
Universitat Politècnica de Catalunya

Doctoral Thesis

Advanced optical technologies for
phytoplankton discrimination: Application in

adaptive ocean sampling networks

Author:

Ismael Fernández Aymerich

Supervisors:

Dr. Jaume Piera

Dr. Albert Miquel

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy in Telecommunications Engineering

in the

Universitat Politècnica de Catalunya (UPC)

Department of Signal Theory and Communications

Barcelona, November 2015

http://www.upc.edu
Research Group Web Site URL Here (include http://)
Department of Signal Theory and Communications (TSC) (include http://www.tsc.upc.edu/)




“Cree a aquellos que buscan la verdad. Duda de los que la encuentran.”

”Croyez ceux qui cherchent la vérité, doutez de ceux qui la trouvent.”
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Abstract

There is a lack on ocean dynamics understanding, and that lead oceanographers to the need of

acquiring more reliable data to study ocean characteristics. Oceanographic measurements are diffi-

cult and expensive but essential for effective study oceanic and atmospheric systems. Despite rapid

advances in ocean sampling capabilities, the number of disciplinary variables that are necessary to

solve oceanographic problems is large. In addition, the time scales of important processes span over

ten orders of magnitude, and due to technology limitations, there are important spectral gaps in

the sampling methods obtained in the last decades. Thus, the main limitation to understand these

dynamics is an inaccurate measurement of the process due to undersampling. But fortunately,

recent advances in ocean platforms and in situ autonomous sampling systems and satellite sen-

sors are enabling unprecedented rates of data acquisition as well as the expansion of temporal and

spatial coverage. Many advances in technologies involving different areas such as computing, nan-

otechnology, robotics, molecular biology, etc. are being developed. There exist the effort that these

advantages could be applied to ocean sciences and will prove to extremely beneficial for oceanog-

raphers in the next few decades. Autonomous underwater vehicles, in situ automatic sampling

devices, high spectral resolution optical and chemical sensors are some of the new advances that

are being utilized by a limited number of oceanographers, and in a few years are expected to be

widely used. Thanks to new technologies and, for instance, utilization of data assimilation models

coupled with autonomous sampling platforms can increase temporal and spatial sampling capabil-

ities. For instance, studies of phytoplankton dynamics in the water column, or the transportation

and aggregation of organisms need a high rate of sampling because of their rapid evolution, that

is why new strategies and technologies to increase sampling rate and coverage would be really

useful. However, other challenges come up when increasing the variety and quantity of ocean mea-

surements. For instance, number of measurements are limited by costs of instruments and their

deployment, as well as data processing and production of useful data products and visualizations.

In some studies, there exists the necessity to discriminate and detect different phytoplankton species

present in sea water, and even track their evolution. The use of their optical properties is one of

the approximations used by some of them. Acquiring optical properties is a non-invasive and non-

destructive method to study phytoplankton communities. Phytoplankton species are then organized

thanks to presenting similar optical characteristics. Fluorescence spectroscopy has been used and



found as a really potential technique for this goal, although passive optical techniques such as the

study of the absorption can be also useful, or even their combination can be studied. Specifically

speaking about fluorescence, the majority of the studies have centered their effort in discriminating

phytoplankton groups using their excitation spectra because the emission spectra contains less

information. The inconvenient of using this kind of information, is that the acquisition is not

instantaneous and it is necessary to spend some time (over a second) exciting the sample at different

wavelengths sequentially. In contrast, the whole emission spectra can be acquired instantaneously.

Therefore, the aim of this thesis is to explore new and powerful signal processing techniques able

to discriminate between different phytoplankton groups from their emission fluorescence spectra.

This document presents important results that demonstrate the capabilities of these methods.



Resum

Existeix una falta de coneixement sobre les dinàmiques dels oceans, i això porta als oceanògrafs

a la necessitat d’adquirir dades més fiables per tal d’estudiar les caracteŕıstiques dels oceans. Les

mesures oceanogràfiques són dif́ıcils i costoses d’adquirir, però són essencials per estudiar de manera

efectiva els sistemes oceànics i atmosfèrics. A causa dels ràpids avenços a l’hora de mostrejar aquest

medi tan hostil, és necessari que diverses disciplines treballin juntes per tal de solucionar el gran

nombre de problemàtiques que es poden trobar. A més, els processos que s’han d’estudiar poden

perdurar fins i tot deu ordres de magnitud, i per culpa de les limitacions tecnològiques, existeixen

importants manques en els mètodes de mostrejar que es porten utilitzant en les últimes dècades.

Per tant, la principal limitació per entendre aquestes dinàmiques és la impossibilitat de mesurar els

processos correctament com a conseqüència d’una baixa freqüència de mostreig. Per sort, avenços

recents en plataformes oceàniques i sistemes de mostratge autònoms, junt amb dades de satèl·lit

estan millorant molt aquestes freqüències d’adquisició, i per tant augmentant la cobertura temporal

i espacial d’aquests processos.

Actualment hi ha disciplines com computació, nanotecnologia, robòtica, biologia molecular, etc.

que estan protagonitzant uns avenços tecnològics sense precedents. La intenció és aprofitar tot

aquest esforç i aplicar-ho en oceanografia. Vehicles autònoms sota l’aigua, sistemes automàtics de

mostreig, sensors òptics o qúımics d’alta resolució són algunes de les tecnologies que es comencen

a utilitzar, però que per culpa del seu cost encara no estan esteses i s’espera que ho puguin estar

en els pròxims anys.

Gràcies a algunes d’aquestes tecnologies, com per exemple la utilització de models d’assimilació de

dates conjuntament amb plataformes autònomes de mostreig, es pot incrementar la capacitat de

mostreig, tant temporal com espacial. Un exemple clar d’aplicació és l’estudi de les dinàmiques del

fitoplàncton, aix́ı com el transport i agregació d’organismes dins la columna d’aigua. No obstant

això, no tot són aspectes positius, altres reptes sorgeixen en augmentar la varietat i quantitat de

mesures oceanogràfiques. El nombre de mesures queda doncs limitat pels costos dels instruments

i les campanyes, i a més s’han d’estudiar nous sistemes per processar i extreure informació útil

d’aquestes dades, ja que els mètodes coneguts fins ara potser no són els més adients.



La detecció i discriminació de diferents espècies de fitoplàncton al mar és molt important en certs

estudis cient́ıfics. Alguns d’aquests estudis es basen en extreure informació de les seves propietats

òptiques, per què és un mètode no invasiu ni destructiu. Espectroscopia a partir de la resposta

de fluorescència del fitoplàncton s’ha fet servir en molts experiments i s’ha demostrat que és una

tècnica amb gran potencial, tot i que l’estudi dels espectres d’absorció o d’altres tècniques basades

en mètodes passius també es poden fer servir, inclús combinar-les. Centrant-se en la fluorescència,

la majoria dels estudis s’han centrat en discriminar grups de fitoplàncton a partir dels espectres

d’excitació per què els espectres d’emissió contenen menys informació. El desavantatge és que

el temps necessari per adquirir una mostra pot estar entorn al segon, per què es necessita es-

timular la mostra a diferents longituds d’ona seqüencialment. En el cas dels espectres d’emissió,

amb els avenços actuals en sensors òptics, les respostes espectrals poden ser adquirides gairebé

instantàniament. Per aquest motiu, l’objectiu principal d’aquesta tesi és explorar noves tècniques

de processat capaçes de discriminar diferents grups de fitoplàncton a partir dels seus espectres

d’emissió de fluorescència. Aquest document presenta doncs importants resultats que demostren la

capacitat de discriminació d’aquest tipus d’informació en combinació amb tècniques de processat

adients.
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viii
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Chapter 1

Introduction

Oceans flow over nearly three quarters of the Earth, and holds almost the 97% of the planet’s

water. Oceans are also responsible of more than a half of the oxygen produced and released to the

atmosphere, as well as the absorption of the most carbon dioxide from it. Oceanic processes like El

Niño change weather patterns. About half of the world’s population lives within the coastal zones,

and their economy are direct or indirectly related with ocean-based businesses, contributing to the

world’s economy. Oceans are in so many ways really crucials for us, and it is not surprising the

importance of studying and understanding them [2].

Oceanography is an example of interdisciplinary science. Diverse scientific disciplines are required

to successfully solve the wide variety of oceanographic problems. There is a lack on ocean dynamics

understanding, and that lead oceanographers to the need of acquiring more reliable data to study

ocean characteristics. Oceanographic measurements are difficult and expensive but essential for

effective study of the oceanic and atmospheric systems. Ocean’s complexity and variability at spatial

and temporal scales are spanning over ten orders of magnitude (Figure 1.1) and environmental

adversity makes it one of the most challenging environments of science. Further, episodic events

such as tsunamis, hurricanes, typhoons, submarine volcanic eruptions, earthquakes, harmful algal

blooms (HABs), oil leakages, etc., which are difficult to include in time-space diagrams such as

Figure 1.1, present especially great sampling challenges.

Oceanographers study such a richly diverse spectrum of interesting problems that it is difficult to

focus on a single example. However, from several relevant studies, as Dickey and Bidigare pointed

1
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Figure 1.1: Example of different ocean processes and how they span in time and horizontal space
(Figure adapted from [3]).

out in [3], four interdisciplinary problems can be extracted as the most important and challenging,

and this thesis is focused in one of them.

• Biogeochemical variability and global climate change: Understanding of biogeochemical vari-

ability, ocean circulation and processes, and global change will require an effort to obtain

more accurate measurements using a higher temporal and spatial resolution. The influence

of changing oceanic conditions on climatic time scale phenomena and vice versa should be

studied, and it is especially challenging.

• Impacts of hurricanes and typhoons on the ocean: Their impacts on the open and coastal

ocean have remained largely documented, but there is not much knowledge about the ocean

key processes. Especially regarding how they affect the distributions of physical, biological,

chemical, and geological variables. Recent studies have provided new insights into oceanic

effects on currents, mixing, biological productivity, gas exchange, and sediment resuspension
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[4, 5]. However, hurricane or typhoon responses over broad regions have not been observed

because satellites can just infer surface processes.

• Oceans and human health: It is also important to mention that the application of biotechnol-

ogy to the marine biosphere can provide for example new drugs and processes that serve a

broad array of sectors, including human health or environmental advances. The biodiversity

of the subtropical ocean, for instance, is really high, and mostly unknown. Recent studies

have shown that certain microorganisms possess novel compounds with anti-bacterial and

anti-fungal activities as well as anti-tumor activity [3]. Tropical coastal waters remain also

uncharacterized with regard to conditions, which are responsible for higher transmission of

diseases in the use of these waters. It is then necessary to continue exploring this field in

order to make great advances in human health.

• Harmful algal blooms (HABs): The fourth topic highlighted by Dickey in his review is the

impact of harmful algal blooms, or commonly called red tides [6], on human health, ocean

ecosystems and economic consequences for coastal communities. The technologies required to

understand and model HABs and some other processes are quite diverse. The identification

of HABs and other species is necessary in many studies. Since HABs generally have their

greatest impacts in coastal environments, the complexity of the coastal ocean comes into play.

In particular, HAB processes can span from hours to decades, for this reason it is important

to adequately set the sampling rate. Spatial coverage is also another important parameter

since these processes can also cover a wide distance range.

Although there are still lots of unsolved oceanographic problems limited by technological barriers (as

summarized in Table 2 of [3]) and their complex and unfavorable environment, powerful techniques

applied to other sectors of science and engineering can be applied. Interdisciplinary work is really

profitable, and in the case of oceanography needed. It is important to take advantage of this

collaboration that is accelerating the understanding of the ocean environment.

One of the main concerns due to the temporal and spatial variability of the ocean processes is the

adequate sampling strategy. Sampling the ocean is complicated and expensive, for this reason it

continues undersampled. Over the last years, technological advances have accelerated this progress.

Advances in sensors and systems for measuring chemical, bio-optical or bio-acoustical variables, as

well as technological achievements have led oceanographers to be able to improve their studies,
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and their knowledge about ocean. 4-dimensional measurements open a field of study, where new

integrated optical, chemical, and physical observation systems can be deployed from stationary

and mobile platforms, and even obtain real-time or near real-time data. 4D observations involve

sampling a vast ocean extension (3-dimensions) for a long period (4th-dimension is time). Several

platforms such as airbone or satellite based sensors, or mooring based measurements systems are

used to provide important information about oceans [7]. These two examples are really important

because they complement each other. Airbone or satellite measurements [8] can obtain data of

large portions of the ocean’s surface or at most a few centimeters of the very near surface layer.

However, as mentioned, information from greater depths is limited. On the other hand, mooring

based platforms, acquire mainly local data, but they have not this depth constraint, being able

to sample the complete water column. However, there exist other underwater platforms able to

cover large areas, such as AUV’s (Autonomous Underwater Vehicles), but their coverage is not

comparable to airbone or satellite systems. For this reason, there is the need to work collaboratively

with different platforms to cover a wide surface range, sampling the water column during long time

periods. These platforms then facilitate simultaneous and rapid measurements that can capture the

variability of important ocean processes. Figure 1.2 exemplifies how different sampling platforms

can work together towards the same objective of characterizing an ocean region. The image shows

an example of a long-term ecosystem observatory, with different sampling platforms (image taken

from Rutgers Center of Ocean Observing Leadership (COOL)). Deal with this complex sampling

scenario is also challenging and there exist several works where they study how these platforms can

interact and work collaboratively [9, 10].

This thesis is facing the fourth topic presented above (HABs). Phytoplankton is one of the basic

organic compounds of natural waters and its diagnosis is really important for evaluating the eco-

logical status of coastal seawater areas. The existence of phytoplankton is of fundamental interest

as they form the base of the aquatic food web, providing an essential ecological function for all

aquatic life. Phytoplankton are also responsible for most of the transfer of carbon dioxide from the

atmosphere to the ocean. CO2 is consumed during photosynthesis, and the carbon is incorporated

in the phytoplankton. Some of this carbon is carried to the deep ocean when phytoplankton die,

or transferred to other ocean layers as phytoplankton are eaten by other creatures. This process

plays an important role on the carbon cycle and, in consequence, may affect atmospheric carbon

dioxide concentrations, having a positive influence on the climate.
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Figure 1.2: Example of different sampling platforms working together characterizing a specific
region. This long-term ecosystem observatory is presented by Rutgers Center of Ocean Observing

Leadership (COOL).

Frequently, phytoplankton studies are relegated to a single unique product, the chlorophyll a (Chl

a) concentration [11–13]. However, in addition to Chl a, phytoplankton have other compounds that

can be studied and can provide useful information to carry out new important research projects.

Bearing this in mind, researchers are currently studying several rapid analysis techniques for mea-

suring seawater properties directly and providing qualitative and quantitative information about

phytoplankton. Among these techniques, the analysis of spectral fluorescence [14] is widely ap-

plied for characterizing the phytoplankton community in the marine environment. Measuring algae

bio-optical properties is an efficient tool in high-frequency sensing of the algal community. The fluo-

rescence method has been widely used, for example, to study the vertical distribution of chlorophyll

a concentration with high spatial resolution [15]. Moreover, this method is easy to perform and

provides highly sensitive on-line information on the distribution of algae. It is also worth noting

that changes in the phytoplankton community often take place with a high frequency and that this

technique is fast enough to provide important information about them. Furthermore, the technique

is nondestructive and requires little or no sample preparation.

Several studies have been carried out since Yentsch and Phinney [14] proposed an ataxonomic
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technique that utilized the spectral fluorescence signatures of major ocean phytoplankton to study

their population structure in 1985. Kolbowski and Schreiber [16] showed in 1995 that with four

excitation wavelengths using light emitting diodes (LEDs) they were able to discriminate between

three groups of algae. Beutler [1] presented a free-falling depth profiler using five different excitation

wavelengths and acquiring the fluorescence response at 680 nm (chl a emission). In this case, four

phytoplankton groups can be distinguished (blue algae/cyanobacteria, green algae, brown algae,

and cryptophyceae). The system is adaptable to new algae classes added to the measuring system,

but diatoms and dinoflagellates cannot be distinguished from each other because they have similar

fluorescence spectra. This is important because of their easiness in bloom-forming algae. Zhang et

al. [17] analyzed the discrimination between different phytoplankton classes using the information

extracted from excitation–emission matrices (EEMs). They used processing methods such as sin-

gular value decomposition and Bayesian linear discriminant analysis to distinguish different algae

from excitation fluorescence spectra, and they even achieved discrimination between diatoms and

dinoflagellates. Using EEMs of this kind, Moore et al. [18] also presented an under-test prototype

for in situ measurements and analysis. However, the use of these methods involves some limitations.

They offer good performance in terms of high taxonomic accuracy, but they all require nearly a

second to acquire each sample, or even more in the case of the techniques using EEMs. The problem

is that they need to stimulate at different excitation wavelengths. This time requirement means a

limitation in the number of samples acquired and, in consequence, a low vertical resolution. Al-

though low resolution is not a handicap for some studies, Cowles et al. [19, 20] pointed out that

some physiological and trophic processes may be constrained by physical processes operating over

spatial scales of a few centimeters and temporal scales of seconds to minutes.

The importance of detecting these processes, or what are called ‘thin layers’, emphasizes the need

to develop new techniques aimed at increasing the number of samples and the vertical resolution.

Several studies and efforts have focused on this goal [21]. Another important aspect pointed out

by Margalef [22] is that there is some evidence that pigment composition changes during the life

of phytoplankton. This statement introduces another variable that makes the classification even

more challenging.
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1.1 Objectives

The aim of the work presented in this thesis is to find optimal methodologies able to discriminate

between different phytoplankton species/groups (depending on the detection accuracy), not only

biomass based on chlorophyll a, as it has been done during the last decades. To this end, several

signal processing algorithms have been developed and tested to compare their performance when

applied on high dimensional (hyperspectral) data. Furthermore, the methods presented are planned

to be used in mobile adaptive platforms and free-falling profilers, thus, they have to be compu-

tationally fast, and suitable to be implemented in embedded systems. Trying to take advantage

of the new sampling strategies and platforms explained above, there exist an effort to provide the

sampling platforms with decision capabilities. Instruments are then thought to be more intelligent.

A clear example towards this objective is presented in [23]. In this work, AUV’s use information

from satellites to identify interesting sampling spots, and using prediction models they follow the

evolution of a specific event taking samples 1.3. Furthermore, the AUV’s can compare the infor-

mation detected by their sensors and make corrections to their planned survey. For this goal, the

sensors have to acquire the signal relatively fast, and the instrument have to process, take decisions

and react also immediately.

Ocean research is always a challenge and even more for the technology used. Sensors and other

technological tools necessary for ocean studies are usually expensive. Thinking about a scenario

such as the one shown in Figure 1.2, the investment in instrumentation for such an observatory

is enormous. Is is interesting how some cheaper alternatives are appearing nowadays, and it is

important to check the performance of these technologies and sensors compared with high-precision

and expensive ones. In this framework, one of the chapters of this thesis is dedicated to evaluate

some processing methods applied to low-cost optical sensors.

This thesis is then focused on signal processing techniques able to be used in intelligent sampling

instruments and it is organized as follows:

Chapter 2: This chapter tries to answer the question: Is phytoplankton emission fluorescence

signal discriminative enough to differentiate among phytoplankton species?. Different processing

techniques are analyzed in order to discriminate phytoplankton species based on their fluorescence

spectra. The optical discriminant methods used are tested acquiring fluorescence spectra from
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Figure 1.3: Example of how AUV’s take decisions and adapt their planned survey in order to
follow an ocean process.

phytoplankton cultures, considering it as an algal bloom situation. The results of this work have

been published in [24, 25].

Chapter 3: Due to the difficulties in studying the ocean, technology and sensors needed for sampling

in this adverse environment are usually expensive. Thanks to recent advances, there exist new

cheaper sensors able to acquired sensible data but not with the same resolution, sensitivity or

precision as more expensive ones. In this regard, this chapter analyzes several techniques applied to

low Signal-to-noise ratio (SNR) data, simulating a low-cost optical sensor. The question addressed

is then: Is it possible to discriminate among phytoplankton species from their emission fluorescence

spectra when working with low-cost optical sensors?. The results of this work have been published

in [26, 27].

Chapter 4: Are we able to determine the phytoplankton species that contribute to a mixed sample?

and the abundance of each contribution?. This is the question discussed in chapter 4. In natural

waters, it is not common to find situations of bloom, and usually several compounds and phyto-

plankton species are present together during the sampling process. In this context, the objective

is the identification of dominant species/groups in phytoplankton assemblages under non-bloom

conditions. The results of this work have been publish in [28].

Chapter 5: This chapter summarizes the work presented in this document and exposes the main

conclusions extracted from the results obtained from the different experiments carried out during

this thesis.



Chapter 2

Optical Discriminant Methods for

Phytoplankton Discrimination based

on their Fluorescence Spectra

The main objective of the work presented in this chapter is to evaluate the performance of different

discriminating methods to classify phytoplankton species based on their fluorescence spectra. As

it has been mentioned above, fluorescence spectra have been mainly studied from its excitation

spectra, but the aim of this chapter is to answer two main questions: “Is it possible to achieve

automatic phytoplankton discrimination from its emission fluorescence spectra?” and “Is it possible

to use fluorescence spectra as a rapid and discriminative acquisition system?”. In order to answer

these two questions comparative results from both different approaches (excitation and emission

fluorescence spectra) are shown. The chapter is organized as follows. First of all, the problematic

and how the intrinsic constrains have been addressed are introduced. Once the aim of the chapter

has been stated, the characteristics and singularities of the data are briefly described, as well as

the main data analysis techniques used in this work, the pre-processing methods used to adapt our

data and the main two classification techniques tested for the discrimination step. Later, the results

achieved are presented, and finally some important conclusions are extracted from the results.

The main results shown in this chapter have already been published in Rapid Technique for Classi-

fying Phytoplankton Fluorescence Spectra Based on Self-Organizing Maps [24] and Potential support

vector machines and Self-Organizing Maps for phytoplankton discrimination [25].

9
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2.1 Introduction

High dimensional data is being widely used for many studies since computation machines became

more powerful and also due to the arrival of new sensors providing a huge amount of information.

In the case tackled in this thesis, hyperspectral optical sensors provide hundreds of characteristics

for each measurement, increasing the dimensionality of the data to be analyzed. Specific processing

techniques are needed to deal with such quantity of information. Traditional processing methods

were designed to be used with data that usually lays in a low-dimensional space. However, there

are many applications where data is of considerably higher dimensionality, and these methods have

important limitations when dealing with this data and need to be modified or simply replaced by

other methods specifically developed for this goal. That is the case, for instance, of the two main

classifications methods used in this chapter, neural networks or machine learning, techniques that

have their potential application dealing with high dimensional data.

Hyperspectral optical sensors provide hundreds of bands or characteristics of the measured signal.

Next section will introduce the type of data used to discriminate phytoplankton, its characteristics,

and how it is acquired. As mentioned, data acquired with a hyperspectral optical sensor lays in

a high dimensional space, which makes it very difficult to analyze and visualize, except for some

techniques like Self-Organizing Maps (SOM). Self-Organizing Maps, which is a method helpful to

discover low-dimensional manifolds in such dimensional data, is a type of artificial neural network

(ANN) that has been successfully applied for extracting interpretable patterns from large and

complex data sets, for example, in satellite remote sensing [29]. It has not been widely applied to

oceanographic data, but in recent years several studies have shown its good performance in pattern

recognition and classification [30–32]. In our case, SOM is part of a solution to the problem that

involve other steps and techniques. As it is shown later, the first approximation uses this cluster

analysis method to determine possible classes and it is a preliminary step to achieve discrimination

results. It is also shown, how with an appropriate treatment of the data, using some pre-processing

techniques, it is possible to improve the final results.

However, SOM is not always the best technique. In some cases it cannot find a low-dimensional

manifold (probably because it does not exist) and cannot converge. In those cases there is still the

possibility of using other techniques, such as Support Vector Machines (SVM), which searches for

a separation plane, not in a low-dimensional space, but in a much higher space than the analyzed



Chapter 2. Phytoplankton Fluorescence Spectra Discrimination 11

data dimension. Although it can seem more computationally expensive, it is not. The properties

of SVMs make them well-suited to tackle the problem of hyperspectral classification since it can:

a) handle large input spaces efficiently; b) deal with noisy samples in a robust way; and c) produce

sparse solutions. Thus, this chapter shows the results with SOM and a comparison between SOM

and a variant of SVM called Potential-Support Vector Machines (P-SVM).

About the chapter organization, next section will briefly introduce several processing techniques

used in the data analysis chain followed for this study, focusing the attention on those more impor-

tant such as Self-Organizing Maps or Potential-Support Vector Machines. First of all, a couple of

transformations that have been proven really powerful in several studies will be introduced: deriva-

tive analysis and wavelet denoising. Next, the clustering and classification techniques explored in

this chapter are explained, as well as a performance an evaluation index called kappa. This index

helps to evaluate the performance of the classification analyzing the confusion matrices generated.

And once the theoretical background has been set, the results of this study are presented, together

with some conclusions.

2.2 Data Analysis

Figure 2.1 shows a block diagram of the processing steps followed in this chapter. Once data have

been obtained, two actuations can be done: either attempt directly the classification or adapt the

data to extract as much information as possible in order to increase the classification performance.

For this reason, in this work the results with and without this pre-processing step have been

compared, which in the block diagram appears in two separated blocks: denoising and derivative

analysis.

Figure 2.1: Schematic of the proposed processing chain.

On the other hand, the classification step includes the study of phytoplankton discrimination using

the two techniques mentioned above: SOM and P-SVM, and finally the performance evaluation.
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2.2.1 Transformations

Several transformations useful to adapt the measured data are described in this chapter. Transfor-

mations are used to better extract as much information as possible from the available data, and

make its classification easier.

2.2.1.1 Derivative Analysis

Until relatively recently, studies using optical information have centered their attention in mul-

tispectral data. However, thanks to new technology such as the above mentioned hyperspectral

sensors, with higher resolution, signals can be thought as spectrally continuous. Typical multispec-

tral analysis methods treat each spectral band as an independent variable, a reasonable assumption

for multispectral data but it might not be really appropriate for hyperspectral data. Till nowadays,

few researchers have tried to manipulate data as truly spectrally continuous data [33–35].

Derivative spectroscopy, for instance, is a promising technique to be used with hyperspectral data,

including fluorescence. In remote sensing, some researchers have already addressed applications

using spectral derivatives [35–37]. One concern about the derivative analysis is the derivative or-

der. While some of these studies have used high order derivatives, others such as [38, 39] use first

and second order derivatives. For example, [40] describes the application and utility of derivative

analysis of absorption spectra in conjunction with spectral similarity analysis to discriminate the

presence and dominance of G. breve in natural phytoplankton assemblages. In this experiment,

derivatives are estimated using a finite divided difference scheme. The advantage is that the deriva-

tives can be computed according to different finite band resolutions (band separations) to extract

special spectral features of interest at different spectral scales. The first derivative can be estimated

as follows 2.1:

ds

dλ
|i '

s(λi)− s(λj)
∆λ

(2.1)

where s is the original spectrum and ∆λ is the band separation.
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2.2.1.2 Denoising

Spectra are increasingly analyzed using methods such as derivative analysis. These techniques

require smooth spectra because they are extremely sensitive to noise. There is then the need

of smoothing algorithms that fulfill the requirement of preserving local spectral features while

simultaneously removing noise. Minimizing random noise is often the first pre-processing step after

acquisition. Although the signal can be affected by different noise sources, in this specific case,

data are basically affected by instrumental noise.

In this chapter, wavelet denoising has been applied and it is briefly introduced in the next section.

However, there exist several denoising techniques that can be used, and actually, in the next chapter

some other techniques are explained and tested.

Wavelet Denoising

The wavelet denoising [41] is a more refined method that separates the frequency content of the

original signals into different data structures. The low-frequency components (approximation coef-

ficients) keep the global features of the signal, while the high-frequency components (detail coeffi-

cients) retain the local features. For discrete data, it can be computed as:

x̃(λ, k) =

∞∑
ρ=−∞

x(ρ)
1√
2λ

Ψ

(
ρ− k2λ

2λ

)
(2.2)

being Ψ the mother wavelet function, x̃ the discrete wavelet transform (DWT), and k a location

parameter. A fast algorithm to compute the discrete wavelet transform is presented in [41]. Soft

and hard threshold techniques [42, 43] can be used to reduce the noise, and the threshold level is

selected as described in [42], following equation 2.3:

thr = ξ
√

2log(n) (2.3)

where n is the number of samples and ξ is a rescaling factor estimated from the noise level present in

the signal. The estimation of the noise level can be based on the first level of the detail coefficients

(D1) as [44]:
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ξ =
median(|D1|)

0.6745
(2.4)

Finally, by applying the inverse wavelet transform, a smoothed version of the original signal is

recovered. The advantage of this method relies on a denoising procedure that does not affect the

sharp structures of the original data, which can contain important information.

Figure 2.2 shows an example of a three-level wavelet decomposition. First, the original signal x

yields one series of approximation coefficients A3 and a set of three distinct detail coefficient signals

D1,2,3. Then, either a soft or a hard threshold methodology is applied on the detail coefficients. In a

soft threshold (Figure 2.2a), coefficients smaller than the threshold thr are suppressed while the rest

of the coefficients are shrunk an equivalent of the threshold value [41]. In a hard threshold (Figure

2.2b), coefficients smaller than the threshold thr are set to 0 while the rest of the coefficients remain

intact. The denoised profile x′ is finally recovered from the transformed coefficients by applying

the inverse discrete wavelet transform (IDWT).

Figure 2.2: Schematic diagram of the three steps of the wavelet method: multilevel decomposi-
tion, thresholding, and multilevel reconstruction. Thresholding is obtained via (a) soft threshold

techniques or (b) hard threshold techniques.
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2.2.2 Clustering and classification techniques

Nowadays there exist a wide range of classifiers that are employed in numerous applications, from

face recognition to speech processing. The results of these studies are really successful, however,

there does not exist a classifier that can reliably outperform all the others on a given data set

[45]. Thus, choosing a classifier is still a process of trial and error. The accuracy of a particular

classifier on a given data set will clearly depend on the relationship between the classifier and the

data. Classification algorithms can be grouped into parametric and non-parametric techniques. For

parametric classifiers, such as the Maximum Likelihood Classifier, the data is assumed to follow

a statistical distribution. For this reason, the major drawback of parametric classifiers is their

high dependence on assumptions related to statistical distribution of the data. Furthermore, these

algorithms are more likely to suffer from the problem of the curse of dimensionality or Hughes

phenomenon [46] in hyperspectral classification.

Non-parametric classifiers, such as those based on neural networks and decision trees, are then

often used to classify hyperspectral data. Although neural networks have the advantage of a good

performance with complex data sets, they are slow in the training phase. On the other hand,

Support Vector Machines, based on machine learning algorithms, have been proposed that can

overcome some of the limitations of other non-parametric classifiers, such as neural networks [47].

Therefore, two non-parametric approaches have been tested: an artificial neural network (Self-

Organizing Maps) and a machine learning method (Potential-Support Vector Machines). The main

characteristics of these two techniques are briefly presented below.

2.2.2.1 Neural Networks. Self-Organizing Maps

Artificial neural networks are a processing technology that has been widely studied over the last

few decades. Inspired by neuroscience, they are trained to behave like biological neural networks,

emulating how they process the data. One of their advantages is that they are more robust in

handling noisy and missing data than traditional methods. How neural networks work depends on

the interconnectivity between the neurons. As it is mentioned in [48], there are three categories of

neural networks, each one based on a different philosophy. In feedforward networks sets of input

signals are transformed into sets of output signals, and this transformation is determined by exter-

nally adjusting several parameters. In feedback networks, the parameters are changed iteratively
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from an initial state until the desired outcome is obtained. Finally, in competitive, unsupervised,

or self-organizing networks, neighboring cells in a neural network compete and interact to correctly

match (represent) the input space.

SOMs are commonly used for clustering high dimensional data, but also for pattern recognition and

visualization of complex data sets in a variety of environmental science applications. It is a useful

tool for multivariate data analysis because it is both a projection method, mapping high-dimensional

data to a low-dimensional space, and a clustering method, mapping similar data patterns onto

neighbouring SOM output nodes [49]. SOMs have been used in a wide range of studies, from

meteoroloical and climatology applications [50–54] and to oceanographic studies. In this sense,

it has been increasingly used since Richardson showed in [29] the use of the SOMs to the wider

oceanographic community [55, 56]. SOMs have also been used for sea surface temperature studies

[29, 57] and ocean colour and chlorophyll studies [58, 59], among others [60, 61].

Self-Organizing Maps (SOM)

The Kohonen self-organizing maps [48] are a type of artificial neural network based on unsupervised

learning, which means that the network learns only based on the input training data. In contrast,

supervised learning needs the pairs of input/output training patterns in order to approximate the

input data. The SOM projects high-dimensional input data, usually onto a two-dimensional map,

a feature that is useful for the visualization and classification of high-dimensional data. Also, the

algorithm is topology-preserving, which means that similar input data will be mapped to spatially

close areas on the map, and elements which are spatially close on the map should have similar input

data.

A SOM output map consists of neurons organized on a regular low-dimensional grid, each one

holding a weight vector (Wij) (figure 2.3). This weight vector has exactly the same length as the

dimension of the input data, and the lattice of the nodes can be either hexagonal or rectangular.

Once the weight vectors are initialized, the SOM training algorithm adapts them so that the

neurons span across the data cloud. At the end of the training phase the map is organized such

that neighboring neurons in the grid have similar weight vectors. Two auxiliary matrices are

generated to help in the visualization of the resulting clusters, the U-matrix and the hit-matrix.

The training algorithm can be summarized in two steps:
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Figure 2.3: (a) Example of weight vectors, codebook, once the neural network has been trained.
Neighbor neurons have a similar weight vector. and schematic neural adaptation. (b) Visual
representation of the adaptive step, in which the BMU and its neighborhood learn and change their
weight vectors. The data point of the training set driving the adaptation of neurons is represented
as an X. The BMU moves into this position in the feature space. Due to the neighboring function

definition, neighboring neurons are moved in the same direction.

• Finding the Best Matching Unit: During each training step, one input sample x is randomly

chosen from the training set. The distances between this input sample and the weight vectors

of all neurons are then computed (typically Euclidean distance). The neuron that has the

minimum Euclidean distance between the input vector and its weight vector is the winning

neuron and is called the best-matching unit (BMU).

• Adapting the Weight Vector: Once the BMU has been chosen and the input vector has been

assigned to the winning neuron, it is time to learn. The BMU and its neighboring neurons

update their weight vectors to make them similar to the input vector as follows (Eq. 2.5).

Wij(t+ 1) = Wij(t) + α(t)× hc(t)× [x(t)−Wij(t)] (2.5)

where x(t) is the input data vector, hc(t) is the learning neighborhood function (typically a

Gaussian bell-shaped one), and α(t) is the learning rate. The neighboring function (hc(t))
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defines the region of influence that the input sample has on the SOM, and both α and hc

decrease with time, performing a fine tuning at the end of the training. At each learning step,

all the neurons within the neighborhood (Nc) are updated, whereas cells outside (Nc) are left

intact. The neighborhood function is often taken to be Gaussian (Eq. 2.6):

h(t) = exp

[
−ρ

2(t)

2σ2

]
(2.6)

where σ2 is the variance parameter specifying the spread of the Gaussian function, and ρ(t)

is the radius of the neighboring function centered at the BMU. The learning rate denotes the

regularization parameter of the adapting procedure (Fig. 2).

Once the SOM training has finished, the U-matrix is constructed, representing the distances between

the neurons of the output map, for example, as gray values. For a network of P ×Q neurons, the U-

matrix has (2P−1)×(2Q−1) distances between neurons or values [62]. It is used in order to obtain

an initial idea of the cluster distribution [63]. Clusters are characterized in this representation as a

homogeneous area of dark gray values separated by edge-wise elongated areas of light gray values (as

an example, figure 2.4 shows the resulted U-matrix clustering 5 different species of phytoplankton).

Once the output map has been trained, the data set is applied once again in order to obtain the

winning neuron for each sample. This information is accumulated, and the most-frequent winning

values can be considered as the most representative ones. The result, presented in a two-dimensional

histogram, is the so called hit-matrix, used in the classification step (figure 2.5). In this study, the

somtoolbox [64] for Matlab was used for the presented result computation.

2.2.2.2 Kernel Methods applied on Potential-Support Vector Machines

The basic idea of kernel methods is that they apply two consecutive mappings to data. The first

one maps the points of the input space (the input data) into an intermediate space called feature

space. This step transforms the original nonlinear problem into a linear one. If a problem in the

original representation can only be solved by nonlinear approaches, its transformed version in the

feature space can be solved using linear methods. The theoretical background of applying nonlinear

mapping to transform a nonlinear problem into a linear one comes from the Cover’s theorem on

the separability of patterns [65]. Cover’s theorem states that a multidimensional space may be

transformed into a new feature space where the patterns are linearly separable with high probability
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Figure 2.4: Complete classification schema using Self-Organizing Maps. Diagram of the steps
followed by the SOM classification method used in this thesis. Excitation spectra are used in this

example, acquiring the different emission fluorescence spectra at 680nm.

Figure 2.5: Example of two fuzzy hit-matrices from different cultures; (a) Thalassiosira weissflogii
(Thwi) and (b) Alexandrium minutum (Amin), extracted from excitation spectra analysis. This

information is used in the classification step.
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if two conditions are satisfied: a) the transformation is nonlinear, and b) the dimensionality of the

feature space is high enough. Based on this theorem it can be stated that it is more likely to

represent a classification problem in a linearly separable way in a high-dimensional space than in a

low-dimensional one.

Kernel machines solve the dimensionality-problem by applying what is called kernel trick. Although,

they apply nonlinear mapping from input space into feature space, they do not look for the solution

in the feature space, instead the solution is obtained in the kernel space, which is defined easily. The

significance of using the kernel trick is that the complexity of the solution is greatly reduced: the

dimension of the kernel space is upper bounded by the number of training samples independently

of the dimension of the feature space. Or, in other words, they operate in the feature space without

ever computing the coordinates of the data in that space, but rather by simply computing the inner

products between all pairs of data in the feature space. This operation is often computationally

cheaper than the explicit computation of the coordinates.

Support Vector Machines (SVM)

Support Vector Machines [66–69] is a non-parametric classification method for a supervised classifi-

cation that is particularly suited for hyperspectral data. SVMs is a machine learning algorithm that

utilizes optimization tools, which seek to identify an optimal separating hyperplane to discriminate

between two classes of interest. SVMs can perform better classification of hyperspectral data than

other competing algorithms with the same number of training data samples [70], so it seems a priori

to have a great potential in our case of study.

The goal of SVMs is to maximize the margin between two classes of interest and find a linear

separating hyperplane between them (figure 2.6). For this reason, this technique can obtain a

better classification performance and have more generalization capacity than other classifiers that

try to minimize the training error rate alone such as neural network classifiers. Vapnik [68, 69]

showed that the bounds on the generalization error rate can be minimized by explicitly maximizing

the margin of separation. Consequently, a better classification performance on unseen data can be

expected. Therefore, it obtains high generalization. Moreover, since the margin of separation is not

dependent on the dimensionality of the data, a good classification performance on high dimensional

data is possible.
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Figure 2.6: Visual explanation about the maximization of the margin and support vectors selec-
tion done by SVM.

SVMs can adapt themselves to become a nonlinear classifier by simply mapping data into a higher

dimensional feature space that spreads the data out. SVMs are, then, applied to the dataset in a

higher dimensional feature space. This is equivalent to a nonlinear classifier in the original input

space. One of the main problems working with high dimensional data is the Hughes Phenomenon,

and SVMs have the potential to minimize this problematic because they can adequately classify

data in a higher dimensional feature space with a limited number of training data sets.

In this study, a variant of SVM called Potential-Support Vector Machine (P-SVM) is tested. P-

SVM [71] is a supervised learning method used for classification and regression. As well as standard

Support Vector Machines, it is based on kernels. The P-SVM is a large margin method that uses

an objective function, which minimizes a scale-invariant capacity measure, and several constraints,

which enforce a low empirical error. In contrast to standard support vector machines approaches,

the P-SVM can also handle negative definite and non-square kernel matrices.

Standard SVMs have a couple of disadvantages [71]. For example, the solution of a SVM is scale

sensitive, and this problem is solved in P-SVM because its cost function has been modified. Another

disadvantage is that the number of support vectors can be larger than necessary. In that case, P-

SVM leads to an expansion of the predictor into a sparse set of what is called descriptive row

objects rather than training data points as in standard SVM approaches. It can therefore be used

as a wrapper method for feature selection applications [72, 73], as it has been also tested in this

thesis.

Finally, it is important to mention, that as well as SVM, P-SVM performs binary classifications,
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and its implementation addressing multiclass classification problems can be approached in two ways

[74, 75]:

• The first consists of defining an architecture made up of an ensemble of binary classifiers.

The decision is then taken by combining the partial decisions of the single members of the

ensemble.

• The second is represented by SVMs formulated directly as a multiclass optimization problem.

However, because of the number of classes that are to be discriminated simultaneously, the

number of parameters to be estimated increases considerably in a multiclass optimization

formulation. This renders the method less stable and, accordingly, affects the classification

performances in terms of accuracy. For this reason, multiclass optimization is not as successful

as the approach based on the two-class optimization [76].

Thus, the first approach is followed in this thesis. The multiclass approach is then implemented

using one-against-one method, following the max-wins voting strategy (MWV).

2.2.3 Performance and Evaluation

The techniques tested in this chapter are evaluated in this section. A commonly used tool to assess

the performance of a classifier, not necessary binary, is the confusion matrix, which is a matrix

where each row represents the instances in a predicted class, while each column represents the

instances in an actual class. In the case of binary classification, the 2x2 confusion matrix stores the

number of elements of class 0 classified as 0, denoted TP, and the number of elements of class 0

classified as 1, denoted FN. TN and FP are defined analogously (Table 2.1). In this thesis, in order

to evaluate the classification performance the percentage of true positives (true positive rate: TPR,

or sensitivity) and the percentage of false positives (false positive rate: FPR) were calculated. FPR

is computed from the specificity (True Negative Rate, TNR), and they are defined as follows:

Table 2.1: Simple example of a binary confusion matrix.

Predicted Class
1 0

Actual Class 1 TP FN
0 FP TN
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• TPR = TP
TP+FN

• TNR = TN
TN+FP

• FPR = 1− TNR = 1− TN
TN+FP

Note that, since a classifier assigns data items to classes, the TPR represents the percentage of

items pairs correctly assigned to different classes, while the FPR is the percentage of item pairs

incorrectly assigned to different classes.

In a multiclass classification, these indexes are computed as follows:

• TPR= (# test samples classified as class 1 actually corresponding to class 1)/(total of test

samples actually corresponding to class 1)

• FPR= (# test samples classified as class 1 actually corresponding to other classes different

from class 1)/(total of test samples actually corresponding to other classes different from class

1)

So as to complete this evaluation the Kappa index (Eq. 2.7) is the main reference index. This index

is commonly used in remote sensing. It is a measure of confidence that considers all the elements

in the confusion matrix, the diagonal elements as well as the errors of commission (classifying a

sample as a class A belonging to any other class) and the errors of omission (classifying a sample

of class A into any other class). Therefore, the Kappa value can be computed by applying the

following expression:

K =
n
∑r

k=1Xkk −
∑r

k=1Xk+X+k

n2 −
∑r

k=1Xk+X+k
(2.7)

where n is the total number of samples and Xkk is the correctly classified samples in class k. If

the confusion matrix is considered line by line for class k, then Xk+ is the user’s accuracy, whereas

a column-by-column analysis specifies the producer’s accuracy as X+k. Figure 2.7 serves as an

example to interpret the indices contained in the Kappa’s expression and how to compute it. In

table 2.4 there is also an exemplary description on how to compute this index.
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Figure 2.7: Intuitive diagram to interpret the expression of the index Kappa, where ρ, µ and σ
are the different classes to classify.

2.3 Results and Discussion

Once the techniques used to process the data have been described, the data used in this work to

achieve phytoplankton discrimination is introduced, as well as the classification results obtained

with the techniques above mentioned. Finally, some conclusions from these results are extracted.

As mentioned above, the experiments and the results presented herein have been published in

[24] and [25]. In order to follow the same procedure and be coherent with the results, they are

presented chronologically. First, the work presented in [24] is shown. In this work, seven different

phytoplankton cultures are discriminated using Self-Organizing Maps. Later, corresponding with

the work published in [25], a comparison of performance between P-SVM and SOM is shown,

increasing the number of observation or samples, but decreasing the number of phytoplankton

species (five in this case) due to difficulties to replicate the same species. Both experiments compare

the results using excitation and emission fluorescence data (difference explained in the next section).

2.3.1 Data Acquisition

In both aforementioned works, two different approaches have been followed: the first one taking

into account excitation fluorescence spectra, while the second one is using emission fluorescence

spectra. The results of both approximations are addressed in this chapter. Seven different strains

from different taxonomic groups of phytoplankton were used in the present work. Table 2.2 shows

the data available for each experiment. The second part of the chapter, when working with P-

SVM, only five phytoplanton species were used. Synechococcus sp. and Ostreococcus sp. were not

available to replicate the experiment in the lab.
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The cultures were incubated at 20 oC in a f/2 medium under a 12h dark - 12h light cycle. The

Aminco-Bowman Series 2 Spectrometer was used to perform the measurements of fluorescence in

the laboratory. The cultures were sampled in a 1 cm quartz cuvette. The data acquisition was done

during two separated periods of time, so two data sets from each specie were obtained. The samples

were taken every day with a slit width of 4 nm and a scan wavelength speed of 20 nm/s. Due to

the different growth speed between the cultures not all groups have the same number of samples.

For this study the first days of each culture were discarded due to its low culture concentration and

fluorescence signal. Difference between excitation and emission spectra is explained next:

• Excitation Spectra: Data set consisting on several spectra, where each culture was excited

at different wavelengths (excitations between 200 and 600 nm every 10 nm), and its emission

fluorescence was recorded at 680 nm for each excitation. This procedure was repeated over

several days and replicated again using the same strains.

• Emission Spectra: Using emission spectra, in-Situ acquisition would be faster, and higher

vertical and horizontal resolution could be achieved. The main problem is that fluorescence

pigments information is not as high as in excitation spectra. It means that differences between

fluorescence responses of different phytoplankton classes will be lesser, and discrimination will

be more difficult. In this case, a preliminary study was carried out in order to choose the

best excitation wavelength containing as much information as possible to achieve the best

classification. To this end, an exploratory classification for each excitation wavelength was

made [24]. From the results shown in figure 2.8, we extracted that 490 nm wavelength was, in

that case, the most discriminating wavelength, because we achieved the highest classification

results. From then on 490 nm was the excitation wavelength chosen to perform this study.

It is important to mention that the emission spectra range was chosen between 535 and 735

nm to reduce the dimensionality of the data, because there is no fluorescence emission at

wavelengths below the excitation.

In both approaches, the training and test data sets were chosen by carrying out repeated random

sub-sampling validation. The percentage of samples for both data sets was almost the same, and

the results of ten different classifications were averaged. The effect of the Rayleigh scattering peak

was studied. Although some studies set it to zero [77], other approaches that do not eliminate the
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peak were evaluated. However,in this thesis an interpolation of the two neighboring samples to

avoid this effect is used because it obtains better results in combination with SOM.

Table 2.2: Phytoplankton species used in this chapter and number of samples acquired in each
experiment.

Species Class Abbreviation
Number samples
Experiment n. 1

Number samples
Experiment n. 2

Alexandrium minutum Dinophyceae Am 22 41
Thalassiosira weissflogii Bacillariophyceae Thwi 18 38
Dunaliella Chlorophyceae Duna 20 40
Isochrysis galbana Prymnesiophyceae Iso 10 30
Pleurocrysis elongata Prymnesiophyceae Pl 21 42
Synechococcus sp. Cyanophyceae Syn 15 -
Ostreococcus sp. Prasinophyceae Ost 15 -

Figure 2.8: Classification performance curve at different excitation wavelengths to select the best
excitation wavelength to work with.

2.3.2 Discrimination using Self-Organizing Maps

In this section, the first results obtained using SOM and published in [24] are shown. The classifi-

cation using SOM can be explained in three steps. First, the network is trained using the training

data set. The network adapts its properties to the input data and then the distances between

neurons are calculated. The result of this process is the U-matrix (figure 2.4), which shows the

distances between neighboring neurons. The light gray is the edge of the clusters, where these
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distances are higher. Afterwards, as explained above, a variant of the hit-matrix called the fuzzy

hit-matrix [62] is computed. This matrix is obtained for each culture. Figure 2.5 shows an example

of these matrices. The gray value of the matrices represents a particular neuron’s membership of

the culture class. The matrices are then labeled. Lastly, we wish to assign a label to each sample

to classify, so the best-matching unit of each sample is found. Then, the different membership

values, which are extracted from the fuzzy hit-matrices, are compared. The winning class, whose

label is then taken to classify the sample into one culture or another, is that with the largest BMU

membership value.

As explained above, two different approaches have been followed. First of all, the results using

excitation spectra are shown, while those obtained with emission fluorescence spectra will be pre-

sented later. Finally, derivative analysis has been applied to emissions spectra in order to increase

classification performance. The data used in this section is the one obtained in the experiment n.

1 (table 2.2).

2.3.2.1 Classification using Excitation Spectra

Discrimination results among seven different phytoplankton cultures using SOM are now presented.

In this step only the responses at 680 nm emission wavelength with a range of 200–600 nm exci-

tations were used. In this case, randomly selected training and test data sets were constructed to

evaluate the method. An example of a training data set is shown in figure 2.9. Once the neural net-

work has been defined with 8x15 neurons, it is trained, and a label can be assigned to each neuron

in the SOM by first computing the hit-matrix over the whole training set. The label of each neuron

corresponds to the label of the class with a maximal number of hits in each neuron. In this label

representation, the discrimination of the method can be appreciated (figure 2.10). The neurons

have changed their properties to better characterize the input data. The different cultures should

appear classified, grouping all the samples of the same culture, but there are some mixed samples.

The samples that have a similar spectrum appear closer. For instance, Alexandrium minutum and

Synechococcus sp. have similar excitation spectra because they appear close one from each other,

whereas Thalassiosira weissflogii differs because it is in a separated region of the network.

Once the neural network has been trained, the labeled output map can be used to classify the

test data set, using the membership matrices. Based on this classification, the confusion matrix is
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Figure 2.9: An example of a training data set working with excitation spectra. Fluorescence
excitation spectra acquired at 680 nm. 60 samples randomly selected representing the seven cultures.

The excitation range is 200–600 nm, every 10 nm.

Figure 2.10: An example of the results obtained from randomly chosen training and test samples
using excitation spectra.
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computed in order to evaluate the performance of the classification methodology. The confusion

matrix summarizes in a table how well the classifier is working. It shows the number of samples

correctly classified and how many have been mistakenly classified. The Kappa, the TPR, and the

FPR indexes are calculated. Ten different validation runs, in which the training and test data sets

had been randomly constructed iteratively, were undertaken. Thence the results were averaged in

order to make the performance evaluation as independent as possible from the selected training set.

An example of a confusion matrix is presented in table 2.3.

Table 2.3: Example of a confusion matrix. Classification of excitation spectra from a random
selection of training and test samples.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 4 0 0 2 0 0 2 8 0.5 0
Syn 0 4 0 0 2 2 0 8 0.5 0

Thwii 0 0 8 1 0 1 10 0.8 0.88 0.018
Duna 0 0 0 8 1 0 1 10 0.8 0.057

Pl 0 0 0 0 5 6 0 11 0.45 0.058
Am 0 0 0 0 0 11 0 11 1 0.157
Iso 0 0 1 0 0 0 4 5 0.8 0.052

Even though the discrimination does not seem to be good enough, the average TPR and the average

FPR over cultures and validation runs were 0.7344 and 0.0508, respectively. Also, the Kappa index

value was quite good, 0.6839, with 1 denoting a perfect classification without any mistake, and

0 denoting the result of a random classification. The greatest problems arose with Pleurochrysis

elongata, which is not properly classified. This means that the spectra from this culture are very

similar, in this case, to those of Alexandrium minutum.

Some studies carried out by Margalef [22] pointed out that pigment composition changes during

the life of phytoplankton. This statement introduces another variable that makes the classification

even more challenging. For this reason, another configuration of training and test data has been

proven. In this case, the system has been trained with the samples from the stable growth stage of

the culture, while the test samples have been taken from the exponential growth stage (figure 2.11),

the performance of the method using the stable samples as training data is then evaluated. The

resulting U-matrix is shown in Figure 2.4. Pigment composition variations play here an important

role in the classification. Testing samples from the exponential growth stage were classified to form

the confusion matrix (table 2.4). The Kappa index obtained was 0.4974 (TPR = 0.5787, FPR =
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0.0981). Again, the greatest classification problems arose with Pleurochrysis. Although initially the

U-matrix seems to be better, the Kappa value was below 0.5. This result could be a consequence

of the pigment changes that phytoplankton cultures suffer during their growth stage.

Figure 2.11: As an example, Alexandrium minutum’s growth curve is shown. It has been made
computing the fluorescence emission at 680 nm every day with 490 nm excitation wavelength.

Table 2.4: Confusion matrix. Classification behavior using excitation spectra. Samples from
the stable growth stage used for training, and samples from the exponential growth stage used for

testing.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 4 0 0 2 0 0 4 10 0.4 0.013
Syn 0 3 0 0 0 7 0 10 0.2 0

Thwii 1 0 9 2 1 0 0 13 0.692 0
Duna 0 0 0 11 1 3 0 15 0.666 0.028

Pl 0 0 0 1 2 13 0 16 0.187 0.086
Am 0 0 0 0 0 17 0 17 1 0.348
Iso 0 0 0 1 0 0 4 5 0.8 0.049

Using this table, the Kappa index is computed as follows:
n
∑r

k=1Xkk = 86× (4 + 3 + 9 + 11 + 2 + 17 + 4) = 86× 50 = 4300∑r
k=1Xk+X+k = (10× 5) + (10× 3) + (13× 9) + (15× 17) + (16× 4) + (17× 40) + (5× 8) = 1236

K = (n
∑r

k=1Xkk −
∑r

k=1Xk+X+k)/(n
2−
∑r

k=1Xk+X+k) = (4300− 1236)/(862− 1236) = 0.4974

2.3.2.2 Classification using Emission Spectra

The idea of working with emission spectra comes up from the need of a rapid acquisition method.

There are some physiological and trophic processes that may be constrained by physical processes

operating over spatial scales of a few centimeters and temporal scales of seconds to minutes [15].
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The importance of detecting these processes emphasizes the need to develop new techniques aimed

at increasing the number of samples and improving then horizontal and vertical resolution. Ac-

quiring excitation spectra takes almost a second, and the speed of a free falling vertical profiler is

near 10cm/s. In contrast, acquiring emission fluorescence spectra is almost instantaneous and the

number of samples could be increased. Using the emission spectra, in situ acquisition would be

faster and a higher vertical and horizontal resolution could be achieved. The main problem is that

fluorescence information is not as high in emission spectra as in excitation spectra. This means

that there are less differences between fluorescence responses of different phytoplankton classes,

and their discrimination is more difficult. Having established the good performance of the SOM

with excitation spectra, its performance using only emission spectra was evaluated. The results are

described in the following paragraphs.

Figure 2.12: An example of a training data set working with emission spectra. Fluorescence
emission spectra excited at 490 nm. 60 samples randomly selected representing the seven cultures.

The emission range is 535–735 nm, every 1 nm.

The EEMs acquired were used again, but now using the training and test data sets as described

above: emission spectra (520–735 nm) with 1 nm resolution (216 features) excited at 490 nm and

randomly sub-sampled. An example of training samples for this case is presented in figure 2.12.

The discrimination can be observed in figure 2.13, and table 2.5 represents the confusion matrix

obtained. The averaged TPR index over ten validation runs is 0.7046, the average FPR is 0.0588,

and the Kappa index is 0.6343. Although a good classification performance is obtained, there are

again some classes that appear mixed. For example, Synechococcus sp. is clearly distinguishable,
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Figure 2.13: An example of the results obtained from randomly chosen training and test samples
using emission spectra.

Table 2.5: Example of a confusion matrix. Classification of emission spectra from a random
selection of training and test samples.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 6 0 0 0 0 0 2 8 0.75 0
Syn 0 8 0 0 0 0 0 8 1 0

Thwii 0 0 9 0 0 0 0 9 1 0.037
Duna 0 0 1 5 4 0 0 10 0.5 0.038

Pl 0 0 1 0 7 3 0 11 0.63 0.176
Am 0 0 0 0 5 6 0 11 0.54 0.035
Iso 0 0 0 2 0 0 3 5 0.6 0.035

while the other classes appear closer and mixed. The reason is that these classes have very similar

spectra and they are more difficult to discriminate from emission fluorescence.

Repeating the same procedure as in the previous section, we now focus our attention on the eval-

uation of the performance using the stable samples for training and then classifying samples from

the growth stage. Surprisingly, using emission spectra, the results (table 2.6) are better than using

excitation spectra stable samples; the Kappa index is equal to 0.5985. From this result and that

obtained with excitation spectra, it seems that the pigment changes have a greater effect on the

excitation spectra (K=0.4974) than on the emission spectra (K=0.5985), making emission spectra
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more robust to these changes. Several studies use derivative techniques to enhance minute differ-

ences between similar signals [35, 38]. These techniques have proven to be a powerful tool that

is commonly used, for example, in the analysis of hyperspectral data. However, the derivative

spectroscopy used to explore these minute features in spectral data is notoriously sensitive to noise

[78]. To remove this noise from the hyperspectral data, smoothing techniques are commonly used

[79]. It is worth noting that there must be a trade-off between noise removal and the ability to re-

solve fine spectral details [80]. The following section is devoted to the analysis of the SOM method

classification, using as input data the derivative of the spectra.

Table 2.6: Confusion matrix. Classification behavior using emission spectra. Samples from the
stable growth stage used for training, and samples from the exponential growth stage used for

testing.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 5 0 1 0 0 0 4 10 0.5 0
Syn 0 10 0 0 0 0 0 10 1 0

Thwii 0 0 10 2 1 0 0 13 0.77 0.041
Duna 0 0 1 9 0 5 0 15 0.6 0.028

Pl 0 0 0 0 2 14 0 16 0.125 0.014
Am 0 0 0 0 0 17 0 17 1 0.275
Iso 0 0 1 0 0 0 4 5 0.8 0.049

2.3.2.3 Classification applying derivative analysis to Emission Spectra

In typical multispectral analysis, each spectral band is considered as an independent variable, a

reasonable assumption for multispectral data, but this is not suitable for hyperspectral data. Due

to the huge number of bands of the hyperspectral data, it can be treated as spectrally continuous

data, and some methods particularly developed for this type of data can be applied. Among

these methods, derivative analysis is particularly promising dealing with hyperspectral signals.

Derivative techniques enhance minute fluctuations in spectra and separate closely related features.

But derivatives are notoriously sensitive to noise. Thus, smoothing or otherwise minimizing random

noise is a major issue.

In an attempt to increase the performance of the classification using emission fluorescence spectra,

derivative analysis was applied to the emission spectra in order to enhance the differences between

the fluorescence spectra of each algae. The noise of the signals was reduced using a wavelet denoising
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Figure 2.14: An example of a training data set working with derivative emission spectra. Deriva-
tive fluorescence emission spectra excited at 490 nm. 60 samples randomly selected representing

the seven cultures. The emission range is 535–735 nm, every 1 nm.

applied to both data sets before using derivative analysis. Once obtained the first-order derivative

spectra, SOM has been applied in order to evaluate the performance using the derivative pre-

processing step to enhance their subtle differences.

First of all, the samples were also randomly sub-sampled in order to evaluate the classification

indexes for different training and test data sets. An example of the results obtained using the

derivative training data is presented in figure 2.14. The discrimination this time was higher. The

neurons of the network were properly distributed and the indices obtained (table 2.5) were slightly

better than those obtained using excitation spectra: TPR = 0.7574, FPR = 0.0481, and Kappa =

0.7109.

Table 2.7: Example of a confusion matrix. Classification of first-derivative emission spectra from
a random selection of training and test samples.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 8 0 0 0 0 0 0 8 1 0
Syn 0 8 0 0 0 0 0 8 1 0

Thwii 0 0 6 2 1 0 0 9 0.66 0.019
Duna 0 0 0 9 1 0 0 10 0.9 0.057

Pl 0 0 1 1 6 3 0 11 0.54 0.059
Am 0 0 0 0 1 10 0 11 0.9 0.059
Iso 0 0 0 0 0 0 5 5 1 0

In the case of using stable samples for training, the results obtained were TPR = 0.7638, FPR

= 0.0611, and Kappa = 0.6803 (table 2.8). As can be clearly seen in the confusion matrices, the
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greatest problems arose with Pleurochrysis elongata (Pl). The fluorescence properties of Alexan-

drium minutum and Pl are very similar for this method. Both species like coastal areas where

they can form blooms [81–84]. It has also been noticed that coastal species in coccolithophores

share pigments unexpected by their phylogeny [85], and if these two cultures are joined into one

group, the performance increases considerably. For example, for the confusion matrices found in

the last two approximations studied above (using derivative emission fluorescence spectra), if these

two species are grouped the Kappa indices are 0.8105 and 0.8439, respectively.

Table 2.8: Confusion matrix. Classification behavior using first-derivative emission spectra. Sam-
ples from the stable growth stage used for training, and samples from the exponential growth stage

used for testing.

Predicted Class

Ost Syn Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Ost 10 0 0 0 0 0 0 10 1 0
Syn 0 10 0 0 0 0 0 10 1 0

Thwii 0 0 9 0 4 0 0 13 0.692 0
Duna 0 0 0 10 0 5 0 15 0.666 0.014

Pl 0 0 0 0 3 13 0 16 0.187 0.057
Am 0 0 0 0 0 17 0 17 1 0.26
Iso 0 0 0 1 0 0 4 5 0.8 0

2.3.3 Potential-Support Vector Machines for Phytoplankton Discrimination:

Comparison with Self-Organizing Maps

In this section Potential-Support Vector Machines is tested for phytoplankton fluorescence spectra

discrimination. The results of P-SVM are presented and compared with SOM. This technique

has already been introduced above, but just comment that, in this work, it has been used with

C-Support Vector classification and a radial basis function kernel. The optimal cost parameters, C,

and gamma parameters, g, are determined by performing 8-fold cross validation. Although SVMs

were originally developed to perform binary classifications, multiclass classification (more than two

classes), is frequently applied, for example, in remote sensing applications. A number of methods

to generate multiclass SVMs from the binary SVMs have been proposed. More information on

multiclass classification with their advantages and disadvantages can be found in [75]. In this

thesis, SVMs binary classifiers are created for all the possible pairs of classes. Thus, the multiclass

approach to the problem has been implemented using one-against-one approximation, following

the max-wins voting strategy (MWV). In that approach, one binary classifier is constructed for
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every pair of different classes, resulting in M(M − 1)/2 classifications for each sample (where M

is the number of classes, in this case 5 species). The output from each classifier is obtained in the

form of a class label. The class label that occurs the most is assigned to that sample. For one

sample x to be classified, if the classifier says x is in class A, then the vote for class A is added by

one. Otherwise, the vote for class B is increased by one. After each of the M(M − 1)/2 binary

classifiers makes its vote, MWV strategy assigns x to the class with the largest number of votes.

A tie-breaking strategy may be adopted in case of a tie. A common tie-breaking strategy is to

randomly select one of the class labels that are tied. Using then the winner class, the classification

results of each sample are presented as a confusion matrix. From these matrices, the Kappa, the

TPR, and the FPR indexes are calculated. Following the same procedure as above, ten different

validation runs, in which the training and test data sets had been randomly constructed iteratively,

were undertaken. Then the results were averaged in order to make the performance evaluation as

independent as possible from the selected training set.

2.3.3.1 Classification using Excitation Spectra

Following the same schema presented above, the first part of the experiment was carried out using

excitation fluorescence spectra acquired at 680 nm, ranged 300-600 nm with a resolution of 10 nm.

As it has been previously mentioned, the total number of samples/specie is shown in table 2.2,

containing 31 features each sample (figure 2.15). The samples of both experiments are used in this

case, but only taking into account the five species present in both experiments. Training and test

data sets were chosen using leave one out cross-validation, and the confusion matrix was computed

from the results. Rayleigh scattering was suppressed interpolating the two neighbouring samples.

Table 2.9 shows the resulted confusion matrix.

SOM performs better than P-SVM using excitation spectra. The Kappa indices from both tech-

niques are 0.66015 and 0.42497, respectively. The difference in performance is clear, but the major

errors from both techniques came from different misclassified cultures. Using SOM cultures Pl and

Am had more problems to be correctly classified, while P-SVM found more difficulties classifying

Thwii, Duna and Iso. It is also remarkable the results obtained with P-SVM in the case Pl and

Am, where the classification is significantly better than using SOM.
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Figure 2.15: Fluorescence spectra used for P-SVM classification: (a) Example of training data
set from excitation fluorescence spectra, (b) example of training data set from emission fluorescence

spectra.

Table 2.9: Example of confusion matrix obtained from excitation spectra: (a) P-SVM, (b) SOM

Predicted Class

(a) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 12 0 22 0 4 38 0,316 0,034
Duna 1 27 11 0 0 39 0,692 0,115

Pl 0 4 23 12 2 41 0,561 0,308
Am 0 0 7 33 0 40 0,825 0,082
Iso 4 13 5 0 7 29 0,241 0,038

(b) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 37 0 0 0 1 38 0,974 0,201
Duna 2 36 0 0 1 39 0,923 0,000

Pl 19 0 9 4 9 41 0,220 0,041
Am 7 0 6 27 0 40 0,675 0,027
Iso 2 0 0 0 27 29 0,931 0,070
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2.3.3.2 Classification using Emission Spectra

Following the same procedure, the data used for this experiment consists on emission fluorescence

spectra exited at 490 nm and ranged 520-735 nm with 1 nm resolution (216 features). Leave one

out cross-validation was used and the results are collected in the confusion matrices shown in table

2.10. The performances of both techniques calculated from these matrices are Kpsvm=0.54252

and Ksom=0.6426. It is worth noting that while SOM obtained a similar kappa index as using

excitation spectra, P-SVM improve its performance using emission fluorescence spectra, but it still

did not obtain comparable results to SOM. Even though the results of Am and Iso are significantly

better than using SOM, the main problem in this case for P-SVM is the misclassified samples of

Thwii and Pl.

Table 2.10: Example of confusion matrix obtained from emission spectra: (a) P-SVM, (b) SOM

Predicted Class

(a) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 15 1 21 1 0 38 0,395 0,059
Duna 6 29 4 1 0 40 0,725 0,100

Pl 3 7 18 13 0 41 0,439 0,201
Am 0 0 3 38 0 41 0,927 0,101
Iso 0 7 2 0 21 30 0,700 0,000

(b) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 36 0 2 0 0 38 0,947 0,086
Duna 1 34 4 1 0 40 0,850 0,120

Pl 9 6 16 9 1 41 0,390 0,081
Am 2 0 6 33 0 41 0,805 0,067
Iso 1 12 0 0 17 30 0,567 0,006

Analyzing the matrices, P-SVM shows better results dealing with Iso, while maintains the problems

with species Thwii and Pl. Regarding SOM, it continues having problems with Pl, but with emission

spectra it has more difficulties to classify Iso than Am. A possible explanation for this could be

that the information contained in excitation fluorescence spectra, although consistent, can differ

from that contained in the emission fluorescence spectra.
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2.3.3.3 Classification applying derivative analysis

Derivative spectra have been also used in this comparison. The confusion matrix resulted from

the classification of the derivatives of excitation spectra is shown in table 2.11. The computed

index Kappa is Kpsvm=0.68435. This result is slightly below the value obtained with SOM,

Ksom=0.73869. In that case, the major misclassified samples are from classes Thwii and Pl, while

surprisingly class Iso seems to present fewer problems. The reason for this is that the derivative

analysis has enhanced minute singularities that were not detectable by the classifier. Applying

derivative analysis to emission fluorescence spectra, P-SVM obtains Kpsvm=0,68091, while Ksom

is 0,65617 (table 2.12). It can be noticed that comparing with the results without derivative, the

performance of all species has increased, except Iso, which classification results using P-SVM have

notably decreased.

Table 2.11: Example of confusion matrix obtained from derivative excitation spectra: (a) P-SVM,
(b) SOM

Predicted Class

(a) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 25 0 11 2 0 38 0,658 0,054
Duna 0 34 2 3 0 39 0,872 0,000

Pl 7 0 21 13 0 41 0,512 0,144
Am 1 0 6 33 0 40 0,825 0,122
Iso 0 0 2 0 27 29 0,931 0,000

(b) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 36 0 0 2 0 38 0,947 0,107
Duna 0 37 2 0 0 39 0,949 0,020

Pl 13 2 20 5 1 41 0,488 0,082
Am 2 0 10 28 0 40 0,700 0,048
Iso 1 1 0 0 27 29 0,931 0,006

2.4 Conclusions

The study presented in this chapter, shows self-organizing maps (SOM) and Potential-Support

Vector Machines (P-SVM) as feasible methods for processing fluorescence data in order to clas-

sify phytoplankton cultures. For this purpose different cultures were cultivated and their excita-

tion–emission fluorescence responses were acquired.
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Table 2.12: Example of confusion matrix obtained from derivative excitation spectra: (a) P-SVM,
(b) SOM

Predicted Class

(a) Thwii Duna Pl Am Iso Sum TPR FPR
T

ru
e

C
la

ss

Thwii 28 1 8 1 0 38 0,737 0,007
Duna 0 31 9 0 0 40 0,775 0,140

Pl 0 3 33 5 0 41 0,805 0,134
Am 1 0 2 38 0 41 0,927 0,040
Iso 0 17 1 0 12 30 0,400 0,000

(b) Thwii Duna Pl Am Iso Sum TPR FPR

T
ru

e
C

la
ss

Thwii 37 1 0 0 0 38 0,974 0,112
Duna 0 35 5 0 0 40 0,875 0,127

Pl 3 8 25 5 0 41 0,610 0,074
Am 13 0 6 22 0 41 0,537 0,034
Iso 1 10 0 0 19 30 0,633 0,000

Both questions proposed at the beginning of the chapter have been addressed. Emission fluorescence

spectra has been shown as a feasible and fast method to discriminate among phytoplankton species,

and with adequate processing methods, can achieve really promising results.

The results presented showed that the fluorescence signals of the different cultures are very similar

and are difficult to discriminate. Based on the results, classification using excitation fluorescence

spectra is better than classification using only emission fluorescence spectra. However, it is worth

mentioning that the use of adequate pre-processing techniques such as derivative analysis can help

to improve the results of the latter, and even obtain performances higher than using excitation

fluorescence spectra.

From the results of the first part, where SOM was used to discriminate among seven different

cultures, it can be concluded that it shows good performance using both, excitation and emission

spectra. Furthermore, the performance of the method improves when emission spectra are combined

with derivative analysis to enhance spectra singularities. This combination is a powerful method

for obtaining a good discrimination among different cultures. Moreover, Thalassiosira weissflogii

can be distinguished from Alexandrium minutum using only one excitation, an important result for

distinguishing diatoms from dinoflagellates. However, Pleurochrysis elongata cannot be differenti-

ated from Alexandrium minutum at all, which means that their fluorescence properties are very

similar. One possibility would be grouping them for consideration together.
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Regarding the classification using P-SVM, it has been implemented doing repeated binary classi-

fications, following the max-wins voting strategy. It can be extracted that there exist differences

between excitation and emission fluorescence data, because the results differ one from each other.

For example, in case of excitation spectra, P-SVM has difficulties discriminating among classes

Thwii, Pl and Iso, while taking into account emission fluorescence spectra Iso has more successful

classification. It is worth noting that the performance increase using emission fluorescence spectra,

but it is also important to mention that using derivative analysis the results (Kpsvm=0.68091) are

comparable with the best results obtained with both techniques (Ksom=0.73869 from derivative

excitation spectra), but in this case from emission fluorescence spectra.

From the results obtained in these works can be concluded that although SOM performed better

than P-SVM, the kernel method is faster in terms of computation (training + classification of

samples). This feature is the key in applications where near real time processing must be used.

Another characteristic of P-SVM is the possibility to efficiently deal with a very large number of

features due to the exploitation of kernel functions, which makes it an attractive technique. A

particular advantage of P-SVM is “sparseness of the solution”. This means that a P-SVM classifier

depends only on the support vectors, and the classifier function is not influenced by the whole data

set, as it is the case for SOM.

The preliminary results are then encouraging. Working with emission spectra obviates the need

to use different excitation sources, and thus reduces the acquisition time. However, further work

is necessary in order to better adjust the parameters of the methods, and different pre-processing

techniques could even be tested in future work. One of these could be using an average of the input

data (i.e., an average of normal and derivative spectra) for training, which would perhaps provide

better discrimination between the strains.





Chapter 3

Chlorophyll a Fluorescence Peak

Analysis

The need for covering large areas in oceanographic measurement campaigns and the general interest

in reducing the observational costs open the necessity to develop new strategies towards this objec-

tive, fundamental to deal with current and future research projects. In this respect, the development

of low-cost instruments becomes a key factor, but optimal signal-processing techniques must be used

to balance their measurements with those obtained from accurate but expensive instruments. In

this chapter, in addition to the study presented in Chapter 2, a complete signal-processing chain

to process the fluorescence spectra of marine organisms for taxonomic discrimination is also pro-

posed. This time, the pre-processing methods presented have been designed to deal with noisy,

narrow-band and low-resolution data obtained from low-cost sensors or instruments and to opti-

mize its computational cost. It consists of four separated blocks that denoise, normalize, transform

and classify the samples. For each block, several techniques are tested and compared to find the

best combination that optimizes the classification of the samples. The main difference with the

previous chapter is that the signal processing has been focused only on the Chlorophyll a (Chl a)

fluorescence peak, since it presents the highest emission levels and it can be measured with sensors

presenting poor sensitivity and signal-to-noise ratios. The whole methodology has been successfully

validated by means of the fluorescence spectra emitted by five different cultures. The chapter has

been organized similar to the previous chapter, and some of the techniques are shared, for this

reason, or because are well-known techniques, some of them are just briefly introduced. First of all,

43



Chapter 3. Chlorophyll a Fluorescence Peak Analysis 44

the chapter contains a short introduction explaining the importance of low-cost instrumentation

and why the study has been centered in the Chlorophyll a peak. Following, a section introducing

the methodologies used for this work is presented. The results are presented next, and finally the

main conclusions extracted from the results are exposed.

The results obtained in this chapter have been already published in ”Analysis of Discrimination

Techniques for Low-Cost Narrow-Band Spectrofluorometers” [26] and ”Optimal processing algo-

rithms for taxonomic discrimination with low-cost narrow-band spectrofluorometers” [27].

3.1 Introduction

Chlorophyll (Chl) fluorescence techniques have been widely used to assess the taxonomic composi-

tion of microscopic photosynthetic organisms (phytoplankton) in order to avoid the time constraints

imposed by the microscopic analysis of water samples [15]. The basis of fluorometric taxonomic

discrimination, as explained above, relies in the specific features of the excitation and emission

spectra of each phytoplankton taxonomic group [15, 86], and multiple approaches have been used

to determine such differences. For instance, the spectral deconvolution analysis, used by Chekalyuk

[87] to discriminate between two different organisms, or the self-organizing maps (SOM) technique

presented in the previous chapter [24] to classify seven strains from different taxonomic groups of

phytoplankton, among others. Nevertheless, these techniques have mostly been tested with accu-

rate and precise data obtained with expensive instruments. This involves an important limitation,

since the observational costs spent in infrastructure and instruments in order to obtain high vol-

umes of accurate data in shallow or open water is extremely high, and consumes most part of the

money budget available in a research project. In this regard, the concept of ”citizen science” has

arisen as an effective methodology to mitigate the expenses while covering large areas with high

temporal and spatial resolution measurements [88], but this concept only makes sense through the

development of extreme low-cost sensors, as those presented in [89–95]. Reportedly, their accu-

racy (sensibility, resolution and signal-to-noise ratio (SNR)) is not comparable to the most precise

(and consequently, expensive) alternatives, but they present a considerable potential if a correct

pre-processing step is performed. Therefore, there is an increasing need for the development of

signal-processing strategies able to suitably process the noisy and low-accurate data obtained from

instruments based on low-cost sensors.
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In this chapter, the analysis of the discrimination skills of a potential low-cost hyperspectral flu-

orescence instrument presenting a lower performance in terms of sensibility, SNR and processing

capabilities is presented. To this end, three different techniques based on pattern recognition are

tested, evaluated and compared to find which one presents the optimal performance considering two

main constraints. First, a successful taxonomic discrimination must be obtained even when using

as primary information only the highest fluorescence emission levels (if the SNR of the sensor is

extremely low, only those levels would be reliable), which correspond to the Chl fluorescence peak

(around the 680 nm). This consideration differs from [24, 87] and the previous chapter, where the

whole optical spectra bandwidth is analyzed, and it is actually feasible assuming that the fluores-

cence signal in this wavelength range is not only due to the Chl a emission peak, but also the Chl

b, c and d emission peaks along with additional complement pigments (such as the phycocyanin,

whose fluorescence emission is located in the 630-to-660 nm band). Besides, this consideration re-

laxes the needed sensor’s spectra bandwidth performance. Second, the computational cost needed

to develop the algorithms must be optimally reduced in order to decrease the electronic hardware

requirements needed to implement the instrument (which will directly influence on its economic

cost). In order to deal with these two requirements and considering high levels of noise in the

measurement samples, three signal-processing blocks previous to the classification one have been

established, accounting for denoising, normalization and transformation of the measured data.

The denoising block reduces the noise introduced by the sensor; the normalization block equals

the emission contribution measured at different growth states, which improves the discrimination

outcomes; and the transformation block transforms and reduces the data dimension, improving

the computational-cost efficiency. Thereby, the most convenient technique in each of these three

blocks, which, in combination with the best classification algorithm, provides an optimal taxonomic

discrimination even when dealing with the two measurement constraints described above, is sought.

In order to test the performance of different algorithms in the presented signal-processing chain,

the fluorescence spectra of five isolated cultures have been measured at different growth stages.

Hyperspectral low-cost fluorescence instruments for in-situ or in-vivo measurements of phytoplank-

ton responses have not been developed yet. Fluorescence sensors or instruments based on low-cost

technology are presented in [89, 93–95], but their measurements do not exhibit a hyperspectral

performance. Therefore, measurements have been firstly obtained with an accurate fluorescence

instrument and degraded afterwards in terms of resolution and SNR to emulate the potential low-

cost sensor performance. Those measurements are then processed in each block, where well-known
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methods such as moving average, wavelet or principal components, are put into practice along with

other algorithms developed in this study specifically designed for this work. This new approach,

mainly based on a reliable signal-processing chain, considerably reduces the sensor’s requirements

(spectra bandwidth and computational cost) needed to perform a suitable classification. Besides,

its conclusive results constitute an important stimulus to develop new and optimal low-cost flu-

orometers enhancing their discrimination capabilities and encouraging marine research groups to

continue studying this field by considerably reducing the instrumentation costs.

This chapter is then structured as follows. A brief introduction to the algorithms used in this study

is presented in the next Section 3.2. In Section 3.3, measurements from five phytoplankton cultures

from different taxonomic groups are used to perform a comparison of the different algorithms.

The results presented in this section were processed first with the original data, and later with a

degraded version of the measurements in order to simulate the performance of a low-cost sensor.

Section 3.4 outlines the conclusions derived from this work.

3.2 Processing Techniques

Figure 3.1 shows the block diagram of the four-step signal-processing chain. Three steps before ad-

dressing a classification method, where the taxonomic discrimination is performed, are proposed in

order to optimize the processing efficiency. Any electro-optical sensor is a noisy source mainly due

to the shot and thermal noise, and this is emphasized in low-cost sensors, which usually present a

lower performance. Denoising techniques are firstly applied to mitigate the noise effect, considering

that a careful attention must be paid in order to avoid the loss of information due to an excessive

smoothing. The fluorescence intensity depends upon the cell concentration, the biological growth

state, the temperature conditions and the incident light, among other factors, and measurements

of the same culture may present significant range variations. Since the classification techniques

are usually based on the Euclidean distance between the sample under test and a reference, their

objective functions will not appropriately discriminate the samples if such variations are presented

within the same culture. Therefore, all measurements must be normalized in a second step in order

to make the contribution of their particular features equivalent. Finally, the transformation tech-

niques that adapt the data to increase the discrimination capacity of the classification algorithms,

and the reduction of dimension methods that increase the efficiency of the learning algorithms, are
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included in the third step. In the latter, if the classification techniques have to deal only with those

wavelengths that are more representative of the features that characterize the culture (obviating

redundant information), the computational cost is considerably reduced.

Figure 3.1: The four-step signal-processing chain proposed.

The whole set of techniques used in each step are presented in Table 3.1, and described in the

following subsections. Widely known methods such as moving average, principal components or

k-neighbors are used along with other techniques developed and adapted to improve the taxonomic

analysis proposed in this study. Moreover, the complete signal-processing chain has been centered

in the Chl a fluorescence peak (around 680 nm), which largely simplifies the computational cost

that the analysis of the whole hyperspectral data would need.

Table 3.1: Algorithms of the four-step signal-processing chain.

Denoising Normalization Transformation Classification

WMA Min-Max Derivative k-neighbors
Savitzky-Golay GSM Genetic-Algorithm* SOM

Wavelet* SNV PCA GCS
Modified SBN

3.2.1 Denoising

In this chapter, a more exhaustive study of noise robustness is done. Optical detectors are sub-

jected to several influences such as optical shot noise (which follows a Poisson distribution), thermal

noise (Poisson distribution), read noise (approximately Gaussian), background light from blackbody

radiation (Plank distribution), flicker noise (pink power distribution) and technical noise due to

various imperfections (which do not follow a specific distribution). The noise-floor level in a mea-

surement is determined by the thermal and the read noises, while the shot noise dominates at high

signal values. In a low-performance sensor, it is expected to have significant levels of noise and, in

consequence, a poor SNR. Therefore, a denoising block is needed as a first step for the proposed
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processing chain. Three different techniques have been considered to smooth the measurements

acquired for this study (see the first column of Table 3.1). These techniques are briefly described

below.

3.2.1.1 The Weighted Moving Average Method

The weighted moving average (WMA) [96] is the most widely used technique for denoising. In it,

the output averaged data vector (y) can be computed as the weighted mean of the nearest 2 · P

wavelengths (P wavelengths for each side) for each value of the noisy raw data (x), and can be

expressed as:

y(λ) =
1∑P

ρ=−P w(ρ)

P∑
ρ=−P

w(ρ)x(λ− ρ) (3.1)

being w the weighting factor vector and λ the wavelength. The particular case where all weighting

factors are equal to one is usually known as the standard moving average.

3.2.1.2 The Savitzky Golay Method

The Savitzky-Golay technique [96] computes a local polynomial regression to approximate the

nearest noisy samples using the least squares method, as:

y(λ) =

P∑
ρ=−P

b0(ρ)x(λ− ρ) (3.2)

being b0 the steady-state Savitzky-Golay filter which coefficients are determined using the least-

squares fit. The main advantage of this approach is that it tends to preserve distribution features

such as relative maxima, minima and width, usually flattened with the WMA technique at the

expense of not removing as much noise as the WMA.

3.2.1.3 The Wavelet Method

As mentioned in the previous chapter, the method for noise reduction proposed here is derived

from a wavelet-thresholding algorithm based on Mallat’s scheme [42, 97]. A fast wavelet algorithm
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(FWT) that computes the DWT very efficiently was presented in [41]. The technique implemented

in this thesis has been done following the steps explained in [44] and shown above in figure 2.2.

The original signal is first decomposed into low and high-frequency components by convolution-

subsampling operations using low and high-pass filters directly on the discrete domain. The low-

frequency components (approximation coefficients) keep the global features of the signal, while

the high-frequency components (detail coefficients) retain the local features. The decomposition

process can be iterated recursively on the approximation coefficients. And, at the last iteration,

both approximation and detail coefficients are kept to be used in the reconstruction step. Some of

the resulting wavelet coefficients correspond to details in the data set. If the details are small, they

might be omitted without substantially affecting the main features of the data set. The idea of

thresholding, then, is to set to zero all coefficients that are less than a particular threshold because

they are basically caused by noise. These coefficients are used in an inverse wavelet transformation

to reconstruct the data set. The signal is transformed, thresholded and inverse-transformed. The

technique is a significant step forward in handling noisy data because the denoising is carried

out without smoothing out the sharp structures. The result is cleaned-up signal that still shows

important details.

Another important advantage of this method is that it not only optimizes the mean-square error

but also ensures, with high probability, that the denoised signal is at least as smooth as the original

[42]. This property is important because other techniques that optimize mean square error, in some

cases, introduce artifacts that can affect signal characteristics.

Figure 3.2: Growing Spectra Modeling (GSM) example: (a) Fluorescence measurements of a
particular culture at different growth states; (b) Fluorescence at 660 nm and 680 nm related to

each fluorescence maximum, and linear regression for the two cases.
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3.2.2 Normalization

Once the measurements have been denoised, the next step is the normalization. The second column

of table 3.1 shows the normalization methods considered in this chapter and described below

3.2.2.1 The Min-Max Method

The Min-Max is a simple method of fitting the fluorescence curve into a fixed range. Minimum

and maximum values (a and b, respectively) become equal for all the samples, and the normalized

curve is obtained with:

y(λ) = a+
(x(λ)−min(x))(b− a)

max(x)−min(x)
(3.3)

3.2.2.2 The Growing Spectra Modeling Method

The growing spectra modeling (GSM) is a new method that exploits the simplicity of the Min-Max

normalization but uses the information of all the values at each wavelength simultaneously in order

to increase its robustness. In it, each wavelength fluorescence value of a particular culture and

at a specific growth state is compared with its fluorescence maximum. Measurements on different

cultures have shown that this relationship is linear at all wavelengths, which allows obtaining an

accurate approximation using their linear regression coefficients, as:

Flλ(m) = aλm+ bλ (3.4)

being aλ and bλ the linear regression coefficients of the wavelength λ , and Flλ its fluorescence

evaluated at m. Figure 3.2a shows an example of the smoothed fluorescence measurements of

a particular culture at different growth states. As can be observed, the fluorescence maximum

presents an important level variability according to different growth states. When all the measure-

ments on a single wavelength are plotted against its fluorescence maximum, a linear relationship,

as shown in Figure 3.2b for two particular wavelengths (660 nm and 680 nm), is obtained. The

linear regression has also been plotted for these two cases, showing a decrement on the slope when

moving away from the maximum. In general, a unitary slope is obtained around 680 nm, and a
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close-to-zero slope around the fluorescence minimum. The model finally uses the linear regression

coefficients to compute the normalization factor for each measurement and wavelength. This is done

by evaluating Equation 3.4 at two point values, the maximum fluorescence in that measurement

(obtaining Flλ1) and the desired (or normalized) maximum fluorescence (obtaining Flλ2). The

coefficient obtained from the relationship Flλ1/F lλ2 is the normalization factor used to normalize

the initial data value.

3.2.2.3 The Standard Normal Variate Method

The standard normal variate (SNV) [98, 99] is a robust method against noisy data. It is based on

the mean and variance (µ and σ2, respectively) matching of all the measured samples, as:

y(λ) =
(x(λ)− µ+ µtot)

√
σ2tot√

σ2
(3.5)

being µtot and σ2tot the averaged mean and variance of the whole set of samples. A typical approx-

imation is done considering µtot = 0 and σ2tot = 1.

3.2.2.4 The Modified Scale Based Normalization Mehod

The three previous methods significantly distort those signals that are more different from the

general pattern, leading, in some cases, to a significant deformation of the small details that char-

acterize the nature of the sample. A more general and flexible version of the SNV method is the

scale-based normalization (SBN) introduced in [98]. When applying the wavelet decomposition

to a signal, its variance is also faithfully decomposed, allowing a more precise scaling. Variance

normalization to 1 (σ2tot = 1) and mean to 0 (µtot = 0) is performed using only those wavelets that

do not contain the high-frequency noise, as:

y(λ) =
Di(λ) + ...+Dj(λ)√

σ2i + ...+ σ2j

(3.6)

being Di(λ)+ ...+Dj(λ) the j− i noise-free detail functions of the wavelet decomposition (obtained

with Equation 2.2), and σ2i + ... + σ2j their variances. The SNV method constitutes a special case
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of Equation 3.6 by using i = 1 and j = log2n (being n the number of discrete points of the original

signal).

In this chapter, this method has been extended and the normalization of the mean and variance

in the approximation coefficients case, and only the variance in the detail coefficients case (since

their mean is zero), is done using normalization coefficients different from 0 and 1, respectively.

Thereby, the information useful for further classification contained in the relationship between the

different levels is conserved. In order to select suitable normalization coefficients, the relationship

between the mean and the standard deviation of the approximation and detail coefficients and their

fluorescence maximum is firstly obtained. Several measurements on different cultures have shown

that this relationship is linear, as seen in the example of Figure 3.3. In the standard deviation

case (Figure 3.3b), the relationship is extremely linear with a decreasing slope as the detail level

decreases. A higher dispersion is obtained in the mean case (Figure 3.3a), even though a linear

relationship can still be considered. Then, the linear regressions for all plots are obtained as it

was done with Equation 3.4 (also shown in Figure 3.3), and they are evaluated at the desired

(or normalized) maximum fluorescence (µD and σD). Finally, each wavelet level is independently

normalized using 3.5 with σ2tot = 1 and µtot = 0, and adjusted as:

A/DiSMB(λ) = A/DiSNV (λ) · σDi + µDi (3.7)

being A/Di the ith approximation/detail coefficient.

3.2.3 Transformation and Dimensionality Reduction

Before addressing the classification problem, the transformation and dimensionality reduction step

is presented. The third column of the Table 3.1 shows the different approaches proposed in this

study. A brief description of these techniques is presented below.

3.2.3.1 The Derivative Method

The derivative method [78] is a transformation method that computes the derivative of the signal

for discrimination purposes. A suitable analysis of this derivative is able to highlight subtle features

from the original spectra.
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Figure 3.3: Linearity between µ and σ respect the fluorescence maximum for MSBN: (a) Mean
(µ) plotted against fluorescence maximum for the approximation coefficients at level 6, and (b)
standard deviation (σ) plotted against fluorescence maximum for the approximation coefficients at
level 6 and detail coefficients at levels 36, all obtained from fluorescence measurements on an actual

phytoplankton culture. The linear regression is also shown for all cases.

3.2.3.2 The Genetic Algorithm Method

The genetic algorithm [100] is a heuristic-search method used to estimate those wavelengths that are

more representative of the significant features that characterize a culture in order to reduce the data

dimension. It is based on the process of natural selection and exploits the principles of evolution

to find the optimal results. Its performance can be summarized as follows. First, a vector of

solutions (each solution contains a reduced number of wavelengths) is randomly generated. Then,

the complete vector is evaluated by the fitness function. This is done by using the fluorescence

information contained only in those wavelengths given by each solution in a classification technique

and verifying if a suitable discrimination is obtained. Better results give a better score to that

solution.

After the evaluation, the algorithm may stop if either a maximum number of generations (each

generation is a new vector of solutions) or a satisfactory fitness level has been reached. If the

convergence condition is not fulfilled, the best solutions are selected and separated. Part of these

elite is then recombined (crossover) and randomly mutated to provide genetic diversity and broaden

the search space. The new set of solutions is reevaluated and inserted again into the solutions vector,

which completes the cycle. After convergence is achieved, the algorithm presents the best solution

it has been able to find. Figure 3.4 summarizes the working diagram of the genetic algorithm.
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Figure 3.4: Block diagram of the genetic algorithm performance.

3.2.3.3 The Principal Component Analysis Method

The principal component analysis (PCA) method [101] is an unsupervised method that uses an

orthogonal transformation to convert the covariance matrix of the measured data into a set of

linearly uncorrelated variables called principal components. This method highlights the similarities

and differences between measurements and allows to clearly discriminating the least significant

components, which can be discarded reducing thus the number of dimensions without much loss of

information.

3.2.4 Classification

Classification algorithms can be grouped into parametric and non-parametric techniques. For para-

metric classifiers the data are assumed to follow a statistical distribution, which may be a major

drawback if the data do not meet this condition. Furthermore, these algorithms are more likely to

suffer from the problem of the curse of dimensionality or Hughes phenomenon [46] in hyperspectral

classification. Therefore, only non-parametric methods for taxonomic discrimination are shown in

the fourth column of Table 3.2. They are described below.

Table 3.2: Taxonomic groups of the five cultures.

Species Division Abbreviation No. Samples No. Samples
(1st Sampling) (2nd Sampling)

Thalassiosira weissflogii Bacillariophyceae Thwi 16 22
Dunaliella primolecta Chlorophyceae Duna 18 22
Pleurochrysis elongata Primnesiophyceae Pl 16 22
Alexandrium minutum Dinophyceae Amin 10 16

Isochrysis galbana Primnesiophyceae Iso 8 22
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3.2.4.1 The K-Neighbors Method

The k-neighbors method [102] is a nonparametric technique that computes the distance between

the sample that needs to be classified and a known set of k samples. The sample is simply assigned

to the class of the nearest neighbors.

3.2.4.2 The SOM Method

The SOM method [103] consists of an artificial neural network based on unsupervised learning, i.e.,

the network learns only based on the training data. Each neuron has a weighting vector with the

same dimension as the input data. The SOM projects the high-dimensional input samples onto a

two-dimensional map, a feature useful for their visualization and classification, and modifies the

weighting vector of those neurons closer to the sample. This is done as:

Wij(λ+ 1) = Wij(λ) + α(λ)× hc(λ)× (x(λ)−Wij(λ)) (3.8)

where x(λ) is the input data vector, hc(λ) is the learning neighborhood function (typically a Gaus-

sian bell-shaped function), and α(λ) is the learning rate. At the end of the training phase the map

is organized such that neighboring neurons in the grid have similar weighting vectors.

3.2.4.3 The Growing Cell Structures Method

The growing cell structures (GCS) method [104] is a self-organizing network which important

feature is its ability to automatically find an optimal network structure and size suitable to deal

with a specific problem. The algorithm starts with a very simple network and inserts new neurons

near those positions that match better with the input data. This controlled growing process is an

important advantage over other static neural networks such as SOM, which initiates the training

process using a regular network with a fixed number of neurons, and may not be able to suitably

adapt their initial structure to the problem under analysis.
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3.3 Results and Discussion

In order to test the four-step signal-processing chain proposed in Section 2, the fluorescence emis-

sions of five cultures belonging to different taxonomic groups were measured using an Aminco-

Bowman Series 2 luminescence spectrometer (configured with a 4-nm slit width and a scan speed

of 20 nm/s) (see Table 3.2). In all cases, the excitation wavelength was centered at 470 nm (since

this excitation wavelength allows an optimal classification, as shown in [24]), and an emission band-

width between 200 nm and 800 nm in steps of 1 nm was obtained. Successive daily measurements

were acquired while the cultures kept alive. Only some initial measurement samples were discarded

while the concentration of phytoplankton was too diluted to obtain a meaningful signal with the

spectrofluorometer (the first useful measurement is different for each culture due to a different

growth speed among them). The total number of measurements is shown in Table 3.2. This ex-

periment was done twice (first and second sampling) to increase the number of measurements and

obtain a dataset useful for a suitable classification. In this section, each algorithm described above

is analyzed and compared with the others in the same chain step in order to determine its effec-

tiveness for a suitable classification. To this end, the signal processing has been applied only on

the 630-to-730 nm band, avoiding the thermal emission (beyond the 730 nm) and the Rayleigh

and Raman scatterings (below the 630 nm), with the Chl a fluorescence peak at the band center.

Thus, by avoiding the full measured spectra, the computational cost needed to suitably process

the signal is largely simplified. At the end of this section, the algorithms are tested again with a

degraded version of the measurements shown in Table 3.2 (by reducing the spectra resolution and

adding Gaussian noise), emulating the performance of worse sensors. Both methods (reduction of

the emission band and measurement degradation) have been applied to determine if the algorithms

presented in this chapter are suitable for taxonomic classification when measuring with low-quality

sensors and instruments.

3.3.1 Denoising

Smoothing methods cause changes to the original spectral data that may lead to inaccurate results

in subsequent methods if relevant signal particularities are eliminated along with noise. In order to

objectively examine the statistical properties of the measured data processed with the three denois-

ing methods proposed in this chapter, the covariance matrices of the original and smoothed data,
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which show the variance relationship between different wavelength distributions, are compared.

The more similar the matrices are the least distortion is being introduced by the denoising method.

Table 3.3 resumes the results obtained from fluorescence measurements in the Duna culture case,

using different conditions for each denoising method. The similarity between the covariance ma-

trices of the original and smoothed data is evaluated using the root mean square error (RMSE).

As can be seen, the WMA method has been applied along with square windows of 3, 7 and 11

samples and with three Gaussian windows, each one with a different standard deviation (σ1, σ2

and σ3, respectively), as shown in Table 3.3 and Figure 3.5; the Savitzky-Golay method has been

applied along with windows of 13, 17 and 23 samples; and a 6th-level wavelet method (using the

Daubechies wavelet family with nine vanishing moments as in [44] and suitable for signals with

zero-mean Gaussian white noise) has been applied considering two different filtering thresholds.

While the first method (thr1) uses a soft threshold on the whole detail level set, the second method

(thr2) applies a hard threshold on the same set (Figure 2.2a and 2.2b, respectively). In both cases,

the adaptive threshold selection technique described above is used to estimate the suitable threshold

level. It must be noted that the optimal mother wavelet mainly depends on the noise properties

and the signal characteristics, and therefore, once the low-cost sensor is implemented, an analysis

of its characteristics should be performed for a suitable selection.

Figure 3.5: Gaussian windows used with the WMA method.

In general, for small or intermediate values of the smoothing parameters, the covariance curves

present a high overlapping. As the smoothing factor increases, both curves diverge, increasing the

RMSE between them. As observed, the covariance matrix comparison shows that the statistical

properties in the WMA case diverges for square or Gaussian windows wider than a few samples,

while the Savitzky-Golay method keeps a small distance length even for windows up to 17 samples.



Chapter 3. Chlorophyll a Fluorescence Peak Analysis 58

Table 3.3: RMSE between the covariance of the original data and the covariance of the smoothed
data at 684 nm.

Algorithm Parameters RMSE

WMA (Square window)

n=3 0.012
n=7 0.047
n=11 0.102

WMA (Gaussian window)

σ1=1.04 0.016
σ2=1.56 0.030
σ3=3.12 0.090

Savitzki-Golay

n=13 0.015
n=17 0.028
n=23 0.062

Wavelet
thr1 0.032
thr2 0.012

Finally, the wavelet method shows a smaller distance in the hard threshold case than in the soft one.

Similar results have also been obtained using different cultures. Table 3.3 gives an idea about the

smoothing rate introduced by each algorithm, but it is not decisive when selecting the most suitable

one. Further results are shown in Subsection 3.3.4 when using them to classify the samples. Figure

3.6 shows the original and smoothed spectra for the Pl measurements using the Savitzky-Golay

method and n=17 as an example.

Figure 3.6: Example using Savitzky-Golay for denoising: (a) Original and (b) smoothed spectra
of all the Pl measurements obtained with the Savitzky-Golay method and n=17.

3.3.2 Normalization

Figure 3.7 shows the four normalization methods proposed in this chapter applied on the Thwi

measurements after denoising using the wavelet method and soft threshold.
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Figure 3.7: Different normalizations applied on the denoised Thwi measurements (with wavelet
method and soft threshold) using: (a) the min-max method; (b) the GSM method; (c) the SNV

method; (d) the modified SBN method.

As can be observed, the four spectra plots are quite similar, but slight differences can be appreciat-

ed. The spectra obtained with the min-max method, Figure 3.7a, presents flat shapes around the

640 nm and 680 nm with minimum and maximum values, respectively, not seen in any other plot,

due to the scaling method. Such distortion may affect the statistical properties present at those

wavelengths. As expected, the GSM method improves the spectral shape, as shown in Figure 3.7b,

and presents the best normalization below 660 nm. However, all the curves tend to concentrate

around a single point in its maximum since it is taken as the reference and it can affect the

classification step. The SVN and the modified SBN methods, Figure 3.7c and 3.7d, respectively,

present similar curves and do not suffer from any distortion on their fluorescence values. The four

algorithms are objectively compared in Subsection 3.3.4 against the denoising and classification

methods to determine the most suitable one.
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3.3.3 Transformation and Dimensionality Reduction

3.3.3.1 The Derivative Method

The derivative of the denoised and normalized samples (using the wavelet and SBN methods, respec-

tively) of the Thwi culture was obtained using different band separations, as shown in Figure 3.8.

As the band separation increases, a smoother curve is obtained. In order to know if the derivatives

of the original fluorescence signals contain hidden properties that may facilitate the discrimination

process, they are used in Subsection 3.3.4, along with the three classification methods, to compare

its taxonomic discrimination results with the ones obtained using the original measurements.

Figure 3.8: Derivative of the Thwi samples for different band separation: (a) 5 sampling intervals;
(b) 10 sampling intervals; (c) 20 sampling intervals.

3.3.3.2 The Genetic Algorithm Method

The first step before using the genetic algorithm is to find the minimum data dimension that keeps a

suitable classification efficiency. The maximum likelihood estimator (MLE) technique [105], which

uses the principle of maximum likelihood on the distances between close neighbors to group them,

was applied on the fluorescence data of the five cultures denoised and normalized with the wavelet

(hard threshold) and SBN methods, respectively, obtaining a minimum dimension of 5 bands. Then,

the genetic algorithm was used in combination with the k-neighbors classification method (with

k=1) to find the value of these five wavelengths. Among the classification methods, the k-neighbors

was selected since it does not need a training and thereby it is the fastest one. The results obtained

after 20 generations over an initial vector of 100 solutions are 637 nm, 677 nm, 694 nm, 710 nm and

720 nm. Since these results are spaced along the whole bandwidth, it can be concluded that the

particular features of each culture are not concentrated in a narrow band but widely distributed.



Chapter 3. Chlorophyll a Fluorescence Peak Analysis 61

3.3.3.3 The PCA Method

Figure 3.9 shows the results obtained with the PCA method applied on all the samples. As can be

seen, a significant reduction of the data dimension can be applied since the first three components

concentrate the 99% of the data variability. The other ones will not significantly contribute to obtain

a better classification of the culture. In the next subsection, the first three components obtained

with this algorithm are used in combination with the three classification methods to compare its

results with previous methods.

Figure 3.9: Example of PCA Analysis: Representation of (a) the first 20 eigenvectors, and (b)
their percentage of variance.

3.3.4 Classification

The comparison between the classification methods (and the different denoising and normalization

techniques) has been performed using the confusion matrix and the Kappa index (K), introduced

in the previous chapter [24]. As explained, the confusion matrix displays both the number of

samples that were correctly and incorrectly classified, and, in the latter case, provides insight into

which was the wrong chosen culture. The Kappa index is a measure of the global classification

error whose calculation is made from elements of the confusion matrix. In order to maximize the

performance of k-neighbors, a previous optimization of the variable k was done finding the value

that presents the best classification results, obtaining k = 1. The training for the SOM and GCS

classification algorithms, with 32 nodes each, was done using both sampling columns of Table 3.2

in a 5-fold cross-validation technique. Tables 3.4 to 3.6 resume the classification performance of

the three classification methods, in combination with the three denoising methods and the four

normalization techniques, through the Kappa index. As can be observed, all combinations present
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accurate classifications achieving in some cases a perfect result. In general, the net growing concept

seems to present a better performance than the static net of SOM. However, the three tables coincide

in pointing out the k-neighbors as the best classification method. Besides, among the denoising

techniques, the WMA denoising algorithm (Table 3.4) gives the higher Kappa indices, as the SNV

does among the normalization ones. Therefore, an optimal solution for the signal-processing chain

is obtained when using these two algorithms (WMA and SNV) in combination with the k-neighbors

method.

Table 3.4: Kappa indices obtained with the three classification techniques and the four normal-
ization methods when denoising with the WMA method (Gaussian window with α2).

Min-Max GSM SNV SBN

k-neighbors 0.994 1 1 1
SOM 0.925 0.987 0.994 0.994
GCS 0.974 0.991 1 0.974

Table 3.5: Kappa indices obtained with the three classification techniques and the four normal-
ization methods when denoising with the Savitzky-Golay method and n=13.

Min-Max GSM SNV SBN

k-neighbors 0.994 1 1 1
SOM 0.918 0.987 0.975 0.994
GCS 0.965 0.991 1 0.982

Table 3.6: Kappa indices obtained with the three classification techniques and the four normal-
ization methods when denoising with the wavelet method (the letter denotes the use either soft or

hard threshold).

Min-Max GSM SNV SBN

k-neighbors 0.984s/0.994h 0.994s/0.994h 1s/1h 1s/1h
SOM 0.919s/0.931h 1s/0.975h 0.981s/0.987h 0.994s/0.994h
GCS 0.965s/0.965h 1s/1h 0.991s/1h 0.982s/0.965h

Table 3.7 shows the Kappa index obtained with the three classification methods and the three

transformation methods when considering the WMA (Gaussian window with α2) as a denoising

method and the modified SBN to normalize. The optimal performance is obtained again with the

k-neighbors method using only the five bands given by the genetic algorithm (as expected since the

genetic algorithm uses the k-neighbors method to find the suitable wavelengths) or in combination

with the first three components given by the PCA method. SOM gives its best result using the five

bands of the genetic algorithm and, in contrast, GCS gives its one in combination with the PCA.
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Table 3.7: Kappa indices obtained with the three classification techniques and the three trans-
formation methods, considering the WMA (Gaussian window with α2) as a denoising method and

the modified SBN as a normalization method.

Derivative Genetic
PCA

(First Order) Algorithm

k-neighbors 0.994 1 1
SOM 0.962 0.994 0.987
GCS 0.974 0.982 0.991

All these results reinforce the idea that an important reduction of the data dimension can be applied

without much loss of performance, which involves a reduction of the needed computational cost. In

order to evaluate the degree of optimization, Table 3.8 shows the time employed on the execution

of the previous example with and without a reduction of the data dimension using an Intel Pentium

4 at 3 GHz, with a 1 GB RAM and running a Windows 7. As can be seen, the time needed to

complete the signal processing is reduced between 30%-33% in the SOM case, 8%-9% in the GCS

case, and 20%-24% in the k-neighbors case. Even without the further computational-cost reduction,

the k-neighbors algorithm is already much optimal than SOM and GCS algorithms, since training

is not necessary, and therefore preferred from this point of view. On the other hand, the derivative

of the original spectra does not seem to improve in a significant way the classification techniques,

and its performance worsens proportionally to an increasing derivative order.

Table 3.8: Computational cost expressed in terms of execution time (in seconds), considering the
WMA (Gaussian window with α2) as a denoising method and the modified SBN as a normalization

method.

Standard
Genetic

PCA
Algorithm

k-neighbors 1.13 s 0.90 s 0.86 s
SOM 19.91 s 14.10 s 13.40 s
GCS 106.06 s 98.10 s 96.87 s

Tables 3.9 and 3.10 show the averaged confusion matrices (due to the five-fold cross-validation)

for the worst solutions obtained in Tables reftab:KappaResultsdenWMA to 3.8, that is, the one

obtained with the SOM classification method when using the Savitzky-Golay and the Min-Max

methods to denoise and normalize (Table 3.9), and the one obtained with the SOM algorithm when

using the wavelet method with a soft threshold and the Min-Max method to denoise and normalize

(Table 3.10). Thus, those samples that are more difficult to be suitable classified can be identified.

In the Savitzky-Golay case (Table 3.9), some Pl samples are classified as Duna, but the major
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error is produced with the Iso samples classified as Amin. In the wavelet case (Table 3.10), some

Duna samples are classified as Pl, but, again, a considerable error is produced with the Iso samples

classified as Amin. Both results show that small similarities exist between Duna and Pl samples

and an important likeness between Iso and Amin.

Table 3.9: Averaged confusion matrix obtained with the SOM classification method when using
the Savitzky-Golay and the Min-Max methods to denoise and normalize. Results of the confusion

matrix have been averaged due to the five-fold cross-validation.

Thwi Duna Pl Amin Iso

Thwi 8 0 0 0 0
Duna 0 8 0 0 0

Pl 0 0.2 7.8 0 0
Amin 0 0 0 8 0

Iso 0.2 0 0 2.2 5.6

Table 3.10: Averaged confusion matrix obtained with the SOM algorithm when using the wavelet
(soft threshold) and the Min-Max methods to denoise and normalize. Results of the confusion

matrix have been averaged due to the five-fold cross-validation.

Thwi Duna Pl Amin Iso

Thwi 8 0 0 0 0
Duna 0 7.8 0.2 0 0

Pl 0 0 8 0 0
Amin 0 0 0 8 0

Iso 0 0 0 2.4 5.6

3.3.5 Effect of noise in the Classification

The fluorescence measurements used in the previous subsections were obtained with an accurate

spectral resolution of 1 nm and using a slit width of 4 nm. In order to simulate the performance of a

low-cost fluorometer, the signal quality was degraded by reducing its spectral resolution by a factor

of 2 (since the monochromatic filter bandwidth was of 4 nm, no loss of information is produced)

and its SNR by adding noise. Since the measurement’s noise-floor level is mainly described through

a white Gaussian distribution, as stated in Subsection 3.2.1, the added noise followed a white

Gaussian distribution with zero mean and a variance of 0.03. Figure 3.10 shows an example before

and after this signal degradation.
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Figure 3.10: Example of signal degradation:(a) Measured Thwi fluorescence, and (b) Thwi flu-
orescence after reducing the spectral resolution and adding noise, which follows a white Gaussian
distribution with zero mean and a variance of 0.03, to emulate the measurements obtained with

low-cost sensors.

The algorithms of the signal-processing chain described in this chapter were applied on the degraded

samplings to determine if a suitable classification performance could be obtained under such con-

straints. The WMA denoising method with a Gaussian window (and using α2) showed to be the

most successful one, as seen in Tables 3.4 to 3.6. Therefore, this method was selected to compare

the three classification methods against the four normalization techniques, as seen in Table 3.11.

Again, the best result is obtained when using the SNV normalization method and the k-neighbors

classification one, achieving almost a perfect classification.

Table 3.11: Kappa indices obtained with the three classification techniques and the four normal-
ization methods when denoising with the WMA method (Gaussian window with α2).

Min-Max GSM SNV SBN

k-neighbors 0.750 0.625 0.994 0.794
SOM 0.575 0.575 0.943 0.681
GCS 0.279 0.310 0.680 0.517

In order to determine if this new set of samples can be dimensionally reduced to decrease the

computational cost but still obtaining accurate results, the genetic algorithm was applied again

to obtain the five frequencies that mostly characterize them. By firstly using only these five fre-

quencies along with the k-neighbors classification method, and secondly the PCA along with the

k-neighbors classification method, the Kappa index obtained were of 0.890 and 0.981, respectively.

This classification result shows that the best combination of algorithms, in the k-neighbors method

case, include the PCA method as the optimal one to reduce the computational cost (the successful

classification percentage only drops a 2% and thus an accurate classification result is still obtained,
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whereas the execution time is reduced by a 28%). Additionally, in the PCA case, a study of the

classification performance for different levels of noise was performed by modifying the variance of

the Gaussian distribution, obtaining the results shown in Table 3.12. As expected, the Kappa index

decreases as the variance increases. At a variance beyond 0.2 the classification cannot be considered

successful (Kappa index drops far below 0.8).

Table 3.12: Kappa indices obtained with the WMA method to denoise, the SNV method to
normalize, the PCA method for a dimensional reduction and the k-neighbors to classify, by using

the degraded samples with four different variances (σ) of the noise Gaussian distribution.

σ=0.03 σ=0.06 σ=0.1 σ=0.2

Kappa index 0.981 0.937 0.850 0.787

The results presented above show that the best combination of algorithms in the signal-processing

chain that showed an optimal classification with the accurate fluorescence measurements, is also the

best combination when handling with low-accurate data (degraded in terms of resolution and SNR).

As stated in Table reftab:KappadenoisingWMA, this combination includes the WMA method to

denoise, the SNV method to normalize, the PCA method for a dimensional reduction and the k-

neighbors to classify the measurements (see Figure 3.11), reaching a discrimination performance

with a Kappa index of 0.981 (when σ = 0.03). This is also the best solution in terms of compu-

tational cost, since the k-neighbors algorithm presents the lowest execution time (5% of the total

SOM execution time and 1% of the whole GCS execution time), and, after adding the dimensional

reduction block, the execution time is further reduced by a 24% (as seen in Table 3.8). Taking

into account the results presented above, it has been proven the initial hypothesis of a feasible

taxonomic classification using only the narrow 630-to-730 nm band of fluorescence emissions, which

corresponds to the Chl a peak, since other cellular contents (which differs depending on the strain)

also modify its spectral shape. With this, the two constraints given by the measurements obtained

with low-performance sensors, i.e., high noise levels in a narrow bandwidth and an optimal com-

putational cost, have been dealt. To conclude, despite the fact that a limited number of samples

obtained from only five different cultures constituted the whole dataset, the results presented in

this section are significantly accurate, and constitute an optimistic beginning to continue working

in this direction, either designing more accurate algorithms or improving the current ones. Besides,

they stimulate the investment in the development of a new hyperspectral low-cost sensor with dis-

crimination capabilities cen-tred in the Chl a peak spectral range. It should be noted that, if a new

low-cost sensor was actually developed, its measurement uncertainty (regarding to spectrometric
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and radiometric errors) should be perfectly characterized and evaluated to see if the performance

of the signal processing presented in this chapter is severely degraded.

Figure 3.11: Resulted optimal four-step processing chain: Optimal algorithms for the four-step
signal-processing chain designed to deal with low-accurate narrowband fluorescence measurements.

3.4 Conclusions

Current constraints in money budget for research projects have motivated the development of new

low-cost technologies. That, in consequence, requires an effort to extract as much information as

possible from instruments exhibiting a low performance. In this chapter, an optimal-computational-

cost signal-processing chain designed to deal with fluorescence measurements featuring poor signal-

to-noise ratios, low resolution, narrow bandwidth and, therefore, suitable for low-cost sensors and

instruments, has been presented. The main objective of this research was focused in finding that

combination of algorithms that optimizes the instrument performance when discriminating between

different taxonomic cultures of phytoplankton species present in marine environments considering

two constraints. The first one was given by the potential low-performance of the sensor, which limits

the measurable spectra (the lowest fluorescence emissions may be found under the noise floor level

of the sensor). Thereby, only the highest values of fluorescence emissions, that is, those close to the

Chlorophyll a peak placed around the 680 nm, were considered. The second constraint was given

by the processing limits of a low-cost hardware. To minimize the signal-processing requirements,

algorithms should exhibit an optimal performance in terms of computational cost. In order to fulfill

with these two requirements, the signal-processing chain was established in four separated blocks,

each one with a different processing function, which include the denoising, the normalization, the

transformation and the classification of the input data. The denoising techniques were used to

smooth the noisy data, the normalization methods to make the hyperspectral signature of cultures

measured at different growth stages equivalent, the transformation block to modify and reduce the
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data dimension in order to decrease the computational cost while trying to enhance its feature

information, and finally the classification algorithms to discern the nature of the samples.

The algorithms of the whole signal-processing chain selected in this research work were experimen-

tally tested and compared using the actual fluorescence measurements obtained from five different

species of phytoplankton. In order to deal with the objective of this study, the data measured with

a laboratory spectrofluorometer was synthetically degraded in terms of bandwidth, resolution and

signal-to-noise ratio to simulate the performance of a potential low-performance low-cost sensor.

Accurate classification results were achieved in most of the combinations when using the original

data and, although a decrement in the classification performance was observed; still very good

results were obtained in a few combinations when using the degraded quality signal. The optimal

chain implementation was obtained by means of the weighted moving average technique as a de-

noising method, the standard normal variate method for normalization, the principal component

analysis to reduce the data dimension and the k-neighbors to classify the cultures. The k-neighbors

does not only provide the best classification results when dealing with fluorescence measurements,

but it is also the fastest method, since it does not require a preliminary training, in contrast to

the self-organizing maps technique or the growing cell structures method. This combination, ad-

ditionally, is optimal in terms of the computational cost, and an accurate classification can be

achieved with the minimum hardware requirements. These results have also confirmed that a suit-

able discrimination of different taxonomic cultures can be achieved examining only the emission

fluorescence data placed around 680 nm and excited at 470 nm, where the fluorescence peak of

the Chlorophyll a is allocated. While other research works use the whole visible spectra to clas-

sify the samples obtained with accurate but expensive instruments, this work has shown that the

630-to-730-nm band presents enough information to determine the sample origin after smoothing,

normalizing and reducing its dimension. This is due to a different proportion of the Chlorophyll

a among different cultures, but also to the presence of different pigment and Chlorophyll b, c and

d ratios, which slightly modify the spectral shape of the culture. These results, obtained from

fluorescence measurements performed on pure cultures, are a preliminary but necessary validation

in order to proceed with the more complex unmixing techniques for taxonomic discrimination in

mixed scenarios. The methodology to obtain fluorescence measurements suggests that it is neces-

sary to address this problem using a non-linear unmixing approach (since the photons emitted by

one particle can be absorbed or scattered by other particles). This issue opens the way for the

development of a wide range of new methodologies and techniques to be implemented in a low-cost
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instrument, which is of great importance to improve the current lengthy methods of taxonomic

identification while reducing the expenses in oceanographic research.





Chapter 4

Detecting the presence of different

phytoplankton species mixed in a

sample

4.1 Introduction

The analysis of phytoplankton species and their abundance is a routine task in marine environ-

ment monitoring. In recent years, frequently occurring red tides have led researchers to develop

rapid analysis technology that measures seawater directly and yields qualitative information about

phytoplankton.

Previous chapters showed the viability of using classification techniques in order to use phyto-

plankton fluorescence spectra to achieve discrimination among different species. In those chapters

phytoplankton fluorescence spectra acquired from pure cultures were used. In a real environment,

such as natural waters, phytoplankton species are not isolated, but mixed with other phytoplankton

species, minerals or other suspended materials. However, in the case of bloom, almost all the con-

tribution to the fluorescence signal is only due to the dominant phytoplankton specie. Thus, once

it has been shown that fluorescence signal from phytoplankton is able to achieve discrimination

from pure cultures, this chapter is focused on the determination of phytoplankton contributions in

a mixed sample, or non-bloom conditions.

71
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Given a set of mixed spectral vectors, Spectral Mixture Analysis (SMA), or spectral unmixing,

aims at estimating the number of reference materials, also called endmembers, and their fractional

abundances. Spectral unmixing analysis has been applied in a variety of studies, for instance,

in satellite images in order to determine the water quality over the Amazon floodplain [106], for

mapping the snow cover in forests [107], or desert shrub rangeland [108]. Spectral imaging sensors

record scenes in which numerous materials contribute to the spectrum measured from a single pixel.

That is so when the spatial resolution of this sensor is high enough such that adjacent materials can

jointly occupy a single pixel, then the resulting spectral measurement will be a composite of the

individual endmembers. Thus, in a pixel spectra there are mixed several spectral responses from

different compounds. Given such mixed pixel, the goal is to identify the individual constituent

materials present in the mixture, as well as the proportions in which they appear. The problem

is then very similar to the one we are facing in this chapter, in which different phytoplankton

species contribute to the spectrum acquired. Spectral unmixing is then the procedure by which the

measured spectrum of a mixed sample is decomposed into a collection of constituent spectra, or

endmembers, and a set of corresponding fractions, or abundances, that indicate the proportion of

each endmember present in the sample.

There exist several techniques to unmix hyperspectral signals. [109] is a good and exhaustive survey

of spectral unmixing algorithms applied to remote sensing hyperspectral images. In this survey, the

complete end-to-end unmixing problem is decomposed to a sequence of three consecutive stages:

dimension reduction, endmember determination and inversion.

• Dimension reduction: this step is thought to be used to reduce the computational load of

the processing algorithms, although it can be also used to increase their performance as it

has been shown in previous chapters. While this first step is optional, but it has been proven

useful in our study case, the next one, endmember determination, is indispensable in any

case.

• Endmember determination: In remote sensing imaging, endmembers normally correspond to

familiar macroscopic objects present in the scene, such as water, soil, metal, or any natural or

man-made material. In this context, there exist basically two approaches in order to determine

the endmembers. In the first one, scientists can acquire the reflection of the different materials

that can appear in an image by simply taking the signal in the lab or in a controlled field

acquisition, and they can build a library of materials with their response to be used as
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endmembers. The second approach is the more commonly used, and it consists in using

certain algorithms to select the endmembers directly from the satellite image. It assumes

that there exist pixels in the image that are fully occupied by a material, and the response

from this pixel is generated just due to this material. With this approach they ensure that the

endmembers spectra are affected by the atmosphere or other disturbing effects that affect also

the image they are working with. There exist several methods to select endmembers from

a satellite image such as Vertex Component Analysis (VCA) [110], Convex Cone Analysis

(CCA) [111] among others [112]. In our case, the endmembers can not be collected from

an image, so they should be acquired separately. The endmembers are then acquired in

laboratory or using radiative transfer models, as it will be explained below. The next sections

will discuss in more detail this problem and how it has been tackled in each case of study.

• Inversion: Finally, the last step is the inversion. Depending on the interaction of the light with

the materials present in the scene or mixtures, the response signal acquired by the sensor can

be linear or non-linear [113–115], and the inversion model used depends on this characteristic.

Linear mixing model (LMM) holds when the detected photons interact mainly with a single

component on the scene before they reach the sensor [116, 117](Figure 4.1), while the non-

linear mixing model (NLMM) appears when the light suffers multiple scattering involving

different materials [118](Figure 4.2).

Figure 4.1: Schematic representation of a Linear Mixing example (Image extracted from [113]).

In a linear mixing scenario, the acquired spectral vectors are a linear combination of the endmembers

signatures present in the sample weighted by the respective fractional abundances. On the other
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Figure 4.2: Schematic representation of a Non-Linear Mixing example (Image extracted from
[113]).

hand, in a non-linear mixing scenario, the model for the scattered light is much more complex and

typically application dependent. There exist particular situations in which a non-linear model can

be approximated with a linear one. Although the application case faced in this chapter is probably

a non-linear scenario, and there are some studies dealing with non-linear problems [119, 120], it is

much more complicated to solve and it would imply a complete thesis research. Thus, before facing

this scenario, it is always suggested to prove if the problem can be approximately solved by a linear

mixing model.

To accomplish this goal, two different approaches are presented in this chapter:

• Use of laboratory mixed samples: In this case, optical responses of phytoplankton cultures

are acquired in the laboratory, as well as fluorescence responses of mixtures obtained merging

these phytoplankton cultures.

• Use of a radiative transfer model: For this study, a radiative transfer model implemented in a

commercial software (Hydrolight [121]) is used to simulate several scenarios of bloom (single

algae simulation) and mixture (two phytoplankton species mixed). Simulation outputs are

used for testing unmixing techniques

This chapter is then organized as follows: Next section introduces the processing techniques used

for this study. Linear Mixing Model (LMM) is introduced to better understand how it works and
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it is applied. After that, both approaches are presented. Generated data for each approach is

explained and some conclusions are extracted from the results. Some of the results presented in

this chapter were presented in [28].

4.2 Linear Mixing Model (LMM)

As it has been already shown during this thesis, each phytoplankton specie produces a different

fluorescence spectra, since they are composed of different pigments that provide them their char-

acteristic colors and different spectral responses, depending on the source that illuminates them

(intensity and wavelength). This property allows to distinguish and classify the different species

present in the water [24].

In marine environments more than one specie is present in the water, so the measurement equipment

will not acquire just a pure fluorescent compound but the contribution of all the species present

in the specific environment, as well as other fluorescent particles. The aim of this chapter is then

to determine if it is possible to distinguish the proportion of each specie in a measurement using a

linear unmixing method.

As mentioned during the thesis, several techniques use phytoplankton fluorescence spectroscopy to

discriminate between different phytoplankton groups [1, 17]. Some of these techniques can achieve

a high taxonomic discrimination but they are based on measurements that require excitation at

different wavelengths. During this thesis, and the results presented in [24, 26], the possibility to use

the information contained in emission fluorescence spectra to discriminate between several phyto-

plankton species has been evaluated. Self-Organizing Maps (SOM), as well as other classification

techniques such as P-SVM, k-neighbors, Growing Cell Structures, etc. were used and their perfor-

mance were presented as feasible techniques to use in those studies, in which time acquisition is

an important constraint, e.g. mobile platforms for high spatial resolution measurements. In this

chapter, we go one step further. The fluorescence of different mixtures has been acquired and a

first approach using the Linear Mixture Model (LMM) [114] is analyzed in order to evaluate how

this model can be applied to this kind of data. LMM is herein briefly described and finally, the

results of the unmixing using this linear approach are presented and discussed.

There exist other techniques such as Independent component analysis (ICA) [122] or independent

factor analysis (IFA) [123] which have been used by many authors to unmix hyperspectral data.
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However, they are based in the assumption of source statistical independence and this is not satisfied

in spectral applications [113], since the source are fractions and, thus, non-negative and sum one.

That is why methods based in ICA or IFA have important limitations in this field. In [124] the

impact of this source statistical dependence is addressed. In this study, evidence that the unmixing

matrix minimizing the mutual information might be far from the true one is given. In this chapter,

and bearing this in mind, linear spectral mixing model is used, and it is explained in the next

section.

4.2.0.1 Linear Spectral Mixing Model

The basic premise of mixture modeling is that within a given scene, the medium, in a general

case, is dominated by a small number of distinct materials that have relatively constant spectral

properties. Theses distinct substances are called endmembers and the fractions in which they appear

in a mixture are called fractional abundances. In this sense, there should exist a linear relationship

between the fractional abundance of the substances present in the medium being monitored and

the fluorescence spectra measured by the sensor. This relation in a linear process is called Linear

Spectral Mixing Model (LSMM), and it can be written as:

x =
M∑
i=1

aiSi + w = Sa+ w (4.1)

where x is the measured spectrum vector (L × 1 vector, being L the number of features), S is

a L × M matrix whose columns are the endmember signatures (L × 1 vectors belonging to M

endmembers), a is the M × 1 fractional abundance vector whose entries are ai (being i = 1, ...,M)

and w is the L× 1 additive observation noise vector.

Inversion algorithms consist on the estimation of the fractional abundances of the constituents

present in a mixed sample, taking into account the spectrum acquired and the endmembers spectra.

Minimizing the squared-error is one of the most widely used inversion algorithms. Least squares

inversion methods are usually used as a first approach. They start from a simple approach and

increase in complexity as further assumptions are imposed on the problem. Usually two assumptions

or constraints are imposed: the sum of the abundances must be 1 (
∑M

i=1 ai = 1), and the abundances

must be a positive value below 1 (0 6 ai 6 1, i = 1, ...,M). The results shown below present the
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performance of the methodology with and without constraints. The approach from non-constraint

least squares solutions to full-constraint followed in ths thesis is presented in [125].

Considering a Linear Spectral Mixing Model (LSMM) problem, described above (eq. 4.1), the as-

sumption of no additional noise, and no constraints, the least squares estimation for the abundances

(aLS) is:

aLS = (STS)−1STx = S#x (4.2)

where S# is the pseudo inverse matrix of S.

In order to solve these equations, Singular Value Decomposition (SVD) can be used [126]. The

SVD is a well-known eigenanalysis mathematical method of decomposing a matrix A into matrices

U , S and V , such that A = USV T , where UTU = V TV = I, I is the identity matrix, and S is a

diagonal matrix whose diagonal elements are the singular values [127, 128].

The previous approach imposed no constraints on the abundance solution. A partial constraint

approach can be reach if the constraint of sum to one is applied (
∑M

i=1 ai = 1). In this case, the

obtention of the abundances aSCLS can be obtained following equation 4.3:

aSCLS = PMaLS + (STS)−11[1T (MTM)−1 (4.3)

where aLS is given by 4.1 and

PM = I − (MTM)−11[1T (MTM)−11]−11Ta = (STS)−1STx = S#x (4.4)

with 1 = (1, 1, ..., 1)T .

About the nonnegatively constrained least squares (NCLS) is based on the following optimization

problem:

Minimize LSE = (Sa− x)T (Sa− x) subject to ai > 0 where i = 1, ...,M (4.5)
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where LSE is the least squares error used as the criterion for optimality and ai > 0, i = 1, ...,M

represents the nonnegativity constraint. The problem is now a set of inequalities that following

the equation development shown in [129] the constraint optimization problem results in the next

iterative equations given by:

aNCLS = (MTM)−1MTx− (MTM)−1λ = aLS − (MTM)−1λ (4.6)

λ = MT (x−MaNCLS) (4.7)

These two equations 4.6 and 4.7 can be used to solve the optimal solution aNCLS and the Lagrange

multiplier vector λ = (λ1, λ2, ..., λ3)
T .

Finally, following the method considered in [130, 131], a full-constraint optimal solution (FCLS) can

be obtained by making use of the previous NCLS algorithm, introducing the sum-to-one constraint.

This constraint can be included modifying the signature matrix M by a new one denoted by N ,

defined by:

N =

δM
1T

 (4.8)

with 1 = (1, 1, ..., 1)T , and a new vector x, denoted by s:

s =

δx
1

 (4.9)

The use of δ in 4.8 and 4.9 controls the impact of the sum-to-one constraint, and can be used as

a tunable parameter. The full-constraint algorithm is obtained replacing M and x used in NCLS

with N and s.
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4.3 Results and Discussion

In this study, two different approximations can be clearly distinguished. First (case I), a study done

with samples mixed in the laboratory using several phytoplankton cultures. The second approach

(case II) is using a radiative transfer model to simulate different mixed scenarios. Each subsection

will introduce the specific data generated for each approach and will show the results obtained.

4.3.1 CASE I: Unmixing phytoplankton fluorescence mixtures from laboratory

samples

This experiment shows the performance obtained unmixing emission fluorescence phytoplankton

spectra acquired in the laboratory. First, the data acquired for this work is explained and after

that, the results obtained are shown.

Data preparation

In order to create a data set with mixtures of different phytoplankton species, the fluorescence

emission of approx. 80 mixtures were acquired. The measurements were done with the same

spectrometer used during this thesis, an Aminco-Bowman Series 2 luminiscence spectrometer (con-

figured with a 4 nm slit width and a scan speed of 20 nm/s). 59 mixtures of two components and

24 of three were acquired over several days, merging eight different phytoplankton species (Table

4.1), representing the major algae divisions. In this work, and having as a reference the goal of a

fast discrimination method, emission fluorescence spectra excited at 490nm were acquired. These

fluorescence spectra ranged between 520 - 735 nm, were used as an input data to work with. In

order to select the best possible endmembers, they have been chosen as the emission fluorescence

of the isolated cultures acquired the same day as the mixture. Figure 4.3 shows an example of

the spectra acquired for each phytoplankton specie. These spectra are then used as endmembers

in the unmixing process. As it can be seen, the spectra are very similar, unless Cryptomonas and

Rhinomonas, both belonging to Cryptophyceae class, which present a tiny peak at 590 nm. From

this image, the difficulty of the unmixing step can be appreciated, but it is even more obvious in

the next figure. Figure 4.4 shows an example of a mixture spectra and the signature spectra of both

phytoplankton species used in this mixture. Table 4.2 summarizes the available mixtures acquired

for this study, and the abundances of each constituent.
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Figure 4.3: This figure shows an example of endmember for each phytoplankton specie.

Figure 4.4: This figure shows an example of a phytoplankton mixture and the constituent end-
members used. Iso and Amin were mixed in a 50%− 50% proportion.
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Table 4.1: Phytoplankton species merged for mixtures. The abbreviation is neccesary to follow
the discussion and to understand table 4.2.

Species Division Abbreviation

Pleurochrysis elongata Prymnesiophyceae Pl (1)
Isochrysis galbana Prymnesiophyceae Iso (2)
Cryptomonas sp. Cryptophyceae Crypt (3)

Rhinomonas reticulata Cryptophyceae Rhin (4)
Dunaliella primolecta Chlorophyceae Duna (5)

Nannochloropsis oculata Eustigmatophyceae Nano (6)
Alexandrium minutum Dinophyceae Amin (7)

Thalassiosira weissflogii Bacillariophyceae Thwi (8)

Results

After the effort of the laboratory work, the study presented in this section was the first approach

to unmix phytoplankton mixtures. In this case, an intensive search of different combinations of

two and three components is done. For instance, taking a two component mixture, all the possible

combinations of two species from the list of eight (Table 4.1) are found (C8
2 = 8!

2!(8−2)! = 28 possible

combinations). Then, LSMM with NCLS approximation was applied for each combination of two

endmembers. From these abundances, the estimated mixtured is computed for each combination

and the error between the original mixture and the reconstructed from the estimated abundances

is computed as the norm of the difference vector. The combination of two endmembers with less

error is the winner, and taken as the best fit combination for this specific mixture under study.

The same procedure is followed for the rest of two and three mixtures left. In the case of mixtures

containing three components, the number of possible combinations is 56.

The performance is then computed as (eq. 4.10):

performance =
n correct predictions

n total mixtures
∗ 100 (4.10)

Taking into account all the two and three component mixtures measured for this study (Table 4.2)

the performance of this approach methodology is about 65%. In order to improve the results, taking

as a reference the results presented in the previous chapters, denoising and derivative analysis were

perform. This time the results were not the expected, since applying wavelet denoising to the

spectra the performance decrease to 61.44%. Derivative analysis does not make it better obtaining

just a 60.24%.
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Table 4.2: Summary of mixtures acquired in the laboratory. It is indicated for each mixture the
phytoplankton species mixed and the abundance in volume percentage of each one.

Day Mixed Species Abundance (%) Day Mixed Species Abundance (%)

1-2 50%-50%, 75%-25% 1-7 50%-50%, 75%-25%
3-4 50%-50%, 75%-25% 2-8 50%-50%, 75%-25%

Day 1 5-6 50%-50%, 75%-25% Day 6 3-5 50%-50%, 75%-25%
7-8 50%-50%, 75%-25% 4-6 50%-50%, 75%-25%

1-2-3 33%-33%-33% 1-4-7 33%-33%-33%

1-3 50%-50%, 75%-25% 1-8 50%-50%, 75%-25%
2-4 50%-50%, 75%-25% 2-7 50%-50%, 75%-25%

Day 2 5-7 50%-50%, 75%-25% Day 7 3-6 50%-50%, 75%-25%
6-7 50%-50%, 75%-25% 4-5 50%-50%, 75%-25%

4-5-6 50%-25%-25% 6-8-3 25%-50%-25%

3-4-7 33%-33%-33%
1-4 50%-50%, 75%-25% 3-5-8 25%-25%-50%
2-3 50%-50%, 75%-25% 2-6-8 50%-25%-25%

Day 3 5-8 50%-50%, 75%-25% Day 8 1-5-7 25%-25%-50%
6-7 50%-50%, 75%-25% 4-7-8 33%-33%-33%

7-8-1 50%-25%-25% 2-6-7 50%-25%-25%
5-7-8 33%-33%-33%
3-4-2 25%-25%-50%

5-7-8 50%-25%-25%
1-5 50%-50% 3-5-7 33%-33%-33%
2-6 50%-50% 1-2-7 50%-25%-25%

Day 4 3-8 50%-50% Day 9 2-5-8 25%-50%-25%
4-7 50%-50% 4-6-7 33%-33%-33%

2-4-8 33%-33%-33% 3-6-8 50%-25%-25%
3-4-6 25%-25%-50%
1-2-6 25%-50%-25%

1-2 50%-50%
1-6 50%-50%, 75%-25% 3-4 50%-50%
2-5 50%-50%, 75%-25% 5-6 50%-50%

Day 5 3-7 50%-50%, 75%-25% Day 10 7-8 50%-50%
4-8 50%-50%, 75%-25% 2-4-7 33%-33%-33%

3-5-7 50%-25%-25% 2-4 50%-50%
5-7 50%-50%
3-7 50%-50%
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At this point, there seems to exist a good behavior in terms of linearity, but the performance is still

poor. For this reason, the next step was grouping the species and see if there exists a meaningful

grouping criteria that helps increasing the performance and still offering enough useful information.

In this direction, three grouping scenarios were studied:

• Grouping species by class.

The groups are shown in Table 4.3, where the species are just ordered by their taxonomic

class. The results as expected increased the performance reaching the 71.08% (68.67% after

denoising the spectra and 66.26% using derivative analysis).

Table 4.3: List of species used in this chapter experiment grouped by Class.

Class Species

Bacillariophyceae Thwi
Eustigmatophyceae Nano

Chlorophyceae Duna
Dinophyceae Amin

Cryptophyceae Crypt, Rhin
Prymnesiophyceae Iso, Pl

• Grouping species by functional algal grups (following Beutler’s proposal [1]).

In [1] Beutler groups the phytoplankton species into major funtional algal groups (Table 4.4,

which are mainly named by their color. The results as expected increased the performance

reaching the 74.70% (72.29% after denoising the spectra and 74.70% using derivative analysis).

Table 4.4: List of species grouped by major algal functional groups following the proposal stated
by Beutler in [1].

Class Species

Green (Chlorophyceae) Duna
Blue (Cyanobacteria) X

Brown (Dinophyceae, Prymnesiophyceae,
Amin, Iso, Pl, Nano, ThwiEustigmatophyceae,Bacillariophyceae)

Mixed group (Cryptophyceae) Crypt, Rhin

• Grouping species doing a study of distances among spectra.

This time, instead of fixing the groups in advance following certain criteria like it was done in

both previous approaches, the relation among the species spectra was studied. A clustering

algorithm based on spectral similarity was applied. Hierarchical clustering Analysis (HCA)
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[132] is a well-known method that clusters data based on their spectral distance (in this case,

euclidean distance) and a selected threshold. Figure 4.5 shows the result of the hierarchical

clustering and the threshold was fixed to 4, resulting in 5 different groups (Table 4.5). The

performance rises following these functional groups based on their spectral similarity, reaching

the 85.54% (83.13% after denoising the spectra and 73.49% using derivative analysis).

Figure 4.5: Hierarchical Clustering of phytoplankton culture spectra.

Table 4.5: List of species grouped by spectral similarity using Hierarchical Clustering Analysis
(HCA).

Group Species

Group 1 Thwi, Nano
Group 2 Duna, Pl
Group 3 Crypt, Rhin
Group 4 Amin
Group 5 Iso

From this preliminary experiment, it can be said that even obtaining an 85% of performance when

grouping phytoplankton by their spectral similarity, the results are not conclusive. The mixing

scenario seems not to be linear but the results show some evidences that maybe need to studied

carefully and carry out some other experiments. But these experiments in laboratory working with

living samples of phytoplankton are time consuming and statistically not very significant, as it has

been seen in this section. Besides, the percentage of each mixed sample is not accurately known. In

order to know these abundances accurately each mixture have to be analyzed counting cells or with
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advanced systems to exactly determine the exact number of cells of each component present in the

mixture. Nowadays there exist some techniques able to approximately estimate these quantities,

but they are really sophisticated and difficult to set up, calibrate and must be used by qualified

personal. For this reason, it was decided that this job wasn’t part of this thesis, as well as cell

counting. The solution found was then to evaluate unmixing techniques but not requiring such

an amount of time, resources and qualified personal. The decision was using one of the radiative

transfer models available to simulate underwater light conditions. Using radiative transfer model

both drawbacks are solved, since all the quantities used in a simulation are exactly known, and it

can be used to perform as many mixings as desired. Both advantages facilitate the determination of

the limits of applicability of the unmixing techniques in this particular problem. Radiative transfer

models have been studied for a long time and they are widely used in lots of theoretical underwater

studies. Lots of data can be obtained simulating underwater light behaviors without investing

long periods in laboratory, need sophisticate technology or specific personal. Next section focus its

attention in this kind of data.

4.3.2 CASE II: Unmixing the water column from simulated data

Optical properties have been widely used for the characterization of the water column. Natural

light intensity exponentially decreases with depth, unless the sample is not illuminated with an

external excitation. The severity of attenuation differs with the wavelength of the electromagnetic

radiation (EMR). For instance, in the region of visible light, the red part of the spectrum attenuates

more rapidly than the shorter-wavelength, blue part, but other parts of the spectra can be affected

depending on the constituents present in the water. As depth increases, the separability of habitat

spectra declines. The spectral properties recorded by an optical sensor are therefore dependent

both on the constituents and on depth.

There already exists, for instance, a hyperspectral vertical profiler prototype [87] and the commercial

Hyperpro from Satlantic [133], that are able to acquire optical properties from the water column

with hyperspectral sensors. This Hyperpro platform measures the apparent optical properties

(AOP’s) of the ocean, which depend on the inherent optical properties (IOP’s) and also on the

light field in which they are measured. That is, IOP’s depend only upon the medium and are

therefore independent of the ambient light field, while apparent optical properties (AOP’s) depend

on both the medium and the geometric structure of the ambient light field [134]. The Radiative
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transfer theory provides a connection between inherent and apparent optical properties (IOP’s and

AOP’s). The water column’s hyperspectral profile can be then used to detect and classify different

water layers applying analog methodologies used for classifying pixels in terrestrial hyperspectral

images.

There exists several Radiative Transfer Models to be used in simulations, but there is still a lack on

accuracy in how they simulate inelastic processes such as fluorescence. For this reason, although

fluorescence has been used during all this thesis, in this study it will not be used. Instead, the main

goal is to evaluate the use of two specific AOP’s as a potential references (i. e. endmembers) in

hyperspectral characterization of the water column. The AOP’s selection is based on their intrinsic

properties, and the selected ones are:

• the spectral irradiance reflectance factor, R(z, λ), (hereafter referred to as reflectance) defined

as the ratio of spectral upwelling, Eu(z, λ), to downwelling, Ed(z, λ), irradiance.

R(z, λ) =
Eu(z, λ)

Ed(z, λ)
(4.11)

• the irradiance attenuation coefficient, also known as diffuse attenuation coefficient Kd, that is

essentially the attenuation experienced by sunlight, measuring the variation of Ed in function

of depth.

Kd(z, λ) = −d lnEd(z, λ)

dz
= − 1

Ed(z, λ)

dEd(z, λ)

dz
[m−1] (4.12)

The validation of R and Kd as useful parameters to discriminate between different optical compo-

nents present in the water column, was based on numerical modelization. The radiative transfer

model simulator HydroLight-EcoLight (HE) [121] has been used to generate the scenarios used for

this goal. The HydroLight-Ecolight radiative transfer numerical model computes radiance distri-

butions and related quantities (irradiances, reflectances, diffuse attenuation functions, etc.) in any

water body. Water absorption and scattering properties, sky conditions, or the bottom boundary

conditions are some of the parameters specified as the inputs of the simulation. All these parame-

ters are used in the scalar radiative transfer equation to compute the in-water radiance and other

AOP’s (e. g. R or Kd, used in this chapter) as a function of depth, direction, and wavelength

(Figure 4.6). Therefore, HE can act as a controlled environment to predict what the light field
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received by a sensor would be under a wide range of conditions. Such control of the environment

cannot be obtained in the field, which is best used for final testing and evaluation of sensors.

Figure 4.6: Radiative Transfer schema used by Hydrolight-Ecolight (HE).

Two different simulations have been carried out for this study using Hydrolight-Ecolight and will

be exposed next:

• a) Study of hyperspectral Irradiance Reflectance (R) and Diffuse Attenuation Coefficient

(Kd). This experiment studies both parameters to demonstrate if they are suitable for phy-

toplankton discrimination, and which one obtains better results.

• b) Diffuse Attenuation Coefficient (Kd) simulations. Here, simulations using HE are used to

obtain Kd. In this case, LSMM is applied to Kd data of several mixed scenarios trying to

unmix the complete water column.

4.3.2.1 a) Study of hyperspectral Irradiance Reflectance (R) or Diffuse Attenuation

Coefficient (Kd)

In this experiment, a preliminary study about these two magnitudes is shown. Are they useful

to discriminate phytoplankton species?. Simulations using Hidrolight-Ecolight are performed and

their variance with depth and concentration studied.

Data preparation
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In this work, five different algal groups are considered (Table 4.6). The HE simulations were

designed as simple as possible, without taking into account inelastic scattering, for example, and

based on the following criteria:

• Simulate profiles containing only one type of algae with homogeneous concentration at all

depths, and at different concentration ratios to evaluate if these two target properties (R and

Kd) are subjected to relevant changes with depth or concentration.

• Simulate a scenario where two different types/populations of algae are present in the water

column to evaluate which of the AOP’s studied (R or Kd) is more suitable for the detection

and identification of the phytoplankton groups.

For each algal group, three different levels of concentration have been simulated (6, 12 and

18 mg·Chl/m3) to generate the homogeneous profiles (using total water depth of 15 m and a

wavelength range 376-725 nm).

In the case of the mixed profile, the algae concentrations follow a triangular shape distribution

with depth (Figure 4.7). In this study, only two groups have been mixed in the simulation,

Bacillariophyceae and Prasinophyceae. As it can be seen in the figure (Figure 4.7), this

distribution shows different parts:

– Parts with no algal presence.

– Parts with only one algae present.

– Parts with both species are mixed with different levels of abundance.

Table 4.6: Phytoplankton groups under study working with hyperspectral Irradiance Reflectance
(R) and Diffuse Attenuation Coefficient (Kd) simulations.

Group Abbreviation

Bacillariophyceae Thwi
Chlorophyceae Duna
Dinophyceae Amin

Cryptophyceae Crypt
Prasinophyceae Prasi

In this study, computation of distances among spectra have been used as a metric of similarity.

Minimum distance means that the specie is more likely to be present in the sample. In addition to

the correlation among spectra, two different similarity indexes were also used:
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Figure 4.7: Mixed profile used for simulations. Both phytoplankton groups follow a triangular
distribution at different depths for simulation. Each peak represents one specie, but the position

varies during the experiment.

• Euclidean distance is the geometric distance between two vectors:

d(~p, ~q) =

n∑
i=1

(pi − qi)2 (4.13)

• Cosine distance is a measure of similarity between two vectors of n dimensions by finding the

cosine angle between them:

d(~p, ~q) = cos(ϑ) =
~p · ~q
‖~p‖ ‖~q‖

(4.14)

The performance was evaluated following equation 4.15, where n correct detections is the number

of correct detections of the most abundant algae in the mixed sample profile, while n total samples

is the total number of samples in depth:

performance =
n correct detections

n total samples
(4.15)
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Results

This section is divided in two parts. The first one is devoted to show how both parameters (Irradi-

ance Reflectance (R) and Diffuse Attenuation Coefficient (Kd)) change with depth or concentration,

in order to check if they can be used as endmembers for phytoplankton detection in the whole water

column. The second part presents the results using these parameters to detect the most abundant

algae present in the mixed profile.

Study of invariance of R and Kd

In order to use Kd or R to discriminate phytoplankton species in the water column, it is necessary

to use reference spectra, or endmembers, representing the spectral signature of each specie. Fur-

thermore, these spectra have to be depth invariant, or one spectrum per depth would be needed,

and also invariant to algae concentration. Figure 4.8 shows how these two parameters change their

spectral response with depth. All five phytoplankton groups and 300 depth samples for each one are

represented. It can be observed that both parameters present an expected slight attenuation with

depth, while their shapes are fairly constant. It can be also seen that they present differentiable

shapes, an important characteristic in order to discriminate them.

Figure 4.9 shows an example of the spectra from just one group for three different concentration

levels simulated with HE. It can be seen that R is less sensitive to changes in concentration than

Kd. However, although Kd changes in value, it seems to maintain its shape, which makes it suitable

also to shape analysis techniques.

Most abundant algae detection

As mentioned previously, in this section a simulation of a triangular phytoplankton distribution in

the water column (figure 4.7) is used. This simulation presents parts with only one algae present

and another where they are mixed. In this case, similarity indices were used to detect the most

abundant phytoplankton specie. The reference spectra were taken from pure culture simulations.

Specifically, reference spectra were picked at 7.5m depth and 12 mg·Chl/m3. Similarity indices

between reference spectra and mixed samples are computed, and the phytoplankton specie with

higher similarity index is selected as the most abundant at a specific depth. Table 4.7 summarizes

the results where performance values are between 0 and 1. It shows the percentatge of correct

matching of the correct solution in the water column for different combinations of concentration

levels between both species.
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Figure 4.8: Example of variations of R andKd with depth. Resulting R andKd from homogeneous
simulations (concentration 6 mg·Chl/m3). All 300 samples of each group are represented.

Figure 4.9: Example of variations of R and Kd with concentration and depth. Resulting R
and Kd from homogeneous simulations (concentration 6, 12 and 18 mg·Chl/m3). All 300 samples

represented.
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Table 4.7: Performance results of similarity for different mixed profiles. Combinations of concen-
trations between the first and second peak (bold for Kd).

Concentration level (First peak-Second peak)

Similarity method 12-12 12-6 18-12 18-18 6-12 6-6

Euclidean
0.37 0.41 0.46 0.41 0.19 0.24
0.62 0.67 0.42 0.3 0.55 0.5

Cosine
0.64 0.52 0.66 0.75 0.61 0.5
0.92 0.83 0.93 0.95 0.93 0.85

Correlation
0.83 0.73 0.82 0.85 0.83 0.71
0.91 0.84 0.93 0.93 0.84 0.81

The results show how Kd obtain better results than R when detecting the most abundant phy-

toplankton specie present in the mixed simulation. In order to enhance the differences among

spectra, derivative analysis has been also applied, as well as wavelet denoising to reduce noise

before computing the derivative. The results are slightly better as can be appreciated in table 4.8.

Table 4.8: Performance results of similarity for different mixed profiles after derivative analysis.
Combinations of concentrations between the first and second peak (bold for Kd).

Concentration level (First peak-Second peak)

Similarity method 12-12 12-6 18-12 18-18 6-12 6-6

Euclidean
0.74 0.67 0.79 0.84 0.57 0.47
0.85 0.85 0.88 0.85 0.63 0.58

Cosine
0.93 0.93 0.94 0.96 0.91 0.87
0.96 0.94 0.97 0.96 0.96 0.95

Correlation
0.91 0.91 0.93 0.94 0.89 0.85
0.97 0.95 0.97 0.97 0.97 0.97

From these results, it can be concluded that Diffuse Attenuation Coefficient (Kd) presents slightly

better results than Irradiance Reflectance (R), and it might be a better variable to use in order to

detect species present in a mixed environment. Next experiment is then centered in this coefficient

applying Linear Spectral Unmixing to phytoplankton mixture simulations.

4.3.2.2 b) Diffuse Attenuation Coefficient (Kd) simulations

Here, the performance of Diffuse Attenuation Coefficient used to unmix phytoplankton spectra is

shown. Simulations using Hidrolight-Ecolight were performed and the results, using the Linear

Spectral Mixing Mode explained above, presented.
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Data preparation

This time the attention has been centered at Diffuse Attenuation Coefficient (Kd). In these simu-

lations, again using Hydrolight-Ecolight software for its Radiative Transfer Model, three different

phytoplankton species belonging to three different phytoplankton groups (Table 4.9) are used to

obtain nine simulations of mixture vertical profiles (Table 4.10) with distinct abundances. The sim-

ulations are 10 m deep, taking a sample each meter, with a wavelength resolution ranged between

352-748 nm every 4 nm (total 100 bands). The concentration this time was set to 10 mg·Chl/m3.

Following the same procedure used in the above simulations, optical properties obtained from sim-

ulations of the water column using just one compound were used as endmembers.

Table 4.9: Phytoplankton groups using Diffuse Attenuation Coefficient (Kd) for unmixing using
Linear Spectral Mixing Model (LSMM)

Group

Bacillariophyceae
Dinophyceae

Prymnesiophyceae

Table 4.10: Summary of mixtures simulated in Hydrolight-Ecolight to be unmixed. It is listed
the abundance of each constituent.

%spA Bacillariophyceae %spB Dinophyceae %spC Prymnesiophyceae

Mixture 1 50% 50% 0%
Mixture 2 50% 0% 50%
Mixture 3 0% 50% 50%
Mixture 4 25% 25% 50%
Mixture 5 50% 25% 25%
Mixture 6 25% 50% 25%
Mixture 7 30% 30% 40%
Mixture 8 40% 30% 30%
Mixture 9 30% 40% 30%

Results

In this case, as explained in the data preparation section, a part from phytoplankton water column

simulations with pure cultures and a constant profile concentration (used to extract endmembers

spectra), there have been also simulated water column mixtures. In contrast with the previous

study, the profile concentration of the mixtures was constant as well, following table 4.10. Fig-

ure 4.10 shows the spectral signatures, or endmembers, for each phytoplankton group, and their

variations with depth.
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Figure 4.10: Kd phytoplankton endmembers at different depths: SpA) Bacillariophyceae, spB)
Dinophyceae, and spC) Prymnesiophyceae.

The results of the Linear Spectral Mixing Model (LSMM) are presented in figures 4.11, 4.12 and

4.13. In these figures the abundances and species predicted are shown. As it can be seen, the

prediction is particularly good at the surface and the near surface meters. It almost have a perfect

prediction the first 2 and 3 meters, but it is getting worse while depth is increasing. In order to

illustrate this, two different error indices are computed. Figure 4.14a presents the error between

the real abundance vector and the predicted at each depth. Cosine distance is used for this result,

and it can be visually appreciated, in a logarithmic representation, how the error increases with

depth. On the other hand, figure 4.14b represents the error between the real mixture under study

and the reconstructed mixture from the predicted abundances. In this case, from the abundances

predicted with the LSMM, the predicted mixture is reconstructed and the cosine distance between

both is computed and represented in this figure. The result corroborate the conclusion that the

linear prediction decreases its performance with depth.

4.4 Conclusions

This chapter was an exploratory work towards the detection of phytoplankton species present in

mixed samples. As explained, in natural water, phytoplankton will not appear isolated. There exist

other particles able to contribute in the spectral response, as well as other phytoplankton species.

When light interacts with these particles before reaching the sensor, it can affected by different

processes and the acquired signal is a combination of all of them. As explained in this chapter,

basically two different scenarios can be pictured. Depending on the interaction of the light with the

materials present in the scene or sample, the response signal acquired by the sensor can be linear o



Chapter 4. Detecting phytoplankton species in a mixed sample 95

Figure 4.11: Resulted abundances using LSMM: a) Mixtures 1, b) Mixture 2, and c) Mixture 3.
On the left, the mixture spectra for each depth on the water column. The figure on the right shows

the abundances of each constituent at each depth.
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Figure 4.12: Resulted abundances using LSMM: a) Mixtures 4, b) Mixture 5, and c) Mixture 6.
On the left, the mixture spectra for each depth on the water column. The figure on the right shows

the abundances of each constituent at each depth.
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Figure 4.13: Resulted abundances using LSMM: a) Mixtures 7, b) Mixture 8, and c) Mixture 9.
On the left, the mixture spectra for each depth on the water column. The figure on the right shows

the abundances of each constituent at each depth.
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Figure 4.14: Performance error from retrieved abundances: a) Similarity between abundances
vectors and predicted abundances, and b) Similarity between predicted mixture and real mixture

under study.

non-linear, and the study of these data depends on this characteristic. In our case, light interacts

with different particles before being acquired, and it is presumably a non-linear scenario. However,

since non-linear solutions are usually more complex and time consuming, it is always preferably to

explore if there exists any possibility where the problem can be solved with linear solutions. This

is the case studied in this chapter.

Two different scenarios were studied depending on the data origin. In the first one, an intensive

laboratory work was done in order to acquire phytoplankton fluorescence responses of cultures

and mixtures. The results using Linear Spectral Mixing Model were not conclusive, although

they presented a good performance detecting the presence of a major phytoplankton group. This

might be interesting when the target is included in one of these groups. However, due to the

important laboratory work necessary to carry out more experiments and better characterize the

data acquired, it was decided to continue the research using Radiative Transfer Models, which

simulates the interaction of light with particles present in the water column. The use of numerical

modeling of the ocean optical properties can help to understand how they react to changes in

the water column composition. For this reason, Hydrolight-Ecolight (HE), a well-known software

used in the whole community, was used in order to simulate different scenarios to study how two

Apparent Optical Properties (AOPs) such as Irradiance Reflectance (R) and Diffuse Attenuation

Coefficient (Kd) could be used to detect the presence of an specific group in the water column.
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R and Kd were shown fairly invariant with depth and constant in shape when several concentrations

were simulated. A simple preliminary approach using similarity indices was used to evaluate if these

parameters could be used as reference spectra for unmixing problems in the water column. The

results showed that there is a good correlation between the reference spectra and the simulated

mixed profile when the most abundant algae is the target. Kd seemed to get better results, and

for this reason this parameter was used in the last part of this chapter applying LSMM to unmix

simulated data. The results of the last experiment showed how linear mixing models obtained good

unmixing performance in the first couple of meters, while the error increased with depth.

Although the results are still preliminary, it is a very promising starting point for studying phy-

toplankton mixes in the ocean because of the difficulty to have references to detect the different

components present in natural waters. The big variability of environmental conditions (light atten-

uation with depth, physiological state of the cell, changing meteorological conditions, etc...) makes

the task of obtaining automated methods for discrimination of phytoplankton in situ a very difficult

one.





Chapter 5

Summary and Conclusions

5.1 Summary and Conclusions

Phytoplankton discrimination or detection of special phytoplankton species is a key application

in marine biology studies. Marine ecology, studies of phytoplankton migration, water quality,

turbulence and physical processes occurring in the water column, etc., are several examples of

research studies interested in this topic. But not only the scientific community is interested in

fast discrimination methodologies. For instance, mussel and oyster farms have high interest in

detecting in advance the proliferation of specific toxic algae. Nowadays, these toxic blooms can

cause an important economic impact in this industry, specially for the people, families and business

owners of the affected farm. The problem is an important health issue, because the seafood exposed

to these phytoplankton can even intoxicate animals or human being that eats it.

This thesis was centered in the discrimination and detection of phytoplankton species or algal

groups. This problem could be tackled in different ways, but it was decided to work with optical

information. The major part of this thesis has been centered in the study of phytoplankton fluo-

rescence response acquired with hyperspectral sensors. Although some studies use the excitation

fluorescence spectra for this goal, this method requires sequentially excitation of the sample, spend-

ing a certain time in the acquisition. In some applications where the acquisition time is a concern,

such as a free-falling profiler, it might be necessary to speed up the process, and the use of emission

fluorescence spectra instead of excitation was tested.

101
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The study presented in this document aimed answering a key question: Are we able to discriminate

phytoplankton species from their emission fluorescence spectra? The work was consciously presented

in chronological order, trying to address several specific questions on each chapter in order to gently

get a global overview towards an answer.

Chapter 2 faces the first question: Is phytoplankton emission fluorescence signal discriminative

enough to differentiate among phytoplankton species?. To answer this question several phytoplank-

ton species were grown and their fluorescence spectra acquired individually. Two main classifica-

tion methods were used in order to prove emission fluorescence to be useful: Self-Organizing Maps

(SOM) and Potential-Support Vector Machines (P-SVM). The results were published in [24, 25],

and show that in combination with suitable pre-processing techniques applied to the emission flu-

orescence spectra, and with a properly tuned classification method, phytoplankton species can be

differentiated one from each other. However, some troubles were found with phytoplankton species

having similar spectral response. Discrimination performance depends then on the target phyto-

plankton species willing to detect. Grouping phytoplankton species by major algal groups increased

the performance. These results were encouraging to keep working on this thesis and led to the next

chapter.

Chapter 3 contemplates a specific scenario where the techniques presented in chapter 2 can be

applied in research studies, in which cost is a constraint and are limited in budget. The development

of low-cost instruments becomes a key factor, and nowadays can be found sensors and instruments

suitable for these objectives. However, they might lack in some characteristics compared with other

more expensive instruments. For instance, low-cost hyperspectral sensors can have lower resolution,

sensitivity, or Signal-to-noise ratio (SNR). Thus, in this chapter the question addressed was: Is

it possible to discriminate among phytoplankton species from their emission fluorescence spectra

when working with low-cost optical sensors? This objective was addressed focusing the attention

to the chlorophyll a peak, reducing the operating bandwidth and decreasing the resolution, to

simulate the behavior of a low-cost optical sensor. The SNR was also reduced adding noise to

the acquired signal. The results were published in [26], and it shows a good performance when

discriminating phytoplankton species using classification techniques such as SOM, K-Neighbors or

Growing Cell Structures (GCS). It was also studied the effect of different normalization methods in

order to increase the performance, obtaining a surprising increase of the performance once a specific

normalization was applied. It is concluded then that in some cases an adequate processing chain
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can improve the information extracted from certain low-cost optical sensors. These results open a

wide field of possibilities for those research projects in which the high cost of the instrumentation

needed is a big constraint.

Chapters 2 and 3 centered the work on phytoplankton cultures discrimination. This study was

crucial. It was the needed step to demonstrate that phytoplankton emission fluorescence spectra

have enough information to discriminate between isolated phytoplankton cultures. Phytoplank-

ton species were grown and their spectral responses were acquired individually. Then, different

processing techniques were studied in order to elucidate whether they could be discriminated or

not. But in natural waters it is impossible to find them isolated (only when a high concentration

bloom is detected, where a highly dominant phytoplankton specie is present, it might be treat as

isolated). For this reason, Chapter 4 studied the situation in which several phytoplankton species

contribute to the acquired signal. The question addressed in this chapter was: Are we able to

determine the phytoplankton species that contribute to a mixed sample? and the abundance of each

contribution? The work in this chapter wanted to be a preliminary study towards this objective

and it was tackled as a spectral mixing problem. Depending on the interaction of the light with

the particles present in the sample the problem can be approached using linear or non-linear tech-

niques. Since non-linear solutions are often more complex and time consuming, it was decided that

this thesis would study if this problem could be approached with linear solutions. Bearing this in

mind, different tests were conducted. Data from phytoplankton mixtures mixed and acquired in

the laboratory and simulated data using a contrasted Radiative Transfer Model were tested in this

chapter. From the results obtained (partly published in [28]) it can be deduced that the problem

follows a non-linear interaction, and in consequence it might be better solved using non-linear un-

mixing techniques. However, the results showed that in the upper part of the water column, where

the interaction among particles and the light extinction is still low, the linear mixing model is able

to fairly estimate the phytoplankton species present in the mixture and their abundances.

5.2 Future Work

The results presented in this thesis show phytoplankton emission fluorescence spectra as a feasible

measurable magnitude for phytoplankton discrimination, avoiding sequentially illumination usually
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used in studies working with excitation spectra. However, some issues and possible studies to be

addressed in the future have appeared in the thesis.

The techniques presented in this work were tested obtaining good results. In this concern, there

exist other techniques that could improve the results. It might be interesting to test them, and see

if the performance is improved.

Related with the techniques used, there were some studies, which could result interesting for the

thesis, but they were not performed because of time restrictions. For instance, it could have been

interesting to study the computational performance of these techniques. Since the goal of this thesis

was to find a suitable measure to discriminate phytoplankton species in almost real time, mounted

in a free-falling profiler for instance, it would have been important to measure the computational

requirements of each technique. Although Chapter 3 shows a preliminary study of some processing

techniques in terms of time consumption, it is necessary to test them in order to extract conclusions

about hardware needs.

Besides the computational requirements, hyperspectral sensors provide a huge amount of data.

Traditional processing techniques were not ideally designed to deal with such a high dimensional

data. This is another key question to bear in mind when working with hyperspectral sensors.

Although Chapter 3 explores the use of Genetic Algorithm and PCA to reduce the dimension of

the data, it can be interesting to study other dimensionality reduction methods, and check their

impact on the performance of each technique.

As it has been mentioned, the study of mixtures is still in a preliminary stage. Lots of possibilities

are open to work on this direction. First of all, working with numerical models allows having more

data and control over the scenarios where to test the processing techniques, but it is important to

still work on the radiative transfer models. Nowadays they are not enough developed for this type

of studies, and, for instance, the inelastic processes are not well implemented. Thus, simulations

are not accurate to real scenarios. The best alternative is always work with real natural samples,

but it has its own problems. It is necessary an exhaustive work to characterize the sample, an

expert is needed for this work, and in the sample can be present other materials that affect the

measure. Using natural samples you do not have a controlled environment, and the acquisition of

samples is usually statistically less significative, because of the difficulty of sampling the ocean. On

the contrary, one concern has always been whether laboratory cultivated strains differ significantly

from those of natural populations. These two issues are really important, and there is always a
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compromise when studying real world environments. Although it is the final objective, some work

must be done before working with natural samples. A hard work should be done testing if the

techniques presented in this document can be applied to real natural water samples, and this work

can go forward in both ways.

Finally, it would be important to develop a low-cost emission fluorescence hyperspectral sensor to

test the techniques proposed in this thesis. It would be really interesting to repeat experiments

in both sensors (lab spectrofluorometer and custom low-cost sensor) to compare the results using

isolated phytoplankton cultures, and also with mixed samples.
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