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ABSTRACT

We study ¢-section algorithms for Jacobian of genus two over finite fields. We
provide trisection (division by ¢ = 3) algorithms for Jacobians of genus 2 curves
over finite fields F, of odd and even characteristic. In odd characteristic we
obtain a symbolic trisection polynomial whose roots correspond (bijectively)
to the set of trisections of the given divisor. We also construct a polynomial
whose roots allow us to calculate the 3-torsion divisors. We show the relation
between the rank of the 3-torsion subgroup and the factorization of this 3-
torsion polynomial, and describe the factorization of the trisection polynomials
in terms of the galois structure of the 3-torsion subgroup. We generalize these
ideas and we determine the field of definition of an ¢-section with ¢ € {3,5,7}.
In characteristic two for non-supersingular hyperelliptic curves we character-
ize the 3-torsion divisors and provide a polynomial whose roots correspond to
the set of trisections of the given divisor. We also present a generalization
of the known algorithms for the computation of the 2-Sylow subgroup to the
case of the ¢-Sylow subgroup in general and we present explicit algorithms for
the computation of the 3-Sylow subgroup. Finally we show some examples
where we can obtain the central coefficients of the characteristic polynomial of
the Frobenius endomorphism reduced modulo 3 using the generators obtained

with the 3-Sylow algorithm.

This work was supported by CONICY'T, Chile doctoral scholarship.



RESUMEN

En esta tesis se estudian algoritmos de ¢-divisién para Jacobianas de curvas de
género 2. Se presentan algoritmos de triseccién (divisién por ¢ = 3) para Jaco-
bianas de curvas de género 2 definidas sobre cuerpos finitos F, de caracteristica
par o impar indistintamente. En caracteristica impar se obtiene explicitamente
un polinomio de triseccén, cuyas raices se corresponden biyectivamente con el
conjunto de trisecciones de un divisor cualquiera de la Jacobiana. Asimismo
se proporciona otro polinomio a partir de cuyas raices se calcula el conjunto
de los divisores de orden 3. Se muestra la relacion entre el rango del subgrupo
de 3-torsién y la factorizacién del polinomio de la 3-torsién, y se describe la
factorizacién del polinomio de triseccién en términos de las érbitas galoisianas
de la 3-torsion. Se generalizan estas ideas para otros valores de ¢ y se de-
termina el cuerpo de definiciéon de una f-seccién para ¢ = 3,5,7. Para curvas
no-supersingulares en caracteristica par también se da una caracterizacién de la
3-torsion y se proporciona un polinomio de triseccion para un divisor cualquiera.
Se da una generalizacién, para ¢ arbitraria, de los algoritmos conocidos para
el computo explicito del subgrupo de 2-Sylow, y se detalla explicitamente el
algoritmo para el computo del subgrupo de 3-Sylow. Finalmente, se dan ejem-
plos de cémo obtener los valores de la reduccién médulo 3 de los coeficientes
centrales del polinomio caracteristico del endomorfismo de Frobenius mediante

los generadores proporcionados por el algoritmo de célculo del 3-Sylow.

Este trabajo fue financiado por una beca doctoral de CONICYT,
Chile.



RESUM

En aquesta tesi s’estudien algoritmes de ¢-divisié per a grups de punts de
Jacobianes de corbes de génere 2. Es presenten algoritmes de triseccié (divisié
per £ = 3) per a Jacobianes de corbes de genere 2 definides sobre cossos finits F,
de caracteristica parell o senar indistintament. En caracterfistica parell s’obté
explicitament un polinomi de triseccid, les arrels del qual estan en bijeccié amb
el conjunt de triseccions d’un divisor de la Jacobiana qualsevol. De manera
semblant, es proporciona un altre polinomi amb les arrels del qual es calcula el
conjunt dels divisors d’ordre 3. Es mostra la relaci6 entre el rang del subgrup de
3-torsié i la factoritzacié del polinomi de la 3-torsid, i es descriu la factoritzacid
del polinomi de trisecci6 en termes de les orbites galoisianes de la 3-torsio.
Es generalitzen aquestes idees a altres valors de £ i es determina el cos de
definicié d’una f¢-seccié per a £ = 3,5,7. Per a corbes no-supersingulars en
caracteristica 2 també es proporciona una caracteritzacié de la 3-torsié i un
polinomi de triseccié per a un divisor qualsevol. Es déna una generalitzacid,
per a ¢ arbitraria, dels algoritmes coneguts per al calcul explicit del subgrup de
2-Sylow, i es detalla explicitament en el cas del 3-Sylow. Finalment es mostren
exemples de com obtenir els valors de la reduccié modul 3 dels coeficients
centrals del polinomi caracteristic de ’endomorfisme de Frobenius fent servir

els generadors proporcionats per I'algoritme de calcul del 3-Sylow.






CHAPTER 1

INTRODUCTION

The main reason to study ¢-sections for genus 2 curves over finite fields resides
in their application to Schoof-like algorithms in the computation of the group
order of hyperelliptic Jacobians and the construction of secure random curves
of genus 2 over prime fields. Efficient point counting algorithms in genus 2
were first studied by Kampkotter in 1991. Gaudry and Harley in 2000 pre-
sented examples for p = 2'6 where they started to use bisection algorithms
(¢ = 2). Gaudry and Schost (2004) presented examples for p = 282, where they
take advantadge of the 2-torsion subgroup to compute bisections and also be-
gin to use trisection algorithms (¢ = 3). Gaudry and Schost in 2012 presented
several improvents on Schoof-like algorithms with examples of cryptographic
size p = 2127, They used Kummer surfaces in the case of bisections, homotopy
techniques for the trisection algorithms, and began to use ¢-section for / =5, 7.
They also presented theoretical results for /-sections for any ¢.

On the other hand, alternative bisection techniques in even and odd character-
istic have been obtained in [12, 14, 15] by reversing reduction in divisor class
arithmetic. Trisection in characteristic two has also been studied in [17] in the
supersingular case.

The general aim of this thesis is to study ¢-section algorithms for any divisor
in the Jacobian of the curve based in reversing the reduction step in divisor
class arithmetic. The methods presented in this thesis are a generalization of
the methods used in [12, 14, 15]. The particular objectives are the following;:
The first is to obtain f-section polynomials which are completely consistent
for small ¢, focussing on the case of £ = 3. The second objective is to study
the factorization of ¢-torsion polynomials. For elliptic (genus 1) curves, this
was studied by Verdure [20]. For curves of genus 2 an analysis of the upper
bound for the irreducible factors can be found in [11], and an application to the
factorization types of £-modular polynomials can be found in [9]. The methods
we use are based on those in [9] but with significant variations to find the

type of factorization of ¢-torsion polynomial (the precise Galois orbits of the

11



12 CHAPTER 1. INTRODUCTION

{-torsion divisors). The third objective is to establish the relationship between
the type of factorization of the ¢-torsion polynomial (the precise Galois orbits
of the ¢-torsion divisors) and the ¢-section polynomial (the field of definition
of the f-sections). The fourth objective is to study the factorization of the
{-section polynomial in extensions of degree . The final objective is to study
the impact on Schoof-like algorithms.

The structure of the thesis is as follows: In Chapter 2 we recall the nec-
essary background on mathematics and cryptography. In Chapter 3 we study
the first four objectives for fields of odd characteristic. We provide trisection
(division by 3) algorithms for Jacobians of genus 2 curves over finite fields F, of
odd characteristic which rely on the factorization of a polynomial whose roots
correspond (bijectively) to the set of trisections of the given divisor. We also
construct a polynomial whose roots allow us to calculate the 3-torsion divisors.
We show the relation between the rank of the 3-torsion subgroup and the fac-
torization of this 3-torsion polynomial, and describe the factorization of the tri-
section polynomials in terms of the Galois structure of the 3-torsion subgroup.
We also generalize these ideas for £ € {5,7}. In Chapter 4 we studied part of
the fifth objective, providing symbolic trisection polynomial for Jacobians of
genus 2 curves over finite field F, of odd characteristic. These polynomials can
be used to improve the efficiency of trisection algorithms, which may then be
used to obtain faster point counting algorithms. In Chapter 5 we study division
by 3 in Jacobians of genus 2 curves over binary fields with a 2-torsion subgroup
of rank 1 or 2. Finally, in Chapter 6 we study part of the fifth objective, pre-
senting a generalization of the algorithms that explicitly determine the 2-power
torsion of genus 2 curves over finite fields [16] to the case of ¢-power torsion.
We study the case of /-power torsion in general and we present explicit algo-
rithms for the computation of the 3-Sylow subgroup. These algorithms can be
used to improve the choice of ¢-torsion divisors of index ¥ used in Schoof-like
algorithms.

The first four objectives studied in chapter 3 in the case of odd character-
istic are part of Trisection for genus 2 curves in odd characteristic, published
online (30 January 2016) in journal Applicable Algebra in Engineering Com-
munication and Computing (AAECC).

The first four objectives in the case of characteristic two, studied in chapter
5, are part of Trisection for non-supersingular genus 2 curves in character-
istic 2 published online (06 Jul 2015) in International Journal of Computer
Mathematics.

The fifth objective is studied in chapters 4 and 6. Chapter 4 is part of the
paper Symbolic trisection polynomials for genus 2 curves in odd characteris-

tic (preprint).



CHAPTER 2

MATHEMATICAL AND CRYPTOGRAPHIC BACKGROUND

2.1 BACKGROUND

Definition 1. Let C' be a genus two curve over finite field F, given in the

model.

C:y? + h(z)y = f(z). (2.1.1)

Curve C' is called a nonsingular hyperelliptic curve of genus 2 over Fy if no
point on the curve over the algebraic closure F, of F, satisfies both partial
derivatives 2y + h(x) = 0 and f'(x) — h'(z)y = 0 at the same time.

Definition 2. A divisor on C'is a finite formal sum of points on C

D= m,P

pPeC

where my, € Z are 0 for all but finitely many P. The degree of D is defined by
> pec Mp. We denote DivV the set of all degree zero divisors of C.

If Fle. o]
T,y
FIC]| =
= T h@y—T@)
denotes the coordinate ring of C' over F, then the field of fractions F(C) is
called the function field of C' over F.

Definition 3. A divisor D is called a principal divisor if

D =div(R) = Y (ord,(R))P

pPeC

for a non-zero rational function R in F(C).

Definition 4. The quotient group J = Div°/P is called Jacobian of C, where

P is the set of all pincipal divisor in Div°.

A divisor semi-reducido D is a divisor of the form D = > m;P; —
(>-m;) oo with P; = (x;,y;) where

13



14 CHAPTER 2. MATHEMATICAL AND CRYPTOGRAPHIC BACKGROUND

o if (2;,y;) = (xj,—y;) and m; > 0, then m; =0
o if (z;,y;) = (x4, —y;) and m; > 0, then m; =1

A semi-reduced divisor D is called reduced, if D satisfies Y m; < g (g is the
genus of C') . We will call > m,; the weight of D.

Theorem 1. (Mumford respresentation)

e For each point P € C(F,) we associate a divisor D(P) = P — 00

o All reduced divisors D = Zle D(P;) can be represented by an unique
pair of polynomials [u,v] such that u,v € Fy[z] with u(z) = Hle(a: — ;)
yv(x;) = y; Vi such that the degree of v(z) < degree of u(z) < g and u(x)
divide v(z)% +h(z)v(z) — f(x), and all such pairs of polynomial represent

a reduced divisor D.
o A divisor D = [u(z),v(x)] is in Jac(C)(Fy) if only if u(z),v(z) € Fylz]

We work in the group of Fy-points of the Jacobian Jac(C'), in terms of the
Mumford coordinates [u(z),v(z)]. In genus 2, every element in Jac(C) — {0}
can be represented by reduced divisors of weight one [z + ug,vo] or two [z2 +
w1 +ug, V1= + vg] (we refer to the degree of the effective divisor associated to
D as its weight). An algorithm due to Cantor [3] allows us to compute in the
divisor class group with this representation of elements. It works in two steps:

a ”composition” and "reduction”.

Algorithm 1 Composition

Require: Reduced divisors [u1(x), v1(z)] and [uz(x), va(z)].
Ensure: Semi-reduced divisor [u(x),v(z)].
1 d(x) = ged(uy (), ua (), v1(x) + v2(z) + h(x)),
d(z) = s1(x)ur () + sa(@)us(x) + s3(2)(vi(2) + v2(z) + h(2))
(z) = ur(z)uz(z)/d(x)?
()

3: v(x

v
e

is the remainder of

s1(@)ur (2)va(z) + s2(x)ua(x)vi(x) + s3(x)(vi(x)va(z) + f(2))
d(z)

modulo u(zx)

Cantor’s general reduction step uses a, 5,7 € Fg4[z] such that § = yu + av
with deg(8) < 242 and deg(a) < ™53, where m is deg(u(x))
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Algorithm 2 Reduction
Require: Semi-reduced divisor D = [u(x),v(z)].

Ensure: Reduced divisor D’ equivalent to D.
1: Use the extended Euclidean algorithm on u,v to find «, 8,v € F[z] with

degrees given above and such that 8 = yu + av

2: Let ug = ged(B, o) = ged(u, @) and compute u; = b= %, ap =%

ug
2 2
3: Let us = W and compute o such that oy’ = 1 mod us
rom which v = —a/$1 — h mod ug
F hich ! h mod
4: Finally, use the composition algorithm to compute the divisor sum D’ of

[us, v3] and [uz, V]

Theorem 2. Let C be a hyperelliptic curve defined over F. If the characteristic
of F is either zero or a prime p with ged(n,p) = 1 then the set of n-torsion
elements satifies

Jac(C)[n] = (Z/nZ)*

If the characteristic is p and n = p° then
Jac(C)[p°] = (Z/p°Z)"
with 0 < r < g, fized for all e > 1.

Definition 5. We call (-sections the set of pre-images D = [u,v] € Jac(C)(F,)

of any given divisor Dy = [ug, ve] under the multiplication by £ map

[0 : Jac(C)([Fq) — Jac(C)(Fy)
D — D,=/D.

2.2  CRYPTOGRAPHIC MOTIVATION

Suppose that Alice and Bob want to communicate a secret through an insecure
channel of communication (like the internet) and they do not want Eve to un-
derstand the communication, even trough she may be able to record to copy
of the transmission. They must encrypt each message, transmit the result and
then decrypt. The method used to encrypt and decrypt is called a cryptosys-
tem. There are many very efficient system if Alice and Bob have an common
secret, called ”private key system”. The mayor problem with the private key
system is the distribution of the key, sometimes is not convenient for Alice and
Bob to meet in person to exchange a secret before each communication.

In 1976, Whitfield Diffie and Martin Hellman published the paper ”New Di-
rections in Cryptography” proposed a new method for the distribution of en-

cryption keys.

Definition 6. The computational Diffie-Hellmann problem (CDH).
Let G be a group. Given g, g* and g¥ in G , deduce the value of g*¥.
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Except in some very special cases, the only known approach to solving the
CDH goes through the solution of the Discrete Logarithm Problem (DLP)

Definition 7. Let G be a group. Given g € G and h €< g > , find k € Z such
that h = g~ .

The DLP in G =< ¢g > can be computed easily if the order of g has only
small factors. If we assume n composite and let p|n. If [t]g = h we have that
[t mod p|Tg = [}]h. Then ¢ modulo each of the primes such that p|n can be
found by solving the DLP in a cyclic group of order p. If n is a product of
distinct primes, then t can be recovered using the Chinese remainder theorem.
If n is not squarefree, the p-adic expansion can be used to compute ¢t modulo the
highest power of p dividing n for all primes p. This was first observed by Silver,
Pohlig, and Hellman. Thus the complexity of computing discrete logarithms
in a group of composite order n is bounded from above by the complexity of
solving the DLP in a group whose order is the largest prime factor of n. Then
algorithms as either Pollards rho or Baby-step giant-step can be used to solve
the DLP in this group.

Therefore in the case of Jacobian of the genus two curves we must examine
the possible group orders that can occur in the interval of Hasse-Weil. For
these reason, if we want to know if the Jacobian of the genus two curves can

be considered computationally secures we have to calculate the order of group.

2.3  SCHOOF-LIKE ALGORITHMS AND /-SECTIONS

We denote by 7 to the ¢g-th power Frobenius automorphism = : F, — T,

extended to the Jacobian.

Theorem 3. Let C' by a hyperelliptic curve of genus g defined over Fy. The
Frobenius endomorphism satisfies a characteristic polynomial of degree 2g given
by

x(T) = T29 4+ 6T297 14+ sgT9+ ...+ s1¢97 1T + ¢7
where s; € Z, 1 < i < g. The absolute value of the j-th coefficient of x(T') is

29—J

bounded by (2;7)(] 2

Proposition 1. For n coprime to q the restriction of ¢4 to Jac(C)[n| has

characteristic polynomial x(T') mod n.

In genus 2 the characteristic polynomial has the form
X(T) =T* — 5113 4 55T% — q51T + ¢*

and the absolute value of s; and sy satisfied |s;| < 4,/q and |s2| < 6¢. The
bound on sy can be refined to 2[si|\/p —2p < 53 < % + 2p.

Since |Jac(Fq)| = x(1) computing s, and so allows to obtain #Jac(F,).
Sketch of a genus 2 Schoof algorithm
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1. For sufficiently many small primes:

e Construct ¢-torsion divisors D,.

e Eliminate those elements (s, s2) mod ¢ such that

74(Dy) + [p* mod €] Dy — [s1 mod £)(73(Dy) — [p mod £]7(Dy))
# [s2 mod £)7?(Dy).

e Deduce (s1,s2) mod ¢ from the remaining pair.

2. Deduce (s1,s2) from the pairs (s1, s2) mod ¢ by Chinese remaindering.

The relation between ¢-sections and Schoof-like algorithms for points count-
ing is studied by Gaudry and Schost in the case of absolutely simple varieties.
They show that

Lemma 1. (Gaudry-Schost 2012) There exists an integer k > 0 such that for
any k > K, , the equality

©(Pr) = [s1]m® (Pi) + [s2]m® (P) = [ps1]m(Pr) + [p*](Pr) = 0

uniquely determines (sy, s2) modulo (=",

where & is related to the following properties

Lemma 2. (Gaudry-Schost 2012) There exists an integer kg > 1 and P €
Jac(C)[¢*] such that Jac(C)[f] is contained in the subgroup generated by P

and its conjugates.

Lemma 3. (Gaudry-Schost 2012) Let ko > 1 and let P € Jac(C) be such that
Jac(C)[¢¥] is contained in the subgroup generated by P and its conjugates. Then
for any Q € Jac such that P = [(]Q, Jac(C)[(**] is contained in the subgroup

generated by @ and its conjugates.
They also study of the field of definition of Py

Lemma 4. Let d be a positive integer such that the points of Jac(C)[¢] are
defined over Fpa, and let P € Jac be defined over Fpa as well. Then any
Q € Jac(C) such that P = [(]Q is defined over Fpea .

Lemma 5. For k > 1, let dy, be the smallest integer such that the points of
Jac[l¥] are defined over F,a.. Then for k large enough, we have dy.1 = ldy .

The importance of these results is that if we want to obtain for example the
values of s1 for a curve over a field F, of order around 2'?°. We need to get s;
mod 2-3-5-7-11---47-53 > 4,/q. . On the other hand using /-section for
¢ = 2,3 we need to get s; mod 2'7-37-5.7-11---29-31 > 4,/q. (The approach
of Gaudry-Schost (2012) to obtain ¢ = 31 requires about 10 CPU days and to
obtain 217 requires about 5 CPU days).






CHAPTER 3

TRISECTION IN ODD CHARACTERISTIC

Trisection algorithms for genus 2 curves over finite fields in odd characteristic
have been used by Gaudry and Schost in [7] and [8]. The main interest of these
algorithms resides in their application in Schoof-like algorithms to compute
the group order of the Jacobian of genus 2 curves. The aim of this chapter is
to present alternative algorithms for trisecting any divisor in the Jacobian of
the curve based in reversing reduction in divisor class arithmetic. The meth-
ods presented in this chapter are loosely based on those used in [15] to find
bisections, but with significant variations that are required to deal with the
added complexity coming from the size of the system to solve. Trisections in
characteristic 2 have been considered in [17] and [18].

Our methods produce two polynomials associated to divisors of 3-torsion
(general for the curve) and trisections of a specific divisor. The first has degree
80 and its roots can be used to produce the 3-torsion divisors, whereas the
second has degree 81 in general and its roots can be used to produce the pre-
images of multiplication-by-3 for the given divisor. Note that in both cases, any
unwanted roots (“false positives”) are removed explicitly from the polynomial.
We also show the relation between the possible factorization types of these
two polynomials (3-torsion and trisection), which can be used to specialize the
factorization technique used in the trisection algorithm.

The structure of the rest of the chapter is as follows: in Section 3.1, we
recall generalities about genus 2 curves in odd characteristic. In Section 3.2
we present the basic algorithms that will be used in the construction of the
trisection algorithm. In Section 3.3, we construct a polynomial of degree 80
whose roots allow us to calculate the 3-torsion divisors. In Sections 3.4 and 3.5
we provide a constructive method to find trisections of any divisor from the
roots of certain polynomials of degree 81. In Section 3.6 we show how we can
remove parasitic factors (“false positives”) by explaining how they appeared.
In Section 3.7 we give a classification of the rank of the 3-torsion subgroup

in terms of the factorization of the 3-torsion polynomial and we describe the
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factorization of our trisection polynomials in terms of the Galois structure of

the 3-torsion subgroup. We also generalize these ideas for ¢ € {5, 7}.

3.1 GENERALITIES

Let C be a non-singular genus 2 curve over a finite field IF; of odd characteristic

greater than 5 given in the model

C:y* = f(x) (3.1.1)

where f(z) = 25 + f32® + fox? + fiz + fo € F,[z] has no multiple roots.

We work in the group of F,-points of the Jacobian Jac(C), in terms of
Mumford coordinates [u(x), v(z)] corresponding to the ideal generated by wu(z)
and y —v(z) in the ideal class group. In genus 2, every element in Jac(C) — {0}
can be represented by reduced divisors of weight one [z + ug,vo] or two [z2 +
w1 +ug, V1 + vg] (we refer to the degree of the effective divisor associated to
D as its weight). An algorithm due to Cantor [3] allows us to compute in the
group with this representation of elements of Jac(C). Cantor’s group operation

algorithm works in two steps: composition and reduction.

Algorithm 3 Composition

Require: D; = [u1(z),v1(z)] and Dy = [us(z), v2(z)], semireduced divisors.
Ensure: A semireduced divisor D = [u(z),v(z)] equivalent to Dy + Ds.
1: Use the Euclidean algorithm to compute d = ged(ug,ug,v1 + va), with
d = sjuy + saug + s3(v1 + v2)

2: Set u = ujuy/d?
51U1V2 + Souv1 + s3(v1v2 + f)

p mod u

3: Set v(x) as the remainder of

The reduction step of Cantor’s algorithm [3] consists in the transformation
of a semireduced divisor (with unreduced coordinates) into a reduced divisor.
Let D be a semireduced divisor represented by D = [u(z),v(x)] with m =
deg(u(z)). Cantor gives two versions of the reduction step. The first one
uses direct operation which, after a number of repetitions, outputs a reduced
divisor. The second version of Cantor’s reduction algorithm works via a single
reduction step. Both versions are equivalent (as they produce the same reduced
divisor). The first is often preferred in practice due to its simplicity (and lower
complexity for small genera), but the second reduction approach is more useful
in our context. It applies if there exist 8, a,~v € F[z] such that § = yu + av,
where deg(5) < (m + ¢)/2 and deg(a) < (m — g — 1)/2 with m = deg(u(x)),
and such that ged(y, ) = 1. For g = 2, this gives the following algorithm:
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Algorithm 4 Reduction
Require: D = [u(z), v(x)], a semireduced divisor.

Ensure: A reduced divisor E equivalent to D.
1: Use a partial Euclidean algorithm to obtain 8, o,y € F[x]
such that 8 = yu + av, with deg(8) < (m + 2)/2
and deg(a) < (m — 3)/2 with m = deg(u(x))
2: Set 1 = ged(B, @) = ged(u, ) and define @ = u/u, f = B/4,
and @ = a/u
—92 _9
_5 —a'f —1 —1 = _
3: Set u = — and compute @~ such that @~ -@ =1 mod u
4: E is COMPOSITION of E; = div(u, —a ') and E, = div(u,v)

(note that Es is the divisor zero when @ = 1 in Step 2)

We define the trisections of a given divisor D3 = [us(z), v3(x)] as the set of

pre-images D = [u(z),v(x)] € Jac(C)(F,) under the multiplication by 3 map

[3] : Jac(C)(Fy) — Jac(C)(Fy)
D — Ds3=3D.

3.2 BAsic ALGORITHMS

In this section we present a generalization of the technique of de-reduction
used in [15] which consists in searching for the linear polynomial involved in
the reduction part of the addition law. The basic idea consists in reversing the
reduction step of Cantor’s algorithm to find (all) the semireduced divisors in
the class of D3 which are the direct composition of a reduced divisor with itself
(in the case of bisections). To apply this idea to trisections, the main difference
is that we want the de-reduced divisor to be the composition of 3 copies of a
reduced divisor. In practice, when computing 3D it would be natural to use
twice the “simple” recursive reduction step (reduction via principal divisors of
the form y — v(z)) to fully reduce 3D. When the weight of the semireduced
divisor is somewhat small, this version of the reduction is usually more efficient
in direct computations, but when computing trisections, the two layers of de-
reduction produce systems that are a little more difficult to solve.

Algorithm REDUCTION transforms unreduced coordinates [u(x),v(x)] to
obtain a reduced divisor D = [u(z),v(z)]. Our method consists in reversing
REDUCTION, working mostly on Step (iii), to obtain an unreduced divisor of
a specific form. For this, we suppose the general case ged(u(x),a(z)) = 1in
Step (ii) (otherwise see Section 3.6). Hence the coordinates [u(x),v(x)] in Step
(iil) satisfy
B(z)* — a(z)*f(x)

u(z) ’

(with € € F to equate leading coefficients), and Step (iv) returns £ = Fj.

u(z) =€
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Starting from the coordinates [u(x),v(x)] of D with 8 = yu + av, we re-write
this equation as

_ pZ—alf

€U =
u

2 2 VP f
=7 u+yo- 20+ o , (3.2.1)
u

which we use to compute the de-reduction. Recall that the division ”ijf is
exact since D = [u(z),v(x)] is a divisor (the divisibility condition is part of
Mumford’s representation).

The following part of the method holds for an arbitrary natural n. Starting
with the coordinates [u(z),v(x)] = [un(x),v,(x)] of D,, we want to obtain
the coordinates [u(x),v(x)] = [u](x),...] of the “de-reduced” divisor nD; (the
unreduced composition of n copies of D; = [uy(z),v1(x)]). To determine the
required degrees for o and v, we consider the parity of the degrees on both
sides of the equality, taking into account both w; and wu, should be monic
of degree at most 2 since they are coordinates of (proper reduced) divisors.
Hence deg(v,,) < deg(uy,) < 2 and deg((vZ — f)/u,) = 5 — deg(u,) > 3, so the
leading term on the left-hand side comes from the term in 72 or a? depending
on the degree on the left-hand side. Furthermore, either a(z) or y(x) can be
made monic if we require that e = +1 (since u(x), @(z) and f(x) are monic).
The correct combinations of deg(«), deg(y) and e can be summarized in the

following table:

ndeg(uy) deg(uy,) deg(a) deg() monic €
even 5 < ndegu; — 2 ndeg(u;) — 2 1
oven ] ndeg;ﬁl —4 < ndegQ(;Ll) -3 4
odd 5 ndegu; — 3 Sndeg(ul)—3 .
odd 1 Sndeé;niv ndeg(g?)l y 1

It is possible that wu,(x) = u1(z) (see Section 3.3), and both must be ob-
tained during the de-reduction, but in general u,(z) is known and w;(x) is
unknown. Algorithm 5 below summarizes the whole process.

In this way, we turn the reduction step in Cantor’s algorithm into a polyno-
mial system. If the solution of this system satisfies ged(uy, ) # 1, we do not
compute o~ ! and we must find v; in other form (see Example 3 in Section 3.6).
We call general de-reduction method that undoes one-step-reduction in Can-
tor’s algorithm. Note that de-reduction always looks for an unreduced divisor
of a very specific form. Otherwise there would be infinitely many solutions.

The tool to solve our polynomial system will be the resultant. Let p; and ps
be two polynomials in several variables. We denote Res,(p1,p2) the resultant

with respect to a variable x.
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Algorithm 5 De-reduction
Require: Values of n, deg(u;), deg(uy), and D,, (if it is fixed).

Ensure: A reduced divisor D; such that nD; is equivalent to D,
(if D,, is not fixed, consider D,, = —Dy).

1: Determine the degrees of «(z) and 7 (z), which one is monic and e using
the previous table

2: Set the coefficients of uj(x), v1(z), a(x) and v(z) as unknowns

3: If Dy, = [un(z),vn ()] is known, use its coefficients as fixed values, other-
wise set uy, () = ui(x) and v, () = —v1(x)

4: Compute (symbolically) the left-hand side € - uy ()"

5. Compute (symbolically) the right-hand side

va— 1

Un

72'un+7a'2vn+a2'

6: Equate both sides, matching the different powers of x

7: Solve the resulting system

3.3 COMPUTING 3-TORSION DIVISORS

To compute divisors of order 3, we look for divisors satisfying the equation
2D = —D. This avoids having to work directly with the class 0. We know that
(non-zero) 3-torsion divisors must have weight 2, otherwise there would exist
a principal divisor whose affine support consists of exactly 3 points, but if the
genus of C is at least 2, such a divisor cannot be principal. Thus a divisor D of
order 3 is of the form [u(z), v(z)] = [2® +u1z+ug, v12+v0] With v2— f = 0 mod
u. Using COMPOSITION we obtain unreduced coordinates of the form [u?, 7]
for 2D. On the other hand, —D = [u(x), —v(x)], which we de-reduce using the
intersection between y? — f(z) and a(x)y — B(x). Then B(z)? — a(x)?f(z) =0
mod u(x) follows, and (3.2.1) becomes the polynomial identity

u? = (yu — av)® — o?f = v*u — 2ayv + a? (UQ — f) . (3.3.1)
U U
By matching degrees, the only possibility is 8(z) = y(z)u(z) + a(z)(—v(x)),
v =+ ¢y and o = ag (assumed non-zero since in the intersection we cannot
contain a(zx)).

Matching coefficients we obtain 4 equations in 6 unknowns (u1, ug, v1, vo,
co and ag). The divisibility condition v? — f = 0 mod u gives us two more

equations. All together we find the following set of equations:

0=—uy +2co — a} (3.3.2)

0 = 2cour — 2a9v1 + a%ul — ug + cg —u? (3.3.3)
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0= —2apcov1 — 2uug — 2a9vg — agu% + 2cougp + cgul

+ adug — ai f3 (3.3.4)
0 = —uj + aduy f3 — 2a3uiug — 2apcovo + caug + aivi

—adfo + adud (3.3.5)

0=—uifs— f1+3uoui +upfs — u§ — uf +2v1v9 + us fo — ugvi. (3.3.6)

0= wuofo — fo— uoui f3+ 2u3u1 + vg — ugu’ — ugv?. (3.3.7)
From (3.3.2), we can write up in terms of ag and c¢o:
up = 2co — ag. (3.3.8)

(3.3.3) and (3.3.4) can then be used to write uy and vy in terms of ag, ¢y and

(N

ug =c2 + 4cgal — 2apvy — 2ag, (3.3.9)
1

7
Vo =CoU1 — 5c8a0 + IOCoa(B) — 3a8v1 — iag — iaofg. (3.3.10)

Substituting identities (3.3.8),(3.3.9) and (3.3.10) into (3.3.5), (3.3.6), (3.3.7)
gives us polynomials E7, Fo and Fj3 of degree 2, 2 and 3 in v; respectively.
We then compute 71 = Res,, (E1, Ea), r2 = Res,, (E1, E3), r3 = Res,, (Fa, E3).
From 71,79 and r3 we can remove trivial factors of ag. We then compute
Ry = Resg,(r1,72) and Re = Rese, (r1,73). Finally T'(ag) = ged(R1, Rz) has
degree 80 in ag. These computations can be performed symbolically in the ring

Zfs, f2, f1, fo,v1,v0, ut, o, ao).

Proposition 2. For any genus 2 curve C as in (3.1.1), the polynomial T (ap)

in Fylao] obtained above has 80 non-zero roots in F, (counted with multiplicity).

Proof: T(agp) is monic of degree 80 and has constant term 2'93'2Res? (f, f/).
Since C is nonsingular, we must have Resi (f, f") # 0. Hence none of the roots
can be zero. O

See [21] for a MAGMA function to compute the 3-torsion.

3.4  WEIGHT-2 TRISECTIONS

In this section we explain how to find, for any given weight-2 divisor D3, those
divisors D such that 3D; = D3. We assume that divisors D; and Ds are of
the form [u;(z),v1(x)] = [22 + w17 + Ui, v112 + vio), [uz(z),v3(x)] = [22 +
u31Z + usp, V31T + v3p] since this is the general case. We consider weight 1
divisors Dj in Section 3.5, and we forget about trisections Dy of weight 1 since
they are easily found from those of weight 2 and the 3-torsion subgroup.
After the composition step of Cantor’s algorithm, we obtain divisors of the

form [u?, 9] for 3D;. We de-reduce as above and 3% — o2 f = 0 mod ug follows.
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As above, we obtain:

f 2 _ .2 2 _
W = (vus + aug)® — o f — 22ug + 203 + a2 (M) (3.4.1)
us us

and then similarly 8 = yus + avs with v = 22 4+ c12 + ¢ and o = a1z + ag
(here a; is assumed non-zero).

Matching coefficients we obtain 6 equations in 6 unknowns (u11, w19, 1, Co,

a1 and agp):
0=—aj+us1 + 2¢1 — 3upy (3.4.2)
0=—2aia9 + 2a1v31 + 2ciu31 + a%’U/31 + ugo + C% + 2¢y
— 3uyo — 3u3, (3.4.3)

0= C%Ugl + 2(101)31 - a?fg - a?u%l + 20160 - 6U117.L10 + 20011,31

+ 2a181U31 + 2U3061 + U30a% — CL(2) + 2’030(11 - U?l + 2&1&0“31 (344)
0=-— G,%fg + 2uzpaiag — 2?@,0(1%“31 =+ a%ugl — 3U%1U10 + a%ugl

+ a%vgl + 2vsgaic1 — 2a1a0u§1 + a%ugl f3 + 2apc1v31

+ 2c1cousy + cg ~+ 2v3pag + 2usoco + ’U,goC% — Bu%O

+ 2a1cou31 — 2a1a9 f3 (345)

0 = 2ugpc1c9 — a%u%l - agfg + 2apcovs1 + 2vspaico — 3u11u?0

+ c%u:n =+ 2’030(1061 =+ 2(11(10U31f3 + 2(110,011,%1 + Ugoag

+ 2&1&01)%1 — duzpaiapguzr — 2a1a0 fa (346)
0= aguglfg + a%vgl - agfg - 2u30a(2)U31

— ui’o + 2usgagcy + u3ocg + a%ugl. (3.4.7)

From (3.4.2) we can write u11 in terms of a1 and ¢;

2
U] = ————————, (3.4.8)
and then (3.4.3) can be used to write u1g in terms of a1, ¢1, ag and cp:
1
U10 Z*(3U30 + 6vz1aq + 6¢g — C% + 2ugicy

9
+ 5ajuz; — 6ajag + 4crat — ui, — af). (3.4.9)

In the general case we assume —cj + uz; + 2a? is nonzero. Then (3.4.4) can be
used to write ¢ in terms of a1, ag and ¢y,

1
—18¢1 + 18us; + 36(1%

o = (—90ajapuszr — 18uszpcr — 5dvspay

+ 18usgus; + 27ag + 3c%u31 — 33u31a% + 27a§f3 + GOa%ugl
- 5u§1 — bdvgiag — 4¢3 — 45uzpa? + 5a8 + 60ciaduz
+ 420%(& + Gclugl — ?)Oclail + 18c1v31a1 — 7T2c1a1a9

+ 36usivzia; — 36&?1}31 + 36&%&0). (3.4.10)
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Substituting identities (3.4.8), (3.4.9) and (3.4.10) into (3.4.5), (3.4.6), (3.4.7)
we obtain polynomials F1, Fs and F3 of degrees 4, 4 and 6 in ag respectively.
The coefficient of aj in (3.4.5) is a non-zero constant, so we can replace Fy
and Fj3 by Evg = F> mod E; and Eg = F3mod E;. We then compute ry =
Resg, (E1, E;), ro = Resq, (F1, E\;/g) and r3 = Res,, (E, E;,) From rq, 7o and r3
we can remove unwanted factors of —c; + u31 + 2a?, obtaining 771, 72, 73 (which
can easily computed symbolically). Next we compute Ry = Res,, (r1,72), R2 =
Rese, (r1,73) and then G = ged(Ry, R2). If we remove the trivial factors (in
aq) from G, we obtain a polynomial of degree 135 in a;. Finally we can easily
identify and remove from G three copies of a predictable factor G (a1 ) of degree
18 (for more details on this, see Section 3.6), obtaining in the end a polynomial

P(aq) of degree 81. Our trisection algorithm for this case is the following:

Algorithm 6 Trisection (general case)
Require: D; = [2% + ug1x + u30, v317 + v30] € Jac(C)(F,).
Ensure: D = [uy(z),v1(z)] such that 3D = Ds.
1: Evaluate 7; in the coefficient of f(z), us(z), and vs(x)
Compute R; and R»
Compute G(ay) = ged(R1, R3)
Compute P(a;) = G(a1)/Gy(a1)?
Find a root A; of P(ay)
Compute G1(c1) := ged(r1(A1,¢1),7m2(A1,¢1))
Find a root C; of Gy(c1)
If —Cy + ug; + 242 # 0 compute
G2(a0) = ng(El(Ah Clyao)y Evz(Ah Cy, ao)),Evs(Ah Cy, CLO))
9: Find a root Ag of Ga(ag)
10: Find Cy replacing in (3.4.10)
11: Find w11, w10 replacing in (3.4.8), (3.4.9)

12: Find v1 = —a~ 18 mod u;

See [22] for a MAGMA function to compute trisections of divisors D3 of
weight 2.

— 9160

Example 1. Consider p — 47 and the curve

C:y?=a54+722 +2%+z

over ). For this curve, the factorization of the 3-torsion polynomial is of the
form (1)2(2)3(3)%(6)! and we obtain two 3-torsion divisors, +Ds, with

D3 ::(ac2 + 9317629440965861472792300271210707450208158573 75+
488873756787536501744810044052577766667795825339,
1305126933853188150337554885652469543169375406912x 4
507085985232638779600803004953929238989759913638).
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By successively applying the trisection algorithm from Ds, we obtain a divisor

Dg1 ::(x2 + 219335662248133396654569319737208165458 797665441+
762120291454194142545198530846238796230952679247,
245403343317120493492667348268584111024316847588x 4
1333409534098972462678370037821289793015805103806)

of order 81, which cannot be trisected further, so the 3-Sylow group is of the
form Jac(C)[3%°] = (Dg1) = Zga.

3.5  WEIGHT-1 TRISECTIONS

In this section we explain how to find, for any given divisor D3 of weight-
1, those divisors D; such that 3D; = Ds. If we assume D3 is of the form
D3 = [uz(z),v3(x)] = [z + ug0, v30] With vzg 7# 0 (i.e. the support of D3 does
not contain a Weierstrass point), then Dy must have the form [u;(x), v (z)] =
[x2 +u112+u10, 0112 +v10]. Similarly to Section 3.4 above, de-reduction yields
the polynomial identity

2 _ 2 2 _
ud = (vus + awvs) o f = 72uz — 2003 + 2 <U3 f) . (3.5.1)
us us

with B(z) = y(z)uz(x) + a(x)vz(x) and y(z) = ca2? + c12 + co (here ¢y is
assumed non-zero) and «a(z) = z + ag. Matching coefficients we obtain 6

equations in 6 unknowns (uj1, w19, c2, ¢1, ¢o and ag):

0= cg + usg — 2ag + 3u1q (3.5.2)
0 = ciuzp + 2cac1 + 2aguzp — f3 — u3g — ag + 3uip + 3ui, (3.5.3)
0 = 2ca¢0 + 2us0c2 + uso f3 — 2a0 f3 — 2agu3g + aguso + 6ur1uig

+ 2cocius0 + €2 — fo +udy + udy (3.5.4)
0 = ciuso + 2c1¢0 + 2vs0c1 + uso f2 — U3 f3 — 2f2a0 + 2a0udy

- a%fg — a%ugo + 3u%1u10 + 2cacouso + 2vzpapce

+ 2agusofz — f1 — ugo + 3u3, (3.5.5)
0 = Bui1uiy + 2v30co — 2a0f1 — 2a0uszy — af f2 + aguiy

+ 2¢1couso + 2u30apc1 + 2aouso fo — 2a0udyf3 + adusofs + o (3.5.6)

— 2 2,2 2 2 2,4 3
0 —21}30(1000 + aO’LL30f2 - (ZO'LL3Of3 + CoUuso — a0f1 — GgUzg + Uyg- (357)

From (3.5.2) we can write u;; in terms of ag and ¢z and then (3.5.3) and (3.5.4)
can be used to write u1p and ¢g in terms of ¢o, ag and ¢;. Substituting expres-
sions for u11,u19 and ¢ into (3.5.5), (3.5.6), (3.5.7) gives us polynomials E, Eo
and Fj of degrees 3, 4 and 4 in ¢; respectively. The coefficient of ¢} in (5.2.7)
is a non-zero constant, so we can replace Fy and F3 by E\; = F> mod E; and
E; = E5 mod E;. We then compute 1 = Res,, (E1, E;), ro = Res,, (E1, E;),

r3 = Res,, (E;, E’;) Finally we compute Ry = Resg, (r1,72), Re = Resg, (r1,73)
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and then G = ged(Ry, R2). If we remove the trivial factors of ¢o from G, we
obtain a polynomial of degree 132 in ¢y. Finally we can easily remove from G
a predictable factor of degree 17 which appears 3 times, obtaining a polyno-
mial P(cg) of degree 81 in ¢y. The resulting trisection algorithm for weight-1
divisor is analogous to Algorithm 4 TRISECTION (General case). See [23] for
a MAGMA function to compute trisections of divisors D3 of weight 1.

Example 2. Consider p = 10007 and the curve defined by
Cy? = 2% + 132122 + 323922 + 8829z + 525

over F,. The factorization of the 3-torsion polynomial is of the form (20)*, so
the order of the group is relatively prime to 3. Therefore, all divisors D3 in
Jac(C)(F,) will have a unique trisection defined over F,. For example, given

= (z + 1179, 507),
its trisection polynomial P(x = ay) is
(z + 2698) (¥ 4 967227 + ... 4 2054z + 8698)

and we find that the only trisection of Ds is

1 2
5 Ds = {(a® + 94852 + 2588, 2977z + 7494)}

with ca = 7309, ap = 1864, c1 = 2365, co = 4063.

3.6 PREDICTABLE FALSE POSITIVES (PARASITIC FACTORS)

We now explain why we can remove the factor G of degree 18 in a; which
appears three times in G in Section 3.4 above. One assumption to obtain
(3.4.1) is that uy(z) and a(z) do not have factors in common. Let us now
consider the general case ged(ug, ) # 1. From the definition of a, § and v, we
must have ged(ug (), a(z)) = a(z) with a(x) of degree 1. We can therefore
write uy(z) = ax)(x —t) and y(x) = a(z)(a] 'z + ko). Note that the value
ay in ~y(z) is the same a1 as in a(x) = a1z + ap (Section 3.4). Any root a;
obtained in case ged(uy(z), a(x)) = a(x) which is also a root of G in Section

3.4 can be removed safely. Equation (3.4.1) becomes

s (a7 e + ko)us (@) + vs(2))? — /@)
’U,3(LII) ’

a(z)(x — 1)

2 ! and z° provide 4 equations in 4 unknowns ¢, ko,

The coefficients of 23, «
a; and ag. From the coefficient of 23 we can write ag in terms of ¢, kg and a;.
Substituting for ag in the coefficients of x2, ! and x2° we obtain polynomials
E, E5 and E5. We then compute r; = Resg, (F1, Ea), 72 = Resg, (E1, E3), 13 =
Resy, (B2, E3), s1 = Resi(r1,72), s2 = Rest(r1,73) and finally s = ged(sq, $2).
If we remove the trivial factors (in a;) from s, we obtain a polynomial of degree
18 in a; which is exactly the factor Gy that we wanted to exclude in Section

3.4. In general we just obtain false roots, but if this case is successful we can
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obtain solutions (see example 3).
By a similar argument, we can exclude the predictable factor of degree 17 in
co which appears three times in G in Section 3.5 .

Example 3. Consider p = 127 and the curve

C:y?=ad+a22+22+3z+1

over F,. The factorization of the S-torsion polynomial is of the form (10)%.
Again the order of the group is relatively prime to 3, hence all D3 € Jac(C)(Fy)

have a unique trisection defined over Fy. For example, given
D3 := (2% + 1042 + 108, 77z + 40),
its trisection polynomial P(ay = x) is
(x4 123)(332%0 + 322" + ... + 30z + 92),
the Gy factor of degree 18 is
(z +123)(1227 4+ 11020 + ... 4 622 + 80),
and the only trisection is
éD3 = {(2? + 82z + 58,125z + 98)}

with a(x) = 123z + 69 and v(x) = x? + 79z + 78. Observe that ged(z? +
82x + 58,123z + 69) = x + 78. We obtained v1 as —(y(z)/a(z) - us(x) +

v3(z)) mod uq (z).

3.7 FACTORIZATION OF POLYNOMIALS OF ¢~-TORSION AND {-SECTIONS

The possible factorization type of the ¢-torsion polynomial is determined by
the characteristic polynomial x(x) of the Frobenius endomorphism 7 reduced
modulo ¢. For elliptic (genus 1) curves, this was studied by Verdure [20]. For
hyperelliptic curve of genus 2, the number of distinct cases to deal with increases
significantly. An analysis of the upper bound for the irreducible factors can be
found in [11], and an application to the factorization types of ~-modular poly-
nomials can be found in [9]. The methods we use are based on those in [9] for
{-modular polynomials but with significant variations since we want to estab-
lish the relationship between the type of factorization of /-torsion polynomial
(the precise Galois orbits of the ¢-torsion divisors) and the field of definition of

the f-sections. Let 7 be the Frobenius endomorphism of F, and

X(z) =zt — 512 + $2? — §1Gx + ¢* (3.7.1)

be the characteristic polynomial of 7, where ¢, 1, $2 € Fy. A classification of
the factorization types of x over Fy is given by Gaudry and Schost in [9]. We

first establish the following lemma which will be used throughout the section.
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Lemma 6. Let D be a divisor in Jac[l] and let
Vp := Spang, {7"(D),n € N}.

Let P be the minimal polynomial of m restricted a Vp. Then the degree of

extension of Fy where D is defined is
ord (P) := min{k € N* : 2% —1 = 0 mod P}.

Proof: If the field of definition of a divisor D is Fy« then (% — Id)(D) is

k — 1 =0mod P where P is the minimal polynomial in

trivial on Vp, thus x
Vp.

Suppose that for some k' < k we have ¥ — 1 =0 mod P on Vp. Then D is
defined over F /. As the field of definition is the smallest k' that satisfies this
condition then k&’ must be ord'(P). O
For ¢/ = 3 we now establish the relation between factorization types of the
3-torsion polynomial T'(ap) with the factorization types of the characteristic

polynomial of Frobenius x(x).

Proposition 3. The possible degrees of the irreducible factor of T(ag) from

Proposition 2 are as follows:

X(z) T(ao)

(4) (5)'°, (10)%, (20)*

(2)* (4)*(12)°, (4)%°, (8)(24)%, (&'

(2)(2) (8)(24)%, (8)'°

@)(1)? 2)(4)°(6)(12)*, LW2E)*@W° 2t @'@, 1)

@MO) | W2@°(®)°

m* (12(3)%(9)° . (1)5(3)*, (1)*°(3)"%, (1)®°,
(2)(6)"(18)°, (2)'(6)*?, (2)'%(6)°, @)%

M21W)?2 | W2@EE*O,  O2@PB)%0)°  M*@°01)°, (1)2)*

Proof: From the factorizations of x(x) given in [9], we discard the cases
(1)2(1)(1), (1)(1)(1)(1) since they require 3 or 4 distinct rational roots in F, as
there are only 2 non zero elements in Fs.

We show the details for the case with y(z) = 2% + 223 + 222 + 22 + 1 =
(22 +1)(z + 1)2, all other cases are analogous. For this polynomial x(z) there

are 2 possible Jordan forms for the matrix associated to the Frobenius:

0 0 0 0 0

|2 0 0 2 0
A=, s 1], A=, ol -

0 0o 2 0 2

We now show how to obtain the factorization of T'(ag) for A;. The work for

oo o~
(==
o Nn oo

0 1
the other case is similar. Note that By := <2 O) is the companion matrix

2
has minimal polynomial (z + 1)2. Given Dy, Dy, D3, and Dy the generators of

2 1
of p(z) = (2% + 1), the minimal polynomial. Also note that By := (O )

Jac(C)[3] associated to the matrix A;, and let Vg, be the vector space generated
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by the conjugates of 0 # D € (D;,D3). Then the characteristic polynomial
of m restricted to Vp is the characteristic (minimal) polynomial of matrix B;.
Then every D in Vp, is defined over an extension of degree ord'(z% + 1) = 4.
For all 0 # D € (D3) where m(D3) = 2D3, D is defined over an extension
of degree ord'(z + 1) = 2. Let Vp, be the vector space generated by the
characteristic (minimal) polynomial of matrix Bz. Then all D in Vp, — (D3)
are defined over an extension of degree ord'((z +1)?) = 6. Let D = E + F
with E € (D3) and F' € Vg,. Then D is defined over an extension of order
ord ((#?+1)(x+1)) = 4. Finally, D = E+F with E € Vg, and F € Vg, —(D3)
is defined over an extension of degree ord’((x2+1)(x+1)?) = 12. The 3-torsion
polynomial therefore factors in the form (2)(4)%(6)(12)%. O

We now study the possible factorizations of P(a;) and P(cz), taking ad-

vantage of the factorization of the 3-torsion polynomial.

Proposition 4. The degrees of the irreducible factors of P(ay) (and P(c2))

are shown in tables 3.1 and 3.2.

Table 3.1: Factorization for curves of 3-rank 0 over F,,.

T(ao) Trisection T(ao) Trisection

(5)' (1)(5)*° (8)1 (1’

(10)® (1)(10)® (2)(4)°(6)(12)* | (1)(2)(4)°(6)(12)*
(20)* (1)(20)* 244" (D(2)*(4)'*
(42(12)° | (1)(4)*(12)° | | (2)(6)*(18)* (1)(2)(6)*(18)
(4)% (1)(4)*° (2)'%(6)? (1)(2)"(6)°
(8)(24) | (1)(8)(24) (2)* (1)(2)*

Proof: First note that when there is no 3-torsion over F, then the cardinality
of Jac(C)(F,) is relatively prime to 3. In this case, for any D € Jac(C)(Fy)
we see (371 mod #Jac(C)(F,)) - D is a trisection of D over F, and then the

factorization of the trisection polynomial is given from the factorization of 3-
torsion polynomial by adding a linear factor. Thus we only need to study the
cases where the rank of Jac(C)(IF,)[3] is > 1. There are 12 cases:

01 0 0 01 0 0 01 0 0
2 0 0 0 2 0 0 0 11 0 0
00 1 1 00 1 0 00 1 0
00 0 1 00 0 1 0 0 2
(1)2(3)%(4)°(12)* (1(@)*® (1)2(2)(8)°
01 0 0 11 0 0 1.0 0 0
1 2 0 0 01 1 0 01 0 0
00 1 0 000 1 1 00 1 1
00 0 2 0 0 1 00 0 1

(1)2(2)%(8)° (1)2(3)%(9)° (1)*(3)"
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Table 3.2: Factorization for curves of 3-rank > 1 over F,.

T(ap) Successful Unsuccessful
trisection trisection
Rank 1 | (1)%(3)%(4)°(12)* | (1)*(3)2(4)°(12)" | (3)*(12)°
(1)%(2)°(8)° (1)°(2°(®)° (3)(6)(24)°
(1)*(3)%(9)° (1)°(3)%(9)° (9)°
(1)2(2)2(3)%(6)° | (1)*(2)2(3)*(6)° | (3)°(6)"
(1)2(2)°(3)2(6)" | (1)*(2)*(3)%(6)™" | (3)°(6)**
(1)%(2)%(3)%(6)° | (1)*(2)"(3)*(6)° | (3)°(6)**
Rank 2 | (1)°(2)°(6)° (1)°(2)°(6)° (3)%(6)*2
(1)%(4)*® (1)°(4)* (3)°(12)°
(1)%(2)* (1)°(2)* (3)°(6)*
(1)*(3)* (1)°(3)* (3)%
Rank 3 (1)26(3)18 (1)27(3)18 (3)27
Rank 4 | (1)80 (1)8t (3)%7
1 1 0 0 1 0 0 0 1 1 0 0
01 0 0 0 1 0 0 01 0 0
(0011) (0010) (0021)
00 0 1 00 0 1 00 0 2
MEE)* (1®° 1*(2)°(3)*(6)"
1 1 0 0 1 0 0 0 1 0 0 0
(0100) (0100) (0100)
00 2 0 00 2 1 00 2 0
00 0 2 00 0 2 00 0 2
(1)?(2)*(3)%(6)° (1H*(2)°(6)° (1)®(2)%°

We show the details for the case (1)%(2)3(3)%(6)!!, the other cases are anal-
ogous. From the matrix, the basis satisfies wi = wy, wj = w1 +wq, Wi = 2ws,
and w] = ws + 2wy. Let D; be a trisection of Ds. Then the length of its
orbit under 7 determines the extension degree of IF, where it is defined and the
degrees of the factor of P(aq) to which it is associated. The length of the orbit
depends on the image DT of D; under the Frobenius. Write

D{r = Dy + miwy + mowsg + maws + mywy

with m; € {0,1,2} for i = 1,2,3,4. We first look for trisections of D3 fixed
under the Frobenius endomorphism. If Dy + lywy + lows + l3ws + 4wy is a

trisection defined over F, we need I; € {0, 1,2} such that

D1 + llwl + l2w2 + 13w3 + l4w4 = (Dl + l1w1 -+ lgwg + lgU)g + l4’LU4)7r
=D + (m1 + 1 + lg)wl + (mg + l2)w2 + (m3 + 23 + l4)w3 + (m4 =+ 2[4)11)4,
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from which we obtain the following linear system:

mi+10=0

mo =0
mg+Il3+14=0
my + 14 =0.

Solving this system, we obtain that

(D1 + 2myws + (2mg 4+ myg)ws + 2mgwy)”

= D1 + 2miws + (2ms3 + ma)ws + 2maw,

is fixed under the Frobenius. Since we have a trisection over I, and the remain-
ing ones are obtained by adding a 3-torsion divisor, the factorization type of
the trisection polynomial corresponds to the factorization type of the 3-torsion
polynomial T'(ag) with an additional linear factor. Thus we only need to study
the cases where mao # 0. We now show the orbits when m; = mg = my =0
and mg = 1, the other cases are analogous.

{D1, D1 + w2, D1 + w1 + 2wa2}

{D1 + w1, D1 + w1 + w2, D1 + 2wy + 2wz}

{D1 + 2w1, D1 + w2 + 2w1, D1 + 2w2}

{D1 + 2wy + 2w3 4 wyq, D1 + 2wz + 2wyg, D1 + 2w + w2 + w3 + wy,
Dy + 2wg + wyg, D1 + 2wy + w3 + 2wy, D1 + 2w + wa + 2wz + 2wy}

{D1 + w2 + 2w3 + 2wy, D1 + w2 + 2wz + wyg, D1 + w1 + 2wz + 2wy,
D1 + wi + 2wy + wy, D1 + 2w3 + wy, D1 + wa + wz + w3 + wya}

{D1 + w1 + 2wz + w3 + wyg, D1 + w2 + 2w3z + wy, D1 + w1 + 2wz + 2wz + 2wy,
D1 + 2wy, D1 + w2 + w3 + 2wa, D1 + wa}

{D1 + w1 + 2w2 + w3 + 2wy, D1 + w2 + wy, D1 + w3 + w4,
Dy + w1 + 2wz + 2wz + wy, D1 + 2wz + 2wy, D1 + wa + 2wy4}

{D1 + 2w1 + 2wy, D1 + 2wy + w2 + w3 + 2wy, D1 + 2wy + 2wa + 2wy,
Dj + 2wz + 2w3 4+ wyq, D1 + 2wy + w3 + wy, D1 4 2wy + 2w3 + 2wy}

{D1 + 2w1 + 2wy, D1 + 2wy + w2 + w3 + 2wy, D1 + 2wz + w3 + wy,
D1 + w1 + w3 + wa, D1 + w1 + 2wz + wa, D1 + w1 + w2 + w3 + wq}

{D1 + w1 + w2 + 2wz + 2wy, D1 + w1 + w3z + 2wy, D1 + 2w + 2wz + 2wy,
Dy + 2wy + 2wz + wy, D1 + w1 + 2wz + wya, D1 + wy + wo + w3 + wy}
{D1 + 2wy + 2wz, D1 + 2w + wa + 2wz, D1 + 2w1 + w3,
Dj + 2wy + 2ws, Dy + 2wy + wa + w3, D1 + 2wz + w3}

{D1 + 2w; + 2wz + 2w3 + wy, D1 + w1 + wa + wy, D1 + 2wy + 2wa + w3 + 2wy,
Dy + wy + w3 + wyg, D1 + w1 + 2wz + 2wy, D1 + wy + wa + 2wy}

{D1 + w1 + 2w2 + w3 + 2wa, D1 + w2 + w4, D1 + w3 + w4,
Dj + wy + 2wz + 2wz + wa, D1 + 2w3 + 2wy, D1 4+ w2 4 2w4}

{D1 + 2wy + 2wyq, D1 + 2wy + w2 + w3 + 2wy, D1 + 2wz + w3z + wy,
D1 + 2wy + wy, D1 + 2wz + 2w3 + 2wy, D1 + 2wy + w2 + 2wz + wa}

{D1 + 2w; + 2w3 + wyg, D1 + 2wz + 2wy, D1 + 2wy + wa + w3 + wy,
Dy + 2wy + wy, Dy + 2wy + wa + 2wz + 2wy, D1 + 2wy + w3z + 2wy}

In view of these orbits, working out the details for all posible images of Dy,
we conclude the only factorization type is (3)3(6)2 if there are no trisections
over IFy. O

From table 4.2, we obtain the following result regarding the minimal exten-

sion degree of F, where trisections lie.

Corollary 1. If the curve has 3-rank r > 1 in F, and D3 € Jac(C)(F,) then
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e [f the 3-torsion polynomial factors in the form (1)%(3)%(9)8, then D3 ad-

mits trisections in either Fy or Fyo.

o In all other cases, D3 admits at least 3" trisections in Fq or Fys

Table 3.3: Factorization for curves of 5-rank > 1 over F,.

5-torsion successful unsuccessful
Galois orbits 5-section 5-section
Rank 1| (12 (2)/0(4)™ M@0 @)™ (5)(10)2(20)7
(1)4(5)124 (1)5(5)124 (5)125
O*@(5)*(10)° | 1)2@!19(5)*(10)° | (5)%(10)%°
M*(2)%°(3)*(10)*8 | (1)°(2)°°(5)*(10)*® | (5)°(10)%°
(1)*(4)%(5)*(20)%? (1)%(4)%(5)*(20)%? (5)5(20)3°
M@ (5)420)%* | (1)°(@)*°(5)*(20)>* | (5)°(20)%°
(1)*(4)%(5)*(20)%? (1)5(4)%(5)*(20)%? (5)5(20)3°
M@0 (5)4(20)%* | (1)°(4)*°(5)4(20)** | (5)°(20)*°
WA@O@WI0 ()30 | (5)(10)%(20)%°
M*@)!0(4)%°(20)% | (1)°(2)!°(4)%°(20)®% | (5)(10)2(20)3°
(1)*(2)10(4)150 (1)5(2)10(4)150 (5)(10)%(20)°
(H*(2)!°(4)%°(20)%5 | (1)°(2)!°(4)2%(20)%5 | (5)(10)2(20)3°
(1*(2)'°(4)%5(20)%° | (1)°(2)10(4)%(20)% | (5)(10)°(20)%°
MW*E)*(6)*°30)'° | (1)2(5)4(6)*°(30)'° | (5)°(30)*°
(1)*(4)5(24)%° (1)%(4)5(24)%° (5)(20)(120)°
O*@°®)" OROROES (5)(20)(40) "2
(1)*(4)%(24)%° (1)%(4)5(24)%° (5)(20)(120)°
(14(2)10(12)%° (1)3(2)10(12)%0 (5)(10)2(60) 10
(1H*(4)%(24)%° (1)°(4)%(24)%° (5)(20)(120)°
(1)*(4)% (24)%5 (1)5(4)%(24)%° (5)(20)(120)°
(1)*(2)1°(12)%° (1)5(2)10(12)° (5)(10)%(60) 1
(W@ (®)7 (1DP@)3(8)7° (5)(20) (40) 12
M*)*15)32(5)* | (1)°3)*0(15)32(5)* | (5)°(15)*°
Rank 2 | (1)2%(5)120 (1)>(5)120 (5)1%5
(1)24<6)100 (1)25(6)100 (5)5(30)20
(1)24(4)150 (1)25(4)150 (5)5(20)30
(1)?4(4)%(20)%5, (1)%°(4)2%(20)%° (5)%(20)%°
(1)24(4)150 (1)25(4)150 (5)5(20)30
(1)?4(2)%°(10)%°, (1)%%(2)°°(10)%° (5)°(10)%°
(1)24(4)150 (1>25(4)150 (5)5(20)30
(1)24(4)2%(20)%5, (1)%°(4)2°(20)%° (5)°(20)%°
(1)24(2)300 (1)25(2)300 (5)5(10)60
(1)24<3)200 (1>25(3)200 (5)5(15)40
Rank 3 | (1)72%(5)100 (1)T25 (5100 5125
Rank 4 | (1)0%% (1)°%5 (5)1%5

The technique used to study the factorization of the 3-torsion and trisection
polynomial can be generalized for any £. If we know the orbits of ¢-torsion
divisors, we can determine the factorization of f-section polynomials. When
there is no f-torsion over F, we obtain that (¢=! mod #Jac(C)) - D is a (-
section of D over Jac(C)(F,) and then the field of definition of a ¢-section is
given from the field of definition of ¢-torsion elements. We can therefore restrict
ourselves to study the cases where the rank of Jac(C)(F,)[¢] is > 1, which is
equivalent to study the polynomials of the form p = * —§123 +$522 — 51z +G°
such that (z —1)|p. From each polynomial we obtain the possible Jordan forms
for the matrix associated to the Frobenius. For each matrix we can compute
all possible orbits for DT (for an algorithm to compute all possible orbits, see
24]).

When going through the possible images DT = D; + mjwi + mewy +
maws + mawy, it is convenient to first identify if there are divisors fixed under

the Frobenius, since the orbits are then obtained trivially (from the ¢-torsion
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divisors) instead of computed one by one, reducing the work significantly. We

briefly review the steps of this process.

Algorithm 7 Fields of definition (of ¢-sections)
Require: Polynomial (z) = 2* — §12% + $22? — $1gz + ¢° € Fy[z] divisible by

x— 1.

Ensure: The set of possible factorization types for the f-section polynomial.

1: Factorize x(z) in Fy[z]
2: Compute all the possible Jordan forms of the matrix associated to the
Frobenius endomorphism
3: for each Jordan form, set {wq,ws, w3, ws} the associated basis do
4:  Compute the orbits of the space (w;,ws,ws,ws) under the Frobenius
5. Discard the orbit {0}
6:  Lengths of the orbits — factorization type of the ¢-torsion polynomial
7. for each quadruple {my,mo, m3,my} € (Fr)* do
8: Set the image of D; under the Frobenius as
T = D1 + mywy + mawg + maws + mawy
9: if some divisor in Dy + (wy, ws, w3, wy4) is fixed under the Frobenius
then
10: {-torsions — factorization type of the f-section polynomial
11: else
12: Set S = Dy + (w1, wa, w3, wy)
13: repeat
14: Choose D € S and compute its orbit
15: Remove all the elements of this orbit from S
16: until S =0
17: Lengths of orbits — factorization type of the f-section polynomial
18: end if

19: end for
20: end for

Using these ideas, we can determine all the possible fields of definition for /-
sections (with ¢ small). In Table 3.3, we give the field of definition of 5-sections
according to 5-torsion Galois orbit when the rank of Jac(C)(F,)[5] is > 1.

For ¢ = 7, the number of distinct cases to deal increases significantly (see

Table 3.4). We summarize the result for £ € {5, 7} in the next corollary.

Corollary 2. If the curve has (-rank r > 1 with £ € {5,7} in F, and D, €
Jac(C)(Fy) then Dy admits at least {7 (-sections in Fy or Fge.
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CHAPTER 4

SYMBOLIC TRISECTION POLYNOMIALS

Efficient trisection (division by three) algorithms for divisors in hyperelliptic
curves in odd characteristic have been studied by Gaudry and Schost [7] as well
as the authors [19]. The main interest of these algorithms resides in their ap-
plication in Schoof-like algorithms to compute the group order for the Jacobian
of curves of genus 2. A drawback of these methods is that they rely on solving
a system of equations in several variables, and at least the final steps of the
solution must be done in a case-by-case basis as the final polynomials whose
roots produce the solutions of the system are not available symbolically (i.e.
described in terms of the curve parameters and representation of the divisor).
Symbolic equations are available up to some point in the solution process, af-
ter which techniques that reduce a system in several variables to obtaining the
roots of an equation in one variable must be applied every time a trisection is
performed, and only then can polynomial factorization methods be applied.

It is reasonable to expect the efficiency of these algorithms to improve once
a symbolic description of the final polynomial is available, which would then
reduce the trisection problem to evaluating and factoring polynomials in one
variable. However, direct symbolic computation is not feasible due to the sizes
of the intermediate polynomials produced during the process. Nevertheless,
our main objective in this chapter is to compute the trisections polynomials of
[19] symbolically, and to show it can be used to improve the speed of trisection
in practice.

The chapter is organized as follows: In Section 4.1, we recall generalities
about genus two curves in odd characteristic. In Section 4.2, we present some
basic properties of weighted homogeneous polynomials and their consequences
for polynomial interpolation. In Section 4.3, we obtain theoretical results on
the trisection polynomial that are required to make the symbolic computation
practical. We give further details on the symbolic computation in Section 4.4.
We complete in Section 4.5 with an example of a trisection polynomial obtained

from the symbolic polynomial and a discussion on how to use the symbolic

37
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polynomial in practice.

4.1 BACKGROUND

Let C be a genus two curve over a finite field I, of odd characteristic (greater
than 5) given in the model
C:y* = f(x) (4.1.1)

where the polynomial f(z) = 25 + f323 + foz? + fiz + fo € Fyfz] has no
double roots. We work here in the group of Fg-points of the Jacobian Jac(C),
in terms of Mumford coordinates [u(z),v(z)]. In genus 2, every element of
Jac(C) — {0} can be represented uniquely by a reduced divisor of weight one
(u(z) = x + ug, v(z) = vg) or two (u(x) = 22 + urx + ug, v(x) = vz + Vo).
An algorithm due to Cantor [3] allows us to compute in the group with this
representation of elements of Jac(C).

To determine the set of pre-images +Ds with D3 € Jac(C)(F,), we will use
methods studied in [19]. The idea consists in reversing Cantor’s algorithms to
the triplication of a divisor. For example, if we assume that Dj is of the form
D3 = [uz(z),v3(x)] = [z + uz0, v30] With vzg # 0 (i.e. the support of D3 does
not contain a Weierstrass point), then D; must have the form [u;(x),v1(x)] =
[22 + up1 2 + uig, v117 + v1g).

Using the composition step of Cantor’s algorithm, we obtain a pair of co-
ordinates of the form [u3,?] for 3D;. We de-reduce D3 = [ug,vs] via the
polynomial 32 — o?f = 0 mod uz with 8 = yus + avs, where polynomials
and « are of the form v = 2% 4+ c;x + ¢p and a = a1z + ag (with a1 assumed

non-zero). Matching the first coordinates, we obtain the identity

2 9
W2 = U +QZ3) o (4.1.2)
3

2 2! and 29 in this identity provide 6 equations

The coefficients of 2°, z*, 23,
in 6 unknowns (w11, u19, 1, Co, a1 and ap), giving us a system whose solutions

correspond to the the different trisections of Dj.

4.2  WEIGHTED HOMOGENEOUS POLYNOMIALS

In this section, we show some properties of weighted homogeneous polynomials
and their impact on multivariate interpolation. These results will be essential

tools for the symbolic computation of a trisection polynomial.

Definition 8. Let p € Flz1,...,x,] be a polynomial in n variables and take
integers di,da, ...,d, . The polynomial p is said to be a weighted homogeneous
polynomial (WHP) of weight k if for allt € F\ {0} we have:

p(thay t2xy, . thx,) = thp(ay, xa, . xy) (4.2.1)

The integers dy,ds, ..., d, are called the weights of variables x1, ..., T,
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4.2.1 PROPERTIES OF WHPs

From the definition of weighted homogeneous polynomials, it is easy to see
that the product of two WHPs will be a WHP. Similarly, the sum or difference
of two WHPs of the same weight will be either zero or a WHP of that same
weight.

We also observe that in any product of two weighted non-homogeneous
polynomials, the terms of highest weight are the product of the terms of highest
weight in both polynomials, without any impact from the terms of lower weight.
Similarly, the terms of lowest weight of the product depend only on the terms
of lowest weight in both polynomials. If the product is homogeneous, then the
two original polynomials must have been homogeneous too. We can therefore
conclude that WHPs factorize into products of WHPs, and the ged of two (or
more) WHPs is also a WHP. We now show the same applies for resultant and
subresultants of WHPs.

Definition 9. Let f(x) and g(z) be two polynomials of degree m and n respec-
tively, and let S be the m + n by m + n Sylvester matriz associated to these
polynomials. Then the resultant of f(x) and g(zx) is Res,(f,g) = det(S), and
the j-subresultant is the polynomial of degree j defined by

S (f,g9) = det(Soj) + det(Slj)a: +...+ det(Sjj)a:j ,

where Si; is the matriz determined from S by deleting 25 rows and columns as

follows:
1. rowsn—j+1 ton (each having coefficients of f(x))
2. rowsm+n—j+1tom+n (each having coefficients of g(x))
8. columns m +n — 25 to m+ n, except for column m+mn—i—j.
Note that we could extend this definition so Res.(f,qg) = So(f,g).

Lemma 7. Let f and g be two weighted homogeneous polynomials with weight
p1 and py respectively. Let x be an arbitrary variable of weight p, and m and n
the degrees in x of f and g respectively. Then S;(f, g) is weighted homogeneous
with weight

pi(n—7) +p2(m—j) — (nm—j—%)p .

Proof From the definition of the (sub)resultants (as determinants coming
from the Sylvester matrix), they are clearly polynomials in the coefficients of
f and g. Let a; be the coefficient of 2 in f and b; be the coefficient of z* in
g. Since both f and g are WHPs, then a; is a WHP of weight p; — ip (with
i€{l,..,(m—1)}) and b; is a WHP of weight ps —ip (with i € {1,..,(n—1)}).
For each entry of the Sylvester matrix, if we replace each variable x; by t“*xy,
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(where wy, is its weight), then the Sylvester matrix becomes:

_tplf’mpam tplf(mfl)pa’m(il 9
0 pr—mpg
0 O tpl_p(h tplao 0
S* 0 0 tmizﬁag tP17Pqq tplao
| e2mep, g2 Ompy 0 0 0
0 tP2="Pp, ... 0 0 0
0 tP27Phy tP2 by 0
tpz—Qpb2 tP27Phy  {P2hg

and similarly, the matrices S;; become matrices Sij by removing the corre-
sponding rows and columns from S.
If we multiply the k-th row by tP2t(m=n+tk=Dp for k' = 1,.. n and by

tprt(k=n=1p for k =n+1,..,n + m we obtain

-tp1+p2—npam tp1+p2—(n—1)pam_1 ]
0 tpﬂrpz*(’ﬂ*l)Pam
. 0 0 tp1+p2+(m*1)l’a0
§= tp1+p2—npbn tp1+p2—(n—1)pbn_1 o 0
0 tprtp2—(n=Lpp 0
| 0 0 tP1+P2+(m*1)PbO—

where all the terms in the k-th column are multiplied by #P1+P2—(n+1=F)p with

respect to the terms in the k-th column of S. Similarly, matrices S’,-j become

Sij.
Since S'ij and Sij contain only rows 1 ton —j and n+1 to n4+m —j of S
and S respectively (and removing the same columns in both cases), then (since

S is obtained multiplying rows of S by powers of t) we have:

n—j m+n—j
det(gij) = det(gij) . (H tp2+(mn+k1)p> . < H tler(k"l)p)
k=1

n+1
= tfz det(gw) .

Similarly, S;; and S'ij contain only columns 1 to m +n —2j — 1 as well as
column m+n—1i—jof S and S respectively (removing the same rows in both

cases), so the relation between the columns of S and S gives us:

m+4n—25—1
det(S;;) = det(S;;) - ( 11 tmpz("“k)?) gprtpat(m—j—i—1)p

k=1
= téliip det(Sij) .
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We can therefore conclude that

tel—ip

det(gij) =

tfz det(Si )

with

m+n—25—1
b = < Z D1 +P2—(n+1—k)P> +p1+p2+(m—j—1)p,
k=1

n—j n+m—j
by = <Zp2+(m—n—l+k)p> + < Z p1+(—n—1+k)p> .
k=1 k=n+1
Replacing = by tPz in the definition of S;(f,g), we find that the whole
polynomial has been multiplied by t% /t*2, so the j-subresultant is a WHP of
weight £ = 01 — ly = p1(n — j) +pa(m — j) — (nm — j — j%)p. O

Corollary 3. Let f and g two weighted homogeneous polynomials of weight py
and po respectively. Let x be an arbitrary variable of weight p and m and n be
the degrees in x of f and g respectively, then Res,(f,g) is weighted homoge-

neous with weight pin + pam — nmp.

4.2.2 NUMBER OF MONOMIALS IN A WHP

As we will see in the following sections, although computing the trisection
polynomial directly is not practical due to extremely high degrees encountered
in intermediate steps (namely, the degrees of the final resultants, before the
ged is computed), it can be computed via interpolation techniques.

Knowing that the trisection polynomial is weighted homogeneous is critical
to its explicit computation, since it allows us to reduce the computational cost
of the interpolation techniques by several orders of magnitudes.

The main advantage of knowing that the polynomial is homogeneous comes
from reducing the number of (possible) monomials in the polynomial when
comparing with a polynomial of equivalent degrees. Suppose that p(vy, ..., vg)
is a WHP of weight w, with weight w; for variable v; (note that this kind of
information will typically come from using Corollary 3 and similar results),
and assume that wy < wy < ... < wg. if we let d; be the maximal degree of
variable v;, with d; < |w/w;] (we allow an inequality since in some cases we
may have a stronger bound on the degree than what is given by the weight of

the polynomial), then the polynomial can be written as

pors e v) = > Oy R

Brwy+Bowot+- -+ Bpwp=w

Bi<d;

To illustrate the impact of restricting to WHP, let us consider two multivari-

ate polynomials, the first one non-homogeneous and the second one a WHP of
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weight w, and assume that in both polynomials all variables reach the maximal

degree d; = |w/w;]|. The first polynomial will be a sum of up to

b w
(5] +)
j=1 N
monomials, which correspond to all the integer points of a k-dimensional lattice
in a hyperbox with sides of length d;.
For the WHP, the monomials correspond to integer points of the intersection
between the hyper box and a hyperplane (of dimension k — 1) passing through

the k elementary vertices of the box. The number of monomials is then

W w—wy By = —why_oBp_
ﬁJ [ “)21/31J L 181 7l]k71k 2Bk 2J
Z Z Z X, (Biy- s Br-1)
B1=0  B2=0 Br—1=0
where x (61, .., Bk-1) is 1 if w_wlﬁl_;;w’“’lﬁk” is an integer, and 0 other-

wise. Note that we obtain similar sums (with the same total) for any re-ordering

of the variables, in particular if we start from v, down to vy:

{$J wa;uklﬁkJ inr—xir3[33—2...—urk[ikJ

w W w

> 2 2 X, (Bar- B
Br=0 PBr_1=0 B2=0

The number of monomials will therefore be a proportion close to

(k— 1w
min{w; }
of the number obtained using only the maximal degrees.

When it comes to computing the polynomial, this reduction is critical: in
order to interpolate the polynomial, we need at least one evaluation point
per monomial, so reducing the number of (possible) monomials reduces the
number of evaluations required. The remainder of this section will be dedicated
to showing how to perform the interpolation with this minimal number of

evaluations.

Interpolation of WHPs

Before going through the fine details of the interpolation process for trisection
polynomials, we will describe the general idea of interpolation for homogeneous
weighted polynomials and illustrate this idea with a small example.

If we interpolate considering only the maximal degree in each variable, we
need evaluations for d; 4 1 distinct values of variable v;, independently of the
other variables, for a total of H§:1 (d; + 1) evaluations. In this situation, for
each tuple in (ve,...,v;) we have d; + 1 values to interpolate a polynomial of

degree dy in v; (one such polynomial for each tuple). Then, for each tuple in
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(vs,...,vk), we have ds + 1 polynomials in v; which we combine coefficient-
by-coefficient (i.e. for each powers of v1), considering that each coefficient is a
polynomial of degree do in vy. This process is then iterated for the remaining

variables, producing the complete polynomial.

When working with WHPs, the idea is similar. For a fixed tuple (va, ..., vg),
we use the evaluations of the polynomials for the different values of v; to obtain
an interpolation polynomial in v, and this process is then iterated in the other
variables (working from the coefficients of the distinct powers of v1) to obtain

the complete polynomial.

However, having fixed weight for the monomials means that even with a
single tuple (va,...,v) used, some of the monomials (those of highest de-
gree in v1) will be completely determined from the polynomial in vy that we
obtained (since they cannot depend on the remaining variables, otherwise the
total weight would be greater than the weight of the WHP). Each time a mono-
mial is completely determined, it is removed from the evaluated values before
doing further interpolations (that is to say, we subtract the evaluation of this
monomial from the value of the complete polynomial at the point (v1,...,vk)),
which has the effect of decreasing the degree of the polynomial to interpolate,
and so decreases the number of evaluation points required. As a result, the
number of distinct values of vy required for each tuple in (vs,...,v;) will de-
crease over time, going down by one each time all the monomials containing v,
to a given power have been completely determined. Once again, this process is

iterated in the remaining variables.

In this approach, if we first interpolate in terms of variable vy, then each
tuple (va,...,v) can be viewed as a stack of values in v1, and we interpolate
using the highest stacks first (i.e. those with the most values) so we can compute
the terms of highest degrees in v; and make our way down (after removing these
terms from the values of the shorter stacks). The process then runs iteratively
for the next variable, using the coefficients of the resulting polynomials in vy

as the values for the next iteration.

Following this idea, we can reduce the number of evaluations of the poly-
nomial to one tuple (in (v1,...,v)) for each of the possible monomials in the
polynomial expansion. Note that in this description, the final variable will
never need interpolation since if we have fixed the degrees in vy, ..., vix_1, then
there is only one possible power of vy to obtain total weight w, and the “inter-

polation” is done with a single point.

A natural adjustment of the interpolation to take into account this obser-
vation is to choose one variable which will be evaluated to the fixed value 1
right from the start (effectively making it the last variable in the description
above) and compute a non-homogeneous polynomial of weight bounded by w

in the remaining k — 1 variables. The polynomial obtained is then “filled-up”
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to a WHP of weight w. We prefer to do this with v; (the variable of lowest
weight) since it simplifies the arithmetic required to ensure the filling up is
possible. If w; = 1, we only need to “fill-up” the monomials up to weight w
by multiplying to the appropriate degree of v1. If wy; > 1 (this will be the
case in our interpolations), we first have to restrict the possible monomials so
their total weight is of the form w — Sw, (with 5 an integer), so the filling-up

consists in multiplying the monomial by vlﬁ .

4.2.3 EXAMPLE

Suppose that we have a WHP of weight 15 in Z[z, y, 2], with variables z, y and
z having respective weights 1, 3 and 5. It is easy to see that f(x,y, z) must be

of the form

f(2,y,2) = a12'® + agx'?y + asz”y® + aaa®y® + asz’y*
+ a6y5 + a7xloz + a8x7yz + a9x4y2z

3 5,2 2, .2 3
+ 102y 2 + 112727 + 1227 Y2T + 13z

so it has 13 monomials instead of the 16 - 6 - 4 = 384 that would be expected if
we only bounded by the maximal degrees in each variable (the proportion 13
to 384 is close to the expected 1 in 2!- 15 = 30 from the discussion above).

Evaluating x in 1, we are left with

f(Ly,2) = a1+ ay + azy® + auy® + asy® + ay’ + arz

+ agyz + a9y22 + oz10y3z + a1122 + a12y22 + algz?’,

which has degree 5 in y and degree 3 in z, so to interpolate, we need the value
of the polynomial in 6 values of y: y1, y2, ¥s3, ¥4, ys, and yg; and in 4 values of
Z: 21, 29, 23, and z4. However, we can complete the interpolation with only 13

pairs of these points (out of a possible 24 pairs):

)7 (y2’21)7 (y3721)a (y4a21)7 (y5,21), (y672’1),
) (Y2, 22),  (y3,22),  (Ya,22),

Y1,23), (y2,23),
)

For the sake of this example, let y; = i and z; = 4, and suppose that we have

the evaluations:

F(1,1,1) =99,  f(1,2,1) =701,  f(1,3,1) = 4011,
F(1,4,1) = 15129, f(1,5,1) = 43427, f(1,6,1) = 103869,
F(1,1,2) =211,  f(1,2,2) =843,  f(1,3,2) = 4215,
£(1,4,2) = 15439,  f(1,1,3) =421,  f(1,2,3) = 1085,

£(1,1,4) = 765.

The interpolation proceeds as follows:
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1. Interpolate for the points in z; = 1, obtaining
gl(y) = f(]-7ya 1)
= 11y° + 13y* + 5% + 9y® + 4y + 57
o Extract the coefficients of y° and y*.

2. Using the points in 2 = 2 and subtracting 11y? + 13y}, interpolate to
obtain the degree 3 polynomial

92(y) = f(1,9,2) — (11y° + 13y*)
= 7y° + 13y% 4 8y + 159

e Using the coefficients of 43 in g (y) and g2(y), interpolate to obtain
the coefficient (in Z[2]) of ¥ in f(1,y, 2):

(224 3) y3

e Using the coefficients of 32 in g1(y) and g2(y), interpolate to obtain
the coefficient (in Z[z]) of 32 in f(1,v,2):

(42 +5) 2

3. Using the points in 23 = 3 and subtracting 11y? + 13y} + (22; + 3)y +
(4z; + 5)y2, interpolate to obtain the degree 1 polynomial
93(y) = f(L,y,3) — (11y° + 13y" + 252 + 3y° + 49°2 + 5y%)
= 14y + 357
e Using the coefficients of y in ¢1(y), ¢92(y), and gs(y), interpolate to
obtain the coefficient (in Z[z]) of y in f(1,y, 2):
(22 + 2+ 2) y1
4. Using the point in z4 = 4 and subtracting 11y? + 13y} + (2z; + 3)y? +
(4z; + 5)y2 + (22 + 2; + 2)y;, obtain the value
9a(y) = f(L,y,3) — (11y* + 13y + 2y°2 + 3y°
+4y%2 + 5y? +y2? +yz + 2y)
= 687

e Using the constant coefficients in ¢1(y), g2(v), g3(y), and g4(y), in-
terpolate to obtain the coefficient (in Z[z]) of y° in f(1,y, 2):

(6,23 +122% + 242 + 15) ¥

It only remains to multiply the terms of f(1,y,z) by the correct powers of x

to obtain a homogeneous weighted polynomial and we find:

f(x,y, 2) = 152 4 2212y + 52%9 4 32593 + 1323y* + 11y° + 242102
+2Tyz + daty?z + 22y32 + 122522 + 22y2? + 625,
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4.3 TRISECTIONS

4.3.1 SPECIAL CASES

In order to study the trisection polynomials for general divisors, we must first
look at the special cases that could occur since they will help us during the com-
putation of the trisection polynomial (they allow us to determine the weight
exact weight of the polynomial and the coefficients of lowest and highest de-
grees).

Special cases involving Weierstrass points in the affine support of D; can
be handled easily within the general cases (see Section 4.3.1). For all special
cases discussed in details, D3 has weight 2, i.e. [uz(7),v3(z)] = [22 + uz1z +
u30, V31Z + v30], since there are no special cases when D3 has weight one (unless

the affine support is a Weierstrass point).

Weight-1 trisections

The most obvious special case of trisection is when Dy has weight 1 instead of
(the much more common) weight 2.

If we assume that the divisors D is of the form [uq (z), v1 ()] = [z+u10, v10],
then using the composition step of cantor algorithm we obtain two polynomials
of the form [u?, 9] for 3D; and if we de-reduce D3 via the polynomial 3% —a?f =
0 mod ug where 8 = yuz+awvs, 7 = ¢p and @ = 1 and equate the two un-reduced

divisors, we obtain:

5 _ (yuz +avy)® — o?f
1

= . 4.3.1
u - (43.)
The coefficients of 22, ' and z° give us three equations in u1 and co:
0= C% + uz1 + 3uqo (432)
0 = chugy + 2cov31 — f3 + use — uzy + 3ui, (4.3.3)
0= C%uSO + 2cov30 + U§1 — f2 — 2us1uzp + U31f3 + ’U,gl + ’LL:I)O (434)

From (4.3.2) we put o in terms of ¢

2
_CGotus
3

uio =

Substituting the expression of u1g into (4.3.3) and (4.3.4) gives us polynomials

of degree 4 and 6 in ¢ respectively:

0 =5C§U31 + 6cguzr — 3f3 + 3uzg — 2u§1 + cé (4.3.5)
0 :276(2)U30 + 5dcousg + 27’0%1 — 27 f — bduszuzg
+ 2Tuzy f3 + 26u3; — ¢ — 3cjusy — 3cauz, (4.3.6)

and ¢g must satisfy both equations at the same time. Given such a ¢y, back-

tracking through the equations easily gives us the trisection.
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Proposition 5. D3 admits a weight 1 trisection if only if the polynomial L =
Resc, (L1, La) (with Ly and Lo the polynomials in co appearing in (4.3.5) and

(4.8.6)) evaluated in the values of fa, f3, uso, uz1 and vy returns 0.

Remark 1. If the curve parameters f; are given weight 10 — 24, and the divisor
coordinates ugz; and vs; are given weight 4 — 2¢ and 5 — 2i respectively, then L
is a WHP of weight 24.

Simple quadratic de-reduction for weight-2 divisors

When both D; and D3 have weight 2, there is still a situation where the
de-reduction approach must be dealt with independently. In the general de-
reduction (Section 4.3.2, via the polynomial 82 — a?f = 0 mod u3 with 8 =
Yug +avs, ¥ = cax? +c1x+co and o = a1x 4 ag) we usually asume that a; # 0
in order to solve the system.

However, for some divisors D1, a; = 0, and the shape of the system changes
drastically. In [16], this situation was called simple quadratic de-reduction since
it corresponds to using the principal divisor of the quadratic equation agy —
c2x? + 1z + co. In theory, this might be considered part of the general case,
but the solution technique uses division by a; to solve the system, in effect
taking out the simple quadratic de-reduction cases.

We now assume that divisors D; are of the form [ui(z),vi(z)] = [2% +
U112 + U10, V117 + v1p], and attempt the de-reduction technique via 5% —a?f =
0 mod ug with 8 = yuz + avs, v = 22 + c12 + ¢g and @ = ag. D3 will admit
a simple quadratic de-reduction if and only if the resulting system admits a
solution.

As in other cases, we have:

W = (yus 4+ avs)? — a®f
1= us

2 o (vi—f
= vy*uz + 2ayvs + « — ) (4.3.7)
3

and the coefficients of z°, z*, z3, 22, z! and z° provide 6 Equations in 5

unknowns (u1, ug, ¢1, ¢op and agp):

0 =wus31 + 2¢1 — 3uq1 (438)
0= 201U31 + usg + C% + 20() — 3’LL10 — 3u%1 (439)
0 = Gus; + 2a9v31 + 2¢1¢o — 6ugiuig + 2cousy + 2uspc; — uS, (4.3.10)

0= agU31 — 3U%IU10 + 2agciv31 + 2c1couzt + Cg + 2v30ag

+ 2usggco + U300% (4.3.11)
0 = 2uszgcico — a%ugl — a%fg + 2agcovzr — 3u11u§0 + cgu31

+ 2vspagpcy + u30a(2) (4312)
0= a%u;;lfg + agvgl — agfg - 2'11,30(18'[1,31 + agugl — uifo

+ 2u30a0co + UsoCy (4.3.13)
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From (4.3.8) we can write uq; in terms of ¢y,

2¢1 + us1

Uyl = —3 > (4.3.14)
and then ( 4.3.9) can be used to write u1g in terms of ¢o and ¢y,
1
Ui = 5(11%1 + 3U30 + 6C0 — C% + 2U3161) . (4315)

If we assume that ¢; # ug1, then Equation 4.3.10 can be used to write ¢g in

terms of ag and cq,
1

m( — 18U30C1 + 18U30U31 + 270% + 3C%U31

Co =
— 5uf; — 5dvgiag — 4c} + 6cru3,) - (4.3.16)

Note that the case c; = ug; gives a simpler system that can be handled sepa-
rately to obtain similar (but more restrictive) conditions.

Substituting identities (4.3.14), (4.3.15) and (4.3.16) into (4.3.11), (4.3.12),
(4.3.13) we obtain polynomials Fq, Es and E3 of degrees 4, 4 and 6 in ag
respectively. The coefficient of ag in (4.3.11) is a non-zero constant, so we
can replace Fs and E3 by Fs, = FEs mod F; and E3, = F3mod E7, from
which we can remove multiples of (u3; — ¢1). Let Eap = (u31 — ¢1) 1 Fa, and
Esp, = (ug1 — cl)*2E3a. We then progressively reduce the degrees in ag and
¢y of the three equations: first set E3. = w31 E3, mod Fo, and remove a factor
of (ug; — ¢1) to get E3q = (uz; — ¢1) ' E3, then let Ey, = E; mod Eq, and
finally E5. = v31 F9p, mod Ej3..

We remove the remaining variables using resultants, but to avoid para-
sitic factors we do it twice (alternating the order of removal) and compute
the ged of the two resulting polynomials to weed out all parasites (since a
solution to the system should come out no matter in which order we remove
the variables). We compute r; = Resq,(E1q, Fac) and 1o = Resq,(E1q, E3d)
and remove a factor of (u3; — ¢1) from both of them (to obtain 7 and 7 ), and
then compute R = Res,, (71,72). Similarly, we compute s = Res., (F1q4, Eac)
and s2 = Res¢, (F1q, F34) and remove a factor of ag from both, then compute
S = Resg,(s1,52). We finally obtain M = gcd(R, 5).

Proposition 6. A weight-2 divisor D3 admits a trisection by simple quadratic
de-reduction if only if the polynomial M evaluated in the values of fa, f3, uso,

uz1 and vy returns 0.

Remark 2. If the curve parameters f; are given weight 10 — 24, and the divisor
coordinates ug; and vs; are given weight 4 — 2¢ and 5 — 2¢ respectively, then M
is a WHP of weight 105.

Trisections with Weierstrass points

When the affine support of trisection D; contains one (or more) Weierstrass

point, then the assumptions used in the general case to compute 3Dy (using
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Cantor’s algorithm) do not hold, giving rise to a number of special cases. How-
ever, these cases do not require a detailed description, as we now show.

If the affine support of D; consists of two Weierstrass points, then D3 =
3Dy = Dy (i.e. Dj is its own triple/trisection). In terms of the non-Weierstrass
cases, it corresponds to a simple quadratic de-reduction with a = 0 and v = us.
This case can be handled directly as part of the special case in Section 4.3.1.

If the affine support of D; (of weight 1) consists of one Weierstrass point,
then once again D3 = 3Dy = D (i.e. D3 is its own trisection). In terms of the
non-Weierstrass cases, it corresponds to the equivalent of a simple quadratic de-
reduction for weight 1 trisectees, although a correct description would be simple
linear de-reduction, with & = 0 and v = ug. Note that for D3 = [z + u30, v30],

the affine support is a Weierstrass point if and only if vzg = 0.

Proposition 7. For D3 of weight 1, the simple linear de-reduction occurs if

and only if vsg = 0.

If Dy has weight 2 and its affine support contains one Weierstrass point
Py = (z0,y0) (and a non-Weierstrass point), the de-reduction can be handled
by the general case in Section 4.3.2 if we relax the condition ged(a,vy) = 1.
Taking ged(a,y) = (z — xg), s0 @ = a1(x — xp) and v = (z — zo)(z — s) allows
us to deal with the factor (z — x¢)? that is removed in Cantor’s algorithm

(corresponding to removing the principal divisor div(x — xg)).

4.3.2 GENERAL CASE FOR WEIGHT-2 DIVISORS

To compute the trisection polynomial we solved a trivariate polynomials system
where Eq, Ef and E% arepolynomials in Fgaq, co, ag] of degree 4, 4 and 6 in ag
(reduced modulo Ej in the case of Ef and E%, see [19] for more details). First
we compute 11 = Resq, (F1, E}), ro = Resq,(E1, EY) and r3 = Resq, (ES, EY)
(from 71,79 and r3 can be remove predictable factors). If Ry = Res,, (r1,72),
Ry = Rese, (r1,73) and G = ged(Ry, R2). From G we can remove predictable

factors. We obtain a trisections polynomials of degree 81.

Corollary 4. The trisection polynomial for weight-2 divisors on the curve C
is weighted homogeneous, where the curve parameters f; have weight 10 — 24,
the divisor coordinates ug; and vs; have weight 4 — 2i and 5 — 2t respectively

and the trisection variable a1 has weight 1.

Proof All the equations in the system defining the trisection are WHPs, and
the techniques used to obtain the solutions are compatible with the properties
described in Section 4.2.1, so all polynomials worked with are WHPs, including
the resultants and the final ged (see Table 4.1). Since the trisection polynomial
is a factor of this ged, it must also be a WHP. O

Proposition 8. The trisection polynomials for D3 of weight 2 has the following

properties:
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Polynomial | weight Polynomial | weight Polynomial | weight
Eq 12 r1 40 Ry 960
E 14 ro 48 R 940
E} 18 r3 47 G < 940

Table 4.1: Weight of the polynomials used in the trisection

(i) The coefficient of a§t is 0 if only if one of the trisections D1 has weight
1.

(i) The constant coefficient is 0 if and only if there exists a trisection D;

that can be obtained by simple quadratic de-reduction.

Proof In general, the polynomial has degree 81 in a; corresponding to 81
weight-2 trisections, the only exception being if there are weight-1 trisection,
in which case the polynomial degree must be at most 80 (which corresponds to
the coefficient of af! equal to 0). Therefore the coefficient of a§! is a constant
multiple of a power of L where L = Res., (L1, L2) from Proposition 5. On the
other hand, if the trisection has weight two, then the only situation which is
not handled correctly by the general case is the simple quadratic de-reduction,
which corresponds to a; = 0, i.e. the trisection polynomial p(x) is divisible by
z. From Proposition 6, the constant term of the trisection polynomial must be

a constant multiple of a power of M. O
Corollary 5. The weight of the trisection polynomial is 105.

Proof From Remarks 1 and 2, the weights of the constant coefficient and
the leading coefficient are multiples of 105 and 24 respectively. The weight of
trisection polynomial must satisfy 105a¢ = 81 + 24b where a and b are non-
negative integers. As ag = by = 1 is a possible solution, all other solutions are
of the form a =1+ 8t and b =1 + 35¢, with ¢t € Z. The next smallest positive
solution will then be a; = 9 and b; = 36, which would give weight 9-105 = 945,
but the weight of G = ged(Ry, Rz) is at most 940. Therefore ag = by = 1 is
the only possible solution. O

4.3.3 GENERAL CASE FOR WEIGHT-1 DIVISORS

The construction of the trisection polynomial for weight-1 divisors follows sim-
ilar lines to that of weight-2 divisors. To compute the trisection polynomial we
solved a trivariate polynomials system obtaining (after simplifications) three
equations Ef, Ey and EY in Fylca, ¢1, ag) of degree 1, 2 and 1 in ¢; respectively
(see [19]). From Ej we can write ¢; in terms of ap and cy. We then compute
r1 = Res., (E{, Eb), ro = Res.,(E1,EY) and R = Resq,(r1,r2), where R has
degree 350 in cs.

Several parasitic factors can be removed from R: Since the polynomial Ej

is used to remove ¢; from Ej and EY, we get parasitic factors if the whole
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polynomial is 0 independent of ¢, that is to say if both m; and moy are 0 at
the same time, where m; and my are the coefficients of degrees ¢! and ¢} in
Ej. Let s, = Resq,(m1, mg), then ged(R, s,-) is a polynomial of degree 109 in
¢o which be removed twice from R. Let s, = Resgq,(m1,mg), then ged(R, s,)
(and its factorization) produces two factors that can be removed from R: one
of degree 109 which appears twice, and one of degree 17 which appears three

times, leaving us with a polynomial p(c2) of degree 81 in ¢s.

Corollary 6. The trisection polynomial for weight-1 divisors on the curve C
is weighted homogeneous, where the curve parameters f; have weight 10 — 2i,
the divisor coordinates usy and vzy have weight 2 and 5 respectively and the

trisection variable co has weight 1.

Proof The argument are identical to those in Corollary 4, with the weights

in Table 4.2. O
Polynomial | weight Polynomial | weight
Eq 9 r1 32
E> 12 ) 28
Es 14 R 448

Table 4.2: Weight of the polynomials used in the trisection

Corollary 7. The weight of the trisection polynomial is 96.

Proof We follow a similar approach to that of Corollary 5. From Proposi-
tion 7, the weight of the coefficient of c§! is a multiple of 5. For the constant
coefficient, we do not have a special case of de-reduction, but we can “con-
struct” one: we set co = 0 and solve the resulting system to equations F; = 0,
E; =0 and E3 =0 (as above) but in only two variables (¢; and ap), and use a
similar approach to that used in the simple quadratic de-reduction to remove
parasitic factors, obtaining a polynomial of weight 96. The weight of trisection
polynomial must then satisfy 96a = 81 + 5b where a and b are non-negative
integers. As ag =1, by = 3 is a possible solution, all other solutions are of the
form a = 145t and b = 34 96¢, with ¢ € Z. The next smallest positive solution
will then be a; = 6 and b; = 99, which would give weight 6 - 96 = 576, but the
weight of R = ged(ry, ) is 448. Therefore ag = 1, bg = 3 is the only possible

solution. O

4.4 SYMBOLIC COMPUTATION

We now give some further details on the techniques required to make the ho-
mogeneous interpolation fully practical to compute trisection polynomials. For
simplicity, we will write the description in terms of the general weight-2 case,

the weight-1 case is similar.



52 CHAPTER 4. SYMBOLIC TRISECTION POLYNOMIALS

Since the theory of trisection polynomials is based on obtaining a degree 81
polynomial in a; (that is to say, the form of the polynomial in a; is known),
whereas the theory does not directly tell us the form of the “trisection polyno-
mial” in terms of the other variable/parameters, our interpolation techniques
are based on interpolation “points” which are polynomials in a; rather than
constants. Also recall that the coefficient of af! is known up to a constant
factor (we will return to this in Section 4.4.3), and can be computed directly.
Although we could also compute the coefficient of al, its weight makes it rather
costly to use and we in fact “forget” it in the following computations (and com-
pute it as any other coefficient rather than computing it directly).

Rather than interpolate the trisection polynomial as a whole of weight w,
we interpolate the coefficients of each of the 81 remaining powers of a; (from

a to af?), where the coefficient of a{ is homogeneous of weight w — j.

4.4.1 PARITY AND INTERPOLATION POINTS

When interpolating for trisection polynomials, one of the variables has weight
1 (variable aq), one has weight 2 (variable usp) and the remaining variables
have weight greater than 2. Since we obtain polynomials in a1, the variable of
lowest weight that we can work with is ugg with weight 2. This variable is set
to value 1 and the total weight of the remaining variables (including a;) must
be of the same parity as w.

To ensure this, we first interpolate in the variables of odd weight, and
observe that the degrees of the last of these (say v;) must be either all odd
or all even (depending on the degrees of the other variables of odd weight),
which leads to an odd or even function in v;. Taking advantage of the identity
f(—vj) = f(v;) for even functions and f(—v;) = —f(v;) (with f(0) = 0) for
odd functions, we can reduce the number of evaluations in v; by a factor close
to 2 (and hence the number of polynomials in a; by a similar factor). In effect,
if v; has weight k, then for the interpolation process it will behave as a variable
of weight 2k.

In order to interpolate the general trisection polynomials, we used the fol-

lowing approach:

e The set of values for a given variables does not (in general) have to depend
on the values taken by the others variables. We preferred to “re-use” the
same sets of values so the interpolation process could be accelerated with

precomputations.

e The tuples are chosen in terms of interpolation, but each tuple corre-
sponds to a curve and a divisor in the Jacobian of that curve. Note that
some of the curve coefficients do not appear directly in the tuple, for

example fy, but are fully determined by the coordinates of the divisor
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(due to the divisibility condition: u(x)|f(z) —v(x)?). In general, distinct
tuples will be correspond to distinct curves, although in some rare occa-
sions two tuple could correspond to the same curve (this does not cause

any problem for the interpolation).

e Some tuples must be avoided at all cost, namely those that correspond
to singular curves (for which the trisection polynomial will not have the

same form).

e We also avoid all tuples for which the coefficient of a$! would be 0. Since
the symbolic form of this coefficient is known, this can be checked quickly

for all tuples before actually computing the trisection polynomials.

We used value sets of the form {b+ 1,b+ 2,0+ 3,...,b+ k} where b is an
offset to avoid all singular curves and coefficients of a§! that go to 0. For our

computation, b = 7 was sufficient (for the weight-1 case, we can take b = 0).

4.4.2 FINITE FIELDS VS THE INTEGERS

Although the trisection polynomials we are looking for should be defined over
the integers, it is impractical to compute them via interpolation over the in-
tegers themselves. Mainly, this is due to the computation of the trisection
polynomial itself: the partial computations (in particular the last round of re-
sultants, before the final gcd computation) produces polynomials whose degrees
are close to one thousand.

Since we need to evaluate at a large number of points, the values of the of
each variable cannot be restricted to 0, =1, and the evaluation of each monomial
in the trisection polynomial can then be expected to have more than a thousand
bits in size. Taking into account the cumulative effect of the large number
of terms (a little over one million in the final result, and much higher in the
intermediate polynomials), one could reasonably expect some of the evaluations
to give values of more than one billion bits. Simply storing these evaluations
would become prohibitive, not to mention the cost of the integer arithmetic.

It then becomes much more practical to perform the work over prime fields
Fp,, to obtain the symbolic trisection polynomial mod p; for various p; and
then combine them via the Chinese Remainder Theorem. Each coefficient will
then be approximated modulo p = []p;, and if p is large enough, the smallest
(signed) value modulo p of each coefficient gives us its value over the integers.

To give an upper bound on the (absolute) value of the coefficients, we looked
at the smallest of the final resultants (Ry = rese, (r1,r3) in Section 4.3.2) and
bounded its largest coefficient. We first observe that the sum of the absolute
value of the coefficients in r1 is 15389396856842800, and the similar sum for r3
is 11160931434260700344436134. These two values are used to obtain bounds

on the coefficients when we take products of parts of r; with parts of r3.
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We first operated on the terms in the Sylvester matrix as follows: each
non-zero entry in the matrix is replaced by the bound on the coefficients of
the polynomial it comes from. This substitution will give a matrix with 3
possible values for the entries: 0, 15389396856842800 (for the first 19 rows)
and 11160931434260700344436134 (for the last 20 rows). Given the form of
the matrix, a recursive determinant algorithm would compute 10! - 11! - 20!
different products of 39 terms, 19 of which are 15389396856842800 and the
other 20 are 11160931434260700344436134. We then ignore all signs in the

determinant computation and obtain an upper bound of
10! - 11!- 20! - 153893968568428009 - 11160931434260700344436134%° .

The resulting 2794-bit value is then an upper bound for the sum of (the absolute
value of) all the coefficients in the resultant, which we then take as an upper
bound on the coefficient themselves, and on the coefficient of the trisection
polynomial (which is a factor of the resultant).

Even though we obtained a bound of 2794 bits, it is much larger than
the maximal size of the coefficients observed in the final trisection polynomials,
which stands at 134 bits. This difference is not surprising: first of all, the bound
ignored all possible cancellation during the computation of the resultants, and
accumulates all the coefficients together (and will therefore overestimate the
largest value). Secondly, the bound did not take into account the factors that
can be explained theoretically [19] nor those that are removed when we take
the ged of the final set of resultants (Section 4.3.2). Since the weight of the
(smallest) resultant is almost 9 times larger than that of the of trisection poly-
nomial, it is not surprising that the bound on the coefficients is at least 9 times
larger than desired.

For the computation, we first worked modulo a single prime p of 320 bits,
and used the signed residue mod p to obtain the coefficient over the integers.
We found that all coefficients were less than 2'3%, which indicated that we had
185 bits of redundancy. The result could then be verified modulo 6 primes
of 416 bits each, to give us the a total bound of 2816 bits (and confirming
the redundancy in the computations). Dividing the verification into 6 primes
was done to simplify running the computation as three parallel processes and

minimizing the total time.

4.4.3 RE-SCALING THE INTERPOLATION POINTS

The main problem to interpolate trisection polynomials is that they are ob-
tained via resultants and gcds. When working over a field, these operations
preserve the factorization properties of the polynomials (their roots), but will
not be concerned with multiplying (or dividing) the polynomial by a constant

factor. In fact, most implementations of the gecd computation will return a
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monic polynomial, whereas the symbolic polynomial may not be monic at all.
This problem becomes even more acute if we consider that most of the work is
performed over finite fields, whereas the polynomial that we are looking for is

defined over the ring of the integers (and in general cannot be made monic).

Here the theoretical results on the coefficients of a$! and a9 used in Sec-
tion 4.3 to obtain the weight of the trisection polynomial come to our help once
again. Knowing the form of the highest and lowest degree coefficients of the
trisection polynomial can clearly be used to “re-scale” it (i.e. return it to the
form it should have been before being made monic). However, both of these
terms are known in terms of their roots, so both may be missing a constant fac-
tor, which required some extra care, especially if the gcd of the missing factors

is greater than 1.

To get a good idea of the actual coefficient, we first did some computations
over the integers with a limited number of symbolic variables (a; and 2 or 3
others), giving the remaining variables value 1. In this way, we could be fairly
confident of the “extreme terms” in the trisection polynomial (monomials in
which at most 3 of the variables appear, for example f$ - af' or v3}) and
comparing with the theoretical form, get a fairly good idea of the missing

constant factor (if any).

At this point, we could not completely exclude that some small constant
factors were incorrectly removed due to the evaluation of the remaining vari-
ables as 1. Typically, “incorrect” factors of 2 or 3 may be expected to show
up in the polynomial when doing such evaluation, due to the accumulations
of various terms together. We could have introduced a few extra factors (e.g.
powers of 2 and 3) as a precaution, but we first tried the computations as if
there was no missing factor, and then checked if the results were consistent
throughout the trisection polynomial. This assumption proved correct, since
the coeflicients obtained were so much smaller than the 320-bit prime and, any

missing factor would have been easily identified.

For simplicity, we only used the coefficient of a§! for re-scaling, and kept
the coefficient of aY as a safety check for the computation (that is to say, we
re-interpolated it as if we did not know it, and checked that the result matched
the theory). This was done mostly to save the work of repeatedly evaluating a
weight 105 polynomial, and because the difference in interpolating down to ai

or a is minimal (especially when taking advantage of the parity).

One problem remains with re-scaling: interpolation points where the coeffi-
cient of a$! goes to zero (so there would be no value to “re-scale” with). As we
stated at the end of Section 4.4.1, it is easy to check beforehand if any tuples
will give a trisection polynomial of degree less than 81 and avoid it. In fact,
avoiding singular curves appeared to be more difficult than when using “small”

values for the variables to interpolate, but in any case both sets of “bad” curves
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appear to be sparse on a larger scale.

4.4.4 SYMBOLIC TRISECTION POLYNOMIAL

Remark 3. The full computation (with verification) took 682.7 hours using
Magma on a 2.9 GHz Intel core i5 running Mac OS X. For the weight-1 tri-
section polynomial, the total computation time was 11 hours and 26 minutes.
To obtain these timings, it was necessary to take maximum advantage of all
the optimizations described in this chapter (using WHP, determining the exact

weight of the polynomial, reducing the number of variables, using parity).

For weight 2 divisors, the trisection polynomial has weight 105 and depends
on ai, us1, Uso, V31, V30, f3 and fy. The degree in a; is 81, and the degrees of
the other variables can be obtained from their weight, hence we have degrees
52, 26, 28, 21, 24 and 17 respectively in w31, uso, v31, v3g, f3 and fo. Based

only on the degrees, we would need
53-27-29-22-25-18 =410, 840, 100

trisection polynomials in a; to interpolate the complete polynomial, however
this goes down to 123,399 if we use the approach of Section 4.2.2. Since the
variable of lowest weight to interpolate WHP is uz; (of weight 2), we can use
the parity of the weights (with vs; and vz being the only ones of odd weight),

to reduce this to 65,565 polynomials in a;.

Remark 4. The weight-2 trisection polynomial has 1,220,793 non-zero coeffi-

cients.

For weight 1 divisors, the trisection polynomial has weight 96 and depends
on co, U30, V30, f3, fo and fi. The degree in co is 81, and the degrees of the
other variables can be obtained from their weight, hence we have degrees 48,
19, 24, 15 and 12 respectively in wusg, v3o, f3, f2 and fi. Based only on the

degrees, we would need
48-19-24-15-12 = 3,939,840

trisection polynomials in ¢y to interpolate the complete polynomial, however,
using the WHP approach of Section 4.2.2 and the parity (with vz the only

variable of odd weight), the number of polynomials required decreases to 4, 535.
Remark 5. The weight-1 trisection polynomial has 66,124 non-zero coefficients.

Note that the number of zero coefficients in the trisection polynomial (with
respect to a general homogeneous polynomial of similar characteristic) repre-
sent = 0.17% and ~ 2.86% of the total number of terms for the weight-1 and

weight-2 trisection polymials.

Remark 6. Assuming the average size of coefficients in the trisection polyno-
mials to be between 1 and 2794 bits (based on Section 4.4.2) and that most
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of the coefficients are non-zero (based on the previous observation), then the
memory requirements for the intermediate polynomials in the computation of
the weight-1 trisection polynomials would be at least 3 terabytes (and possibly
in the ten thousand terabytes range), whereas those for the weight-2 trisection
polynomials would run in the 25,000 terabytes (and possibly in the hundred
million terabyte range). Even ignoring time constraints, direct symbolic com-

putation of the trisection polynomials is therefore outside of practical reach.

4.5 USING THE TRISECTION POLYNOMIAL

4.5.1 EXAMPLE OF TRISECTION POLYNOMIAL

Consider p = 127 and the curve defined over F,, by y? = 2° + 2 + 322 + 22 + 1.

if we want to trisect
D3 = (2 + 222 4 23,1192 + 48) ,
the trisection polynomials is

p(x) = 11025 4 106250 + 5827 + 502" + 33277 4 7627 + 12027 + 727
+10327 + 7027 + 672" + 7627 + 42°° + 1142°% + 93257 + 22456
+ 36255 4 39254 4 118293 + 29252 + 3320 + 47250 + 88259 + 22258
+ 16277 + 232°0 + 7% + 3725 4+ 112°3 + 62252 4 322°° + 10627
+ 11628 + 95247 + 13246 + 1242 + 262 + 852%% + 122242
+ 113z + 11620 + 8523° 4+ 1052 + 103237 + 10126 + 2%

+ 4023 + 59233 + 72232 4+ 10123 + 6923 + 282%° + 43228 + 11227
+ 97226 4 272 4 202 4 9227 4 1132%2 + 1522 + 6922° + 90210
+ 1628 4 6427 4 6820 4 1112 + 712 + 3423 + 18212 + 692!
+ 21219 + 312% + 10428 + 227 4 4925 + 6225 + 772 + 5623

+272% + 107z

and since p(x) is divisible by z (but not by x?), there is a (single) trisectee Dy

that can be obtained by simple quadratic de-reduction:

Dy = (2% 4 622 + 51,46 + 47) .

4.5.2 EVALUATION OF TRISECTION POLYNOMIALS

Evaluating a polynomial consisting of 1,220,793 terms (for divisors of weight
2) or even of 66,124 terms (for divisors of weight 1) must be done with some
care to avoid unnecessary costs.

An efficient approach consists in fixing an order for the evaluation of the
variables, iteratively using Horner’s rule to perform the evaluations, and record-

ing the terms of the polynomial according to this evaluation (so no search is
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required to locate the next coefficient). It is of course useful to keep in mind
that the trisection polynomials are weighted homogeneous, which allows to re-
strict the degrees in the remaining variables following similar ideas to those of
Section 4.2.2. The parity tricks of Section 4.4.1 can also be applied without
difficulty.

In some situations, especially in point counting algorithms, we may need
to compute a large number of trisection polynomials for divisors defined over
the same curve. In the case of point counting algorithms, the divisors may
be defined over extension fields (with increasing extension degrees), whereas
the curve is defined over a fixed base field. In these cases, it becomes very
advantageous to first evaluate the parts of the trisection polynomial that relate
to the curve parameters, and then “re-evaluate” the resulting polynomial for
each divisor to trisect (evaluating in the coordinates of the divisor). This is
particularly true when the divisors are defined over field extensions (relative to
the curve) since this approach keeps the evaluations in the base field (where
the arithmetic is less expensive) for as long as possible.

In this context, we can optimize the evaluation a little further. For divi-
sors of weight 2, the coordinates [us1, us0,v31,v30] contain some redundancy
and can therefore be simplified, due to the divisibility condition uz|v — f on
Mumford’s representation D = [us(z),vs(x)]. This divisibility condition gives
two polynomial Ci, Cy € F,[us1, uso, v31,v30], both of which must be 0 for all

divisor D of weight 2. From Cy we obtain
2 _ _9 2 3 2
v3g = —2usiU3g + usouy; + fo — usofo + usousy fz + usovy;

so any polynomial in Fg[us1, uso0, v31,v30] can be limited to degree 1 in wvs.
Taking Cy = Res,,(C1,Cp), we obtain a new condition which is monic of
degree 4 in ugo. We can then also limit the polynomial in F,[us1, uso, vs1,v30)
to degree 3 in usg (after the reduction in usg). Finally, the parity technique can
be applied to reduce the possible degrees in v3;. Note that these substitutions
involve the curve parameters f1 and f, which were not used in the computation
of the trisection.

In general, this approach may not be very interesting since it only reduces
the degrees in vsp and ugg (without eliminating them completely) at the cost
of introducing fi and fp, in effect increasing the number of “variables” (and
most likely the number of terms in the polynomial). However, since we are
evaluating at the curve parameters first, evaluating at f; and fy is included in
the “pre-evaluation” for the curve (at a minimal increase in cost). With this
approach, the number of terms in the evaluation goes down from 1,220, 793 to
112, 759.

For divisors of weight 1, the situation is similar although simplified by the

reduced number of variable. Using the divisibility condition, the polynomial in
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F,uso, vso] can be limited to degree 1 in v3g, with the power in v3y correspond-
ing to the parity of the power in ¢;. The number of terms in the evaluation
goes down from 66,124 to 2,255. However, since weight-1 divisors are rather
scarce, it is less likely the pre-evaluation technique would pay out for these,

and direct evaluation is likely to be preferred.

Remark 7. To compare the efficiency of using the symbolic trisection polyno-
mial, we ran a few experiments the largest extension fields for which [8] reported
timings for trisection. We chose a curve over the field F, with p = 2127 1, and
divisors defined over a degree 2430 = 10- 3% extension. Preparing the trisection
polynomial in terms of the curve parameters (i.e. such that it only remains to
evaluate in [us1, us0, U1, v30]) took 34.21s, after which obtaining the trisection
polynomial took 1,743.67s.

This compares extremely well with the timings of 31,035s (pre-factoring)
reported by Gaudry and Schost, that it to say we obtain a speed-up factor of
close to 18. It should be noted that even though the difference in CPU speed
should account for a speed-up of roughly 33%, our implementation uses the
default field arithmetic of Magma whereas [8] uses NTL and optimizes the field
arithmetic. the field arithmetic.

If we consider that at these field sizes, [8] reports similar timings for the
pre-factorization part of trisection as for the factorization itself, we obtain an

overall speed-up factor close to 1.87 in the complete trisection computation.






CHAPTER 5

TRISECTION IN CHARACTERISTIC 2

The full solution to divisor trisection in Jacobians Jac(C) of genus 2 curves
requires arduous computations, much heavier than divisor bisection. This is
because the 2-torsion subgroup reflects the natural 2 : 1 morphism to P!, while
the 3-torsion does not. Moreover, understanding trisection as a variant of the
discrete logarithm problem (given the exponent 3 and any value @, find the
base P such that 3P = @), an attempt to analyze the underlying complexity
seems justified.

The case of trisection for elliptic curves in odd characteristic was set in
[13]. In this paper we show how to trisect divisors in Jac(C)(Fam) when C is
a non-supersingular genus 2 curve over a binary field Fom. The supersingular
cases were addressed in [17]. We use coordinates D = [2% + u1x + ug, v12 + v,
and we reverse Cantor’s reduction algorithm for divisor class arithmetic as in
[12, 15, 17]. Cantor’s reduction takes semireduced coordinates [@(x), 0(x)], and

computes
B(@)? + o) B(x)h(z) + a(x)*f(x)
u(x)
with a(z), 8(x) € Fam|x] such that ged(a(x),w(x)) = 1 of the appropiate de-

grees, until u(z) has degree 2 (see [3]). Our method takes the coordinates

u(x) =

[u(z),v(z)] of D and equates unreduced coordinates [@(z),v(z)]. Namely, we

put
B'(2)? + o/ () (x)h(x) + o (2)° f (z)
with 8/ (2) = v/ (z)u(z) + o/ ()v(z) and we aim to find o’ (z),~'(z), a(x). In tri-

secting D, we know () has to be of the form (u’(x))? from Cantor’s algorithm.

i(z) = (5.0.1)

Similarly, for the 3-torsion, we equate
B'(@)? + o' () B’ (2)h(z) + o/ ()*f (x)
u(x) '

In both cases we obtain a solvable polynomial equation.

a(z) = u(x)? = (5.0.2)

‘We choose models
C:y?+ (hg:):2 + hix + ho)y = 2 + fsx3 + fox? + fiz + fo

61
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with non-constant h(z) = hex?+hi2+ho, and distinguish the cases deg(h(x)) =
1,2 because the computational effort is different. The 2-rank in the first case
is 1, but it is 1 or 2 in the second. Further, we assume hy = f; = 0 in
deg(h(z)) =1 and f3 = fo =0 in deg(h(x)) = 2 ([1, 10]). See [5] for details on
models corresponding to each 2-rank.

In [17] the authors provided a basis of the 3-Sylow subgroup with the same
uy-coordinate at every level. Because of the higher 2-rank, our formulas have
more terms and they don’t allow such a full regularity. However, in both
degrees deg(h(x)) = 1,2 we show conditions to obtain trisections D’ such that
3D’ and D’ share the same w;. In contrast with [17], 3-torsion divisors very
occasionally satisfy this condition, and therefore such trisections rarely are

enough to generate Jac(C)[3°].

Our results are shown explicitly for curves with deg(h(z)) = 1. In the
case deg(h(x)) = 2, there are many more terms. We propose a multivariable
interpolation procedure to simplify the computation, but in deg(h(x)) = 2 the
results are too long to write down in full generality. We show several examples,
where we take the generator w of the finite field as the default generator used

in Magma [2] for that given field size.

5.1 THE 3-TORSION SUBGROUP

Since all divisors of order 3 must have weight 2, we solve the equation 2D = —D
with v'(z) = @ + ¢o and o/(z) = ag, with ¢g,a0 # 0. Then (5.0.2) for
generic hyperelliptic polynomials f(x), h(z) together with he divisibility con-
dition v(z)? + h(z)v(x) + f(x) = 0 mod u(z) gives

aphs +aj +u; =0, (5.1.1)
a%ul + agh1 + agcghs + u% + ug + cg =0, (5.1.2)
aoho + atug + aiu? + cAuy + ad f3 + agcohy + aZhovy =0, (5.1.3)
agulfg + aghlvl + a%hgvo + agcohg + a%ulhgvl + a%vf
+afo + adud 4+ Aug +ud =0, (5.1.4)
ug f3 + uou% + hivg + uq fo + urhovg + urhqvy + u%hz’Ul + hov1
+ud 4+ ui +urvi + fi +ulfs +uohgvy =0, (5.1.5)
o+ o f2 + uous fs + uouf + hove + haugvr + haugvg
+ hauguivy +v3 +ugv = 0. (5.1.6)

Proposition 9. If deg(h(z)) = 1 then D = [2% + w12 + ug,v1w + vg] €
Jac(C)(Fam)[3] if and only if pu,(x) and p,, (z,y) are both zero when evalu-
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ated in * = uy and y = vy, where
Du ( )_$40+h8$28+h12$22+h f4 20 h14$19+f8h8 12
+(h%6+f3 ) +h22$7+f3h12 6+h8 12 4+f3h14 3
+ h20f4sc2 + h26:1: + h20fo7 (5.1.7)
Por (2, 9) = hay® + hiy + 2% + hia® + hia® + hi fs2® + fio + hafo + b3,

1
Vo = — ( + h2ul + b3 faul + hiul + h2 fiud + fou?

ho
(b B+ B33+ f2) + fRSun + (uf + fo) 13V ),
ug = (u} + faur + fa +v7 + v1)y/uq.

Proof. If deg(h(x)) = 1, from Equations (5.1.1), (5.1.2) and (5.1.3) we obtain

4 h
ao(ag + }{3 +ao 1). All these in (5.1.4) imply
1

Uy = a%,uo = aghy +c§ and ¢y =

v = 3% (af® + K2l + b3 faaf + hiaf + b3 f3ad + fiad
+ (b + h3vy + W2 (V3 + fo) + f2)h2ag + (ag + f3)h5)

Then into (5.1.5) and (5.1.6) we obtain 2 equations py (u1,v1) = 0, pa(ui,v1) =
0, one with left hand side as p,, (x,y) above. Finally, Res,, (p1,p2) = 0 is
exactly py, (u1) = 0. O

Our py, (z) is the even characteristic version of the 3-modular polynomial
of [9]. The wu;j-coordinates of 3-torsion divisors are roots of p,, (x), but the
converse does not hold because at the same time p,, (z,y) has to have a root
over Fam too. The set of solutions of p,, (x), py, (z,y) in Proposition 9 is faithful
to Jac(C)[3](Fam).

Corollary 8. If deg(h(z)) =1 then the cardinality of Jac(C)[3](Fam) is twice
the cardinality of

9 3 6 2

{§ € Fan | pun (€) = 0, Trg((& + hig® + f3€) hd(é + 362+ fo) 1) _ 0}
1

plus one.

Proof. The trace condition is equivalent to p,, (§,2) € Fam[z] having a root

over Fom. O

For curves with deg(h(z)) = 2 (momentaneously he = 1 to simplify the

outcome) we similarly deduce
_ 2 2, 2
ug = aphi + aguy + uy + ¢y + apco,
1
vy = a—Q(aOu1 + ao(h2 +ud + (uy + hi)vy o + (1 + ul)cg)
0

+agco(ho + hico + agcd) + ui 4+ uicd).
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Replacing in (5.1.1), (5.1.3), (5.1.5) and (5.1.6) we obtain four polynomials
Do, P1, P2, P3 € Fam[ug,v1, o, ap) of degrees 0, 2, 4 and 6 in ¢g. Since the leading
coefficient of p; is a3 +u1 # 0, we reduce ps, p3 modulo p;. From p, we equate
co and we then replace in p; and ps. Since the coefficient of a2 in pg is non-
zero, we reduce pi, p3 modulo pg. From p; we equate ag and then replace in
po and p3. Finally we compute Res,, (po,ps). In contrast with deg(h(x)) = 1,
now deg,, (gcd(po,ps)) can be larger than 2. Still, Res,, (po,p3) is a multiple

of pu, (z)? where

Pu, (2) = 240 + h3z®t + RS20 + (B] + S + hiho + h3RE + hif1)2* + ...
(o S 4 ) + J30E+ fohd® + fohd + fohTho + b
+ fE(hS + T + h3ho + hS + hiho + h3hZ 4 h3hg 4+ hihi)
+ fi(foh} + hYho + B + hSho + h]h3 + h3h3 + h3hg + hihg)
+ fohSh2 + hithg + hIR3 + hRY + hihY + RShS + h3hg
4 hihS + h}?’) - Resy(h(z), 2 f(z) + 2® + f2) (5.1.8)

and the last factor (of the constant term) is the discriminant of the curve.

Example 4. Let Cy : y? + w408 py = 25 4 0832273 4 416152 4 16644 oper

les . Then

Pu, (l‘) — 140 + w170601z28 + w124830x22 + w203889x20 + w233016z19

+ w237177x12 + w237177x8 4 w141474x7 + w191406$6

| 83224 | 374493 | 66576,2 | 05703, | 66576
and Jac(Cy)(Faus)[3] = Z/37Z x 7/2437 x 72437 with a basis

{[.’L‘Q + w67438x + w2382067 w121226x 4 w30028]’

127370

x4+ w910627 w90346

(2% +w

[(12 + w226002x + w11845’ w239840

180924
]

x -+ w29962]}.

Example 5. Let Cy : y? + (22 + w2z + w?)y = 2° + x + 1 over Fos. Then

4 2134 2 21,2 27 | 2 2
Pu, () = 240 4 w3t 4 230 4 229 4 12?4 2T 220 %

4 w42x24 4 OJ21.’I}23 4 OJ21$22 + w21x20 + w21x19 + w21x18

o (@ 2B 0P 420 42 ot 4 1),
and Jac(Co)(Fa6)[3] 2 Z/3Z x Z/3Z x Z/3Z with a basis
(2240, w2240, [ 40 2408, w40, [12 40w, W o)),

The roots 0, w57, w* have multiplicity 1,1,2 in py, (x) and the factorization
types of ged(po,ps) are (1)%(4),(1)? and (1)* respectively.
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5.2  TRISECTION

In this section we show how to obtain the trisection polynomial pp(x) of any
weight 2 divisor D. The roots of pp(x) give the set %D of trisections of the
trisectee D. We explain first how to find weight 1 trisections of D.

5.2.1 WEIGHT 1 TRISECTIONS

Here Dy and D3 = 3D; are of the form [uy(z),v1(x)] = [z + wi0,v10] and

[us(z),v3(z)] = [#? + uz1w + u30, v317 + v30] respectively.

Proposition 10. Let C be a non-supersingular genus 2 curve over Fom , then a
divisor D3 € Jac(C)(Fam) has a trisection of weight 1 if only if Resq,(p1,p2) =
0 with

pi(co) = vsiha + f3 + uso + cgus1 + cohn + ¢§ + cgh3,
pa(co) = vartht + vaoha + usi fz + fo +v3; + cguso + coho + uz1vsiho

+ ¢§ + uz1cAh3 + udicohe + ciudy + usicy + chha + cahi 4+ cah3.
Proof. In (5.0.1) with v = ¢p and o = 1 we obtain

uz1 + 6(2) + coho +u19g =0 (5.2.1)

v31he +u3y + f3 4+ uzo + ciuzy + cohy +udy =0 (5.2.2)
v31hy + voha + uz1 f3 + fo + V5 + ul

+cBuzp + coho + uzivzihe +uly = 0. (5.2.3)

From (5.2.1), uio = us1 + ¢ + coha, and replacing in (5.2.2) and (5.2.3) we
obtain p; = py = 0. O

Corollary 9. A divisor D3 admits at most 4 trisections of weight 1.

Proof. The degrees of p1(cy) and pa(cg) above are 4 and 6 respectively. Hence
the degree of ged(p1(co),p2(co)) is at most 4, and by (5.2.1) there are at most
4 possible uig’s. O

Example 6. Let Cg : y? + w08y = 2% 4 0832223 4 416142 4 (16644 poer

Fyis. For

D = [22 + w1084y 4 (50578 160657, | ;196504] & Ju0((Cy)(Faus ),

the polynomials p1(co), p2(co) above satisfy ged(p1(co), p2(co)) = 22 + w332 +

w9077 and the corresponding trisections of weight 1 of D are

252372 42058 247977 197890
[z +w W ] ].

and [z +w W
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5.2.2 WEIGHT 2 TRISECTIONS
From (5.0.1) with 7/(z) = 2% + c12 + ¢p and o/(z) = a1x + ap we have

af +aihe +uz; +uip =0 (5.2.4)

a?uzy + ai(ciha + hy) + agha + uzo + 3 4+ uo +u?; =0 (5.2.5)
a3 (fs + uso + u3y + vs1ha) + a1(ho + crhy + cohs)

+ a2 + ag(hy + c1ha) + udy + ctuz, =0 (5.2.6)
af(us1vsiha + fo +udy +v3) + vs1hy + vsohe + us1 f3)

+ al(Cth =+ Cohl) =+ C%’U,go + agho + Cg + uflulo

+ agcihy + ageghs + a(Q)u;gl + U%O =0 (527)
arcoho + ag(f3 + uso + ujy + vaiha)
+ ao(Clho + Cohl) + uuufo =+ C%U31 =0 (528)
ag(”§1 + fa+ Ug1 + v31h1 + vsoha + us1 f3 + uz1v31he)
+ agcoho + cAusg +udy =0 (5.2.9)
From (5.2.4) and (5.2.5) we have
Uil = CL% + a1h2 + us1, (5210)

ail + a%(h% + U31) + al(hl + Cth) + agho + uzp + C% + u?ﬂ. (5211)

U10

In the general case for curves with deg(h(x)) =1 (so a; # 0), the resolution
of (5.2.4) — (5.2.9) is as follows. Replacing (5.2.10) and (5.2.11) in (5.2.6) —
(5.2.9) we obtain 4 polynomials in Fam[aq, ag, ¢1, co]. With one we isolate

1

= m(a%vglhl +h1alc‘f+h1a1u§0+. . .+U30a%v§1 —l—’u,g()a%fg). (5212)
101%30

Co

Replacing c¢g in the second equation and then progressively reducing modulo the
two other equations gives us an equation of the form s1 (a1, ao)c1 + so(a1,ag) =
0, from which we deduce

_ s0(ao, a1)

. 5.2.13
Sl(a(]aal) ( )

Cc1 =

We then replace c¢; in two of the initial four polynomials and compute their
resultant R(a;), eliminating ag. From R(a;) we have to remove a factor of
degree 18 raised to power 3 and a predictable quadratic factor before obtaining

a degree 81 relation

po(a1) = ai' (ufyuly +uyviy + ..+ f5) +. .+ (ufy hi"vsd + .+ ugihd) = 0.

(5.2.14)

We call pp(x) the trisection polynomial of D. The following algorithm puts
together all the steps above.

The bottleneck in our computation above is to find the resultant R(x),

which is essentially our trisection polynomial pp(z) together with some par-

asite factors. We can avoid to compute R(z) symbolically using multivariate
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Algorithm 8 Trisection (over Fom with deg(h(z)) = 1)
Require: A curve C with deg(h(z)) =1, D3 = [2% + u312 + u30, v312 + v30] €
Jac(C)(Fam).
Ensure: D = [uy(z),v1(z)] such that 3D = Ds.
1: Find a root ay of pp(x) in (5.2.14)

2: Compute G(z) := ged(p1 (a1, x),p2(a1, x))

3: Find a root ag of G

4: Find ¢; with (5.2.13)

5: Find ¢ with (5.2.12)

6: Find w11, w19 with w11 = uzy + a%, U9 = usg + a%ugl + u%l + a‘ll +a; + C%

7. Compute v; = (o/)~1(B’) + h(x) mod u; from the polynomials o/(z) =
arz +ag, 7/ (z) = 2% + 1 + co, and /(x) = ¥ (@)us(z) + ' (z)vs(z)

interpolation as a shortcut to pp(x). The idea is to assign appropriate weights
to the variables in our equations (5.2.4) — (5.2.9) with the purpose that each
equation is weighted homogeneous. We accomplish this with the following

choices:

hi | usy | uso | v30 | vs1 | f3 | fa | fo
3 2 4 5 3 416 |10

Since pp(x) is the final result of a procedure involving addition, products,
resultants and geds of weighted homogeneous polynomials, it must be weighted
homogeneous too. A useful trick to simplify the computation is to put uz; =1
because homogeneity allows reconstruction. Evaluating the remaining variables
at enough points, we recover pp(x).

In the general case for deg(h(z)) = 2 (so a1 # 0), replacing u1; and ug in
(5.2.6) — (5.2.9) we similarly obtain four polynomials in ¢y, ¢, ag, a; and from

them we obtain a polynomial of degree 81 in a;
pplar) = aft(udgul; + ... +05) + ...+ (B3 + .+ udgush3%) =0 (5.2.15)

with about 3 million terms. A similar interpolation trick eases the computation
as above.
Interestingly, if the leading coefficient of pp(z) is zero then there is one

trisection of weight 1. This ties together pp(x) and Proposition 10.

Example 7. Let Cg : 4% + (22 + Wz + w®)y = 2° + wr + w over Fys and
D = [2* 4+ 2+ w,r + w] € Jac(Cg)(Fys).

Then %D =[x + W%, wO] and the trisection polynomial is

pp(z) = w?a®0 4+ W™ 4+ W™ + -+ Wi 4+ Wi 4wl
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5.2.3 EASY TRISECTIONS

From Equations (5.2.10) and (5.2.11), it follows that trisections with the same
up-coordinate as their trisectees are given by a; = 0 in curves with deg(h(z)) =
1, while these are given by a; = 0 or a; = hg in curves with deg(h(x)) = 2.
For supersingular curves such easy trisections were enough to generate a basis
for the 3-Sylow subgroup (see [17]). Below we show that for us this is not

necessarily the case.
Proposition 11. If deg(h(x)) = 1 then D3 = [2% + u312 + u30, V312 + v30] €
Jac(C)(Fam) has a trisection with the same ui-coordinate if and only if
Dsimpte(x) = 2° + W37 + h(h3 + uziuzo)r® + uzruzohiz?
+ h3(hT + usiuzoh? + ud udy)x® + usiusohia® 4 ud udyh’
+udy (U:Is(f + (u3g + f3)ugy + hiugoudy + hiugo fausy
+ (f3 + w3y + hvdyJug, + hiugous: + hiud,
+ uzo(h3vsy + hifa + h3va, + u;z,of;?)u%l)x
has a root over Fom.

Proof. Necessarily a; = 0. If uz; # 0, from (5.2.6) we obtain ¢? = u3; +ag(hy +
ag)/us1. Replacing in (5.2.8) and (5.2.9) we obtain p1(co, ag) = p2(co,ag) = 0.
The resultant Res.,(p1,p2)(ao) = 0 is exactly the condition psimpie(z) to have

a root ag € Fom. O

Example 8. Let Cy : 32 + w2ay = 2° + wa® + wa? + w over Fgs. For
D = [2% 4+ w*%r + w5 w4+ w3 € Jac(Cy)(Fas),

the trisection polynomial pp(x) has no constant term, psimpie(z) has a root

over Fas,

po(@) = w28 4 Wl Ta0 4 2T 4 12578 L4 a8 g o192 4 iy
Dsimple() = (x + w®) - (2t + wad + W2+ s + wt)

-(x4+w36x3 +w28x2+w39x+w%),

and [2% + w3z + w'?, Wz + W] € 1D shares the uy-coordinate with D.

Even if 3-torsion divisors in carefully chosen instances may satisfy the con-
dition in Proposition 11, such examples are rare in deg(h(x)) > 1 (compare
with [17]).

Example 9. Let Cs : y? + w'2zy = 2° + wz® + w®2? + w?* over Foi2. Then
Jac(Cy)(Fa12)[3%°] 2 Z /97 with

D = [2% + w03 4 51 1056, 4 O8] ¢ Jac(Cs)[3](Far2).
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For D — hence for all divisors in Jac(Cs)[3](Fa12), Psimple(T) factors over Forz

as

psimple(x) — (.’L‘B 4 OJ1342.2?2 T w692$ 4 w4026) X (1‘3 4 w2707$2 T w2889x T w4026)

(28 + w0722 4 1390y, 4 (4026
Consequently, no trisection shares the uy-coordinate with D:

%D — {[$2 4 w417:10 4 w3774,w2732x 4 w1182]7

[I2 + w3249x + w3189’ w13741' + w2750]7

[LEQ 4 w33011, + o‘)3574’ OJ3077£L' + w3178]}.

Trisections with u1; = ugzy for deg(h(x)) = 2 and a; = 0 are found similarly.
We deduce
o — u3y + (uzo + aoha + c)ul; + (ag(crhy + ho) + cuzo)usy
ag(hy + ugihs)
(vs1he 4 us0)ag + crhoag
ao(h1 + uz1hz)

and similarly we obtain p;(ag) and p2(ag) (of degrees 6 and 7) as in the proof
of Proposition 11. An easy trisection is given by a root of the common factors

of p1 and p.
Example 10. Let Cg : y? + (2% + w2z + w'?)y = 2° + wa + w over Fys. For
D = [2* + w’z 4+ w®®, w7 + w'?] € Jac(Cg)(Fas),

pp(x) has no constant term, p1(x) and pa(x) share a root over Fas,
pp(z) = w8l 4+ WPz 4 W™ 4 wMe™ ¢ w0 1 a? Wiy
pl(x) _ (ZL’ +OJ3)({E =+ wlﬁ)(m2 +w41x +w60)(x3 +w10x2 —|—w42m +w53)
p2(x) —_ (x +w3)(m5 _|_w31,4 —I—w21x3 +UJ211’2 +w44x +w58)7

and then 5D = [z + wz, w"x + w5?] shares the uq-coordinate with D.

Easy trisections given by a; = hg are found with a similar pair of polyno-

mials.

Example 11. Let C; : y? + (2% + w'?z + w'?)y = 25 + wr + w over Fys and
D = [2% + wiz + 1,0z + w'%) € Jac(Cyr)(Fas),

then 1D = [2% + w2 + w3,z + W] and the trisection polynomial has a root

at x = hy:

pp(r) = (3220 + wP12™ £ we™ 4 ..+ a® 4 w2 4 wBr 4 w?)(z 4+ 1).

Hence, in general one has to expect that none of the 3-torsion divisors will
allow for a trisection with the same wui-coordinate. Therefore distinguished

bases are extremely rare in non-supersingular curves.
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CHAPTER 5. TRISECTION IN CHARACTERISTIC 2

5.3

In the same way as in odd characteristic (see [9]), the factorization type of
our wuj-coordinate polynomial p,, (z) for 3-torsion divisors is determined by
the characteristic polynomial x3(x) € Z[z] of the Frobenius endomorphism 7
acting in the 3-torsion subgroup. Below we provide the precise Galois orbits of

the 3-torsion subgroup.

Proposition 12. Let C be a non-supersingular genus 2 curve over Fom .
Du,y () be the uy-coordinate polynomial (5.1.7), (5.1.8) of the 3-torsion divisors
and let pp(x) be the trisection polynomial (5.2.14), (5.2.15). Then the factor-
ization types of py,(x), pp(x) and the Galois orbits of the 3-torsion subgroup

of Jac(C)(Fam) are shown in Table 5.1.

FACTORIZATION OF TRISECTION POLYNOMIALS

factorization of py, ()

3-torsion Galois orbits

factorization of pp(x)

assuming no trisection of weight 1

(5)®
1)(2?(3)(4)%(12)?
W22 (49)®
M)3)*9)?

L

(1)*(3)*2

1WH#3)?

(9

(2)%(6)°
(2)20

(1)%(2)(3)*(6)°
1)*(2)*(3)(6)*

(1)%(2)*°
1)2(2)(4)(8)*
(9)(12)°

(10)*

(5)16
(10)®
(229
1)2(3)*(4)°(2)*
@44
(EOCh i
(1)?(3)%(9)°
(2)(6)*(18)°
(2)40

(1)80
(1)%(3)**
246"
(1)26(3)18
2)'(6)°
(8)10
(4)2(12)°
(4)20
1)2(2°3)%(6)"
(1)2(2)2(3)%(6)°
(1)*(2)%(6)°
(1)3(2)%°
(1)?(2)°(8)°
(8)(24)?
(20)*

4)6(6)(12)*

Table 5.1: Factorization patterns for trisection

Proof. The factorization types of p,, (z) are as in [9]. We detail how to deduce
the 2nd column from the 1st when deg(h(z)) = 1 and the matrix of 7 in
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Jac(C)(Fam)[3] is one of

0
0
1
0

= o= O O
N =R OO

10
0 0
0 2
0 0

oS O N O
o O o =
o O N O

One can check that A; and Ay have the same factorization (1)(3)(2)?(4)%(12)?
for py, (x), but their Galois orbits in the 3-torsion are different. Indeed, the
first non-zero value in the 3rd row discriminates: since it is 1 in Ay, then 7
leaves one divisor fixed, hence p,, (z) has a root £ € Fam for which p,, (§,v)
has a root, while this is not the case for A;. Hence the Galois orbit structures
are (1)2(3)%(4)%(12)* and (2)(4)%(6)(12)* respectively. From the kernel of mul-
tiplication by 3 the factorization types for p(a;) follow (see similar arguments

in [15] for bisection or chapter 3 for trisection in odd characteristic). O

If a curve has a 3-torsion subgroup of rank 3 or 4 over Fom then the type
of factorization of p,, (z) is (1)'3(3)? or (1)#° respectively. These cases are
only possible when x3(z) = (x — 1)* = 2% + 22% + 22 + 1 (mod 3). Since the
coefficients of 23 and z are the same, then 2 = 1 mod 3, hence m = 0 mod 2.

This is a particular case of [6, Corollary 5.77].

Example 12. Let Cy : y?+w'2xy = 2®+wrd+w?2?+w and Cyg : y? +w'?zy =
25 +wrd +wr? +wllover Fos. The factorization of py, (x) in both Jacobians is
(1)(2)2(3)(4)%(12)? but the rank of the 3-torsion is 1 for Cg and 0 for Cyo (this
ilustrates rows 3 and 4 in the middle column of Table 5.1 with deg(h(x)) =1

curves).

Example 13. Let Cqp : y? + (2% + w2z + w'?)y = 2° + wr +w over Fgs. The
factorization of py, (z) is (1)(2)%(3)(4)%(12)2, and the polynomials py,ps (see
the discussion after Corollary 8) satisfy ged(po,p3) = (x +w3?)(x +wt). Then
Jac(C11)(Fg6)[3%°] = Z/3Z with generator [z? + w3z + w* wile + W3] (and
this ilustrates row 4 of Table 5.1 with a curve with deg(h(z)) = 2).






CHAPTER 6

EXPLICIT /-SYLOW SUBGROUP

We present a generalization of the algorithms in [16] for the case of ¢-sections.
There exists implementations of ¢-section for £ € {2,3,5,7} in odd character-
istic and ¢-section for ¢ € {2,3} in characteristic two. We studied the case of
l-section in general and we present explicit algorithms for the computation of
the 3-Sylow subgroup. The generalization to compute generators of 3-Sylow

allow us obtain s; and sy modulo power of 3 using the generators.

6.1 DETERMINING THE {-SYLOW IN THE JACOBIAN
Let be r the ¢-rank of Jac(C)(F,). we write
Jac(C)(F )| Z Z/ ML X LJEL X - X L] T

If {wy,...,w,} is a basis of the ¢-Sylow subgroup Jac(C)(F,)[¢>°] with, w; of
order ™, then any D € Jac(C)(F,)[¢*°] can be written uniquely in the form

r njfl

D=> > e lwje;ef0,... -1} (6.1.1)

j=1 i=0

00,
D%y o°°o

o

P
///////\\\\\ av

Figure 6.1: The 3-forest of a Jacobian with 3-rank 3 and exponents ny = no =1,

n3:3.

73
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We now present the natural generalizations for definitions of inner, leaf,

level and ¢-relative in [16]
Definition 10. We say a divisor D is inner if %D # (), and a leaf otherwise.

Definition 11. We say that a divisor D € Jac(C)(Fy) is at level k if ord(D) =

0k, The mazimum level in a tree is called the height of the tree.

Definition 12. We say that two divisors D, D" € Jac(C)(F,) in the same level
are t-relatives if ! D = (' D' . Equivalently, D and D’ are t-relatives if and only
if D — D' € Jac(C)(F,)[¢'].

Definition 13. We say that a divisor D € Jac(C)(F,) is t-inner if there exists

a t-relative divisor which is inner.
We now present natural generalizations of jumps and gap from [16]

Proposition 13. (The proportions) Let T be a (-tree of height ns, and let k
an integer such that 1 < k < ng .

o If1 <k <ny then all divisors at level k in T are inner.

o Ifn; <k <nj, 1 <5 <s, then % of the divisors at level k in T are

mner.

Proposition 14. (The gaps) Let T be a {-tree of height ng , and let t be an
integer such that 1 <t < ng.

o Ift#mnq,...,t #ns_1 , then in each class of t-relatives, all divisors are

leaves or otherwise all are (t — 1)-inner.

o Ift =n; and j is the number of times that n; appears in the sequence
ni,...,ns , then in each class of t-relatives, all divisors are leaves or
otherwise for every set of representatives modulo (t — 1)-relativeness a

proportion of z% of them are (t — 1)-inner.

We need a generalization of theorem 3.1 in [16] for any ¢ in particular for

{ = 3 to obtain generators of the 3-Sylow subgroup.

Proposition 15. (Jumps) Let Dy, € Jac(C)(F,) be a divisor of order ¥ such
that ng < ng < ... <ny <k < ngqq. If Wi, Wa, ..., W, are leaves of orders
g ognzo o 4™ generating a subgroup of rank i and a Fy-vector space containing

leaves only, then one of the sets

1
7(Dr + > W)
jeJ

varying J C {1,2,...,i} and ¢; € {1,2,...,£ =1} , is nonempty.
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Proof Asin [16] we find W, , j =i+1,...,r divisors of order £ 2 ... ("
such that

< Wi oo Wit Wy >= JCLC(C)(FQ)MOO]

we can write

r ’I’Ljfl

ADk::E: }: em "Wy, € €{0,1,2,... £ —1}.

j=1m=1

Since Dy, has order /¢ and n; < k < n;y; , then necessarily € =0 for j > i

and €, ; # 0 for same m > 0 and j > 4. Then the set

1 i
z Dk+jz:;(£_€07j)wj

is nonempty. 0

As in [16], the trees in a given ¢-forest have at most r different heights
hy < hs < ...< hg, s <r. Such different heights hq, ..., hs take values in the
sequence nq, ...,n, . For every (-forest, if we put ¢; := #{{-trees of height h;},

then ¢; = ¢; for i = j.

Proposition 16. FEach c¢; is a sum of consecutive powers of { multiply by
(¢ — 1), and each tree structure of a (-forest corresponds to one of the £"~!

descompositions of ZE_—_ll into an ordered sum of the c,s.

Proof. We observe that if %D@ is a trisection of D, then %D@ is a trisection of
kD, with k € {1,...,¢ — 1} therefore it is enough study the tree of D,. As in
[16] the decomposition

-1
‘-1

A A R (6.1.2)
implies ¢; = ¢™ . In the less diverse (-forests, some consecutive n’s coincide,
and the ¢s are the corresponding sums of ¢-powers. O
6.2 THE 3-SYLOW ALGORITHM

If D is a 3-torsion divisor, then so is —D and both have the same u-coordinates,
and in general terms, they both bring the same information, so we only need
to compute one of two. To obtain ?’TT_l (pairs of) 3-torsion divisor, we solve

the polynomial system in wu; instead of ag. We obtain

Proposition 17. D3 = [22 + u1x + ug, v12 + vo] € Jac[3] if only if M(u1) =0
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where M is a polynomial of degree 40 in u;.

1 5 1
uy = 2a0v1 + fu% + fa%ul + faé

4 2 4
5 1 5 1 1
vy = Zaou% + §u1v1 - §u1a8 + §a0f3 - 5@81)1 - iag

B 160adu; — 32a3uy f3 + 48a2 fo + 450agu? — 5uj — 16 f1
v 24aq(5u3 + bag + 2f3 + 20a3u; )
16wy fo — 12u? f3 + 40au? + 11a§ — 20ad f3
24a0(5u? + bag + 2f3 + 20auy)

and ag is a root of ged(py(ag,u1), p2(ag,u1)) where p1,pa have degree 7 and 8

2
in ag.

Remark 8. The polynomial M (uy) is the 3-modular polynomial in [9].

In Figure 6.1 we represent the 3-forest of 3-rank 3 and exponents ny =
ng = 1,n3 = 3. In two center we painted 26 3-torsion divisors (two center of
13 3-torsion divisors give us two identical figures) , and successively the circles
of larger radius show divisors of a higher power order.

The results above are enough to obtain an algorithm to compute generators
of Jac(C)(F,)[3°°]. However, its is also useful to consider the possible tree

structures that can appear in the Jacobian of a genus two curve.

Corollary 10. In ranks r = 2,3, 4 the posible combinations c¢; (without multi-

plying by 2) in the tree structures of the 3-forests are

Rank 2 Rank 3
c1=9 =3 c3=1
=3 =1 c1=9 =14
c1 =4 c1=12 ¢ =1
cp =13
Rank 4

1 =27 =9 c¢c3=3 c4=1
c1 =27 =9 c3=4

1 =27 =12 c3=1

c1 =27 =13

cp =36 co= c3=1
=36 c3=4

c1=39 =1

c1 =40

We need the generalization of JumpOnce, JumpTwice and JumpThrice in

[16], for example, JumpOnce for £ = 3 is the following;:
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Algorithm 9 JumpOnce

Require: A polynomial f € F,[z] defining C : y* = f(z), a leaf W; €
Jac(C)(Fy) of order 3™ , a divisor S € Jac(C)(F,) and an integer m such
that ord(S) = 3™ with m > n;.

Ensure: A divisor W5 such that S € Wy, Wy and Wy, W5 generate a vector

space of leaves over F3 , and the integer no = m +n where n is the number
of halvings performed.

1:aur <0, no+m, T+ S

2: while auz =0 do

30 T+« T+Wy, Wy« Trisection(T, f(z))

4:  if Wy # T then

5: auzr <1

6: else

7 T+ T+2W,, Wy« Trisection(T, f(x))
8: if Wy # T then

9: auzr <1

10: else

11: aux 2

12: end if

13:  end if

14:  while aux =1 do

15: T+ Wy, Wy« Trisection(T, f(x)), mng<+ng+1
16: if Wy =T then

17: aux <0

18: end if

19: end while
20: end while

For our algorithm, we use function ThreeM odular for obtain % 3-torsion
divisors such that D; and —D; not appear simultaneously.
In the case of 3-Rank 2 the algorithm for 3-Sylow is given in details in

Algorithm 10.

6.3 EXAMPLES
We coded our algorithm in MAGMA. We list below some examples for 3-rank
2, 3, and 4.

Example 14. Consider p = 2159 — 47 and the curve define by the ecuation

W =a

over the large prime field F,. We obtain that the 3-Sylow is isomorphic to
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Algorithm 10 Generators (3-Rank 2)
Require: A polynomial f(z) € F,[z] with 3-Rank 2 defining C : y? = f(z).
Ensure: The exponents ni,n, and generators By, By of Jac(C)(F,)[2°].

1. (Wy, Wa, W3, Wy) < ThreeModular(f(z))
fori=1,2,3,4do

n; < 1, W/« Trisection(W;, f(z))

while W/ =W, do

W; <~ W/, W/ Trisection(W;, f(x)), mn; < n;+1

end while

end for
H + {(774, Wl), (TLQ,WQ), (n3,W3), (’/l4,W4)}, H[l] < {7?,1,7?,2,7?,3771,4}
hi < min(H[1]), my < max(H[1]), Hp, < {h € H|h[l] = hi}

10: Hy,, < {h € H|h[1]=m1}

11: if #Hp, =4 then

12 (n1,m2) < (ha,ha),  (By, B2) < (Ha, [1][2], Hp, [2][2])
13: end if

14: if #Hj, = 3 then

15: S« Hpy, [1[2], Wi <+ Hp,[1][2]

16:  (Wa, ha) + JumpOnce(f(x), W1,S,mq)

17: (n1,n2) < (h1,ha), (B1,Ba) + (Wi, W3)

18: end if

Zoy3 X Zoys with generators

wi = (22 + 395143057637490937834308519162306924 788895054842

+ 448724732024697498281588115834178522172716535578,
463683467531613932238104047750259520708045168754x

+ 904715675456728052378213536102905799332285438414)

we = (22 + 185828566409259346641725570621791234363548206218x

+ 1146156771035184256732545623392790713370851515180,
127956122205862459756386870454301879641663466001x

+ 1167566458678377606301428327920815110005508504643)

Example 15. Consider p = 127 and the curve defined by Equation

=% 42+ 327 4224+ 1

over F,.  We obtain that the 3-Sylow is isomorphic to Zs X Zz X L7 with
generators

wy =(x? + Tz + 75, 43z + 90);
we =(x? 4 16z + 84, 115z + 123);
ws =(x? + 5z + 107,104z + 36).

Example 16. Consider p = 127 and the curve define by the equation

y? =2% 4+ 102 +
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over Fps. We obtain that the 3-Sylow is isomorphic to Zz X Zoy X Zg1 with
generators

wy = (22 + (61w? + 14w + 105)z + 75w + 25w + 35, (T6w? + 126w + 102)2 + 88w? + 90w + 116);
wy = (22 + (100w? + 65w + 95)z + 13w? + 108w + 17, (115w? + 77w + 90)z 4 20w? + 93w + 124),
ws = (22 + (112w? + 122w + 84)x + 126w + 27w + 54, (6w? + 27w + 23)z + 109w? + 99w + 118).

Finally we shown some interesting cases and we compute s; and sy using

like Schoof algorithms in these cases.

Example 17. Consider p = 127 and the curve define by the equation

v =a+ 23+ 22422

over Fys. We obtain that the 3-Sylow is isomorphic to Zs X Zog X Loy X Loz
with generators

w1 = (22 4 (420° + 24w? + w® + 108w? + 48w + 56)z + 69w® + 106w? + 104w® + 59w? + 60w + 108,
(88w® + 76w + 36w> + 84w? + 16w + 98)z + 42w” + 19w? + 74w + 105w? + 35w + 53);

wy = (22 + (51w® + 16w? + 100> + 25w? + 85w + 28)z + 54w’ + 65w* + 101w + 111w? + 48w + 33,
(47w° + 3w? + 37w 4+ 90w? + 63w + 29)z + 51w® + 113w? + 50w® + 115w? + 32w + 17)

ws = (22 + (121w° + 26w? + 77w + 27w? + 84w + 8)z + 2w° + 73w? + 101w + 25w? + 55w + 1,
(98w® + 47w + 49w® + 79w? + 61w + 28)z + 53w’ + TTw? + 8w® + 124w? + 74w + 48)

wy = (22 4+ (57w’ 4+ 99w + 16w® + 104w? + 98w + 125)z + 123w® + 62w + 46w® + 80w? + 58w + 114,
(83w” + 115w* + 2w° + w? + 122w + 96)z + 12w° + 27w? + 73w> + 80w? + 16w + 57).

We can use either wy or ws to obtain

s1 mod 27 | sg mod 27
9 1

Example 18. Consider p = 127 and the curve define by the equation

y? =25+ 102° + =

over F6. We obtain that the 3-Sylow is isomorphic to Zg X Zo7 X Loy X Lgy
with generators

wy = (22 + (40w® + 112w? + 340w + 70w? + 53w + 6)z + 10w® + 123w? + 108w + 5w? + 99w + 12,
(34w® + 54w? + 7w® + 4502 + 75w + 80)z + 100w + 94w? + 86w> + 62w? + 122w + 38);

wy = (22 + (60w’ + 8w + 97w® + 64w? + 48w + T)z + w® + 112w? + 73w> + 31w? + 108w + 7,
(99w° + 4w + 5403 + 69w? + 23w + 5)x + T1w® + 106w? + 88w? + 80w? + 104w + 70);

wz = (22 + (6w’ + 72w 4+ 9w® + 17w? + 50w + 112)z + 95w® + 20w? + 66w> + 27w? + 95w + 83,
(43w® + 102w? + 75w + 48w? + 114w + 78)x + 40w® + 63w? + 45w> + 9w? + 86w + 21);

wy = (22 + (1190° + 97w? + 68w® + 111w? + 18w + 110)z + 60w’ + 67w? + 81w® + 119w? + 31w + 1,
(37w® + 82w + 32w® + 9w? + 4w + 118)z + w® + T6w? + 113w> + 118w? + 13w + 83).

We can use wsy to obtain

s1 mod 27 | s2 mod 27
24 22
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Example 19. Consider p = 127 and the curve define by the equation

y? = 25 4+ 323 + 622 + 3z

over Fpe. We obtain that the 3-Sylow is isomorphic to Zs X Zg X Loy X Zioa3
with generators

wy = (22 4 (101w® + Tw? + 7w® + 9w? + 68w + 114)z + 40w® + 75w + 70w> + 69w? + 61w + 36,
(111w® + 75w? + 73w + 41w? + 73w + 6)z + 103w® + 93w? + 94w® + 76w? + 44w + 48)

wy = (22 4+ (T7w® + 113w* + 920w + 31w? + 104w + 10)z + 85w® + 17w? + 44w® + 99w? + 16w + 36,
(61w” + 67w + 116w> + 37w? + 46w + 99)x + 2w° + 28w + 64w® + 77w? + 111w + 74)

wy = (22 + (118w® + 13w? + 124w> + 85w? + 19w + 25)x + 21w® + 49w? + 17w® + 106w? + 108w + 93,
(100w® + 63w? + 47w + 116w? + 23w + 14)z + 94w® + 58w? + 105w + 76w? + 72w + 17)

wy = (22 4+ (119w° + 120w + 109w + 9w? + 114w + 70)x + 43w® + 79w?* + 23w> + 88w? + 58w + 43,
(59w° + 75w* + 99w® 4 95w? + 101w + 60)x + 6w® + 60w + 108w + 123w? + 94w + 84)

we can use ws to obtain

s1 mod 27 | sg mod 27
6 4




CHAPTER 7

CONCLUSION

The first four objectives of thesis were studied in Chapters 3 and 5 and the
fifth objective was studied in 4 and 6 and the results were as follows:

In chapter 3, we obtained algorithms which allow to trisect any divisor in
the Jacobian of a genus two hyperelliptic curve in odd characteristic. The
techniques used by Gaudry-Schost in [8] solve system based in the 2D; =
D3 — D; with the degrees of both sides balanced. We give in example 2 a
case with a divisors D3 of weight 1 where 2D; = D3 — D; is not balanced.
Our technique of de-reduction allows works with equations not balanced and
avoid denominators appearing in the addition formulas. We also show how to
determine the field of definition of all the ¢-section with ¢ € {3,5,7} when the
rank of Jac(C)(Fy)[¢] is strictly less than 4 and greater or equal to 1.

In chapter 4, we showed how to compute symbolic trisection polynomial for
Jacobians of genus 2 curves over finite field IF, of odd characteristic. Since the
size of the polynomials involved prohibits direct computation, this computation
is done via interpolation techniques, taking advantage of several properties
of the trisection polynomials (weighted homogeneity, knowledge of the form
of leading and constant terms in one of the variables). As was indicated by
our experiments, these polynomials can be used to improve the efficiency of
trisection algorithms, which may then be used to obtain faster point counting
algorithms.

In chapter 5 we complete the study of trisection in characteristic two. The
supersingular cases were addressed in [17]. The bottleneck in the case of trisec-
tion for non-supersingular genus 2 curves in characteristic 2 is the largest size
of the polynomials involved compared with the supersingular case. We used
techniques studied in chapter 4 to obtain symbolic trisection polynomial for
Jacobians of genus 2 curves over binary field.

Finally in chapter 6 we show how to generalize the algorithms to explicit
2-power torsion of genus 2 curves over finite fields [16] for the case of ¢-power

torsion. These can be used because there exists implementations of ¢-section
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for ¢ € {2,3,5,7} in odd characteristic and ¢-section for ¢ € {2,3} in charac-
teristic two. We present explicit algorithms for the computation of the 3-Sylow
subgroup. These algorithms may be used to improve the choice of ¢-torsion

divisors of index ¢* used in Schoof-like algorithms.
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