

Algorithms for l-sections on genus two curves over
finite fields and applications

Edgardo Riquelme Faúndez

 http://hdl.handle.net/10803/393881

Nom/Logotip de la
Universitat on s’ha

llegit la tesi

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

ALGORITHMS FOR `-SECTIONS ON GENUS TWO CURVES

OVER FINITE FIELDS AND APPLICATIONS

EDGARDO RIQUELME

Instituto de Matemática y F́ısica

Universidad de Talca, Chile.

Programa de Doctorat en Enginyeria i Tecnologies de la Informació.

Universitat de Lleida, Espanya.

Thesis adviser:

Steen Ryom-Hansen, University of Talca.

Jordi Pujolàs Boix, University of Lleida.

Nicolas Thériault, University of Santiago of Chile.

2

ALGORITHMS FOR `-SECTIONS ON GENUS TWO CURVES

OVER FINITE FIELDS AND APPLICATIONS

EDGARDO RIQUELME

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Mathematics

Institute of Mathematics and Physics

University of Talca

Thesis adviser:

Steen Ryom-Hansen, University of Talca.

Jordi Pujolàs Boix, University of Lleida.

Nicolas Thériault, University of Santiago of Chile.

Contents

1 Introduction 11

2 Mathematical and Cryptographic Background 13

2.1 Background . 13

2.2 Cryptographic motivation . 15

2.3 Schoof-like algorithms and `-sections 16

3 Trisection in odd characteristic 19

3.1 Generalities . 20

3.2 Basic Algorithms . 21

3.3 Computing 3-torsion divisors 23

3.4 Weight-2 trisections . 24

3.5 Weight-1 trisections . 27

3.6 Predictable false positives (parasitic factors) 28

3.7 Factorization of polynomials of `-torsion and `-sections 29

4 Symbolic trisection polynomials 37

4.1 Background . 38

4.2 Weighted homogeneous polynomials 38

4.2.1 Properties of WHPs . 39

4.2.2 Number of monomials in a WHP 41

4.2.3 Example . 44

4.3 Trisections . 46

4.3.1 Special cases . 46

4.3.2 General case for weight-2 divisors 49

4.3.3 General case for weight-1 divisors 50

4.4 Symbolic computation . 51

4.4.1 Parity and interpolation points 52

4.4.2 Finite fields vs the integers 53

4.4.3 Re-scaling the interpolation points 54

4.4.4 Symbolic trisection polynomial 56

4.5 Using the trisection polynomial 57

3

4.5.1 Example of trisection polynomial 57

4.5.2 Evaluation of trisection polynomials 57

5 Trisection in characteristic 2 61

5.1 The 3-torsion subgroup . 62

5.2 Trisection . 65

5.2.1 Weight 1 trisections . 65

5.2.2 Weight 2 trisections . 66

5.2.3 Easy trisections . 68

5.3 Factorization of trisection polynomials 70

6 Explicit `-Sylow subgroup 73

6.1 Determining the `-Sylow in the Jacobian 73

6.2 The 3-Sylow Algorithm . 75

6.3 Examples . 77

7 Conclusion 81

BIBLIOGRAPHY . 82

Agradecimientos

Quiero comenzar agradeciendo al Dr. Nicolas Thériault por su apoyo y gúıa

para realizar esta tesis doctoral. Su ayuda no solamente ha sido importante en

la dirección de este trabajo, sino también en mi formación como matemático

e investigador. Agradezco su paciencia y buena disposición a responder mis

dudas en relación a esta tesis. Su motivación en momentos importantes y su

apoyo para realizar estancias internacionales. Además agradezco su ayuda en

aspectos computacionales, en la redacción y el orden del contenido de esta tesis

y por todas las sugerencias realizadas a este trabajo durante estos años.

Agradezco también al Dr. Jordi Pujolàs por su ayuda y apoyo durante mis

estancias en España y en la dirección de este trabajo en general. Estoy agrade-

cido de su buena disposición a la hora investigar y responder dudas sobre esta

tesis. Agradezco también por ampliar de diversas maneras mi formación como

investigador. Además agradezco toda su ayuda en aspectos computacionales,

en redacción y por todas las sugerencias realizadas a este trabajo.

También quiero agradecer al grupo de investigación de Criptograf́ıa y Grafos

de la Universidad de Lleida. En especial agradecer al Dr. Josep M. Miret por

su ayuda y preocupación durante mis estancias en la Universidad de Lleida.

Agradezco a mi familia por su preocupación y apoyo en esta etapa de mi

vida. Agradezco también por ser de gran importancia en mi formación como

persona.

Gracias a mis compañeros y amigos que preguntaron por este trabajo. En

especial mencionar a mis amigos del GBU de España y de la Iglesia Bautista

de Lleida por su ayuda durante mis estancias en España y a mis amigos del

GBU de Chile no solo por su preocupación en lo relacionado a mi tesis, sino

por ser de gran importancia en mi paso por la universidad.

Finalmente como creyente quiero dar gracias a Dios pues a través de la fe

he aprendido a valorar desde diferentes perspectivas mi carrera cient́ıfica y a

apreciar cada d́ıa de esta importante etapa de mi vida.

5

6 CONTENTS

Abstract

We study `-section algorithms for Jacobian of genus two over finite fields. We

provide trisection (division by ` = 3) algorithms for Jacobians of genus 2 curves

over finite fields Fq of odd and even characteristic. In odd characteristic we

obtain a symbolic trisection polynomial whose roots correspond (bijectively)

to the set of trisections of the given divisor. We also construct a polynomial

whose roots allow us to calculate the 3-torsion divisors. We show the relation

between the rank of the 3-torsion subgroup and the factorization of this 3-

torsion polynomial, and describe the factorization of the trisection polynomials

in terms of the galois structure of the 3-torsion subgroup. We generalize these

ideas and we determine the field of definition of an `-section with ` ∈ {3, 5, 7}.
In characteristic two for non-supersingular hyperelliptic curves we character-

ize the 3-torsion divisors and provide a polynomial whose roots correspond to

the set of trisections of the given divisor. We also present a generalization

of the known algorithms for the computation of the 2-Sylow subgroup to the

case of the `-Sylow subgroup in general and we present explicit algorithms for

the computation of the 3-Sylow subgroup. Finally we show some examples

where we can obtain the central coefficients of the characteristic polynomial of

the Frobenius endomorphism reduced modulo 3 using the generators obtained

with the 3-Sylow algorithm.

This work was supported by CONICYT, Chile doctoral scholarship.

7

Resumen

En esta tesis se estudian algoritmos de `-división para Jacobianas de curvas de

género 2. Se presentan algoritmos de trisección (división por ` = 3) para Jaco-

bianas de curvas de género 2 definidas sobre cuerpos finitos Fq de caracteŕıstica

par o impar indistintamente. En caracteŕıstica impar se obtiene expĺıcitamente

un polinomio de triseccón, cuyas ráıces se corresponden biyectivamente con el

conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo

se proporciona otro polinomio a partir de cuyas ráıces se calcula el conjunto

de los divisores de orden 3. Se muestra la relación entre el rango del subgrupo

de 3-torsión y la factorización del polinomio de la 3-torsión, y se describe la

factorización del polinomio de trisección en términos de las órbitas galoisianas

de la 3-torsión. Se generalizan estas ideas para otros valores de ` y se de-

termina el cuerpo de definición de una `-sección para ` = 3, 5, 7. Para curvas

no-supersingulares en caracteŕıstica par también se da una caracterización de la

3-torsión y se proporciona un polinomio de trisección para un divisor cualquiera.

Se da una generalización, para ` arbitraria, de los algoritmos conocidos para

el cómputo expĺıcito del subgrupo de 2-Sylow, y se detalla expĺıcitamente el

algoritmo para el cómputo del subgrupo de 3-Sylow. Finalmente, se dan ejem-

plos de cómo obtener los valores de la reducción módulo 3 de los coeficientes

centrales del polinomio caracteŕıstico del endomorfismo de Frobenius mediante

los generadores proporcionados por el algoritmo de cálculo del 3-Sylow.

Este trabajo fue financiado por una beca doctoral de CONICYT,

Chile.

8

Resum

En aquesta tesi s’estudien algoritmes de `-divisió per a grups de punts de

Jacobianes de corbes de gènere 2. Es presenten algoritmes de trisecció (divisió

per ` = 3) per a Jacobianes de corbes de gènere 2 definides sobre cossos finits Fq
de caracteŕıstica parell o senar indistintament. En caracteŕııstica parell s’obté

expĺıcitament un polinomi de trisecció, les arrels del qual estan en bijecció amb

el conjunt de triseccions d’un divisor de la Jacobiana qualsevol. De manera

semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el

conjunt dels divisors d’ordre 3. Es mostra la relació entre el rang del subgrup de

3-torsió i la factorització del polinomi de la 3-torsió, i es descriu la factorització

del polinomi de trisecció en termes de les òrbites galoisianes de la 3-torsió.

Es generalitzen aquestes idees a altres valors de ` i es determina el cos de

definició d’una `-secció per a ` = 3, 5, 7. Per a corbes no-supersingulars en

caracteŕıstica 2 també es proporciona una caracterització de la 3-torsió i un

polinomi de trisecció per a un divisor qualsevol. Es dóna una generalització,

per a ` arbitrària, dels algoritmes coneguts per al càlcul expĺıcit del subgrup de

2-Sylow, i es detalla expĺıcitament en el cas del 3-Sylow. Finalment es mostren

exemples de com obtenir els valors de la reducció mòdul 3 dels coeficients

centrals del polinomi caracteŕıstic de l’endomorfisme de Frobenius fent servir

els generadors proporcionats per l’algoritme de càlcul del 3-Sylow.

9

CHAPTER 1

Introduction

The main reason to study `-sections for genus 2 curves over finite fields resides

in their application to Schoof-like algorithms in the computation of the group

order of hyperelliptic Jacobians and the construction of secure random curves

of genus 2 over prime fields. Efficient point counting algorithms in genus 2

were first studied by Kampkötter in 1991. Gaudry and Harley in 2000 pre-

sented examples for p ∼= 216 where they started to use bisection algorithms

(` = 2). Gaudry and Schost (2004) presented examples for p ∼= 282, where they

take advantadge of the 2-torsion subgroup to compute bisections and also be-

gin to use trisection algorithms (` = 3). Gaudry and Schost in 2012 presented

several improvents on Schoof-like algorithms with examples of cryptographic

size p ∼= 2127. They used Kummer surfaces in the case of bisections, homotopy

techniques for the trisection algorithms, and began to use `-section for ` = 5, 7.

They also presented theoretical results for `-sections for any `.

On the other hand, alternative bisection techniques in even and odd character-

istic have been obtained in [12, 14, 15] by reversing reduction in divisor class

arithmetic. Trisection in characteristic two has also been studied in [17] in the

supersingular case.

The general aim of this thesis is to study `-section algorithms for any divisor

in the Jacobian of the curve based in reversing the reduction step in divisor

class arithmetic. The methods presented in this thesis are a generalization of

the methods used in [12, 14, 15]. The particular objectives are the following:

The first is to obtain `-section polynomials which are completely consistent

for small `, focussing on the case of ` = 3. The second objective is to study

the factorization of `-torsion polynomials. For elliptic (genus 1) curves, this

was studied by Verdure [20]. For curves of genus 2 an analysis of the upper

bound for the irreducible factors can be found in [11], and an application to the

factorization types of `-modular polynomials can be found in [9]. The methods

we use are based on those in [9] but with significant variations to find the

type of factorization of `-torsion polynomial (the precise Galois orbits of the

11

12 CHAPTER 1. Introduction

`-torsion divisors). The third objective is to establish the relationship between

the type of factorization of the `-torsion polynomial (the precise Galois orbits

of the `-torsion divisors) and the `-section polynomial (the field of definition

of the `-sections). The fourth objective is to study the factorization of the

`-section polynomial in extensions of degree `. The final objective is to study

the impact on Schoof-like algorithms.

The structure of the thesis is as follows: In Chapter 2 we recall the nec-

essary background on mathematics and cryptography. In Chapter 3 we study

the first four objectives for fields of odd characteristic. We provide trisection

(division by 3) algorithms for Jacobians of genus 2 curves over finite fields Fq of

odd characteristic which rely on the factorization of a polynomial whose roots

correspond (bijectively) to the set of trisections of the given divisor. We also

construct a polynomial whose roots allow us to calculate the 3-torsion divisors.

We show the relation between the rank of the 3-torsion subgroup and the fac-

torization of this 3-torsion polynomial, and describe the factorization of the tri-

section polynomials in terms of the Galois structure of the 3-torsion subgroup.

We also generalize these ideas for ` ∈ {5, 7}. In Chapter 4 we studied part of

the fifth objective, providing symbolic trisection polynomial for Jacobians of

genus 2 curves over finite field Fq of odd characteristic. These polynomials can

be used to improve the efficiency of trisection algorithms, which may then be

used to obtain faster point counting algorithms. In Chapter 5 we study division

by 3 in Jacobians of genus 2 curves over binary fields with a 2-torsion subgroup

of rank 1 or 2. Finally, in Chapter 6 we study part of the fifth objective, pre-

senting a generalization of the algorithms that explicitly determine the 2-power

torsion of genus 2 curves over finite fields [16] to the case of `-power torsion.

We study the case of `-power torsion in general and we present explicit algo-

rithms for the computation of the 3-Sylow subgroup. These algorithms can be

used to improve the choice of `-torsion divisors of index `k used in Schoof-like

algorithms.

The first four objectives studied in chapter 3 in the case of odd character-

istic are part of Trisection for genus 2 curves in odd characteristic, published

online (30 January 2016) in journal Applicable Algebra in Engineering Com-

munication and Computing (AAECC).

The first four objectives in the case of characteristic two, studied in chapter

5, are part of Trisection for non-supersingular genus 2 curves in character-

istic 2 published online (06 Jul 2015) in International Journal of Computer

Mathematics.

The fifth objective is studied in chapters 4 and 6. Chapter 4 is part of the

paper Symbolic trisection polynomials for genus 2 curves in odd characteris-

tic (preprint).

CHAPTER 2

Mathematical and Cryptographic Background

2.1 Background

Definition 1. Let C be a genus two curve over finite field Fq given in the

model.

C : y2 + h(x)y = f(x). (2.1.1)

Curve C is called a nonsingular hyperelliptic curve of genus 2 over Fq if no

point on the curve over the algebraic closure Fq of Fq satisfies both partial

derivatives 2y + h(x) = 0 and f ′(x)− h′(x)y = 0 at the same time.

Definition 2. A divisor on C is a finite formal sum of points on C

D =
∑
P∈C

mpP

where mp ∈ Z are 0 for all but finitely many P . The degree of D is defined by∑
P∈C mp. We denote Div0 the set of all degree zero divisors of C.

If

F[C] =
F[x, y]

(y2 + h(x)y − f(x))

denotes the coordinate ring of C over F, then the field of fractions F(C) is

called the function field of C over F.

Definition 3. A divisor D is called a principal divisor if

D = div(R) =
∑
P∈C

(ordp(R))P

for a non-zero rational function R in F(C).

Definition 4. The quotient group J = Div0/P is called Jacobian of C, where

P is the set of all pincipal divisor in Div0.

A divisor semi-reducido D is a divisor of the form D =
∑
miPi −

(
∑
mi)∞ with Pi = (xi, yi) where

13

14 CHAPTER 2. Mathematical and Cryptographic Background

• mi ≥ 0 ∀ i.

• if (xi, yi) = (xj ,−yj) and mi > 0, then mj = 0

• if (xi, yi) = (xi,−yi) and mi > 0, then mi = 1

A semi-reduced divisor D is called reduced, if D satisfies
∑
mi ≤ g (g is the

genus of C) . We will call
∑
mi the weight of D.

Theorem 1. (Mumford respresentation)

• For each point P ∈ C(Fq) we associate a divisor D(P) = P −∞

• All reduced divisors D =
∑k
i=1D(Pi) can be represented by an unique

pair of polynomials [u, v] such that u, v ∈ Fq[x] with u(x) =
∏k
i=1(x−xi)

y v(xi) = yi ∀i such that the degree of v(x) < degree of u(x) ≤ g and u(x)

divide v(x)2 +h(x)v(x)−f(x), and all such pairs of polynomial represent

a reduced divisor D.

• A divisor D = [u(x), v(x)] is in Jac(C)(Fq) if only if u(x), v(x) ∈ Fq[x]

We work in the group of Fq-points of the Jacobian Jac(C), in terms of the

Mumford coordinates [u(x), v(x)]. In genus 2, every element in Jac(C)− {0}
can be represented by reduced divisors of weight one [x + u0, v0] or two [x2 +

u1x+u0, v1x+ v0] (we refer to the degree of the effective divisor associated to

D as its weight). An algorithm due to Cantor [3] allows us to compute in the

divisor class group with this representation of elements. It works in two steps:

a ”composition” and ”reduction”.

Algorithm 1 Composition

Require: Reduced divisors [u1(x), v1(x)] and [u2(x), v2(x)].

Ensure: Semi-reduced divisor [u(x), v(x)].

1: d(x) = gcd(u1(x), u2(x), v1(x) + v2(x) + h(x)),

d(x) = s1(x)u1(x) + s2(x)u2(x) + s3(x)(v1(x) + v2(x) + h(x))

2: u(x) = u1(x)u2(x)/d(x)2

3: v(x) is the remainder of

s1(x)u1(x)v2(x) + s2(x)u2(x)v1(x) + s3(x)(v1(x)v2(x) + f(x))

d(x)

modulo u(x)

Cantor’s general reduction step uses α, β, γ ∈ Fq[x] such that β = γu+ αv

with deg(β) ≤ m+2
2 and deg(α) ≤ m−3

2 , where m is deg(u(x))

2.2. Cryptographic motivation 15

Algorithm 2 Reduction

Require: Semi-reduced divisor D = [u(x), v(x)].

Ensure: Reduced divisor D′ equivalent to D.

1: Use the extended Euclidean algorithm on u, v to find α, β, γ ∈ F[x] with

degrees given above and such that β = γu+ αv

2: Let u2 = gcd(β, α) = gcd(u, α) and compute u1 = u
u2

,β1 = β
u2

, α1 = α
u2

3: Let u3 =
β2

1+α1β1h+α2
1f

u1
and compute α′ such that α1α

′ ≡ 1 mod u3

(From which v3 = −α′β1 − h mod u3)

4: Finally, use the composition algorithm to compute the divisor sum D′ of

[u3, v3] and [u2, v]

Theorem 2. Let C be a hyperelliptic curve defined over F. If the characteristic

of F is either zero or a prime p with gcd(n, p) = 1 then the set of n-torsion

elements satifies

Jac(C)[n] ∼= (Z/nZ)2g

If the characteristic is p and n = pe then

Jac(C)[pe] ∼= (Z/peZ)r

with 0 ≤ r ≤ g, fixed for all e ≥ 1.

Definition 5. We call `-sections the set of pre-images D = [u, v] ∈ Jac(C)(Fq)
of any given divisor D` = [u`, v`] under the multiplication by ` map

[`] : Jac(C)(Fq) → Jac(C)(Fq)

D → D` = `D.

2.2 Cryptographic motivation

Suppose that Alice and Bob want to communicate a secret through an insecure

channel of communication (like the internet) and they do not want Eve to un-

derstand the communication, even trough she may be able to record to copy

of the transmission. They must encrypt each message, transmit the result and

then decrypt. The method used to encrypt and decrypt is called a cryptosys-

tem. There are many very efficient system if Alice and Bob have an common

secret, called ”private key system”. The mayor problem with the private key

system is the distribution of the key, sometimes is not convenient for Alice and

Bob to meet in person to exchange a secret before each communication.

In 1976, Whitfield Diffie and Martin Hellman published the paper ”New Di-

rections in Cryptography” proposed a new method for the distribution of en-

cryption keys.

Definition 6. The computational Diffie-Hellmann problem (CDH).

Let G be a group. Given g, gx and gy in G , deduce the value of gxy.

16 CHAPTER 2. Mathematical and Cryptographic Background

Except in some very special cases, the only known approach to solving the

CDH goes through the solution of the Discrete Logarithm Problem (DLP)

Definition 7. Let G be a group. Given g ∈ G and h ∈< g > , find k ∈ Z such

that h = gk .

The DLP in G =< g > can be computed easily if the order of g has only

small factors. If we assume n composite and let p|n. If [t]g = h we have that

[t mod p]np g = [np]h. Then t modulo each of the primes such that p|n can be

found by solving the DLP in a cyclic group of order p. If n is a product of

distinct primes, then t can be recovered using the Chinese remainder theorem.

If n is not squarefree, the p-adic expansion can be used to compute t modulo the

highest power of p dividing n for all primes p. This was first observed by Silver,

Pohlig, and Hellman. Thus the complexity of computing discrete logarithms

in a group of composite order n is bounded from above by the complexity of

solving the DLP in a group whose order is the largest prime factor of n. Then

algorithms as either Pollards rho or Baby-step giant-step can be used to solve

the DLP in this group.

Therefore in the case of Jacobian of the genus two curves we must examine

the possible group orders that can occur in the interval of Hasse-Weil. For

these reason, if we want to know if the Jacobian of the genus two curves can

be considered computationally secures we have to calculate the order of group.

2.3 Schoof-like algorithms and `-sections

We denote by π to the q-th power Frobenius automorphism π : Fq −→ Fq
extended to the Jacobian.

Theorem 3. Let C by a hyperelliptic curve of genus g defined over Fq. The

Frobenius endomorphism satisfies a characteristic polynomial of degree 2g given

by

χ(T) = T 2g + s1T
2g−1 + . . .+ sgT

g + . . .+ s1q
g−1T + qg

where si ∈ Z, 1 ≤ i < g. The absolute value of the j-th coefficient of χ(T) is

bounded by
(

2g
j

)
q

2g−j
2

Proposition 1. For n coprime to q the restriction of φq to Jac(C)[n] has

characteristic polynomial χ(T) mod n.

In genus 2 the characteristic polynomial has the form

χ(T) = T 4 − s1T
3 + s2T

2 − qs1T + q2

and the absolute value of s1 and s2 satisfied |s1| ≤ 4
√
q and |s2| ≤ 6q. The

bound on s2 can be refined to 2|s1|
√
p− 2p ≤ s2 ≤ s21

4 + 2p.

Since |Jac(Fq)| = χ(1) computing s1 and s2 allows to obtain #Jac(Fq).
Sketch of a genus 2 Schoof algorithm

2.3. Schoof-like algorithms and `-sections 17

1. For sufficiently many small primes:

• Construct `-torsion divisors D`.

• Eliminate those elements (s1, s2) mod ` such that

π4(D`) + [p2 mod `]D` − [s1 mod `](π3(D`)− [p mod `]π(D`))

6= [s2 mod `]π2(D`).

• Deduce (s1, s2) mod ` from the remaining pair.

2. Deduce (s1, s2) from the pairs (s1, s2) mod ` by Chinese remaindering.

The relation between `-sections and Schoof-like algorithms for points count-

ing is studied by Gaudry and Schost in the case of absolutely simple varieties.

They show that

Lemma 1. (Gaudry-Schost 2012) There exists an integer κ ≥ 0 such that for

any k > κ, , the equality

π4(Pk)− [s1]π3(Pk) + [s2]π2(Pk)− [ps1]π(Pk) + [p2](Pk) = 0

uniquely determines (s1, s2) modulo `k−κ.

where κ is related to the following properties

Lemma 2. (Gaudry-Schost 2012) There exists an integer k0 ≥ 1 and P ∈
Jac(C)[`k0] such that Jac(C)[`] is contained in the subgroup generated by P

and its conjugates.

Lemma 3. (Gaudry-Schost 2012) Let k0 ≥ 1 and let P ∈ Jac(C) be such that

Jac(C)[`k] is contained in the subgroup generated by P and its conjugates. Then

for any Q ∈ Jac such that P = [`]Q, Jac(C)[`k+1] is contained in the subgroup

generated by Q and its conjugates.

They also study of the field of definition of Pk

Lemma 4. Let d be a positive integer such that the points of Jac(C)[`] are

defined over Fpd , and let P ∈ Jac be defined over Fpd as well. Then any

Q ∈ Jac(C) such that P = [`]Q is defined over Fp`d .

Lemma 5. For k ≥ 1, let dk be the smallest integer such that the points of

Jac[`k] are defined over Fpdk . Then for k large enough, we have dk+1 = `dk .

The importance of these results is that if we want to obtain for example the

values of s1 for a curve over a field Fq of order around 2120. We need to get s1

mod 2 · 3 · 5 · 7 · 11 · · · 47 · 53 > 4
√
q. . On the other hand using `-section for

` = 2, 3 we need to get s1 mod 217 ·37 ·5 ·7 ·11 · · · 29 ·31 > 4
√
q. (The approach

of Gaudry-Schost (2012) to obtain ` = 31 requires about 10 CPU days and to

obtain 217 requires about 5 CPU days).

CHAPTER 3

Trisection in odd characteristic

Trisection algorithms for genus 2 curves over finite fields in odd characteristic

have been used by Gaudry and Schost in [7] and [8]. The main interest of these

algorithms resides in their application in Schoof-like algorithms to compute

the group order of the Jacobian of genus 2 curves. The aim of this chapter is

to present alternative algorithms for trisecting any divisor in the Jacobian of

the curve based in reversing reduction in divisor class arithmetic. The meth-

ods presented in this chapter are loosely based on those used in [15] to find

bisections, but with significant variations that are required to deal with the

added complexity coming from the size of the system to solve. Trisections in

characteristic 2 have been considered in [17] and [18].

Our methods produce two polynomials associated to divisors of 3-torsion

(general for the curve) and trisections of a specific divisor. The first has degree

80 and its roots can be used to produce the 3-torsion divisors, whereas the

second has degree 81 in general and its roots can be used to produce the pre-

images of multiplication-by-3 for the given divisor. Note that in both cases, any

unwanted roots (“false positives”) are removed explicitly from the polynomial.

We also show the relation between the possible factorization types of these

two polynomials (3-torsion and trisection), which can be used to specialize the

factorization technique used in the trisection algorithm.

The structure of the rest of the chapter is as follows: in Section 3.1, we

recall generalities about genus 2 curves in odd characteristic. In Section 3.2

we present the basic algorithms that will be used in the construction of the

trisection algorithm. In Section 3.3, we construct a polynomial of degree 80

whose roots allow us to calculate the 3-torsion divisors. In Sections 3.4 and 3.5

we provide a constructive method to find trisections of any divisor from the

roots of certain polynomials of degree 81. In Section 3.6 we show how we can

remove parasitic factors (“false positives”) by explaining how they appeared.

In Section 3.7 we give a classification of the rank of the 3-torsion subgroup

in terms of the factorization of the 3-torsion polynomial and we describe the

19

20 CHAPTER 3. Trisection in odd characteristic

factorization of our trisection polynomials in terms of the Galois structure of

the 3-torsion subgroup. We also generalize these ideas for ` ∈ {5, 7}.

3.1 Generalities

Let C be a non-singular genus 2 curve over a finite field Fq of odd characteristic

greater than 5 given in the model

C : y2 = f(x) (3.1.1)

where f(x) = x5 + f3x
3 + f2x

2 + f1x+ f0 ∈ Fq[x] has no multiple roots.

We work in the group of Fq-points of the Jacobian Jac(C), in terms of

Mumford coordinates [u(x), v(x)] corresponding to the ideal generated by u(x)

and y−v(x) in the ideal class group. In genus 2, every element in Jac(C)−{0}
can be represented by reduced divisors of weight one [x + u0, v0] or two [x2 +

u1x+u0, v1x+ v0] (we refer to the degree of the effective divisor associated to

D as its weight). An algorithm due to Cantor [3] allows us to compute in the

group with this representation of elements of Jac(C). Cantor’s group operation

algorithm works in two steps: composition and reduction.

Algorithm 3 Composition

Require: D1 = [u1(x), v1(x)] and D2 = [u2(x), v2(x)], semireduced divisors.

Ensure: A semireduced divisor D = [u(x), v(x)] equivalent to D1 +D2.

1: Use the Euclidean algorithm to compute d = gcd(u1, u2, v1 + v2), with

d = s1u1 + s2u2 + s3(v1 + v2)

2: Set u = u1u2/d
2

3: Set v(x) as the remainder of
s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u

The reduction step of Cantor’s algorithm [3] consists in the transformation

of a semireduced divisor (with unreduced coordinates) into a reduced divisor.

Let D be a semireduced divisor represented by D = [ũ(x), ṽ(x)] with m =

deg(ũ(x)). Cantor gives two versions of the reduction step. The first one

uses direct operation which, after a number of repetitions, outputs a reduced

divisor. The second version of Cantor’s reduction algorithm works via a single

reduction step. Both versions are equivalent (as they produce the same reduced

divisor). The first is often preferred in practice due to its simplicity (and lower

complexity for small genera), but the second reduction approach is more useful

in our context. It applies if there exist β, α, γ ∈ F[x] such that β = γũ + αṽ,

where deg(β) ≤ (m + g)/2 and deg(α) ≤ (m − g − 1)/2 with m = deg(ũ(x)),

and such that gcd(γ, α) = 1. For g = 2, this gives the following algorithm:

3.2. Basic Algorithms 21

Algorithm 4 Reduction

Require: D = [ũ(x), ṽ(x)], a semireduced divisor.

Ensure: A reduced divisor E equivalent to D.

1: Use a partial Euclidean algorithm to obtain β, α, γ ∈ F[x]

such that β = γũ+ αṽ, with deg(β) ≤ (m+ 2)/2

and deg(α) ≤ (m− 3)/2 with m = deg(ũ(x))

2: Set û = gcd(β, α) = gcd(ũ, α) and define u = ũ/û, β = β/û,

and α = α/û

3: Set u =
β

2 − α2f

u
and compute α−1 such that α−1 · α ≡ 1 mod u

4: E is COMPOSITION of E1 = div(u,−α−1β) and E2 = div(û, v)

(note that E2 is the divisor zero when û = 1 in Step 2)

We define the trisections of a given divisor D3 = [u3(x), v3(x)] as the set of

pre-images D = [u(x), v(x)] ∈ Jac(C)(Fq) under the multiplication by 3 map

[3] : Jac(C)(Fq) → Jac(C)(Fq)

D → D3 = 3D.

3.2 Basic Algorithms

In this section we present a generalization of the technique of de-reduction

used in [15] which consists in searching for the linear polynomial involved in

the reduction part of the addition law. The basic idea consists in reversing the

reduction step of Cantor’s algorithm to find (all) the semireduced divisors in

the class of D3 which are the direct composition of a reduced divisor with itself

(in the case of bisections). To apply this idea to trisections, the main difference

is that we want the de-reduced divisor to be the composition of 3 copies of a

reduced divisor. In practice, when computing 3D it would be natural to use

twice the “simple” recursive reduction step (reduction via principal divisors of

the form y − v(x)) to fully reduce 3D. When the weight of the semireduced

divisor is somewhat small, this version of the reduction is usually more efficient

in direct computations, but when computing trisections, the two layers of de-

reduction produce systems that are a little more difficult to solve.

Algorithm REDUCTION transforms unreduced coordinates [ũ(x), ṽ(x)] to

obtain a reduced divisor D = [u(x), v(x)]. Our method consists in reversing

REDUCTION, working mostly on Step (iii), to obtain an unreduced divisor of

a specific form. For this, we suppose the general case gcd(ũ(x), α(x)) = 1 in

Step (ii) (otherwise see Section 3.6). Hence the coordinates [ũ(x), ṽ(x)] in Step

(iii) satisfy

u(x) = ε
β(x)2 − α(x)2f(x)

ũ(x)
,

(with ε ∈ F×q to equate leading coefficients), and Step (iv) returns E = E1.

22 CHAPTER 3. Trisection in odd characteristic

Starting from the coordinates [u(x), v(x)] of D with β = γu+ αv, we re-write

this equation as

ε · ũ =
β2 − α2f

u

= γ2 · u+ γα · 2v + α2 · v
2 − f
u

, (3.2.1)

which we use to compute the de-reduction. Recall that the division v2−f
u is

exact since D = [u(x), v(x)] is a divisor (the divisibility condition is part of

Mumford’s representation).

The following part of the method holds for an arbitrary natural n. Starting

with the coordinates [u(x), v(x)] = [un(x), vn(x)] of Dn, we want to obtain

the coordinates [ũ(x), ṽ(x)] = [un1 (x), ...] of the “de-reduced” divisor nD1 (the

unreduced composition of n copies of D1 = [u1(x), v1(x)]). To determine the

required degrees for α and γ, we consider the parity of the degrees on both

sides of the equality, taking into account both u1 and un should be monic

of degree at most 2 since they are coordinates of (proper reduced) divisors.

Hence deg(vn) < deg(un) ≤ 2 and deg((v2
n − f)/un) = 5− deg(un) > 3, so the

leading term on the left-hand side comes from the term in γ2 or α2 depending

on the degree on the left-hand side. Furthermore, either α(x) or γ(x) can be

made monic if we require that ε = ±1 (since u(x), ũ(x) and f(x) are monic).

The correct combinations of deg(α), deg(γ) and ε can be summarized in the

following table:

ndeg(u1) deg(un) deg(α) deg(γ) monic ε

even 2 ≤ ndeg u1 − 2

2

ndeg(u1)− 2

2
γ 1

even 1
ndeg u1 − 4

2
≤ ndeg(u1)− 3

2
α −1

odd 2
ndeg u1 − 3

2
≤ ndeg(u1)− 3

2
α −1

odd 1 ≤ ndeg u1 − 5

2

ndeg(u1)− 1

2
γ 1

It is possible that un(x) = u1(x) (see Section 3.3), and both must be ob-

tained during the de-reduction, but in general un(x) is known and u1(x) is

unknown. Algorithm 5 below summarizes the whole process.

In this way, we turn the reduction step in Cantor’s algorithm into a polyno-

mial system. If the solution of this system satisfies gcd(u1, α) 6= 1, we do not

compute α−1 and we must find v1 in other form (see Example 3 in Section 3.6).

We call general de-reduction method that undoes one-step-reduction in Can-

tor’s algorithm. Note that de-reduction always looks for an unreduced divisor

of a very specific form. Otherwise there would be infinitely many solutions.

The tool to solve our polynomial system will be the resultant. Let p1 and p2

be two polynomials in several variables. We denote Resx(p1, p2) the resultant

with respect to a variable x.

3.3. Computing 3-torsion divisors 23

Algorithm 5 De-reduction

Require: Values of n, deg(u1), deg(un), and Dn (if it is fixed).

Ensure: A reduced divisor D1 such that nD1 is equivalent to Dn

(if Dn is not fixed, consider Dn = −D1).

1: Determine the degrees of α(x) and γ(x), which one is monic and ε using

the previous table

2: Set the coefficients of u1(x), v1(x), α(x) and γ(x) as unknowns

3: If Dn = [un(x), vn(x)] is known, use its coefficients as fixed values, other-

wise set un(x) = u1(x) and vn(x) = −v1(x)

4: Compute (symbolically) the left-hand side ε · u1(x)n

5: Compute (symbolically) the right-hand side

γ2 · un + γα · 2vn + α2 · v
2
n − f
un

6: Equate both sides, matching the different powers of x

7: Solve the resulting system

3.3 Computing 3-torsion divisors

To compute divisors of order 3, we look for divisors satisfying the equation

2D ≡ −D. This avoids having to work directly with the class 0. We know that

(non-zero) 3-torsion divisors must have weight 2, otherwise there would exist

a principal divisor whose affine support consists of exactly 3 points, but if the

genus of C is at least 2, such a divisor cannot be principal. Thus a divisor D of

order 3 is of the form [u(x), v(x)] = [x2+u1x+u0, v1x+v0] with v2−f = 0 mod

u. Using COMPOSITION we obtain unreduced coordinates of the form [u2, ṽ]

for 2D. On the other hand, −D = [u(x),−v(x)], which we de-reduce using the

intersection between y2− f(x) and α(x)y− β(x). Then β(x)2−α(x)2f(x) = 0

mod u(x) follows, and (3.2.1) becomes the polynomial identity

u2 =
(γu− αv)2 − α2f

u
= γ2u− 2αγv + α2

(
v2 − f
u

)
. (3.3.1)

By matching degrees, the only possibility is β(x) = γ(x)u(x) + α(x)(−v(x)),

γ = x + c0 and α = a0 (assumed non-zero since in the intersection we cannot

contain α(x)).

Matching coefficients we obtain 4 equations in 6 unknowns (u1, u0, v1, v0,

c0 and a0). The divisibility condition v2 − f = 0 mod u gives us two more

equations. All together we find the following set of equations:

0 =− u1 + 2c0 − a2
0 (3.3.2)

0 = 2c0u1 − 2a0v1 + a2
0u1 − u0 + c20 − u2

1 (3.3.3)

24 CHAPTER 3. Trisection in odd characteristic

0 = − 2a0c0v1 − 2u1u0 − 2a0v0 − a2
0u

2
1 + 2c0u0 + c20u1

+ a2
0u0 − a2

0f3 (3.3.4)

0 =− u2
0 + a2

0u1f3 − 2a2
0u1u0 − 2a0c0v0 + c20u0 + a2

0v
2
1

− a2
0f2 + a2

0u
3
1 (3.3.5)

0 =− u2
1f3 − f1 + 3u0u

2
1 + u0f3 − u2

0 − u4
1 + 2v1v0 + u1f2 − u1v

2
1 . (3.3.6)

0 = u0f2 − f0 − u0u1f3 + 2u2
0u1 + v2

0 − u0u
3
1 − u0v

2
1 . (3.3.7)

From (3.3.2), we can write u1 in terms of a0 and c0:

u1 = 2c0 − a2
0. (3.3.8)

(3.3.3) and (3.3.4) can then be used to write u0 and v0 in terms of a0, c0 and

v1:

u0 =c20 + 4c0a
2
0 − 2a0v1 − 2a4

0, (3.3.9)

v0 =c0v1 − 5c20a0 + 10c0a
3
0 − 3a2

0v1 −
7

2
a5

0 −
1

2
a0f3. (3.3.10)

Substituting identities (3.3.8),(3.3.9) and (3.3.10) into (3.3.5), (3.3.6), (3.3.7)

gives us polynomials E1, E2 and E3 of degree 2, 2 and 3 in v1 respectively.

We then compute r1 = Resv1
(E1, E2), r2 = Resv1

(E1, E3), r3 = Resv1
(E2, E3).

From r1, r2 and r3 we can remove trivial factors of a0. We then compute

R1 = Resc0(r1, r2) and R2 = Resc0(r1, r3). Finally T (a0) = gcd(R1, R2) has

degree 80 in a0. These computations can be performed symbolically in the ring

Z[f3, f2, f1, f0, v1, v0, u1, u0, a0].

Proposition 2. For any genus 2 curve C as in (3.1.1), the polynomial T (a0)

in Fq[a0] obtained above has 80 non-zero roots in Fq (counted with multiplicity).

Proof: T (a0) is monic of degree 80 and has constant term 216312Res2
x(f, f ′).

Since C is nonsingular, we must have Res2
x(f, f ′) 6= 0. Hence none of the roots

can be zero.

See [21] for a MAGMA function to compute the 3-torsion.

3.4 Weight-2 trisections

In this section we explain how to find, for any given weight-2 divisor D3, those

divisors D1 such that 3D1 = D3. We assume that divisors D1 and D3 are of

the form [u1(x), v1(x)] = [x2 + u11x + u10, v11x + v10], [u3(x), v3(x)] = [x2 +

u31x + u30, v31x + v30] since this is the general case. We consider weight 1

divisors D3 in Section 3.5, and we forget about trisections D1 of weight 1 since

they are easily found from those of weight 2 and the 3-torsion subgroup.

After the composition step of Cantor’s algorithm, we obtain divisors of the

form [u3, ṽ] for 3D1. We de-reduce as above and β2 −α2f = 0 mod u3 follows.

3.4. Weight-2 trisections 25

As above, we obtain:

u3
1 =

(γu3 + αv3)2 − α2f

u3
= γ2u3 + 2αγv3 + α2

(
v2

3 − f
u3

)
(3.4.1)

and then similarly β = γu3 + αv3 with γ = x2 + c1x + c0 and α = a1x + a0

(here a1 is assumed non-zero).

Matching coefficients we obtain 6 equations in 6 unknowns (u11, u10, c1, c0,

a1 and a0):

0 =− a2
1 + u31 + 2c1 − 3u11 (3.4.2)

0 =− 2a1a0 + 2a1v31 + 2c1u31 + a2
1u31 + u30 + c21 + 2c0

− 3u10 − 3u2
11 (3.4.3)

0 = c21u31 + 2a0v31 − a2
1f3 − a2

1u
2
31 + 2c1c0 − 6u11u10 + 2c0u31

+ 2a1c1v31 + 2u30c1 + u30a
2
1 − a2

0 + 2v30a1 − u3
11 + 2a1a0u31 (3.4.4)

0 =− a2
1f2 + 2u30a1a0 − 2u30a

2
1u31 + a2

0u31 − 3u2
11u10 + a2

1u
3
31

+ a2
1v

2
31 + 2v30a1c1 − 2a1a0u

2
31 + a2

1u31f3 + 2a0c1v31

+ 2c1c0u31 + c20 + 2v30a0 + 2u30c0 + u30c
2
1 − 3u2

10

+ 2a1c0v31 − 2a1a0f3 (3.4.5)

0 = 2u30c1c0 − a2
0u

2
31 − a2

0f3 + 2a0c0v31 + 2v30a1c0 − 3u11u
2
10

+ c20u31 + 2v30a0c1 + 2a1a0u31f3 + 2a1a0u
3
31 + u30a

2
0

+ 2a1a0v
2
31 − 4u30a1a0u31 − 2a1a0f2 (3.4.6)

0 = a2
0u31f3 + a2

0v
2
31 − a2

0f2 − 2u30a
2
0u31

− u3
10 + 2v30a0c0 + u30c

2
0 + a2

0u
3
31. (3.4.7)

From (3.4.2) we can write u11 in terms of a1 and c1

u11 =
2c1 + u31 − a2

1

3
, (3.4.8)

and then (3.4.3) can be used to write u10 in terms of a1, c1, a0 and c0:

u10 =
1

9
(3u30 + 6v31a1 + 6c0 − c21 + 2u31c1

+ 5a2
1u31 − 6a1a0 + 4c1a

2
1 − u2

31 − a4
1). (3.4.9)

In the general case we assume −c1 + u31 + 2a2
1 is nonzero. Then (3.4.4) can be

used to write c0 in terms of a1, a0 and c1,

c0 =
1

−18c1 + 18u31 + 36a2
1

(−90a1a0u31 − 18u30c1 − 54v30a1

+ 18u30u31 + 27a2
0 + 3c21u31 − 33u31a

4
1 + 27a2

1f3 + 60a2
1u

2
31

− 5u3
31 − 54v31a0 − 4c31 − 45u30a

2
1 + 5a6

1 + 60c1a
2
1u31

+ 42c21a
2
1 + 6c1u

2
31 − 30c1a

4
1 + 18c1v31a1 − 72c1a1a0

+ 36u31v31a1 − 36a3
1v31 + 36a3

1a0). (3.4.10)

26 CHAPTER 3. Trisection in odd characteristic

Substituting identities (3.4.8), (3.4.9) and (3.4.10) into (3.4.5), (3.4.6), (3.4.7)

we obtain polynomials E1, E2 and E3 of degrees 4, 4 and 6 in a0 respectively.

The coefficient of a4
0 in (3.4.5) is a non-zero constant, so we can replace E2

and E3 by Ẽ2 = E2 mod E1 and Ẽ3 = E3 mod E1. We then compute r1 =

Resa0(E1, Ẽ2), r2 = Resa0(E1, Ẽ3) and r3 = Resa0(Ẽ2, Ẽ3). From r1, r2 and r3

we can remove unwanted factors of −c1 + u31 + 2a2
1, obtaining r̃1, r̃2, r̃3 (which

can easily computed symbolically). Next we compute R1 = Resc1(r1, r2), R2 =

Resc1(r1, r3) and then G = gcd(R1, R2). If we remove the trivial factors (in

a1) from G, we obtain a polynomial of degree 135 in a1. Finally we can easily

identify and remove from G three copies of a predictable factor Gf (a1) of degree

18 (for more details on this, see Section 3.6), obtaining in the end a polynomial

P (a1) of degree 81. Our trisection algorithm for this case is the following:

Algorithm 6 Trisection (general case)

Require: D3 = [x2 + u31x+ u30, v31x+ v30] ∈ Jac(C)(Fq).
Ensure: D = [u1(x), v1(x)] such that 3D = D3.

1: Evaluate r̃i in the coefficient of f(x), u3(x), and v3(x)

2: Compute R1 and R2

3: Compute G(a1) = gcd(R1, R3)

4: Compute P (a1) = G(a1)/Gf (a1)3

5: Find a root A1 of P (a1)

6: Compute G1(c1) := gcd(r1(A1, c1), r2(A1, c1))

7: Find a root C1 of G1(c1)

8: If −C1 + u31 + 2A2
1 6= 0 compute

G2(a0) := gcd(E1(A1, C1, a0), Ẽ2(A1, C1, a0)), Ẽ3(A1, C1, a0))

9: Find a root A0 of G2(a0)

10: Find C0 replacing in (3.4.10)

11: Find u11, u10 replacing in (3.4.8), (3.4.9)

12: Find v1 = −α−1β mod u1

See [22] for a MAGMA function to compute trisections of divisors D3 of

weight 2.

Example 1. Consider p = 2160 − 47 and the curve

C : y2 = x5 + 7x3 + x2 + x

over Fp. For this curve, the factorization of the 3-torsion polynomial is of the
form (1)2(2)3(3)2(6)11 and we obtain two 3-torsion divisors, ±D3, with

D3 :=(x2 + 931762944096586147279230027121070745020815857375x+

488873756787536501744810044052577766667795825339,

1305126933853188150337554885652469543169375406912x+

507085985232638779600803004953929238989759913638).

3.5. Weight-1 trisections 27

By successively applying the trisection algorithm from D3, we obtain a divisor

D81 :=(x2 + 219335662248133396654569319737208165458797665441x+

762120291454194142545198530846238796230952679247,

245403343317120493492667348268584111024316847588x+

1333409534098972462678370037821289793015805103806)

of order 81, which cannot be trisected further, so the 3-Sylow group is of the

form Jac(C)[3∞] = 〈D81〉 ≡ Z34 .

3.5 Weight-1 trisections

In this section we explain how to find, for any given divisor D3 of weight-

1, those divisors D1 such that 3D1 = D3. If we assume D3 is of the form

D3 = [u3(x), v3(x)] = [x + u30, v30] with v30 6= 0 (i.e. the support of D3 does

not contain a Weierstrass point), then D1 must have the form [u1(x), v1(x)] =

[x2 +u11x+u10, v11x+v10]. Similarly to Section 3.4 above, de-reduction yields

the polynomial identity

u3
1 =

(γu3 + αv3)2 − α2f

u3
= γ2u3 − 2αγv3 + α2

(
v2

3 − f
u3

)
. (3.5.1)

with β(x) = γ(x)u3(x) + α(x)v3(x) and γ(x) = c2x
2 + c1x + c0 (here c2 is

assumed non-zero) and α(x) = x + a0. Matching coefficients we obtain 6

equations in 6 unknowns (u11, u10, c2, c1, c0 and a0):

0 = c22 + u30 − 2a0 + 3u11 (3.5.2)

0 = c22u30 + 2c2c1 + 2a0u30 − f3 − u2
30 − a2

0 + 3u10 + 3u2
11 (3.5.3)

0 = 2c2c0 + 2v30c2 + u30f3 − 2a0f3 − 2a0u
2
30 + a2

0u30 + 6u11u10

+ 2c2c1u30 + c21 − f2 + u3
30 + u3

11 (3.5.4)

0 = c21u30 + 2c1c0 + 2v30c1 + u30f2 − u2
30f3 − 2f2a0 + 2a0u

3
30

− a2
0f3 − a2

0u
2
30 + 3u2

11u10 + 2c2c0u30 + 2v30a0c2

+ 2a0u30f3 − f1 − u4
30 + 3u2

10 (3.5.5)

0 = 3u11u
2
10 + 2v30c0 − 2a0f1 − 2a0u

4
30 − a2

0f2 + a2
0u

3
30

+ 2c1c0u30 + 2v30a0c1 + 2a0u30f2 − 2a0u
2
30f3 + a2

0u30f3 + c20 (3.5.6)

0 =2v30a0c0 + a2
0u30f2 − a2

0u
2
30f3 + c20u30 − a2

0f1 − a2
0u

4
30 + u3

10. (3.5.7)

From (3.5.2) we can write u11 in terms of a0 and c2 and then (3.5.3) and (3.5.4)

can be used to write u10 and c0 in terms of c2, a0 and c1. Substituting expres-

sions for u11, u10 and c0 into (3.5.5), (3.5.6), (3.5.7) gives us polynomials E1, E2

and E3 of degrees 3, 4 and 4 in c1 respectively. The coefficient of c31 in (5.2.7)

is a non-zero constant, so we can replace E2 and E3 by Ẽ2 = E2 mod E1 and

Ẽ3 = E3 mod E1. We then compute r1 = Resc1(E1, Ẽ2), r2 = Resc1(E1, Ẽ3),

r3 = Resc1(Ẽ2, Ẽ3). Finally we compute R1 = Resa0(r1, r2), R2 = Resa0(r1, r3)

28 CHAPTER 3. Trisection in odd characteristic

and then G = gcd(R1, R2). If we remove the trivial factors of c2 from G, we

obtain a polynomial of degree 132 in c2. Finally we can easily remove from G

a predictable factor of degree 17 which appears 3 times, obtaining a polyno-

mial P (c2) of degree 81 in c2. The resulting trisection algorithm for weight-1

divisor is analogous to Algorithm 4 TRISECTION (General case). See [23] for

a MAGMA function to compute trisections of divisors D3 of weight 1.

Example 2. Consider p = 10007 and the curve defined by

Cy2 = x5 + 1321x3 + 3239x2 + 8829x+ 525

over Fp. The factorization of the 3-torsion polynomial is of the form (20)4, so
the order of the group is relatively prime to 3. Therefore, all divisors D3 in
Jac(C)(Fq) will have a unique trisection defined over Fq. For example, given

D3 := (x+ 1179, 507),

its trisection polynomial P (x = a1) is

(x+ 2698)(x80 + 9672x79 + . . .+ 2054x+ 8698)

and we find that the only trisection of D3 is

1

3
D3 = {(x2 + 9485x+ 2588, 2977x+ 7494)}

with c2 = 7309, a0 = 1864, c1 = 2365, c0 = 4063.

3.6 Predictable false positives (parasitic factors)

We now explain why we can remove the factor Gf of degree 18 in a1 which

appears three times in G in Section 3.4 above. One assumption to obtain

(3.4.1) is that u1(x) and α(x) do not have factors in common. Let us now

consider the general case gcd(u1, α) 6= 1. From the definition of α, β and γ, we

must have gcd(u1(x), α(x)) = α(x) with α(x) of degree 1. We can therefore

write u1(x) = α(x)(x − t) and γ(x) = α(x)(a−1
1 x + k0). Note that the value

a1 in γ(x) is the same a1 as in α(x) = a1x + a0 (Section 3.4). Any root a1

obtained in case gcd(u1(x), α(x)) = α(x) which is also a root of G in Section

3.4 can be removed safely. Equation (3.4.1) becomes

α(x)(x− t)3 =
((a−1

1 x+ k0)u3(x) + v3(x))2 − f(x)

u3(x)
.

The coefficients of x3, x2, x1 and x0 provide 4 equations in 4 unknowns t, k0,

a1 and a0. From the coefficient of x3 we can write a0 in terms of t, k0 and a1.

Substituting for a0 in the coefficients of x2, x1 and x0 we obtain polynomials

E1, E2 and E3. We then compute r1 = Resk0(E1, E2), r2 = Resk0(E1, E3), r3 =

Resk0
(E2, E3), s1 = Rest(r1, r2), s2 = Rest(r1, r3) and finally s = gcd(s1, s2).

If we remove the trivial factors (in a1) from s, we obtain a polynomial of degree

18 in a1 which is exactly the factor Gf that we wanted to exclude in Section

3.4. In general we just obtain false roots, but if this case is successful we can

3.7. Factorization of polynomials of `-torsion and `-sections 29

obtain solutions (see example 3).

By a similar argument, we can exclude the predictable factor of degree 17 in

c2 which appears three times in G in Section 3.5 .

Example 3. Consider p = 127 and the curve

C : y2 = x5 + x3 + x2 + 3x+ 1

over Fp. The factorization of the 3-torsion polynomial is of the form (10)8.

Again the order of the group is relatively prime to 3, hence all D3 ∈ Jac(C)(Fq)
have a unique trisection defined over Fq. For example, given

D3 := (x2 + 104x+ 108, 77x+ 40),

its trisection polynomial P (a1 = x) is

(x+ 123)(33x80 + 32x79 + . . .+ 30x+ 92),

the Gf factor of degree 18 is

(x+ 123)(12x17 + 110x16 + . . .+ 62x+ 80),

and the only trisection is

1

3
D3 = {(x2 + 82x+ 58, 125x+ 98)}

with α(x) = 123x + 69 and γ(x) = x2 + 79x + 78. Observe that gcd(x2 +

82x + 58, 123x + 69) = x + 78. We obtained v1 as −(γ(x)/α(x) · u3(x) +

v3(x)) mod u1(x).

3.7 Factorization of polynomials of `-torsion and `-sections

The possible factorization type of the `-torsion polynomial is determined by

the characteristic polynomial χ(x) of the Frobenius endomorphism π reduced

modulo `. For elliptic (genus 1) curves, this was studied by Verdure [20]. For

hyperelliptic curve of genus 2, the number of distinct cases to deal with increases

significantly. An analysis of the upper bound for the irreducible factors can be

found in [11], and an application to the factorization types of `-modular poly-

nomials can be found in [9]. The methods we use are based on those in [9] for

`-modular polynomials but with significant variations since we want to estab-

lish the relationship between the type of factorization of `-torsion polynomial

(the precise Galois orbits of the `-torsion divisors) and the field of definition of

the `-sections. Let π be the Frobenius endomorphism of Fq and

χ̃(x) = x4 − s̃1x
3 + s̃2x

2 − s̃1q̃x+ q̃2 (3.7.1)

be the characteristic polynomial of π, where q̃, s̃1, s̃2 ∈ F`. A classification of

the factorization types of χ̃ over F` is given by Gaudry and Schost in [9]. We

first establish the following lemma which will be used throughout the section.

30 CHAPTER 3. Trisection in odd characteristic

Lemma 6. Let D be a divisor in Jac[`] and let

VD := SpanF`{πn(D), n ∈ N}.

Let P be the minimal polynomial of π restricted a VD. Then the degree of

extension of Fq where D is defined is

ord′(P) := min{k ∈ N∗ : xk − 1 = 0 mod P}.

Proof: If the field of definition of a divisor D is Fqk then (πk − Id)(D) is

trivial on VD, thus xk − 1 ≡ 0 mod P where P is the minimal polynomial in

VD.

Suppose that for some k′ < k we have xk
′ − 1 ≡ 0 mod P on VD. Then D is

defined over Fqk′ . As the field of definition is the smallest k′ that satisfies this

condition then k′ must be ord′(P).

For ` = 3 we now establish the relation between factorization types of the

3-torsion polynomial T (a0) with the factorization types of the characteristic

polynomial of Frobenius χ̃(x).

Proposition 3. The possible degrees of the irreducible factor of T (a0) from

Proposition 2 are as follows:

χ̃(x) T (a0)

(4) (5)16, (10)8, (20)4

(2)2 (4)2(12)6, (4)20, (8)(24)3, (8)10

(2)(2) (8)(24)3, (8)10

(2)(1)2 (2)(4)6(6)(12)4, (1)2(3)2(4)6(12)4, (2)4(4)18, (1)8(4)18

(2)(1)(1) (1)2(2)3(8)9

(1)4 (1)2(3)8(9)6 , (1)8(3)24, (1)26(3)18, (1)80,

(2)(6)4(18)3, (2)4(6)12, (2)13(6)9, (2)40

(1)2(1)2 (1)2(2)3(3)2(6)11, (1)2(2)12(3)2(6)8, (1)8(2)9(6)9 , (1)8(2)32

Proof: From the factorizations of χ̃(x) given in [9], we discard the cases

(1)2(1)(1), (1)(1)(1)(1) since they require 3 or 4 distinct rational roots in F` as

there are only 2 non zero elements in F3.

We show the details for the case with χ(x) = x4 + 2x3 + 2x2 + 2x + 1 =

(x2 + 1)(x+ 1)2, all other cases are analogous. For this polynomial χ(x) there

are 2 possible Jordan forms for the matrix associated to the Frobenius:

A1 :=

(
0 1 0 0

2 0 0 0

0 0 2 1

0 0 0 2

)
, A2 :=

(
0 1 0 0

2 0 0 0

0 0 2 0

0 0 0 2

)
.

We now show how to obtain the factorization of T (a0) for A1. The work for

the other case is similar. Note that B1 :=

(
0 1

2 0

)
is the companion matrix

of p(x) = (x2 + 1), the minimal polynomial. Also note that B2 :=

(
2 1

0 2

)
has minimal polynomial (x+ 1)2. Given D1, D2, D3, and D4 the generators of

Jac(C)[3] associated to the matrix A1, and let VB1 be the vector space generated

3.7. Factorization of polynomials of `-torsion and `-sections 31

by the conjugates of 0 6= D ∈ 〈D1, D2〉. Then the characteristic polynomial

of π restricted to VD is the characteristic (minimal) polynomial of matrix B1.

Then every D in VB1
is defined over an extension of degree ord′(x2 + 1) = 4.

For all 0 6= D ∈ 〈D3〉 where π(D3) = 2D3, D is defined over an extension

of degree ord′(x + 1) = 2. Let VB2 be the vector space generated by the

characteristic (minimal) polynomial of matrix B2. Then all D in VB2
− 〈D3〉

are defined over an extension of degree ord′((x + 1)2) = 6. Let D = E + F

with E ∈ 〈D3〉 and F ∈ VB1
. Then D is defined over an extension of order

ord′((x2+1)(x+1)) = 4. Finally, D = E+F with E ∈ VB1 and F ∈ VB2−〈D3〉
is defined over an extension of degree ord′((x2 +1)(x+1)2) = 12. The 3-torsion

polynomial therefore factors in the form (2)(4)6(6)(12)4.

We now study the possible factorizations of P (a1) and P (c2), taking ad-

vantage of the factorization of the 3-torsion polynomial.

Proposition 4. The degrees of the irreducible factors of P (a1) (and P (c2))

are shown in tables 3.1 and 3.2.

Table 3.1: Factorization for curves of 3-rank 0 over Fq.

T (a0) Trisection

(5)16 (1)(5)16

(10)8 (1)(10)8

(20)4 (1)(20)4

(4)2(12)6 (1)(4)2(12)6

(4)20 (1)(4)20

(8)(24)3 (1)(8)(24)3

T (a0) Trisection

(8)10 (1)(8)10

(2)(4)6(6)(12)4 (1)(2)(4)6(6)(12)4

(2)4(4)18 (1)(2)4(4)18

(2)(6)4(18)3 (1)(2)(6)4(18)3

(2)13(6)9 (1)(2)13(6)9

(2)40 (1)(2)40

Proof: First note that when there is no 3-torsion over Fq then the cardinality
of Jac(C)(Fq) is relatively prime to 3. In this case, for any D ∈ Jac(C)(Fq)
we see (3−1 mod #Jac(C)(Fq)) · D is a trisection of D over Fq and then the
factorization of the trisection polynomial is given from the factorization of 3-
torsion polynomial by adding a linear factor. Thus we only need to study the
cases where the rank of Jac(C)(Fq)[3] is ≥ 1. There are 12 cases:


0 1 0 0

2 0 0 0

0 0 1 1

0 0 0 1




0 1 0 0

2 0 0 0

0 0 1 0

0 0 0 1




0 1 0 0

1 1 0 0

0 0 1 0

0 0 0 2


(1)2(3)2(4)6(12)4 (1)8(4)18 (1)2(2)3(8)9


0 1 0 0

1 2 0 0

0 0 1 0

0 0 0 2




1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


(1)2(2)3(8)9 (1)2(3)8(9)6 (1)26(3)18

32 CHAPTER 3. Trisection in odd characteristic

Table 3.2: Factorization for curves of 3-rank ≥ 1 over Fq.

T (a0) Successful Unsuccessful

trisection trisection

Rank 1 (1)2(3)2(4)6(12)4 (1)3(3)2(4)6(12)4 (3)3(12)6

(1)2(2)3(8)9 (1)3(2)3(8)9 (3)(6)(24)3

(1)2(3)8(9)6 (1)3(3)8(9)6 (9)9

(1)2(2)12(3)2(6)8 (1)3(2)12(3)2(6)8 (3)3(6)12

(1)2(2)3(3)2(6)11 (1)3(2)3(3)2(6)11 (3)3(6)12

(1)2(2)12(3)2(6)8 (1)3(2)12(3)2(6)8 (3)3(6)12

Rank 2 (1)8(2)9(6)9 (1)9(2)9(6)9 (3)3(6)12

(1)8(4)18 (1)9(4)18 (3)3(12)6

(1)8(2)32 (1)9(2)32 (3)3(6)12

(1)8(3)24 (1)9(3)24 (3)27

Rank 3 (1)26(3)18 (1)27(3)18 (3)27

Rank 4 (1)80 (1)81 (3)27


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 1 0 0

0 1 0 0

0 0 2 1

0 0 0 2


(1)8(3)24 (1)80 (1)2(2)3(3)2(6)11


1 1 0 0

0 1 0 0

0 0 2 0

0 0 0 2




1 0 0 0

0 1 0 0

0 0 2 1

0 0 0 2




1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2


(1)2(2)12(3)2(6)8 (1)8(2)9(6)9 (1)8(2)36

We show the details for the case (1)2(2)3(3)2(6)11, the other cases are anal-

ogous. From the matrix, the basis satisfies wπ1 = w1, wπ2 = w1 +w2, wπ3 = 2w3,

and wπ4 = w3 + 2w4. Let D1 be a trisection of D3. Then the length of its

orbit under π determines the extension degree of Fq where it is defined and the

degrees of the factor of P (a1) to which it is associated. The length of the orbit

depends on the image Dπ
1 of D1 under the Frobenius. Write

Dπ
1 = D1 +m1w1 +m2w2 +m3w3 +m4w4

with mi ∈ {0, 1, 2} for i = 1, 2, 3, 4. We first look for trisections of D3 fixed

under the Frobenius endomorphism. If D1 + l1w1 + l2w2 + l3w3 + l4w4 is a

trisection defined over Fq we need li ∈ {0, 1, 2} such that

D1 + l1w1 + l2w2 + l3w3 + l4w4 = (D1 + l1w1 + l2w2 + l3w3 + l4w4)π

=D1 + (m1 + l1 + l2)w1 + (m2 + l2)w2 + (m3 + 2l3 + l4)w3 + (m4 + 2l4)w4,

3.7. Factorization of polynomials of `-torsion and `-sections 33

from which we obtain the following linear system:

m1 + l2 = 0

m2 = 0

m3 + l3 + l4 = 0

m4 + l4 = 0.

Solving this system, we obtain that

(D1 + 2m1w2 + (2m3 +m4)w3 + 2m4w4)π

= D1 + 2m1w2 + (2m3 +m4)w3 + 2m4w4

is fixed under the Frobenius. Since we have a trisection over Fq and the remain-
ing ones are obtained by adding a 3-torsion divisor, the factorization type of
the trisection polynomial corresponds to the factorization type of the 3-torsion
polynomial T (a0) with an additional linear factor. Thus we only need to study
the cases where m2 6= 0. We now show the orbits when m1 = m3 = m4 = 0
and m2 = 1, the other cases are analogous.

{D1, D1 + w2, D1 + w1 + 2w2}

{D1 + w1, D1 + w1 + w2, D1 + 2w1 + 2w2}

{D1 + 2w1, D1 + w2 + 2w1, D1 + 2w2}

{D1 + 2w1 + 2w3 + w4, D1 + 2w2 + 2w4, D1 + 2w1 + w2 + w3 + w4,

D1 + 2w2 + w4, D1 + 2w1 + w3 + 2w4, D1 + 2w1 + w2 + 2w3 + 2w4}

{D1 + w2 + 2w3 + 2w4, D1 + w2 + 2w3 + w4, D1 + w1 + 2w2 + 2w4,

D1 + w1 + 2w2 + w4, D1 + 2w3 + w4, D1 + w2 + w2 + w3 + w4}

{D1 + w1 + 2w2 + w3 + w4, D1 + w2 + 2w3 + w4, D1 + w1 + 2w2 + 2w3 + 2w4,

D1 + 2w4, D1 + w2 + w3 + 2w4, D1 + w4}

{D1 + w1 + 2w2 + w3 + 2w4, D1 + w2 + w4, D1 + w3 + w4,

D1 + w1 + 2w2 + 2w3 + w4, D1 + 2w3 + 2w4, D1 + w2 + 2w4}

{D1 + 2w1 + 2w4, D1 + 2w1 + w2 + w3 + 2w4, D1 + 2w1 + 2w2 + 2w4,

D1 + 2w2 + 2w3 + w4, D1 + 2w1 + w3 + w4, D1 + 2w1 + 2w3 + 2w4}

{D1 + 2w1 + 2w4, D1 + 2w1 + w2 + w3 + 2w4, D1 + 2w2 + w3 + w4,

D1 + w1 + w3 + w4, D1 + w1 + 2w3 + w4, D1 + w1 + w2 + w3 + w4}

{D1 + w1 + w2 + 2w3 + 2w4, D1 + w1 + w3 + 2w4, D1 + 2w1 + 2w2 + 2w4,

D1 + 2w1 + 2w2 + w4, D1 + w1 + 2w3 + w4, D1 + w1 + w2 + w3 + w4}

{D1 + 2w1 + 2w3, D1 + 2w1 + w2 + 2w3, D1 + 2w1 + w3,

D1 + 2w2 + 2w3, D1 + 2w1 + w2 + w3, D1 + 2w2 + w3}

{D1 + 2w1 + 2w2 + 2w3 + w4, D1 + w1 + w2 + w4, D1 + 2w1 + 2w2 + w3 + 2w4,

D1 + w1 + w3 + w4, D1 + w1 + 2w3 + 2w4, D1 + w1 + w2 + 2w4}

{D1 + w1 + 2w2 + w3 + 2w4, D1 + w2 + w4, D1 + w3 + w4,

D1 + w1 + 2w2 + 2w3 + w4, D1 + 2w3 + 2w4, D1 + w2 + 2w4}

{D1 + 2w1 + 2w4, D1 + 2w1 + w2 + w3 + 2w4, D1 + 2w2 + w3 + w4,

D1 + 2w1 + w4, D1 + 2w2 + 2w3 + 2w4, D1 + 2w1 + w2 + 2w3 + w4}

{D1 + 2w1 + 2w3 + w4, D1 + 2w2 + 2w4, D1 + 2w1 + w2 + w3 + w4,

D1 + 2w2 + w4, D1 + 2w1 + w2 + 2w3 + 2w4, D1 + 2w1 + w3 + 2w4}

In view of these orbits, working out the details for all posible images of D1,

we conclude the only factorization type is (3)3(6)12 if there are no trisections

over Fq.
From table 4.2, we obtain the following result regarding the minimal exten-

sion degree of Fq where trisections lie.

Corollary 1. If the curve has 3-rank r ≥ 1 in Fq and D3 ∈ Jac(C)(Fq) then

34 CHAPTER 3. Trisection in odd characteristic

• If the 3-torsion polynomial factors in the form (1)2(3)8(9)6, then D3 ad-

mits trisections in either Fq or Fq9 .

• In all other cases, D3 admits at least 3r trisections in Fq or Fq3

Table 3.3: Factorization for curves of 5-rank ≥ 1 over Fq.
5-torsion successful unsuccessful

Galois orbits 5-section 5-section

Rank 1 (1)4(2)10(4)150 (1)5(2)10(4)150 (5)(10)2(20)30

(1)4(5)124 (1)5(5)124 (5)125

(1)4(2)10(5)4(10)58 (1)5(2)10(5)4(10)58 (5)5(10)60

(1)4(2)60(5)4(10)48 (1)5(2)60(5)4(10)48 (5)5(10)60

(1)4(4)5(5)4(20)29 (1)5(4)5(5)4(20)29 (5)5(20)30

(1)4(4)30(5)4(20)24 (1)5(4)30(5)4(20)24 (5)5(20)30

(1)4(4)5(5)4(20)29 (1)5(4)5(5)4(20)29 (5)5(20)30

(1)4(4)30(5)4(20)24 (1)5(4)30(5)4(20)24 (5)5(20)30

(1)4(2)10(4)150 (1)5(2)10(4)150 (5)(10)2(20)30

(1)4(2)10(4)25(20)25 (1)5(2)10(4)25(20)25 (5)(10)2(20)30

(1)4(2)10(4)150 (1)5(2)10(4)150 (5)(10)2(20)30

(1)4(2)10(4)25(20)25 (1)5(2)10(4)25(20)25 (5)(10)2(20)30

(1)4(2)10(4)25(20)25 (1)5(2)10(4)25(20)25 (5)(10)2(20)30

(1)4(5)4(6)20(30)16 (1)5(5)4(6)20(30)16 (5)5(30)20

(1)4(4)5(24)25 (1)5(4)5(24)25 (5)(20)(120)5

(1)4(4)5(8)75 (1)5(4)5(8)75 (5)(20)(40)15

(1)4(4)5(24)25 (1)5(4)5(24)25 (5)(20)(120)5

(1)4(2)10(12)50 (1)5(2)10(12)50 (5)(10)2(60)10

(1)4(4)5(24)25 (1)5(4)5(24)25 (5)(20)(120)5

(1)4(4)5(24)25 (1)5(4)5(24)25 (5)(20)(120)5

(1)4(2)10(12)50 (1)5(2)10(12)50 (5)(10)2(60)10

(1)4(4)5(8)75 (1)5(4)5(8)75 (5)(20)(40)15

(1)4(3)40(15)32(5)4 (1)5(3)40(15)32(5)4 (5)5(15)40

Rank 2 (1)24(5)120 (1)25(5)120 (5)125

(1)24(6)100 (1)25(6)100 (5)5(30)20

(1)24(4)150 (1)25(4)150 (5)5(20)30

(1)24(4)25(20)25, (1)25(4)25(20)25 (5)5(20)30

(1)24(4)150 (1)25(4)150 (5)5(20)30

(1)24(2)50(10)50, (1)25(2)50(10)50 (5)5(10)60

(1)24(4)150 (1)25(4)150 (5)5(20)30

(1)24(4)25(20)25, (1)25(4)25(20)25 (5)5(20)30

(1)24(2)300 (1)25(2)300 (5)5(10)60

(1)24(3)200 (1)25(3)200 (5)5(15)40

Rank 3 (1)124(5)100 (1)125(5)100 (5)125

Rank 4 (1)624 (1)625 (5)125

The technique used to study the factorization of the 3-torsion and trisection

polynomial can be generalized for any `. If we know the orbits of `-torsion

divisors, we can determine the factorization of `-section polynomials. When

there is no `-torsion over Fq we obtain that (`−1 mod #Jac(C)) · D is a `-

section of D over Jac(C)(Fq) and then the field of definition of a `-section is

given from the field of definition of `-torsion elements. We can therefore restrict

ourselves to study the cases where the rank of Jac(C)(Fq)[`] is ≥ 1, which is

equivalent to study the polynomials of the form p = x4− s̃1x
3 + s̃2x

2− s̃1q̃x+ q̃2

such that (x−1)|p. From each polynomial we obtain the possible Jordan forms

for the matrix associated to the Frobenius. For each matrix we can compute

all possible orbits for Dπ
1 (for an algorithm to compute all possible orbits, see

[24]).

When going through the possible images Dπ
1 = D1 + m1w1 + m2w2 +

m3w3 +m4w4, it is convenient to first identify if there are divisors fixed under

the Frobenius, since the orbits are then obtained trivially (from the `-torsion

3.7. Factorization of polynomials of `-torsion and `-sections 35

divisors) instead of computed one by one, reducing the work significantly. We

briefly review the steps of this process.

Algorithm 7 Fields of definition (of `-sections)

Require: Polynomial χ̃(x) = x4− s̃1x
3 + s̃2x

2− s̃1q̃x+ q̃2 ∈ F`[x] divisible by

x− 1.

Ensure: The set of possible factorization types for the `-section polynomial.

1: Factorize χ̃(x) in F`[x]

2: Compute all the possible Jordan forms of the matrix associated to the

Frobenius endomorphism

3: for each Jordan form, set {w1, w2, w3, w4} the associated basis do

4: Compute the orbits of the space 〈w1, w2, w3, w4〉 under the Frobenius

5: Discard the orbit {0}
6: Lengths of the orbits → factorization type of the `-torsion polynomial

7: for each quadruple {m1,m2,m3,m4} ∈ (F`)4 do

8: Set the image of D1 under the Frobenius as

Dπ
1 = D1 +m1w1 +m2w2 +m3w3 +m4w4

9: if some divisor in D1 + 〈w1, w2, w3, w4〉 is fixed under the Frobenius

then

10: `-torsions → factorization type of the `-section polynomial

11: else

12: Set S = D1 + 〈w1, w2, w3, w4〉
13: repeat

14: Choose D ∈ S and compute its orbit

15: Remove all the elements of this orbit from S

16: until S = ∅
17: Lengths of orbits → factorization type of the `-section polynomial

18: end if

19: end for

20: end for

Using these ideas, we can determine all the possible fields of definition for `-

sections (with ` small). In Table 3.3, we give the field of definition of 5-sections

according to 5-torsion Galois orbit when the rank of Jac(C)(Fq)[5] is ≥ 1.

For ` = 7, the number of distinct cases to deal increases significantly (see

Table 3.4). We summarize the result for ` ∈ {5, 7} in the next corollary.

Corollary 2. If the curve has `-rank r ≥ 1 with ` ∈ {5, 7} in Fq and D` ∈
Jac(C)(Fq) then D` admits at least `r `-sections in Fq or Fq` .

Table 3.4: Curves of 7-rank ≥ 1 over Fq .
7-torsión successful unsuccessful

Galois orbits 7-section 7-section

Rank 1 (1)6(3)112(7)6(21)96 (1)7(3)112(7)6(21)96 (7)7(21)112

(1)6(3)14(6)392 (1)7(3)14(6)392 (7)(21)2(42)56

(1)6(3)14(6)49(42)49 (1)7(3)14(6)49(42)49 (7)(21)2(42)56

(1)6(2)21(16)147 (1)7(2)21(16)147 (7)(14)3(112)21

(1)6(4)84(7)6(28)72 (1)7(4)84(7)6(28)72 (7)7(28)84

(1)6(2)21(16)147 (1)7(2)21(16)147 (7)(14)3(112)21

(1)6(2)21(7)6(14)165 (1)7(2)21(7)6(14)165 (7)7(14)168

(1)6(2)168(7)6(14)144 (1)7(2)168(7)6(14)144 (7)7(14)168

(1)6(6)56(7)6(42)48 (1)7(6)56(7)6(42)48 (7)7(42)56

(1)6(3)14(6)49(42)49 (1)7(3)14(6)49(42)49 (7)(21)2(42)56

(1)6(3)14(6)392 (1)7(3)14(6)392 (7)(21)2(42)56

(1)6(2)21(3)14(6)385 (1)7(2)21(3)14(6)385 (7)(14)3(21)2(42)55

(1)6(3)14(12)196 (1)7(3)14(12)196 (7)(21)2(84)28

(1)6(7)342 (1)7(7)342 (7)343

(1)6(3)14(24)98 (1)7(3)14(24)98 (7)(21)2(168)14

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(3)14(24)98 (1)7(3)14(24)98 (7)(21)2(168)14

(1)6(2)21(16)147 (1)7(2)21(16)147 (7)(14)3(112)21

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(2)21(16)147 (1)7(2)21(16)147 (7)(14)3(112)21

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(2)21(3)14(6)385 (1)7(2)21(3)14(6)385 (7)(14)3(21)2(42)55

(1)6(2)21(3)14(6)385 (1)7(2)21(3)14(6)385 (7)(14)3(21)2(42)55

(1)6(3)14(12)196 (1)7(3)14(12)196 (7)(21)2(84)28

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(6)7(7)6(42)55 (1)7(6)7(7)6(42)55 (7)7(42)56

(1)6(6)56(7)6(42)48 (1)7(6)56(7)6(42)48 (7)7(42)56

(1)6(6)7(7)6(42)55 (1)7(6)7(7)6(42)55 (7)7(42)56

(1)6(6)56(7)6(42)48 (1)7(6)56(7)6(42)48 (7)7(42)56

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(7)6(8)42(56)36 (1)7(7)6(8)42(56)36 (7)7(56)42

(1)6(3)14(6)392 (1)7(3)14(6)392 (7)(21)2(42)56

(1)6(3)14(7)6(21)110 (1)7(3)14(7)6(21)110 (7)7(21)112

(1)6(3)112(7)6(21)96 (1)7(3)112(7)6(21)96 (7)7(21)112

(1)6(3)14(24)98 (1)7(3)14(24)98 (7)(21)2(168)14

(1)6(6)7(48)49 (1)7(6)7(48)49 (7)(42)(336)7

(1)6(3)112(7)6(21)96 (1)7(3)112(7)6(21)96 (7)7(21)112

(1)6(3)14(24)98 (1)7(3)14(24)98 (7)7(21)2(168)14

(1)6(3)112(21)98 (1)7(3)112(21)98 (7)(21)114

(1)6(3)798 (1)7(3)798 (7)(21)114

(1)6(3)14(6)392 (1)7(3)14(6)392 (7)(21)2(42)56

(1)6(3)112(21)98 (1)7(3)112(21)98 (7)(21)114

(1)6(3)798 (1)7(3)798 (7)(21)114

(1)6(7)6(8)42(56)36 (1)7(7)6(8)42(56)36 (7)7(56)42

(1)6(2)21(3)14(6)385 (1)7(2)21(3)14(6)385 (7)(14)3(21)2(42)55

Rank 2 (1)48(6)49(42)49 (1)49(6)49(42)49 (7)7(42)56

(1)48(6)392 (1)49(6)392 (7)7(42)56

(1)48(6)392 (1)49(6)392 (7)7(42)56

(1)48(8)294 (1)49(8)294 (7)7(56)42

(1)48(3)784 (1)49(3)784 (7)7(21)112

(1)48(3)98(21)98 (1)49(3)98(21)98 (7)7(21)112

(1)48(3)784 (1)49(3)784 (7)7(21)112

(1)48(3)98(21)98 (1)49(3)98(21)98 (7)7(21)112

(1)48(3)784 (1)49(3)784 (7)7(21)112

(1)48(8)294 (1)49(8)294 (7)7(56)42

(1)48(6)49(42)49 (1)49(6)49(42)49 (7)7(42)56

(1)48(4)588 (1)49(4)588 (7)7(28)84

(1)48(2)1176 (1)49(2)1176 (7)7(14)168

(1)48(2)147(14)147 (1)49(2)147(14)147 (7)7(14)168

(1)48(6)392 (1)49(6)392 (7)7(42)56

(1)48(7)336 (1)49(7)336 (7)343

Rank 3 (1)342(7)294 (1)343(7)294 (7)343

Rank 4 (1)2400 (1)2401 (7)343

CHAPTER 4

Symbolic trisection polynomials

Efficient trisection (division by three) algorithms for divisors in hyperelliptic

curves in odd characteristic have been studied by Gaudry and Schost [7] as well

as the authors [19]. The main interest of these algorithms resides in their ap-

plication in Schoof-like algorithms to compute the group order for the Jacobian

of curves of genus 2. A drawback of these methods is that they rely on solving

a system of equations in several variables, and at least the final steps of the

solution must be done in a case-by-case basis as the final polynomials whose

roots produce the solutions of the system are not available symbolically (i.e.

described in terms of the curve parameters and representation of the divisor).

Symbolic equations are available up to some point in the solution process, af-

ter which techniques that reduce a system in several variables to obtaining the

roots of an equation in one variable must be applied every time a trisection is

performed, and only then can polynomial factorization methods be applied.

It is reasonable to expect the efficiency of these algorithms to improve once

a symbolic description of the final polynomial is available, which would then

reduce the trisection problem to evaluating and factoring polynomials in one

variable. However, direct symbolic computation is not feasible due to the sizes

of the intermediate polynomials produced during the process. Nevertheless,

our main objective in this chapter is to compute the trisections polynomials of

[19] symbolically, and to show it can be used to improve the speed of trisection

in practice.

The chapter is organized as follows: In Section 4.1, we recall generalities

about genus two curves in odd characteristic. In Section 4.2, we present some

basic properties of weighted homogeneous polynomials and their consequences

for polynomial interpolation. In Section 4.3, we obtain theoretical results on

the trisection polynomial that are required to make the symbolic computation

practical. We give further details on the symbolic computation in Section 4.4.

We complete in Section 4.5 with an example of a trisection polynomial obtained

from the symbolic polynomial and a discussion on how to use the symbolic

37

38 CHAPTER 4. Symbolic trisection polynomials

polynomial in practice.

4.1 Background

Let C be a genus two curve over a finite field Fq of odd characteristic (greater

than 5) given in the model

C : y2 = f(x) (4.1.1)

where the polynomial f(x) = x5 + f3x
3 + f2x

2 + f1x + f0 ∈ Fq[x] has no

double roots. We work here in the group of Fq-points of the Jacobian Jac(C),

in terms of Mumford coordinates [u(x), v(x)]. In genus 2, every element of

Jac(C)− {0} can be represented uniquely by a reduced divisor of weight one

(u(x) = x + u0, v(x) = v0) or two (u(x) = x2 + u1x + u0, v(x) = v1x + v0).

An algorithm due to Cantor [3] allows us to compute in the group with this

representation of elements of Jac(C).

To determine the set of pre-images 1
3D3 with D3 ∈ Jac(C)(Fq), we will use

methods studied in [19]. The idea consists in reversing Cantor’s algorithms to

the triplication of a divisor. For example, if we assume that D3 is of the form

D3 = [u3(x), v3(x)] = [x + u30, v30] with v30 6= 0 (i.e. the support of D3 does

not contain a Weierstrass point), then D1 must have the form [u1(x), v1(x)] =

[x2 + u11x+ u10, v11x+ v10].

Using the composition step of Cantor’s algorithm, we obtain a pair of co-

ordinates of the form [u3, ṽ] for 3D1. We de-reduce D3 = [u3, v3] via the

polynomial β2 − α2f ≡ 0 mod u3 with β = γu3 + αv3, where polynomials γ

and α are of the form γ = x2 + c1x + c0 and α = a1x + a0 (with a1 assumed

non-zero). Matching the first coordinates, we obtain the identity

u3
1 =

(γu3 + αv3)2 − α2f

u3
. (4.1.2)

The coefficients of x5, x4, x3, x2, x1 and x0 in this identity provide 6 equations

in 6 unknowns (u11, u10, c1, c0, a1 and a0), giving us a system whose solutions

correspond to the the different trisections of D3.

4.2 Weighted homogeneous polynomials

In this section, we show some properties of weighted homogeneous polynomials

and their impact on multivariate interpolation. These results will be essential

tools for the symbolic computation of a trisection polynomial.

Definition 8. Let p ∈ F[x1, . . . , xn] be a polynomial in n variables and take

integers d1, d2, ..., dn . The polynomial p is said to be a weighted homogeneous

polynomial (WHP) of weight k if for all t ∈ F \ {0} we have:

p(td1x1, t
d2x2, ..., t

dnxn) = tkp(x1, x2, ..., xn) . (4.2.1)

The integers d1, d2, ..., dn are called the weights of variables x1, ..., xn

4.2. Weighted homogeneous polynomials 39

4.2.1 Properties of WHPs

From the definition of weighted homogeneous polynomials, it is easy to see

that the product of two WHPs will be a WHP. Similarly, the sum or difference

of two WHPs of the same weight will be either zero or a WHP of that same

weight.

We also observe that in any product of two weighted non-homogeneous

polynomials, the terms of highest weight are the product of the terms of highest

weight in both polynomials, without any impact from the terms of lower weight.

Similarly, the terms of lowest weight of the product depend only on the terms

of lowest weight in both polynomials. If the product is homogeneous, then the

two original polynomials must have been homogeneous too. We can therefore

conclude that WHPs factorize into products of WHPs, and the gcd of two (or

more) WHPs is also a WHP. We now show the same applies for resultant and

subresultants of WHPs.

Definition 9. Let f(x) and g(x) be two polynomials of degree m and n respec-

tively, and let S be the m + n by m + n Sylvester matrix associated to these

polynomials. Then the resultant of f(x) and g(x) is Resx(f, g) = det(S), and

the j-subresultant is the polynomial of degree j defined by

Sj(f, g) = det(S0j) + det(S1j)x+ . . .+ det(Sjj)x
j ,

where Sij is the matrix determined from S by deleting 2j rows and columns as

follows:

1. rows n− j + 1 to n (each having coefficients of f(x))

2. rows m+ n− j + 1 to m+ n (each having coefficients of g(x))

3. columns m+ n− 2j to m+ n, except for column m+ n− i− j.

Note that we could extend this definition so Resx(f, g) = S0(f, g).

Lemma 7. Let f and g be two weighted homogeneous polynomials with weight

p1 and p2 respectively. Let x be an arbitrary variable of weight p, and m and n

the degrees in x of f and g respectively. Then Sj(f, g) is weighted homogeneous

with weight

p1(n− j) + p2(m− j)− (nm− j − j2)p .

Proof From the definition of the (sub)resultants (as determinants coming

from the Sylvester matrix), they are clearly polynomials in the coefficients of

f and g. Let ai be the coefficient of xi in f and bi be the coefficient of xi in

g. Since both f and g are WHPs, then ai is a WHP of weight p1 − ip (with

i ∈ {1, .., (m− 1)}) and bi is a WHP of weight p2− ip (with i ∈ {1, .., (n− 1)}).
For each entry of the Sylvester matrix, if we replace each variable xk by twkxk

40 CHAPTER 4. Symbolic trisection polynomials

(where wk is its weight), then the Sylvester matrix becomes:

S̃ =



tp1−mpam tp1−(m−1)pam−1 . . . 0 0 0

0 tp1−mpam . . . 0 0 0

...
... . . .

...
...

0 0 . . . tp1−pa1 tp1a0 0

0 0 . . . tp1−2pa2 tp1−pa1 tp1a0

tp2−npbn tp2−(n−1)pbn−1 . . . 0 0 0

0 tp2−npbn . . . 0 0 0

...
...

...
...

...

0 0 . . . tp2−pb1 tp2b0 0

0 0 . . . tp2−2pb2 tp2−pb1 tp2b0


and similarly, the matrices Sij become matrices S̃ij by removing the corre-

sponding rows and columns from S̃.

If we multiply the k-th row by tp2+(m−n+k−1)p for k = 1, .., n and by

tp1+(k−n−1)p for k = n+ 1, .., n+m we obtain

Ŝ =



tp1+p2−npam tp1+p2−(n−1)pam−1 . . . 0

0 tp1+p2−(n−1)pam . . . 0

...
... . . .

...

0 0 . . . tp1+p2+(m−1)pa0

tp1+p2−npbn tp1+p2−(n−1)pbn−1 . . . 0

0 tp1+p2−(n−1)pbn . . . 0

...
...

...

0 0 . . . tp1+p2+(m−1)pb0


where all the terms in the k-th column are multiplied by tp1+p2−(n+1−k)p with

respect to the terms in the k-th column of S. Similarly, matrices S̃ij become

Ŝij .

Since S̃ij and Ŝij contain only rows 1 to n− j and n+ 1 to n+m− j of S̃

and Ŝ respectively (and removing the same columns in both cases), then (since

Ŝ is obtained multiplying rows of S̃ by powers of t) we have:

det(Ŝij) = det(S̃ij) ·

(
n−j∏
k=1

tp2+(m−n+k−1)p

)
·

(
m+n−j∏
n+1

tp1+(k−n−1)p

)
= t`2 det(S̃ij) .

Similarly, Sij and Ŝij contain only columns 1 to m + n − 2j − 1 as well as

column m+n− i− j of S and Ŝ respectively (removing the same rows in both

cases), so the relation between the columns of Ŝ and S gives us:

det(Ŝij) = det(Sij) ·

(
m+n−2j−1∏

k=1

tp1+p2−(n+1−k)p

)
· tp1+p2+(m−j−i−1)p

= t`1−ip det(Sij) .

4.2. Weighted homogeneous polynomials 41

We can therefore conclude that

det(S̃ij) =
t`1−ip

t`2
det(Sij)

with

`1 =

(
m+n−2j−1∑

k=1

p1 + p2 − (n+ 1− k)p

)
+ p1 + p2 + (m− j − 1)p,

`2 =

(
n−j∑
k=1

p2 + (m− n− 1 + k)p

)
+

(
n+m−j∑
k=n+1

p1 + (−n− 1 + k)p

)
.

Replacing x by tpx in the definition of Sj(f, g), we find that the whole

polynomial has been multiplied by t`1/t`2 , so the j-subresultant is a WHP of

weight ` = `1 − `2 = p1(n− j) + p2(m− j)− (nm− j − j2)p.

Corollary 3. Let f and g two weighted homogeneous polynomials of weight p1

and p2 respectively. Let x be an arbitrary variable of weight p and m and n be

the degrees in x of f and g respectively, then Resx(f, g) is weighted homoge-

neous with weight p1n+ p2m− nmp.

4.2.2 Number of monomials in a WHP

As we will see in the following sections, although computing the trisection

polynomial directly is not practical due to extremely high degrees encountered

in intermediate steps (namely, the degrees of the final resultants, before the

gcd is computed), it can be computed via interpolation techniques.

Knowing that the trisection polynomial is weighted homogeneous is critical

to its explicit computation, since it allows us to reduce the computational cost

of the interpolation techniques by several orders of magnitudes.

The main advantage of knowing that the polynomial is homogeneous comes

from reducing the number of (possible) monomials in the polynomial when

comparing with a polynomial of equivalent degrees. Suppose that p(v1, . . . , vk)

is a WHP of weight w, with weight wi for variable vi (note that this kind of

information will typically come from using Corollary 3 and similar results),

and assume that w1 ≤ w2 ≤ . . . ≤ wk. if we let di be the maximal degree of

variable vi, with di ≤ bw/wjc (we allow an inequality since in some cases we

may have a stronger bound on the degree than what is given by the weight of

the polynomial), then the polynomial can be written as

p(v1, . . . , vk) =
∑

β1w1+β2w2+···+βkwk=w

βi≤di

αβ1,...,βkv
β1

1 · · · v
βk
k .

To illustrate the impact of restricting to WHP, let us consider two multivari-

ate polynomials, the first one non-homogeneous and the second one a WHP of

42 CHAPTER 4. Symbolic trisection polynomials

weight w, and assume that in both polynomials all variables reach the maximal

degree di = bw/wjc. The first polynomial will be a sum of up to

k∏
j=1

(⌊
w

wj

⌋
+ 1

)

monomials, which correspond to all the integer points of a k-dimensional lattice

in a hyperbox with sides of length di.

For the WHP, the monomials correspond to integer points of the intersection

between the hyper box and a hyperplane (of dimension k− 1) passing through

the k elementary vertices of the box. The number of monomials is then

⌊
w
w1

⌋∑
β1=0

⌊
w−w1β1
w2

⌋∑
β2=0

. . .

⌊
w−w1β1−...−wk−2βk−2

wk−1

⌋∑
βk−1=0

χ
k

(β1, . . . , βk−1)

where χ
k

(β1, . . . , βk−1) is 1 if w−w1β1−...−wk−1βk−1

wk
is an integer, and 0 other-

wise. Note that we obtain similar sums (with the same total) for any re-ordering

of the variables, in particular if we start from vk down to v1:

⌊
w
wk

⌋∑
βk=0

⌊
w−wkβk
wk−1

⌋∑
βk−1=0

. . .

⌊
w−w3β3−...−wkβk

w2

⌋∑
β2=0

χ
1
(β2, . . . , βk) .

The number of monomials will therefore be a proportion close to

1 :
(k − 1)!w

min{wi}

of the number obtained using only the maximal degrees.

When it comes to computing the polynomial, this reduction is critical: in

order to interpolate the polynomial, we need at least one evaluation point

per monomial, so reducing the number of (possible) monomials reduces the

number of evaluations required. The remainder of this section will be dedicated

to showing how to perform the interpolation with this minimal number of

evaluations.

Interpolation of WHPs

Before going through the fine details of the interpolation process for trisection

polynomials, we will describe the general idea of interpolation for homogeneous

weighted polynomials and illustrate this idea with a small example.

If we interpolate considering only the maximal degree in each variable, we

need evaluations for dj + 1 distinct values of variable vj , independently of the

other variables, for a total of
∏k
j=1 (dj + 1) evaluations. In this situation, for

each tuple in (v2, . . . , vk) we have d1 + 1 values to interpolate a polynomial of

degree d1 in v1 (one such polynomial for each tuple). Then, for each tuple in

4.2. Weighted homogeneous polynomials 43

(v3, . . . , vk), we have d2 + 1 polynomials in v1 which we combine coefficient-

by-coefficient (i.e. for each powers of v1), considering that each coefficient is a

polynomial of degree d2 in v2. This process is then iterated for the remaining

variables, producing the complete polynomial.

When working with WHPs, the idea is similar. For a fixed tuple (v2, . . . , vk),

we use the evaluations of the polynomials for the different values of v1 to obtain

an interpolation polynomial in v1, and this process is then iterated in the other

variables (working from the coefficients of the distinct powers of v1) to obtain

the complete polynomial.

However, having fixed weight for the monomials means that even with a

single tuple (v2, . . . , vk) used, some of the monomials (those of highest de-

gree in v1) will be completely determined from the polynomial in v1 that we

obtained (since they cannot depend on the remaining variables, otherwise the

total weight would be greater than the weight of the WHP). Each time a mono-

mial is completely determined, it is removed from the evaluated values before

doing further interpolations (that is to say, we subtract the evaluation of this

monomial from the value of the complete polynomial at the point (v1, . . . , vk)),

which has the effect of decreasing the degree of the polynomial to interpolate,

and so decreases the number of evaluation points required. As a result, the

number of distinct values of v1 required for each tuple in (v2, . . . , vk) will de-

crease over time, going down by one each time all the monomials containing v1

to a given power have been completely determined. Once again, this process is

iterated in the remaining variables.

In this approach, if we first interpolate in terms of variable v1, then each

tuple (v2, . . . , vk) can be viewed as a stack of values in v1, and we interpolate

using the highest stacks first (i.e. those with the most values) so we can compute

the terms of highest degrees in v1 and make our way down (after removing these

terms from the values of the shorter stacks). The process then runs iteratively

for the next variable, using the coefficients of the resulting polynomials in v1

as the values for the next iteration.

Following this idea, we can reduce the number of evaluations of the poly-

nomial to one tuple (in (v1, . . . , vk)) for each of the possible monomials in the

polynomial expansion. Note that in this description, the final variable will

never need interpolation since if we have fixed the degrees in v1, . . . , vk−1, then

there is only one possible power of vk to obtain total weight w, and the “inter-

polation” is done with a single point.

A natural adjustment of the interpolation to take into account this obser-

vation is to choose one variable which will be evaluated to the fixed value 1

right from the start (effectively making it the last variable in the description

above) and compute a non-homogeneous polynomial of weight bounded by w

in the remaining k − 1 variables. The polynomial obtained is then “filled-up”

44 CHAPTER 4. Symbolic trisection polynomials

to a WHP of weight w. We prefer to do this with v1 (the variable of lowest

weight) since it simplifies the arithmetic required to ensure the filling up is

possible. If w1 = 1, we only need to “fill-up” the monomials up to weight w

by multiplying to the appropriate degree of v1. If w1 > 1 (this will be the

case in our interpolations), we first have to restrict the possible monomials so

their total weight is of the form w − βw1 (with β an integer), so the filling-up

consists in multiplying the monomial by vβ1 .

4.2.3 Example

Suppose that we have a WHP of weight 15 in Z[x, y, z], with variables x, y and

z having respective weights 1, 3 and 5. It is easy to see that f(x, y, z) must be

of the form

f(x, y, z) = α1x
15 + α2x

12y + α3x
9y2 + α4x

6y3 + α5x
3y4

+ α6y
5 + α7x

10z + α8x
7yz + α9x

4y2z

+ α10xy
3z + α11x

5z2 + α12x
2yz2 + α13z

3

so it has 13 monomials instead of the 16 · 6 · 4 = 384 that would be expected if

we only bounded by the maximal degrees in each variable (the proportion 13

to 384 is close to the expected 1 in 2! · 15 = 30 from the discussion above).

Evaluating x in 1, we are left with

f(1, y, z) = α1 + α2y + α3y
2 + α4y

3 + α5y
4 + α6y

5 + α7z

+ α8yz + α9y
2z + α10y

3z + α11z
2 + α12yz

2 + α13z
3,

which has degree 5 in y and degree 3 in z, so to interpolate, we need the value

of the polynomial in 6 values of y: y1, y2, y3, y4, y5, and y6; and in 4 values of

z: z1, z2, z3, and z4. However, we can complete the interpolation with only 13

pairs of these points (out of a possible 24 pairs):

(y1, z1), (y2, z1), (y3, z1), (y4, z1), (y5, z1), (y6, z1),

(y1, z2), (y2, z2), (y3, z2), (y4, z2),

(y1, z3), (y2, z3),

(y1, z4).

For the sake of this example, let yi = i and zi = i, and suppose that we have

the evaluations:

f(1, 1, 1) = 99, f(1, 2, 1) = 701, f(1, 3, 1) = 4011,

f(1, 4, 1) = 15129, f(1, 5, 1) = 43427, f(1, 6, 1) = 103869,

f(1, 1, 2) = 211, f(1, 2, 2) = 843, f(1, 3, 2) = 4215,

f(1, 4, 2) = 15439, f(1, 1, 3) = 421, f(1, 2, 3) = 1085,

f(1, 1, 4) = 765.

The interpolation proceeds as follows:

4.2. Weighted homogeneous polynomials 45

1. Interpolate for the points in z1 = 1, obtaining

g1(y) = f(1, y, 1)

= 11y5 + 13y4 + 5y3 + 9y2 + 4y + 57

• Extract the coefficients of y5 and y4.

2. Using the points in z2 = 2 and subtracting 11y5
i + 13y4

i , interpolate to

obtain the degree 3 polynomial

g2(y) = f(1, y, 2)− (11y5 + 13y4)

= 7y3 + 13y2 + 8y + 159

• Using the coefficients of y3 in g1(y) and g2(y), interpolate to obtain

the coefficient (in Z[z]) of y3 in f(1, y, z):

(2z + 3) y3

• Using the coefficients of y2 in g1(y) and g2(y), interpolate to obtain

the coefficient (in Z[z]) of y2 in f(1, y, z):

(4z + 5) y2

3. Using the points in z3 = 3 and subtracting 11y5
i + 13y4

i + (2zi + 3)y3
i +

(4zi + 5)y2
i , interpolate to obtain the degree 1 polynomial

g3(y) = f(1, y, 3)− (11y5 + 13y4 + 2y3z + 3y3 + 4y2z + 5y2)

= 14y + 357

• Using the coefficients of y in g1(y), g2(y), and g3(y), interpolate to

obtain the coefficient (in Z[z]) of y in f(1, y, z):(
z2 + z + 2

)
y1

4. Using the point in z4 = 4 and subtracting 11y5
i + 13y4

i + (2zi + 3)y3
i +

(4zi + 5)y2
i + (z2

i + zi + 2)yi, obtain the value

g4(y) = f(1, y, 3)− (11y5 + 13y4 + 2y3z + 3y3

+ 4y2z + 5y2 + yz2 + yz + 2y)

= 687

• Using the constant coefficients in g1(y), g2(y), g3(y), and g4(y), in-

terpolate to obtain the coefficient (in Z[z]) of y0 in f(1, y, z):(
6z3 + 12z2 + 24z + 15

)
y0

It only remains to multiply the terms of f(1, y, z) by the correct powers of x

to obtain a homogeneous weighted polynomial and we find:

f(x, y, z) = 15x15 + 2x12y + 5x9y2 + 3x6y3 + 13x3y4 + 11y5 + 24x10z

+ x7yz + 4x4y2z + 2xy3z + 12x5z2 + x2yz2 + 6z3.

46 CHAPTER 4. Symbolic trisection polynomials

4.3 Trisections

4.3.1 Special cases

In order to study the trisection polynomials for general divisors, we must first

look at the special cases that could occur since they will help us during the com-

putation of the trisection polynomial (they allow us to determine the weight

exact weight of the polynomial and the coefficients of lowest and highest de-

grees).

Special cases involving Weierstrass points in the affine support of D1 can

be handled easily within the general cases (see Section 4.3.1). For all special

cases discussed in details, D3 has weight 2, i.e. [u3(x), v3(x)] = [x2 + u31x +

u30, v31x+v30], since there are no special cases when D3 has weight one (unless

the affine support is a Weierstrass point).

Weight-1 trisections

The most obvious special case of trisection is when D1 has weight 1 instead of

(the much more common) weight 2.

If we assume that the divisors D1 is of the form [u1(x), v1(x)] = [x+u10, v10],

then using the composition step of cantor algorithm we obtain two polynomials

of the form [u3, ṽ] for 3D1 and if we de-reduce D3 via the polynomial β2−α2f ≡
0 mod u3 where β = γu3+αv3, γ = c0 and α = 1 and equate the two un-reduced

divisors, we obtain:

u3
1 =

(γu3 + αv3)2 − α2f

u3
. (4.3.1)

The coefficients of x2, x1 and x0 give us three equations in u10 and c0:

0 = c20 + u31 + 3u10 (4.3.2)

0 = c20u31 + 2c0v31 − f3 + u30 − u2
31 + 3u2

10 (4.3.3)

0 = c20u30 + 2c0v30 + v2
31 − f2 − 2u31u30 + u31f3 + u3

31 + u3
10 (4.3.4)

From (4.3.2) we put u10 in terms of c0

u10 = −c
2
0 + u31

3
.

Substituting the expression of u10 into (4.3.3) and (4.3.4) gives us polynomials

of degree 4 and 6 in c0 respectively:

0 =5c20u31 + 6c0v31 − 3f3 + 3u30 − 2u2
31 + c40 (4.3.5)

0 =27c20u30 + 54c0v30 + 27v2
31 − 27f2 − 54u31u30

+ 27u31f3 + 26u3
31 − c60 − 3c40u31 − 3c20u

2
31 (4.3.6)

and c0 must satisfy both equations at the same time. Given such a c0, back-

tracking through the equations easily gives us the trisection.

4.3. Trisections 47

Proposition 5. D3 admits a weight 1 trisection if only if the polynomial L =

Resc0(L1, L2) (with L1 and L2 the polynomials in c0 appearing in (4.3.5) and

(4.3.6)) evaluated in the values of f2, f3, u30, u31 and v31 returns 0.

Remark 1. If the curve parameters fi are given weight 10− 2i, and the divisor

coordinates u3i and v3i are given weight 4− 2i and 5− 2i respectively, then L

is a WHP of weight 24.

Simple quadratic de-reduction for weight-2 divisors

When both D1 and D3 have weight 2, there is still a situation where the

de-reduction approach must be dealt with independently. In the general de-

reduction (Section 4.3.2, via the polynomial β2 − α2f ≡ 0 mod u3 with β =

γu3 +αv3, γ = c2x
2 +c1x+c0 and α = a1x+a0) we usually asume that a1 6= 0

in order to solve the system.

However, for some divisors D1, a1 = 0, and the shape of the system changes

drastically. In [16], this situation was called simple quadratic de-reduction since

it corresponds to using the principal divisor of the quadratic equation a0y −
c2x

2 + c1x + c0. In theory, this might be considered part of the general case,

but the solution technique uses division by a1 to solve the system, in effect

taking out the simple quadratic de-reduction cases.

We now assume that divisors D1 are of the form [u1(x), v1(x)] = [x2 +

u11x+u10, v11x+v10], and attempt the de-reduction technique via β2−α2f ≡
0 mod u3 with β = γu3 + αv3, γ = x2 + c1x + c0 and α = a0. D3 will admit

a simple quadratic de-reduction if and only if the resulting system admits a

solution.

As in other cases, we have:

u3
1 =

(γu3 + αv3)2 − α2f

u3
= γ2u3 + 2αγv3 + α2

(
v2

3 − f
u3

)
, (4.3.7)

and the coefficients of x5, x4, x3, x2, x1 and x0 provide 6 Equations in 5

unknowns (u1, u0, c1, c0 and a0):

0 = u31 + 2c1 − 3u11 (4.3.8)

0 = 2c1u31 + u30 + c21 + 2c0 − 3u10 − 3u2
11 (4.3.9)

0 = c21u31 + 2a0v31 + 2c1c0 − 6u11u10 + 2c0u31 + 2u30c1 − u3
11 (4.3.10)

0 = a2
0u31 − 3u2

11u10 + 2a0c1v31 + 2c1c0u31 + c20 + 2v30a0

+ 2u30c0 + u30c
2
1 (4.3.11)

0 = 2u30c1c0 − a2
0u

2
31 − a2

0f3 + 2a0c0v31 − 3u11u
2
10 + c20u31

+ 2v30a0c1 + u30a
2
0 (4.3.12)

0 = a2
0u31f3 + a2

0v
2
31 − a2

0f2 − 2u30a
2
0u31 + a2

0u
3
31 − u3

10

+ 2v30a0c0 + u30c
2
0 (4.3.13)

48 CHAPTER 4. Symbolic trisection polynomials

From (4.3.8) we can write u11 in terms of c1,

u11 =
2c1 + u31

3
, (4.3.14)

and then (4.3.9) can be used to write u10 in terms of c2 and c1,

u10 =
1

9
(u2

31 + 3u30 + 6c0 − c21 + 2u31c1) . (4.3.15)

If we assume that c1 6= u31, then Equation 4.3.10 can be used to write c0 in

terms of a0 and c1,

c0 =
1

18(u31 − c1)

(
− 18u30c1 + 18u30u31 + 27a2

0 + 3c21u31

− 5u3
31 − 54v31a0 − 4c31 + 6c1u

2
31

)
. (4.3.16)

Note that the case c1 = u31 gives a simpler system that can be handled sepa-

rately to obtain similar (but more restrictive) conditions.

Substituting identities (4.3.14), (4.3.15) and (4.3.16) into (4.3.11), (4.3.12),

(4.3.13) we obtain polynomials E1, E2 and E3 of degrees 4, 4 and 6 in a0

respectively. The coefficient of a4
0 in (4.3.11) is a non-zero constant, so we

can replace E2 and E3 by E2a = E2 mod E1 and E3a = E3 mod E1, from

which we can remove multiples of (u31 − c1). Let E2b = (u31 − c1)−1E2a and

E3b = (u31 − c1)−2E3a. We then progressively reduce the degrees in a0 and

c1 of the three equations: first set E3c = v31E3b mod E2b and remove a factor

of (u31 − c1) to get E3d = (u31 − c1)−1E3c, then let E1a = E1 mod E2b, and

finally E2c = v31E2b mod E3c.

We remove the remaining variables using resultants, but to avoid para-

sitic factors we do it twice (alternating the order of removal) and compute

the gcd of the two resulting polynomials to weed out all parasites (since a

solution to the system should come out no matter in which order we remove

the variables). We compute r1 = Resa0
(E1a, E2c) and r2 = Resa0

(E1a, E3d)

and remove a factor of (u31− c1) from both of them (to obtain r̃1 and r̃1), and

then compute R = Resc1(r̃1, r̃2). Similarly, we compute s1 = Resc1(E1a, E2c)

and s2 = Resc1(E1a, E3d) and remove a factor of a0 from both, then compute

S = Resa0
(s1, s2). We finally obtain M = gcd(R,S).

Proposition 6. A weight-2 divisor D3 admits a trisection by simple quadratic

de-reduction if only if the polynomial M evaluated in the values of f2, f3, u30,

u31 and v31 returns 0.

Remark 2. If the curve parameters fi are given weight 10− 2i, and the divisor

coordinates u3i and v3i are given weight 4− 2i and 5− 2i respectively, then M

is a WHP of weight 105.

Trisections with Weierstrass points

When the affine support of trisection D1 contains one (or more) Weierstrass

point, then the assumptions used in the general case to compute 3D1 (using

4.3. Trisections 49

Cantor’s algorithm) do not hold, giving rise to a number of special cases. How-

ever, these cases do not require a detailed description, as we now show.

If the affine support of D1 consists of two Weierstrass points, then D3 =

3D1 = D1 (i.e. D3 is its own triple/trisection). In terms of the non-Weierstrass

cases, it corresponds to a simple quadratic de-reduction with α = 0 and γ = u3.

This case can be handled directly as part of the special case in Section 4.3.1.

If the affine support of D1 (of weight 1) consists of one Weierstrass point,

then once again D3 = 3D1 = D1 (i.e. D3 is its own trisection). In terms of the

non-Weierstrass cases, it corresponds to the equivalent of a simple quadratic de-

reduction for weight 1 trisectees, although a correct description would be simple

linear de-reduction, with α = 0 and γ = u3. Note that for D3 = [x+ u30, v30],

the affine support is a Weierstrass point if and only if v30 = 0.

Proposition 7. For D3 of weight 1, the simple linear de-reduction occurs if

and only if v30 = 0.

If D1 has weight 2 and its affine support contains one Weierstrass point

P0 = (x0, y0) (and a non-Weierstrass point), the de-reduction can be handled

by the general case in Section 4.3.2 if we relax the condition gcd(α, γ) = 1.

Taking gcd(α, γ) = (x− x0), so α = a1(x− x0) and γ = (x− x0)(x− s) allows

us to deal with the factor (x − x0)2 that is removed in Cantor’s algorithm

(corresponding to removing the principal divisor div(x− x0)).

4.3.2 General case for weight-2 divisors

To compute the trisection polynomial we solved a trivariate polynomials system

where E1, E
′
2 and E′3 arepolynomials in Fq[a1, c0, a0] of degree 4, 4 and 6 in a0

(reduced modulo E1 in the case of E′2 and E′3, see [19] for more details). First

we compute r1 = Resa0
(E1, E

′
2), r2 = Resa0

(E1, E
′
3) and r3 = Resa0

(E′2, E
′
3)

(from r1, r2 and r3 can be remove predictable factors). If R1 = Resc1(r1, r2),

R2 = Resc1(r1, r3) and G = gcd(R1, R2). From G we can remove predictable

factors. We obtain a trisections polynomials of degree 81.

Corollary 4. The trisection polynomial for weight-2 divisors on the curve C

is weighted homogeneous, where the curve parameters fi have weight 10 − 2i,

the divisor coordinates u3i and v3i have weight 4 − 2i and 5 − 2i respectively

and the trisection variable a1 has weight 1.

Proof All the equations in the system defining the trisection are WHPs, and

the techniques used to obtain the solutions are compatible with the properties

described in Section 4.2.1, so all polynomials worked with are WHPs, including

the resultants and the final gcd (see Table 4.1). Since the trisection polynomial

is a factor of this gcd, it must also be a WHP.

Proposition 8. The trisection polynomials for D3 of weight 2 has the following

properties:

50 CHAPTER 4. Symbolic trisection polynomials

Polynomial weight

E1 12

E′2 14

E′3 18

Polynomial weight

r1 40

r2 48

r3 47

Polynomial weight

R1 960

R2 940

G ≤ 940

Table 4.1: Weight of the polynomials used in the trisection

(i) The coefficient of a81
1 is 0 if only if one of the trisections D1 has weight

1.

(ii) The constant coefficient is 0 if and only if there exists a trisection D1

that can be obtained by simple quadratic de-reduction.

Proof In general, the polynomial has degree 81 in a1 corresponding to 81

weight-2 trisections, the only exception being if there are weight-1 trisection,

in which case the polynomial degree must be at most 80 (which corresponds to

the coefficient of a81
1 equal to 0). Therefore the coefficient of a81

1 is a constant

multiple of a power of L where L = Resc0(L1, L2) from Proposition 5. On the

other hand, if the trisection has weight two, then the only situation which is

not handled correctly by the general case is the simple quadratic de-reduction,

which corresponds to a1 = 0, i.e. the trisection polynomial p(x) is divisible by

x. From Proposition 6, the constant term of the trisection polynomial must be

a constant multiple of a power of M .

Corollary 5. The weight of the trisection polynomial is 105.

Proof From Remarks 1 and 2, the weights of the constant coefficient and

the leading coefficient are multiples of 105 and 24 respectively. The weight of

trisection polynomial must satisfy 105a = 81 + 24b where a and b are non-

negative integers. As a0 = b0 = 1 is a possible solution, all other solutions are

of the form a = 1 + 8t and b = 1 + 35t, with t ∈ Z. The next smallest positive

solution will then be a1 = 9 and b1 = 36, which would give weight 9 ·105 = 945,

but the weight of G = gcd(R1, R2) is at most 940. Therefore a0 = b0 = 1 is

the only possible solution.

4.3.3 General case for weight-1 divisors

The construction of the trisection polynomial for weight-1 divisors follows sim-

ilar lines to that of weight-2 divisors. To compute the trisection polynomial we

solved a trivariate polynomials system obtaining (after simplifications) three

equations E′1, E′2 and E′′3 in Fq[c2, c1, a0] of degree 1, 2 and 1 in c1 respectively

(see [19]). From E′1 we can write c1 in terms of a0 and c2. We then compute

r1 = Resc1(E′1, E
′
2), r2 = Resc1(E′1, E

′′
3) and R = Resa0

(r1, r2), where R has

degree 350 in c2.

Several parasitic factors can be removed from R: Since the polynomial E′1

is used to remove c1 from E′2 and E′′3 , we get parasitic factors if the whole

4.4. Symbolic computation 51

polynomial is 0 independent of c1, that is to say if both m1 and m2 are 0 at

the same time, where m1 and m0 are the coefficients of degrees c11 and c01 in

E′1. Let sr = Resa0
(m1,m0), then gcd(R, sr) is a polynomial of degree 109 in

c2 which be removed twice from R. Let sr = Resa0
(m1,m0), then gcd(R, sr)

(and its factorization) produces two factors that can be removed from R: one

of degree 109 which appears twice, and one of degree 17 which appears three

times, leaving us with a polynomial p(c2) of degree 81 in c2.

Corollary 6. The trisection polynomial for weight-1 divisors on the curve C

is weighted homogeneous, where the curve parameters fi have weight 10 − 2i,

the divisor coordinates u30 and v30 have weight 2 and 5 respectively and the

trisection variable c2 has weight 1.

Proof The argument are identical to those in Corollary 4, with the weights

in Table 4.2.

Polynomial weight

E1 9

E2 12

E3 14

Polynomial weight

r1 32

r2 28

R 448

Table 4.2: Weight of the polynomials used in the trisection

Corollary 7. The weight of the trisection polynomial is 96.

Proof We follow a similar approach to that of Corollary 5. From Proposi-

tion 7, the weight of the coefficient of c81
2 is a multiple of 5. For the constant

coefficient, we do not have a special case of de-reduction, but we can “con-

struct” one: we set c2 = 0 and solve the resulting system to equations E1 = 0,

E2 = 0 and E3 = 0 (as above) but in only two variables (c1 and a0), and use a

similar approach to that used in the simple quadratic de-reduction to remove

parasitic factors, obtaining a polynomial of weight 96. The weight of trisection

polynomial must then satisfy 96a = 81 + 5b where a and b are non-negative

integers. As a0 = 1, b0 = 3 is a possible solution, all other solutions are of the

form a = 1+5t and b = 3+96t, with t ∈ Z. The next smallest positive solution

will then be a1 = 6 and b1 = 99, which would give weight 6 · 96 = 576, but the

weight of R = gcd(r1, r2) is 448. Therefore a0 = 1, b0 = 3 is the only possible

solution.

4.4 Symbolic computation

We now give some further details on the techniques required to make the ho-

mogeneous interpolation fully practical to compute trisection polynomials. For

simplicity, we will write the description in terms of the general weight-2 case,

the weight-1 case is similar.

52 CHAPTER 4. Symbolic trisection polynomials

Since the theory of trisection polynomials is based on obtaining a degree 81

polynomial in a1 (that is to say, the form of the polynomial in a1 is known),

whereas the theory does not directly tell us the form of the “trisection polyno-

mial” in terms of the other variable/parameters, our interpolation techniques

are based on interpolation “points” which are polynomials in a1 rather than

constants. Also recall that the coefficient of a81
1 is known up to a constant

factor (we will return to this in Section 4.4.3), and can be computed directly.

Although we could also compute the coefficient of a0
1, its weight makes it rather

costly to use and we in fact “forget” it in the following computations (and com-

pute it as any other coefficient rather than computing it directly).

Rather than interpolate the trisection polynomial as a whole of weight w,

we interpolate the coefficients of each of the 81 remaining powers of a1 (from

a0
1 to a80

1), where the coefficient of aj1 is homogeneous of weight w − j.

4.4.1 Parity and interpolation points

When interpolating for trisection polynomials, one of the variables has weight

1 (variable a1), one has weight 2 (variable u30) and the remaining variables

have weight greater than 2. Since we obtain polynomials in a1, the variable of

lowest weight that we can work with is u30 with weight 2. This variable is set

to value 1 and the total weight of the remaining variables (including a1) must

be of the same parity as w.

To ensure this, we first interpolate in the variables of odd weight, and

observe that the degrees of the last of these (say vj) must be either all odd

or all even (depending on the degrees of the other variables of odd weight),

which leads to an odd or even function in vj . Taking advantage of the identity

f(−vj) = f(vj) for even functions and f(−vj) = −f(vj) (with f(0) = 0) for

odd functions, we can reduce the number of evaluations in vj by a factor close

to 2 (and hence the number of polynomials in a1 by a similar factor). In effect,

if vj has weight k, then for the interpolation process it will behave as a variable

of weight 2k.

In order to interpolate the general trisection polynomials, we used the fol-

lowing approach:

• The set of values for a given variables does not (in general) have to depend

on the values taken by the others variables. We preferred to “re-use” the

same sets of values so the interpolation process could be accelerated with

precomputations.

• The tuples are chosen in terms of interpolation, but each tuple corre-

sponds to a curve and a divisor in the Jacobian of that curve. Note that

some of the curve coefficients do not appear directly in the tuple, for

example f0, but are fully determined by the coordinates of the divisor

4.4. Symbolic computation 53

(due to the divisibility condition: u(x)|f(x)− v(x)2). In general, distinct

tuples will be correspond to distinct curves, although in some rare occa-

sions two tuple could correspond to the same curve (this does not cause

any problem for the interpolation).

• Some tuples must be avoided at all cost, namely those that correspond

to singular curves (for which the trisection polynomial will not have the

same form).

• We also avoid all tuples for which the coefficient of a81
1 would be 0. Since

the symbolic form of this coefficient is known, this can be checked quickly

for all tuples before actually computing the trisection polynomials.

We used value sets of the form {b + 1, b + 2, b + 3, . . . , b + k} where b is an

offset to avoid all singular curves and coefficients of a81
1 that go to 0. For our

computation, b = 7 was sufficient (for the weight-1 case, we can take b = 0).

4.4.2 Finite fields vs the integers

Although the trisection polynomials we are looking for should be defined over

the integers, it is impractical to compute them via interpolation over the in-

tegers themselves. Mainly, this is due to the computation of the trisection

polynomial itself: the partial computations (in particular the last round of re-

sultants, before the final gcd computation) produces polynomials whose degrees

are close to one thousand.

Since we need to evaluate at a large number of points, the values of the of

each variable cannot be restricted to 0,±1, and the evaluation of each monomial

in the trisection polynomial can then be expected to have more than a thousand

bits in size. Taking into account the cumulative effect of the large number

of terms (a little over one million in the final result, and much higher in the

intermediate polynomials), one could reasonably expect some of the evaluations

to give values of more than one billion bits. Simply storing these evaluations

would become prohibitive, not to mention the cost of the integer arithmetic.

It then becomes much more practical to perform the work over prime fields

Fpi , to obtain the symbolic trisection polynomial mod pi for various pi and

then combine them via the Chinese Remainder Theorem. Each coefficient will

then be approximated modulo p =
∏
pi, and if p is large enough, the smallest

(signed) value modulo p of each coefficient gives us its value over the integers.

To give an upper bound on the (absolute) value of the coefficients, we looked

at the smallest of the final resultants (R2 = resc1(r1, r3) in Section 4.3.2) and

bounded its largest coefficient. We first observe that the sum of the absolute

value of the coefficients in r1 is 15389396856842800, and the similar sum for r3

is 11160931434260700344436134. These two values are used to obtain bounds

on the coefficients when we take products of parts of r1 with parts of r3.

54 CHAPTER 4. Symbolic trisection polynomials

We first operated on the terms in the Sylvester matrix as follows: each

non-zero entry in the matrix is replaced by the bound on the coefficients of

the polynomial it comes from. This substitution will give a matrix with 3

possible values for the entries: 0, 15389396856842800 (for the first 19 rows)

and 11160931434260700344436134 (for the last 20 rows). Given the form of

the matrix, a recursive determinant algorithm would compute 10! · 11! · 20!

different products of 39 terms, 19 of which are 15389396856842800 and the

other 20 are 11160931434260700344436134. We then ignore all signs in the

determinant computation and obtain an upper bound of

10! · 11! · 20! · 1538939685684280019 · 1116093143426070034443613420 .

The resulting 2794-bit value is then an upper bound for the sum of (the absolute

value of) all the coefficients in the resultant, which we then take as an upper

bound on the coefficient themselves, and on the coefficient of the trisection

polynomial (which is a factor of the resultant).

Even though we obtained a bound of 2794 bits, it is much larger than

the maximal size of the coefficients observed in the final trisection polynomials,

which stands at 134 bits. This difference is not surprising: first of all, the bound

ignored all possible cancellation during the computation of the resultants, and

accumulates all the coefficients together (and will therefore overestimate the

largest value). Secondly, the bound did not take into account the factors that

can be explained theoretically [19] nor those that are removed when we take

the gcd of the final set of resultants (Section 4.3.2). Since the weight of the

(smallest) resultant is almost 9 times larger than that of the of trisection poly-

nomial, it is not surprising that the bound on the coefficients is at least 9 times

larger than desired.

For the computation, we first worked modulo a single prime p of 320 bits,

and used the signed residue mod p to obtain the coefficient over the integers.

We found that all coefficients were less than 2135, which indicated that we had

185 bits of redundancy. The result could then be verified modulo 6 primes

of 416 bits each, to give us the a total bound of 2816 bits (and confirming

the redundancy in the computations). Dividing the verification into 6 primes

was done to simplify running the computation as three parallel processes and

minimizing the total time.

4.4.3 Re-scaling the interpolation points

The main problem to interpolate trisection polynomials is that they are ob-

tained via resultants and gcds. When working over a field, these operations

preserve the factorization properties of the polynomials (their roots), but will

not be concerned with multiplying (or dividing) the polynomial by a constant

factor. In fact, most implementations of the gcd computation will return a

4.4. Symbolic computation 55

monic polynomial, whereas the symbolic polynomial may not be monic at all.

This problem becomes even more acute if we consider that most of the work is

performed over finite fields, whereas the polynomial that we are looking for is

defined over the ring of the integers (and in general cannot be made monic).

Here the theoretical results on the coefficients of a81
1 and a0

1 used in Sec-

tion 4.3 to obtain the weight of the trisection polynomial come to our help once

again. Knowing the form of the highest and lowest degree coefficients of the

trisection polynomial can clearly be used to “re-scale” it (i.e. return it to the

form it should have been before being made monic). However, both of these

terms are known in terms of their roots, so both may be missing a constant fac-

tor, which required some extra care, especially if the gcd of the missing factors

is greater than 1.

To get a good idea of the actual coefficient, we first did some computations

over the integers with a limited number of symbolic variables (a1 and 2 or 3

others), giving the remaining variables value 1. In this way, we could be fairly

confident of the “extreme terms” in the trisection polynomial (monomials in

which at most 3 of the variables appear, for example f6
3 · a81

1 or v21
30) and

comparing with the theoretical form, get a fairly good idea of the missing

constant factor (if any).

At this point, we could not completely exclude that some small constant

factors were incorrectly removed due to the evaluation of the remaining vari-

ables as 1. Typically, “incorrect” factors of 2 or 3 may be expected to show

up in the polynomial when doing such evaluation, due to the accumulations

of various terms together. We could have introduced a few extra factors (e.g.

powers of 2 and 3) as a precaution, but we first tried the computations as if

there was no missing factor, and then checked if the results were consistent

throughout the trisection polynomial. This assumption proved correct, since

the coefficients obtained were so much smaller than the 320-bit prime and, any

missing factor would have been easily identified.

For simplicity, we only used the coefficient of a81
1 for re-scaling, and kept

the coefficient of a0
1 as a safety check for the computation (that is to say, we

re-interpolated it as if we did not know it, and checked that the result matched

the theory). This was done mostly to save the work of repeatedly evaluating a

weight 105 polynomial, and because the difference in interpolating down to a1
1

or a0
1 is minimal (especially when taking advantage of the parity).

One problem remains with re-scaling: interpolation points where the coeffi-

cient of a81
1 goes to zero (so there would be no value to “re-scale” with). As we

stated at the end of Section 4.4.1, it is easy to check beforehand if any tuples

will give a trisection polynomial of degree less than 81 and avoid it. In fact,

avoiding singular curves appeared to be more difficult than when using “small”

values for the variables to interpolate, but in any case both sets of “bad” curves

56 CHAPTER 4. Symbolic trisection polynomials

appear to be sparse on a larger scale.

4.4.4 Symbolic trisection polynomial

Remark 3. The full computation (with verification) took 682.7 hours using

Magma on a 2.9 GHz Intel core i5 running Mac OS X. For the weight-1 tri-

section polynomial, the total computation time was 11 hours and 26 minutes.

To obtain these timings, it was necessary to take maximum advantage of all

the optimizations described in this chapter (using WHP, determining the exact

weight of the polynomial, reducing the number of variables, using parity).

For weight 2 divisors, the trisection polynomial has weight 105 and depends

on a1, u31, u30, v31, v30, f3 and f2. The degree in a1 is 81, and the degrees of

the other variables can be obtained from their weight, hence we have degrees

52, 26, 28, 21, 24 and 17 respectively in u31, u30, v31, v30, f3 and f2. Based

only on the degrees, we would need

53 · 27 · 29 · 22 · 25 · 18 = 410, 840, 100

trisection polynomials in a1 to interpolate the complete polynomial, however

this goes down to 123, 399 if we use the approach of Section 4.2.2. Since the

variable of lowest weight to interpolate WHP is u31 (of weight 2), we can use

the parity of the weights (with v31 and v30 being the only ones of odd weight),

to reduce this to 65, 565 polynomials in a1.

Remark 4. The weight-2 trisection polynomial has 1,220,793 non-zero coeffi-

cients.

For weight 1 divisors, the trisection polynomial has weight 96 and depends

on c2, u30, v30, f3, f2 and f1. The degree in c2 is 81, and the degrees of the

other variables can be obtained from their weight, hence we have degrees 48,

19, 24, 15 and 12 respectively in u30, v30, f3, f2 and f1. Based only on the

degrees, we would need

48 · 19 · 24 · 15 · 12 = 3, 939, 840

trisection polynomials in c2 to interpolate the complete polynomial, however,

using the WHP approach of Section 4.2.2 and the parity (with v30 the only

variable of odd weight), the number of polynomials required decreases to 4, 535.

Remark 5. The weight-1 trisection polynomial has 66,124 non-zero coefficients.

Note that the number of zero coefficients in the trisection polynomial (with

respect to a general homogeneous polynomial of similar characteristic) repre-

sent ≈ 0.17% and ≈ 2.86% of the total number of terms for the weight-1 and

weight-2 trisection polymials.

Remark 6. Assuming the average size of coefficients in the trisection polyno-

mials to be between 1 and 2794 bits (based on Section 4.4.2) and that most

4.5. Using the trisection polynomial 57

of the coefficients are non-zero (based on the previous observation), then the

memory requirements for the intermediate polynomials in the computation of

the weight-1 trisection polynomials would be at least 3 terabytes (and possibly

in the ten thousand terabytes range), whereas those for the weight-2 trisection

polynomials would run in the 25,000 terabytes (and possibly in the hundred

million terabyte range). Even ignoring time constraints, direct symbolic com-

putation of the trisection polynomials is therefore outside of practical reach.

4.5 Using the trisection polynomial

4.5.1 Example of trisection polynomial

Consider p = 127 and the curve defined over Fp by y2 = x5 +x3 + 3x2 + 2x+ 1.

if we want to trisect

D3 = (x2 + 22x+ 23, 119x+ 48) ,

the trisection polynomials is

p(x) = 110x81 + 106x80 + 58x79 + 50x78 + 33x77 + 76x76 + 120x75 + 7x74

+ 103x73 + 70x72 + 67x71 + 76x70 + 4x69 + 114x68 + 93x67 + 22x66

+ 36x65 + 39x64 + 118x63 + 29x62 + 33x61 + 47x60 + 88x59 + 22x58

+ 16x57 + 23x56 + 7x55 + 37x54 + 11x53 + 62x52 + 32x50 + 106x49

+ 116x48 + 95x47 + 13x46 + 124x45 + 26x44 + 85x43 + 122x42

+ 113x41 + 116x40 + 85x39 + 105x38 + 103x37 + 101x36 + x35

+ 40x34 + 59x33 + 72x32 + 101x31 + 69x30 + 28x29 + 43x28 + 11x27

+ 97x26 + 27x25 + 20x24 + 92x23 + 113x22 + 15x21 + 69x20 + 90x19

+ 16x18 + 64x17 + 68x16 + 111x15 + 71x14 + 34x13 + 18x12 + 69x11

+ 21x10 + 31x9 + 104x8 + 2x7 + 49x6 + 62x5 + 77x4 + 56x3

+ 27x2 + 107x ,

and since p(x) is divisible by x (but not by x2), there is a (single) trisectee D1

that can be obtained by simple quadratic de-reduction:

D1 = (x2 + 62x+ 51, 46x+ 47) .

4.5.2 Evaluation of trisection polynomials

Evaluating a polynomial consisting of 1,220,793 terms (for divisors of weight

2) or even of 66,124 terms (for divisors of weight 1) must be done with some

care to avoid unnecessary costs.

An efficient approach consists in fixing an order for the evaluation of the

variables, iteratively using Horner’s rule to perform the evaluations, and record-

ing the terms of the polynomial according to this evaluation (so no search is

58 CHAPTER 4. Symbolic trisection polynomials

required to locate the next coefficient). It is of course useful to keep in mind

that the trisection polynomials are weighted homogeneous, which allows to re-

strict the degrees in the remaining variables following similar ideas to those of

Section 4.2.2. The parity tricks of Section 4.4.1 can also be applied without

difficulty.

In some situations, especially in point counting algorithms, we may need

to compute a large number of trisection polynomials for divisors defined over

the same curve. In the case of point counting algorithms, the divisors may

be defined over extension fields (with increasing extension degrees), whereas

the curve is defined over a fixed base field. In these cases, it becomes very

advantageous to first evaluate the parts of the trisection polynomial that relate

to the curve parameters, and then “re-evaluate” the resulting polynomial for

each divisor to trisect (evaluating in the coordinates of the divisor). This is

particularly true when the divisors are defined over field extensions (relative to

the curve) since this approach keeps the evaluations in the base field (where

the arithmetic is less expensive) for as long as possible.

In this context, we can optimize the evaluation a little further. For divi-

sors of weight 2, the coordinates [u31, u30, v31, v30] contain some redundancy

and can therefore be simplified, due to the divisibility condition u3|v2
3 − f on

Mumford’s representation D = [u3(x), v3(x)]. This divisibility condition gives

two polynomial C1, C0 ∈ Fq[u31, u30, v31, v30], both of which must be 0 for all

divisor D of weight 2. From C0 we obtain

v2
30 = −2u31u

2
30 + u30u

3
31 + f0 − u30f2 + u30u31f3 + u30v

2
31 ,

so any polynomial in Fq[u31, u30, v31, v30] can be limited to degree 1 in v30.

Taking C2 = Resv0
(C1, C0), we obtain a new condition which is monic of

degree 4 in u30. We can then also limit the polynomial in Fq[u31, u30, v31, v30]

to degree 3 in u30 (after the reduction in u30). Finally, the parity technique can

be applied to reduce the possible degrees in v31. Note that these substitutions

involve the curve parameters f1 and f0, which were not used in the computation

of the trisection.

In general, this approach may not be very interesting since it only reduces

the degrees in v30 and u30 (without eliminating them completely) at the cost

of introducing f1 and f0, in effect increasing the number of “variables” (and

most likely the number of terms in the polynomial). However, since we are

evaluating at the curve parameters first, evaluating at f1 and f0 is included in

the “pre-evaluation” for the curve (at a minimal increase in cost). With this

approach, the number of terms in the evaluation goes down from 1, 220, 793 to

112, 759.

For divisors of weight 1, the situation is similar although simplified by the

reduced number of variable. Using the divisibility condition, the polynomial in

4.5. Using the trisection polynomial 59

Fq[u30, v30] can be limited to degree 1 in v30, with the power in v30 correspond-

ing to the parity of the power in c2. The number of terms in the evaluation

goes down from 66, 124 to 2, 255. However, since weight-1 divisors are rather

scarce, it is less likely the pre-evaluation technique would pay out for these,

and direct evaluation is likely to be preferred.

Remark 7. To compare the efficiency of using the symbolic trisection polyno-

mial, we ran a few experiments the largest extension fields for which [8] reported

timings for trisection. We chose a curve over the field Fp with p = 2127−1, and

divisors defined over a degree 2430 = 10 ·35 extension. Preparing the trisection

polynomial in terms of the curve parameters (i.e. such that it only remains to

evaluate in [u31, u30, v31, v30]) took 34.21s, after which obtaining the trisection

polynomial took 1, 743.67s.

This compares extremely well with the timings of 31, 035s (pre-factoring)

reported by Gaudry and Schost, that it to say we obtain a speed-up factor of

close to 18. It should be noted that even though the difference in CPU speed

should account for a speed-up of roughly 33%, our implementation uses the

default field arithmetic of Magma whereas [8] uses NTL and optimizes the field

arithmetic. the field arithmetic.

If we consider that at these field sizes, [8] reports similar timings for the

pre-factorization part of trisection as for the factorization itself, we obtain an

overall speed-up factor close to 1.87 in the complete trisection computation.

CHAPTER 5

Trisection in characteristic 2

The full solution to divisor trisection in Jacobians Jac(C) of genus 2 curves

requires arduous computations, much heavier than divisor bisection. This is

because the 2-torsion subgroup reflects the natural 2 : 1 morphism to P1, while

the 3-torsion does not. Moreover, understanding trisection as a variant of the

discrete logarithm problem (given the exponent 3 and any value Q, find the

base P such that 3P = Q), an attempt to analyze the underlying complexity

seems justified.

The case of trisection for elliptic curves in odd characteristic was set in

[13]. In this paper we show how to trisect divisors in Jac(C)(F2m) when C is

a non-supersingular genus 2 curve over a binary field F2m . The supersingular

cases were addressed in [17]. We use coordinates D = [x2 +u1x+u0, v1x+ v0],

and we reverse Cantor’s reduction algorithm for divisor class arithmetic as in

[12, 15, 17]. Cantor’s reduction takes semireduced coordinates [ũ(x), ṽ(x)], and

computes

u(x) =
β(x)2 + α(x)β(x)h(x) + α(x)2f(x)

ũ(x)

with α(x), β(x) ∈ F2m [x] such that gcd(α(x), ũ(x)) = 1 of the appropiate de-

grees, until u(x) has degree 2 (see [3]). Our method takes the coordinates

[u(x), v(x)] of D and equates unreduced coordinates [ũ(x), ṽ(x)]. Namely, we

put

ũ(x) =
β′(x)2 + α′(x)β′(x)h(x) + α′(x)2f(x)

u(x)
(5.0.1)

with β′(x) = γ′(x)u(x)+α′(x)v(x) and we aim to find α′(x), γ′(x), ũ(x). In tri-

secting D, we know ũ(x) has to be of the form (u′(x))3 from Cantor’s algorithm.

Similarly, for the 3-torsion, we equate

ũ(x) = u(x)2 =
β′(x)2 + α′(x)β′(x)h(x) + α′(x)2f(x)

u(x)
. (5.0.2)

In both cases we obtain a solvable polynomial equation.

We choose models

C : y2 + (h2x
2 + h1x+ h0)y = x5 + f3x

3 + f2x
2 + f1x+ f0

61

62 CHAPTER 5. Trisection in characteristic 2

with non-constant h(x) = h2x
2+h1x+h0, and distinguish the cases deg(h(x)) =

1, 2 because the computational effort is different. The 2-rank in the first case

is 1, but it is 1 or 2 in the second. Further, we assume h0 = f1 = 0 in

deg(h(x)) = 1 and f3 = f2 = 0 in deg(h(x)) = 2 ([1, 10]). See [5] for details on

models corresponding to each 2-rank.

In [17] the authors provided a basis of the 3-Sylow subgroup with the same

u1-coordinate at every level. Because of the higher 2-rank, our formulas have

more terms and they don’t allow such a full regularity. However, in both

degrees deg(h(x)) = 1, 2 we show conditions to obtain trisections D′ such that

3D′ and D′ share the same u1. In contrast with [17], 3-torsion divisors very

occasionally satisfy this condition, and therefore such trisections rarely are

enough to generate Jac(C)[3∞].

Our results are shown explicitly for curves with deg(h(x)) = 1. In the

case deg(h(x)) = 2, there are many more terms. We propose a multivariable

interpolation procedure to simplify the computation, but in deg(h(x)) = 2 the

results are too long to write down in full generality. We show several examples,

where we take the generator ω of the finite field as the default generator used

in Magma [2] for that given field size.

5.1 The 3-torsion subgroup

Since all divisors of order 3 must have weight 2, we solve the equation 2D = −D
with γ′(x) = x + c0 and α′(x) = a0, with c0, a0 6= 0. Then (5.0.2) for

generic hyperelliptic polynomials f(x), h(x) together with he divisibility con-

dition v(x)2 + h(x)v(x) + f(x) ≡ 0 mod u(x) gives

a0h2 + a2
0 + u1 = 0, (5.1.1)

a2
0u1 + a0h1 + a0c0h2 + u2

1 + u0 + c20 = 0, (5.1.2)

a0h0 + a2
0u0 + a2

0u
2
1 + c20u1 + a2

0f3 + a0c0h1 + a2
0h2v1 = 0, (5.1.3)

a2
0u1f3 + a2

0h1v1 + a2
0h2v0 + a0c0h0 + a2

0u1h2v1 + a2
0v

2
1

+ a2
0f2 + a2

0u
3
1 + c20u0 + u2

0 = 0, (5.1.4)

u0f3 + u0u
2
1 + h1v0 + u1f2 + u1h2v0 + u1h1v1 + u2

1h2v1 + h0v1

+u2
0 + u4

1 + u1v
2
1 + f1 + u2

1f3 + u0h2v1 = 0, (5.1.5)

f0 + u0f2 + u0u1f3 + u0u
3
1 + h0v0 + h1u0v1 + h2u0v0

+h2u0u1v1 + v2
0 + u0v

2
1 = 0. (5.1.6)

Proposition 9. If deg(h(x)) = 1 then D = [x2 + u1x + u0, v1x + v0] ∈
Jac(C)(F2m)[3] if and only if pu1(x) and pv1(x, y) are both zero when evalu-

5.1. The 3-torsion subgroup 63

ated in x = u1 and y = v1, where

pu1
(x) = x40 + h8

1x
28 + h12

1 x
22 + h1f

4
3x

20 + h14
1 x

19 + f8
3h

8
1x

12

+ (h16
1 + f12

3)f4
3x

8 + h22
1 x

7 + f8
3h

12
1 x

6 + h8
1f

12
3 x4 + f8

3h
14
1 x

3

+ h20
1 f

4
3x

2 + h26
1 x+ h20

1 f
2
0 , (5.1.7)

pv1
(x, y) = h1y

2 + h2
1y + x9 + h1x

6 + h2
1x

3 + h1f3x
2 + f2

3x+ h1f2 + h3
1,

v0 =
1

h5
1

(
u10

1 + h2
1u

7
1 + h2

1f3u
5
1 + h4

1u
4
1 + h2

1f
2
3u

3
1 + f4

3u
2
1

+ (h4
1 + h3

1v1 + h2
1(v2

1 + f2) + f3
3)h2

1u1 + (u2
1 + f3)h5

1

√
u1

)
,

u0 = (u3
1 + f3u1 + f2 + v2

1 + v1)
√
u1.

Proof. If deg(h(x)) = 1, from Equations (5.1.1), (5.1.2) and (5.1.3) we obtain

u1 = a2
0, u0 = a0h1 +c20 and c0 =

a0(a4
0 + f3 + a0h1)

h1
. All these in (5.1.4) imply

v0 =
a0

h5
1

(
a19

0 + h2
1a

13
0 + h2

1f3a
9
0 + h4

1a
7
0 + h2

1f
2
3a

5
0 + f4

3a
3
0

+ (h4
1 + h3

1v1 + h2
1(v2

1 + f2) + f3
3)h2

1a0 + (a4
0 + f3)h5

1

)
.

Then into (5.1.5) and (5.1.6) we obtain 2 equations p1(u1, v1) = 0, p2(u1, v1) =

0, one with left hand side as pv1
(x, y) above. Finally, Resv1

(p1, p2) = 0 is

exactly pu1
(u1) = 0.

Our pu1
(x) is the even characteristic version of the 3-modular polynomial

of [9]. The u1-coordinates of 3-torsion divisors are roots of pu1
(x), but the

converse does not hold because at the same time pv1
(x, y) has to have a root

over F2m too. The set of solutions of pu1(x), pv1(x, y) in Proposition 9 is faithful

to Jac(C)[3](F2m).

Corollary 8. If deg(h(x)) = 1 then the cardinality of Jac(C)[3](F2m) is twice

the cardinality of{
ξ ∈ F2m

∣∣ pu1
(ξ) = 0, Tr2

((ξ9 + h2
1ξ

3 + f2
3 ξ) + (ξ6 + f3ξ

2 + f2)h1

h3
1

+ 1
)

= 0
}

plus one.

Proof. The trace condition is equivalent to pv1(ξ, x) ∈ F2m [x] having a root

over F2m .

For curves with deg(h(x)) = 2 (momentaneously h2 = 1 to simplify the

outcome) we similarly deduce

u0 = a0h1 + a2
0u1 + u2

1 + c20 + a0c0,

v0 =
1

a2
0

(a4
0u

2
1 + a2

0(h2
1 + u3

1 + (u1 + h1)v1 + v2
1 + (1 + u1)c20)

+ a0c0(h0 + h1c0 + a0c
2
0) + u4

1 + u2
1c

2
0).

64 CHAPTER 5. Trisection in characteristic 2

Replacing in (5.1.1), (5.1.3), (5.1.5) and (5.1.6) we obtain four polynomials

p0, p1, p2, p3 ∈ F2m [u1, v1, c0, a0] of degrees 0, 2, 4 and 6 in c0. Since the leading

coefficient of p1 is a2
0 +u1 6= 0, we reduce p2, p3 modulo p1. From p2 we equate

c0 and we then replace in p1 and p3. Since the coefficient of a2
0 in p0 is non-

zero, we reduce p1, p3 modulo p0. From p1 we equate a0 and then replace in

p0 and p3. Finally we compute Resv1
(p0, p3). In contrast with deg(h(x)) = 1,

now degv1
(gcd(p0, p3)) can be larger than 2. Still, Resv1

(p0, p3) is a multiple

of pu1
(x)2 where

pu1
(x) = x40 + h2

1x
34 + h6

1x
30 + (h7

1 + h6
1 + h4

1h0 + h2
1h

2
0 + h2

1f1)x29 + . . .

+
(
f4

1 + f3
1 (h3

1 + h1) + f2
0h

4
1 + f0h

10
1 + f0h

9
1 + f0h

7
1h0 + h8

0

+ f2
1 (h8

1 + h7
1 + h5

1h0 + h5
1 + h4

1h0 + h3
1h

2
0 + h3

1h0 + h1h
2
0)

+ f1(f0h
5
1 + h9

1h0 + h9
1 + h8

1h0 + h7
1h

2
0 + h5

1h
2
0 + h3

1h
4
0 + h1h

4
0)

+ f0h
5
1h

2
0 + h11

1 h0 + h7
1h

3
0 + h5

1h
5
0 + h4

1h
5
0 + h3

1h
6
0 + h3

1h
5
0

+ h1h
6
0 + h13

1

)
·Resx(h(x), h2

1f(x) + x8 + f2
1) (5.1.8)

and the last factor (of the constant term) is the discriminant of the curve.

Example 4. Let C1 : y2 + ω54093xy = x5 + ω8322x3 + ω4161x2 + ω16644 over

F218 . Then

pu1
(x) = x40 + ω170601x28 + ω124830x22 + ω203889x20 + ω233016x19

+ ω237177x12 + ω237177x8 + ω141474x7 + ω191406x6

+ ω8322x4 + ω37449x3 + ω66576x2 + ω95703x+ ω66576

and Jac(C1)(F218)[3] ∼= Z/3Z× Z/243Z× Z/243Z with a basis

{[x2 + ω67438x+ ω238206, ω121226x+ ω30028],

[x2 + ω127370x+ ω91062, ω90346x+ ω180924],

[(x2 + ω226002x+ ω11845, ω239840x+ ω29962]}.

Example 5. Let C2 : y2 + (x2 + ω42x+ ω42)y = x5 + x+ 1 over F26 . Then

pu1
(x) = x40 + ω21x34 + x30 + x29 + ω21x28 + x27 + x26 + x25

+ ω42x24 + ω21x23 + ω21x22 + ω21x20 + ω21x19 + ω21x18

+ x16 + ω21(x15 + x13 + ω21x12 + x10 + x8 + x4 + x3 + x),

and Jac(C2)(F26)[3] ∼= Z/3Z× Z/3Z× Z/3Z with a basis

{[x2+ω21, ω42x+ω21], [x2+ω57x+ω6, ω56x+ω28], [x2+ω40x+ω14, ω36x+ω38]}.

The roots 0, ω57, ω40 have multiplicity 1, 1, 2 in pu1
(x) and the factorization

types of gcd(p0, p3) are (1)2(4), (1)2 and (1)4 respectively.

5.2. Trisection 65

5.2 Trisection

In this section we show how to obtain the trisection polynomial pD(x) of any

weight 2 divisor D. The roots of pD(x) give the set 1
3D of trisections of the

trisectee D. We explain first how to find weight 1 trisections of D.

5.2.1 Weight 1 trisections

Here D1 and D3 = 3D1 are of the form [u1(x), v1(x)] = [x + u10, v10] and

[u3(x), v3(x)] = [x2 + u31x+ u30, v31x+ v30] respectively.

Proposition 10. Let C be a non-supersingular genus 2 curve over F2m , then a

divisor D3 ∈ Jac(C)(F2m) has a trisection of weight 1 if only if Resc0(p1, p2) =

0 with

p1(c0) = v31h2 + f3 + u30 + c20u31 + c0h1 + c40 + c20h
2
2,

p2(c0) = v31h1 + v30h2 + u31f3 + f2 + v2
31 + c20u30 + c0h0 + u31v31h2

+ c60 + u31c
2
0h

2
2 + u2

31c0h2 + c20u
2
31 + u31c

4
0 + c50h2 + c40h

2
2 + c30h

3
2.

Proof. In (5.0.1) with γ = c0 and α = 1 we obtain

u31 + c20 + c0h2 + u10 = 0 (5.2.1)

v31h2 + u2
31 + f3 + u30 + c20u31 + c0h1 + u2

10 = 0 (5.2.2)

v31h1 + v30h2 + u31f3 + f2 + v2
31 + u3

31

+c20u30 + c0h0 + u31v31h2 + u3
10 = 0. (5.2.3)

From (5.2.1), u10 = u31 + c20 + c0h2, and replacing in (5.2.2) and (5.2.3) we

obtain p1 = p2 = 0.

Corollary 9. A divisor D3 admits at most 4 trisections of weight 1.

Proof. The degrees of p1(c0) and p2(c0) above are 4 and 6 respectively. Hence

the degree of gcd(p1(c0), p2(c0)) is at most 4, and by (5.2.1) there are at most

4 possible u10’s.

Example 6. Let C3 : y2 + ω54093xy = x5 + ω8322x3 + ω4161x2 + ω16644 over

F218 . For

D = [x2 + ω211084x+ ω50578, ω169657x+ ω196594] ∈ Jac(C3)(F218),

the polynomials p1(c0), p2(c0) above satisfy gcd(p1(c0), p2(c0)) = x2 +ω33719x+

ω69077, and the corresponding trisections of weight 1 of D are

[x+ ω252372, ω42058] and [x+ ω247977, ω197890].

66 CHAPTER 5. Trisection in characteristic 2

5.2.2 Weight 2 trisections

From (5.0.1) with γ′(x) = x2 + c1x+ c0 and α′(x) = a1x+ a0 we have

a2
1 + a1h2 + u31 + u11 = 0 (5.2.4)

a2
1u31 + a1(c1h2 + h1) + a0h2 + u30 + c21 + u10 + u2

11 = 0 (5.2.5)

a2
1(f3 + u30 + u2

31 + v31h2) + a1(h0 + c1h1 + c0h2)

+ a2
0 + a0(h1 + c1h2) + u3

11 + c21u31 = 0 (5.2.6)

a2
1(u31v31h2 + f2 + u3

31 + v2
31 + v31h1 + v30h2 + u31f3)

+ a1(c1h0 + c0h1) + c21u30 + a0h0 + c20 + u2
11u10

+ a0c1h1 + a0c0h2 + a2
0u31 + u2

10 = 0 (5.2.7)

a1c0h0 + a2
0(f3 + u30 + u2

31 + v31h2)

+ a0(c1h0 + c0h1) + u11u
2
10 + c20u31 = 0 (5.2.8)

a2
0(v2

31 + f2 + u3
31 + v31h1 + v30h2 + u31f3 + u31v31h2)

+ a0c0h0 + c20u30 + u3
10 = 0 (5.2.9)

From (5.2.4) and (5.2.5) we have

u11 = a2
1 + a1h2 + u31, (5.2.10)

u10 = a4
1 + a2

1(h2
2 + u31) + a1(h1 + c1h2) + a0h2 + u30 + c21 + u2

31. (5.2.11)

In the general case for curves with deg(h(x)) = 1 (so a1 6= 0), the resolution

of (5.2.4) — (5.2.9) is as follows. Replacing (5.2.10) and (5.2.11) in (5.2.6) —

(5.2.9) we obtain 4 polynomials in F2m [a1, a0, c1, c0]. With one we isolate

c0 =
1

h1a1u30
(a2

0v31h1 +h1a1c
4
1 +h1a1u

2
30 + . . .+u30a

2
1v

2
31 +u30a

2
1f2). (5.2.12)

Replacing c0 in the second equation and then progressively reducing modulo the

two other equations gives us an equation of the form s1(a1, a0)c1 +s0(a1, a0) =

0, from which we deduce

c1 = −s0(a0, a1)

s1(a0, a1)
. (5.2.13)

We then replace c1 in two of the initial four polynomials and compute their

resultant R(a1), eliminating a0. From R(a1) we have to remove a factor of

degree 18 raised to power 3 and a predictable quadratic factor before obtaining

a degree 81 relation

pD(a1) = a81
1 (u8

31u
2
30 + u6

31v
4
31 + . . .+ f6

3) + . . .+ (u6
31h

19
1 v

12
31 + . . .+ u48

31h
3
1) = 0.

(5.2.14)

We call pD(x) the trisection polynomial of D. The following algorithm puts

together all the steps above.

The bottleneck in our computation above is to find the resultant R(x),

which is essentially our trisection polynomial pD(x) together with some par-

asite factors. We can avoid to compute R(x) symbolically using multivariate

5.2. Trisection 67

Algorithm 8 Trisection (over F2m with deg(h(x)) = 1)

Require: A curve C with deg(h(x)) = 1, D3 = [x2 + u31x+ u30, v31x+ v30] ∈
Jac(C)(F2m).

Ensure: D = [u1(x), v1(x)] such that 3D = D3.

1: Find a root a1 of pD(x) in (5.2.14)

2: Compute G(x) := gcd(p1(a1, x), p2(a1, x))

3: Find a root a0 of G

4: Find c1 with (5.2.13)

5: Find c0 with (5.2.12)

6: Find u11, u10 with u11 = u31 + a2
1, u10 = u30 + a2

1u31 + u2
31 + a4

1 + a1 + c21

7: Compute v1 = (α′)−1(β′) + h(x) mod u1 from the polynomials α′(x) =

a1x+ a0, γ′(x) = x2 + c1x+ c0, and β′(x) = γ′(x)u3(x) + α′(x)v3(x)

interpolation as a shortcut to pD(x). The idea is to assign appropriate weights

to the variables in our equations (5.2.4) — (5.2.9) with the purpose that each

equation is weighted homogeneous. We accomplish this with the following

choices:

h1 u31 u30 v30 v31 f3 f2 f0

3 2 4 5 3 4 6 10

Since pD(x) is the final result of a procedure involving addition, products,

resultants and gcds of weighted homogeneous polynomials, it must be weighted

homogeneous too. A useful trick to simplify the computation is to put u31 = 1

because homogeneity allows reconstruction. Evaluating the remaining variables

at enough points, we recover pD(x).

In the general case for deg(h(x)) = 2 (so a1 6= 0), replacing u11 and u10 in

(5.2.6) — (5.2.9) we similarly obtain four polynomials in c0, c1, a0, a1 and from

them we obtain a polynomial of degree 81 in a1

pD(a1) = a81
1 (u2

30u
8
31 + . . .+ v8

31) + . . .+ (h21
0 + . . .+ u3

30v31h
30
1) = 0 (5.2.15)

with about 3 million terms. A similar interpolation trick eases the computation

as above.

Interestingly, if the leading coefficient of pD(x) is zero then there is one

trisection of weight 1. This ties together pD(x) and Proposition 10.

Example 7. Let C8 : y2 + (x2 + ω5x+ ω5)y = x5 + ωx+ ω over F23 and

D = [x2 + x+ ω, x+ ω] ∈ Jac(C8)(F23).

Then 1
3D = [x+ ω5, ω6] and the trisection polynomial is

pD(x) = ω2x80 + ω5x79 + ω5x78 + · · ·+ ω3x3 + ω6x+ ω4.

68 CHAPTER 5. Trisection in characteristic 2

5.2.3 Easy trisections

From Equations (5.2.10) and (5.2.11), it follows that trisections with the same

u1-coordinate as their trisectees are given by a1 = 0 in curves with deg(h(x)) =

1, while these are given by a1 = 0 or a1 = h2 in curves with deg(h(x)) = 2.

For supersingular curves such easy trisections were enough to generate a basis

for the 3-Sylow subgroup (see [17]). Below we show that for us this is not

necessarily the case.

Proposition 11. If deg(h(x)) = 1 then D3 = [x2 + u31x + u30, v31x + v30] ∈
Jac(C)(F2m) has a trisection with the same u1-coordinate if and only if

psimple(x) = x9 + h2
1x

7 + h2
1(h2

1 + u31u30)x5 + u31u30h
3
1x

4

+ h2
1(h4

1 + u31u30h
2
1 + u2

31u
2
30)x3 + u31u30h

5
1x

2 + u3
31u

3
30h

3
1

+ u2
31

(
u10

31 + (u2
30 + f2

3)u6
31 + h2

1u30u
5
31 + h2

1u30f3u
3
31

+ (f2
2 + v4

31 + h2
1v

2
31)u4

31 + h2
1u

3
30u31 + h4

1u
2
30

+ u30(h3
1v31 + h2

1f2 + h2
1v

2
31 + u30f

2
3)u2

31

)
x

has a root over F2m .

Proof. Necessarily a1 = 0. If u31 6= 0, from (5.2.6) we obtain c21 = u2
31 +a0(h1 +

a0)/u31. Replacing in (5.2.8) and (5.2.9) we obtain p1(c0, a0) = p2(c0, a0) = 0.

The resultant Resc0(p1, p2)(a0) = 0 is exactly the condition psimple(x) to have

a root a0 ∈ F2m .

Example 8. Let C4 : y2 + ω12xy = x5 + ωx3 + ωx2 + ω over F26 . For

D = [x2 + ω32x+ ω55, ω13x+ ω30] ∈ Jac(C4)(F26),

the trisection polynomial pD(x) has no constant term, psimple(x) has a root

over F26 ,

pD(x) = ω39x81 + ω17x80 + x79 + ω12x78 + . . .+ ω35x3 + ω19x2 + ω41x,

psimple(x) = (x+ ω5) · (x4 + ωx3 + ω7x2 + ω46x+ ω14)

· (x4 + ω36x3 + ω28x2 + ω39x+ ω26),

and [x2 + ω32x+ ω12, ω33x+ ω6] ∈ 1
3D shares the u1-coordinate with D.

Even if 3-torsion divisors in carefully chosen instances may satisfy the con-

dition in Proposition 11, such examples are rare in deg(h(x)) ≥ 1 (compare

with [17]).

Example 9. Let C5 : y2 + ω12xy = x5 + ωx3 + ω5x2 + ω4 over F212 . Then

Jac(C5)(F212)[3∞] ∼= Z/9Z with

D = [x2 + ω1163x+ ω2851, ω4056x+ ω2808] ∈ Jac(C5)[3](F212).

5.2. Trisection 69

For D – hence for all divisors in Jac(C5)[3](F212), psimple(x) factors over F212

as

psimple(x) = (x3 + ω1342x2 + ω692x+ ω4026) · (x3 + ω2707x2 + ω2889x+ ω4026)

· (x3 + ω4072x2 + ω1390x+ ω4026).

Consequently, no trisection shares the u1-coordinate with D:

1

3
D =

{
[x2 + ω417x+ ω3774, ω2732x+ ω1182],

[x2 + ω3249x+ ω3189, ω1374x+ ω2750],

[x2 + ω3301x+ ω3574, ω3077x+ ω3178]
}
.

Trisections with u11 = u31 for deg(h(x)) = 2 and a1 = 0 are found similarly.

We deduce

c0 =
u5

31 + (u30 + a0h2 + c21)u3
31 + (a0(c1h1 + h0) + c21u30)u31

a0(h1 + u31h2)

+
(v31h2 + u30)a2

0 + c1h0a0

a0(h1 + u31h2)

and similarly we obtain p1(a0) and p2(a0) (of degrees 6 and 7) as in the proof

of Proposition 11. An easy trisection is given by a root of the common factors

of p1 and p2.

Example 10. Let C6 : y2 + (x2 + ω12x+ ω12)y = x5 + ωx+ ω over F26 . For

D = [x2 + ω9x+ ω56, ω50x+ ω12] ∈ Jac(C6)(F26),

pD(x) has no constant term, p1(x) and p2(x) share a root over F26 ,

pD(x) = ω23x81 + ω5x80 + ω55x79 + ω14x78 + . . .+ ω20x3 + x2 + ω18x

p1(x) = (x+ ω3)(x+ ω16)(x2 + ω41x+ ω60)(x3 + ω10x2 + ω42x+ ω53)

p2(x) = (x+ ω3)(x5 + ω3x4 + ω21x3 + ω21x2 + ω44x+ ω58),

and then 1
3D = [x2 + ω9x, ω11x+ ω62] shares the u1-coordinate with D.

Easy trisections given by a1 = h2 are found with a similar pair of polyno-

mials.

Example 11. Let C7 : y2 + (x2 + ω12x+ ω12)y = x5 + ωx+ ω over F26 and

D = [x2 + ω46x+ 1, ω11x+ ω19] ∈ Jac(C7)(F26),

then 1
3D = [x2 + ω46x + ω3, x + ω14] and the trisection polynomial has a root

at x = h2:

pD(x) = (ω32x80 + ω31x79 + ωx78 + . . .+ x3 + ω23x2 + ω33x+ ω29)(x+ 1).

Hence, in general one has to expect that none of the 3-torsion divisors will

allow for a trisection with the same u1-coordinate. Therefore distinguished

bases are extremely rare in non-supersingular curves.

70 CHAPTER 5. Trisection in characteristic 2

5.3 Factorization of trisection polynomials

In the same way as in odd characteristic (see [9]), the factorization type of

our u1-coordinate polynomial pu1
(x) for 3-torsion divisors is determined by

the characteristic polynomial χ3(x) ∈ Z[x] of the Frobenius endomorphism π

acting in the 3-torsion subgroup. Below we provide the precise Galois orbits of

the 3-torsion subgroup.

Proposition 12. Let C be a non-supersingular genus 2 curve over F2m . Let

pu1(x) be the u1-coordinate polynomial (5.1.7), (5.1.8) of the 3-torsion divisors

and let pD(x) be the trisection polynomial (5.2.14), (5.2.15). Then the factor-

ization types of pu1
(x), pD(x) and the Galois orbits of the 3-torsion subgroup

of Jac(C)(F2m) are shown in Table 5.1.

factorization of pu1 (x) 3-torsion Galois orbits factorization of pD(x)

assuming no trisection of weight 1

(5)8 (5)16 (1)(5)16

(10)8 (1)(10)8

(1)(2)2(3)(4)2(12)2 (2)2(4)6(6)(12)4 (1)(2)2(4)6(6)(12)4

(1)2(3)2(4)6(12)4 (1)3(3)2(4)6(12)4, (3)3(12)6

(1)4(2)2(4)8 (2)4(4)18 (1)(2)4(4)18

(1)8(4)18 (1)9(4)18, (3)3(12)6

(1)(3)4(9)3 (1)2(3)8(9)6 (1)3(3)8(9)6, (9)9

(2)(6)4(18)3 (1)(2)(6)4(18)3

(1)40 (2)40 (1)(2)40

(1)80 (1)81, (3)27

(1)4(3)12 (1)8(3)24 (1)8(3)24, (3)27

(2)4(6)12 (1)(2)8(6)12

(1)13(3)9 (1)26(3)18 (1)27(3)18, (3)27

(2)13(6)9 (1)(2)13(6)9

(4)10 (8)10 (1)(8)10

(2)2(6)6 (4)2(12)6 (1)(4)2(12)6

(2)20 (4)20 (1)(4)20

(1)2(2)(3)2(6)5 (1)2(2)3(3)2(6)11 (1)3(2)3(3)2(6)11, (3)3(6)12

(1)5(2)4(3)(6)4 (1)2(2)12(3)2(6)8 (1)3(2)12(3)2(6)8, (3)3(6)12

(1)8(2)3(6)9 (1)9(2)9(6)9

(1)8(2)16 (1)8(2)36 (1)9(2)36, (3)3(6)12

(1)2(2)(4)(8)4 (1)2(2)3(8)9 (1)3(2)3(8)9, (3)(6)(24)3

(4)(12)3 (8)(24)3 (1)(8)(24)3,

(10)4 (20)4 (1)(20)4

Table 5.1: Factorization patterns for trisection

Proof. The factorization types of pu1
(x) are as in [9]. We detail how to deduce

the 2nd column from the 1st when deg(h(x)) = 1 and the matrix of π in

5.3. Factorization of trisection polynomials 71

Jac(C)(F2m)[3] is one of

A1 =


0 1 0 0

2 0 0 0

0 0 1 1

0 0 0 1

 , A2 =


0 1 0 0

2 0 0 0

0 0 2 1

0 0 0 2

 .

One can check that A1 and A2 have the same factorization (1)(3)(2)2(4)2(12)2

for pu1
(x), but their Galois orbits in the 3-torsion are different. Indeed, the

first non-zero value in the 3rd row discriminates: since it is 1 in A1, then π

leaves one divisor fixed, hence pu1(x) has a root ξ ∈ F2m for which pv1
(ξ, y)

has a root, while this is not the case for A2. Hence the Galois orbit structures

are (1)2(3)2(4)6(12)4 and (2)(4)6(6)(12)4 respectively. From the kernel of mul-

tiplication by 3 the factorization types for p(a1) follow (see similar arguments

in [15] for bisection or chapter 3 for trisection in odd characteristic).

If a curve has a 3-torsion subgroup of rank 3 or 4 over F2m then the type

of factorization of pu1(x) is (1)13(3)9 or (1)40 respectively. These cases are

only possible when χ3(x) = (x − 1)4 = x4 + 2x3 + 2x + 1 (mod 3). Since the

coefficients of x3 and x are the same, then 2m ≡ 1 mod 3, hence m ≡ 0 mod 2.

This is a particular case of [6, Corollary 5.77].

Example 12. Let C9 : y2+ω12xy = x5+ωx3+ω2x2+ω and C10 : y2+ω12xy =

x5 +ωx3 +ωx2 +ω11over F26 . The factorization of pu1(x) in both Jacobians is

(1)(2)2(3)(4)2(12)2 but the rank of the 3-torsion is 1 for C9 and 0 for C10 (this

ilustrates rows 3 and 4 in the middle column of Table 5.1 with deg(h(x)) = 1

curves).

Example 13. Let C11 : y2 + (x2 + ω12x+ ω12)y = x5 + ωx+ ω over F26 . The

factorization of pu1
(x) is (1)(2)2(3)(4)2(12)2, and the polynomials p0, p3 (see

the discussion after Corollary 8) satisfy gcd(p0, p3) = (x+ω30)(x+ω41). Then

Jac(C11)(F26)[3∞] ∼= Z/3Z with generator [x2 + ω36x + ω4, ω41x + ω43] (and

this ilustrates row 4 of Table 5.1 with a curve with deg(h(x)) = 2).

CHAPTER 6

Explicit `-Sylow subgroup

We present a generalization of the algorithms in [16] for the case of `-sections.

There exists implementations of `-section for ` ∈ {2, 3, 5, 7} in odd character-

istic and `-section for ` ∈ {2, 3} in characteristic two. We studied the case of

`-section in general and we present explicit algorithms for the computation of

the 3-Sylow subgroup. The generalization to compute generators of 3-Sylow

allow us obtain s1 and s2 modulo power of 3 using the generators.

6.1 Determining the `-Sylow in the Jacobian

Let be r the `-rank of Jac(C)(Fq). we write

Jac(C)(Fq)[`∞] ∼= Z/`n1Z× Z/`n2Z× · · · × Z/`nrZ

If {w1, . . . , wr} is a basis of the `-Sylow subgroup Jac(C)(Fq)[`∞] with, wi of

order `ni , then any D ∈ Jac(C)(Fq)[`∞] can be written uniquely in the form

D =

r∑
j=1

nj−1∑
i=0

εi,j`
iwj , εi,j ∈ {0, . . . , `− 1} (6.1.1)

Figure 6.1: The 3-forest of a Jacobian with 3-rank 3 and exponents n1 = n2 = 1,

n3 = 3.

73

74 CHAPTER 6. Explicit `-Sylow subgroup

We now present the natural generalizations for definitions of inner, leaf,

level and t-relative in [16]

Definition 10. We say a divisor D is inner if 1
`D 6= ∅, and a leaf otherwise.

Definition 11. We say that a divisor D ∈ Jac(C)(Fq) is at level k if ord(D) =

`k. The maximum level in a tree is called the height of the tree.

Definition 12. We say that two divisors D,D′ ∈ Jac(C)(Fq) in the same level

are t-relatives if `tD = `tD′ . Equivalently, D and D’ are t-relatives if and only

if D −D′ ∈ Jac(C)(Fq)[`t].

Definition 13. We say that a divisor D ∈ Jac(C)(Fq) is t-inner if there exists

a t-relative divisor which is inner.

We now present natural generalizations of jumps and gap from [16]

Proposition 13. (The proportions) Let T be a `-tree of height ns, and let k

an integer such that 1 ≤ k < ns .

• If 1 ≤ k ≤ n1 then all divisors at level k in T are inner.

• If nj < k ≤ nj+1, 1 ≤ j < s, then 1
`j of the divisors at level k in T are

inner.

Proposition 14. (The gaps) Let T be a `-tree of height ns , and let t be an

integer such that 1 ≤ t < ns.

• If t 6= n1, . . . , t 6= ns−1 , then in each class of t-relatives, all divisors are

leaves or otherwise all are (t− 1)-inner.

• If t = ni and j is the number of times that ni appears in the sequence

n1, . . . , ns , then in each class of t-relatives, all divisors are leaves or

otherwise for every set of representatives modulo (t − 1)-relativeness a

proportion of 1
`j of them are (t− 1)-inner.

We need a generalization of theorem 3.1 in [16] for any ` in particular for

` = 3 to obtain generators of the 3-Sylow subgroup.

Proposition 15. (Jumps) Let Dk ∈ Jac(C)(Fq) be a divisor of order `k such

that n1 ≤ n2 ≤ . . . ≤ ni < k < ni+1. If W1,W2, . . . ,Wi are leaves of orders

`n1 , `n2 , . . . , `ni generating a subgroup of rank i and a F`-vector space containing

leaves only, then one of the sets

1

`
(Dk +

∑
j∈J

εjWj)

varying J ⊆ {1, 2, . . . , i} and εj ∈ {1, 2, . . . , `− 1} , is nonempty.

6.2. The 3-Sylow Algorithm 75

Proof As in [16] we find Wj , j = i+1, . . . , r divisors of order `ni+2, . . . , `nr

such that

< W1, . . . ,Wi, . . . ,Wr >= Jac(C)(Fq)[`∞].

we can write

Dk =

r∑
j=1

nj−1∑
m=1

εm,j`
mWj , εm,j ∈ {0, 1, 2, . . . , `− 1}.

Since Dk has order `k and ni < k < ni+1 , then necessarily ε0,j = 0 for j > i

and εm,j 6= 0 for same m > 0 and j > i. Then the set

1

`

Dk +

i∑
j=1

(`− ε0,j)Wj

 .

is nonempty.

As in [16], the trees in a given `-forest have at most r different heights

h1 < h2 < . . . < hs, s ≤ r. Such different heights h1, . . . , hs take values in the

sequence n1, ..., nr . For every `-forest, if we put ci := #{`-trees of height hi},
then ci = cj for i = j.

Proposition 16. Each ci is a sum of consecutive powers of ` multiply by

(` − 1), and each tree structure of a `-forest corresponds to one of the `r−1

descompositions of `r−1
`−1 into an ordered sum of the c′is.

Proof. We observe that if 1
`D` is a trisection of D` then k

`D` is a trisection of

kD` with k ∈ {1, . . . , `− 1} therefore it is enough study the tree of D`. As in

[16] the decomposition

`r − 1

`− 1
= `r−1 + `r−2 + · · ·+ `+ 1 (6.1.2)

implies ci = `ri . In the less diverse `-forests, some consecutive n′is coincide,

and the c′is are the corresponding sums of `-powers.

6.2 The 3-Sylow Algorithm

If D is a 3-torsion divisor, then so is −D and both have the same u-coordinates,

and in general terms, they both bring the same information, so we only need

to compute one of two. To obtain 3r−1
2 (pairs of) 3-torsion divisor, we solve

the polynomial system in u1 instead of a0. We obtain

Proposition 17. D3 = [x2 + u1x+ u0, v1x+ v0] ∈ Jac[3] if only if M(u1) = 0

76 CHAPTER 6. Explicit `-Sylow subgroup

where M is a polynomial of degree 40 in u1.

u0 = 2a0v1 +
1

4
u2

1 +
5

2
a2

0u1 +
1

4
a4

0

v0 =
5

4
a0u

2
1 +

1

2
u1v1 −

5

2
u1a

3
0 +

1

2
a0f3 −

5

2
a2

0v1 −
1

4
a5

0

v1 =
160a6

0u1 − 32a2
0u1f3 + 48a2

0f2 + 450a4
0u

2
1 − 5u4

1 − 16f1

24a0(5u2
1 + 5a4

0 + 2f3 + 20a2
0u1)

+
16u1f2 − 12u2

1f3 + 40a2
0u

3
1 + 11a8

0 − 20a4
0f3

24a0(5u2
1 + 5a4

0 + 2f3 + 20a2
0u1)

and a0 is a root of gcd(p1(a0, u1), p2(a0, u1)) where p1, p2 have degree 7 and 8

in a2
0.

Remark 8. The polynomial M(u1) is the 3-modular polynomial in [9].

In Figure 6.1 we represent the 3-forest of 3-rank 3 and exponents n1 =

n2 = 1, n3 = 3. In two center we painted 26 3-torsion divisors (two center of

13 3-torsion divisors give us two identical figures) , and successively the circles

of larger radius show divisors of a higher power order.

The results above are enough to obtain an algorithm to compute generators

of Jac(C)(Fq)[3∞]. However, its is also useful to consider the possible tree

structures that can appear in the Jacobian of a genus two curve.

Corollary 10. In ranks r = 2, 3, 4 the posible combinations ci (without multi-

plying by 2) in the tree structures of the 3-forests are

Rank 2 Rank 3

c1 = 3 c2 = 1

c1 = 4

c1 = 9 c2 = 3 c3 = 1

c1 = 9 c2 = 4

c1 = 12 c2 = 1

c1 = 13

Rank 4

c1 = 27 c2 = 9 c3 = 3 c4 = 1

c1 = 27 c2 = 9 c3 = 4

c1 = 27 c2 = 12 c3 = 1

c1 = 27 c2 = 13

c1 = 36 c2 = 3 c3 = 1

c1 = 36 c2 = 4

c1 = 39 c2 = 1

c1 = 40

We need the generalization of JumpOnce, JumpTwice and JumpThrice in

[16], for example, JumpOnce for ` = 3 is the following:

6.3. Examples 77

Algorithm 9 JumpOnce

Require: A polynomial f ∈ Fq[x] defining C : y2 = f(x), a leaf W1 ∈
Jac(C)(Fq) of order 3n1 , a divisor S ∈ Jac(C)(Fq) and an integer m such

that ord(S) = 3m with m ≥ n1.

Ensure: A divisor W2 such that S ∈ W1,W2 and W1,W2 generate a vector

space of leaves over F3 , and the integer n2 = m+n where n is the number

of halvings performed.

1: aux← 0, n2 ← m, T ← S

2: while aux = 0 do

3: T ← T +W1, W2 ← Trisection(T, f(x))

4: if W2 6= T then

5: aux← 1

6: else

7: T ← T + 2W1 , W2 ← Trisection(T, f(x))

8: if W2 6= T then

9: aux← 1

10: else

11: aux← 2

12: end if

13: end if

14: while aux = 1 do

15: T ←W2, W2 ← Trisection(T, f(x)), n2 ← n2 + 1

16: if W2 = T then

17: aux← 0

18: end if

19: end while

20: end while

For our algorithm, we use function ThreeModular for obtain 3r−1
2 3-torsion

divisors such that D1 and −D1 not appear simultaneously.

In the case of 3-Rank 2 the algorithm for 3-Sylow is given in details in

Algorithm 10.

6.3 Examples

We coded our algorithm in MAGMA. We list below some examples for 3-rank

2, 3, and 4.

Example 14. Consider p = 2160 − 47 and the curve define by the ecuation

y2 = x5 + x

over the large prime field Fp. We obtain that the 3-Sylow is isomorphic to

78 CHAPTER 6. Explicit `-Sylow subgroup

Algorithm 10 Generators (3-Rank 2)

Require: A polynomial f(x) ∈ Fq[x] with 3-Rank 2 defining C : y2 = f(x).

Ensure: The exponents n1, n2 and generators B1, B2 of Jac(C)(Fq)[2∞].

1: (W1,W2,W3,W4)← ThreeModular(f(x))

2: for i = 1, 2, 3, 4 do

3: ni ← 1, W ′i ← Trisection(Wi, f(x))

4: while W ′i = Wi do

5: Wi ←W ′i , W ′i ← Trisection(Wi, f(x)), ni ← ni + 1

6: end while

7: end for

8: H ← {(n1,W1), (n2,W2), (n3,W3), (n4,W4)}, H[1]← {n1, n2, n3, n4}
9: h1 ← min(H[1]), m1 ← max(H[1]), Hh1

← {h ∈ H|h[1] = h1}
10: Hm1

← {h ∈ H|h[1] = m1}
11: if #Hh1

= 4 then

12: (n1, n2)← (h1, h1), (B1, B2)← (Hh1 [1][2], Hh1 [2][2])

13: end if

14: if #Hh1
= 3 then

15: S ← Hm1
[1][2], W1 ← Hh1

[1][2]

16: (W2, h2)← JumpOnce(f(x),W1, S,m1)

17: (n1, n2)← (h1, h2), (B1, B2)← (W1,W2)

18: end if

Z243 × Z243 with generators

w1 = (x2 + 39514305763749093783430851916230692478889505484x

+ 448724732024697498281588115834178522172716535578,

463683467531613932238104047750259520708045168754x

+ 904715675456728052378213536102905799332285438414)

w2 = (x2 + 185828566409259346641725570621791234363548206218x

+ 1146156771035184256732545623392790713370851515180,

127956122205862459756386870454301879641663466001x

+ 1167566458678377606301428327920815110005508504643)

Example 15. Consider p = 127 and the curve defined by Equation

y2 = x5 + x3 + 3x2 + 2x+ 1

over Fp. We obtain that the 3-Sylow is isomorphic to Z3 × Z3 × Z27 with
generators

w1 =(x2 + 7x+ 75, 43x+ 90);

w2 =(x2 + 16x+ 84, 115x+ 123);

w3 =(x2 + 5x+ 107, 104x+ 36).

Example 16. Consider p = 127 and the curve define by the equation

y2 = x5 + 10x2 + x

6.3. Examples 79

over Fp3 . We obtain that the 3-Sylow is isomorphic to Z3 × Z27 × Z81 with
generators

w1 = (x
2

+ (61ω
2

+ 14ω + 105)x+ 75ω
2

+ 25ω + 35, (76ω
2

+ 126ω + 102)x+ 88ω
2

+ 90ω + 116);

w2 = (x
2

+ (100ω
2

+ 65ω + 95)x+ 13ω
2

+ 108ω + 17, (115ω
2

+ 77ω + 90)x+ 20ω
2

+ 93ω + 124),

w3 = (x
2

+ (112ω
2

+ 122ω + 84)x+ 126ω
2

+ 27ω + 54, (6ω
2

+ 27ω + 23)x+ 109ω
2

+ 99ω + 118).

Finally we shown some interesting cases and we compute s1 and s2 using

like Schoof algorithms in these cases.

Example 17. Consider p = 127 and the curve define by the equation

y2 = x5 + x3 + x2 + 2x

over Fp6 . We obtain that the 3-Sylow is isomorphic to Z3 × Z27 × Z27 × Z27

with generators

w1 = (x
2
+ (42ω

5
+ 24ω

4
+ ω

3
+ 108ω

2
+ 48ω + 56)x + 69ω

5
+ 106ω

4
+ 104ω

3
+ 59ω

2
+ 60ω + 108,

(88ω
5
+ 76ω

4
+ 36ω

3
+ 84ω

2
+ 16ω + 98)x + 42ω

5
+ 19ω

4
+ 74ω

3
+ 105ω

2
+ 35ω + 53);

w2 = (x
2
+ (51ω

5
+ 16ω

4
+ 10ω

3
+ 25ω

2
+ 85ω + 28)x + 54ω

5
+ 65ω

4
+ 101ω

3
+ 111ω

2
+ 48ω + 33,

(47ω
5
+ 3ω

4
+ 37ω

3
+ 90ω

2
+ 63ω + 29)x + 51ω

5
+ 113ω

4
+ 50ω

3
+ 115ω

2
+ 32ω + 17)

w3 = (x
2
+ (121ω

5
+ 26ω

4
+ 77ω

3
+ 27ω

2
+ 84ω + 8)x + 2ω

5
+ 73ω

4
+ 101ω

3
+ 25ω

2
+ 55ω + 1,

(98ω
5
+ 47ω

4
+ 49ω

3
+ 79ω

2
+ 61ω + 28)x + 53ω

5
+ 77ω

4
+ 8ω

3
+ 124ω

2
+ 74ω + 48)

w4 = (x
2
+ (57ω

5
+ 99ω

4
+ 16ω

3
+ 104ω

2
+ 98ω + 125)x + 123ω

5
+ 62ω

4
+ 46ω

3
+ 80ω

2
+ 58ω + 114,

(83ω
5
+ 115ω

4
+ 2ω

3
+ ω

2
+ 122ω + 96)x + 12ω

5
+ 27ω

4
+ 73ω

3
+ 80ω

2
+ 16ω + 57).

We can use either w2 or w3 to obtain

s1 mod 27 s2 mod 27

9 1

Example 18. Consider p = 127 and the curve define by the equation

y2 = x5 + 10x2 + x

over Fp6 . We obtain that the 3-Sylow is isomorphic to Z3 × Z27 × Z27 × Z81

with generators

w1 = (x
2
+ (40ω

5
+ 112ω

4
+ 34ω

3
+ 70ω

2
+ 53ω + 6)x + 10ω

5
+ 123ω

4
+ 108ω

3
+ 5ω

2
+ 99ω + 12,

(34ω
5
+ 54ω

4
+ 7ω

3
+ 45ω

2
+ 75ω + 80)x + 100ω

5
+ 94ω

4
+ 86ω

3
+ 62ω

2
+ 122ω + 38);

w2 = (x
2
+ (60ω

5
+ 8ω

4
+ 97ω

3
+ 64ω

2
+ 48ω + 7)x + ω

5
+ 112ω

4
+ 73ω

3
+ 31ω

2
+ 108ω + 7,

(99ω
5
+ 4ω

4
+ 54ω

3
+ 69ω

2
+ 23ω + 5)x + 71ω

5
+ 106ω

4
+ 88ω

3
+ 80ω

2
+ 104ω + 70);

w3 = (x
2
+ (6ω

5
+ 72ω

4
+ 9ω

3
+ 17ω

2
+ 50ω + 112)x + 95ω

5
+ 20ω

4
+ 66ω

3
+ 27ω

2
+ 95ω + 83,

(43ω
5
+ 102ω

4
+ 75ω

3
+ 48ω

2
+ 114ω + 78)x + 40ω

5
+ 63ω

4
+ 45ω

3
+ 9ω

2
+ 86ω + 21);

w4 = (x
2
+ (119ω

5
+ 97ω

4
+ 68ω

3
+ 111ω

2
+ 18ω + 110)x + 60ω

5
+ 67ω

4
+ 81ω

3
+ 119ω

2
+ 31ω + 1,

(37ω
5
+ 82ω

4
+ 32ω

3
+ 9ω

2
+ 4ω + 118)x + ω

5
+ 76ω

4
+ 113ω

3
+ 118ω

2
+ 13ω + 83).

We can use w2 to obtain

s1 mod 27 s2 mod 27

24 22

80 CHAPTER 6. Explicit `-Sylow subgroup

Example 19. Consider p = 127 and the curve define by the equation

y2 = x5 + 3x3 + 6x2 + 3x

over Fp6 . We obtain that the 3-Sylow is isomorphic to Z3 × Z9 × Z27 × Z243

with generators

w1 = (x
2
+ (101ω

5
+ 7ω

4
+ 7ω

3
+ 9ω

2
+ 68ω + 114)x + 40ω

5
+ 75ω

4
+ 70ω

3
+ 69ω

2
+ 61ω + 36,

(111ω
5
+ 75ω

4
+ 73ω

3
+ 41ω

2
+ 73ω + 6)x + 103ω

5
+ 93ω

4
+ 94ω

3
+ 76ω

2
+ 44ω + 48)

w2 = (x
2
+ (77ω

5
+ 113ω

4
+ 92ω

3
+ 31ω

2
+ 104ω + 10)x + 85ω

5
+ 17ω

4
+ 44ω

3
+ 99ω

2
+ 16ω + 36,

(61ω
5
+ 67ω

4
+ 116ω

3
+ 37ω

2
+ 46ω + 99)x + 2ω

5
+ 28ω

4
+ 64ω

3
+ 77ω

2
+ 111ω + 74)

w3 = (x
2
+ (118ω

5
+ 13ω

4
+ 124ω

3
+ 85ω

2
+ 19ω + 25)x + 21ω

5
+ 49ω

4
+ 17ω

3
+ 106ω

2
+ 108ω + 93,

(100ω
5
+ 63ω

4
+ 47ω

3
+ 116ω

2
+ 23ω + 14)x + 94ω

5
+ 58ω

4
+ 105ω

3
+ 76ω

2
+ 72ω + 17)

w4 = (x
2
+ (119ω

5
+ 120ω

4
+ 109ω

3
+ 9ω

2
+ 114ω + 70)x + 43ω

5
+ 79ω

4
+ 23ω

3
+ 88ω

2
+ 58ω + 43,

(59ω
5
+ 75ω

4
+ 99ω

3
+ 95ω

2
+ 101ω + 60)x + 6ω

5
+ 60ω

4
+ 108ω

3
+ 123ω

2
+ 94ω + 84)

we can use w3 to obtain

s1 mod 27 s2 mod 27

6 4

CHAPTER 7

Conclusion

The first four objectives of thesis were studied in Chapters 3 and 5 and the

fifth objective was studied in 4 and 6 and the results were as follows:

In chapter 3, we obtained algorithms which allow to trisect any divisor in

the Jacobian of a genus two hyperelliptic curve in odd characteristic. The

techniques used by Gaudry-Schost in [8] solve system based in the 2D1 =

D3 − D1 with the degrees of both sides balanced. We give in example 2 a

case with a divisors D3 of weight 1 where 2D1 = D3 − D1 is not balanced.

Our technique of de-reduction allows works with equations not balanced and

avoid denominators appearing in the addition formulas. We also show how to

determine the field of definition of all the `-section with ` ∈ {3, 5, 7} when the

rank of Jac(C)(Fq)[`] is strictly less than 4 and greater or equal to 1.

In chapter 4, we showed how to compute symbolic trisection polynomial for

Jacobians of genus 2 curves over finite field Fq of odd characteristic. Since the

size of the polynomials involved prohibits direct computation, this computation

is done via interpolation techniques, taking advantage of several properties

of the trisection polynomials (weighted homogeneity, knowledge of the form

of leading and constant terms in one of the variables). As was indicated by

our experiments, these polynomials can be used to improve the efficiency of

trisection algorithms, which may then be used to obtain faster point counting

algorithms.

In chapter 5 we complete the study of trisection in characteristic two. The

supersingular cases were addressed in [17]. The bottleneck in the case of trisec-

tion for non-supersingular genus 2 curves in characteristic 2 is the largest size

of the polynomials involved compared with the supersingular case. We used

techniques studied in chapter 4 to obtain symbolic trisection polynomial for

Jacobians of genus 2 curves over binary field.

Finally in chapter 6 we show how to generalize the algorithms to explicit

2-power torsion of genus 2 curves over finite fields [16] for the case of `-power

torsion. These can be used because there exists implementations of `-section

81

82 CHAPTER 7. Conclusion

for ` ∈ {2, 3, 5, 7} in odd characteristic and `-section for ` ∈ {2, 3} in charac-

teristic two. We present explicit algorithms for the computation of the 3-Sylow

subgroup. These algorithms may be used to improve the choice of `-torsion

divisors of index `k used in Schoof-like algorithms.

Bibliography

[1] P. Birkner and N. Thériault, Faster halvings in genus 2, Selected Areas in Cryptography

2008, LNCS 5381 (2008), 1–17.

[2] J. Canon, W. Bosma and C. Playoust, The Magma algebra system. I. The user language,

J. Symbolic Comput. 24 (1997), 235–265.

[3] D. Cantor, Computing in the Jacobian of a Hyperelliptic Curve, Mathematics of Computa-

tion 48 95–101, (1987).

[4] D. Cantor, On the analogue of the division polynomial for hyperelliptic curves, J. Reine

Angew. Math. 447 , 91-145,(1994).

[5] G. Cardona, E. Nart and J. Pujolàs, Curves of genus two over fields of even characteristic,

Math. Z. 250 (2005) number 1, 177–201.

[6] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren. Handbook

of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications

(Boca Raton). Chapman & Hall/CRC, Boca Raton (2005).

[7] P. Gaudry and E. Schost, Construction of secure random curves of genus 2 over prime

fields, Eurocrypt, 3027, 239-256, (2004).

[8] P. Gaudry and E. Schost, Genus 2 point counting over prime fields, Journal of Symbolic

Computation, 47, 4, 368-400, (2012).

[9] P. Gaudry and E. Schost, Modular equations for hyperelliptic curves, Mathematics of

Computation, 74, 429-454, (2005).

[10] T. Lange and M. Stevens: Efficient Doubling for Genus Two Curves over Binary Field.

Selected Areas in Cryptography SAC 2004, LNCS, 3357. 170181 (2005).

[11] T. Ishiguro, K. Matsuo, Fields of definition of torsion points on the Jacobians of genus 2

hyperelliptic curves over finite fields, Proc. of SCIS2010, IEICE Japan, 2D4-6, January 2010

[12] I. Kitamura, M. Katagi and T. Takagi, A complete divisor class halving algorithm for

hyperelliptic curve cryptosystems of genus two, LNCS 3574 , 146–157,(2005).

[13] J. Miret, R. Moreno, A. Rio and M. Valls, Computing the `-power torsion of an elliptic

curve over a finite field, Mathematics of Computation 78 number 267 (2009), 1767–1786.

[14] J. Miret, R. Moreno, J. Pujolàs and A. Rio, Halving for the 2-Sylow subgroup of genus 2

curves over binary fields, Finite Fields Appl. 15 (2009), 569–579.

[15] J. Miret, J. Pujolàs and A. Rio, Bisection for genus 2 curves in odd characteristic, Pro-

ceedings of the Japan Academy– Series A 85 , 55–61.(2009)

[16] J. Miret, J. Pujolàs and A. Rio, Explicit 2-Power Torsion of Genus 2 Curves over Finite

Fields, Advances in Mathematics of Communications 4 number 2 , 155–165,(2010).

[17] J. Miret, J. Pujolàs and N. Thériault, Trisection for supersingular genus 2 curves in char-

acteristic 2, Advances in Mathematics of Communications 8, num. 4, 375–387 (2014).

83

84 BIBLIOGRAPHY

[18] J. Pujolàs, E. Riquelme and N. Thériault, Trisection for non-supersingular genus

2 curves in characteristic 2, International Journal of Computer Mathematics, DOI:

10.1080/00207160.2015.1059935.

[19] E. Riquelme, Trisection for genus 2 curves in odd characteristic, Applicable Algebra in

Engineering Communication and Computing DOI:10.1007/s00200-015-0282-3.

[20] H. Verdure, Factorisation patterns of division polynomials, Proc. Japan Acad. Ser. A Math.

Sci. 80 num. 5, 79-82 (2004)

[21] https://dl.dropboxusercontent.com/u/50859627/TrisecAAECC/TorsionAAECC.txt

[22] https://dl.dropboxusercontent.com/u/50859627/TrisecAAECC/trisection2AAECC.txt

[23] https://dl.dropboxusercontent.com/u/50859627/TrisecAAECC/trisection1AAECC.txt

[24] https://dl.dropboxusercontent.com/u/50859627/TrisecAAECC/orbitas.txt

	PlantillaPortada-Tots-drets-reservatRIQUELMEs.pdf
	Algorithms for l-sections on genus two curves over finite fields and applications
	Edgardo Riquelme Faúndez
	Nom/Logotip de la
	Universitat on s’ha
	llegit la tesi

