Both are represented or coded in the same way. This representation is generally
given by a vector of binary or real numbers [23].
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• To define the mechanism that measures the degree of correspondence between an antigen
and an antibody. This measure is usually related to the distance between them [17]. If
both an antigen and an antibody are represented by L−dimensional arrays,

ab ∈ RL,

ag ∈ RL,

the distance d between them can be computed using, for instance, the Euclidean distance
(related to the 2−norm) or the so-called Manhattan distance (related to the 1−norm) as
in equations (4.1) and (4.2), respectively [21]:

d(ab, ag) = ‖ab− ag‖2 =

√√√√ L∑
i=1

(abi − agi)2 (4.1)

d(ab, ag) = ‖ab− ag‖1 =
L∑
i=1

|abi − agi| (4.2)

Finally, there exists the adaptation process of the molecules in the artificial immune system.
This adaptation allows to include the dynamic of the system, for instance, the antibodies
excitation, cloning all the excited antibodies and the interconnection between them. All these
elements are adapted from the three immunologic principles previously introduced.

4.2.4 Principal Component Analysis (PCA)
Principal component analysis (PCA) is a classical method used in applied multivariate statistical
analysis with the goal of dimensionality reduction and, more precisely, feature extraction and
data reduction. It was developed by Karl Pearson in 1901 and integrated to the mathematical
statistics in 1933 by Harold Hotelling [29]. The general idea in the use of PCA is to find a
smaller set of variables with less redundancy [30]. To find these variables, the analysis includes
the transformation of the current coordinate space to a new space to re-express the original data
trying to filtering the noise and redundancies. These redundancies are measured by means of
the correlation between the variables.

Matrix unfolding

The application of PCA starts –for each actuation phase– with the collected data arranged in a
three dimensional matrix n × L × N . The matrix is subsequently unfolded –as illustrated in
Figure 4.3–in a two dimensional n× (N · L) matrix as follows:

X =


x111 x112 · · · x11L x211 · · · x21L · · · xN11 · · · xN1L

...
... . . . ...

... . . . ... . . . ... . . . ...
x1i1 x1i2 · · · x1iL x2i1 · · · x2iL · · · xNi1 · · · xNiL
...

... . . . ...
... . . . ... . . . ... . . . ...

x1n1 x1n2 · · · x1nL x2n1 · · · x2nL · · · xNn1 · · · xNnL

 (4.3)
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Figure 4.3: The collected data arranged in a three dimensional matrix is unfolded in a two
dimensional matrix [31].

Matrix X ∈ Mn×(N ·L)(R) –whereMn×(N ·L)(R) is the vector space of n × (N · L) matrices
over R– contains data fromN sensors at L discretization instants and n experimental trials [32].
Consequently, each row vector xTi = X(i, :) ∈ RN ·L, i = 1, . . . , n represents, for a specific
experimental trial, the measurements from all the sensors. Equivalently, each column vector
X(:, j) ∈ Rn, j = 1, . . . , N · L represents measurements from one sensor in the whole set of
experimental trials.

In other words, the objective is to find a linear transformation orthogonal matrix P ∈
M(N ·L)×(N ·L)(R) that will be used to transform the original data matrix X according to the
following matrix multiplication

T = XP ∈Mn×(N ·L)(R). (4.4)

Matrix P is usually called the principal components of the data set or loading matrix and matrix
T is the transformed or projected matrix to the principal component space, also called score
matrix. Using all the N · L principal components, that is, in the full dimensional case, the
orthogonality of P implies PPT = I, where I is the (N ·L)×(N ·L) identity matrix. Therefore,
the projection can be inverted to recover the original data as

X = TPT .

Group scaling

Since the data in matrix X come from experimental trials and could have different magnitudes
and scales, it is necessary to apply a preprocessing step to scale the data using the mean of all
measurements of the sensor at the same time and the standard deviation of all measurements of
the sensor [32].
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More precisely, for k = 1, 2, . . . , N we define

µkj =
1

n

n∑
i=1

xkij, j = 1, . . . , L, (4.5)

µk =
1

nL

n∑
i=1

L∑
j=1

xkij, (4.6)

σk =

√√√√ 1

nL

n∑
i=1

L∑
j=1

(xkij − µk)2, (4.7)

where µkj is the mean of the n measures of sensor k at the time instant j; µk is the mean of
all the measures of sensor k; and σk is the standard deviation of all the measures of sensor k.
Therefore, the elements xkij of matrix X are scaled to define a new matrix X̌ as

x̌kij :=
xkij − µkj
σk

, (4.8)

i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N.

When the data are normalized using equation (4.8), the scaling procedure is called variable
scaling or group scaling [32]. According to former studies of the authors [31, 33, 34], group
scaling presents a better performance than other kind of normalizations. The reason is that
group scaling considers changes between sensors and does not process them independently.
Further discussion on this issue can be found in [32, 33].

For simplicity, and throughout the rest of the paper, the scaled matrix X̌ is renamed as
simply X. The mean of each column vector in the scaled matrix X can be computed as

1

n

n∑
i=1

x̌kij =
1

n

n∑
i=1

xkij − µkj
σk

=
1

nσk

n∑
i=1

(
xkij − µkj

)
=

1

nσk

(
n∑
i=1

xkij − nµkj

)
=

1

nσk
(
nµkj − nµkj

)
= 0.

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate the covariance
matrix as follows:

CX =
1

n− 1
XTX ∈M(N ·L)×(N ·L)(R). (4.9)

The covariance matrix CX is a (N ·L)× (N ·L) symmetric matrix that measures the degree of
linear relationship within the data set between all possible pairs of variables (sensors).

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance
matrix as follows:

CXP = PΛ (4.10)

where the columns of P ∈ M(N ·L)×(N ·L)(R) are the eigenvectors of CX. The diagonal terms
of matrix Λ ∈ M(N ·L)×(N ·L)(R) are the eigenvalues λi, i = 1, . . . , N · L, of CX whereas the
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off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . , N · L
Λij = 0, i, j = 1, . . . , N · L, i 6= j

The eigenvectors pj, j = 1, . . . , N ·L, representing the columns of the transformation matrix P
are classified according to the eigenvalues in descending order and they are called the principal
components or the loading vectors of the data set. The eigenvector with the highest eigenvalue,
called the first principal component, represents the most important pattern in the data with the
largest quantity of information.

However, the objective of PCA is, as said before, to reduce the dimensionality of the data
set X by selecting only a limited number ` < N · L of principal components, that is, only the
eigenvectors related to the ` highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |p`) ∈MN ·L×`(R),

matrix T̂ is defined as

T̂ = XP̂ ∈Mn×`(R).

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to fully
recover X although T̂ can be projected back onto the original m−dimensional space to get a
data matrix X̂ as follows:

X̂ = T̂P̂
T ∈Mn×m(R). (4.11)

The difference between the original data matrix X and X̂ is defined as the residual error
matrix E or X̃ as follows:

E = X− X̂, (4.12)

or, equivalenty,

X = X̂ + E = T̂P̂
T

+ E. (4.13)

The residual error matrix E describes the variability not represented by the data matrix X̂, and
can be also expressed as

E = X(I− P̂P̂T ). (4.14)

Even though the real measures obtained from the sensors as a function of time represent
physical magnitudes, when these measures are projected and the scores are obtained, these
scores no longer represent any physical magnitude [35].

4.2.5 Damage detection indices based on PCA
Several damage detection indices based on PCA have been proposed and applied with excellent
results in pattern recognition applications. In particular, two damage indices are commonly
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used: (i) the Q index (also known as SPE, square prediction error) and (ii) the Hotelling’s T 2

index.
The Q index of the ith experimental trial xTi measures the magnitude of the vector x̃Ti :=

X̃(i, :), that is, the events that are not explained by the model of principal components [36], and
it is defined as follows:

Qi = X̃(i, :)X̃(i, :)T = xTi (I− P̂P̂T )xi. (4.15)

The T 2 index of the ith experimental trial xTi is the weighted norm of the projected vector
t̂Ti := T̂(i, :) = xTi P̂, that is, a measure of the variation of each sample within the PCA model
and it is defined as follows:

T 2
i =

∑̀
j=1

t̂2i,j
λj

= t̂Ti Λ−1t̂i = xTi (P̂Λ−1P̂T )xi (4.16)

4.3 Damage detection methodology
The damaged detection methodology that we present in this paper involves an active piezo-
electric system to inspect the structure. This active system consists of several piezoelectric
transducers (lead zirconium titanate, PZT) distributed on different positions of the structure and
working both as actuators or sensors in different actuation phases. Each PZT is able to produce
a mechanical vibration if some electrical excitation is applied (actuator mode). Besides, the
PZT are able to detect time varying mechanical response data (sensor mode). In each phase of
the experimental stage, just one PZT is used a the actuator (exciting the structure). Then, the
propagated signal through the structure is collected by using the rest of PZT, which are used as
sensors. This procedure is repeated in as many actuation phases as the number of PZT on the
structure.

To determine the presence of damage in the structure, the data from each actuation phase
will be used in the proposed artificial immune system. The proposed methodology is performed
in three steps: (i) data pre-processing and feature extraction; (ii) training process and; (iii)
testing. More precisely, in the first step the collected data is organized, pre-processed and di-
mensionally reduced –by means principal component analysis– to obtain relevant information.
The damage indices in equations (4.15)-(4.16) are used to define the feature vectors. The train-
ing step includes the evolution of the data to generate good representatives for each pattern,
damage or structural condition. A good accuracy in the damage detection using AIS depends
on a good training. Finally, the testing step includes new data to evaluate the training step and
the knowledge of the current state of the structure.

4.3.1 Data pre-processing, PCA modeling and feature extraction

For each different phase (PZT1 will act as an actuator in phase 1, PZT2 will act as an actuator
in phase 2 and so on) and considering the signals measured by the sensors, the matrix X is
defined and arranged as in equation (4.3) in Section 4.2.4 and scaled as stated in Section 4.2.4.
PCA modeling basically consists of computing the projection matrix P for each phase as in
equation (4.5). Matrix P, renamed Pmodel, provides an improved and dimensionally limited
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representation of the original data X. The number of principal components retained at each
different phase account for at least 90% of the cumulative variance.

Subsequently, the data from different structural states are projected into each PCA model in
order to obtain the scores and calculate the damage detection indices T 2 and Q as in Sections
4.2.4 and 4.2.5. This way, for each experiment, a two dimensional feature vector

f i = (T 2
i , Qi)

T ∈ R2, i = 1, . . . , ν (4.17)

is defined, where ν is the total number of experiments. The feature vector could include more
components, as the scores, for instance. Several test were then performed in this sense with the
combination of scores and damage indices. However, the results indicated that the single use of
T 2 and Q lead to the best results. One of the reasons about the use of the damages indices can
be found in [36]. In this paper, Rodellar et al. showed that the use of scores is not sufficient for
damage detection when two scores do not account for a high cumulative variance. This result
implies that it is necessary to use another type of measurement or statistic to obtain an accurate
discrimination of the presence of damage in a structure.

To keep the affinity values within the range [0, 1], the norm of the feature vectors fi, i =
1, . . . , ν is normalized to the unit circle. The normalization process uses the maximum norm of
the feature vectors, that is,

M := max
i=1,...,ν

‖f i‖,

where

‖f i‖ =

√
(f i1)

2
+ (f i2)

2
,

and therefore the normalized feature vector f inorm of f i = (T 2
i , Qi)

T is as follows

f inorm =

(
T 2
i

M
,
Qi

M

)
.

Since all the feature vectors are located within a unit circle, the Euclidean distance between any
feature vectors is less than or equal to 2. The healthy data set (HDS) is defined as

HDS =
ν⋃
i=1

{f i}. (4.18)

4.3.2 Training step
This step can be modified according to different goals. For instance, in the most basic case in
damage identification –the detection–, the training only needs to consider the feature vectors
that come from data of the healthy structure. However, in a more complex analysis –the clas-
sification, for instance–, the training process must include the feature vectors of data coming
from the structure in different and known structural states. The steps to perform the training in
the basic case are summarized as follows:

• Randomly select 2k ∈ N, 2k < ν, feature vectors. The remaining ν − 2k feature vectors
will be used in the testing process. This set of 2k feature vectors is divided in two sub-
sets of the same size k, the antibody training set (ABtraining) and the antigen training set
(AGtraining). This step is represented in Figure 4.4.
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Figure 4.4: Random selection of the antibody (ABtraining) and antigen (AGtraining) training sets.

• Compute the affinity between the antibodies and antigens of the ABtraining and AGtraining

sets, respectively. The affinity between an antibody and an antigen is defined as

aff(ab, ag) := 1− 1

2
d(ab, ag),

where d(ab, ag) is the distance –defined in equation (4.1)– between the feature vectors of
ab and ag, respectively. Since the Euclidean distance between any feature vectors is less
than or equal to 2, their affinity lies within the range [0, 1].

• Evolve the antibodies. The evolution of the antibodies is performed when these are stim-
ulated by an invading antigen invader and it consists on the mutation of the antibody. The
mutation is performed by mutating the feature vectors of the cloned antibodies as shown
in equation (4.19)

abevolved = ab+MV · φ, (4.19)

where abevolved is the mutated antibody and MV represents the mutation value –a value
used to indicate the mutation degree of the feature vector of an antibody–. In the present
implementation, the mutation value is defined as in equation (4.20)

MV = 1− CV, (4.20)

where CV is the clonal value –a value that measures the response of an artificial B-cell to
an antigen– and is equal to the affinity between the antibody and the stimulating antigen.
The vector

φ = (φ1, φ2)
T ∈ R2
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in equation (4.19) is a randomly generated vector. Each element φi, i = 1, 2 of the
random vector is a normally distributed random variable with mean zero and standard
deviation σ = 0.5.

The mutated antibody feature vectors must lie within the unit circle. Therefore, the norm
of the feature vector for each mutated antibody is immediately checked after the mutation
according to the following procedure:

◦ if ‖abevolved‖ ≤ 1, then no normalization is performed.

◦ if ‖abevolved‖ > 1, then

abevolved = (‖ab‖+ U · (1− ‖ab‖)) · abevolved

‖abevolved‖
,

where U is a uniform random function with a value within the range of [0, 1].

The norm of the mutated antibody is greater than the norm of the original antibody and
less than 1.

The clonal rate (CR) is an integer value used to control the number of antibody clones
allowed. The number of clones (NC) is defined in equation (4.21)

NC = bCR · CV c, (4.21)

where b·c is the floor function. In this paper the value of CR is 8.

The highest affinity antibody is chosen as the candidate memory cell for possible updating
of memory cell set.

• Define the threshold. A threshold Th is defined in order to update the memory cell set to
improve the representation quality of memory cells for the healthy state of the structure.
This threshold is defined as a weighted affinity of the two elements in the healthy data set
(HDS) in equation (4.18) with the maximum Euclidean distance. That is,

∆ = max
i,j=1,...,n

‖f i − f j‖ (4.22)

δ =
7

25
∆ (4.23)

Th = 1− 1

2
δ (4.24)

Then a comparison between the candidate memory cell and all the elements in the healthy
data set (HDS) is performed through the affinity. If the affinities are greater than or equal
to the threshold, the candidate memory cell becomes memory cell of the healthy state of
the structure. Otherwise, the candidate memory cell is eliminated. The main outcome
of this step is the memory cell set of the healthy state (MCSH) of the structure. This
algorithmic training process is represented in Figure 4.5.



110
4. Detection and Classification of Structural Changes using Artificial Immune Systems

and Fuzzy Clustering

Figure 4.5: Training process in an artificial immune system applied (IAS) to structural health
monitoring (SHM).

4.3.3 Testing step
The damage detection algorithm is finally illustrated in Figure 5. The damage detection is based
on the affinity values between the elements in the memory cell set of the healthy state (MCSH)
–acting as antibodies– and the data coming from the structure to test (TD, test data) –acting as
antigens–. A detection threshold (DTh) is defined in equation (4.25) for this purpose,

DTh = min
ab∈MCSH
i∈{1,...,ν}

aff(ab, f i), (4.25)

that is, the minimum affinity between the elements in the memory cell set of healthy state
(MCSH) and the elements in the healthy data set (HDS).

When the affinity is less than the threshold DTh, we say that the data has been collected
from a damaged state of the structure. Otherwise, the data comes from an undamaged structure.

4.3.4 Damage classification
After the detection of damage, the data that comes from the damaged structure will be classified.
To this end, this data is used as input to a fuzzy clustering algorithm.

Fuzzy clustering is an unsupervised technique normally used to organize or classify data into
groups mainly to obtain an accurate representation of a system behavior [37]. The algorithm
builds these groups by grouping data with similar information or features. In this technique, a
datum is simultaneously associated to many clusters or groups by using a membership function.
A huge value to the membership indicates a high confidence in the assignment of the data to the
cluster [38].

Data that can be applied to the clustering technique can be numerical (quantitative), categor-
ical (qualitative) or a mixture of both. These data are usually observations of a physical process
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Figure 4.6: Damage detection process

wherein each observation is an p−dimensional row vector, p ∈ N, that group p measured vari-
ables as in equation (4.26):

ψ = (ψ1, ψ2, . . . , ψp)
T ∈ Rp (4.26)

A set of q ∈ N observations is denoted by means of a p × q matrix where the columns are
named features or attributes and the rows are named patterns. Matrix Ψ in equation (4.27)

Ψ =


ψ11 ψ12 · · · ψ1p

ψ21 ψ22 · · · ψ2p
...

... . . . ...
ψq1 ψq2 · · · ψqp

 (4.27)

is referred as data matrix [39].
The definition of a cluster depends on the context of the application. Generally the cluster is

a group of data that are most similar to one another that the data of other group. The similarity is
a mathematical measure that is often defined by a distance norm. The geometrical shapes, sizes
and densities of the clusters can be spherical, hollow or elongated. Furthermore, the cluster
can be a linear or nonlinear subspace; besides, this cluster can be overlapping each other, well
separated or continuously connected [40, 41].

The clustering methods can be classified according to the characteristics of the subsets –
fuzzy or crisp (hard)–. In the fuzzy clustering method it is possible that an object or data
with different degrees of membership belong to several clusters. However, the hard clustering
method just allows a data to belong to a cluster [37].

There are several algorithms in fuzzy clustering. In this work, the fuzzy c-means algorithm
(FCM) was used. This technique was developed and introduced by Joe Dunn in 1973 and
improved in 1981 by Jim Bezdek. This technique is frequently used in the field of pattern
recognition [42, 43]. In this algorithm, a p−dimensional data set is grouped into a specific



112
4. Detection and Classification of Structural Changes using Artificial Immune Systems

and Fuzzy Clustering

[Experiment (1) 
. 
. 
. 

Experiment (k)] 

Calculate the affinity between the 
antibody and each experiment 

Feature matrix: 
[Q-index(1)  affinity(1) 

. 

. 
Q-index(k)  affinity(k)] 

Fuzzy clustering 
algorithm	  

Antibody 

Actua&on-‐phase	  (n)	  

Figure 4.7: Damage classification process

number c of clusters depending on a membership degree. Each cluster is represented by its
own center ci. The measure of membership between a data point and a cluster is given by the
Euclidean distance [39, 40].

In this paper, for each actuator phase, an antibody ab of the healthy data set is selected.
Assuming that we have three different damages and ν experiments per damage, the cardinality
of the damage data set (DDS) is

#DDS = 3ν.

Then, for each experiment of the damage data set (DDS), a two dimensional feature vector
f i, i = 1, . . . , 3ν is computed as in equation (4.17). Then, the ith row in the feature matrix Ψ
is the two dimensional vector

(Qi, aff(ab, f i)) ∈ R2, i = 1, . . . , 3ν, (4.28)

where Qi is the damage index defined in equation (4.15). The scheme of the damage classifica-
tion step is illustrated in Figure 4.7.

A feature matrix Ψ is built for each actuator phase. In the particular case of this work, the
number of clusters is 3, and the weighting exponent is 4. The weighting exponent determines
the fuzziness of the clusters. Finally, the tolerance of the clustering method is 10−6.

4.4 Experimental setup and experimental results

4.4.1 Experimental setup
To test the proposed methodology, data from an aircraft skin panel is used. The structure is
divided in small sections by means of stringers and ribs as shown in Figure 4.8. To validate the
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proposed methodology, two sections of this structure were used. The dimensions of each section
and the damage description are depicted in Figure 4.9. The damaged areas were simulated
by adding different masses at different locations. These sections were instrumented with 6
PZT transducers: two in the upper section; two in the lower section; and two in the rib. The
transducers dimensions are: 26 mm diameter and 0.4 mm thickness.

Figure 4.8: Aircraft skin panel

100 mm

85 mm

85 mm
D3

D1

D2

PZT1 PZT2

PZT3 PZT4

PZT5 PZT6

(a) a. (b) b.

Figure 4.9: Damage description.

4.4.2 Experimental results

As said in Section 4.3.1, the experiments are performed in 6 independent phases: (i) piezoelec-
tric transducer 1 (PZT1) is configured as actuator and the rest of PZTs as sensors; (ii) PZT2 as
actuator; (iii) PZT3 as actuator; (iv) PZT4 as actuator; (v) PZT5 as actuator; and (vi) PZT6 as
actuator.

To apply the proposed methodology, and for each phase, the collected data is arranged in a
matrix as in equation (4.3) in Section 4.2.4. With this unfolded data, the PCA model P is built
as explained in Sections 4.2.4 and 4.3.1 using data from the healthy structure. In Figure 4.10
the amount of variance accounted for by each principal component is illustrated, for phases 1,
3, 5 and 6.
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Figure 4.10: Amount of variance accounted for by each principal component, for phases 1, 3, 5
and 6.
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For each actuator phase, the number of principal components adopted varies since the prin-
cipal components retained must account for at least 90% of the cumulative variance. Although
there is not an accurate criterion to state a percentage of cumulative variance to be retained for
a good representation, a high percentage can ensure that most of the variability is incorporated
into the statistical model.

Figure 4.11 show the projections onto the two first principal components of several exper-
iments that come from the undamaged and damaged structure under consideration. It can be
clearly observed that no separation of damaged/undamaged can be determined using the scatter
plot. These are then two motivating depictions in the sense that with the proposed methodology
we will be able to both detect damage in the structure as well as classify it.
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Figure 4.11: Projections onto the two first principal components of several experiments in ac-
tuator phases 1 (up) and 3 (down).

Damage detection

After the baseline modeling, the data coming from the structure to be diagnosed is projected
onto the PCA model. Then, for each experiment, the feature vector in equation (4.17) formed
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by the two damage indices T 2 and Q is defined.
The ability of the proposed method to detect damages in the structure is illustrated in Figures

4.12 to 4.14. In these figures, the affinity of a memory cell from the memory cell set of the
healthy state (MCSH) and the data coming from the structure to diagnose is depicted. The
25 first experiments correspond to data that come from the undamaged structure, while the
remainder 75 experiments come from the damaged structure. More precisely, experiments 25
to 50 correspond to damage 1 (D1), experiments 51 to 75 to damage 2 (D2) and experiments
76 to 100 to damage 3 (D3). The pink solid horizontal line delimits the detection threshold
(DTh). It can be clearly observed that experiments with an affinity value less than DTh –from
the damaged structure– are correctly classified as ‘damaged’. Similarly, experiments with an
affinity value greater than or equal to DTh –from the healthy structure– are correctly classified
as ‘healthy’.
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Figure 4.12: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 1).

Damage classification

After the damage detection based on the affinity, the classification is performed by applying the
fuzzy c-means clustering algorithm as summarized in Figure 4.7. Figures 4.15 to 4.18 show the
result of the damage classification for actuator phases 1, 2, 3 and 6. As it can be seen in these
Figures, data is grouped according to its similarity in three clusters, where each data point has
a degree of belonging to each cluster inversely proportional to its distance to the center of each
cluster.

From Figures 4.12-4.13 (corresponding to phases 1 and 3) the three types of damage can be
visually discerned since the related affinities are quite different. This segregation is preserved
and even improved in the damage classification in Figures 4.15 and 4.17. However, in Figure
4.14, the affinities for the three sets of experiments are very similar and cannot be precisely
separated. In spite of that, and due to the fact that we include the Q index as the first column in
the feature matrix in equation (4.27), the separation and classification is quite remarkable.



4.4. Experimental setup and experimental results 117

experiments
0 10 20 30 40 50 60 70 80 90 100

af
fin

ity
 v

al
ue

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4.13: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 3).
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Figure 4.14: Affinity values between a memory cell of the memory cell set of the healthy state
(MCSH) and the data coming from the structure to diagnose (phase 6).
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Figure 4.15: Damage classification through the c-means algorithm (phase 1).
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Figure 4.16: Damage classification through the c-means algorithm (phase 2).
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Figure 4.17: Damage classification through the c-means algorithm (phase 3).
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Figure 4.18: Damage classification through the c-means algorithm (phase 6).

4.5 Concluding remarks

In this paper, a new methodology to detect and classify structural changes has been introduced.
The methodology is twofold: (i) an artificial immune system (AIS) and the notion of affinity is
used for the sake of damage detection and (ii) a fuzzy c-means algorithm is used for damage
classification.

One of the advantages of the methodology is the fact that to develop and validate a model
is not needed. Additionally, and in contrast to standard Lamb waves-based methods, there is no
need to directly analyze the complex time-domain traces containing overlapping, multimodal
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and frequency dispersive wave propagation that distorts the signals and difficult the analysis.
The proposed methodology has been applied to data coming from two sections of an air-

craft skin panel. The results indicate that the proposed methodology is able to accurately detect
damage as well as classify those damages. However, within the proposed methodology, it is not
possible to provide a multidamage classification able to identify several simultaneous damages.
To ensure the proper performance of the methodology, a study of the effect of changing envi-
ronmental and operational conditions need to be considered, which is considered as a future
work.
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Chapter 5

Conclusions and future research

5.1 Comment and concluding remarks

This thesis shows different data-driven methodologies for damage detection and classification
using bioinspired algorithms. Among this algorithms, artificial immune systems, fuzzy cluster-
ing and self-organizing maps were considered. These pattern recognition approaches have the
advantage of the baseline comparison, which can be related not only to the structure damage but
also with the performance of the active sensor through its nominal behaviour. Some conclusions
and comments about the results obtained with the development of this thesis are listed below:

5.1.1 Instrumentation and data acquisition

The use of piezoelectric transducers resulted in a viable method to inspect composites and
aluminium structures. Some advantages about the inspection with piezoelectric transducers
includes high sensitivity to the damages, easy installation and operation since relatively long-
distance inspection which can be covered with low attenuation and reduced price compared with
other sensors. Additionally, these kind of sensors can be used as passive or active sensors since
they can work both as a sensor or as actuators. Some limitations in the use of piezoelectrics for
inspection processes are: low output, this means that it is necessary to use an additional circuit
to amplify the excitation/collected signals and high impedance output.

In this thesis, several PZTs were used to conform a piezoelectric active system which cor-
responds to an inspection system where each PZT was used as an actuator and as a sensor in
different actuation phases. It is necessary to remark that the use of the active piezoelectric sys-
tem has allowed to prove the PCA based methodology and validate the results from different
actuation phases to identify a healthy structural state or the presence of damages at the surface
by changing the PZT used as actuator.

This methodology has been used by the previous works in the CoDAlab group and still
working with excellent results. Some disadvantages in the use of piezoelectric include debond-
ing, cristal cuts, among others. In this sense the use of another sensors need to be explored,
however, with the development of this thesis, a methodology to detect and classify typical dam-
ages in piezoelectric sensors was developed.

The use of different actuation phases allowed to obtain different concepts about the presence
of a damage that were analyzed by plotting each result and analyzing the information in each
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plot. In the same way, with the aim of classification, the data fusion allowed to obtain a unified
result.

Finally, it is worth remarking that the use of the active piezoelectric system allowed to prove
the PCA based methodologies and validate the results from different actuation phases to identify
a healthy structural state or the presence of damages at the sensors into the sensor network.

5.1.2 Data pre-processing
This step is one of the most important in the developed methodologies, since it adds some
desirable features to the data used by the several approaches. Some of the advantages in the use
of data processing are the following:

The use of unfolding data has allowed to process data in two dimensions by organizing
the information from three dimensions (experiment × time × sensor) to two dimensions (ex-
periments × (time)·(sensor)). This allows to simplify the analysis of the information by each
actuation phase.

The normalization is the procedure to standardize data set, so that signal changes –from
different sources and collection points– as well as changes in the operational and environmental
conditions can be scaled using the mean and standard deviation of all measurements. In this
thesis, the unfolding and the normalization (also known as group scaling) is used as in previous
works by the advisors.

Although DWT it was not used in all the approaches, its use presented some advantages in
the development of the algorithm for temperature analysis, since gives some benefits such as
noise reduction, dimension reduction and feature extraction. It can be an advantage if real-time
applications are needed because the analysis is performed to some coefficients that represent a
reduced number of data.

5.1.3 Structural damage detection and classification
The damage identification problem was divided in two: (i) damage detection and (ii) damage
classification. In addition, the methodology was used to detect and classify faults in sensors.
Specifically, the approaches were tested in structures instrumented with piezoelectric sensors.

Although the damage detection and classification processes have been addressed by several
authors, this thesis contributes to these problems by proposing the use of robust baselines or by
the use of artificial immune systems. One of the advantages of the developed methodologies
is the fact that to develop and validate a model is not needed. Additionally, and in contrast to
standard Lamb waves-based methods, there is no need to directly analyze the complex time-
domain traces containing overlapping, multimodal and frequency dispersive wave propagation
that distorts the signals and difficult the analysis. Results shown that different actuation phases
present different results. In this sense, the following conclusions can be summarized:

It was found that the number of principal components to carry out the damage detection is
related to the dispersion of the variance. Overlaps were found when just two principal com-
ponents were used, this means a good representation requires more than two scores to discern
between the different structural states. In this sense, the use of the damage indices allowed to
improve the damage detection process discerning features in each state of the structure.

The methodologies cannot discern multiple damages at the same time. That is, multiple
damages are detected as a new damage, this is because the algorithms use data from the PZTs
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collecting vibration signals.

Although the damage identification process was performed under laboratory conditions,
in this thesis, the effects of changes in the temperature were explored using different kind of
structures with excellent results.

With respect to the use of some realistic delamination and debonding problems, it was shown
that the proposed approach helps in generating a robust damage detection and classification
system to handle different kind of damages under different temperatures.

Some conditions such as temperature variations were evaluated to determine its influence in
the damage detection process. It was found that temperature change the results in the detection
because the collected signal changes. To solve this problem, a robust baseline was proposed
with excellent results.

With respect to the use of the SOM, it is possible to define the following conclusions: Re-
sults with the cluster map and the U-matrix showed some differences between them. In spite
of these differences, both results allowed to detect and classify the damages. The U-matrix
presented an advantage compared with the cluster map because it gives a easy-understand rep-
resentation due to the inclusion of the boundaries between the different states of the structure.
In the classification process the inclusion of data from a different structural state provide a new
cluster in the training process. This is because the map creates different zones according to its
similarity. The outliers are better isolated in the U-matrix representation because it allows the
identification of each structural state under evaluation.

With respect to the use of artificial immune systems, some advantages and conclusions
can be summarized: The encoding of the information is very easy and intuitive since healthy
state represents the antibodies and the different states (damaged or not) are represented by the
antigens.

The use of affinity values is a good way to determine the differences between the antigens
and the antibodies. This difference was not equal at each actuation phase. However, the use of
all the plots allowed to determine the presence of damages.

The evolution and the use of immune learning algorithms make it possible for the classifier
to generate a high quality memory cell to recognize various structure damage patterns.

The use of AIS and fuzzy clustering allowed the data fusion and the organization of the
information from all the actuation phases to classify all the structural states.

5.1.4 Sensor fault detection and classification

The same methodologies developed for damage detection can be used to detect and classify all
the sensor faults in spite of the differences between cristal cuts, cristal removal and debonding.
Better results were obtained with the use of the damage indices and SOM. One probable rea-
son is because only two components are not sufficient to discriminate differences between the
different scenarios. One of the disadvantage in the methodology is the big quantity of plots to
analyze, in this case two plots by each actuation phase. However this work shows that damage
indices plots can be evaluated without the use of the score plots and fused into a cluster map or
a U-Matrix.
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5.2 Future research
Some issues still remain open and were not covered by this thesis. The following subjects are
outlined as future works:

• To validate the algorithms by using variations of different environmental and operational
conditions. In this sense, humidity and a wide range of temperature variations need to be
used to test the algorithms.

• To use different kind of sensors. Since the algorithms are based on pattern recognition
approaches, it is expected that the same algorithms can work with minor changes.

• To evaluate the best sensor distribution to detect damages. The knowledge of an opti-
mized distribution of the sensors to install in a structure can help to increase the damage
detection process.

• To evaluate the algorithms in more complex structures and in-service structures. Although
the developed methodologies presented good results in the detection and classification
of damages and in the sensor fault detection, the methodology need to be evaluated in-
service structures under real operational and environmental conditions.

• Some of the of damages used in this thesis are not very realistic and for a full validation of
the method, it is necessary to test structures with additional real damages to the explored
in this thesis.
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