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A  
AACE 

 
American Association of Clinical Endocrinologists 

  
AC 

 
Adenylate cyclase 

  
ACC1 

 
Acetyl-CoA carboxylase 1 

  
ACLY 

 
ATP citrate lyase 

  
ACS 

 
Acyl-CoA synthetase 

  
ADA 

 
American Diabetes Association 

  
ADD1 

 
Adipocyte determination and differentiation-dependent 
factor 1 

  
AGB 

 
Adjustable gastric band 

  
AGPAT 

 
1-Acylglycerol-3-phosphate O -acyltransferase 

  
AHA 

 
American Heart Association 

  
5’-AMP 

 
5’-adenosine monophosphate 

  
AMPK 

 
AMP-activated protein kinase 

  
ANP 

 
Atrial natriuretic peptide 

  
α2-AR 

 
Alpha 2-adrenergic receptor 

  
AT 

 
Adipose tissue 

  
Atg7 

 
Autophagy-related 7gene 

  
ATGL 

 
Adipose triglyceride lipase 

   
ATP 

 
Adenosine triphosphate 

   

B  
BAT 

 
Brown adipose tissue 

  
β–AR 

 
Beta-adrenergic receptor 

  
BMI 

 
Body mass index  

  
BNP 

 
Brain natriuretic peptide 

  
BP 

 
Blood pressure 
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BPD-DS 

 
Biliopancreatic diversion with duodenal switch 

   

C   
cAMP 

 
Cyclic adenosine monophosphate 

  
CD36 

 
Fatty acid translocase 

   
C/EBP 

 
CCAAT/enhancer-binding protein 

  
cGMP 

 
Cyclic guanosine monophosphate 

  
ChREBP  

 
Carbohydrate-responsive element-binding protein 

  
CM 

 
Chylomicrons 

  
CoA 

 
Coenzyme A 

  
CPT1 

 
Carnitine palmitoyltransferase I 

  
CPT2 

 
Carnitine palmitoyltransferase I 

  
CREB 

 
cAMP responsive element binding protein 

  
CRP 

 
C-reactive protein 

  
Csf1 

 
Colony stimulating factor-1 

   

D  
DAG 

 
Diacylglycerol 

  
DBP 

 
Diastolic blood pressure 

  
DGAT 

 
Diacylglycerol acyltransferase 

  
DHAP 

 
Dihydroxyacetone phosphate 

  
DM2 

 
Diabetes mellitus type 2 

   

E  
EGIR 

 
European Group for the Study of Insulin Resistance 

  
ER 

 
Endoplasmic reticulum 

   

F  
FA 

 
Fatty acid 

  
FABP4 

 
Fatty acid binding protein 4 
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FABPpm 

 
Fatty acid binding protein plasma membrane  

  
F1,6BP 

 
Fructose 1,6 bisphosphate 

  
FAS 

 
Fatty acid synthase 

  
FATP 

 
Fatty acid transport protein 

  
FDA 

 
Food and Drug Administration 

  
FFA 

 
Free fatty acid 

   

G   
GABA 

 
γ-aminobutyric acid 

  
GADH 

 
Glyceraldehyde 3-phosphate 

  
GC  

 
Guanylate cyclase 

  
GAPDH 

 
Glyceraldehyde-3-phosphate 

  
GLUT4 

 
Glucose transporter 4 

  
G3P 

 
Glycerol-3-phosphate 

  
G6P 

 
Glucose-6-phosphate 

  
GPAT 

 
Glycerol-3-phosphate acyltransferase 

  
GPDH 

 
Glycerol-3-phosphate dehydrogenase 

   

H  
HbA1c 

 
Glycated haemoglobin 

  
HDL-C 

 
High-density lipoprotein cholesterol 

  
HOMA2-IR 

 
Homeostatic Model Assessment Method Insulin 
Resistance 

  
HSL 

 
Hormone sensitive lipase 

   

I  
IDF 

 
International Diabetes Federation 

  
IFG 

 
Impaired fasting glucose 

  
IGT 

 
Impaired glucose tolerance 
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IL1 

 
Interleukin 1 

  
IL6 

 
Interleukin 6 

  
IR 

 
Insulin resistance 

   

L  
LDL-C 

 
Low-density lipoprotein cholesterol 

  
LPA 

 
Lysophosphatidic acid 

   
LPL 

 
Lipoprotein lipase 

  
LxRα 

 
Liver X receptor alpha 

   

M  
MAG  

 
Monoacylglycerol 

  
mALB 

 
Microalbuminuria 

  
MCP1  

 
Monocyte Chemoattractant Protein 1 

  
MetS 

 
Metabolic syndrome 

  
MGL 

 
Monoacylglycerol lipase 

  
MO 

 
Morbidly obese 

   

N  
NAFLD 

 
Non-alcoholic fatty liver disease 

  
NASH 

 
Non-alcoholic steatohepatitis 

   
NCEP ATP 
III 

 
National Cholesterol Education Program Adult 
Treatment Panel III 

  
NEFA 

 
Non-esterified fatty acids 

  
NHLBI 

 
National Heart, Lung, and Blood Institute 

   

P  
PA 

 
Phosphatidic acid 

  
PAP 

 
Phosphatidic acid phosphatase 

  
PDE3B 

 
Phosphodiesterase 3B 
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PI3K 

 
Phosphatidylinositol 3-kinase 

  
PKA 

 
cAMP-dependent protein kinase 

  
PKG 

 
cGMP-dependent proteinkinase 

  
PLIN 

 
Perilipin 

  
PPARα 

 
Peroxisome proliferator-activated receptor alpha 

  
PPARδ 

 
Peroxisome proliferator-activated receptor delta 

  
PPARγ 

 
Peroxisome proliferator-activated receptor gamma 

  
PREF-1 

 
Preadipocyte factor 1 

   

R  
RBP4 

 
Retinol binding protein 4  

  
ROS 

 
Reactive oxygen species  

  
RXRs 

 
Retinoid X receptors 

  
RYGB 

 
Roux-en-Y gastric bypass 

   

S  
SAT 

 
Subcutaneous adipose tissue 

  
SBP 

 
Systolic blood pressure 

  
SG 

 
Sleeve gastrectomy 

  
SOX9 

 
SRY(sex determining region Y)-box 9 

  
SREBP1c 

 
Sterol regulatory element binding protein 1c 

  
SVF 

 
Stromal vascular fractions 

   

T  
TCA cycle 

 
Tricarboxylic acid cycle 

  
TG 

 
Triglyceride  

   
TGFβ 

 
Transforming growth factor beta 

  
TNFα 

 
Tumor necrosis factor alpha 

  
TNFR I 

 
Tumor necrosis factor receptor I 
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TNFRII 

 
Tumor necrosis factor receptor II 

   

V  
VAT 

 
Visceral adipose tissue 

  
VLDL 

 
Very low-density lipoprotein 

   

W  
WAT 

 
White adipose tissue 

  
WC 

 
Waist circumference 

  
WHO 

 
World Health Organization 

  
WHR 

 
Waist-hip ratio 
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1. OBESITY: THE EPIDEMIC OF THE 21 st CENTURY 

 

Obesity  is a worldwide epidemic and is considered one of the greatest 

public health challenges of the 21st century. Its prevalence has tripled in 

both developed and developing countries since the 1980s, and the number 

of those affected continues to rise at an alarming rate 1. 

Obesity is typically defined as the state of having excess of body weight 

relative to height that results from an imbalance between caloric intake and 

energy expenditure. However, this simple definition misrepresents an 

etiologically complex phenotype primarily associated with excess adiposity 

that can manifest metabolically and not just as a function of body size 2,3. 

Obesity increases the risk of chronic disease morbidity, including type 2 

diabetes, cardiovascular disease, non-alcoholic fatty liver disease, 

hypertension, dyslipidemia, and certain cancers, and consequently, it is 

associated with an increase in mortality 4,5.  

 

1.1. Epidemiology 

 

The prevalence of obesity is increasing at an alarming rate in many parts 

of the world. According to the World Health Organization (WHO), in 2014, 

more than 1.9 billion adults were overweight. Of these, over 600 million 

were obese. Globally, approximately 39% of the total population was 

overweight, and 13% were obese 1. Gallus et al., using data from a pan-

European survey, showed that 34.8% of the European adult population was 

overweight (40.5% of men and 29.3% of women), and 12.8% (14.0% of 

men and 11.5% of women) were obese 6. Figure 1  shows the percent 

prevalence of overweight and obesity in 16 European countries. 

Specifically, in Spain, 39.2% of the adult population was overweight and 

14.0% was obese. Furthermore, Rodríguez-Rodríguez et al. found that the 

prevalence of overweight was higher in men than in women in Spain. In 

contrast, the prevalence of obesity was similar between both sexes. 

Moreover, 47.8% of the population had excess body weight and 70.2% had 
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excess body fat. These parameters were higher in men than in women and 

increased with age 7. In addition, a number of behavioral and environmental 

factors have contributed to the long-term rise in overweight and obesity 

rates in industrialized countries. The economic crisis is also likely to have 

contributed to a further growth in obesity because many families have been 

forced to cut their food expenditures and switch to lower-priced and less 

healthy foods 8,9. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Percent of overweight (25 ≤ BMI <30 kg/m 2) and obesity (BMI ≥ 30 
kg/m 2) among adults from 16 European countries.  Countries are colored 
according to their prevalence of overweight/obesity (light, relatively low 
prevalence; dark, relatively high prevalence). Prevalence estimates for the 
overall population were computed by weighting each country in proportion to 
that country’s adult population 6.  
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Although overweight and obesity are considered a problem of high-

income countries, their prevalence is increasing in low- and middle-income 

countries as well, particularly in urban settings. In these developing 

countries with emerging economies, the rate of increase of this health 

problem is more than 30% higher than in developed countries 1.  

 

1.2. Clinical diagnosis and measurement of fat 

distribution  

 

The most commonly used method for classifying an individual as 

overweight or obese is based on the body mass index  (BMI), a value that 

is determined by dividing body weight (in kilograms) by the square of height 

(in meters).  

The classification of overweight and obesity, according to BMI, is shown 

in Table 1 . This classification is based primarily on the association between 

BMI and increased health risks. In adults, overweight is classified as a BMI 

≥ 25.0 kg/m2, and obesity is defined as a BMI ≥ 30.0 kg/m2 10. 

 

Table 1. Classification of overweight and obesity in  adults based on 
increasing health risk. Adapted from the World Health Organization 
(WHO) report, Nº894 10.  
 

 

Classification 
 

BMI (kg/m 2) 
 

Associated Health Risks 

 

Underweight 

 

<18.5 

 

Low (but the risk of other 

clinical problems increases) 

Normal  18.5-24.9 Average 

Overweight: ≥25  

Preobese 25.0-29.9 Increased 

Obese class I 30.0-34.9 Moderately increased 

Obese class II 35.0-39.9 Severely increased 

Obese class III ≥40 Very severely increased 
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The major limitation of using BMI is that it does not differentiate between 

the weight of fat and the weight of muscle and, therefore, may lead to the 

misclassification of very muscular individuals as overweight 11. Therefore, 

other methods, in addition to the measurement of BMI, would be valuable in 

identifying individuals that are at an increased risk for obesity-related illness.  

Waist circumference  (WC) is another clinical measurement that may be 

used to assess weight-related health risks. The WHO has described sex-

specific WC values that are related to an increased or substantially 

increased risk of metabolic complications related to obesity (Table 2 ). WC 

correlates closely with BMI (r= 0.84-0.88) 12 and provides an estimate of 

intra-abdominal fat which is more strongly associated with health risks than 

fat stored in other regions of the body 13,14.  

 

Table 2. Sex-specific waist circumference and risk o f metabolic 
complications associated with obesity in Caucasians. Adapted from 
World Health Organization (WHO) report, Nº894 10.  
 

 

Sex 
 

WC (cm) 
 

Risk of metabolic complications 

 

Men 

 

≥94 

 

Increased 

 ≥102 Substantially increased 
   

Women ≥80 Increased 

 ≥88 Substantially increased 

 

Although BMI and WC are the recommended and most clinically feasible 

means of identifying patients who are overweight or obese in clinical 

practice, numerous body composition assessment techniques are available. 

These include bioelectrical impedance, dual-energy X-ray absorptiometry, 

body density, and total body water estimates 15,16. Collectively, these 

techniques allow for the measurement of fat, fat-free mass, bone mineral 

content, total body water, extracellular water, total adipose tissue, adipose 

subdepots, skeletal muscle, select organs, and ectopic fat depots. 
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1.3. Etiology 

 

Obesity is the result of genetic, behavioral, environmental, physiological, 

social, and cultural factors that result in an imbalance in energy 

homeostasis and promote excessive fat deposition 17,18. The relative 

contribution of each of these factors has been studied extensively, and 

although genes play an important role in the regulation of body weight, the 

World Health Organization Consultation on Obesity concluded that 

behavioral and environmental factors, such as sedentary lifestyles 

combined with excess energy intake, are primarily responsible for the 

dramatic increase in obesity during the last 2 decades 10. All of these factors 

create an obesogenic environment . The obesogenicity of an environment 

has been defined as the sum of the influences, opportunities, and conditions 

of life that facilitate overweight and obesity through several intersecting 

mechanisms 19.  

In past decades, environmental changes linked with globalization and 

modernization have promoted overeating and have reduced physical activity 

because there is a growing availability of abundant, inexpensive, calorie-

dense, highly palatable foods and sugar-sweetened beverages as well as a 

decrease in energy expended in leisure-time physical activities. In addition, 

the frequent disruption of sleep and circadian rhythms and a variety of other 

cultural and economic factors also predispose individuals to weight gain. 

Finally, hereditary factors, such as genetics, family history and racial/ethnic 

differences, also lead to the development of obesity 3,19–21. A summary of 

the major risk factors and determinants of obesity are shown in Figure 2 .  

In summary, obesity is influenced by a complex interaction between 

genetic, metabolic, behavioral and environmental factors and also seems to 

be related to numerous social and economic changes inherent to modern 

society. Ultimately, personal behavior in response to these conditions 

continues to play a dominant role in preventing obesity. It is important to 

note that, apart from genetics, every risk factor discussed above is 

modifiable.  
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Figure 2. Major risk factors of obesity.  Adapted from 3. 

 

1.4. Physiopathology 

 

Energy homeostasis  is the balance between energy intake and energy 

expenditure. When intake exceeds expenditure, energy is stored almost 

exclusively within white adipose tissue (WAT) in the form of triglycerides 

(TGs), whereas when expenditure exceeds intake, these energy stores are 

drawn upon to provide energy to support the ongoing metabolic needs of 

the organism.  

The complex process of energy homeostasis is tightly regulated by the 

cross talk of central and peripheral signaling systems and depends on 

constant signal integration 22–25. Key peripheral tissues and organs 

implicated in this process are the adipose tissue and the gastrointestinal 

tract along with its associated digestive organs, such as the liver and the 

pancreas.  

Dietary fat is absorbed through the gastrointestinal tract in the form of 

circulating chylomicrons (CM) and very low-density lipoprotein (VLDL), part 

of which is metabolized to provide energy and the rest of which is stored in 

the adipose tissue and liver 26. As a consequence of energy storage, 

adipose tissue releases several adipokines, such as leptin, which regulate 

energy homeostasis by signaling to the brain and peripheral tissues. 

Socioeconomic factors Behavioral factors Hereditary factorsEnvironmental factors

- Globalization
- Modernization
- Urbanization
- Lack of Education
- Poverty

- Unhealthy diet: calorie-
dense, nutrient-poor food 
choices

- Excess energy intake
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- Sedentariness
- Too little or excess sleep
- Pre- and perinatal 

exposures
- Psychological conditions 

(e.g., depression, stress)
- Specific drugs (e.g., 

steroids)

- Lack of access to physical 
activity resources/low-
walkability neighborhoods 

- Food deserts (geographic 
areas with little to no ready 
access to healthy food, such 
as fresh produce/groceries)

- Viruses
- Microbiota
- ‘Obesogens’ (e.g., 

endocrine-disrupting 
chemicals)

- Genetics
- Family history
- Race/ethnicity

OBESITY
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Adipose fat accumulation is achieved by the de novo synthesis of fatty acids 

as well as by fatty uptake, while adipose fat mobilization is accomplished 

during lipolysis to provide energy to oxidative tissues, such as skeletal 

muscles and the heart. Moreover, the liver, apart from its role in short-term 

energy storage, is also an important site for energy conversion. It changes 

energy sources from one form to another, such as glycogen to glucose, fatty 

acids to TGs and saturated fatty acids to unsaturated fatty acids (Figure 3 ). 

In addition, insulin is secreted by the pancreas in response to meals and 

circulating nutrients to act as a peripheral signal to the brain to control 

energy intake and metabolism. Like insulin and leptin levels, the 

endocannabinoid system has also been suggested to regulate food intake 

and energy expenditure 27,28. 

Obesity develops as a result of a period of chronic energy imbalance  

that is characterized by a maintained increase in energy intake. Fat mass 

accumulation during the development of obesity is characterized by 

adipocyte hyperplasia and hypertrophy and is associated with increased 

angiogenesis, macrophage infiltration, extracellular matrix component 

production and, endothelial cell activation and by the production and release 

of several inflammatory mediators 29. The dysregulation of the functions of 

pro- and anti-inflammatory cytokines/adipokines and their production in 

obese individuals leads to a state of chronic low-grade inflammation 30,31. 

Furthermore, obesity also promotes WAT macrophage accumulation 32, 

which can also contribute to inflammation. This inflammation induces 

lipolysis and the release of free fatty acids (FFAs) in adipose tissue. 

Consequently, there is ectopic fat accumulation and a proinflammatory 

environment that develops insulin resistance 33. Obesity also induces 

hepatic proinflammatory cytokine production, which can result in insulin 

resistance and steatosis in the liver 34,35. Moreover, in obese patients, the 

accumulation of lipids and proinflammatory macrophages in skeletal muscle 

inhibits insulin signaling 36. In addition, obesity is associated with 

macrophage infiltration, IL-1β secretion and decreased insulin secretion by 

the pancreas 37. In the digestive system, obesity decreases the numbers of 

eosinophils and innate lymphoid cells in the gut and increases intestinal 
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permeability and metabolic endotoxemia 38,39. Finally, most of the genes 

associated with obesity are expressed in the brain and affect food intake 40–

42. However, a better understanding of the complex neural systems that 

regulate energy homeostasis during the development of obesity is needed 

(Figure 4 ). 

  

 

Figure 3. Adipose tissue is at the crossroad of energy homeostasis.  
Adapted from 43. CNS, central nervous system 
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Figure 4. Adipose tissue is at the crossroad of energy imbalance.  CNS, 
central nervous system; FFAs, free fatty acids. 
 

 

1.5. Obesity comorbidities 

 

Obesity significantly increases the risk and worsens the prognosis of 

many diseases and complications, including diabetes mellitus type 2 (DM2), 

dyslipidemia, hypertension, metabolic syndrome, non-alcoholic fatty live 

disease (NAFLD), cardiovascular disease and several types of cancer 

(Table 3 ) 5,44,45.  

An analysis from the Framingham Heart Study showed that both 

overweight and obesity increased the development of cardiovascular risk  

factors, such as hypertension, hypercholesterolemia, and diabetes 46. It is 

well known that this increased risk is characterized by metabolic changes 
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that alter lipid profiles and increase the potential for atherosclerosis due to 

inflammation.  

Obesity clearly increases the risk of developing DM2. Large population 

studies have confirmed the links between excess weight and the 

development of insulin resistance (IR) and diabetes, which suggests that 

patients with excessive weight are at substantial risk for developing 

diabetes 5,44.  

Obesity also predisposes individuals to gastrointestinal and hepatic 

complications. Non-alcoholic fatty liver disease (NAFLD ), or hepatic 

steatosis, is becoming an increasingly important health issue because it is 

the most common cause of chronic liver disease in the Western world, and 

its incidence is increasing rapidly 47. The increasing rates of NAFLD are 

linked to the obesity epidemic because the most important risk factors for 

hepatic steatosis are obesity, insulin resistance, and hyperlipidemia 48. 

However, obesity itself does not necessarily lead to these comorbidities 
49–51. A group of obese individuals has been identified that appears to be 

protected against obesity-related metabolic disturbances 52–54. These 

individuals are considered to be “metabolically healthy obese ”. Despite 

having excessive body fat, they display a favorable metabolic profile 

characterized by high insulin sensitivity and favorable lipid and inflammation 

profiles 55,52. Because of this, obesity could be considered a heterogeneous 

disorder with a variable risk profile.  

However, because of the substantial risks associated with excess body 

fat, the obesity epidemic represents a critical public health issue that has 

the potential to incur major healthcare costs. 

 It is well known that obesity is associated with an increased risk of 

death. Recent estimates have shown that approximately 2.8 million deaths 

per year in the European Union result from overweight- and obesity-related 

causes 56. 
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Table 3. Obesity-related comorbidities and complications. Adapted 
from Tsigos et al. 57.  
 

 

Obesity-related health risks and complications 

 

Metabolic 

complications 

 

Diabetes, insulin resistance, dyslipidemia, metabolic 

syndrome, hyperuricemia, gout, low-grade inflammation 

Cardiovascular 

disorders 

Hypertension, coronary heart disease, congestive heart 

failure, stroke, venous thromboembolism 

Respiratory disease  Asthma, hypoxemia, sleep apnea syndrome, obesity 

hypoventilation syndrome 

Cancers  Esophagus, small intestine, colon, rectum, liver, 

gallbladder, pancreas, kidney, leukemia, multiple 

myeloma, and lymphoma 

In women: endometrial, cervix uteri, ovary, breast 

In men: prostate 

 Osteoarthritis  (knee) and an increase in pain in the weight bearing joints 

Gastro intestinal  Gallbladder disease, NAFLD, non-alcoholic 

steatohepatitis (NASH), gastro-esophageal reflux, 

hernia 

Urinary incontinence   

Reproductive health  Menstrual irregularity, infertility, hirsutism, polycystic 

ovaries, miscarriage, gestational diabetes, 

preeclampsia, macrosomia, fetal distress, malformation, 

dystocia, primary caesarean section 

Miscellaneous  Idiopathic intracranial hypertension, proteinuria, skin 

infection, nephrotic syndrome, lymphedema, 

complications from anesthesia, periodontal disease 

Psychological and 

social consequences 

Low self-esteem, anxiety, depression, stigmatization, 

discrimination in hiring, college acceptance and wages 

 

1.6. Metabolic syndrome 

 

Metabolic syndrome (MetS, also called syndrome X or insulin 

resistance syndrome) is a constellation of metabolic abnormalities that 
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appear to directly promote the development of cardiovascular disease and 

DM2 58,59.  

The National Cholesterol Education Program Adult Treatment Panel III 

(NCEP ATP III) recognized elevated waist circumference, or abdominal 

obesity, as an independent component of MetS. Elevated triglyceride 

concentrations, low high-density lipoprotein cholesterol (HDL-C) levels, 

elevated blood pressure, and high fasting glucose concentrations are also 

recognized as components of MetS (Table 4 ) 58. Subjects with ≥3 factors 

are classified as having MetS 58. The American Heart Association (AHA) 

and the National Heart, Lung, and Blood Institute (NHLBI) agree with this 

definition but lowered the threshold for elevated fasting glucose 

concentrations from 110 mg/dL to 100 mg/dL because of the importance of 

this factor in assessing diabetic risk 59.  

 

Table 4. Clinical components of metabolic syndrome. Adapted from the 
third report of the National Cholesterol Education Program Adult Treatment 
Panel III (NCEP ATP III) 58. 
 

 

Risk Factor 
 

Defining level 

 

Abdominal obesity (WC) 
Men 
Women 

 
> 102 cm 
> 88 cm 

Triglycerides  ≥ 150 mg/dL 
HDL-C 

Men 
Women 

 
< 40 mg/dL 
< 50 mg/dL 

Blood pressure  ≥ 130/ ≥ 85 mm Hg 
Fasting glucose  
 

≥ 110 mg/dL 

 

HLD-C, high-density lipoprotein cholesterol; WC, waist 
circumference 
 

Additional diagnostic criteria of MetS have also been proposed by other 

institutions, such as the WHO or the International Diabetes Federation (IDF) 

(Table 5 ).  
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Table 5. Different criteria proposed for a clinical diagnosis of MetS in humans. Subjects with altered metabolic parameters 
in three of the six categories are classified as having MetS. Adapted from 60. 
 

 

Metabolic 

parameters 

 

WHO (1998) 

 

EGIR (1999) 

 

ATP III (2001) 

 

AACE (2001) 

 

ATP III (2004) 

 

IDF (2005) 

 

AHA/NHLBI  

(2005) 

        

IR IGT, IFG, DM2 or 
lowered insulin 
sensitivity (a) plus 
any 2 of the 
following: 

Plasma insulin >75th 
percentile plus any 
2 of the following: 

None, but any 3 
of the following 
5 features: 

IGT or IFG plus any 
of the following 
based on clinical 
judgment: 

None, but any 3 
of the following 5 
features: 

None None, but any 3 of 
the following 5 
features: 

Body 
weight 

Waist-to-hip ratio  
> 0.90 and/or   
BMI> 30 kg/m2  

WC ≥ 94 cm  WC ≥ 102 cm  BMI ≥ 25 kg/m2 WC ≥ 102 cm  Increased WC > 94 
cm plus any 2 of the 
following: 

WC ≥ 102 cm  

Lipids  TG ≥ 1.7mmol/L 
and/or HDL-C 
< 0.91 mmol/L 

TG ≥ 2.0 mmol/L 
and/or HDL-C 

< 1.01 mmol/L  
or treated for 
dyslipidemia 

TG ≥ 1.69 
mmol/L, HDL-C 
< 1.03 mmol/L  

TG ≥ 1.69 mmol/L, 
HDL-C 
< 1.03 mmol/L 

TG ≥ 1.69 
mmol/L, HDL-C 
< 1.03 mmol/L 

TG ≥ 1.7 mmol/L /or 
on TG Rx, HDL-C 
< 1.03 mmol/L or on 
HDL-C Rx 

TG ≥ 1.69 mmol/L or 
on TG Rx, HDL-C < 
1.03 mmol/L or on 
HDL-C Rx 

Blood 
pressure 

≥160/90 mm Hg ≥140/90 mm Hg or 
on hypertension Rx 

≥130/85 mm Hg  
 

≥130/85 mm Hg  
 

≥130/85 mm Hg  
 

≥130/85 mm Hg or 
on hypertension Rx 

≥130/85 mm Hg or 
on hypertension Rx 

Glucose  IGT, IFG or DM2 IGT or IFG (but not 
DM2) 

> 6.11 mmol/L 
(includes DM2) 

IGT or IFG (but not 
DM2) 

> 5.6 mmol/L 
(includes DM2) 

≥ 5.6 mmol/L 
(includes DM2) 

≥ 5.6 mmol/L or on 
hypoglycemic 

Other  mALB   Other features of IR 
(b) 

   

 

The diagnostic criteria proposed by the World Health Organization (WHO) (1998); European Group for the Study of Insulin Resistance (EGIR) (1999); Adult Treatment Panel III (ATP 
III) (2001); American Association of Clinical Endocrinologists (AACE) (2003); ATP III (2004); International Diabetes Federation (IDF) (2005); and American Heart 
Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) (2005). BMI, body mass index; DM2, diabetes mellitus type 2; HDL-C, high-density lipoprotein cholesterol; IFG, 
impaired fasting glucose; IGT, impaired glucose tolerance; IR, insulin resistance; mALB, microalbuminuria; TG, triglycerides; WC, waist circumference. (a) Insulin sensitivity 
measured under hyperinsulinemic euglycemic conditions; glucose uptake below lowest quartile for the background population under investigation. (b) Includes family history of type 2 
diabetes mellitus, sedentary lifestyle, advanced age, and ethnic groups susceptible to type 2 diabetes mellitus. 

UNIVERSITAT ROVIRA I VIRGILI 
DEREGULATION OF FATTY ACID METABOLISM IN THE ADIPOSE TISSUE OF OBESE WOMEN 
Esther Guiu Jurado 



II. INTRODUCTION 

38 

 

1.7. Obesity management  

 

Considering obesity as a chronic medical disease state helps to frame 

the concept of using a three-stepped intensification of care approach to 

weight management (Figure 5 ). First, all patients should be counseled on 

evidence-based lifestyle modifications  that include diet, physical activity 

and behavioral change therapies. Second, if lifestyle modifications are not 

effective, pharmacotherapy should then be considered to provide an 

additional benefit. Third, if these approaches fail, consideration should be 

given to bariatric surgery . Although they are invasive, surgical procedures 

have been demonstrated to be the most effective, long-term treatment for 

individuals with severe or moderate obesity that is complicated by comorbid 

conditions and that is not responsive to non-surgical approaches 61.  

 

 

Figure 5. Three-stepped intensification of care approach to weight 
management 61.  
 

1.7.1.  Lifestyle modifications 

 

Lifestyle modifications are recommended as the primary intervention for 

overweight and obese individuals. Behavioral modification uses strategies 

focusing on behavioral changes that are targeted at reducing overeating 

and sedentary activities to achieve and maintain weight loss. Furthermore, 
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they are the most accessible and economical approaches to care because 

of their non-invasive nature and their weight-independent benefits 62. 

Lifestyle modifications can be divided into three broad categories: 

behavioral, community and environmental interventions 63. 

 

Behavioral interventions have formed the cornerstone of obesity 

prevention and treatment. They are focused on behavior-related aspects 

and specifically focus on increasing energy expenditure and reducing 

energy intake to achieve weight loss.  

 

Community interventions are implemented in a combination of local 

settings, such as neighborhoods, schools, communal sites, social care 

facilities and cultural centers. They combine behavioral measures and 

local environmental changes to address the supply and demand for food 

and/or physical activity.  

 

Environmental interventions modify a target population’s environment 

and are often outside the healthcare sector. Therefore, they have the 

potential to reach large numbers of individuals simultaneously and may 

have a more lasting effect on behavioral changes as they become 

incorporated into structures, systems, policies and sociocultural norms. 

These interventions consist of the imposition of taxes and/or subsidies to 

promote healthy eating, the adoption of mandatory food labelling 

schemes, the implementation of educational mass media campaigns to 

increase health information and knowledge, and the regulation of food 

advertisement to children. 

 

If the patient is not able to achieve their weight and health goals by 

lifestyle changes alone and meets the indications for drug therapy, then 

addition of adjunctive pharmacotherapy should be considered. 
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1.7.2.  Pharmacotherapy 

 

According to current Food and Drug Administration (FDA) guidelines, 

pharmacotherapy is approved for patients with a BMI ≥ 30 kg/m2 or ≥ 27 

kg/m2 when also complicated by an obesity-related comorbidity 61. 

Historically, pharmacotherapy for obesity has witnessed the rise and fall 

of several promising drug candidates that eventually had to be withdrawn 

due to unacceptable safety concerns 64.   

Currently, there are two groups of approved drugs that can be used: 1) 

medications approved for obesity management per se (appetite 

suppressants or satiety enhancers and gastrointestinal blockers) (Table 6 ) 

and 2) medications used for the treatment of obesity-related comorbidities 

that affect body weight (Table 7 ) 61,65,66.  

Among the currently approved anti-obesity drugs, four noradrenergic 

agents (phentermine, benzphetamine, diethylpropion, phendimetrazine) 

were approved as adjuncts in the management of obesity in 1960. 

Phentermine remains the most often prescribed drug for short-term use for 

weight loss 61,67. Orlistat was approved by the FDA in 1999 as the first lipase 

inhibitor for obesity management 64,67. Subsequently, after a gap of more 

than a decade, two new therapies, lorcaserin and phentermine/topiramate 

were approved in 2012. In 2014, the FDA finally approved the combination 

of bupropion/naltrexone as a treatment option for the management of 

obesity 61,64,67
. 

Medications that are FDA-approved for other conditions and have been 

found to result in weight loss have also been tested as potential obesity 

treatments. For example, metformin is an antihyperglycemic drug approved 

for the treatment of DM2 that has been demonstrated to reduce both energy 

intake and body weight 68–73.  

In summary, the ideal anti-obesity drug should selectively reduce body 

fat stores, especially visceral fat, by ameliorating the regulatory or metabolic 

disturbances involved in the pathogenesis of obesity. Furthermore, it should 

exhibit minor side effects, be preferentially administered orally for long-term 
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use, and be widely accessible 66. Further studies are needed to find the 

ideal anti-obesity drug.  

 

Table 6. Weight loss medications approved by the FDA for obesity 
treatment.  
 

 

Medications 
 

Year of FDA 

approval  

 

Mechanism 

 
Noradrenergic activation 
Phentermine 
Diethylpropion 
Phendimetrazine 
Benzphetamine 
 

 
 

1959 

 
 
Enhances satiety by inhibiting the 
reuptake of noradrenaline 
Increases hypothalamic 
noradrenaline levels  

 
Gastrointestinal lipase inhibiton 
Orlistat 
 
 
 
 
Serotonin receptor activation 
Lorcaserin 
 
 
 
 
 
 
 
Combined therapy 
Phentermine/Topiramate  
extended release  
 
 
 
 
 
 
 
Bupropion/Naltrexone extended 
release 

 
 

1999 
 
 
 
 
 

2012 
 
 
 
 
 
 
 
 

2012 
 
 
 
 
 
 
 
 

2014 

 
 
Reduces body weight by binding 
and inhibiting lipases produced by 
the pancreas and the stomach 
Reduces the absorption of ingested 
dietary fat by approximately 30% 
 
Selective activation of serotonin 2C 
(5HT2C) receptors in anorexigenic 
pro-opiomelanocortin neurons in 
the hypothalamus resulting in the 
release of α-melanocortin 
stimulating hormone, which acts on 
melanocortin receptors to decrease 
food intake and enhance satiety 
 
Phentermine reduces appetite 
through an increased noradrenaline 
in the hypothalamus. However, the 
precise mechanism of action of 
topiramate on reducing appetite is 
not thoroughly understood. It is 
thought that it has some effect on γ-
aminobutyric acid (GABA) receptors 
 
Bupropion reduces food intake by 
acting on adrenergic and 
dopaminergic receptors in the 
hypothalamus. Naltrexone is an 
opioid receptor antagonist which 
inhibits food intake 
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Table 7. Medications approved by the FDA for other conditions that 
have been tested as obesity treatments.  

 

 

Condition  

 

Medications 
 

Mechanism 

 

DM2 
 

Biguanide 
Metformin 
 
 
 

Glucagon-like peptide-1 
Exenatide 
Liraglutide 

 

 

 
Improves insulin sensitivity and 
produces small, sustained 
weight loss of approximately 
2% 
 
Reduces fasting and post-
prandial glucose levels, slows 
gastric emptying and 
decreases food intake by 19% 

   
Neurobehavioral 
disorders 

Antidepressant  
Bupropion 
 
 
 

Anticonvulsant  
Topiramate 

 
 

 
Reduces food intake by acting 
on adrenergic and 
dopaminergic receptors in the 
hypothalamus 
 
Induces appetite suppression 
and satiety via GABA receptor-
mediated inhibitory activity 

   

 

 

1.7.3.  Bariatric surgery 

 

According to the National Institutes of Health Consensus Development 

Conference on bariatric surgery 74, patients with a BMI ≥ 40 kg/ m2 or those 

with a BMI ≥ 35 kg/m2 who also have associated high-risk comorbid 

conditions can be considered as surgical candidates. Bariatric surgery 

procedures promote weight loss and improvement in comorbidities through 

multiple mechanisms 75.  

Weight loss surgeries have traditionally been classified into three 

categories based on anatomical changes: restrictive, restrictive and 

malabsorptive, and malabsorptive. Restrictive approaches limit the amount 

of food consumed by reducing the size of the stomach, whereas 

malabsorptive approaches limit the absorption of nutrients by bypassing 

UNIVERSITAT ROVIRA I VIRGILI 
DEREGULATION OF FATTY ACID METABOLISM IN THE ADIPOSE TISSUE OF OBESE WOMEN 
Esther Guiu Jurado 



II. INTRODUCTION 

43 

 

portions of the intestine 76. However, more recently, the clinical benefits of 

bariatric surgery in achieving weight loss and improving metabolic 

comorbidities have largely been attributed to changes in the physiological 

responses of gut hormones and changes in adipose tissue metabolism 77,78. 

There are four types of bariatric surgery, which are usually performed 

laparoscopically: adjustable gastric band (AGB), sleeve gastrectomy (SG), 

Roux-en-Y gastric bypass (RYGB) and biliopancreatic diversion with 

duodenal switch (BPD-DS) (Figure 6 ) 75. Each of these surgical procedures 

is described in detail below. 

The choice of which procedure to use depends on many factors, 

including local expertise and experience with the different bariatric surgical 

procedures and the complexity and reversibility of the procedure. In 

addition, the patient’s general health, the presence of risk factors associated 

with high perioperative morbidity and mortality, and the nature of any 

obesity-associated comorbidities might influence the risk-benefit ratio and 

the choice to use a given procedure. A patient’s preference and compliance 

and the effects of a specific procedure on comorbidities must also be 

considered.  

In conclusion, bariatric surgery has increased in popularity because of its 

greater ability to induce long-term weight loss than medical or 

pharmacological treatments. Furthermore, bariatric surgery is safe and 

beneficial in severely obese patients as it induces long-term metabolic 

benefits. Because of the low risk of surgery and the well-supported 

sustained benefits of surgically induced weight loss, it is likely that bariatric 

surgery will continue to evolve and to have an expanding role in obesity 

treatment 79.  
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Figure 6. Types of bariatric surgical procedures.  (A) Adjustable gastric 
band. (B) Sleeve gastrectomy. (C) Roux-en-Y gastric bypass. (D) 
Biliopancreatic diversion with duodenal switch (BPD-DS). Adapted from 75.  
Adjustable gastric band (AGB)  surgery uses an implanted, inflatable-band 
device that is placed at the topmost part of the stomach and is connected to a 
reservoir port placed just under the skin. Band adjustment results in the 
“adjustment” of the upper stomach pouch outlet. The pouch fills with food 
quickly and the band slows the passage of food from the pouch to the lower part 
of the stomach, which allows the patient to achieve appetite control and satiety 
with less food. 
Sleeve gastrectomy (SG)  is a longitudinal resection of the stomach, which 
preserves its vagal innervation, starting from the antrum 5-6 cm from the pylorus 
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and finishing at the fundus close to the cardia. Approximately 75% to 80% of the 
stomach is resected and the remaining gastric sleeve is calibrated with a French 
bougie. The ideal remaining stomach volume after the procedure is 
approximately 150 mL. 
Roux-en-Y bypass (RYGB)  consists of a reduction in the volume of the 
stomach to a small, 15-mL pouch by stapling off a section of it and connecting it 
to the small intestine further down in the digestive system. The length of the 
alimentary loop can be modified, but most of the time it is standardized at 150 
cm to ensure that the RYGB has a greater restrictive component than 
malabsorptive component.  
Biliopancreatic diversion with duodenal switch (BPD-DS)  involves a gastric 
restriction with an SG where malabsorption results from a bypass in the small 
intestine. The duodenum is transected approximately 4 cm distal to the pylorus 
and anastomosed to a 250 cm alimentary limb of ileum. The biliopancreatic 
limb, which consists of the distal duodenum, jejunum, and proximal ileum, 
contains the biliopancreatic secretions and is attached to the alimentary limb 
approximately 100 cm from the end of the ileum or ileocecal valve area. The 
BPD-DS surgery has a more significant malabsorptive component than that of 
RYGB surgery. 
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1.8. Dysfunction of adipose tissue in obesity 

 

Adipose tissue (AT) dysfunction is one of the early abnormalities that 

occurs in the development of obesity. It appears to be an important 

mechanism determining the individual’s risk of developing obesity-related 

comorbidities 80–84. AT dysfunction may develop under conditions of 

continuous positive energy balance in patients with an impaired ability to 

expand of subcutaneous AT stores 85,86. The inability to store excess 

calories in “healthy” subcutaneous fat depots may represent a critical node 

in ectopic fat accumulation 51,81,84. Consequently, several mechanisms are 

activated leading to AT dysfunction, such as adipocyte hypertrophy, AT 

hypoxia, other AT stresses, autophagy and inflammation (Figure 7 ). AT 

dysfunction is characterized by ectopic fat accumulation, an increased 

number of AT-infiltrating immune cells, enlarged adipocytes, and increased 

autophagy and apoptosis, as well as changes in AT mRNA and protein 

expression patterns 87. It is important to note that, with the development of 

AT dysfunction, adipokine secretion is significantly altered and shifts to a 

proinflammatory, atherogenic and 

diabetogenic pattern 82. 

 
Figure 7. Development of adipose 
tissue dysfunction.   
A positive energy balance causes 
expanding fat mass by increasing the 
average fat cell volume and the 
number of adipocytes. Potential 
mechanisms for the development of 
adipose tissue dysfunction include 
impaired expandability of SAT, 
ectopic fat accumulation, genetic 
factors, inflammatory processes in 
AT, hypoxia, and other stresses such 
as endoplasmic reticulum, oxidative 
and metabolic stress. AT, adipose 
tissue; SAT, subcutaneous adipose 
tissue. Adapted from 87,81. 
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1.8.1.  Impaired subcutaneous adipose tissue expandability 

and vascularization  

 

Impaired AT expandability leads to ectopic accumulation of lipids in the 

liver and muscle, insulin resistance, and metabolic disease. AT dysfunction 

and obesity-related comorbidities may be the consequence of an impaired 

capacity to store fat in healthy fat depots 85,88. Some authors suggest that 

excessive energy intake primarily promotes fat accumulation in visceral fat 

depots and, subsequently, contributes to hepatic and peripheral insulin 

resistance 89,90. In this sense, subcutaneous AT plays a “buffering” role by 

protecting other organs from ectopic fat deposition 85. In several obese 

subjects, subcutaneous AT expandability has been shown to be impaired 

and the excess lipids transported toward other tissues 85. However, 

unimpaired subcutaneous AT expandability may underline the insulin 

sensitivity of the healthy obese phenotype 50,51,91.  

Brakenhielm et al. have shown that the expansion of fat masses is 

dependent on angiogenesis 92. Under conditions of impaired vascularization 

and angiogenesis, adipose tissue accumulation is inhibited 93. However, the 

specific role of angiogenesis in the development of human obesity has not 

yet been elucidated. 

 

1.8.2.  Ectopic fat deposition 

 

Despite having a positive energy balance, not all obese subjects have 

the same risk of developing obesity-related comorbidities. Subjects with 

peripheral obesity (distributed subcutaneously) are at little or no risk of 

developing complications associated with obesity, whereas individuals with 

central obesity (fat accumulation in visceral depots) are much more prone to 

these complications 94.  

There is strong clinical and epidemiologic evidence for the adverse 

metabolic and cardiovascular effects of ectopic fat deposition 95–97. The 

biology of visceral fat is different from that of subcutaneous adipose tissue. 

UNIVERSITAT ROVIRA I VIRGILI 
DEREGULATION OF FATTY ACID METABOLISM IN THE ADIPOSE TISSUE OF OBESE WOMEN 
Esther Guiu Jurado 



II. INTRODUCTION 

48 

 

Visceral adipose tissue has decreased insulin sensitivity, increased lipolytic 

activity, lower angiogenic potential, different cellular composition and 

different expression levels of key genes related to adipocyte biology 98. 

Moreover, the anatomical site of visceral adipose tissue could contribute to 

an increased cardiometabolic risk because visceral fat depots drain into the 

portal vein making the liver a target of metabolites, cytokines and 

adipokines released from visceral fat 80.  

 

1.8.3.  Hypertrophy and hyperplasia 

 

Increases in fat mass manifest as increases in both intracellular lipids 

and greater adipocyte size (hypertrophy ) and as an increase in the number 

of adipocytes (hyperplasia ). Adipose hypertrophy and hyperplasia are 

associated with intracellular abnormalities of adipocyte function, particularly 

endoplasmic reticulum (ER) and mitochondrial stress. These processes 

lead to the increased release of adipokines, free fatty acids, and 

inflammatory mediators that cause adipocyte dysfunction and induce 

adverse effects in the liver, pancreatic β-cells, and skeletal muscle, as well 

as in the heart and vascular beds 29. 

Adipocyte hypertrophy plays an important role in obesity-related 

disorders and has been shown to be the major determinant of obesity 

development due to increased triglyceride storage 99. In morbidly obese 

women, large fat cells in the visceral region are linked to dyslipidemia, 

whereas large subcutaneous adipocytes correlate with impaired glucose 

metabolism, hyperinsulinemia and IR. Overall, hyperplasia in AT is less 

deleterious than hypertrophy with regard to the metabolic complications of 

obesity. Women with combined hyperplasia have been shown to have a 

more benign glucose, insulin and lipid metabolic profile than those with 

hypertrophy. Moreover, none of the women with general adipose 

hyperplasia had diabetes or dyslipidemia 100. Studies in subjects with either 

insulin-sensitive or insulin-resistant healthy obesity have shown that a 

higher average and maximal adipocyte volume is associated with 
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significantly impaired whole-body insulin sensitivity, increased circulating 

indicators of inflammation and oxidative stress, and increased numbers of 

macrophages within AT 50.  

 

1.8.4.  Hypoxia  

 

It has been suggested that the deregulation of AT is a specific response 

to relative hypoxia in clusters of adipocytes that become too distant from the 

vasculature as the adipose tissue mass expands 101–103. The concept that 

the development of hypoxia reinforces the initiation and progression of the 

inflammatory response in adipose tissue in obesity is primarily related to the 

direct effects of a hypoxic state in obesity 103. Hypoxia may induce both 

oxidative and ER stress 101,102. Evidence of hypoxia in adipose tissue has 

been demonstrated in several obese mouse models and in obese patients 
102,103. In humans, short-term, whole-body hypoxia decreases insulin 

sensitivity 104, and short-term, whole-body hyperoxygenation increases 

insulin sensitivity 105. Furthermore, in mouse models, obesity is associated 

with lower oxygen partial pressures in subcutaneous and visceral AT 106,107. 

In vitro studies on adipocytes have shown that experimental hypoxia 

stimulates the release of inflammation-related adipokines 102. 

Hypoxia in expanding AT in obesity may be a pathogenic factor that 

causes stress and an inflammatory response within adipose tissue and, 

subsequently, leads to its dysfunction. However, further studies are needed 

to determine how AT hypoxia leads to impaired AT function. 

 

1.8.5.  Adipose tissue stresses 

 

Impaired subcutaneous expandability, ectopic fat accumulation and 

adipocyte hypertrophy may induce several forms of stress in adipose tissue. 

Obesity causes metabolic, inflammatory, oxidative and ER stress in adipose 

tissue 108. Adipose tissue responds to these stresses with the activation of 

stress-sensing pathways, which may lead to cellular malfunction and 
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contribute to obesity-related comorbidities 108–111. It has been shown that 

stresses are associated with increased immune cell infiltration into AT 112.  

In addition to AT, macrophages may mediate the link between the stress 

response in adipose tissue and the risk of obesity-induced metabolic 

diseases 113. Moreover, several studies have demonstrated that FFAs 

induce ER stress in different cells, including adipocytes 114. 

Taken together, when a positive energy balance exists, adipose tissue is 

exposed to several stresses that may induce a proinflammatory state and 

adipose tissue dysfunction in obesity.  

 

1.8.6.  Autophagy 

 

Recently, the involvement of autophagy in the pathogenesis of human 

diseases that include alterations in lipid metabolism and adipose tissue 

biology has been increasingly studied 115–118. Autophagy is a process by 

which intracellular components are targeted for lysosomal degradation by a 

highly regulated process of vesicle formation and fusion 117. It is induced in 

response to conditions of nutrient starvation to increase the release of 

amino acids, FA, and monosaccharides for use as an energy supply 119. 

Defects in autophagy cause an inability of the cell to synthesize proteins 

that are required for survival. This process might be a compensatory 

mechanism in response to stress. Autophagy is important for cellular 

housekeeping because it eliminates unnecessary, damaged and/or harmful 

cellular products and organelles 119.  

Autophagy also contributes to carbohydrate and protein degradation and 

may be involved in the regulation of lipid metabolism 117. Furthermore, it has 

been shown that autophagy is also implicated in the physiopathology of 

obesity and its comorbidities 116. Studies in animals, which have a targeted 

deletion of the autophagy-related 7 gene (atg7) in adipose tissue, have 

shown that autophagy contributes to the regulation of fat mass and the 

balance between white and brown adipocytes. Interestingly, these mutant 

mice were resistant to high-fat-diet-induced obesity 120. In humans, 
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autophagy is upregulated in the AT of obese and/or DM2 patients, 

predominantly in visceral adipose tissue, and correlates with the degree of 

obesity, visceral fat distribution, and adipocyte hypertrophy 115–117.  

In summary, the activation of autophagy may occur together with the 

development of insulin resistance and could precede the development of 

obesity-associated morbidities. Moreover, autophagy could represent a 

previously unrecognized protective mechanism against obesity-associated 

adipose tissue dysfunction, or it could be a symptom of impaired AT 

function. 

 

1.8.7.  Immune cell infiltration 

 

Mechanisms including adipocyte hypertrophy, nutritional surplus, 

hypoxia and AT stresses that cause proinflammatory adipokine secretion 

may lead to the attraction of proinflammatory immune cells to adipose tissue 

and cause chronic, low-grade inflammation (Figure 8 ). Obesity and 

inflammation are highly integrated processes in the pathogenesis of insulin 

resistance, diabetes, atherosclerosis, and NAFLD 37. In fact, in the majority 

of obese patients, adipose tissue expansion is associated with the 

increased infiltration of proinflammatory immune cells into adipose tissue 

causing chronic low-grade inflammation 121.  

Macrophage infiltration into adipose tissue increases proportionally with 

increased BMI, body fat mass and adipocyte hypertrophy and represents a 

reversible process in obese patients who are losing weight 122,123. 

It was found that macrophages could be recruited from the circulation by 

chemoattractant proteins, including monocyte chemoattractant protein 1 

(MCP1), chemerin, progranulin and colony stimulating factor-1 (Csf1), in 

response to the death of hypertrophied adipocytes 32.  

 

UNIVERSITAT ROVIRA I VIRGILI 
DEREGULATION OF FATTY ACID METABOLISM IN THE ADIPOSE TISSUE OF OBESE WOMEN 
Esther Guiu Jurado 



II. INTRODUCTION 

52 

 

 

Figure 8. Macrophage infiltration into adipose tissue during the 
development of obesity.  With a positive energy balance, adipocyte 
hypertrophy develops. Furthermore, during the process of fat accumulation, 
several mechanisms (hypoxia, stress, and the secretion of leptin, MCP1 and 
progranulin) cause the activation of circulating monocytes, which subsequently 
transmigrate into adipose tissue. Monocytes differentiate into macrophages and 
interact with adipocyte and endothelial cells resulting in an increased secretion 
of proinflammatory cytokines, adipokines and angiogenic factors. 
 
 

Studying morbidly obese patients with or without insulin resistance, 

Klöting et al. found that increased macrophage infiltration into visceral 

adipose tissue was a strong predictor of the insulin-resistant obese 

phenotype (Figure 9 ) independent of BMI and total body fat mass 50. 

Therefore, macrophage infiltration into adipose tissue could represent the 

link between adipose tissue dysfunction and whole-body insulin resistance.  
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Figure 9. Inflammation of visceral adipose tissue in insulin-resistant 
obesity. Hematoxylin and eosin staining of omental adipose tissue sections 
from (A) a 52 year-old male patient with a BMI of 44.8 kg/m2 with insulin-
sensitive healthy obesity and (B) an age, sex, and BMI (44.9 kg/m2) matched 
insulin-resistant obese men. Insulin-resistant obesity is associated with 
macrophage infiltration into omental adipose tissue. Adapted from 50.  
 

An increased number of macrophages in adipose tissue might also 

cause an increased systemic concentration of proinflammatory cytokines 80. 

In conclusion, these data collectively reinforce the hypothesis that 

adipose inflammation is an important contributor to insulin resistance in 

obesity.  
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2. ADIPOSE TISSUE 

 

In mammals, adipose tissue  exists in two forms, white adipose tissue 

(WAT) and brown adipose tissue (BAT), with each performing different 

functions. The primary role of BAT is to store a small amount of fat that can 

be used, when needed, to produce heat and maintain body temperature 124. 

However, WAT is designed to store large amounts of excess energy  in the 

form of triglycerides for use during periods of food deprivation. In addition, 

WAT has an endocrine function  which contributes to the regulation of 

whole-body energy homeostasis through the secretions of various adipose-

derived hormones or adipokines.  

 

2.1.  Morphology and anatomical distribution of WAT 

 

Adipose tissue is a loose connective tissue composed primarily of 

adipocytes, but it also contains a variety of other cells, such as 

preadipocytes, fibroblasts, endothelial 

cells and macrophages. These other 

cells make up the stromal vascular 

fraction (SVF). White adipocytes contain 

a large lipid droplet that occupies over 

90% of the cell volume and is 

surrounded by a layer of cytoplasm. The 

nucleus is flattened and located in an 

eccentric position 125 (Figure 10 ).  

 
Figure 10. Scanning electronic microscopy image of W AT 125.  
 

In healthy individuals, adipose tissue represents 25-31% of women’s and 

18-24% of men’s body weight, and it is located at different anatomical sites 
126. The two major compartments of WAT are located subcutaneously and 

intra-abdominally (Figure 11 ). 
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Figure 11. White adipose tissue distribution in humans. White adipose 
tissue is distributed throughout the body. The two major compartments of WAT 
are located subcutaneously and intra-abdominally, although WAT can be found 
in other regions such as the intra-thoracic region. Adapted from 126.  
 

As mentioned before, WAT is distributed throughout the body in humans, 

but this distribution can vary considerably from one individual to another. In 

individuals with problems controlling their weight, when an increase in body 

fat accumulation leads to overweight and/or obesity, fat deposition can be 

increased in specific regions of the body leading to altered fat distribution. 

These changes have an important impact on metabolism and lead to the 

development of obesity-related comorbidities. 

Several classifications of different types of obesity have been proposed. 

In the 1940s, Jean Vague proposed the existence of sexual dimorphism as 

a determining factor for two different patterns of fat distribution in obese 

patients 127. Vague classified these two patterns of obesity as android  (or 

upper-body) vs gynoid  (or lower-body) obesity using the brachio-femoral to 
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adipo-muscular ratio. In 1956, Vague reported that a high brachio-femoral to 

adipo-muscular ratio in obese individuals (android obesity) was associated 

with an increased risk of DM2, atherosclerosis, gout and uric calculous, 

whereas gynoid obesity was not 128.  

Three decades later, a new classification was proposed based on the 

calculated ratio between WC and hip circumference 129,130. Larsson et al. 

showed that abdominal obesity, determined by a high waist-hip ratio  

(WHR), was associated with an increased risk of myocardial infarction, 

stroke, and premature death, while no association was found when BMI was 

used 131. Interestingly, in this study, individuals with a low BMI but a high 

WHR exhibited the highest risk of myocardial infarction and premature 

death 131. Since then, a large number of studies have recognized that 

abdominal obesity, as assessed by WHR or simply WC, is associated with 

adverse health risks, such as IR, DM2, dyslipidemia, hypertension, 

atherosclerosis, NAFLD, cholesterol gallstones, several cancers, and 

overall mortality 97,132–136.  

 

2.2. Visceral vs subcutaneous adipose tissue 

 

As mentioned previously, it has been recognized for more than 60 years 

that the cardiovascular risk of obesity and increased body weight are related 

more to body fat distribution than to total body fat 128. Individuals with upper 

abdominal, central or android obesity (visceral adipose tissue, VAT ) are at 

a greater risk than those with gluteofemoral, peripheral or gynoid obesity 

(subcutaneous adipose tissue, SAT ).  

Several theories have been proposed to explain the link between VAT 

and the increased risk for metabolic complications, such as IR, glucose 

tolerance, and dyslipidemia. Historically, the “Portal circulation theory ” 

has been the most actively discussed. In this theory, it has been noted that 

VAT drains into the portal vein where FFAs can be accessed by the liver 137. 

These high levels of FFAs could stimulate hepatic gluconeogenesis and 

reduce hepatic insulin sensitivity by decreasing the number of insulin 
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receptors and altering intracellular insulin signaling. This theory is also 

supported by the fact that VAT has higher lipolytic rates than SAT and, 

therefore, releases more FFAs into the portal vein and, consequently, to the 

liver 138. In fact, it is well known that in humans, VAT shows a significantly 

greater lipolytic activity when stimulated by catecholamines than SAT 

because VAT has higher levels of lipolytic β-adrenergic receptors and lower 

levels of anti-lipolytic α2-adrenergic receptors compared to the levels in SAT 
139–142.  

In addition to FFAs, adipokines and cytokines, such as interleukin 1 

(IL1), interleukin 6 (IL6), tumor necrosis factor alpha (TNFα), and resistin, 

which have been associated with reduced insulin sensitivity, are also 

potential mediators for the portal mechanism of IR 123,143. These cytokines, 

whose secretion from AT is increased in obese individuals, are produced at 

higher levels in VAT than in SAT.  

Based on these data, a “Cell biological theory ” has emerged based on 

the concept that fat cells in different depots possess different intrinsic 

properties and possibly have a different developmental origin, which could 

cause them to be more or less associated with metabolic alterations. This 

hypothesis is supported by the fact, that at a molecular level, significant 

differences in the expression of hundreds of genes have been reported 

between distinct adipose tissue depots in both rodents and humans, and 

these depot-specific variations in gene expression appear to be intrinsic 144. 

Therefore, the intrinsic properties of these depots may also be one of the 

causes for the association between central obesity and metabolic disorders.  

From a metabolic point of view, VAT seems to play a deleterious role 

during the physiopathology of obesity whereas SAT does not. SAT appears 

play a “buffering” role in taking up fatty acids and preventing the exposure of 

other insulin-sensitive tissues to their detrimental effects, which suggests a 

protective role of SAT in obese individuals 145. 
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2.3. Adipose tissue as an endocrine organ 

 

Classically, the role of WAT was viewed as limited to energy storage. 

However, in 1953, Kennedy hypothesized that adipose tissue might produce 

a circulating lipostatic factor that coordinated fat mass and food intake 146. In 

1964, lipoprotein lipase (LPL) was the first protein characterized as being 

secreted by adipocytes 147. Furthermore, in 1994, the first adipocyte 

hormone was discovered with the cloning of leptin 148. Advances in obesity 

research have led to the recognition of adipose tissue as an active 

endocrine organ  that secretes more than 600 bioactive factors termed 

adipokines 149.  

Adipokines play significant roles in the regulation of appetite and satiety 

control, fat distribution, insulin sensitivity and secretion, energy expenditure, 

inflammation, blood pressure, hemostasis, and endothelial function 98,148,150–

154. Many of these factors act locally within the WAT through 

autocrine/paracrine mechanisms, but others act systemically to influence 

the function of distant tissues, such as the brain, skeletal muscle, liver, 

pancreas, and heart 80 (Figure 12 ).  

 
Figure 12. Effects of adipokines. Adipokines regulate adipogenesis, adipocyte 
metabolism, and immune cell migration into adipose tissue via autocrine and 
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paracrine signaling. Furthermore, adipokines have endocrine/systemic effects 
that play a role in appetite and satiety control, regulation of energy expenditure 
and activity, insulin sensitivity and energy metabolism in insulin-sensitive 
tissues. FABP4, fatty acid binding protein 4; IL, interleukin; MCP1, monocyte 
chemoattractant protein 1; RBP4, retinol binding protein 4; TNFα, tumor 
necrosis factor alpha. Adapted from 80 
 

Among the adipokines discovered, there are molecules that play a role in 

the inflammatory response, such as interleukins 1, 6, 8, 10, TNFα, 

transforming growth factor β (TGFβ), interferon-γ, c-reaction protein (CRP), 

plasminogen activator inhibitor-1, and chemerin. Some adipokines, 

including RBP4, chemerin, vaspin, fetuin A, omentin, and fatty acid binding 

protein 4 (FABP4), have been associated with insulin resistance and fatty 

liver disease 155–157. However, there are several adipokines that may cause 

adverse fat distribution, such as RBP4 158, dipeptidyl peptidase 4 159, 

chemerin 160–162, apelin 163, vaspin 157,164,165, endocannabinoids 166,167, fetuin 

A 168, omentin 157,169, and progranulin 170. Adipokines may represent links 

between obesity and various conditions, such as hypertension (e.g., 

angiotensinogen), endothelial function (e.g., omentin, apelin), hemostasis 

(e.g., fibrinogen), and immune cell infiltration in adipose tissue (e.g., MCP 1, 

progranulin and macrophage inflammatory protein 1α) 87,149.  

The role of the classical adipokines leptin and adiponectin as mediators 

linking increased fat mass and/or impaired adipose tissue function to 

metabolic and cardiovascular diseases are described in detail below.  

Leptin  was discovered in 1994 as the protein product of the ob gene 

mutation, which causes extreme obesity in the ob/ob mouse model 148. 

Leptin is almost exclusively secreted from adipocytes and controls food 

intake and energy expenditure 171. Activation of leptin receptors in the 

hypothalamus leads to the repression of orexigenic and induction of 

anorexigenic pathways, thereby decreasing appetite 171. Obesity is 

associated with increased leptin levels, which contributes to the 

development of IR and MetS 171. Moreover, leptin increases fatty acid 

oxidation and decreases triglyceride storage in muscle 171. In addition to 

these effects, there may be a direct link between high circulating levels of 
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leptin and increased cardiovascular risk because it may enhance platelet 

aggregation and arterial thrombosis, promote angiogenesis, impair arterial 

distensibility, and induce proliferation and migration of vascular smooth 

muscle cells 171. 

Another important adipokine regulating energy balance and insulin 

sensitivity is adiponectin. Adiponectin  was discovered in 1995 172. 

Adiponectin exhibits insulin-sensitizing and anti-atherosclerotic properties 
173. It modulates insulin sensitivity through the inhibition of hepatic glucose 

production, thereby enhancing glucose uptake in muscle and increasing 

fatty acid oxidation in both liver and muscle 174. In contrast to most 

adipokines, the expression and circulating levels of adiponectin are 

decreased in obesity and its related comorbidities. Various hormones 

associated with IR and obesity, including catecholamines, insulin, 

glucocorticoids, TNFα and IL6, downregulate adiponectin expression and 

secretion in fat cells in vitro 175. 

 

2.4. Adipogenesis 

 

Adipogenesis  is the process of adipocyte formation from precursor 

cells. Adipocytes are derived from undifferentiated preadipocytes, which 

undergo terminal differentiation through a complex process orchestrated by 

a transcriptional cascade involving the nuclear receptor peroxisome 

proliferator-activated receptor γ (PPARγ) and the members of the 

CCAAT/enhancer-binding protein (C/EBP) family 176. 

In past years, adipocyte differentiation has been extensively studied 

using 3T3-L1 and 3T3-F442A preadipocytes cell lines 177,178. In these 

cultured preadipocytes, the induction of adipocyte differentiation is under 

the control of hormonal stimuli by glucocorticoids, cyclic adenosine 

monophosphate (cAMP), and the insulin/IGF-1 pathways. In cell cultures, 

this induction occurs during the first 2 days of differentiation and involves a 

sequence of transcriptional cascades beginning with a transient, high 

expression of C/EBPβ and C/EBPδ, which promotes the expression of the 
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transcription factors involved in terminal adipocyte differentiation, PPARγ 

and C/EBPα 176,177. Moreover, PPARγ can also be activated by adipocyte 

determination and differentiation-dependent factor 1/sterol regulatory 

element-binding protein 1 (ADD1/SREBP1). Lastly, PPARγ and C/EBPα 

cooperate to induce terminal differentiation by increasing the expression of 

genes involved in the acquisition of a mature adipocyte phenotype, such as 

the genes for glucose transporter 4 (GLUT4), FABP4, the insulin receptor, 

and the enzymes involved in triglyceride synthesis, lipolysis and endocrine 

function 176.  

In addition to an enhanced expression of these transcription factors, 

there is also a downregulation of preadipocyte factor 1 (PREF-1), which has 

been shown to participate in maintaining the preadipocyte phenotype. The 

binding of the soluble PREF-1 protein to the putative PREF-1 receptor 

activates the MAPK kinase/ERK pathway, which in turn, increases the 

expression of the transcription factor SRY (sex determining region Y)-box 9 

(SOX 9). SOX 9 binds to the C/EBPβ and C/EBPδ promoter regions to 

suppress their transcription and, results in the inhibition of adipocyte 

differentiation. Because of this pathway, a decrease in PREF-1 expression 

is required during the early phases of adipogenesis to facilitate adipocyte 

differentiation 179,180.  

A schematic overview of the transcriptional and hormonal induction of 

adipogenesis is shown in Figure 13 . 
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Figure 13. Schematic overview of the transcriptional and hormonal 
induction of adipogenesis . ADD1, adipocyte determination and differentiation-
dependent factor 1; C/EBPα, CCAAT/enhancer-binding protein alpha; C/EBPβ, 
CCAAT/enhancer-binding protein beta; C/EBPδ, CCAAT/enhancer-binding 
protein delta; CREB, cAMP responsive element binding protein; PPARγ, 
peroxisome proliferator-activated receptor gamma; PREF-1, preadipocyte factor 
1; RxR, retinoid x receptors; SOX 9, SRY (sex determining region Y)-box 9, 
SREBP1, sterol regulatory element binding protein. Adapted from 176. 
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2.5. Fatty acid metabolism in white adipose tissue 

 

As mentioned, one of the main functions of WAT is the storage of energy 

in the form of TGs. In white adipocytes, TG accumulation is achieved by de 

novo FA synthesis (lipogenesis) as well as by fatty acid uptake, whereas TG 

mobilization is accomplished by lipolysis (Figure 14 ). 

 

2.5.1.  De novo fatty acid synthesis (lipogenesis) 

 

Lipogenesis  ensures the de novo synthesis of fatty acids from glucose 

for storage. This process occurs in WAT and the liver. De novo FA 

synthesis requires the production of cytoplasmic acetyl-coenzyme A (CoA) 

from the metabolism of glucose. Glucose enters the cell through GLUT4 

that is predominantly found in adipocytes. Then, it is metabolized to 

pyruvate via glycolysis. Under aerobic conditions, pyruvate enters the 

mitochondria and is transformed by pyruvate dehydrogenase into acetyl-

CoA, which then enters the tricarboxylic acid cycle (TCA) to be condensed 

with oxaloacetate to form citrate. Citrate is released to the cytoplasm and is 

broken down by ATP-citrate lyase to produce cytoplasmic acetyl-CoA, 

which is the main substrate of de novo FA synthesis. FA synthesis is carried 

out by the sequential action of two enzymatic systems: acetyl-CoA 

carboxylase (ACC), which mediates the formation of malonyl-CoA from 

acetyl-CoA, and the multi-enzyme complex fatty acid synthase (FAS), which 

mediates the elongation of malonyl-CoA by the successive addition of 

acetyl-CoA molecules.  

De novo lipogenesis is controlled by hormones, especially insulin, or by 

metabolites. Insulin not only stimulates glucose uptake through GLUT4 181 

but also activates pyruvate dehydrogenase 182 and indirectly increases the 

expression of FAS and ACC 183,184. The effect of insulin on the expression of 

lipogenic genes is mainly controlled by sterol regulatory element binding 

protein 1c (SREBP1c), which has been shown to regulate the expression of 

several key genes of fatty acid and triglyceride metabolism in cultured 
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fibroblasts and adipocytes and in the livers of transgenic mice 185,186. 

Additionally, SREBP1c has been suggested to be involved in adipogenesis 

by activating PPARγ 186.  

Furthermore, the plasma glucose levels that are directly associated with 

glucose intake can also stimulate lipogenesis. The effect of glucose on the 

expression of lipogenic genes is primarily regulated by carbohydrate-

responsive-element-binding protein (ChREBP), which induces the 

expression of the genes of most of the enzymes involved in lipogenesis 187–

189.  

 

2.5.2.  Fatty acid uptake 

 

In addition to de novo FA synthesis, FAs can be obtained from 

circulating triglycerides transported by VLDL produced in the liver or from 

chylomicrons produced by the absorption of fat in the small intestine. To 

store FAs in WAT, triglycerides from VLDL and chylomicrons are processed 

in the extracellular space by lipoprotein lipase (LPL). LPL is secreted by 

adipocytes and released into blood vessels, where it interacts with VLDL 

and chylomicrons to liberate FAs and monoacylglycerol (MAG) and facilitate 

their uptake 190. Insulin is the major regulator of LPL in WAT. In mature 

adipocytes, insulin stimulates LPL by increasing its mRNA expression and 

regulating its activity through both posttranscriptional and posttranslational 

mechanisms 190.  

The FAs generated by the action of LPL on lipoproteins are rapidly taken 

up by adipocytes. FAs can diffuse passively across the plasma membrane 

by a mechanism called flip-flop 191,192 or enter actively through certain 

membrane proteins, including fatty acid translocase (CD36/FAT) 193, 

caveolin 194, fatty acid transport protein (FATP) 195 and fatty acid binding 

protein plasma membrane (FABPpm) 196. 
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2.5.3.  Triglyceride synthesis 

 

In adipocytes, FA esterification with CoA followed by acylation of the 

glycerol backbone represent the last steps in the formation of 

triglycerides  197. FAs can be esterified by the acyl-CoA synthetase activity 

of FATPs during FA uptake or by long-chain fatty acyl-CoA synthetase 

which acts in synergy with FATPs 198. Subsequently, glycerol 3-phosphate 

acyltransferase (GPAT) catalyzes the addition of acyl-CoA to position 1 of 

glycerol 3-phosphate to give lysophosphatidic acid (LPA). Then, a second 

acyl-CoA is added to position 2 of LPA through the action of 

lysophosphatidate acyltransferase (AGPAT) to produce phosphatidic acid 

(PA). Next, PA is phosphorylated by phosphatidic acid phosphatase (PAP) 

to produce diacylglycerol (DAG). Finally, the third acid is added on DAG by 

several enzymatic activities to produces triacylglycerol (TAG). 

 

2.5.4.  Lipolysis 

 

During lipolysis , the hydrolysis of triglycerides results in the efflux of 

non-esterified fatty acids (NEFA) and glycerol into the blood stream, which 

can then be used as a substrate by other tissues. Each FA moiety is 

sequentially removed from triglyceride to produce DAG, then MAG, and 

finally glycerol itself. In WAT, this lipolytic cascade is catalyzed by at least 

three lipases: adipose triglyceride lipase (ATGL), hormone sensitive lipase 

(HSL), and monoacylglycerol lipase (MGL), which have been proposed to 

act sequentially in the conversion of triglyceride to glycerol and three 

NEFAs 199.  

The process starts when epinephrine or glucagon bind to their respective 

receptors and trigger the activation of adenylate cyclase (AC), which raises 

cAMP levels and subsequently activates protein kinase A (PKA) 200. 

Activated PKA phosphorylates both perilipin (PLIN) and HSL. The 

phosphorylation of PLIN leads to the release of the ATGL coactivator 

abhydrolase domain containing 5 (ABHD5, also known as CGI-58) 201,202. 
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ABHD5 then increases the activity of ATGL, which hydrolyses TG into DAG 
203. Phosphorylated HSL hydrolyzes the DAG produced by ATGL to give 

MAG.  

FFAs are transported to the plasma membrane and bound to adipocyte 

fatty acid-binding protein (aP2, also known as FABP4). Then, they are 

transported across the plasma membrane into the circulation by one of 

several fatty acid transport proteins. The glycerol released through the 

action of MGL is transported across the plasma membrane via the action of 

aquaporin 7.  

An alternative pathway in the regulation of lipolysis has been proposed. 

Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which 

are secreted by the heart, have been reported to stimulate lipolysis in 

human adipocytes through a cGMP/PKC-signaling pathway leading to the 

phosphorylation and activation of HSL 204,205 

Lipolysis is a process regulated by hormones. Insulin can inhibit lipolysis 

through the activation of protein kinase B (PKB, also known as AKT), which 

hydrolyzes cAMP and reduces PKA activity 206. Epinephrine (as well as 

norepinephrine) and glucagon stimulate fatty acid release from triglycerides 

stored in adipocyte fat droplets, whereas the action of insulin counteracts 

the actions of these two hormones and induces fat storage. 

 

2.5.5.  Fatty acid oxidation 

 

 Fatty acid β-oxidation  in mitochondria is a process that shortens the 

FA into acetyl-CoA, which can subsequently be converted into ketone 

bodies or can be incorporated into the TCA cycle for full oxidation. To 

initiate the process, FAs are activated by acyl-CoA-synthetase to acyl-CoA 

in the cytosol to enable FAs to cross the mitochondrial membrane. While 

short- and medium-chain FAs can pass the mitochondrial membrane 

without activation, activated long-chain FAs need to be transported across 

the membrane in a carnitine-dependent manner 207. Fatty acyl-CoA is 

converted to fatty acyl-carnitine by carnitine palmitoyltransferase I (CPT1) in 
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the outer mitochondrial membrane for translocation into the intermembrane 

space. Fatty acyl-carnitine is then transported across the inner 

mitochondrial membrane by carnitine acylcarnitine translocase. Carnitine 

palmitoyltransferase 2 (CPT2), which is expressed on the inner 

mitochondrial membrane, converts fatty acyl-carnitine back to acyl-CoA for 

fatty acid β-oxidation inside the mitochondrial matrix.  

In the postprandial state, β-oxidation is suppressed due to the direct 

control of glucose and insulin over the rate of fatty acid entry into the 

mitochondria. As described previously, insulin facilitates de novo 

lipogenesis through the upregulation and activation of SREBP1c and the 

induction of ACC. Malonyl-CoA produced by ACC activity inhibits the activity 

of CPT1 and thereby decreases the rate of β-oxidation by reducing fatty 

acid entry into mitochondria 208. Under fasting conditions, glucagon 

promotes fatty acid oxidation. Glucagon signaling activates AMP-activated 

protein kinase (AMPK), which in turn inactivates ACC1 and ACC2 by 

phosphorylation and results in a blockade of the synthesis of malonyl-CoA 
209.  

Peroxisome proliferator-activated receptors (PPARs) are nuclear 

receptors that act as heterodimers with retinoid X receptors (RXRs) to 

regulate a broad set of genes involved in lipid uptake, storage, and 

metabolism, including genes encoding mitochondrial FA oxidation enzymes 
210. 

In the organism’s adaptation to fasting conditions, PPARα acts as 

master transcriptional regulator of FA utilization 211. PPARα target genes are 

involved in FA transport and uptake and in β-oxidation, and their 

transcriptional activation contributes to FA homeostasis in lipid-metabolizing 

tissues 211. Similar to PPARα, PPARδ regulates FA oxidation through the 

activation of its target genes but also controls glucose uptake by modulating 

the expression of GLUT4 211,212.  
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Figure 14. Fatty acid metabolism in white adipose tissue . The main 
metabolic functions of WAT are the storage of energy in the form of triglycerides 
and the mobilization of this energy when it is required by the body. In WAT, 
triglycerides can be synthesized following the uptake and metabolism of glucose 
by the process of de novo lipogenesis and/or after the uptake of free fatty acids 
from the circulation. The triglycerides stored in the adipocyte can be hydrolyzed 
by the process of lipolysis, which delivers free fatty acids to the circulation. 
These processes are regulated by the insulin, the adrenergic and atrial 
natriuretic hormone pathways. α2-AR, alpha 2-adrenergic receptor; β–AR, beta-
adrenergic receptor; 5’-AMP, 5’-adenosine monophosphate; AC, adenylate 
cyclase; ACC1, acetyl-CoA carboxylase 1; ACLY, ATP citrate lyase; ACS, acyl-
CoA synthetase; AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ANP, 
atrial natriuretic peptide; ATGL, adipose triglyceride lipase; BNP, brain 
natriuretic peptide; cAMP, cyclic adenosine monophosphate; cGMP, cyclic 
guanosine monophosphate; ChREBP, carbohydrate-responsive element-
binding protein; CM, chylomicrons; DAG, diacylglycerol; DGAT, diacylglycerol 
acyltransferase; DHAP, dihydroxyacetone phosphate; F1,6BP, fructose 1,6 
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bisphosphate; FAS, fatty acid synthase; FFA, free fatty acid; G3P, glycerol-3-
phosphate; G6P, glucose-6-phosphate; GADH, glyceraldehyde-3-phosphate; 
GC, guanylate cyclase; GLUT4, glucose transporter 4; GPAT, glycerol-3-
phosphate acyltransferase; GPDH, glycerol-3-phosphate dehydrogenase; HSL, 
hormone sensitive lipase; LPA, lysophosphatidic acid; LPL, lipoprotein lipase; 
LxR, Liver X receptor; MAG, monoacylglycerol; MGL, monoacylglycerol lipase; 
PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; PDE3B, 
phosphodiesterase 3B; PI3K, phosphatidylinositol 3-kinase; PKA, cAMP-
dependent protein kinase; PKG, cGMP-dependent protein kinase; PLIN, 
perilipin; PPARα, peroxisome proliferator-activated receptor alpha; PPARδ, 
peroxisome proliferator-activated receptor delta; SREBP1c, sterol regulatory 
element binding protein 1c; TAG, triacylglycerol; VLDL, very low density 
lipoprotein. Adapted from 126. 
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This doctoral thesis focused on one of the main research lines of the 

GEMMAIR (Grup d'Estudi de Malalties Metabòliques i Insulin Resistència) 

research group. GEMMAIR has a track record of over 25 years of 

experience in the study of liver and chronic metabolic diseases and more 

than 15 years in the study of the physiopathology of obesity and its 

associated metabolic diseases.  

 

Justification for the research: 

 

• Obesity is a health epidemic affecting more than 20% of Western 

populations and has a steadily increasing rate of incidence.  

• Obesity significantly increases the risk and worsens the prognosis 

of many diseases, including diabetes mellitus type 2 (DM2), 

cardiovascular disease, hyperlipidemia, non-alcoholic fatty liver 

disease and several types of cancer.  

• Not all obese patients have the same risk of developing 

comorbidities. 

• The majority of obese patients have impaired adipose tissue 

function, which is characterized by adipocyte hypertrophy, hypoxia, 

and a variety of stresses and inflammatory processes within 

adipose tissue. 

• Adipose tissue dysfunction and ectopic fat accumulation seem to be 

important factors determining an individual's risk of developing 

metabolic and obesity-related comorbidities.  

• The anatomical distribution of adipose tissue plays an important 

role in the development of metabolic disorders.  

• Subcutaneous and visceral adipose tissues are distinct and 

produce different metabolic effects.  

• Physiological and molecular studies have suggested that fat stored 

in subcutaneous adipose depots are not directly implicated in the 

etiology of insulin resistance as this fat appears to play a “buffering” 
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role in taking up fatty acids and preventing the exposure of other 

insulin-sensitive tissues to their detrimental effects.  

 

The underlying mechanisms leading to adipose tissue dysfunction and, 

the different metabolic effects of subcutaneous and visceral adipose tissue 

in the development of obesity and its related comorbidities are of particular 

interest in trying to understand the physiopathology of obesity. 

 

We therefore hypothesized  that the expression of genes and 

transcription factors involved in the regulation of fatty acid metabolism could 

be altered in obese patients and that this alteration may be related to 

adipose tissue dysfunction. As a result, the main objectives of this thesis 

were to investigate fatty acid metabolism in the subcutaneous and visceral 

adipose tissue of obese women. To that end, six specific objectives were 

proposed: 

 

Study 1: Fatty acid metabolism in morbidly obese women 

 

1.1 To evaluate the expression of key genes involved in the de novo 

synthesis of fatty acids (LxRα, SREBP1c, ACC1, FAS), the uptake and 

transport of fatty acids (CD36, FABP4), adipogenesis (PPARγ, 

adiponectin), fatty acid oxidation (PPARα, PPARδ), and inflammation 

(IL6, TNFα) in the subcutaneous and visceral adipose tissue of 

morbidly obese patients and normal-weight healthy subjects. 

1.2 To analyze the protein expression of the genes that are differentially 

expressed in each group by Western blot analysis.  

1.3 To compare the expression of the genes studied between 

subcutaneous and visceral adipose tissue.  
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Study 2: Fatty acid metabolism in moderately obese 

women 

 

2.1 To evaluate the expression of key genes involved in the de novo 

synthesis of FAs (ACC1, FAS), fatty acid oxidation (PPARδ, PPARα) 

and inflammation (IL6, TNFα) in the subcutaneous and visceral 

adipose tissue of moderately obese and normal-weight control 

women to evaluate whether the alterations in fatty acid metabolism in 

the AT of morbidly obese women found in study 1 are also 

manifested in moderately obese women. 

2.2 To analyze the protein expression of the genes that are differentially 

expressed in each group by Western blot analysis.  

2.3 To compare the expression of key genes involved in the de novo 

synthesis of FAs (ACC1, FAS) and fatty acid oxidation (PPARδ, 

PPARα) in the subcutaneous and visceral adipose tissue of 

moderately obese and morbidly obese women.  
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Downregulation of Lipogenesis and Fatty Acid

Oxidation in the Subcutaneous Adipose Tissue

of Morbidly Obese Women
Teresa Auguet1,2, Esther Guiu-Jurado1, Alba Berlanga1, Ximena Terra1, Salom�e Martinez3, Jos�e Antonio Porras2,

Andra Ceausu2, F�atima Sabench4, Merc�e Hernandez4, Carmen Aguilar1, Joan Josep Sirvent3, Daniel Del Castillo4

and Crist�obal Richart1,2

Objective: The aim of this study was to analyse the expression of crucial genes in fatty acid metabolism

in visceral (VAT) and subcutaneous (SAT) adipose tissue samples from morbidly obese women.

Methods: The VAT and SAT expression of key genes in 145 morbidly obese women (MO, BMI> 40 Kg/

m2) and 18 normal weight control women by RT-PCR and Western Blot was analyzed.

Results: In SAT, the expression levels of the genes related to lipogenesis and fatty acid oxidation were

significantly lower in MO than in controls. In VAT, most of the lipogenic genes studied had similar expres-

sion levels in MO and control cohort. Regarding inflammation, IL6 was significantly higher in MO in both

tissues whereas TNFa mRNA expression was significantly higher only in VAT.

Conclusions: Our results indicate that in morbidly obese patients, lipogenesis and fatty acid oxidation

are downregulated in SAT, whereas in VAT these pathways are almost unchanged. By contrast, inflamma-

tion is induced in both adipose tissues. It is hypothesized that, in this type of extreme obesity, SAT works

to limit any further development of fat mass, decreasing the expression of lipogenic and FA oxidative

genes whereas VAT depot might have lost this capability.

Obesity (2014) 22, 2032–2038. doi:10.1002/oby.20809

Introduction
Obesity is a health epidemic affecting more than 20% of Western

populations with steadily increasing incidence (1). Obesity signifi-

cantly increases the risk and prognosis of many diseases, including

diabetes mellitus type 2 (DM2), cardiovascular disease, hyperlipid-

emia, nonalcoholic fatty liver disease, and several types of cancer

(2). However, not all obese patients have the same risk of develop-

ing these disorders. Adipose tissue dysfunction and ectopic fat accu-

mulation seem to be important factors determining an individual’s

risk of developing metabolic and cardiovascular comorbidities of

obesity (3-5).

Adipocyte functionality is lost during obesity and has been shown to

be linked to adipocyte hypertrophy, disequilibrium between lipogen-

esis and lipolysis, impaired transcriptional regulation of the key fac-

tors that control adipogenesis and a lack of sensitivity to external

signals, as well as a failure in the signal transduction process,

among other factors (6).

Sterol regulatory element binding protein 1c (SREBP1c) is a tran-

scription factor that has an important role in the control of adipogen-

esis, stimulating the nuclear hormone receptor PPARc, which is the

central regulator of adipogenesis and plays a dominant role in fat

tissue development (6,7). SREBP1c is now well established as a key
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transcription factor for the regulation of lipogenic enzymes such as

fatty acid synthase (FAS) and acetyl-CoA carboxilase (ACC1) in

liver. However, the mechanisms of lipogenic gene regulation in adi-

pocytes remain unclear (6,8-11). Further studies are needed to inves-

tigate whether it has a role in the development of obesity in

humans.

The anatomical distribution of adipose tissue plays an important role

in the development of metabolic disorders. Subcutaneous (SAT) and

visceral (VAT) fat depots are distinct and produce different meta-

bolic effects (12). It is known that VAT adipocytes are more meta-

bolically active, more sensitive to lipolysis and more insulin-

resistant than SAT (13). A number of experimental clinical interven-

tions have suggested that SAT may not be implicated directly in the

etiology of insulin resistance as it appears to play a “buffering” role

in taking up fatty acids and preventing the exposure of other

insulin-sensitive tissues to their detrimental effects (14).

The study of VAT and SAT fat depots may help us to understand

the physiopathology of the disorders related to obesity. Some studies

have analyzed the gene and protein expression or activity levels of

some lipogenic enzymes in human adipose tissue and showed that

they were lower in obese patients compared with lean subjects (15-

20).

Based on that data and to better understand the mechanisms causing

or maintaining the adipose tissue dysfunction, the aim of this study

was to investigate fatty acid metabolism in VAT and SAT by evalu-

ating the expression of key genes involved in de novo synthesis of

fatty acids (LxRa, SREBP1c, ACC1, FAS), the uptake and transport

of fatty acids (CD36, FABP4), adipogenesis (PPARc, Adiponectin),

fatty acid oxidation (PPARa, PPARd), and finally, related to inflam-

mation (IL6, TNFa) from morbidly obese (MO) patients and

normal-weight healthy subjects.

Methods

Subjects
The study was approved by the institutional review board. All partici-

pants gave written informed consent for participation in medical

research. Visceral (VAT) and subcutaneous (SAT) adipose tissue was

analyzed from 163 Spanish women of Western European descent: 145

MO (BMI> 40 kg/m2) and 18 normal-weight controls (BMI< 25 kg/

m2). Adipose tissue samples were obtained from the MO women who

underwent bariatric surgery by laparoscopic gastric bypass, and from

normal-weight women who underwent laparoscopic cholecystectomy

for benign gall bladder disease or laparoscopic hiatus hernia repair.

SAT and VAT biopsies were taken from the superficial right hypo-

chondrial region and from the epiploon region, respectively. Each

sample was obtained by the same specialist.

MO women and controls were age matched. The weight of all sub-

jects in the MO group was stable with no fluctuation greater than

2% of body weight for at least 3 months prior to surgery. The exclu-

sion criteria were: (1) patients using antidiabetics or lipid-lowering

medications, including PPARa or -c agonists, (2) diabetic women

that were receiving insulin or on medication likely to influence

endogenous insulin levels, (3) menopausal and post-menopausal

women and subjects receiving contraceptive treatment, and (4)

patients who had an acute illness, current evidence of acute or

chronic inflammatory or infectious diseases or end-stage malignant

diseases.

In the MO group, 59 women had type 2 diabetes mellitus (T2DM),

a diagnosis based on ADA guidelines (21).

Biochemical analyses
A complete anthropometrical, biochemical, and physical examina-

tion was carried out on each patient. Body height and weight were

measured with the patient standing in light clothes and shoeless.

BMI was calculated as body weight divided by squared height (kg/

m2). The subjects’ waist circumference (WC) was measured with a

soft tape midway between the lowest rib and the iliac crest. Labora-

tory studies included glucose, insulin, glycated haemoglobin

(HbA1c), total cholesterol, high-density lipoprotein cholesterol, low-

density lipoprotein cholesterol and triglycerides, all of which were

analyzed using a conventional automated analyser after overnight

fasting. Insulin resistance (IR) was estimated using the homeostasis

model assessment of IR (HOMA2-IR) (22).

Circulating levels of TNFRI, TNFRII (Biosource Europe S.A.,

Nivelles, Belgium), HMW adiponectin (Millipore, Missouri, USA),

C-reactive protein (CRP) (Dade Behring, Marburg, Germany), leptin

(Biovendor, Modrice, Czech Republic), and IL6 (Quantikine, R&D

Systems, Minneapolis, USA) were measured in duplicate using

enzyme-linked immunosorbent assays (ELISA) following the manu-

facturer’s instructions.

RNA isolation and real-time PCR
SAT and VAT samples obtained were conserved in RNAlater (Sigma,

Barcelona, Spain) for 24 h at 4�C and then stored at 280�C. Total

RNA from SAT and VAT was isolated according to the manufac-

turer’s protocol RNeasy midi kit (Qiagen, Barcelona, Spain). RNA

was digested with DNase I (RNase-Free DNase set; Qiagen). First-

strand cDNA was synthesized using an equal amount of total RNA

with High Capacity RNA-to-cDNA Kit (Applied Biosystems, Madrid,

Spain). Real-time quantitative PCR was carried out in a final volume

of 20 ll, which contained 10 ng of reverse-transcribed cDNA, 10 ll of

2X Taq Man Fast Universal PCR Master Mix (Applied Biosystems)

and 1 ll Taq Man Assay predesigned by Applied Biosystems for the

detection of LxRa, SREBP1c, ACC1, FAS, CD36, FABP4, PPARc,

adiponectin, PPARa, PPARd, IL6 and TNFa gene, and for GAPDH,

which was used as the housekeeping gene. All reactions were carried

out in duplicate in 96-well plates using the 7900HT Fast Real-Time

PCR systems (Applied Biosystems).

Western blot analysis
Protein levels were evaluated in a subgroup of 24 subjects (MO,

n5 12; Control, n5 12) from whom enough tissue was available.

SAT and VAT samples were homogenized in a medium containing

50 mM HEPES, 150 mM NaCl, 1 mM DTT, 0.1% SDS, and 1%

protease inhibitor cocktail (Thermo Scientific, Madrid, Spain). Pro-

tein concentrations were determined using a BCA assay kit (Thermo

Scientific). For Western blot analysis, equal amounts of protein (35

mg) were separated by SDS/PAGE (7% acrylamide) and transferred

onto nylon membranes. Nonspecific binding was blocked by prein-

cubation of the membranes with 5% (w/v) nonfat milk powder in
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0.1% PBS-Tween for 1 h. Specific protein expression was detected

by incubating with rabbit anti-ACC1 (Cell Signaling Technology,

Barcelona, Spain) and rabbit anti-FAS (Cell Signaling Technology)

antibodies overnight at 4�C, followed by an incubation with anti-

mouse IgG (GE Healthcare, Freiburg, Germany) or anti-rabbit IgG

(GE Healthcare) antibodies for 2 h at room temperature and devel-

oped with SuperSignal West Pico Chemiluminescent or SuperSignal-

Femto Maximum Sensitivity Substrate (Thermo Scientific). The den-

sity of specific bands was determined by densitometry and

quantified by the Phoretix1D software from TotalLab. The expres-

sion pattern of all proteins was normalized by b-actin (Sigma) adi-

pose expression.

Statistical analysis
All the values reported are expressed as mean6S.D (standard devi-

ation) and were analyzed using SPSS/PC1 statistical package for

windows (version 19.0; SPSS, Chicago, IL). Differences between

groups were calculated using Student’s t-test or the one-way

ANOVA analysis. The strength of association between variables was

calculated using Pearson’s method for parametric variables and

Spearman’s q-correlation test for nonparametric contrasts. P values

<0.05 were considered statistically significant.

Results
Baseline characteristics of the subjects

in the study
Patients’ baseline characteristics given in Table 1 show the mean

and SD of the variables of interest. Patients were separated into con-

trol (BMI< 25 kg/m2), and MO subjects (BMI> 40 kg/m2). Bio-

chemical analyses indicate that MO women had significantly higher

levels of HOMA2-IR, fasting glucose, insulin, HbA1c, triglycerides

and systolic blood pressure (SBP) than the control group did. Cho-

lesterol HDL (HDL-c) was significantly lower in the MO patients

than in the control group.

We further sub-classified the MO cohort according to the presence

of diabetes into: diabetic (D, n5 59) and nondiabetic (ND, n5 86)

patients. As expected, the results indicate that glucose

(ND5 97.86 1.4, D5 160.06 5.8 mg/dL, P< 0.001), HbA1c

(ND5 5.16 0.1, D5 7.26 2.7%, P< 0.001) and triglyceride levels

(ND5 153.56 7.8, D5 186.76 11.4 mg/dL, P5 0.018) were higher

in the D sub-group compared with ND.

Circulating cytokine levels also varied between normal-weight and

obese subjects. Table 1 shows the circulating levels of HMW adipo-

nectin, CRP, TNFRI, TNFRII, leptin and IL6. The results indicate that

the circulating levels of CRP and leptin increased in the MO cohort

whereas HMW adiponectin levels decreased in this group. Further-

more, adipocytokine levels differed between diabetics and nondia-

betics. TNFRI levels were higher in diabetics (ND5 2.86 0.1,

D5 3.36 0.2 ng/mL, P< 0.001) whereas adiponectin was lower in

this group (ND5 3.26 0.6, D5 5.86 0.6 mg/mL, P< 0.001).

Evaluation of the expression of genes related to

lipid metabolism and inflammation in SAT and

VAT and their protein expression
We analyzed the expression of genes related to de novo synthesis of

fatty acids (FAs) (LxRa, SREBP1c, ACC1, FAS), the uptake and

transport of FAs(CD36, FABP4), adipogenesis (PPARc, adiponec-

tin), FA oxidation (PPARa, PPARd), and related to inflammation

(IL6, TNFa).

We first compared MO and control groups. The results indicate that the

visceral mRNA expression of genes related to de novo synthesis of FAs

in MO were similar to those of control women. Only, FAS mRNA

expression was significantly lower in MO (Table 2). Regarding SAT,

the results indicate that the mRNA expression levels of LxRa,

SREBP1c, ACC1, and FAS were significantly lower in MO (Table 3).

In order to confirm these results regarding gene expression, we also

analyzed the protein expression of ACC1 and FAS by Western Blot

in both adipose tissues. There were similar results with respect to

ACC1 and FAS protein expression and those obtained in the gene

expression analysis. ACC1 and FAS protein expression was signifi-

cantly lower in MO in both adipose tissues (Figure 1).

Additionally, we studied the genes related to the uptake and trans-

port of FAs. In VAT, we found that CD36 and FABP4 mRNA

expression were significantly lower in MO compared to controls

(Table 2) whereas in SAT, CD36 was significantly higher in the

obese group (Table 3).

TABLE 1 Characteristics of the cohort studied

Control

(n518)

Morbidly

obese

(n5145)

Variables Mean6SD Mean6SD P-value

Age (years) 52.66 309 47.06 1.0 0.184

Weight (kg) 61.56 2.4 122.56 1.6 <0.001

WC (cm) 75.76 3.9 130.96 1.3 <0.001

BMI (kg/m2) 23.06 0.4 47.66 0.5 <0.001

Glucose (mg/dl) 92.66 2.2 123.56 3.5 <0.001

Insulin (mUI/l) 6.66 1.1 21.26 1.6 <0.001

HbA1c (%) 4.66 0.1 6.06 0.2 <0.001

HOMA2-IR 1.16 0.2 2.86 0.2 0.012

SBP (mmHg) 127.26 4.6 136.56 1.4 0.022

DBP (mmHg) 73.66 2.4 77.86 1.2 0.185

Total cholesterol (mg/dl) 179.76 7.3 173.06 2.8 0.403

HDL-C (mg/dl) 53.06 4.1 39.86 0.8 0.007

LDL-C (mg/dl) 103.96 7.3 100.46 2.5 0.653

Triglycerides (mg/dl) 109.26 14.6 168.96 6.8 0.001

Adipo/cytokine levels

HMW adiponectin (mg/ml) 11.96 1.8 7.46 4.1 <0.001

IL6 (pg/ml) 2.16 0.7 3.06 0.3 0.848

Leptin (ng/ml) 34.36 13.0 255.66 24.0 <0.001

TNFRI (ng/ml) 2.56 0.4 3.06 0.1 0.221

TNFRII (ng/ml) 4.26 0.7 5.16 0.3 0.195

CRP (mg/dl) 0.76 0.4 2.66 0.5 0.002

P-values in bold indicate significant differences respect control group (P< 0.05).
Data are expressed as mean6SD.
BMI, body mass index; DBP, diastolic blood pressure; HbA1c, glycosylated hae-
moglobin; HDL-C, high density lipoprotein; HOMA2-IR, homeostatic model assess-
ment 2- insulin resistance; LDL-C, low density lipoprotein; SBP, systolic blood
pressure; WC, waist circumference.
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Regarding FA oxidation genes, the results indicate that visceral

mRNA expression were similar to those of control women (Table

2), while in SAT, PPARa and PPARd mRNA expression were sig-

nificantly lower in MO (Table 3).

We also studied the genes related to adipogenesis. In VAT, we

found that PPARc and adiponectin mRNA expression in MO were

similar to those of control women whereas in SAT adiponectin

mRNA expression was significantly lower in MO.

Finally, we found that IL6 and TNFa mRNA expression in VAT

were significantly higher in MO. In SAT, IL6 mRNA expression

was significantly higher in MO.

TABLE 2 Visceral adipose tissue expression of genes related

to de novo fatty acid synthesis, fatty acid oxidation, uptake

and transport and inflammation in morbidly obese patients

Gene expression Control (N5 18) MO (N5145) P-value

Lipogenesis

LxRa 0.66 0.17 0.56 0.03 0.301

SREBP1c 1.16 0.31 0.86 0.04 0.091

ACC1 1.16 0.26 0.86 0.05 0.114

FAS 7.86 2.84 1.36 0.1a 0.05

Fatty acid oxidation

PPARa 0.56 0.2 0.66 0.03 0.565

PPARd 0.86 0.16 0.86 0.04 0.859

Fatty acid uptake and transport

PPARg 14.56 4.68 146 0.91 0.892

CD36 40.46 8.92 27.76 2.16a 0.05

FABP4 4186 119.03 210.46 17.7a 0.002

Inflammation

IL6 0.5 7.66 1.11a <0.001

TNFa 0.04 0.26 0.03a 0.001

AdipoQ 56.4 53.96 3.81 0.469

MO, morbidly obese subjects.
aIndicates significant differences respect control group (P<0.05). Data are
expressed as mean6SD.

TABLE 3 Subcutaneous adipose tissue expression of genes

related to de novo fatty acid synthesis, fatty acid oxidation,

uptake and transport and inflammation in morbidly obese

patients

Gene expression Control (N518) MO (N5145) P-value

Lipogenesis

LxRa 0.46 0.06 0.36 0.02a 0.041

SREBP1c 1.96 0.67 0.76 0.07a <0.001

ACC1 526 26.87 0.66 0.05a <0.001

FAS 41.86 28.85 1.56 0.15a <0.001

Fatty acid oxidation

PPARa 12.66 71.15 0.66 0.03a <0.001

PPARd 14.76 0.58 0.66 0.03a <0.001

Fatty acid uptake and transport

PPARg 24.56 9.05 16.46 1.24 0.374

CD36 47.96 4.65 93.26 83.53a <0.001

FABP4 607.56 147.12 605.46 98.4 0.991

Inflammation

IL6 36 1.89 246 3.55a <0.001

TNFa 0.16 0.02 0.16 0.01 0.784

AdipoQ 51.76 6.77 30.76 2.42a 0.009

MO, morbidly obese subjects.
aIndicates significant differences respect control group (P< 0.05). Data are
expressed as mean6SD.

FIGURE 1 Subcutaneous (SAT) and visceral (VAT) adipose tissue protein expression of lipogenic enzymes in MO patients. Representative Western blot
analysis showing ACC1, FAS and b-actin protein expression and bar graphs showing the quantification of bands normalized by values of b-actin bands
(n5 12 for each group). Results are shown as mean6SD. P< 0.05 are considered statistically significant.
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We also compared the expression levels of these genes in diabetic

MO women and nondiabetic. We did not find any differences in any

of the studied genes (data not shown).

Comparison between SAT and VAT gene

expression
We compared the mRNA expression of genes related to de novo

synthesis of FAs, the uptake and transport of FAs, FA oxidation,

and related to inflammation between VAT and SAT. In the MO

cohort, when we studied de novo FA synthesis, the results indicate

that ACC1 and LxRa mRNA expression were significantly higher in

VAT compared to SAT (ACC1: P5 0.005, LxRa: P< 0.001), whereas

FAS and SREBP1c mRNA expression were similar in both tissues. In

contrast, the expression of genes related to FA uptake and transport

(CD36 and FABP4) were significantly lower in VAT versus SAT

(CD36: P< 0.001, FABP4: P< 0.001). Regarding FA oxidation,

PPARd and PPARa expression in VAT were higher than in SAT

(PPARd: P< 0.001, PPARa: P5 0.036). Finally, when we compared

the mRNA expression of inflammatory genes between both tissues, the

results showed that TNFa expression was higher in VAT (P5 0.001).

By contrast, IL6 expression was increased in SAT (P< 0.001).

We also compared the expression of these genes in VAT and SAT

from normal-weight subjects; however, we did not find significant

differences between tissues (data not shown).

Relationship of VAT and sat gene expression

with anthropometric and metabolic variables in

morbidly obese patients
In VAT, we found a positive correlation between ACC1 expression

and leptin levels (r5 0.301, P5 0.035) and also between FAS

expression and CRP circulating levels (r5 -0.270, r5 0.033) in the

MO group. LxRa expression correlated positively with IL6 levels

(r5 0.473, P5 0.019). Our results showed positive correlations

between PPARd expression and levels of leptin (r5 0.304,

P5 0.042), TNFRI (r5 0.441, P5 0.002) and TNFRII (r5 0.337,

P5 0.024). CD36 and adiponectin expression correlated positively

with HMW adiponectin levels (CD36: r5 0.345, P5 0.039; adipo-

nectin: r5 0.387, P5 0.022). We also found negative correlations

between TNFa expression and the levels of IL6 (r5 -0.342,

P5 0.055) and CRP (r5 -0.450, P5 0.008). Our results showed

that PPARa expression correlated negatively with diastolic blood

pressure (DBP) (r5 -0.306, P5 0.008), and also TNFa expression

with SBP (r5 -0.359, P5 0.034). Finally, FABP4 expression corre-

lated positively with weight, BMI and WC (weight: r5 0.377,

P5 0.021; BMI: r5 0.346, P5 0.036; WC: r5 0.888, P5 0.044).

In SAT, we found a positive correlation between ACC1 expression and

HDL-c levels (r5 0.224, P5 0.015). LxRa and PPARd expression cor-

related negatively with WC (LxRa: r5 -0.307, P5 0.019; PPARd:

r5 -0.268, P5 0.027). Our results also showed negative correlations

between PPARc expression and total cholesterol circulating levels

(r5 -0.183, P5 0.059), and between PPARa expression and insulin

levels (r5 -0.285, P5 0.017). CD36 expression correlated negatively

with levels of total cholesterol (r5 -0.371, P5 0.020) and LDL-C

(r5 -0.336, P5 0.045). We found negative correlations between IL6

expression and WC (r5 -0.813, P5 0.026), total cholesterol (r5 -

0.472, P5 0.003) and LDL-C circulating levels (r5 -0.432,

P5 0.011). Also, we found positive correlations between ACC1

expression and HMW adiponectin levels (r5 0.377, P5 0.009), and

between TNFa expression and leptin circulating levels (r5 0.440,

P5 0.007). Finally, PPARc correlated negatively with levels of TNFRI

(r5 -0.318, P5 0.020) and CRP (r5 0.260, P5 0.010).

Correlations between the expression of genes

related to de novo FA synthesis, FA oxidation,

and related to uptake and transport of FAs in

VAT and SAT from morbidly obese patients
The analysis of the relationship of genes related to de novo FA synthesis

indicate that SREBP1c was positively related to LxRa and ACC1 in

VAT (LxRa: r5 0.393, P< 0.001; ACC1: r5 0.690, P< 0.001). Also,

LxRa and ACC1 were strongly related (r5 0.664, P< 0.001). In SAT,

all the genes in this pathway were positively related (Figure 2).

The correlations between the expression of genes related to FA oxi-

dation indicate that PPARa and PPARd were related in both tissues

FIGURE 2 Subcutaneous adipose tissue correlations of genes related to de novo
fatty acid synthesis and related to fatty acid oxidation in MO patients.
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(VAT: r5 0.497, P< 0.001; SAT: r5 0.688; P< 0.001). Regarding

the analysis of the relationship of genes related to the uptake and

transport of FAs and adipogenesis, we found that CD36 was related

to PPARc (VAT: r5 0.673, P< 0.001; SAT: r5 0.398, P5 0.012)

and to FABP4 (VAT: r5 0.545, P5 0.001) in both VAT and SAT.

In addition, PPARc and FABP4 were also related (VAT: r5 0.372,

P5 0.023; SAT: r5 0.659, P< 0.001). Finally, the correlations

between the expression of genes related to inflammation indicate

that IL6 and TNFa were related in VAT (r5 0.515, P5 0.002).

Discussion
In this study, we analyzed the expression of crucial genes in fatty

acid metabolism in VAT and SAT samples from MO women and

normal-weight subjects. To date, few studies have been reported in

these two adipose tissues simultaneously.

This study demonstrates that mRNA gene expression of the main

enzymes involved in de novo fatty acid synthesis (LxRa, SREBP1c,

ACC1 and FAS) were significantly lower in MO women than those

of control group in the SAT depot, whereas in VAT only FAS gene

expression was lower. Moreover, the expression of key genes related

to fatty acid oxidation (PPARa, PPARd) was significantly lower in

SAT in MO. However, the gene expressions of CD36, involved in

fatty acid uptake and transport, and of IL6, a pro inflammatory fac-

tor, were higher in SAT.

Our findings indicate that, in women with extreme obesity, the lipo-

genic pathway is, at gene and protein expression levels, downregulated

in SAT. During a dynamic obesity period, an increase in the lipogenic

capacity of adipose tissue is expected. However, our results agree with

other authors who suggest that the low expression of lipogenesis path-

way in MO cohort, with a lasting fat excess, could be a late adaptative

process, aimed at limiting further development of fat mass (23). Inter-

estingly, we also found the same pattern regarding PPARa and PPARd

involved in FA oxidation pathway. They both were downregulated in

SAT in MO women. Furthermore, the positive correlations found

between the different genes involved in these pathways strengthen

their role in the adaptative process of SAT.

Regarding the expression of genes related to the uptake and transport

of FAs, CD36 and FABP4 were lower in VAT in MO. A recent study

described that FABP4 gene expression was significant lower in MO

than in moderately obese or lean subjects in VAT and SAT depot (24).

In contrast, we found that CD36 was significantly higher in SAT in

the MO group. These results suggest that in MO patients the uptake

and transport of FAs could be downregulated only in VAT. Regarding

that, it is well known that visceral obesity is associated to IR, attrib-

uted in part to the increases in circulating free FAs concentrations

(25). Insulin is an anabolic hormone known to direct the storage and

utilization of energy in adipocytes (26). When cells become insulin

resistant, they lose its relative capacity to uptake glucose and free FAs

from bloodstream. This fact could explain the downregulation of

CD36 and FABP4 in VAT in the MO group.

Our results support the hypothesis that SAT is “metabolically

innocent” and intra-abdominal fat has deleterious consequences.

Recent studies have examined the relative correlations of subcutane-

ous, intra-abdominal and liver fat with fasting insulin, hepatic insulin

sensitivity, and dyslipidemia. Only intra-abdominal and liver fat were

strongly and independently linked to these variables (27). The SAT

appears to play a “buffering” role in taking up FAs and preventing the

exposure of other insulin-sensitive tissues to their harmful effects (14).

In this context, individuals with different congenital lipodystrophy

syndromes, in spite of having a marked reduction in body fat, have

severe IR, hepatic steatosis, and severe dyslipidemia (28). This sup-

ports the concept that a limitation of SAT expansion leads to IR and

subsequent metabolic complications. Besides an inability to store tri-

glycerides in adipocytes, a marked reduction in adipokine production

will also contribute to the metabolic derangement in lipodystrophy

(29). Data collected on the positive metabolic aspects of SAT and

adverse consequences of its deficiency in experimental animals (30)

or human lipodystrophy has led to a hypothesis about the desirability

capacity of SAT “expandability” to accommodate excess lipid supply

and to avoid its spillover into “ectopic” sites (31,32).

Several adipose tissue-secreted proinflamatory products, such as IL6

or TNFa, have been shown to induce insulin resistance and are

thought to link obesity and type 2 diabetes (33). The increased pro-

duction and high circulating levels of these products in obesity have

led to the view that obese individuals are characterized by a state of

chronic low-grade inflammation (13,34-38). As expected, we found

that IL6 and TNFa gene expression were significantly higher in MO

compared to control group in VAT. In SAT, only IL6 was signifi-

cantly higher in MO. Therefore, in both tissues, there is a proinflam-

matory profile in MO women. Interestingly, other authors have

described that an increased inflammation is accompanied by a

decrease in lipogenesis, in agreement with our results (39).

When we compared the gene expression between SAT and VAT in

the MO cohort, we found that the expression of genes related to

lipogenesis (ACC1 and LxRa), FA oxidation (PPARd, PPARa), and

inflammation (TNFa) were upregulated in VAT compared to SAT.

In contrast, regarding to FA uptake and transport (FABP4 and

CD36) were upregulated in SAT. These results suggest that the lipid

metabolism regulation of the adipose tissue in MO patients differs

depending on its localization. In this sense, transplantation of SAT

adipose tissue into VAT depots has been performed successfully in

mice with beneficial effects, improving glucose tolerance and

decreasing plasma insulin concentration and portal plasma triglycer-

ides (40). According to the beneficial effects of SAT described by

these authors and our results discussed above, we found that the FA

uptake from the blood stream in SAT is increased but the lipogenic

and FA oxidation pathways are downregulated.

Our study cohort has made it possible to investigate fatty acid metabo-

lism in VAT and SAT adipose tissue without the interference of such

confounding factors as gender or age. However, the results of our

study cannot be extrapolated to other obesity groups or to men.

In conclusion, although it is not possible to determine the causality

that leads downregulation of lipogenesis and fatty acid oxidation in

SAT, the reported results suggest that in this type of extreme obesity,

SAT works to limit a further development of fat mass, decreasing the

expression of lipogenic and FA oxidative genes. Furthermore, our

findings also suggest that SAT adipose tissue might have a protective

role in MO patients. Further prospective experiments are needed in

order to better understand the deregulation of the pathways studied

and the differences between VAT and SAT in morbid obesity.O

VC 2014 The Obesity Society
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Abstract: The purpose of this work was to evaluate the expression of fatty acid metabolism-related

genes in human adipose tissue from moderately obese women. We used qRT-PCR and Western

Blot to analyze visceral (VAT) and subcutaneous (SAT) adipose tissue mRNA expression involved

in de novo fatty acid synthesis (ACC1, FAS), fatty acid oxidation (PPARα, PPARδ) and inflammation

(IL6, TNFα), in normal weight control women (BMI < 25 kg/m2, n = 35) and moderately obese

women (BMI 30–38 kg/m2, n = 55). In SAT, ACC1, FAS and PPARα mRNA expression were

significantly decreased in moderately obese women compared to controls. The downregulation

reported in SAT was more pronounced when BMI increased. In VAT, lipogenic-related genes and

PPARα were similar in both groups. Only PPARδ gene expression was significantly increased in

moderately obese women. As far as inflammation is concerned, TNFα and IL6 were significantly

increased in moderate obesity in both tissues. Our results indicate that there is a progressive

downregulation in lipogenesis in SAT as BMI increases, which suggests that SAT decreases the

synthesis of fatty acid de novo during the development of obesity, whereas in VAT lipogenesis

remains active regardless of the degree of obesity.

Keywords: moderate obesity; fatty acid metabolism; adipose tissue; de novo fatty acid synthesis

1. Introduction

Obesity is significantly associated with the development of several comorbidities including

type 2 diabetes mellitus, dyslipidemia, hypertension, metabolic syndrome, non-alcoholic fatty liver

disease, cardiovascular disease and certain neoplasms [1]. Nevertheless, obesity itself does not

necessarily lead to these comorbidities [2–4].
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Not only fat accumulation in ectopic sites but also dysfunction of adipose tissue might play

a significant role in defining an individual’s risk of developing obesity-related comorbidities [5].

Physiological and molecular studies have suggested that the fat stored in subcutaneous adipose

depots are not directly implicated in the development of insulin resistance. It seems to have a

“buffering” role due to the fact that it takes up fatty acids (FAs) and prevents other insulin-sensitive

tissues from being exposed to their damaging consequences [6]. In this sense, Klein et al. showed that

obesity-associated metabolic variables were not improved by liposuction (reduction of subcutaneous

adipose tissue) [7]. However, reducing visceral adipose tissue by omentectomy combinedwith gastric

banding has positive long-term effects on insulin sensitivity and glucose metabolism [8].

Likewise, deregulation of lipogenesis and FA oxidation contribute to the development of

metabolic diseases [9]. The expression of de novo FA synthesis enzymes in human adipose tissue have

been evaluated in some studies that have found lower mRNA expression in obese patients compared

to control subjects [10–15]. With regard to FA oxidation, several reports have shown that activating

the peroxisome proliferator-activated receptor aplha (PPARα) in human adipocytes enhanced FA

oxidation by inducing the mRNA expression of the genes involved in this pathway [16,17]. Moreover,

Wang et al. showed that targeted activation of peroxisome proliferator-activated receptor delta

(PPARδ) in adipose tissue induces FA oxidation gene expression [18].

In a previous work, we studied the expression of the main genes involved in fatty acid

metabolism in adipose tissue of morbidly obese and normal-weight control women [19]. Our findings

suggested that, in morbid obesity, SAT prevents the subcutaneous fat mass from developing further.

Because not all obese subjects have the same metabolic traits and the mechanisms of adipose tissue

dysfunction are not fully understood, the aim of the present study was to use our previous findings

to investigate whether the alterations in the fatty acid metabolism of morbidly obese women also

manifest in moderately obese women. Consequently, we evaluated the expression of key genes

related to de novo synthesis of FAs (ACC1, FAS), FA oxidation (PPARδ, PPARα) and inflammation

(IL6, TNFα) in the SAT and VAT of moderately obese and normal-weight control women.

2. Results

2.1. Baseline Characteristics of the Cohort Studied

Subjects were classified according to BMI into control (BMI < 25 kg/m2), and moderately obese

patients (BMI 30–38 kg/m2). The patients’ baseline characteristics are shown in Table 1. Moderately

obese women had significantly higher levels of glucosemetabolism variables (fasting glucose, insulin,

HbA1c andHOMA2-IR) and triglycerides than the control group. HDL-Cwas significantly decreased

in the moderately obese compared to controls.

Subsequently we sub-classified the moderately obese women according to the presence of

diabetes. Obviously, the results indicate that glucose and HbA1c were significantly increased

in diabetic patients (D) compared to non-diabetic subjects (ND) (Glucose: ND = 93.67 ˘ 2.73,

D = 172.56 ˘ 21.58 mg/dL, p < 0.001; HbA1c: ND = 5.22 ˘ 1.83, D = 7.16 ˘ 1.83, p = 0.030).

Table 1. Characteristics of the cohort studied.

Variables
Controls (n = 35)

Moderately Obese
Patients (n = 55) p-Value

Mean ˘ SD Mean ˘ SD

AGE (years) 49.57 ˘ 14.17 52.94 ˘ 14.24 0.289
WEIGHT (kg) 57.53 ˘ 7.17 84.49 ˘ 11.65 <0.001

WC (cm) 76.43 ˘ 11.42 109.85 ˘ 11.15 <0.001

BMI (kg/m2) 22.28 ˘ 1.63 33.67 ˘ 2.70 <0.001

GLUCOSE (mg/dL) 86.51 ˘ 22.96 110.61 ˘ 45.32 0.002
INSULIN (mU/L) 6.84 ˘ 5.43 13.88 ˘ 9.65 <0.001

HbA1c (%) 4.92 ˘ 0.64 5.49 ˘ 1.18 0.015
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Table 1. Cont.

Variables
Controls (n = 35)

Moderately Obese
Patients (n = 55) p-Value

Mean ˘ SD Mean ˘ SD

HOMA2-IR 0.88 ˘ 0.75 1.90 ˘ 1.38 <0.001
SBP (mmHg) 124.63 ˘ 18.20 130.37 ˘ 18.11 0.157
DBP (mmHg) 69.8 ˘ 9.52 74.27 ˘ 11.45 0.063

TOTAL CHOLESTEROL (mg/dL) 181.33 ˘ 37.57 182.92 ˘ 51.38 0.867
HDL-C (mg/dL) 55.34 ˘ 14.93 43.29 ˘ 10.86 <0.001
LDL-C (mg/dL) 107.33 ˘ 31.02 113.6 ˘ 43.37 0.482

TRIGLYCERIDES (mg/dL) 93.57 ˘ 58.13 149.15 ˘ 82.57 0.001

p-Values in bold indicate significant differences with respect to the control group (p < 0.05). BMI, body
mass index; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin; HDL-C, high-density lipoprotein;
HOMA2-IR, homeostatic model assessment 2-insulin resistance; LDL-C, low-density lipoprotein; SBP, systolic
blood pressure; WC, waist circumference.

2.2. Evaluation of the Expression of FA Metabolism Genes and Their Protein Levels in SAT and VAT

We performed the expression analysis of genes related to lipogenesis (ACC1, FAS), FA oxidation

(PPARα, PPARδ) and inflammation (IL6, TNFα) in human adipose tissue.

To investigate how gene expression was affected by BMI, we conducted analyses in the controls

(BMI < 25 kg/m2) and moderately obese women (BMI 30–38 kg/m2). The subcutaneous mRNA

expression of genes related to lipogenesis was significantly decreased in moderately obese women

compared to control women (Figure 1). The results for VAT indicate that ACC1 and FAS mRNA

expression were similar in both groups (Figure 2). To validate these results, we also conducted

Western Blot analysis of ACC1 and FAS in both fat depots. The protein analysis showed that ACC1

and FAS protein levels were similar to those obtained in the mRNA expression analysis. ACC1 and

FAS protein levels in SAT were significantly lower in moderately obese patients (Figure 3A), whereas

in VAT there were no differences between the two groups (Figure 3B).

Figure 1. Cont. Figure 1. Cont.
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Figure 1. Expression of genes involved in lipogenesis, FA oxidation and inflammation in control  Figure 1. Expression of genes involved in lipogenesis, FA oxidation and inflammation in control

(n = 35) and moderately obese women (n = 55) in subcutaneous adipose tissue. Student’s t-test was

used to determinate differences between groups. Data are expressed as mean ˘ SD. The mRNA

expression was calculated relative to the control group, whose mRNA expression was set to 1.0.

ACC1, Acetyl-CoA carboxylase 1; FAS, Fatty acid synthase; IL6, Interleukin 6; PPARα, Peroxisome

proliferator-activated receptor alpha; PPARδ, Peroxisome proliferator-activated receptor delta; TNFα,

Tumor necrosis factor alpha.

Figure 2. Expression of genes related to lipogenesis, FA oxidation and inflammation in control

(n = 35) and moderately obese women (n = 55) in visceral adipose tissue. Student’s t-test was

used to determinate differences between groups. Data are expressed as mean ˘ SD. The mRNA

expression was calculated relative to the control group, whose mRNA expression was set to 1.0.

ACC1, Acetyl-CoA carboxylase 1; FAS, Fatty acid synthase; IL6, Interleukin 6; PPARα, Peroxisome

proliferator-activated receptor alpha; PPARδ, Peroxisome proliferator-activated receptor delta; TNFα,

Tumor necrosis factor alpha.
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Figure 3. Western blot analysis of the main lipogenic enzymes in subcutaneous (A); and visceral (B) Figure 3. Western blot analysis of the main lipogenic enzymes in subcutaneous (A); and visceral

(B) adipose tissue of moderately obese patients. Bar graphs show the quantification of ACC1 and

FAS bands normalized by values of β-actin (n = 12 for each group). Student’s t-test was used to

determinate differences between groups. Data are expressed as mean ˘ SD. ACC1, Acetyl-CoA

carboxylase 1; FAS, Fatty acid synthase.

In relation to the FA oxidation genes, our findings showed that visceral PPARδ gene expression

was significantly higher in moderately obese women than in controls (Figure 2), while subcutaneous

mRNA expression was not significantly different in both groups (Figure 1). The subcutaneous mRNA

expression of PPARαwas significantly lower in moderately obese women (Figure 1), whereas in VAT,

PPARα gene expression was similar in the two groups studied (Figure 2).

Regarding inflammation genes, the results showed that IL6 and TNFα gene expression were

significantly increased in the moderately obese women compared to control women in both tissues

(Figures 1 and 2).

Finally, the comparison of the mRNA expression of lipogenic and oxidative genes between

moderately obese women and the morbidly obese women studied elsewhere [19] showed that the

expression of the genes related to lipogenesis (ACC1, FAS) and FA oxidation (PPARα, PPARδ) was

significantly lower in morbidly obese women than in moderately obese women in the SAT depot

(p < 0.001). In the VAT depot, ACC1 mRNA expression was downregulated in morbidly obese

women (p = 0.013), while FAS gene expression was not significantly different in both types of obesity

(p = 0.080). With regard to FA oxidation, PPARδ mRNA expression was lower in morbidly obese

women than in moderately obese women (p < 0.001), whereas PPARαmRNA expression was similar

in both groups (p = 0.124).

2.3. Correlation of VAT and SAT mRNA Expression with Parameters of Obesity and Glucose Metabolism

In VAT, we found that the oxidative gene PPARδ correlated positively with BMI, weight and

waist circumference (WC) (Table 2). PPARαmRNA expression correlated negatively with HOMA2-IR

(Table 2). On the contrary, IL6 and TNFα gene expression correlated positively with HOMA2-IR,

insulin, glucose and HbA1c (Table 2).

In SAT, we found that FAS mRNA expression has negative correlations with weight, BMI, WC,

glucose, insulin and HOMA2-IR (Table 3). One of the key enzymes in lipogenesis, ACC1, correlated

negatively with weight and BMI (Table 3). Also, our findings showed negative correlations between

PPARα expression andweight, BMI andWC (Table 3). Furthermore, PPARδ correlated positively with

HbA1c (Table 3). For the genes involved in inflammation, we found that IL6 mRNA expression has

positive correlations with weight, BMI, WC, glucose, insulin and HOMA2-IR (Table 3). TNFα gene

expression also correlated positively with weight, BMI, WC, insulin and HOMA2-IR (Table 3).
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2.4. Relationship between the mRNA Expression of Genes Involved in Lipogenesis, FA Oxidation and
Inflammation in VAT and SAT

The associations between the expression of the genes involved in lipogenesis point out that

FAS mRNA expression was directly related to ACC1 mRNA expression in both VAT and SAT depots

(SAT: r = 0.822, p < 0.001; VAT: r = 0.417, p = 0.018). In regard to FA oxidation correlation analysis,

the findings showed that PPARα and PPARδ mRNA expression were not related in both fat tissues.

Finally, IL6 gene expression had a positive correlation with TNFα gene expression in both tissues

(SAT: r = 0.314, p = 0.004; VAT: r = 0.342, p = 0.05).

3. Discussion

In the present work, we investigated the expression of crucial genes in fatty acid metabolism

in VAT and SAT paired samples from moderately obese and normal-weight women. Although

some studies of fatty acid metabolism in human adipose tissue have been published [10,12–14,20,21],

the originality of the present work resides in the fact that it provides a validated study of fatty acid

metabolism in both adipose tissues simultaneously in moderate obesity.

The main findings of this work show that the gene expression of the main enzymes related

to de novo fatty acid synthesis (ACC1, FAS) and PPARα was similar in the two groups in VAT,

but different in SAT. Their subcutaneous mRNA expression was significantly downregulated in

moderately obese women.

It should also be noted that when the mRNA expression of these genes in moderately obese

women was compared to the expression in morbidly obese women studied elsewhere [19], we found

that the subcutaneous mRNA expression of all the genes studied was lower in morbidly obese

women; that is to say, mRNA expression decreases when BMI increases.

In our study, the lipogenic pathway is, at mRNA and protein expression levels, downregulated in

the subcutaneous fat depot of moderately obese women. Although an increase of de novo FA synthesis

is expected in the development of obesity, our findings agree with those of other authors [22,23]. They

indicate that the downregulation of the lipogenesis pathway in the obese cohort is a late and adaptive

process that prevents the fat mass from developing further. In this sense, mice lacking the lipogenic

enzyme FAS in adipose tissue manifested resistance to diet-induced obesity and increased energy

expenditure. Also, Lodhi et al. found a decreased adipogenesis activity in FAS knockdown embryonic

fibroblasts [24].

As far as the expression of genes related to FA oxidation was concerned, our results showed

that in SAT PPARδ gene expression was similar in the two groups studied, whereas in VAT it was

upregulated in moderately obese women. In SAT PPARα gene expression was downregulated,

while in VAT it was similar in the two groups. The decreased FA oxidation in SAT in moderately

obese women might be explained, at least in part, because mitochondrial function-related genes

are downregulated in male and female obese subjects [25]. Moreover, in morbidly obese patients,

MacLaren et al. found an increase in lipid storage and lipolytic genes, but a decrease in de novo

triglyceride synthesis and oxidative genes in SAT [26]. The role of these PPARs in white adipose

tissue in the pathophysiology of obesity has yet to be elucidated. New prospective studies are needed

to clarify their function in obese adipocytes.

Besides the processes described above, there are also others involved in fat accumulation inwhite

adipose tissue such as FA uptake or lipolysis. It is important to note, that all these processes, occur at

different rates and amounts in obese and normal-weight individuals, depending upon the anatomical

location of the adipose tissue, and also according to gender and grade of obesity [27].

It is well known that the increased IL6 and TNFα circulating levels in obese patients have led

to the conclusion that obesity is characterized by a subjacent chronic low-grade inflammation [28].

In this sense, our results showed increased IL6 and TNFα gene expression in moderately obese

women in comparison with the control group in both tissues.
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Our results reinforce the hypothesis that SAT, from a metabolic point of view, is less harmful

than VAT [29]. Recent studies have analyzed whether subcutaneous, intra-abdominal and hepatic fat

were related to insulin resistance and lipidic parameters. Only subcutaneous fat was not significantly

correlated to these variables [30]. In vitro and in vivo studies of the physiology of adipose tissue

confirm that lipolysis and fatty acid uptake rates are not the same in SAT as in VAT. SAT appears

to be more passive than VAT and to limit the detrimental effects of ectopic fat deposition by the

long-term accumulation of excess FAs [6]. Also, subcutaneous fat is related to a favorable adipokine

profile [6]. In this respect, individuals with Cushing’s syndrome or congenital lipodystrophies tend to

have increasedmetabolic and cardiovascular risk despite having amarked reduction in subcutaneous

fat [31,32]. Moreover, several reports have shown that regional subcutaneous fat mass is inversely

associated with fasting insulin levels and insulin levels after an oral glucose load, and positively

associated with insulin sensitivity [33–36]. In agreement with these results, we found that FAS

mRNA expression is inversely associatedwith insulin, glucose andHOMA2-IR. Data on the beneficial

metabolic consequences of SAT, the deleterious effects of its deficiency [37,38] and the positive effects

of its transplantation into VAT depots inmice [39] suggests that SAT plays a “buffering” role in obesity

due to the fact that it prevents excess supply of lipids from spilling over into “ectopic” sites [40].

Our study cohort allowed us to investigate lipogenic and FA oxidation pathways in SAT and

VAT fat depots without the interference of confounding factors like gender or age. Only women

were included because it is well known that men and women differ substantially in regard to body

composition, energy imbalance, sex hormones and adipokines [41,42]. Moreover, several studies

showed sex-specific differences in lipid and glucose metabolism [43]. Wewere also able to extrapolate

the results found in the morbidly obese cohort [19] to the moderately obese cohort. Nevertheless,

the results of our study cannot be extrapolated to men.

4. Material and Methods

4.1. Subjects

The study was approved by the ethics committee of the Hospital Sant Joan de Reus and all

subjects gave written informed consent before taking part in the study. The majority of the patients

in the Hospital Sant Joan de Reus who undergo bariatric surgery or laparoscopic cholecystectomy are

women. Therefore, adipose tissue samples were from 105 Caucasian women. Of these, 55 were

moderately obese (body mass index (BMI) 30–38 kg/m2) and 35 were normal-weight controls

(BMI < 25 kg/m2). SAT and VAT samples were obtained from moderately obese patients who had

undergone bariatric surgery (patients with BMI ě 37 kg/m2) and laparoscopic cholecystectomy for

benign gall bladder disease or laparoscopic hiatus hernia repair (patients with BMI < 37 kg/m2)

and from normal-weight subjects who had undergone laparoscopic abdominal surgery (described in

detail elsewhere) [19].

The moderately obese and normal-weight women were of similar ages. The body weight of

the moderately obese group had not fluctuated be more than 2% for at least three months before

surgery. The exclusion criteria were: (1) patients whowere taken antidiabetic or hypolipemiant drugs;

(2) diabetic women receiving insulin; (3) subjects undergoing contraceptive treatment; (4) patients

who had an acute illness, inflammatory or infectious diseases or neoplastic malignant diseases.

Of the moderately obese women, 16% were diagnosed with type 2 diabetes mellitus based on

ADA guidelines [44]. These patients were following a dietetic treatment. All the usual exclusion

criteria were taken into account.

4.2. Biochemical Analyses

Each of our patients was evaluated with a complete physical, anthropometrical and biochemical

assessment. Total cholesterol, HDL-C, LDL-C, triglycerides, glucose, insulin and HbA1c were
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measured using a conventional automated analyzer after overnight fasting. Insulin resistance (IR)

was calculated using HOMA2-IR [45].

4.3. RNA Isolation and Gene Expression

Total RNA was extracted from SAT and VAT by using the RNeasy mini kit (Qiagen, Barcelona,

Spain) and was reverse transcribed to cDNA using the High Capacity RNA-to-cDNA Kit (Applied

Biosystems, Madrid, Spain). Real-time quantitative PCR was carried out with TaqMan Assay

predesigned by Applied Biosystems for the detection of ACC1, FAS, PPARα, PPARδ, IL6, TNFα and

GAPDH gene. All reactions were performed in duplicate using the 7900HT Fast Real-Time PCR

systems. SAT and VAT mRNA expression of the genes mentioned above was calculated relative to

the mRNA expression of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH).

4.4. Western Analysis

Protein levels of ACC1 and FAS were assayed by Western Blot. Frozen SAT and VAT tissue

samples from 24 individuals (MO, n = 12; Control, n = 12) were homogenized in lysis buffer

(50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1% SDS, 100 mM NaF, 30 mM Na4O7P2
and 1% protease inhibitor cocktail (Thermo Scientific, Madrid, Spain)). Protein concentration was

determined using BCA assay kit (Thermo Scientific). Samples were separated by SDS/PAGE and

transferred electrophoretically to nylon membranes. Membranes were blocked by incubation in a

solution of 5% skimmed milk and were probed using antibodies against ACC1, FAS and β-actin

(Cell Signaling, Danvers, MA, USA). Anti-rabbit IgG or anti-mouse IgG (Thermo Scientific) were

used as secondary antibody. Immunodetection of the protein was done using SuperSignal West Pico

or Femto Chemiluminescent kit (Thermo Scientific). Finally, band densitometry was analyzed using

Phoretix1D software.

4.5. Statistical Analyses

Results are expressed as mean ˘ SD (standard deviation). Student’s t-test or one-way ANOVA

were carried out to determinate differences between groups. Univariate association was tested by

Pearson (parametric variables) or Spearman (nonparametric variables) correlation analysis. We used

SPSS/PC+ statistical package (version 22.0; SPSS, Chicago, IL, USA) for the statistical analyses.

p-values < 0.05 were considered statistically significant.

5. Conclusions

The results reported here suggest that, in moderate obesity, subcutaneous fat has a defense

mechanism against an excess of fatty acid accumulation by diminishing the expression of

lipogenic-related genes, while visceral fat does not. Interestingly, the extrapolation of the results

found in the morbidly obese cohort [19] to the moderately obese cohort showed that this

downregulation reported in subcutaneous adipose tissue increases as BMI increases. As far as

FA oxidation is concerned, future studies are necessary to gain further knowledge about PPARs

regulation in white adipose tissue of obese subjects.
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In the first study of this doctoral thesis, we analyzed the expression of 

some of the key genes related to the de novo synthesis of fatty acids (FAs) 

(LxRα, SREBP1c, ACC1, FAS), the uptake and transport of FAs (CD36, 

FABP4), adipogenesis (PPARγ, adiponectin), FA oxidation (PPARα, 

PPARδ), and inflammation (IL6, TNFα) in subcutaneous (SAT) and visceral 

(VAT) adipose tissue from 145 morbidly obese (MO) women (BMI > 40 

kg/m2) and 18 normal-weight controls (BMI < 25 kg/m2). 

To investigate gene expression in relation to BMI, we performed 

analyses of the control and MO women. The results indicate that the 

visceral mRNA expression of genes related to the de novo synthesis of FAs 

(lipogenesis) in MO women were similar to those of control women. Only 

FAS mRNA expression was significantly lower in MO women. In SAT, the 

results indicate that the mRNA expression levels of LxRα, SREBP1c, ACC1 

and FAS were significantly lower in MO women than in control women. 

Interestingly, we found that ACC1 and FAS protein levels were significantly 

lower in MO women in both adipose tissue types.  

Additionally, we studied the genes related to the uptake and transport of 

FAs. In VAT, we found that CD36 and FABP4 mRNA expression was 

significantly lower in MO women compared to that in control women, 

whereas in SAT, CD36 expression was significantly higher in the obese 

group.  

For genes related to FA oxidation, the results indicate that visceral 

mRNA expression in MO women was similar to that of control women, while 

in SAT, PPARα and PPARδ mRNA expressions levels were significantly 

lower in MO women. We also studied the genes related to adipogenesis. In 

VAT, we found that PPARγ and adiponectin mRNA expression levels in MO 

women were similar to those of control women, whereas in SAT, 

adiponectin mRNA expression was significantly lower in MO women.  

Finally, we found that IL6 and TNFα mRNA expression in VAT was 

significantly higher in MO women than in control women. In SAT, IL6 mRNA 

expression was significantly higher in MO women. 

In addition, we compared the mRNA expression of these genes between 

VAT and SAT in the MO women. The main findings were that the 
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expression of genes related to lipogenesis (ACC1 and LxRα), FA oxidation 

(PPARδ, PPARα), and inflammation (TNFα) were upregulated in VAT 

compared to that in SAT. In contrast, genes related to FA uptake and 

transport (FABP4 and CD36) were upregulated in SAT.  

To investigate whether the alterations in the fatty acid metabolism of 

morbidly obese women found in study 1 were also present in moderately 

obese women, we performed a second study to evaluate the expression of 

key genes related to the de novo synthesis of FAs (ACC1, FAS), FA 

oxidation (PPARδ, PPARα) and inflammation (IL6, TNFα) in the SAT and 

VAT of 55 moderately obese (BMI 30–38 kg/m2) and 35 normal-weight 

control women (BMI < 25 kg/m2). 

As in study 1, we conducted analyses on the controls and moderately 

obese women. The subcutaneous mRNA expression of genes related to 

lipogenesis was significantly decreased in moderately obese women 

compared to those in control women. The results from VAT indicate that 

ACC1 and FAS mRNA expression were similar in both groups. Interestingly, 

the protein analysis showed similar results to those obtained in the mRNA 

expression analysis. In SAT, ACC1 and FAS protein levels were 

significantly lower in moderately obese patients, whereas in VAT there were 

no differences between the two groups.  

For the genes related to FA oxidation, our findings showed that visceral 

PPARδ gene expression was significantly higher in moderately obese 

women than in controls, while subcutaneous mRNA expression was not 

significantly different between the two groups. The subcutaneous mRNA 

expression of PPARα was significantly lower in moderately obese women, 

whereas in VAT, PPARα gene expression was similar in the two groups 

studied.  

As far as inflammation is concerned, the results showed that IL6 and 

TNFα gene expression were significantly increased in the moderately obese 

women in both tissues relative to that in control women.  

Furthermore, we also compared the mRNA expression of these genes in 

moderately obese women and the morbidly obese women studied 

previously. The main finding of this comparison was that the mRNA 
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expression of the main enzymes involved in de novo fatty acid synthesis 

(ACC1, FAS) and of the genes related to FA oxidation (PPARα, PPARδ) 

was significantly lower in morbidly obese women than in moderately obese 

women in the SAT.  
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As mentioned in the introduction of this doctoral thesis, obesity is a 

worldwide epidemic and its prevalence continues to rise at an alarming rate 
1. Obesity significantly increases the risk and worsens the prognosis of 

many diseases, such as type 2 diabetes mellitus, dyslipidemia, 

hypertension, metabolic syndrome, non-alcoholic fatty liver disease, 

cardiovascular disease and certain cancers and, consequently, is 

associated with increased mortality 4,5,44,45. However, obesity itself does not 

necessarily lead to these comorbidities 49–51. There are some obese 

individuals who, despite having excessive body fat, display a favorable 

metabolic profile characterized by high insulin sensitivity and favorable lipid 

and inflammation profiles 55,52–54. These individuals are known as 

“metabolically healthy obese” patients. 

Adipose tissue dysfunction and ectopic fat accumulation seem to play an 

important role in determining an individual’s risk of developing metabolic 

and cardiovascular comorbidities of obesity 87. Physiological and molecular 

studies have suggested that fat stored in subcutaneous adipose depots are 

not directly implicated in the development of insulin resistance as this fat 

appears to play a “buffering” role in taking up fatty acids (FAs) and 

preventing the exposure of other insulin-sensitive tissues to their detrimental 

effects 145. Because of this, reducing the subcutaneous fat mass by 

liposuction does not ameliorate circulating metabolic and inflammatory 

variables 213. However, reducing visceral fat mass by omentectomy 

combined with gastric banding results in long-term beneficial effects on 

glucose metabolism and insulin sensitivity 214. 

Adipocyte functionality is impaired during obesity and has been shown to 

be linked to adipocyte hypertrophy, disequilibrium between lipogenesis and 

lipolysis, impaired transcriptional regulation of the key factors that control 

adipogenesis and a lack of sensitivity to external signals, as well as a failure 

in the signal transduction process and other factors 215. It has been reported 

that deregulation of adipocyte FA metabolism contributes to the 

development of metabolic diseases 216–220. However, the mechanisms 

involved in the deregulation of FA metabolism in adipocytes remain unclear 
220.  
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Based on this previous research, a better understanding of the 

underlying mechanism of the deregulation of FA metabolism in adipose 

tissue during the development of obesity would be valuable in developing 

better understanding of the physiopathology of obesity. In addition, a study 

of the different metabolic effects of subcutaneous and visceral adipose 

tissue might also be particularly helpful in understanding the mechanisms 

that lead to adipose tissue dysfunction in obese individuals. We therefore 

decided to investigate the expression of crucial genes that play significant 

roles in the metabolism of fatty acids in visceral (VAT) and subcutaneous 

(SAT) adipose tissue samples from an extensive cohort of women. Although 

some studies of fatty acid metabolism in human adipose tissue have been 

published 221–226, the novelty of the present studies lie in the fact that they 

provide validated studies of fatty acid metabolism in these two adipose 

tissues simultaneously in different obese cohorts.  

In the first study, we analyzed the expression of key genes involved in 

the de novo synthesis of fatty acids (LxRα, SREBP1c, ACC1, FAS), the 

uptake and transport of FAs (CD36, FABP4), adipogenesis (PPARγ, 

adiponectin), FA oxidation (PPARα, PPARδ), and inflammation (IL6, TNFα) 

from morbidly obese patients (MO) and normal-weight healthy subjects. 

This study demonstrates that mRNA expression of the main enzymes 

involved in the de novo fatty acid synthesis (LxRα, SREBP1c, ACC1 and 

FAS) were significantly lower in MO women than those of the control group 

in the SAT depot, whereas in VAT, only FAS gene expression was lower. 

The downregulation of lipogenesis was confirmed by evaluating the protein 

levels. Moreover, the expression of key genes related to fatty acid oxidation 

(PPARα, PPARδ) was significantly lower in MO women  than in the control 

group in SAT. However, the gene expression of CD36, which is involved in 

fatty acid uptake and transport, and of IL6, a pro-inflammatory factor, were 

higher in MO women in SAT.   

Our results indicate that the lipogenic pathway in women with extreme 

obesity is, at the level of gene and protein expression, downregulated in 

SAT. During dynamic obesity, the lipogenic capacity of adipose tissue is 

expected to increase. However, our findings agree with those of other 
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authors 227,228 who suggest that the low expression of the lipogenesis 

pathway genes in obese cohorts could be a late and adaptive process that 

prevents the subcutaneous fat mass from developing further. Interestingly, 

mice lacking the lipogenic enzyme FAS in adipose tissue manifested a 

resistance to diet-induced obesity and showed an increase in energy 

expenditure. Additionally, Lodhi et al. found a decrease in adipogenic 

activity in FAS knockdown embryonic fibroblasts 229. Furthermore, the 

positive correlations found in our first study between the different genes 

involved in this pathway strengthen their role in the adaptive process of 

SAT. 

For the expression of genes involved in FA oxidation, our results showed 

that subcutaneous PPARα and PPARδ mRNA expression was significantly 

lower in the MO group. In agreement with our results, Mardinoglu et al. 

found that mitochondrial function-related genes are downregulated in male 

and female obese subjects 230. Moreover, MacLaren et al. found an 

increase in lipid storage and lipolytic genes, but a decrease in de novo 

triglyceride synthesis and oxidative genes, in SAT of morbidly obese 

patients 231. The role of these PPARs in white adipose tissue in the 

physiopathology of obesity has yet to be elucidated and further studies are 

needed to clarify their function in obese adipocytes.  

For the expression of genes related to the uptake and transport of FAs, 

we found that CD36 and FABP4 mRNA expression was lower in VAT in MO 

women than the control group. In agreement with this, a recent study 

showed that FABP4 gene expression was significantly lower in MO subjects 

than in moderately obese or lean subjects in VAT and SAT depots 232. In 

contrast, we found that CD36 mRNA expression was significantly higher in 

SAT in the MO group than in the control group. One explanation for these 

trends may be that SAT seems to have a “buffering” role because it takes 

up FAs and prevents other insulin-sensitive tissues from being exposed to 

their damaging consequences 145. These results suggest that the uptake 

and transport of FAs in MO patients may be downregulated only in VAT. In 

support of this, it is well documented that visceral obesity is associated with 

insulin resistance and attributed in part to the increase in circulating free 
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FAs concentration 233,234. Insulin is an anabolic hormone known to direct the 

storage and utilization of energy in adipocytes 235. When cells become 

insulin resistant, they lose their relative capacity to take up glucose and free 

FAs from the bloodstream. This fact could explain the downregulation of 

CD36 and FABP4 in VAT in the MO group.  

In addition to free FAs, several adipose tissue-secreted proinflammatory 

products, such as IL6 and TNFα, have been shown to induce insulin 

resistance and are thought to link obesity and type 2 diabetes 123,143,236. The 

increased production and high circulating levels of these products in obesity 

have led to the view that obese individuals are characterized by a state of 

chronic low-grade inflammation 37,234,237. As expected, we found that IL6 and 

TNFα gene expression were significantly higher in MO women compared to 

that in the control group in VAT. In SAT, only IL6 was significantly higher in 

MO women. Therefore, in both tissues, there is a proinflammatory profile in 

MO women. Interestingly, other authors have described that increased 

inflammation is accompanied by a decrease in lipogenesis, which is in 

agreement with our results 238.  

Our findings reinforce the hypothesis that SAT is “metabolically innocent” 

and that VAT has deleterious consequences 94. Recent studies have 

analyzed the relative correlations of subcutaneous, intra-abdominal and 

liver fat with fasting insulin, hepatic insulin sensitivity, and dyslipidemia. 

Only subcutaneous fat was not strongly and independently linked to these 

variables 239. In vitro and in vivo studies of the physiology of adipose tissue 

confirm that lipolysis and fatty acid uptake rates are not the same in SAT as 

in VAT. SAT appears to be more passive than VAT and to limit the adverse 

effects of ectopic fat deposition by the long-term entrapment of excess fatty 

acids 145. Subcutaneous fat is also associated with a beneficial adipokine 

profile 145. In this respect, individuals with Cushing’s syndrome or congenital 

lipodystrophies, who have a marked reduction in subcutaneous fat, tend to 

have increased metabolic and cardiovascular risk 240,241. Moreover, several 

reports have shown that a regional subcutaneous fat mass is inversely 

associated with fasting insulin levels and insulin levels after an oral glucose 

load and positively associated with insulin sensitivity 242–245. Data on the 
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positive metabolic aspects of SAT, the adverse consequences of its 

deficiency in experimental animals 246 and in human lipodystrophy 247, and 

the beneficial effects of its transplantation into VAT depots in mice 248 has 

led to a hypothesis about the beneficial capacity of SAT “expandability” to 

accommodate any excess supply of lipids and to prevent them from spilling 

over into “ectopic” sites 88. This suggests that SAT plays a “buffering” role in 

obesity. 

When we compared gene expression between SAT and VAT in the MO 

cohort, we found that the expression of genes related to lipogenesis (ACC1 

and LxRα), FA oxidation (PPARδ, PPARα), and inflammation (TNFα) were 

upregulated in VAT compared to that in SAT. In contrast, expression was 

upregulated for genes related to FA uptake and transport (FABP4 and 

CD36) in SAT. These results suggest that the regulation of lipid metabolism 

by the adipose tissue in MO patients differs depending on its localization. 

Transplantation of SAT adipose tissue into VAT depots has been performed 

successfully in mice with beneficial effects and has improved glucose 

tolerance and decreased plasma insulin concentration and portal plasma 

triglycerides 248. Furthermore, the upregulation of the genes involved in FA 

uptake and transport in SAT suggests that, in obese individuals, SAT plays 

a protective role by preventing other insulin-sensitive tissues from exposure 

to free FAs. 

This study has made it possible to investigate fatty acid metabolism in 

VAT and SAT adipose tissue without the interference of such confounding 

factors as sex 249 or age. However, the results of our study cannot be 

extrapolated to other obesity groups or to men.  

To partially address this limitation and evaluate whether the alterations in 

the fatty acid metabolism in AT of morbidly obese women found in study 1 

were also manifested in other obesity groups, we analyzed the expression 

of key genes involved in the de novo synthesis of FAs (ACC1, FAS), fatty 

acid oxidation (PPARδ, PPARα) and inflammation (IL6, TNFα) in the SAT 

and VAT of moderately obese women in a second study. 

Our study demonstrates that the mRNA expression of the main enzymes 

involved in de novo fatty acid synthesis (ACC1, FAS) and PPARα was 

UNIVERSITAT ROVIRA I VIRGILI 
DEREGULATION OF FATTY ACID METABOLISM IN THE ADIPOSE TISSUE OF OBESE WOMEN 
Esther Guiu Jurado 



VI. GENERAL DISCUSSION 

 

116 

 

significantly lower in moderately obese women than in the control group in 

the SAT depot, but was similar between the two groups in VAT. It should 

also be noted that this study enabled us to compare the mRNA expression 

of these genes between the two obese cohorts studied. Interestingly, we 

found that the subcutaneous mRNA expression of all the genes studied was 

lower in morbidly obese women compared to that in moderately obese 

women. This suggests that the mRNA expression of these genes decreases 

as BMI increases.  

As mentioned before, it is well known that the increased production and 

high circulating levels of IL6 and TNFα induce insulin resistance and are 

thought to be associated with obesity and its related comorbidities 237. As 

expected, our results showed increased IL6 and TNFα gene expression in 

moderately obese women compared to that of the control group in both 

tissues.  

The results of the second study strengthen the hypothesis that SAT is 

“metabolically innocent” and that VAT has deleterious consequences, as 

explained above 94.  

This study allowed us to extrapolate the results found in the morbidly 

obese cohort to the moderately obese cohort. However, they cannot be 

extrapolated to men.  

In summary, the main finding of this doctoral thesis is that there is a 

progressive downregulation in de novo fatty acid synthesis in SAT during 

the development of obesity. Although it was not possible to determine what 

causes this downregulation in SAT, the results reported here suggest that, 

in obesity, SAT has a defense mechanism against excess fatty acid 

accumulation that acts by preventing the subcutaneous fat mass from 

developing further by decreasing the expression of lipogenic genes, 

whereas VAT may have lost this mechanism. Further prospective studies 

are needed to better understand FA oxidation and examine how PPARs are 

regulated in the white adipose tissue of obese patients. 
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1. The expression of key genes involved in the de novo fatty acid synthesis 

(LxRα, SREBP1c, ACC1, FAS) was downregulated in morbidly obese 

women (MO) compared to that of the normal-weight control group in the 

subcutaneous adipose tissue (SAT), whereas in the visceral adipose 

tissue (VAT), only FAS was downregulated in morbidly obese women.  

2. ACC1 and FAS protein levels were significantly lower in SAT of MO 

women. 

3. The expression of key genes related to fatty acid oxidation (PPARα, 

PPARδ) was significantly lower in SAT of MO women. 

4. In VAT, we found that the expression of the genes involved in fatty acid 

uptake (CD36 and FABP4) was significantly lower in MO women 

compared to that of controls women, whereas in SAT, the expression of 

CD36 was significantly higher in the obese group.  

5. Gene expression and protein levels of the main enzymes of the de novo 

fatty acids synthesis (ACC1, FAS) were downregulated in moderately 

obese women relative to those of the control group in the SAT. 

6. Only PPARα mRNA expression was significantly lower in SAT in the 

moderately obese cohort. 

7. There was a proinflammatory profile in both adipose tissues of the two 

obese cohorts studied. 

8. The expression of the main enzymes involved in de novo fatty acid 

synthesis (ACC1, FAS) and of the genes related to FA oxidation 

(PPARα, PPARδ) was significantly lower in morbidly obese women than 

in moderately obese women in the SAT.  

9. There is a progressive downregulation of de novo fatty acid synthesis in 

SAT during the development of obesity. This suggests that in obesity, 

SAT has a defense mechanism against an excess of fatty acid 
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accumulation that prevents the subcutaneous fat mass from developing 

further by decreasing the expression of lipogenic genes. 
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