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― J.R.R. Tolkien, The Lord of the Rings 



Página 4 de 257 

ACKNOWLEDGEMENTS 



Página 5 de 257 

Entiendo el documento de tesis como un punto importante en la vida, en donde 

intentas compactar brevemente todo el esfuerzo de un trabajo de investigación realizado 

en los últimos años. Sin embargo, es un duro trabajo que en muchas ocasiones es 

necesario la aportación de otra gente tanto a nivel profesional como a nivel personal. Y 

mi experiencia personal, me indica que es necesario un equilibrio entre ambas si se 

quiere llegar a obtener los resultados deseados. 

La experiencia es un factor importante en la vida y no cambiaría nada de lo 

vivido puesto que no hubiera aprendido lo que he aprendido y no hubiera conocido a la 

gente que he conocido. Las circunstancias se crean a partir de las motivaciones e 

ilusiones que llevas contigo y de las que te hacen llegar otras personas. Eso si 

incorporas errores para ser más eficiente en futuros trabajos. 

En este sentido he tenido la suerte de conocer una serie de personas durante 

estos años, que son de valor incuestionable para la consecución de mi proyecto de tesis. 

En primer lugar y sobretodo agradecer de forma especial a prof. Dr. Gustavo 

Deco, puesto que ha depositado en mí su confianza y la posibilidad de realizar mi 

proyecto de tesis. No sólo le tengo en alta estima como profesional, que lo considero 

unas de las mentes más brillantes que hay en la actualidad en la neurociencia 

computacional, sino que me ha acompañado de forma personal durante los diferentes 

años de mi tesis, en especial en los últimos meses, en donde, me ha sido realmente duro, 

sobre todo en lo mental. Él ha estado ahí apoyándome y creyendo que podría hacer un 

buen trabajo pese a mis circunstancias. Este último apoyo a veces es lo que representa 

para una persona poder lograr resultados o no. Esto quiere decir mucho de una persona 

que pese a estar en el nivel intelectual y profesional que se encuentra, puede bajar y 

guiar a una persona en momentos difíciles. En mi modesta opinión, todo director tanto 

de tesis o de proyectos debería tener este tipo de atributos, por lo que me estoy muy 

agradecido y he sé que he tenido mucha suerte poder ser alumno suyo durante mi etapa 

de doctorado. 

En segundo lugar un agradecimiento personal a la Dr. Nuria Nabau, y futura 

socia de la fundación de lucha contra el cáncer y enfermedades mentales. Que durante 

los últimos años ha representado en lo personal un apoyo incondicional. “¡Ya lo sabes!, 

que te voy a contar”, pero me gustaría dejar aquí y ahora constancia de ello. Puesto que 

el documento de tesis representa algo importante en la vida de una persona. En general 

mis agradecimientos a la familia Nabau Moretó y es por ello que les dedico esta tesis: a 



Página 6 de 257 

la memoria de Teresa Moretó. Sin el apoyo de la familia Nabau y en especial de Nuria 

tengo claro que me hubiera sido muy difícil finalizar este trabajo de forma satisfactoria. 

Un estado animo estable es tan importante o más que unas buenas facultades y 

motivaciones personales.  

En tercer lugar un agradecimiento a mi familia, en concreto a mi madre Teresa 

Antolin y a mi padre Juan Tornador, y a mi hermano Juan Carlos Tornador, 

¡obviamente!. Pese a que no entendían mi motivación para dejar de lado mi carrera 

profesional anterior,- para ellos “bien remunerado”-, y que me embarcase en algo que a 

priori para ellos iba aportarme una “insatisfacción económica” y “con lo que está 

cayendo”, siempre me han apoyado en mi decisión. Solo decirles: “todo saldrá bien, 

¡tranquilos! yo sé porque lo hago, porque es lo que quiero hacer”. Espero que se 

entienda en estas palabras que hay momentos en la vida donde cada uno tiene que hacer 

lo que tiene que hacer, y siempre hay otros momentos para realizar satisfacciones 

secundarias, todo llega. En todo caso sé que estáis orgullosos de mí y siempre lo estaréis 

y espero que algún día veáis que he decido lo correcto. 

En cuarto lugar dar las gracias a nivel profesional al Dr. Aldo Córdova y a  la Dr. 

Lourdes Fagañas. Gracias a ellos, y a su aportación tanto en conocimiento como en las 

muestras han hecho posible la realización de mi tesis. Ya desde el primer momento, 

Lourdes me sorprendió gratamente por su manera tan simple de explicar problemas 

complejos, y la capacidad por escucharme y dirigir las ideas hacia hechos concretos, y 

de esta forma poder cerrar proyectos para mí en un tiempo record. Además tanto Aldo 

como Lourdes siempre me han tratado de una forma que me han hecho sentir como en 

casa y esto es de agradecer. Espero poder seguir aprendiendo mucho, tanto al prof. Dr. 

Deco como a la Dr. Lourdes, dos personas que he tenido la suerte de conocer durante 

este periodo y que han supuesto un baluarte y una guía impagable en la formación en el 

campo de la neurociencia y neurociencia computacional. Espero poder llegar algún dia 

como ellos. 

Para mí, estas son las 7 personas que han representado un peso muy específico 

durante este tiempo de tesis, y quería agradecerlo de forma especial. 

Sin embargo hay otras personas que han sido importantes durante este periodo 

de tesis. Destacaría las buenas palabras y voluntad del Dr. Carles Soriano, MD. Dr. 

Narcis Cardoner, que han aportado las muestras para poder realizar una parte de mi 

tesis, y en especial a Dr. Carles que siempre ha estado ayudando y aportando en lo que 

podía. En este sentido también me gustaría agradecer a la Dr. Vesna Prčkovska y a Dr. 



Página 7 de 257 

Carles Falcon por la ayuda en el procesamiento de datos de neuroimagen. 

Por un lado, a nivel profesional del departamento Computational Neuroscience 

de la UPF al futuro Dr. Murat Demirtaş, Dr. Etienne Hugues- por lo que ha tenido que  

sufrir conmigo en el análisis de los datos ECOG-,  Dra. Joana cabral- en mis inicios-  y 

a Dr. Tristan T. Nakagawa. 

Por otro lado, a nivel profesional en mi estancia en el CRG al Dr. Xavier Estivill, 

en donde me dió la oportunidad de formarme en la genética y como bioinformático 

durante casi 4 años, y a la Dra. Laia Bassaganyas, “espero que te vaya muy bien por 

estados unidos, ya me contras”, pero en especial a la Dr. Georgia Escaramis una muy 

buena profesional, en donde he aprendido mucho con ella tanto en la parte de variantes 

estructurales como en estadística: “¿va a haber un tercero? o ¿ya con dos os plantáis?, 

en todo caso ¡felicidades!” y finalmente al Dr. Jose Manuel C. Tubio, que por lo que veo 

le está yendo muy bien por Sanger Institute (Cambridge). Evidentemente, no puedo 

olvidarme del Dr. Daniel Trujillano durante mi estancia en el CRG, un gran apoyo y  

“¡espero verte pronto!”  y agradecerle sus palabras durante su defensa de tesis. 

Otras personas que quisiera agradecer en mi estancia en el PRBB, en donde he 

estado durante más de 6 años, en primer lugar a Dr. Jordi Villà i Freixa (actual director 

de la politécnica de UVIC), y que ya en la actualidad, gracias a sus consejos y las 

diferentes charlas mantenidas, ya le considero un amigo y persona fiable para comenzar 

proyectos nuevos. Una persona que en mi opinión te puede dar una mano en momentos 

de decisión difíciles y hay aprovechar muy bien sus palabras, ya que tiene una visión de 

la vida y una habilidad para analizar a las personas que muy pocos pueden. De él 

siempre conseguirás recibir apoyo y buenas palabras, pero palabras sinceras. Otras 

personas que me gustaría agradecer en mi estancia en el IMIM son la Dr. Nuria Lopez, 

Dr. Manuel Pastor, y Dr. Nuria Centeno “¡Nos queda un café pendiente!”. 

Y finalmente al Dr. Oscar Gonzalez a las órdenes de Dr. Roderic Guigó, un 

profesional como ninguno y experto en Clusters y administración. Las veces que he 

bajado a pedirle cosas y las veces que he tirado los clusters abajo es digno de ver. Vaya 

paciencia! Gracias!. “Seguimos en contacto, vía skype, y nos vemos en las Navidades”. 

También a compañeros y amigos en la actualidad como la Dr. Alba Jene, Dr. Eva  

Noboa, Laia Codo y Dr. Meritxell. También agradecer a Laura Duhé por su ayuda 

inestimable en la traducción en las últimas fechas de la tesis. 

Finalmente, y no por eso menos importante, me gustaría dar las gracias a Dr. 

Miguel Molina co-chair de la ETOP y director de laboratorio de Quiro-Dexeus-Pangaea. 



Página 8 de 257 

En este punto me gustaría parar un segundo. Darle muchísimas gracias no sólo por el 

impulso y confianza a nivel profesional sino por haberme dado la posibilidad de ir como 

P.I en un proyecto de cáncer a nivel internacional en un H2020 y en donde acabamos a 

unas décimas de conseguirlo en última vuelta,- y por lo que me cuentas volvemos a 

intentarlo este año próximo-, sino por la ayuda incondicional que mostrasteis para el 

tratamiento de Joan. Joan e Isabel y yo siempre estaremos agradecidos por desatascar el 

problema en un tiempo record de forma que en la actualidad Joan este feliz y con ganas 

de vivir y pueda disfrutar de sus próximas navidades. En este aspecto me gustaría 

también agradecer al Dr. Villanueva del ICO por su interés y al MD. Maria Gonzalez 

Cao por su seguimiento y al Dr. MD. Manzano del Hospital la Vall d'Hebron. Sin 

dejarme claro a la MD. Dra. Dana Morales. Pero en especial, al MD. Dr. Rafael Rosell, 

que fue el encargado de coordinar evaluar y dirigir el tratamiento de Joan para su 

tratamiento, y en lo profesional nos apoyó para ir al H2020. He podido constatar que Dr. 

Rosell se desvive por sus pacientes. 

Por lo que estas últimas palabras son para Joan e Isabel: “gracias por ser felices 

en momento difíciles”, el veros bien supone una gran fuerza para mí. 



Página 9 de 257 

RESUMEN 



Página 10 de 257 

La depresión es el tipo de trastorno emocional más común en la población 

mundial. Se caracteriza por sentimientos de culpa o negativos, baja autoestima, pérdida 

de interés, alto nivel de reflexión y en general una disminución de las funciones 

psíquicas del individuo. Las nuevas técnicas de neuroimagen no invasivas han 

incrementado la habilidad para estudiar posibles variaciones de la actividad cerebral en 

pacientes. En concreto, las imágenes por resonancia funcional magnética (fRMI) se han 

convertido en las dos últimas décadas el método más importante, no-invasivo sin riesgo 

para la salud humana, para el estudio de las funciones cerebrales humanas. Biswal y 

otros en 1995, y posteriormente Lowe y compañía en 1998, demostraron la existencia 

de actividad espontanea continua en la actividad cerebral en estado de reposo. Estas 

fluctuaciones también han sido confirmadas en otras especies como en macacos 

(Vincent JL y compañía, 2007). El estudio mediante técnicas de neuroimagen sobre la 

actividad cerebral en reposo (rs-fMRI) se ha convertido en una potente herramienta para 

el estudio de enfermedades, puesto que, por un lado, se ha demostrado tener una mejor 

relación señal-ruido respecto a enfoques basados en tareas, y por otro lado, ciertos 

pacientes podrían tener dificultades para realizar algún tipo de tareas cognitivas, de 

lenguaje o motoras. 

Sin embargo, parece ser que debido a ciertas inconsistencias encontradas entre 

estudios, las técnicas de rs-fMRI no estarían llegando a un uso clínico-práctico para el 

seguimiento, pronóstico o pre-diagnostico personalizado en individuos con depresión. 

En línea a esto, aunque Grecius MD en 2008 expuso los beneficios de la técnica rs-

fMRI también comentó que para poder ser utilizada en la rutina clínica aún se debería 

mejorar la relación señal-ruido. Propuso alargar los tiempos de las series temporales en 

estado de reposo y mejorar los procedimientos de análisis. 

En esta tesis se trabaja para dilucidar si existen ciertos factores o componentes 

en la señal funcional en estado de reposo que pudieran ser utilizados para su uso en la 

salud clínica. Por ello, utilizamos datos de rs-fMRI sobre dos conjunto de muestras. En 

el primer conjunto, 27 pacientes con depresión mayor (MDD) y 27 individuos como 

control, diseñamos descriptores que describan aspectos estáticos y dinámicos de la señal 

de reposo para la construcción de modelos de prónostico. En cambio, con el segundo 

tipo de muestras, 48 gemelos, analizamos la relación de posibles factores genéticos y de 

entorno que pudieran explicar ciertos componentes depresivos en la actividad en estado 

de reposo. 
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Por un lado, los resultados muestran que la depresión pudiera estar afectando 

diferentes redes cerebrales al mismo tiempo localizadas en la parte prefrontal-limbica, 

en la red DMN, y entre los lóbulos frontoparietales. Además, parece ser que las 

alteraciones sobre estas redes pudieran ser explicadas tanto por aspectos estáticos y 

dinámicos existentes en la señal de reposo. Finalmente, conseguimos crear modelos que 

explicarían parcialmente ciertos fenómenos clínicos presentes en los pacientes 

depresivos, mediante descriptores globales de estas redes. Estos descriptores de red 

pudieran ser utilizados para el seguimiento personalizado en pacientes con depresión 

mayor. 

Por otro, utilizando la muestra de gemelos, conseguimos construir un modelo de 

riesgo a partir de la actividad amigdalar que evalúa el riesgo o propensión de un 

individuo a partir de componentes analíticas en la actividad de reposo. También sobre 

esta muestra, se analizó el cerebelo encontrando que el entorno pudiera estar 

modificando la actividad en estas regiones.  
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Depression is the most common type of emotional disorder among the world's 

population. It is characterized by negative sentiments, the feeling of guilt, low self-

esteem, a loss of interest, a high-level process of reflection, and in general by a decrease 

of the individual's psychic functions. The new non-invasive neuroimaging techniques 

have increased the ability of studying possible variations in patients' brain activity. In 

concrete, functional magnetic resonance imaging (fMRI) has become the most 

important method to study human brain functions in the past two decades, being non-

invasive and with no risk for human health. Biswal and others in 1995, and later Lowe 

and his colleagues in 1998, showed the existence of continous spontaneous activity in 

the brain's activity at rest. These fluctuations have also been verified in other species 

like macaques (Vicent JL et l, 2007). Studying the brain's activity at rest (rs-fMRI) by 

means of neuroimaging techniques has become a powerful tool for the investigation of 

diseases, since it has demonstrated a better signal to noise ratio concerning task-based 

approaches on one hand, and since certain patients could have difficulties to perform 

cognitive, language or motor tasks on the other hand.  

However, it seems that because of certain inconsistencies found among studies, 

rs-fMRI techniques would not reach a practical clinical use of a personalised 

monitoring, prognosis or pre-diagnosis in individuals with depression. In this respect, 

even if Grecius MD exposed in 2008 the benefits of rs-fMRI techniques, he also 

commented that the signal to noise ratio remains to be improved to be used in a clinical 

routine. Grecius suggested to lenghthen the time of the temporal series at rest, and to 

improve analysis procedures.  

The aim of this thesis is to elucidate if the existence of certain factors or 

components in the functional signal at rest could be used at the clinical health level. In 

order to achieve this, we use rs-fMRI data on two sets of samples. In the first set of 

samples, composed by 27 patients with major depression (MDD) and 27 individuals as 

controls, we design descriptors that describe  both static and dynamic aspects of the 

resting-state signal for the construction of prediction models. Conversely, with the 

second type of samples (48 twins), we analyse the relation between possible genetic and 

environmental factors which could explain certain depressive components in the activity 

in resting condition. 

On the one hand, the results show that depression could simultaneously affect 

different brain networks located in the prefrontal-limbic area, in the DMN, and between 
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the frontoparietal lobes. Besides, it seems that the alterations in these networks could be 

explained by both static and dynamic aspects existing in the rest signal. Finally, we 

achieve the creation of models that would partially explain certain clinical 

phenomenons present in depressive patients by means of global descriptors in these 

networks. These network descriptors could be used for personalised monitoring in 

patients with major depression.  

On the other hand, using the twin sample, we achieve the construction of a risk 

model from the amygdalar activity which evaluates the risk or predisposition of an 

individual from analytical components in the activity at rest. The cerebellum of this 

sample was also analysed, and the environment was found to be possibly modifying the 

activity in these regions. 
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Even though the clinical phenomenons of depressions are well known, the 

pathophysiological mechanisms remain unclear. At the moment a high percentage of 

patients do not respond adequately to the first and second treatment, provoking a high 

rate of suicides. The depression is considered as a severe emotional disorder, complex to 

treat and affecting several biological dimensions. In the two last decades the emergence 

of new techniques of non-invasive neuroimages without risking for the human health 

have allowed the scientific community to advance in the knowledge of human 

functions.  Concretely, it was observed that the brain activities in resting state could be 

utilized to detect alterations  in the brain of patients with mental disorders. Furthermore, 

it might be closely related to an underlying anatomical connectivity, which could 

contains aspects of cerebral organization. Nevertheless, the resting-state functional 

magnetic resonance (rs-fMRI) is mainly used for research and seems not to be part of 

the clinical routine for patients with depressions, despite the potential benefits. In order 

to achieve this objective is necessary the standardization of procedures together with the 

design of new methods which allow to build a series of models useful to assess the 

disorder. 

In the following studies, prognosis and risk models of the disease are provided 

for the scientific community which could be of great benefit in the clinical routine. In 

chapter 1 and 2 dynamic and static components of the resting-state signal are analyzed, 

however in chapter 3 and 4 descriptors are designed on analytic components of the 

signal which could contain genetic and environmental factors. 

In the first and second chapter a sample size of 27 patients with major 

depression and 27 controls has been used. However, in chapter three and four a sample 

size of 48 twins was used (24 monozygotic pairs) informative for depressive 

psychopathology (6 concordant, 8 discordant and 10 healthy control pairs).  

On the one hand, in chapter 1 in the results section, both general aspects that 

remain constant over time (static) and those time varyng factors (dynamic) of the 

resting-state singal are analyzed in patients with major depression. In chapter 2 those 

factors are evaluated together in order to provide an biological explanation and create 

prognosis modules by use global descriptors of different networks. 

Conversely, in chapter 3 we study the genetic and environment factors of 

depression in the amygdalar resting-state connectivity for your relation with the SERT 

and serotonin pathway. However, In chapter 4 those factors are analyzed in the regions 
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of cerebellum, stating that they have a regulating function over the rest of our cerebral 

areas. 

Finally in the last part of this thesis, new lines, in order to advance in methods 

which could help to explain the depression, are considered. Deco et al. (2014) defines a 

procedure, which makes it possible to recalibrate the weight of probability of the 

anatomic structure, constructed through techniques of Neuroimage (DTI), through 

resting state activity creating a new and improved  structure, called enhanced SC (EC). 

According to this network it seems that certain tracts could be reconstructed respect to 

the anatomical network where the DTI techniques present limitations. In view of the 

obtained results in other studies such as bipolar and obsessive compulsives, we think 

that is possible to use this method in the sample of twins in order to see whether the 

enhanced SC could help to understand better the etiology of the disorder. 
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1. The BOLD signal - functional MRI  

 

In the last decades, magnetic resonance imaging (MRI) and functional MRI 

(fMRI) have been playing an important role in studies about brain structure, function 

and the development of pathologies in the brain (Stephen et al. 2004). In particular, 

fMRI has increased the ability to study possible variations in the brain activity of human 

beings through non-invasive techniques. Within a short period of time, fMRI has 

evolved to become the most important method for investigating human brain functions 

(Nikos K. Logothetis and Brian A. Wandell 2003). 

On the one hand, the cerebral blood flow contains water molecules. On the other 

hand, the Magnetic Resonance (MR) uses radio frequency electromagnetic waves to 

measure changes of energy states in real time that occur in the hydrogen nuclei of these 

dipoles in water. Consequently, in fMRI studies, the blood-oxygen-level-dependent 

(BOLD) signals reflect changes in the cerebral blood volume, cerebral blood flow and 

oxygen consumption (Nikos K. Logothetis and Brian A. Wandell 2003). However, the 

BOLD signal depends on the attenuation grade of the local image intensity produced by 

the introduction of deoxyhemoglobin (dHb) in veins and tissues inasmuch as it is 

responsible for the extraction of oxygen for the aerobic metabolism. An increment of 

tissue perfusion rate triggers a dissolution of venous dHb, reducing the tendency of the 

blood in this region. Consequently, it produces an attenuation of the magnetic resonance 

signal (Ogawa S et al. 1992). An increase in the signal intensity is detected in the 

images of fMRI brain mapping. However, nowadays the causality of the neuronal 

activity with the aerobic metabolism and the extraction of oxygen is still being 

discussed. 

Even though the BOLD signal seems to be related to various factors including 

cell types, the kind of circuitry driven during activation and the processes of energy 

demand in the brain, the causes do not seem to correlate with neuronal action potential. 

So that, a direct comparison between the single-unit physiology and BOLD signal 

seems to be complicated (Richard D. Hoge et al. 1999).   

Although the exact mechanisms that underlie neurovascular coupling are not 

completely understood, there is empirical evidence that these mechanisms might be 

altered in the ageing and disease. Besides on the one hand, fMRI can measure brain 

activity in a noninvasive way and with no significant health risk. And on the other hand, 

the fMRI method provides a higher spatio-temporal resolution than other methods 
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available for human research, such as EEG (scalp potentials), MEG 

(magnetoencephalography) and PET (positron emission tomography). These alternative 

methods for human brain research suffer from lack of spatial resolution. Despite that the 

PET stands as an exception of this, the repeated testing on the same brain do not seem 

recommendable because of the introduction of radioactive substances. So that, as 

technique could be impractical depending on the case.  

 

2. Resting-state fMRI (rs-fMRI)  

 

Resting-state functional magnetic resonance (rs-fMRI) has been converted into a 

powerful tool for studying the brain function. For human beings, resting-state is defined 

as the absence of an active state in terms of condition and instructions given from a 

subject. (B. Wicker et al. 2003). 

During the absence of cognitive or sensory stimulation, a significant ongoing 

spontaneous activity was demonstrated using diverse kinds of techniques. Consistent 

(Beckmann et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2006; Fox and Raichle 

2007; Smith et al, 2009) and large-scale patterns of spontaneous fluctuations in the 

BOLD signal were identified from fMRI (Biswal et al. 1995; Lowe et al. 1998) and PET 

data (Shulman et al. 1997; Raichle et al. 2001) in the human brain at rest . 

Biswal et al. (1995), and then Lowe et al. (1998) demonstrated for the first time 

that these fluctuations typically exhibit their highest intervoxel coherence at low 

temporal frequencies (<0.1 Hz). This significant ongoing spontaneous activity in the 

brain was also found during state of alertness (Fox MD et al. 2006; Rissman J. et al. 

2004), sleep (Horovitz et al. 2009; Larson-Prior LJ et al. 2009), light sedation (Grecius 

MD et al. 2008) and general anesthesia (Martuzzi R et al. 2010; Peltier SJ et al. 2005). 

Consequently, this type of experiment has begun to be used on animals in the last years 

(Pawela CP et al. 2008; Majeed W et al. 2009). In recent studies with macaques, it has 

been observed that those fluctuations have very similar characteristics to the ones found 

in human beings. This means, that the ongoing fluctuations might unmask the brain 

intrinsic functional architecture, reflecting an evolutionarily conserved aspect of brain 

organization which transcends levels of consciousness (Vincent JL et al. 2007). 

Even though rs-fMRI can be used for various experiments, this method is at 

present widely employed among studies about mental diseases or disorders for what it 

offers. One the one hand, a better noise ratio is achieved with this technique than  
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conventional task-based approaches (Michael D. Fox and Michael Greicius 2010) 

demonstrated that during a standard fMRI task session, over 80% of the BOLD 

modulation may be discarded as noise. A large number of trials would thus be needed, 

as well as a much more extensive averaging session in order to obtain a good signal to 

noise ratio (SNR). On the other hand, certain patients could have difficulties to perform 

any cognitive, language or motor tasks. 

Despite of this, rs-fMRI studies do not seem to be part of the clinical routine in 

most cases. It is due to certain inconsistencies among studies about mental health 

disorders on the one hand (Jonathan S. Abramowitz and Ryan J. Jacoby severe criticism 

in the annual review, 2015), and to a certain skepticism about the way functional 

connectivity- from fMRI data- estimates neural connectivity on the other hand 

(Maldjian 2001). 

A functional connectivity matrix is usually obtained from rs-fMRI data which 

represents an individual brain. It can be built from the correlation or partial correlation 

of the average BOLD signal in Regions Of Interest (ROI) or from the BOLD signals by 

voxels. It has been observed that in this matrix of connectivity, not only correlations 

between areas with structural connectivity exist (Michael D. Grecius et al. 2009), but 

also correlations among regions without structural connectivity. It can be due to false 

positives, being as the matrix represents just probabilities of connectivity, or because of 

they are showing indirect correlations, by the synchronization of information among 

third regions which might be cooperating in the implementation of a task (Jessica S. 

Damoiseaux and Michale D. Grecius 2009). Besides, they can also contain certain level 

of noise hemodynamic or vascular artifacts, which would be increasing levels of 

correlation among certain areas (Honey et al. 2009; Cordes et al. 2001). 

Despite of all this, nowadays rs-fMRI technique is being used in pre-surgical 

planning for patients with brain tumors (combining various protocols of neuroimaging, 

like diffusion-weighted MRI in multivariate analysis) or epilepsy, as well as for patients 

which could undergo available methods in order to localize lesions or identify diseases, 

especially Alzheimer (M. H. Lee et al. 2013). 
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3. Resting-State Networks (RSN)  

 

 Analyses about the rs-fMRI data have proved the existence of temporal 

correlations or intrinsic functional connectivity among widely separated brain regions 

(Biswal et al. 1995; Cordes et al. 2001). In some studies, it has also been demonstrated 

that this functional connectivity can be found in a coherent way in networks that might 

be specialized in codifying brain functions such as vision, hearing language and 

saliency detection (Michael D. Greicius et al. 2009: Hampson et al. 2002; Beckman et 

al. 2005; Seeley et al. 2007). Greicius et al (2003), Beckman et al. (2005) and De Luca 

et al. (2006) among others hypothesized that these intrinsic connectivity networks, also 

known as resting-state networks (RSN), are an amplification of the neuronal activity 

triggered by intrinsic energy demands of a neuronal population that fire synchronically 

with a common purpose (David M. Cole et al. 2010: Saini et al., 2004; Lewis et al., 

2009). Besides, these coactivating functional systems have been replicated in several 

studies and over different groups of individuals (Beckmann et al. 2005; Damoiseaux et 

al. 2006; De Luca et al. 2006; Fox and Raichle, 2007; Smith et al. 2009) and in other 

species (Vincent et al. 2007). Therefore, this might reflect an evolutionarily conserved 

aspect of cerebral organization and it might be closely related to an underlying 

anatomical connectivity (review Gustavo Deco, Viktor K. Jirsa and Anthony R. 

Mcintosh 2011).  

 Perhaps the most known RSN is the Default Mode Network (DMN). Greicius et 

al. (2003) suggested two large opposing systems in the brain that were confirmed 

afterwards (review M. H. Lee et al. 2012): one in which the DMN could be included, 

and another one in which the attentional or task-based systems such as somatosensory, 

visual or attention networks, commonly known as task-positive and task-negative 

networks, would be incorporated.  

 In recent years, other RSNs have been shown thanks to methods of analysis such 

as seed-based correlation analysis (SCA) or independent component analysis (ICA) 

(Marieke L. Schölvinck et al. 2009). These networks seem to be specially related 

somehow in the codification of possible brain functions- attentional network (Fox MD 

et al. 2006), visual (Bianciardi et al. 2009; Eckert MA et al. 2008), auditory (Cordes D. 

et al. 2000), somatomotor (Biswal et al. 1995; Xiong J. 1999) and others including the 

thalamus (Zhang et al. 2008), cerebellum (O'Reilly JX et al. 2010) and basal ganglia (Di 

Martino A. et al. 2008)-. In this sense, Smith et al. (2009) and Laird et al. (2010), using 
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the BrainMap database that would be involving large number of human subjects, carried 

out a study using ICA on resting-state data and dividing the brain into several RSNs. On 

the one hand, Smith et al. concluded that these networks are continuously and 

dynamically active when the brain is in resting-state. On the other hand, Laird 

associated them, through meta-analysis, to functions and possible brain disorders. In 

particular, they basically showed 10 main large-scale networks- there are two 

frontoparietal networks: one was located on the left hemisphere, and another one on the 

right one; three visual networks were located on the occipital, parieto-occipital and 

cerebellar-vermis areas; other was located on prefrontal network; another one on the 

somatomotor region; and finally the DMN was detected-.  

However, the DMN has specially raised a great interest due to its possible 

relation with the function codification about self-referential nature and its alterations 

found in mental disorders. This alterations seem to be particularly in patients with Major 

Depression Disorder-MDD-(Yvette I. Sheline et al. 2009). Besides, the activity in DMN 

regions appears to be reduced during non-self-referential goal-directed task in healthy 

individuals (Yvette I. Sheline et al. 2009). Buckner R et al. (2008). This might be related 

with the evaluation of potentially survival-salient information such as perspective taking 

of the desires, beliefs and intentions of others and in remembering the past and planning 

of the future (Raichle M et al. 2001, 2007; Buckner R et al. 2007).  

4. Diffusion Tensor Imaging (DTI)

During the last years, Diffusion Tensor Imaging (DTI) along with diffusion-

weighted MRI (DW), has become one of the neuroimaging techniques most used which 

is related not only to brain research but also to clinical practice. The increment of the 

use of DTI in the last decade seems to be sustained (Yaniv Assaf and Ofer Pasternak 

2008). 

The base of this success is due to the fact that DTI enables the visualization and 

characterization of the White Matter (WM) in both two and three dimensions in a 

noninvasive way and without any risk for the health of study subjects, and to its 

capability to observe micro abnormalities in fibers, or tracts, which connect different 

regions of the brain. 

This technique was first used in 1994, and since then, it has been employed to 
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characterize brains affected by different diseases such as; multiple sclerosis, stroke, 

aging, dementia, schizophrenia and so on (Yaniv Assaf and Ofer Pasternak 2008). This 

technique is based on a statistical basis in order to capture the displacements of water 

molecules present within regions of the brain with less than mm3 voxels (Denis Le 

Bihan et al. 2001). The intra-inter matter displacement of molecules enables the 

conformation of the structure and geometric organization of the matter. More precisely, 

MR imaging can be sensitized to the random and thermally driven motions (diffusion) 

of water molecules in the direction of the field gradient (Brian et al. 2004). 

Consequently, the diffusion is directionally dependent (anisotropic), on one of 

the deficiencies of the technique and its virtues, resulting in the general coincidence of 

WM fiber tract orientation (where the direction of the water molecules does not ensure 

parallelism in axonal membranes and myelin sheaths of the fiber tracts) with the 

direction of maximum diffusivity (Brian et al. 2004: Moseley ME et al. 1990). This 

information is captured thanks to the MRI method and saved inside a three-dimensional 

space matrix called tensor. Then, this matrix can be analyzed to estimate the degree of 

diffusivity in any direction or determine the direction of maximum diffusivity, in other 

words, the more probable direction of fiber tracts. Consequently, the tensor matrix can 

be mapped in the space, and thus analyzing the WM. Its potential use for clinical 

practice was suggested earlier by Le Bihan D et al. (1986) who took the first practical 

application to ischemia in 1992 (Warach S et al. 1992). 

However, due to the anisotropic dependency, the DTI technique currently 

presents a series of problems which must be resolved in order to detect correctly those 

tracts in regions where a high density of anatomical connections exists. This could limit 

the characterization of diseases, because of alterations could be on tracts of regions. For 

instance, the ventral striatum has not shown connection with the cingulate cortex in 

different DTI studies, when it has been observed in primates (Kunishio and Haber 1994; 

Haber et al. 2006). Besides, DTI fiber tract reconstruction in specific areas is another 

troublesome example. It is a rather complex process due to the fiber directions present 

in frontal lobe or among interhemispheric regions. (A. Di Martino et al. 2008). 

According to Michael D. Greicius et al. (2009), it was impossible to analyze certain 

fiber tracts which should be present among certain posterior and posterior regions of 

DMN by using DTI techniques. This group (Greicius et al. 2003) showed that bilateral 

angular regions are key to the DMN, however, they were not able to examine tracts 

going laterally to and from the angular gyrus, revealing a problem that should be 
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resolved (Mori and Zheng 2006; Peled et al. 2006). And even though it is more than 

likely that exist some connectivity among angular regions and the posterior cingulate 

cortex (and maybe with the medial temporal and medial prefrontal cortex), neither of 

them could be traced. All this can produce a series of inconsistencies among DTI 

studies. 

5. Enhanced structural Connectivity matrix (EC)

On one hand, the anatomical structure of a subject's brain can be deduced from 

DTI data, and on the other hand, activity changes can be observed in real time in the 

individual through fMRI. Both techniques have become two precious resources in the 

study of the human brain and the characterization of mental disorders in the individuals. 

On one side, the structural connectivity matrix (SC), extracted from DTI data, enables to 

detect structural defects in fiber tracts of the WM. On the other side, the functional 

connectivity matrix (FC), extracted from fMRI data about the Grey Matter (GM), 

enables to detect not only potential alterations in brain activity in patients implementing 

actions (task-evoked), but also abnormalities in ongoing spontaneous activity that could 

help to deduce intrinsic functional connectivity via rs-fMRI. Both techniques show 

complementarity since the SC matrix describes potential anatomical and structural 

changes in the patient, and the FC matrix reports potential abnormalities in different 

RSNs which encode various brain functions. The incorporation of these neuroimaging 

techniques, which are non-invasive and spatio-temporal high-resolution procedures 

without risk to health, has increased significantly in recent years, as far as brain research 

is concerned. Nonetheless, important lacks exist, and they claim for being solved to 

avoid inconsistency. In fact, results from different studies have created skepticism or 

problem when creating models or bases in order to constitute effective profiles that help 

the clinician associate them with potential treatments of different mental disorders or 

illnesses. On the one hand, fMRI data often pose a problem of replicability because of 

issues in signal-to-noise ratio (SNR) processing, produced by hemodynamic noise or 

cerebral vascular artifacts and by connecting the signal to third regions of the system. 

On the other hand, the issue with DTI is mainly due to anisotropy dependence, which 

makes a good tract reconstruction impossible in brain regions where many tracts 

converge in different directions. 

It has been demonstrated that the functional connectivity from the ongoing 
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activity is closely related to the underlying anatomical connectivity (Honey et al. 2009). 

This relationship becomes more apparent in studies on the RSN (Deco et al. 2014: 

Biswal et al. 1995; Damoiseaux et al. 2006; Fox and Raichle 2007; Mantini et al. 2007; 

Brookes et al. 2011). A possible explanation is that the RSNs might be fluctuating close 

to a critical point of instability (Ghosh et al. 2008). When global dynamics of a system 

arrives to this point, the interaction of the underlying SC matrix with local dynamics is 

amplified (Gustavo et al. 2014). In this moment, the FC matrix concerning rs-fMRI can 

be simulated (Deco and Jirsa, 2012). 

Deco et al. (2014) defined an interactive procedure, in which the weights of 

structural connectivity are reformulated from the empirical FC matrix at resting-state, 

thus getting an enhanced structure (EC).  From this EC, the simulated BOLD signal can 

be extracted thanks to the Balloon-Windkessel model, and its results show to be close to 

the empirical signal (Buxton and Frank, 1997; Mandeville et al., 1999). This process 

reduces the tolerance between SC and FC matrix connections until the fitting at 

bifurcation is maximal, producing the final enhanced SC matrix -EC-. The procedure 

uses a dynamic mean field neural model (DMF) reduction of the detailed 

spiking/synaptic model (Deco and Jirsa, 2012) developed in the Virtual Brain Platform 

project (Ritter et al. 2013, Sanz Leon et al. 2013) to fit the empirical SC matrix with the 

FC one. The DMF, basically, is a mathematical model which integrates fire neurons 

with excitatory (NMDA) and inhibitory (GABA-A) synaptic receptors (Brunel and 

Wang, 2001). This matrix, via reducing distances between FC and SC links, should be 

able to reconstruct DTI connections in regions where DTI technique shows 

shortcomings. 

In sum, we assume that the resulting EC matrix could finally help in analyzing 

and finding out potential structural abnormalities in regions where the behavior of the 

SC matrix shows inconsistency. 
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6. RSN estimation using group-ICA strategy from rs-fMRI data

In the analysis of the resting state using preprocessed rs-fMRI data, Independent 

Component Analysis (ICA) has become an useful method to discover regions that may 

work collaboratively as coding regions in the brain. These self-organized networks are 

of particular interest because of they allow to study the association between functional 

anomalies and behavioral changes. Unlike univariate statistical methods, such as linear 

regression, does not seem to exist currently a standard method to infer differences 

between groups. In a regression one can apply common characteristics from group of 

individuals, whereas in ICA, each subject has unequal temporal.  Even though there are 

methods in the literature (Beckmann and Smith 2005; Calhoun et al. 2001,2002,2004; 

Esposito et al 2005; Lukic et al. 2002; Schmithorst and Holland 2004; Svensen et al 

2002) for the analysis of multiple individuals some that pay special attention into 

organizing data, others reporting averaged values whereas others on how an individual 

contributes into the group. All these differences in the method increase the complexity  

of results. 

When ICA is applied, the first step is to choose the adequate analysis design for 

the hypothesis. Two possible designs are single-subject ICA and group-ICA. In single-

subject ICA, temporal and spatial individual characteristics are properly defined, but 

noisy series may arise and overlap with useful IC. In the other design, group-ICA, it is 

possible to define common regions for each group but we assume similar temporal 

series. 

One parameter that one has to be taken into account when working with the 

design group-ICA is the concatenation protocol, that is, if it is spatial or temporal. When 

working with a temporal protocol, a single time series is obtained, assuming a common 

mapping for the group. On the other hand, a single mapping is obtained when the spatial 

approximation is used, assuming the assumption that there are common time series in 

certain regions. Schmithorst and Holland (2004) proved that when are working with 

fMRI data, temporal concatenations would give better results due to the fact that, 

probably, the fMRI signal variations in temporal series are bigger than the spatial ones. 

However, the critical point in this strategy is a priori number of components that 

one wants to obtain. Depending on the number, the algorithm could break a single RSN 

into different ICs. For obtaining the optimal number of components a possibility is to 
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apply the Minimum Description Length (MDL) algorithm (Rissanen J. et al). 

Once the number of optimal components are estimated a group-ICA approach 

works basically in three steps: 1) data reduction in order to reduce complexity and retain 

most of the variance; 2) ICA analysis; 3) and additionally, a back reconstruction to map 

the components and the individuals. In the first phase of data reduction, the complexity 

of each individual's matrix is reduced by means of PCA and is temporarily concatenated 

by groups. These groups suffer another reduction in the number of components initially 

estimated, and are concatenated again to obtain a data matrix with that number of 

components. After the phase of back-reconstruction, one obtain the maps of common 

components for all individuals of that group. 

6.1. Theory of the Group ICA strategy 

Usually, a PCA for each individual is used to reduce the complexity of the data 

due to computational requirements. So that, we obtain a matrix X i =Fi
− 1

Y i  with

dimensions LxV  for each of subjects i, where Y is KxV  matrix that contains the

preprocessed and the normalized spatial data, Fi

− 1

 is the matrix determined by the

PCA, V is the voxel number , K is the number of time points and L is the size of the 

dimension of the temporal matrix after the reduction. Then, all the reduced matrices for 

each individual are concatenated into a new matrix that is again reduced with PCA until 

reaching N dimensions, which will correspond to the number of components initially 

estimated. As a consequence, we obtain the reduced matrix of LMxV , where M is the

number of individuals: 

X=G− 1[
F

1
− 1 Y

1

⋮

F
M
− 1 Y

M
]

And where G
− 1

 is a NxLM  matrix obtained from the decomposition by PCA

that is being multiplied on the right by the reduced matrix of LMxV . In the

decomposition of ICA, we can write X = AS, where A is a matrix N x N and S is the 

map of components N x V. If X is substituted and matrix G is decomposed for each 

individual, we have: 
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[
G

1

⋮
G

M
]AS=[

F
1
− 1 Y

1

⋮

F
M
− 1 Y

M
]

One can rewrite then the partitioned matrices equation for each individual 

as Gi AS i=F i
− 1

Y i , where the matrix S
i contains the map of an individual i and is

calculated from Si= (Gi A)
− 1

Fi
− 1Y i . At this step, multiplying at both sides by Fi , and

solving for Y i  we obtain: Y i≈ Fi Gi ASi  where Y i  would contain the result of ICA of

an individual i. The matrix S
i  with dimensions N x V contains the N maps and the

Fi Gi A  (K x N) matrix contains for each component N the temporal series per

individual. 

7. Bases of Network Construction using graph theory from rs-fMRI data

A network is defined as a group of nodes linked together through edges creating 

a connection graph. Nodes show the different brain areas which were divided in the 

preprocessing step by using an atlas. So a graph represents the statistics interdependence 

between signals in two different areas. 

7.1. Edge Definition 

Usually, each ROI comes from the average temporary course of all spatio-

temporal signals that are found in every voxel. Typically, the interdependence between 

two areas is extracted by the partial correlation coefficient between the average 

temporary courses in two different brain regions (obtaining the FC). As this shows only 

a probability of connection between areas. So that, we should have a special 

consideration with the low probability connections due to might introduce nonexistent 

connections creating noise in the post analysis. When using regression techniques (for 

the correction of movement or to cancel the global signal of the system), the average of 

the system could be displaced. It could explain much of the negative values, being only 

low correlation values, so in other words, most of them artifacts with random values. So 

in some studies the connections are analyzed excluding the negative values on FC 

matrices. 
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7.2. Network metrics from graph theory 

Metrics or descriptors are used to quantify the infrastructure and organization of 

the complex networks that form the brain. Two different kinds of metrics are usually 

deduced: global, in which the whole network is summarized by an unique value, and 

local, in which the function of the node in its network is retained. 

Nowadays, several topological studies have shown that brain networks tend to 

have high levels of clustering together with a high global efficiency creating community 

structures that also be creating efficient interconnected hubs. 

It is possible to characterize a brain network if we can describe different points 

of view: the degree of connection or its infrastructure, the efficiency level when it 

carries information among connected nodes, or in other words how these nodes are 

integrated, and the segregation level, to know if they are creating groups or not. On the 

one hand, the segregation allows a network to specialize in the coding of different 

functions and tasks, but on the other hand, a high global efficiency allows a network to 

have the ability to process the information in an efficient way. So, global or local 

metrics can be characterized by 1) its infrastructure (strength, average strength, degree 

and average degree), 2) its own capacity to carry information on different channels in a 

parallel form (global efficiency), 3) its own capacity to create groups (local efficiency, 

nodal efficiency). The definition of these metrics together with the explanation and rules 

are described by Rubinov and Sporns (2010). In addition, it should also be taken into 

consideration that the brain is really sensitive to energetic shortage, and most of the 

energy is obtained by the glucose metabolism, in other words the brain is sensitive to 

the oxidative stress. 

So that, in disorders, it is reasonable to find an increment of costs among nodes 

which might be sensitively important to codify affected functions. There are proofs that 

the metabolic cost of a node is proportional in one way or another to its own degree 

and/or centrality (degree, strength nodal) and the physical distance that it has regarding 

to other nodes (efficiency). In sum, in brain disorders it would expect some kind of 

defects in networks with costs abnormalities or changes in the connection density such 

as long interconnection hubs. For assessing these features in a network, a cost estimator 

is typically used for correcting them by total of connections. 
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INTRODUCTION 
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The Depression 

Major Depression Disorder (MDD) is the most common type of mood disorder 

among the global population. The World Health Organization (WHO) in 2001 ranked 

MDD as the main cause of years of life lived with disability (Wayne C.Drevets, et al. 

2008). In 2004, it was considered as the third main cause of the global burden of disease 

(Gabriel S.Dichter, et al. 2014), and in 2010, it was already considered to be the main 

cause of disability (Ferrari, et al. 2013). This disease, that affects more than 150 million 

people worldwide (WHO, 2008), it has a 16% lifetime prevalence rate that affects the 

7% of the EU population each year (Wittchen, et al. 2011). Besides, the disorder brings 

not just a personal suffering but also socioeconomic consequences for a country. 

Moreover, 10% of suicides are caused by untreated or misdiagnosed depression (APA, 

2000). So that, an early diagnosis and a personalized treatment during the different sub-

phases of the disease- which are remission, monitoring, relapse and maintenance- are 

crucial for a long-term complete recovery of the patient (Ellen Frank, Kupfer et al. 

1991). 

Depression is characterized by ruminations, self-blame and an increased 

association of their self with negative emotions (Gruenbaum et al., 2005; Ingram, 1990; 

Northoff, 2007; Rimes and Watkins, 2005; Treynor, 2003). Clinically, patients show a 

medical history of an abnormal focus in self-attribution of the negative emotions. Even 

though the clinical phenomenons are well known, the underlying neural networks and 

pathophysiological mechanisms remain unclear (Simone Grimm, 2009). Nowadays, the 

therapeutic response still present a low ratio of success during the first and second 

treatment which causes a high suicide rate (Ronald S. Duman, et al. 2012). 

The theories of behaviorism from Plato to Freud, already emphasized repeatedly 

the relationship between the emotion and the reasoning. This relationship could be 

attributed in the present days to relationships that coexist among brain systems which 

are regulated by neurophysiological pathways. The definition of anatomical networks, 

that would hold the emotional behavior (as seen from studies on animals), and the ones 

developed by neuroimaging technologies- which are allowing a deep characterization of 

the anatomy, physiology and neurochemistry in humans in relation to the mood 

disorders- have made important progress in the pathophysiology of the depression 

(Joseph L Price, Wayne C. Drevets, 2009). 
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Broca (1879) in his study 'Grand lobe limbique' and James W. (1884) related the 

emotions with visceral functions. Later on, in the studies of Gaskell, Langley, Cannon et 

al. around the 90's indicated, moreover, that many of this visceral functions were 

controlled by the 'autonomic nervous system' where the hypothalamus ('head ganglion 

of the autonomic nervous system') was the one in charge of the self-control and 

coordination. Afterwards, Kluver and Bucy (1939) thanks to his studies carried out from 

the injuries in monkeys, together with MacLean (1949) and the model of Papez (1937) 

suggested 'the Limbic System', in which were included the hippocampal formation, 

cingulate gyrus and thalamus, medial and lateral temporal structures and their 

relationship with the hypothalamus and the amygdala- as the main responsible of 

emotions and emotional expression's production-. It was only in 1991 when Zola-

Morgan et al. proved that the hippocampus might be more involved in memory 

processing and that the amygdala might have a more important role when it comes to its 

relationship with emotions and anxiety. 

Around 1960 and 1970 the known relationships of the limbic system were 

expanded defining an interconnected circuit in which Nauta in 1962 (on monkeys), 

Cowan et al. In 1965 showed projections of the amygdala towards the hypothalamus 

and the relation among the medial thalamus, orbital cortex, striatum and hypothalamus 

and the amygdala. Likewise, Krettek and Price (1977, 1978), from their studies on rats, 

defined projections from the basal and lateral amygdala to the orbital and medial 

prefrontal, insular, and temporal cortical areas, the mediodorsal thalamic nucleus, and 

the medial and lateral hypothalamus at a neurophsyology level in the transportation of 

3H-leucine. In 1987, Russchen et al. observed GABAergic axons from ventral and 

rostral pallidum to mediodorsal thalamic nucleus. And more recently, Buckwalter et al. 

(2008) identified amygdala projections towards the posterior cingulate cortex. 

During 1990, after some studies on monkeys, the existing relationship between 

the 'Limbic System' and the amygdala towards the cortical sub-circuitry of the medial 

prefrontal area were identified along with a structure limbic-cortical, connected via 

mediodorsal thalamic, that could be implied in mood disorders. Later, this 

interconnected structure would be known as cortical-striato-pallido-thalamic circuitry, 

which is characterized by a bidirectional reciprocal overlap. Subsequently, in different 

studies carried out after the 90's and early 21st century, it was shown that this circuitry 

might be modulated or compensated via neurophysiologic by a substructure of 

connections, that might be also involved in mood disorders and in emotions control: the 
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Orbital and Medial Prefrontal Cortex (OMPC) circuit, identified by Carmichael and 

Price (1994, 1995, Kondo et al. 2005; Joseph L Price, Wayne C.Drevets, 2009). 

Later, in 1999, Garcia R. et al. observed that the amygdala would condition the 

neuronal activity of one of the parts in the prefrontal medial area (mPF), during 

episodes of anxiety. However, in other studies, the existence of a possible control by the 

prefrontal cortex regions (PFC) over the amygdala was also argued (by inhibition 

control via dopamine: Armaral and Price 1984 – 1992; Likhtik E. et al. 2005; by 

excitation via glutamatergic: Bacon et al., 1996; Jackson and Moghaddam, 2001). 

Moreover, Ray and Price (1993) and Petrides and Pandya (1999) indicated that another 

set of cortical-cortical connection structures (Dorsal Lateral Prefrontal Cortex, DLPFC) 

would be also strongly linked to OMPFC circuit. 

From the 70's and 80's, the development of new technologies in non-invasive 

neuroimaging (with really low aggressiveness and lack of radiation exposure), have 

allowed the characterization and the identification in vivo of structural alterations in the 

brain and neurophysiological changes in the MDD with and without treatment 

during the different phases of the disorder. At the beginning of this century, it was 

observed in different studies important alterations of the GM volume in patients with 

MDD, specially in the Anterior Cingulate Cortex (ACC) and in the subgenual PFC areas 

(Botteron et al. 2002, Drevets et al. 1997). The GM volume showed a reduction in 

patients with major depression in OrbitoPreFrontal Cortex (OPFC), ventrolateral PFC, 

frontal polar/dorsal anterior-lateral PFC, parahippocampal gyrus and temporal-polar 

cortex (Drevets and Price, 2005). Nonetheless, discrepancies in the volume have also 

presented in different studies about the disorder remission after the treatment of regions 

like ACC and hippocampus (Joseph L. Price and Wayne C Drevets, 2009).  

Moreover, in connection with the limbic system, Caspi et al. (2003; David SP et 

al. 2005) identified that the serotonin transporter promoter region (5-HTT)- affecting to 

5-HT1A receptor binding (used as a target in depression and anxiety treatments)- might 

be associated to genetic factors increasing the risk of developing depression in a 

stressful environment. And it seems that this could be  phenotypically related to a 

decrease of volume in the ACC (Pezawas et al. 2005). Besides in line with the structural 

studies of neuroimaging, alterations in the metabolic activity of serotonin-1A receptor in 

regions such as the amygdala, anterior cingulate cortex, insula, hippocampus, dorsal 

raphe nuclei and the area of the mPFC (Jonathan Savitz et al. 2009, Wayne C. Drevets et 

al. 2009) were found  in patients in with anxiety disorders or depression under stress 
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(Parsey RV et al. 2006). Moreover, regions such as the ACC, prefrontal cortex and 

amygdala show decrease of the serotonin metabolic activity (Joseph L. Price and Wayne 

C. Drevets, 2009).  

However, in other studies, the existence of dopaminergic abnormalities has been 

described in patients with MDD, and has been connected to a set of structures that 

would form 'Reward System' (RS) where the nucleus accumbens might have a relevant 

role. (Adinoff 2004, de la Fuente-Fernandez et al. 2002). Violetta Klimek (2002) found 

dopaminergic abnormalities in the amygdaloid nuclei of patients with major depression 

in a post-mortem analysis. And later, a dopamine transporter affinity in the basal ganglia 

(putamen and caudate nucleus) area has been presented in comparative studies between 

depressive group and controls, suggesting that the dopamine function could also be 

altered in this disease (David J. Brunswick et al. 2003). On the basis of this, 

Lescia K. Tremblay (2005) suggested in his model that the dopamine-

related neuroanatomical substrates could be involved in alterations of reward 

processing, anhedonia, lack of motivation and inattention in the depression and that 

these structures could also be used as putative therapeutic targets (like it already 

happened with serotonin-1A receptors). In the same line, Eric J. Nestler and Thomas E. 

Schlaepfer (2006), hold alterations in the mesolimbic dopamine system responsible for 

anhedonia in MDD, in which the nucleus accumbens (ventral striatum) and the 

dopaminic inputs of the ventral tegmental area would be implied. They also presented 

these structures as possible markers of the antidepressant medication. 

But also, the concentrations of the glutamatergic neuroreceptors and, in 

particular, the inhibit neurotransmisor γ-Aminobutyric Acid (GABA), have also shown 

alterations in patients with depression, these being potential targets in antidepressant 

treatments. A deficit of GABA may produce anxiety disorders, on the contrary, an 

excess of glutamate seem to be toxic for neurons and it may produce brain damages. 

However the glutamate pathways, meanwhile, spread across all the nervous system, 

uniting most of the neurotransmitter pathways. Because of it vastness, it is involved a 

great amount of different physiological tasks and its dysfunctions can produce damages 

and disorders. Specifically, it has been observed that the glutamate-induced 

excitotoxicity in the hippocampus leads to a decrease of the neuronal regeneration and 

plasticity that produce a loss of spatial learning (Cortese and Luan Phan, 2005). 

Furthermore, a capture of glutamate deficit is related to the problems in the RS 

(Bechtholt-Gompf et al. 2010). This suggests that the glutamatergic system can be an 
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important regulator of other via and it should be object of new therapeutic targets 

(Swanson et al. 2005). Nevertheless, the complexity of glutamate regulation and its 

large presence in the brain explains why just three prescription medications have been 

developed for the glutamate receivers (memantine, ketamine, and D-cylcoserine). It has 

been indeed noticed that the side effects of these medications are extremely high. 

However, more than 20 types of glutamate receptors have currently been identified, so 

that it could be possible to develop new specific biomarkers for each receptors group. 

Dorothee P. Auer (2000) suggested that the alterations in glutamatergic 

neurotransmission inside the ACC can have an important role in the depression 

pathogenesis. Recently, Beata Karolewicz (2010) showed reduced levels of glutamic 

acid decarboxylase-67 KDa, and a reduction of GABA levels in the PFC in patients with 

depression treated with antidepressants. It has observed that concentrations of 

GABAergic neurons seem to be specially altered in the PFC, DLPFC and OPFC 

(Rajkowska G et al. 1999, 2005; Cotter D et al. 2002, 2005). 

So that, from the symptomatology of the depression and thanks to the studies 

that were carried out initially in animals and also to the new analysis on non-invasive 

techniques of neuroimaging, it has been able to established strong connections between 

depressive traits and alterations found in different brain substructures in the disorder. 

The problem is that depression seem to be complex disorder which is 

characterized by a heterogeneity along several psycho biological dimensions, therefore, 

allegedly different brain systems could be affected at the same time such as: the 

cortical-limbic system which is really related to the expression of the emotions and 

stress- which might be involved the serotonin pathway-; RS, related to the motivation 

or anhedonia and it is rather associated to alterations in the dopamine activity; and 

glutamatergic and gabaergic system, which, this last one, could be associated to anxiety 

problems and it is shown more altered in cortical regions such as PFC and LPFC in the 

MDD. 

Moreover, it has been proven that certain alterations could be located on shared 

regions by different systems in the MDD, as Dorsal Nexus (DN). This might explain a 

part of this clinical heterogeneity, because although the different neuroreceptors 

(inhibitory and excitatory) have associated its own neurotransmissors, an induced 

excitotoxity located in a certain kind of neurons could indeed imply a number of 

alterations in different systems. Moreover, systems like the cortico-limbic show 

overlapping bidirectional connections among areas. Certain alterations in these 
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interconnected and bidirectional structures may cause an imbalance process by self-

inducing alterations or damages. 

Following with this, Northoff et al. (2011) argued that depression should be 

considered as a system disease and that a depressive model only based on the limbic 

system or a single region might explain rarely the clinical heterogeneity of this disorder. 

Furthermore, Georg Northoff et al. hypothesized that the abnormal levels of activity 

during resting-state in patients with depression might be enabling stimulus-induced 

neural activity for alterations in self-representation and behavior changes. In concrete  

they explained that alterations found among DMN regions in resting-state might be 

enabling stimulus-induced activity in sensory and limbic/paralimbic regions (Northoff 

et al. 2010). 

Mayberg et al. (2005) showed that the increase of activity found in DMN regions 

in patients with depression correlated with the length of the current depressive episode. 

This kind of relation could be used for the prognosis of the different disorder stages and 

a personal monitoring of the patient to improve the ratio of success during the first and 

second treatment and therefore decrease the suicide rate of the disorder. 

Anand et al. (2005) observed through his studies (with certain limitations) that 

after six weeks of treatment with setraline in depressive patients, connectivity changes 

during the resting state were produced between the dorsal ACC and medial thalamic 

regions. Recently, Ciara McCabe and Zevic Mishor (2011), in a resting-state study, 

showed that the application of antidepressant medications in volunteers decreased the 

FC among areas connected with the RS and emotional processing (amygdala and 

ventral mPF in the citalopram group, and striatal-orbitofrontal cortex connectivity in the 

reboxetine group). 

Although Michael Greicius (2008) exhibited the benefits of rs-fMRI respect to 

the task-activation fMRI, Greicius also explained that the main limitation for its clinical 

application is the poor relation signal-to-noise (SNR) and proposed to improve both the 

techniques of analysis on the BOLD signal and the length of the time series. 

Recently, Qiyong Gong and Yong He (2015) considered that certain 

discrepancies in some neuroimaging studies on patients with depression could be caused 

by factors such as age, depressive episodes, previous medication to the study, length of 

the time series, previous medication and cardiorespiratory and motions artifacts.  

In this sense, it has observed a decrease of volume in the hippocampus 

(Vythilingam et al. 2002; Sheline et al. 2003) depending on the gender, contradictory 
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results in the amygdala volume (Drevets, 2004, Savitz et al. 2009) and also 

contradictory changes in the metabolic activities, either increase or decrease, in ACC 

region (Josep L Price and Wayne C Drevets, 2009) have been shown in the depression. 

Moreover, it has been also observed certain variability in the DLPFC (Paul B. Fitzgerald 

et al. 2005).  

On the one hand, in order to increase the statistic power of the analysis, the 

whole brain can be divided in different RSNs by using ICA. Besides, the ICA allows 

to identify intrinsic brain networks by their unique neural signatures (J. Paul Hamilton 

et al. 2012) such as movement, vision, audition, language, memory, executive functions, 

salience (Cordes D et al. 2000, Hampson M et al. 2002, Beckmann CF et al. 

2005, Seeley WW et al. 2007). 

In this line, Greicius et al. (2007) found alterations between the thalamus and 

ventral ACC within the DMN. Although DMN is more studied in neuroimaging studies 

in depressive due to its activation associated to rumination, self-relational processing in 

MDD, other possible RSN seem to be altered in this disorder (J. Paul Hamilton et al. 

2012), such as executive network, DLPFC (Bench et al. 1992, Mayberg et al. 2005, 

Pizzagalli et al. 2009, Strigo et al. 2008) and the salience network (O'Reardon et al. 

2007, Gross, Nakumura, Pascual-Leone and Fregni, 2007). 

On the other hand, the use of new strategies on the resting-state signal might 

unmask alterations in depression which might have a clinical purpose. This suggests 

analyzing the different analytic components of the BOLD signal in resting-state. 
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In light of the concepts reviewed in the previous introductory chapter, the 

general objective of this work is to elucidate how the ongoing fluctuation existing in the 

human brain activity in resting state can be analyzed to detect underlying anomalies in 

patients with depression. Different methodologies and mathematical procedures that 

may improve the relation signal-to-noise (SNR), might be applied on the BOLD signal 

at rest. In doing so, the main is to unmask those depressive specific features which 

could be used like putative markers in prognosis models, prevention, monitoring or 

personalized clinical treatments in patients with depression. 

To achieve this goal, we will first design static (from averaged measures during 

all resting-state sessions) and dynamic (from time-varying measures) descriptors in the 

chapters 1 and 2 to assess possible depressive patterns on the BOLD signal a rest. It can 

be completed by means of a comparative analysis between the rs-fMRI data of a group 

of 27 patients with major depression disorder (MDD) and the rs-fMRI data of a control 

group of 27 subjects. Next, we will try to build prognosis models of depression using 

both these descriptors and the clinical variables of the patients. 

However, in a second part (chapters 3 and 4), we want to evaluate the putative 

relationship between the genetic and environment factors that might exist in depression 

in regions which seem to play, a priori, an important role in the depressive disorder. For 

this purpose, we will use a sample of 48 twins (24 monozygotic pairs) informative for 

depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). 

We will assess different analytical components of the brain activity in resting-state to 

determine those which might be related with genetic or environment factors. Finally, 

these analytic components could also be used to build risk models which might be used 

to identify those individuals with a high predisposition to develop this disorder. 
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ABSTRACT 

 

Different findings indicate that major depression (MDD) is a complex disorder that involves 

several psychobiological dimensions implying several brain systems. Furthermore, different mathematical 

representations of resting-state fMRI data show that BOLD signal patterns are able to embed distinct 

kinds of information which may be relevant in the codifying of brain functions. However, the relative 

contribution of static and dynamic aspects of brain activity affected by depression remain unexplored. 

The present study assesses the contribution of static and dynamic factors to activity in Resting 

State Networks (RSNs), in relation to clinical depression symptoms. In order to do so, a graph theoretical 

framework was employed to design static and dynamic measures (descriptors) which globally depict the 

defined RSNs. 

Results show that both static and dynamic descriptors unmask anomalies in the Default Mode 

Network (DMN), specially in its posterior part, -PreFrontal-Limbic network (PFL) and FrontoParietal 

network (FPN)- in patients with MDD. In concrete terms, results indicate that the severity level of 

depression (HDRS) is strongly associated to both global problems of efficiency on dynamic aspects in the 

posterior DMN area, and local deficiencies in functional connectivity among areas of the PFL such as the 

Orbitofrontal Cortex (OFC), Dorsolateral Prefrontal Cortex (DLPFC) and Anterior Cingulate Cortex 

(ACC) regions. These deficiencies could be probably caused by a hyperconnectivity and loss of flexibility 

on phase-coupling in these networks. We also observe that both the length and total number of episodes of 

depression in patients seem to be related with alterations in functional connectivity between FP areas. 

Moreover, results show a general loss of variability on phase-coupling in connectivity among regions of 

these RSNs.  

All this suggests that both phase-coupling problems in the BOLD signal and underlying 

structural alterations coexist within these RSNs in patient with MDD triggering depressive traits such as: 

maladaptive, high level of rumination, brooding, overgeneral autobiographical or episodic memories, 

negative emotional judgments and anxiety problems. However, additional studies should be realized to 

clarify the level of relationship. Finally, we hypothesize that  this phase-coupling inflexibility found in 

these RSNs could be connected somehow with the idea of a gradual process of hypogyrification, which 

might be directly proportional to the length of depression or the severity level. 
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INTRODUCTION 

 

Major Depression Disorder (MDD) is the most common type of mood disorder 

among the global population. The World Health Organization (WHO) in 2001 ranked 

MDD as the main cause of years of life lived with disability (Wayne C.Drevets, et al. 

2008) and in 2010, it was already considered to be the main cause of disability (Ferrari, 

et al. 2013). 

Depression is characterized by ruminations, self-blame and an increased 

association of their self with negative emotions (Gruenbaum et al., 2005; Ingram, 1990; 

Northoff, 2007; Rimes and Watkins, 2005; Treynor, 2003). Clinically, patients show a 

medical history of an abnormal focus in self-attribution of the negative emotions. Even 

though the clinical phenomenon is well known, the underlying neural networks and the 

pathophysiological mechanisms remain unclear (Simone Grimm, 2009). 

Georg Northoff et al. (2011) argued that MDD should be seen as a disease of the 

brain system, because a depressive model only based in a single region could rarely 

explain the heterogeneity across several psychobiological dimensions. On the one hand, 

during the last two decades, different studies have shown that MDD could present 

several affected systems or networks. On the other hand, the brain has shown to be a 

dynamic complex system where brain functions involve overlapping regions, circuitry 

and pathways. So clinical phenomenons of MDD could thus be more adequately 

explained by closer approaches to brain functions. 

Resting state functional magnetic resonance (rs-fMRI) has been converted into a 

powerful tool for studying the brain function. Resting state is defined as a lack of no 

perceptual input from the world (B. Wicker et al. 2003). During the absence of cognitive 

or sensory stimulation, a significant ongoing spontaneous activity was demonstrated by 

diverse techniques. Consistent (Beckmann et al. 2005; Damoiseaux et al. 2006; De Luca 

et al. 2006; review: Fox and Raichle 2007; Smith et al, 2009) and large-scale patterns of 

spontaneous fluctuations in the BOLD signal were identified in the human brain at rest 

from fMRI (Biswal et al. 1995; Lowe et al. 1998) and PET (Shulman et al. 1997; 

Raichle et al. 2001). Biswal et al. (1995), -and later Lowe et al. (1998)-, demonstrated 

for the first time, that these fluctuations typically occur at low temporal frequencies 

(<0.1 Hz). In recent studies with macaques, it was observed that those fluctuations had 

very similar characteristics to the ones found in humans. This fact could be due to the 
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ongoing fluctuations that could be unmasking an intrinsic functional architecture, 

reflecting an evolutionary conserved traits of brain systems (Vincent JL et al. 2007). 

Besides, the rs-fMRI analysis has demonstrated the existence of intrinsic 

functional connectivity in widely separated brain regions (Biswal et al. 1995; Cordes et 

al. 2001). In some studies, it has also been proved as well that this functional 

connectivity can be found in a coherent way in networks that could be specialized in 

codifying brain functions (Michael D. Grecius et al. 2009: Hampson et al. 2002; 

Beckman et al. 2005; Seeley et al. 2007). Grecius et al. (2003), Beckman et al. (2005) 

and De Luca et al. (2006) among others, hypothesized that these intrinsic connectivity 

networks, also known as resting state networks (RSN; Smith et al. 2009 and Laird et al. 

2010), are an amplification of the neuronal activity. This one would be produced by 

intrinsic energy demands of neuron population that would fire in a synchronized way 

with a common aim via the synaptic plasticity (David M. Cole et al. 2010: Saini et al., 

2004; Lewis et al., 2009). Besides this, one of the features of these coactivating 

functional systems have been replicated in several studies and over different groups of 

individuals (Beckmann et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2006; Fox 

and Raichle, 2007; Smith et al. 2009). Therefore, it might associated somehow to an 

underlying anatomical connectivity (review Gustavo Deco, Viktor K. Jirsa and Anthony 

R. Mcintosh 2011). 

In this sense, the Default Mode Network (DMN) and Dorsal Nexus (DN) have 

raised a great interest, because of its possible relation with the codification of the 

functions of a self-referential nature and its alterations found in mental disorders, in 

particular when it comes to MDD (Yvette I. Sheline et al. 2009, 2010). Respect to this, 

J. Paul Hamilton et al. (2011) argued that the functional alterations in resting-state, that 

were found in the task-positive network (TPN) and the DMN, could be connected with 

an adaptive and maladaptive, depressive rumination in MDD. 

Nonetheless to date, still few studies have studied depression-related changes of 

activity at rest in the DMN. Besides, there are certain discrepancies about anomalies in 

the functional connectivity (FC) among them, specially with the posterior part of this 

network. Grecius et al. (2007) and Marc G. Berman et al. (2011) reported an increment 

of FC in the DMN at rest associated with permanent rumination in patients with MDD. 

However, Xueling Zhu et al. (2012) found evidences of a dissociation pattern in resting-

state concerning the FC between the anterior and the posterior part of the DMN, where 

the frontal part showed an increment of connectivity that correlated with high levels of 
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rumination and a decrement of connectivity in the posterior part which correlated with 

over general autobiographical memory (AM).   

Moreover, other RSNs have also been shown to be involved in the disease (J. 

Paul Hamilton et al. 2013): the executive network, DLPFC (Bench et al. 1992; Mayberg 

et al. 2005; Pizzagalli et al. 2009; Strigo et al. 2008) and salience network (O'Reardon et 

al. 2007; Gross, Nakumura, Pascual-Leone and Fregni, 2007). 

Specially, Simone Grimm et al. (2008) already dealt with the imbalance between 

the left and right sides of DLPFC in MDD, arguing as they could trigger a negative 

emotional judgment. Besides, Changjian Qiu et al. (2011) suggested more particularly 

that the alterations in right DLPFC and right inferior parietal gyrus activity, within the 

central executive network, could be a reflex of cognitive control deficit in social anxiety 

disorder. On the other hand, Sylvester et al. (2012, 2013) showed that the dysfunctions 

in anxiety might come from alterations in the ventral attention network, specially 

abnormalities between the Frontal and Parietal (FrontoParietal, FP) lobules. Meanwhile, 

Aneta Brzezicka (2013) argued that the dysfunctions found in the FP network in the 

MDD come from deficient transmission of information between PFC and parietal areas 

and to an disequilibrium between the FP network and DMN producing possibly 

persistent rumination and cognition problems in the patients. However, Northoff et al. 

(2011) explained that the depression may be affecting various functional networks in 

resting state and where alterations in the DMN could be enabling stimulus-induced 

activity in sensory and limbic / paralimbic regions. 

All this suggest the need to integrate both local assessments or descriptors, with 

which the signal alteration among regions could be analyzed, and global or network 

descriptors, which show the activity changes at network level. Then we might observe 

whether different signal alterations among regions could be modulating the changes at 

network level. 

Nevertheless, we consider that classical descriptors from rs-fMRI might be 

discovering only those changes persistent over time because they are built by using 

averaged metrics on functional connectivity among regions in all resting state session 

(static functional connectivity, sFC). However, there are certain brain functions affected 

by depression which could better be explained under a dynamic point of view. These 

functions should be defined from the time-varying functional connectivity measures 

between brain regions (dynamic functional connectivity, vFC). Those might be located 

specifically on networks where stands a high ratio of synchronization due to intensive 
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demands of exchange of information among areas. All those functions with high 

processing load should then be analyzed in a complementary way. This dynamical 

approach might unmask anomalies in space-time connectivity between regions by 

means of descriptors. 

In this sense, several studies have shown the involvement of parietal areas and 

right DLPFC (Stephen M. Rao et al. 2001: Damen and Brunia 1994, Mohl and 

Pfurtscheller 1991) in task automatic timing. So, researchers have speculated that there 

must be some type of 'internal clock' between the sensorimotor, parietal and prefrontal 

regions. Specifically, Jones Catherine et al (2004) demonstrated that the right 

dorsolateral side showed a special selectivity in the phase, and which could be involved 

memory processes. Moreover, Catie Chang and Gary H. Glover (2010) also 

demonstrated that the resting state functional connectivity in DMN is not static and 

other metrics of variability should be taken into account when characterizing RSN. 

In short, based on the working hypothesis that major depression is a complex 

disorder of systems that involves several psychobiological dimensions, where structural 

changes precede spatiotemporal disruptions to specific brain functions. So, we suggest 

the integration of both static and dynamic descriptors by networks in the same study. 

The aim is to assess if there are some specific brain functions that show dynamic 

functional pattern alterations in MDD and whether they can help to explain clinical 

variables together with static descriptors. Additionally, we analyze putative local 

markers together with these global descriptors to check their clinical relevance. All this 

may help in clarify some pathophysiological mechanisms of MDD. 

A comparative analysis was done between the depressive group (27 subjects) 

and healthy group (27 subjects) from rs-fMRI data. In order to perform it, we previously 

divided the whole brain (WB) in different RSN using the independent components (IC) 

found by Smith et al. (2009), and doing an independent component analysis (ICA) 

approach of the healthy group. On one hand, the ICA allows to identify intrinsic brain 

networks by their unique neural signatures (J. Paul Hamilton et al. 2012) which are: 

movement, vision, audition, language, memory, executive functions, salience (Cordes D 

et al. 2001, Hampson M et al. 2002, Beckmann CF et al. 2005, Seeley WW et al. 2007).  

On the other hand, the resting-state BOLD signal obtained for each individual was 

analyzed and finally both sFC and vFC matrices were obtained (Figure 1). 

Then, graph theory is applied to the different approximations in order to 

obtain global and local descriptors that will help us describe brain changes and we can 
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integrate them in a single framework. Local descriptors provide us with information 

about connectivity alterations or changes, connection losses or overcoupling among 

regions, and global descriptors show efficiency problems, segregation changes or 

deficiencies in the integration of a network. The application of graph theory on the rs-

fMRI data, described by Rubinov M Sporns O (2010), has proved to be a powerful 

mathematical framework (review Qiyong Gong and Yong He) in the characterization 

and identification of the changes among groups in a study. These descriptors can be 

used as a potential clinical marker if they are correlated with clinical variables, 

prediction or disease classification. We have to keep in mind that the descriptors which 

depict the efficiency of a specific area or a network from sFC and vFC matrices can be 

the more adequate in the detection or prediction of changes states and disease 

monitoring. 

Finally, two methods are applied by an approach from descriptors: a 

classification tree is made from the nodal descriptors in order to find those regions 

which would be maximizing the differences between groups, and general regression 

models are used to fitting the global variables of networks (RSN) with different clinical 

variables that describe the state of depression by patient. 
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RESULTS 

 

1. Spatio-Temporal Alterations found using Network Based Statistics approach.

  

 

 We used Network Based Statistics (NBS) and a False Discovery Rate (FDR) 

approaches to study the core networks that might characterize MDD by means of vFC 

(Variance/Mean - Index of Dispersion of Phase-coupling of a pair, IDP) and sFC 

(positive temporal relationship between two Region Of Interest (ROI) over time, pos-

FC). An analysis through approximated NBS was realized at a global level (WB) as well 

as for each of the RSN (Figure 2A-2B), in order to identify altered networks for 

depressive disorders using a non-parametric test with 5000 permutations on vFC and 

sFC matrices (see methods). We calculated the sFC matrices using positive partial 

correlations, between each ROI, and the vFC was quantified using IDP for each pair. 

At a global level no significant difference was found in the networks between 

depressive and controls groups. The vFC discovers changes in the networks located on 

the DMN, FP, PreFrontal-Limbic (PFL) networks. The differences in matrices of sFC 

approach were basically focused on the DMN and left FP network. However the altered 

circuitry found on IDP matrices were focus on basically DMN, PF and bilateral FP 

networks (Figure 3A-3B; Table 3A-3B). 

Specifically regarding the DMN network, the NBS approach on the IDP matrix 

shows mainly an altered network in the right hemisphere and however on the pos-FC 

matrices it detects an altered circuitry on its left side for this component (Figure 3A). 

In particular, the DMN (RSN_S2) contains an altered network on pos-FC 

matrices in the patients respect control group. It presents a significant increment of 

functional connectivity in the patients with a corrected pvalue P of network p=0.0258 

(10 connections with t>1.93; df=53; so all connections in the network with one-tailed 

p<0.0295 no-corrected). The biggest connectivity increment within the altered circuitry 

is found between the connections with the core CUN.R-MTG.L (red Figure 3A.A & table 

3A). Moreover it has an increment of pos-FC between the OrbitoPreFrontal (OPFC), 

superior medial PF and ACC regions with posterior part of the DMN (specially via 

precuneus/cuneus and MTG.L area). Conversely, the same component contains an 

altered network on IDP matrix, vFC approach, in the patients respect control group. On 

the contrary, it presents an abnormal interhemispheric symmetry network respect to the 
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altered circuitry with the sFC approach. It shows a decrease of IDP, less dispersion of 

phase-coupling (it could represent a loss of flexibility between regions), for patients 

with a corrected pvalue of network p=0.0158 (7 connections, t>2.68; df=53; p<0.0047). 

The most relevant loss of IDP is produced between the connections: ACG.L-ANG.R-

PCUN.R (purple Figure 3A.A & Table 3B). In this case, the OPFC superior medial and 

ACG regions showed also a loss of flexibility of phase with the posterior part of DMN 

but via ANG.R and PCG.R areas. Besides, we observed that the posterior part of the 

DMN is especially altered. In particular, the RSN_2-1 (posterior DMN; purple Figure 

3A.B & Table 3B) shows an altered subnetwork with a strong loss of flexibility in the 

patients with corrected p=0.0026 (8 connections with t>2.25; df=53; p<0.0143 where all 

connections hold out FDR) and another subnetwork with an increment of static FC with 

p=0.0276 (4 connections with t>1.78; df=53; p<0.0404). Here, the bilateral ANG-

PCUN, together with PCG.R, shows alterations towards subcortical areas such as the 

thalamus or hippocampus by their right side (red Figure 3A.B; table 3A).  

As regards FP networks, we observe a significant loss of functional connectivity 

and inflexibility of phase-coupling. For the sFC approach specially, a set of connections 

in the left FP network (RSN_S3; red Figure 3B.B & Table 3A) in the patient group is 

decreased respect to the control group, with a corrected p=0.0198 (7 connections with 

t>2.125; df=53; with lowermost connection non-corrected p<0.019), where the most 

significant altered connections are between SFGdor.L-PreCG.L-SPG.L regions. In this 

sense the right-FP (RSN_S4; purple Figure 3B.D & Table 3B), the IDP matrices of 

patients also show decrement of IDP in the connection: DCG.R-PCG.R-IFGoperc.R with 

corrected p=0.0354 (2 connections with t>4.2; df=53; p<0.0002), and again the left-FP 

(RSN_3; purple Figure 3B.C & Table 3B) shows a decrement of variability of phase-

coupling among SFGdor and parietal regions together with PCUN.L and MTG.L, with a 

corrected p=0.0104 (4 connections with t>3.2; df=53; p<0.001). 

Furthermore, the matrix of IDP also presents a loss of flexibility between the PF 

areas in the network PFL (RSN_1; Figure 3B.A & Table 3B), such as SFGdor, mPF 

areas and medial OPFC, and CUN.R, with corrected p=0.027 (4 connections with t>3; 

df=53; p<0.0021) (table 2, figure 2). 

In sum, we discover hyperconnectivity and loss of flexibility between both the 

OPFC and ACC regions and the posterior DMN via: precuneus/cuneus, post cingulate 

and medial temporal regions; loss of flexibility between PFC areas and right cuneus 

region; and loss of functional connectivity and flexibility mainly between superior 
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frontal and parietal regions in patients with major depressive disorder respect to control 

group. 

 

2. Classification between groups from descriptors  

 

2.1 Classification through nodal descriptors  

 

 From the nodal features obtained through graph theory, bimodal models were 

used to classify each individual as depressives or controls (weighted and binarized on 

pos-FC matrices for sFC approach and weighted and cost-corrected on IPD matrices for 

vFC approach) via classification trees, using a LOOCV strategy where the current OOB 

subject received a training ensemble (see methods). For each iteration of Leave-One-

Out, ergo for each one of the individuals, the ensemble of metrics with best scores in the 

models, that are created through each training set of the classification tree (branch 

nodes), were saved. Taking into consideration that in one hand an individual network 

can be typified by a different metrics ensemble, and that in the other hand each one of 

the metrics defines the behavior of a ROI inside a particular network, the process of 

classification was done for each one of the defined networks. So, each RSN matrix used 

to classify the groups was built from the rows that define the set of ROI involved in this 

RSN, and the columns that define a set of measures or nodal descriptors (Table 4A for 

vFC approach, Table 4B for sFC approach). 

We observe that the regions included in the PFL network achieve the maximum 

accuracy for the classification of subjects with 83.33% using all nodal features (Figure 

4.B). However, the same network shows 81.48% of accuracy even if we only use its 

nodal binary descriptors, from binarized matrices on sFC approach. Besides, because 

the LOO strategies usually tend to show up an over-training, we also analyze the 

metrics and trees obtained by iteration in its best case. So, we observe that a 

homogeneous ensemble of features was used for the individual classification (93% of 

the trees were built using the same features). From that point, the existence of a strong 

stability of used features is deduced, and instead of finding an ad-hoc model in each 

iteration, a quite general model for all the population is found.  

In particular, the binary degree descriptor on the SFGmed.R region was always 

located at root, in the 100% of the trees, the local efficiency of binary approach on the 

PAL.R region usually appeared at the second level of the tree, in the 94.44% of the 
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cases, the nodal efficiency descriptor of binary approach on the AMYG.L was also 

located the second level the tree, in the 68.52% of cases, the nodal efficiency of 

weighted matrices on the MFG.L was almost always present, in the 98.15% of the trees, 

together with the nodal efficiency weighted on the CAU.R, it was found in the 92.59% 

of cases and finally, the weighted nodal efficiency on the ACG.R and finally the nodal 

efficiency of binary approach on the ORBsupmed.R were sometimes present in 31.48% 

of cases (Figure 3A; Table 5 sFC approach). 

Furthermore, respect to metrics on the vFC approach, regions of the right FP 

network achieve the maximum accuracy in the classification using only cost-corrected 

nodal degree descriptors with 85.19% (Figure 4.A) . Besides, a homogeneous ensemble 

of features was also used for the individual classification (92.6% of the trees were built 

using the same features).  

In particular, the TPOSup.R region was always located at root, in 100% of the 

trees. PreCG.R, IPL.R, IFGtriang.R always appeared at the second and third level of tree 

in 100% of cases too. The SPG.R was almost always located at the third level of the 

tree, in 92.59% of cases. And finally, MFG.L was sometimes presented in 7% of the 

trees (Figure 4.A; Table 5 vFC approach).  

 

2.2 - Classification by means of network descriptors: DMN, right FP and PFL 

networks  

 

 Once built through graphs, global metrics made possible an assessment of the 

behavior and organization of the Whole Brain Network (WBN) and the RSNs ones of 

every individual through quantitative value. We determined which of these global 

variables could explain best major depression by means of a logistic binary regression 

model (see methods). So, we find out that the best model to classify the subjects 

between groups (Controls, Patients) by means of network descriptors. It is built by sex, 

age, posterior DMN on vFC approach and PFL together with right FP networks on sFC 

approach (Tables 6s; Figure 5.E). 

In particular, this model presents a Nagelkerke R²=0.453 with a model pvalue 

p=0.0004 (gl=5; X²=22.44) and an overall percentage of classification of 70.4% (19/27 

controls and 19/27 patients) using gender, age, global efficiency of PFL and average 

degree of right FP network on binarized pos-FC matrices, and also average strength on 

IDP matrices of posterior DMN. Neither do we observe co-linearity or correlation 
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between the variables of this model. Thus, this model would be showing three main 

altered components in major depression: the DMN, specially its posterior part, PFL, 

which includes PF and limbic areas, and the right hemisphere of PF networks. 

 

3 – Clinical variables can be explained using network descriptors in patients  

 

3.1 Efficiency descriptors on the PFL and posterior DMN explain the severity

  

 Once the network descriptors were obtained, we determined which of these 

global variables could explain better the severity of depression (HDRS) in patients with 

MDD by means of a multiple lineal regression (see methods). Gender, age, dynamic 

posterior DMN and static PFL descriptors were thus used to build the model (Table 7 – 

Top; Figure 5.A). 

In particular, the model presents an R²=0.481 (F=5.093; ngl=4; dgl=22; p=0.005) 

where all its network metrics show a low co-linearity. We build the model using age, 

gender, global efficiency descriptors on IDP matrices of posterior DMN and local 

efficiency on weighted pos-FC matrices of PFL network. In sum, the HDRS in patients 

with MDD could be predicted from efficiency descriptors on the PFL and specific 

posterior part of DMN components.  

 

3.2 The length of current episodes can be predicted by right FP and PF descriptors

  

 Once the network descriptors were obtained, we determined which of these 

global variables could explain better the episodes of depression in patients by means of 

a multiple lineal regression. Gender, age, PF and right FP descriptors on sFC approach 

were thus used to build the model that best predicts the length of current episode (Table 

7 – 3
rd

; Figure 5.C). 

In particular, the model presents a R²=0.462 (F=4.722; ngl=4; dgl=22; p=0.007) 

where all its network metrics show a low co-linearity. In this case, the model is built by 

age, gender, local efficiency descriptors on weighted matrices of right-FP network and 

global efficiency descriptors on binarized matrices of PF network of the sFC approach. 

Moreover, we observe that a quadratic R²=0.671 is adjusted on these variables. In sum, 

the length of current episodes in patients with MDD could be predicted from static 

efficiency descriptors on prefrontal and right FP components.  
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3.3 – The total number of episodes can be strongly explained by posterior DMN 

and right FPN  

 

 Once the network descriptors were obtained, we determined which of these 

global variables could explain better the total number of episodes of depression in 

patients by means of a multiple lineal regression. Gender, age, posterior DMN and right 

FP descriptors on sFC approach were thus used to build the model that best predicts the 

length of current episodes (Table 7 – Bottom; Figure 5.D). 

In particular, the model presents an R²=0.602 (F=8.324; ngl=4; dgl=22; 

p=0.0001) where all its network metrics show a low co-linearity. In this case, the model 

is built by age, gender, average degree descriptors of right-FP network and local 

efficiency descriptors of posterior DMN on binarized matrices of the sFC approach. In 

sum, the total number of episodes in patients with MDD could be predicted from static 

descriptors on posterior DMN and right FP components. 

 

3.4 – The DMN and PFL remain a clinical history of MDD in patients  

 

 Once the network descriptors were obtained, we determined which of these 

global variables could be used to know the initial age (InitialDate) of major depression 

in patients by means of a multiple lineal regression. So, gender, static DMN and 

dynamic PFL descriptors were used to build the model that best predicts the initial age 

of the major depression (Table 7 – 2
nd

; Figure 5.B). 

Especially, the model presents an R²=0.566 (F=7.506; ngl=4; dgl=22; p=0.001) 

where all its network metrics show a low co-linearity. In this case, the model is built by 

gender, average degree descriptors of DMN together with local efficiency of posterior 

DMN on binarized matrices of the sFC approach and global efficiency of PFL on IDP 

matrices. In sum, possible historical traits about depression could be contained within 

DMN and PFL components. 
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DISCUSSION 

 

 In the present study, dynamical and statical network descriptors of the BOLD 

signal at rest were designed to assess the putative relationship between clinical 

variables, which describe states of patients with MDD, and possible underlying changes 

in certain components that may encode the brain functions affected by depression. 

Additionally, local descriptors in these components were also assembled to discover the 

regions that might trigger alterations in the brain functions hobbled by depression. For a 

further understanding of the altered functions in major depression, not only descriptors 

based on constant measures of functional connectivity (static approach, sFC) should be 

considered, but another kind of measures based on moments of the BOLD signal, which 

describes time-dependent aspects (time-varying or dynamic approach, vFC), should also 

be included in the study. Thus, the descriptors of the sFC approach describe the 

functional connectivity with an underlying structural connectivity, and the descriptors of 

the vFC approach characterize cerebral functions in terms of temporary stability or 

synchronism. 

The results show that static and dynamic network descriptors together unmask 

underlying spatiotemporal alterations in MDD. The brain functions encoded by the PFL, 

right FP and DMN, specially its posterior part, seem to be particularly affected in major 

depression. Apparently the results confirm that the descriptors which come from these 

networks can be useful to classify patients with respect to controls. Moreover, we 

observe that prediction models of clinical variables, such as the HDRS, length of the 

current episode, total number of episodes and initial date of depression can also be built 

from the combination of both static and dynamic descriptors of these networks. 

All this suggests that the clinical phenomenon of major depression can be due to 

both synchronism and underlying structural problems among regions implicated in these 

RSN. In this sense, when classifying the individuals among the groups from nodal 

descriptors, we observe that it is possible to distinguish the subjects using only static 

nodal descriptors located within the PFL network, or using only dynamic nodal 

descriptors located within the right FP network. This fact somehow indicates two kinds 

of problems or alterations which cohabit in MDD. 
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1. Static and dynamic metrics on the BOLD signal at rest unmask connectivity 

problems among areas within the DMN, PF and FP networks 

 

As for the spatiotemporal connectivity among regions, we can observe three 

principal RSN with a high concentration of alterations in the group of patients. Even 

though the sFC approach discovers alterations in the DMN, in left FP and in PFL 

networks, the dynamic measures show a loss of flexibility in the phase-coupling in all 

three networks. The understanding of each connectivity problem found among regions 

can contribute to explain specific depressive traits, but we consider that they should be 

taken into account together in MDD as some altered regions such as the Dorsal Nexus 

(DN) or DMN could trigger problems in the rest of systems. For this reason, the 

network descriptors can help to learn more from results. 

 

1.1. The Index of Dispersion of Phase-coupling and Functional Connectivity detect 

hyperconnectivity and rigidity between the anterior and posterior brain areas of 

the DMN. It may trigger high levels of rumination and brooding in MDD 

 

The results show a hyperconnectivity and loss of flexibility in the connectivity 

between the anterior and posterior part of brain, especially among specific areas of the 

DMN. Certain problems of FC among areas of DMN have been discussed in previous 

studies. In particular, Marc G. Berman et al. (2011) revealed pattern alterations between 

the subgenual and posterior cingulate cortex. Besides, these alterations were correlated 

with depressive rumination and brooding values. In this sense, X. Zhu et al. (2012) can 

only correlated anterior regions of the DMN, such as the medial PFC and ACC, to high 

levels of ruminations in MDD. 

Thus, it suggests that areas such as the ACC, OPFC and superior medial PFC 

could be a putative altered hub in MDD which could be over coupling the PFC from 

posterior regions in the DMN structures, producing a high level of rumination and 

brooding in the patients with MDD. Peter Fransson and Guillaume Marrelec (2008) 

presented both the precuneus and posterior cingulate as areas with a high degree of 

interaction with the rest of the DMN. Curiously, these rigidity and hyperconnectivity of 

the DMN go in the same direction than the biological vulnerability described in the 

depression theory of N.L. Nixon et al. (2014). They showed that the MDD group 

presented a hyperconnectivity with a process of hypogyrification in the DMN (specially 
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the precuneus region), and this fact could support this idea of vulnerability in front of 

depression. 

 

1.2. Index of Dispersion of Phase-coupling and pos-FC in resting state reveals an 

interhemispheric symmetry of the DMN with two levels of problems among its 

regions 

 

The results expose that disturbed connections within the DMN seem to show an 

interhemispheric symmetry among the approaches. As Michael D. Fox et al. explained 

in 2005, the task-positive network (TPN) and structures such as the DMN could indicate 

a competitive, anti-correlated relationship between them while performing a cognitive 

task as well as a resting state. Then, Catie Chang and Gary H. Glover (2010) analyzed 

the posterior cingulate (PCC) with the TPN and the rest of DMN regions and then 

observed the presence of scale-dependent temporal variability. They suggested that this 

non-static FC could be due to a modulation of the cognitive state. Later, Paul Hamilton 

et al. (2011) argued that the functional alterations in resting-state, that were found in the 

task-positive network (TPN) and DMN, could be connected with an 

adaptive/maladaptive, depressive rumination in MDD. 

This suggests the idea of two levels of interaction or organization in this 

network, where the connectivity problems might influence alterations towards other 

connected systems, producing the clinical phenomenon of depression. In this sense, 

Northoff et al. (2011) explained that the rs-fMRI signal from DMN regions at rest could 

be enabling stimulus-induced activity in sensory and limbic/paralimbic regions. 

 

1.3. Both approaches also present problems between the posterior DMN and the 

Hippocampal-Thalamic Pathway. A putative path for the over general AM in MDD 

 

Both approaches present strong spatiotemporal disruptions among the posterior 

DMN such as in Angular, Precuneus and PCC regions, and the hippocampal-thalamic 

pathway. John P. Aggleton et al. (2010) argued that the hippocampal-thalamic 

interactions would form part of an interdependent system which would be involved in 

long term memory functions, and that an alteration in one of these components might 

produce dysfunctional changes to distal sites across systems. More recently, several 

studies have invited to consider that the over general AM would be implicated somehow 
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with depression where would connect the visual areas with hyppocampal regions via the 

precuneus, PCC (X. Zhu et al. 2012; Cavanna and Trimble, 2006; Hassabis, Kumaran, 

and Maguire, 2007).  

All this suggests that alterations between the posterior DMN and this pathway 

may contribute to problems in the normal control of the inhibition of negative episodic 

memory in depressed people where precuneus/PCC could be an important hub of this 

pathway. In this sense, Michael Greicius et al. (2009) implicated the PCC/retrosplenial 

in episodic memory processing. Moreover, this overgeneral AM in MDD might be 

somehow associated with depressed ruminations (Catherine Crane et al. 2007). 

 

1.4. The loss of flexibility in the Dorsal Nexus: the DLPFC and OPFC may produce 

negative emotional judgments and anxiety problems in patients with MDD 

 

The dynamic measures expose a loss of flexibility among interhemispheric 

regions of the DLPFC and OPFC in the PFL network of the group of patient. In this 

sense, Simone Grimm et al. (2008) found an imbalance between the left and right sides 

of the DLPFC in MDD. They suggested that this imbalance might produce a negative 

emotional judgment in patients. Furthermore, during the last two decades the alterations 

between OPFC and amygdalar regions, via cortico-striato-pallido-thalamic circuit, have 

been associated with anxiety disorders (Joseph L Price, Wayne C.Drevets, 2010). More 

concretely, Andreas Hahn et al. (2011) linked the decrease of FC among these regions 

with social anxiety disorder. Besides, Acioly L.T Lacerda et al. (2004) observed 

especially a decrease of OPFC gray matter volumes. 

It was Yvette I. Sheline et al. (2010) who observed that the activity of the 

bilateral dorsal medial prefrontal cortex region was dramatically increased in depressive 

patients in relation to controls regarding the different brain networks analyzed. Besides, 

they demonstrated that the DN area is overlapped among different networks and argued 

that because of this, its abnormal increment of FC might explain part of the depressive 

symptoms.  

As a consequence, we suggest that this rigidity of connectivity in this area may 

trigger alterations in of the rest of PFL, producing negative emotional judgments and 

problems of anxiety in patients with MDD. 
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1.5. The inflexibility in phase-coupling among FP regions might generate a 

maladaptive control in front of transmission errors in patients with MDD 

 

The left SFGdor presents a strong loss of variability on phase-coupling within 

the circuitry constituted by other regions such as the bilateral inferior parietal and left 

medial temporal, in the left FP network. Aneta Brzezicka (2013) observed that FPN 

dysfunctions in MDD might come from an ineffective transmission of information 

between PFC and parietal regions, and alterations between executive network and the 

DMN. In this sense, Sylvester et al. (2013) observed that anxiety problems may be 

associated with alterations in the FPN and DMN. Moreover, we also observed a loss of 

phase-coupling between the PCC and inferior frontal operculum region. Nico U. F. 

Dosenbach et al. (2007) demonstrated that brain processes could be separated on the 

base of functional features. They determined that the intraparietal, DLPFC, inferior 

parietal, precuneus and midcingulate cortex of the FPN could be responsible for support 

control initiation, and provide of flexibility by adjusting a control in response to errors 

(adaptive control). Moreover, the adaptive control seems to be included in the 

attentional network (Corbetta et al. 2002). However, the cingulo opercular network, 

composed of the anterior insula/operculum, dorsal anterior cingulate cortex and 

thalamus contributes to the flexible control of human goal-directed behavior 

(maintaining cognitive faculties). 

All this suggests that this decrement of flexibility in the transmission of 

information between these PFC areas and parietal regions might generate problems in 

the control of cognitive faculties, and in the adaptive control in response to feedbacks 

between frontal and intra/parietal regions. It can produce maladaptive traits in 

depression. 

 

2. Static descriptors of the PFL and right FP network, and dynamic descriptors of 

the posterior DMN characterize MDD. Static nodal descriptors of the PFL or 

dynamic nodal descriptors of right FP network might be markers of the disease  

 

Static and dynamic network descriptors were built to assess the possible global 

changes in the different networks produced by MDD. For this purpose, a binary logistic 

regression was used (see methods). The results show that the network descriptors that 

best explain the model come from the PFL, right FP and posterior DMN. 
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Additionally, nodal descriptors were used for each component to evaluate if 

there is any region which might be directly related to putative changes in this network. 

The results at this level go in the same direction than global descriptors. 

The best classification which has been achieved about nodal descriptors with the 

sFC approach could mirror any underlying anatomical deficiencies into the PFL system. 

In the same sense, Peng Fang et al (2012) were able to classify many of major 

depressive patients using regions of the fronto-limbic network from DTI data by means 

of SVM and LOOCV methods. Furthermore, it has to be noted that many cortico-limbic 

regions associated with nodal descriptors achieved in the models, have been reported in 

different volumetric, structural and neurophysiological studies. 

In particular, we would highlight regions as Anterior Cingulate Cortex, 

Amygdala, Frontal Superior Medial, Orbital Superior Medial, and Middle Frontal 

Cortex by the number of reported evidences and the role they play in the depression.  

Several have already shown the existing relationship between the cortico-striato-

pallido-thalamic circuitry and the amygdala towards the cortical subcircuits of the 

medial prefrontal area included in the Limbic system, and associated to mood disorders. 

Besides, other studies have presented projections from the basal and lateral amygdala to 

the orbital and medial prefrontal, insular and temporal cortical areas, the mediodorsal 

thalamic nucleus, and the medial and lateral hypothalamus at a neurophysiological 

level. Caspi et al. in 2003 identified that the serotonin transporter gene promoter area 

affecting 5-HT1A binding receptor would be associated to genetic factors, and which 

could increase the risk of developing MDD in a stressfu environment, and at the same 

time it could be related to a decrease of volume in the ACC (Pezawas et al. 2005). 

Recently, Cordova-Polomera A. and Tornador C. et al (2015) showed, in their study of 

twins with major depression, that both genes and environment modify different patterns 

in the amygdala resting-state connectivity, increasing the depression risk.  

Furthermore, regions as the Caudate-putamen (Mayuresh S. Korgaonkar et al, 

2014), OPFC area and Pallidum (Kyle S. Smith et al. 2019) are connected with 

Amygdala through the nucleus accumbens and might indicate problems of the Reward 

System via dopamine regulation in patients with major depression. 

However, the best nodal descriptors of vFC values would reveal problems of 

space-time connectivity between regions of the right FP. Several studies have shown the 

involvement of the cerebellum, intra/parietal areas and the right DLPFC (Damen and 

Brunia 1988, Mohl and Pfurtscheller 1991) in task automatic timing, and researchers 
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have speculated that there must be some type of 'internal clock' between the 

sensorimotor, parietal areas and prefrontal regions. Jones Catherine et al (2004) 

specially showed that the right DLPFC side present a special selectivity in the phase 

wherewith it would indicate that these regions could be particularly involved especially 

in memory processes. 

All this suggests that several components would be involved together in the 

major depression and, they would be mainly localized in the following networks: PFL, 

right FP and posterior DMN. Besides, it seems that static and dynamic nodal descriptors 

might gather two different level of anomalies in patients with MDD. Static local 

measures could cause general problems of efficiency in the PFL system, whereas as 

phase-coupling anomalies could trigger alterations in the strength of connectivity in the 

right FP component. The dynamic descriptors of the posterior DMN might show a 

general rigidity in this area.    

 

3. Dynamic and static global descriptors characterize the traits of depression 

 

 Static and dynamic global descriptors were designer for each network to assess 

the relationship between global brain changes and clinical states of MDD in the group 

of patients. In the present study, the clinical variables such as the stage of the depression 

(HDRS), length of the episode, total number of episodes, and age at onset of the first 

depressive episode were used as dependent variables of the multiple lineal regression to 

describe the states of the disease in each patient. Basically, the resulting models were 

constructed from combinations among the network descriptors of the PFL, right FP and 

DMN, and especially its posterior part. Moreover, the models show certain connections 

if they are observed from their independent variables, descriptors of network. 

The HDRS, level of severity and initial age of depression seem to be related 

inasmuch as they might be explained by fluctuations in the same components (the PFL 

network and posterior DMN). However, the initial date of the disorder seems to be over-

represented by the whole DMN. This suggests that it may have a specific weight in 

explaining the clinical history of the patients. This fact could thus be connected 

somehow with a gradual hypogyrification of the DMN. Additional studies could 

perhaps establish a putative relationship among them. 

In this sense, Baojuan Li et al. (2013) showed that the posterior DMN was 

normalized after antidepressant treatment, but the alteration persisted within the anterior 
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part. Moreover, they suggested the anterior part of DMN as a potential indicator for 

relapse in depression. Furthermore, rumination has been strongly linked with the whole 

the DMN in major depression: different studies have shown that people who present 

ruminative responses to depressive symptoms have higher levels of manifestations of 

disorder over time. In fact, Nolen-Hoekseman Susan (2000) observed a strong 

correlation between a high level of rumination and HDRS in major depressive. It 

suggests that the posterior and anterior part of the DMN could be involved in major 

depression, but in a different way: rumination could be a higher complex function which 

implies several components. 

Moreover, we also observe a partial relationship between the length of 

depression and total number of depressive events via the right FPN. However, the length 

of depression in the MDD group seems to be especially more associated with the 

anterior part of the brain, unlike the total number of depressive events which would be 

more related with the posterior part  of the DMN. This suggests that the length of the 

episodes might be connected somehow with negative emotional judgments, anxiety 

problems or areas which have been evaluated as a depressive risk of depressive disorder. 

The total number of episodes would however be more connected to overgeneral AM. 

Additional studies would be necessary to establish putative relationships. 

 In this sense, Ernst H.W. Koster et al. (review, 2011) argued the existence of a 

certain relationship between both rumination and brooding, and a valence-specific 

attentional bias in depression based on different studies (Donaldson, Lam and Mathews, 

2007; Burwell and Shirk, 2007; Joormann, 2006). They also contended with relationship 

between cortical attention areas and the DMN in patients. Moreover, they considered 

that the existence of an information-processing unbalance might present a certain 

difficulty in breaking depressive ruminations, and the cognitive control deficits might be 

related to the persistence of depressive events. Thus, they suggested programs to 

improve attentional control as a protective effect in at-risk individuals. Philip Gorwood 

et al. (2008) argued that there is a correlation between both the intensity of past 

depression and number of episodes, and an accumulation of memory performance 

impairment. Recently, there has been an increase of evidences which invites us to 

consider the implication of autobiographical memory (AM) in neural changes associated 

with depression (Zhu et al. 2012). In fact, the episodic richness and imagery are 

attributed to the hippocampus and medial parietal cortex -posterior cingulate, cuneus 

and precuneus- (Cavanna and Trimble, 2006;  Hassabis, Kumaran, and Maguire, 2007). 
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Zhu et al. observed that the AM was significantly correlated with the posterior part of 

the DMN and Zhou et al. (2010) found a hyperactivation between the posterior 

cingulate cortex and DLPFC at rest in depression. It suggests that the selection of 

negative autobiographical memories could be due to a selective attention towards 

negative events (Cristiano A. Köhler et al. 2015: C. Lemogne et al. 2006; G. G. Lloyd 

and W. A. Lishman et al. 1975). It has to be noted that the autobiographical memories 

are characterized by self-reflective autonoetic consciousness (Cristiano A. Köhler). 

Polzella et al. (1977) already argued, following the model of Thomas and Weaver 

(1975), that the right hemisphere uses visual information collection to estimate the 

duration and perception of time. In this sense, Stephen M. Rao (2001) illustrated that the 

activation of a dynamic network of the cortical-subcortical brain (the right inferior 

parietal cortex, bilateral premotor cortex, basal ganglia and cerebellum) is associated 

with different components of temporal information processing. Other studies related 

recurrent depressive episodes with a result of cumulative hippocampal injuries in 

women first (Yvette I. Sheline et al. 1999) and both women and men later (MacQueen 

GM et al. 2003; Bell-McGinty et al. 2002). 

Furthermore, Michale D. Greicius et al. (2007) observed a positive correlation 

between the current length of depressive episodes and the ACC area into the anterior 

part of the DMN. Besides, it seems that rumination could also be used as a predictor of 

anxiety symptoms in patients with anxiety/depression and new onsets of depressive 

episodes (Nolen-Hoeksema Susan 2012). In this sense, several studies have strongly 

connected anxiety issues with alterations in the serotonin transporter, as well as 

depression and suicide victims with problems in the ventro prefrontal cortex and 

amygdala region or fronto-limbic system (Arango V et al. 1995; Mann JJ et al. 2000). 

Ramin V. Parsey et al. (2006) observed in a major depressive episode (MDE) a potential 

lower serotonin transporter binding potential in the amygdala and midbrain in major 

depressive patients compare to controls.  
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CONCLUSION 

 

The results advocate for the use of both static metrics of functional connectivity 

and time-dependent aspects of BOLD signals in resting state, specially when studying 

the DMN, and its posterior part in particular, PFL and right FP networks which would 

lead to functional alterations in depression. This may have important implications 

considering the relevance of these RSN in the possible codification of important brain 

functions such as the expression of the emotions, affectivity, motivation, self-attribution 

of emotions, self-reference, working memory, attention, adaptive control, maintain of 

cognitive faculties and autobiographical or episodic memory processes, among others. 

The present findings suggest that certain clinical depressive phenomenons (level 

of depression, length of the episode, total number of episodes and age at onset of the 

first depressive episode) could be partially explained by the combination of static and 

dynamic global alterations in these components. Moreover, we found a general loss of 

variability (rigidity) on phase-coupling together with underlying structural changes 

between regions into these RSN, such as the posterior part of the DMN or DN. 

We hypothesize that this rigidity on phase-coupling over these areas could be 

related somehow with a gradual process of hypogyrification which might be 

proportional to the length of depression or at level of severity level. Future studies may 

clarify the relationship that exists between them. 
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MATERIAL AND METHODS 

 

1. Subjects 

 

27 MDD patients were recruited from the Mood Disorders Unit of the University 

Hospital of Bellvitge. Eligible participants were adult outpatients with a primary 

diagnosis of MDD as assessed by the Structured Clinical Interview for DSM-IV Axis I 

Disorders-Clinician Version (SCID) that was conducted by two senior psychiatrists who 

reached a consensus for all items. All patients had a Hamilton Depression Scale (HAM-

D 17) score equal to or greater than 18. Exclusion criteria included the presence or past 

history of other Axis I diagnoses, relevant medical or neurological disorders and 

abnormal clinical MRI upon radiological inspection. A group of 27 healthy volunteers 

comparable in gender, age, handedness and years of education also participated in the 

study. A complete medical interview was carried out to exclude subjects with relevant 

medical or neurological disorders, history of substance abuse and psychiatric illness. All 

patients and control subjects gave written informed consent to participate in the study, 

which was approved by the Research and Ethics Committee of the University Hospital 

of Bellvitge. 

 

2. rs-fMRI acquisition and preprocessing  

 

 Image acquisition was accomplished with a 1.5 tesla Signa system (GE 

Healthcare, Milwaukee, WI, USA) equipped with an eight-channel phased-array head 

coil. The Protocol consisted in an echo planar BOLD contrast sequence and a high-

resolution T1-weighted sequence. The acquisition parameters for functional data were: 

time of repetition [TR]= 2000 ms; time of echo [TE]= 50 ms; flip angle=15º; 240 mm 

field of view, a 64 x 64 matrix; slice thickness= 4 mm and inter-slice gap=1.5 mm. 

Twenty-two slices parallel to the anterior-posterior commissure line covered the entire 

brain. The sequence included four additional dummy volumes to facilitate the 

equilibrium of magnetization, thus totalling 120 volumes per session. The high-

resolution T1-weighted anatomical image was a 3D fast spoiled gradient inversion-

recovery prepared sequence with 130 contiguous slices in the axial plane (repetition 

time = 11.8 ms, echo time = 4.2 ms and flip angle = 15º, field of view= 300 mm , a 

256x256 matrix and a slice thickness of 1.2 mm).  
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 SPM8 (Welcome Trust Centre for Neuroimaging, University College London, 

UK; http://www.fil.ion.ucl.ac.uk/spm/) was chosen to perform image preprocessing. For 

every subject, functional series were realigned in a two-step procedure: firstly to the 

first image and then to the mean image. Next, movement effects regressed out from 

functional series at the voxel level using the Volterra expansion of the movement 

parameters. Subsequent to inspection for the presence of artifacts, high-resolution T1-

weighted structural images were co-registered to the mean functional image and then 

segmented. The transformation from MNI to native space that resulted from 

segmentation was employed to warp the Automated Anatomical Labelling atlas (AAL) 

from MNI to every T1 image. AAL atlases in native space were restricted to subject's 

grey matter by the formula: [Atlas.*(GM>WM).*(GM>CSF).*(GM>0.1)] where GM is 

the grey matter, WM is the white matter and CSF is the cerebrospinal fluid tissue 

probability maps and '.*' refers to voxel to voxel product of images. The last atlases 

were used to calculate functional time series in AAL's areas. Finally, the preprocessed 

time series were band-pass filtered in 0.04-0.07 Hz range 

 

3. Dynamic Functional Connectivity  

 

Preprocessed time series were band-pass filtered in 0.04-0.07 Hz range. Then, 

the analytical signal (st) with an instant phase (phi) and amplitude (A) was extracted 

using Hilbert Transform (s = Acos (phit)). For each time instance t, the difference 

between the phases of the respective ROIs was calculated as
Δφij( t )=φi ( t )− φ j (t )

, 

where i and j are the indices of each ROI. Then, instantaneous coupling matrices (ICM), 

C(t) were constructed using the phase differences normalized between 0 and 1, thereby 

representing perfect synchronization and perfect desynchronization respectively, such 

that: 

The variability in each pair in ICM, Cij(t) was considered at the nodal level. The 

variability of functional connectivity (vFC) was computed as: Variance/Mean - Index of 

Dispersion of Phase-coupling of a pair (IDP), and this was calculated for each subject.

  

IDPij=σC ij

2 μCij  

Cij (t) = 2p
Djij (t)

http://www.fil.ion.ucl.ac.uk/spm/
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4. Group-ICA and Resting State Networks (RSN)  

 

 Group-ICA was performed using GIFT toolbox in MATLAB at voxel level 

(GIFT version 2.0.b, Matlab v10, Mathworks Inc. Sherborn, MA, USA). Out of 12, we 

finally selected 8 Independent Components (IC) based on the study of Smith et al. 

(2009). Besides, 4 IC: the DMN, and both bilateral FP and PFL Networks defined by 

Smith et al. were also added as template, resulting in total of 12 maps for the subsequent 

analyses (Figure 2A-2B; Table 2). They were initially selected as a control because of 

their tight involvement in studies about major depression. Besides, as they came from 

large number of controls, we considered that they could be used as templates for future 

studies. Once estimated the RSN, they were applied as masks on the input matrices 

(both vFC and sFC approaches) before brain connectivity analysis and the obtaining of 

both local and global metrics. 

  

5. Looking for altered networks from a Network Based Statistical Analysis (NBS)

  

 In order to locate pairs of connections and subnetworks within the connectome 

of each individual, matrices of functional connectivity (both pos-FC and IDP matrices) 

were used. A False Discovery Rate (FDR) approach was also used upon the probability 

distributions resulting from the non-parametric test, with permutations applied 

independently to every existing connection of the network. Furthermore an analysis 

based on the Network Based Statistic (NBS) (Zalesky et al. 2010; 

http://www.nitrc.org/projects/nbs/) approximation using the NBS toolbox (version 1.2) 

within every defined network (RSN) and across the whole brain (Whole Brain Network, 

WBN) was also used. 

 The NBS approximation has proved to be statistically more powerful compared 

to an FDR procedure if the difference in connectivity follows a pattern in which the 

altered connections in a group are connected components (Xueling Suo et al. 2015; Li et 

al. 2013; Zalesky et al. 2010; Zhang et al. 2011). In this type of univariate analysis, 

there is also a direct relation between statistical power and network resolution, because 

when subnetworks are analyzed, in general, the number of altered connected 

components inside altered regions generally increases, and therefore, the ability to 

detect the signal (above noise). 

  

https://www.nitrc.org/projects/nbs/
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 The NBS toolbox uses a non-parametric test with permutations (where we used 

5000 permutations). In every permutation, it reallocates all the individuals randomly 

within one of the two groups, and a t-statistic is independently calculated for every 

connection. Initially, the user sets a t probability threshold for the network and the 

component that have the highest connections is calculated, establishing a size M of 

network connections. The corrected p-value p for each subnetwork was calculated as the 

proportion of connected components of N permutations which had a bigger size than M. 

 By means of the NBS approximation, a t threshold was established minimizing 

the number of connected components where its p-value of network corrected was p < 

0.05. The final connected component (sub-net) is compose by connections which all 

presented a t > 1.68, df=53. Finally, in order to find single connections that were 

significantly altered, the FDR procedure of the NBS toolbox was applied to each of the 

RSN and WBN, setting a p < 0.05, as a control of FWE, depending on the probability 

distribution of the non-parametric tests with 10000 permutations. 

 

6. Descriptors design from graph theory features  

 

6.1 Network Construction  

 

  A network is defined as a group of nodes linked together through edges creating 

a connection graph. In this study, nodes showed the different areas of the brain divided 

from the preprocessing step through the AAL atlas. 90 different areas or nodes were 

defined, 45 for each hemisphere. The nodes which represent areas of the cerebellum 

were originally dismissed. 

 

6.2 Network Analysis 

 

 On one hand, Graph theory features allow to summarize infrastructure and 

organization of a brain network represented as an adjacency matrix (binary or weighted; 

it represents the probability of connectivity between two regions). The global 

functioning of each network was assessed by its infrastructure (average strength for 

matrices with weighted values, average degree for matrices with binary values), 

integration (global efficiency) and segregation (local efficiency). In the current study 

they are called global descriptors or network descriptors. 
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 On the other hand, regional characteristics were evaluated by means of nodal 

strength (for matrices with weighted values) or nodal degree (for matrices with binary 

values), assessing the total connectivity of a node in a given network, and nodal 

efficiency, measuring the efficiency of the sub-network associated to a given node. They 

are called nodal descriptors. Nodes with a high nodal efficiency indicate a high 

tolerance of the network to the elimination of the given node, which is associated to a 

high clustering of the neighborhood of this node (Achard S. and Bullmore E. 2007). 

Formulation and calculation of the graph theory features used to assess each network 

were based on the definitions and code compilated by Rubinov and Sporns (2010).  

 In addition, we took into consideration that the brain is really sensitive to 

energetic shortage, and most of the energy is obtained by the glucose metabolism, in 

other words the brain is sensitive to the oxidative stress and it might produce problems 

in the interconnectivity among regions. When disorders are found, it is reasonable to 

find metabolical alterations in the connections affecting somehow their functions. In 

brain disorders, it would be expected some kind of defects in the networks with heavy 

costs or with a high density of connection such as long interconnection hubs would be 

expected. The hubs should be specially sensible to the loss of variability in phase-

coupling. This idea could be used to assess the IDP matrices for the detection of 

hubs/nodes with certain rigidity in phase-coupling. 

 There are proofs that the metabolic cost of a node is proportional in one way or 

another to its own degree and/or centrality (degree, strength nodal) and the physical 

distance that it implies regarding other nodes (efficiency). The area under the curve 

(AUC) is a metric that provides a value which can be used to characterize the brain 

networks regardless of the selected threshold. In contrast with pos-FC where we can 

binarize matrices, we thus use a density/cost estimator that corrects them by the total of 

connections from all range of values in the IDP matrices. 

   

7. Analyzing nodal characteristics using classification trees 

 

In order to determine which features (graph metrics) could be used as predictors 

(descriptors) of major depression, a strategy of Leave-One-Out Cross Validation 

(LOOCV) with classification trees was used. To do that, several sets of metrics were 

used to build different models for each of the approaches, vFC and sFC. Consequently, 

before each interaction from the Leave-One-Out strategy, an input matrix was obtained 
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with an N = 54 individuals (rows), split into the two groups (control or patient), and M 

number of features introduced in the study (columns). After every LOOCV iteration, an 

individual or row was removed from the original set, also called Out Of the Bag (OOB), 

and it was classified by means of a classification tree. This tree was trained with the 

model obtained in the training sample (the rest of the registers that builds the entry 

matrix with N-1 individuals). At the end, we analyzed the membership of the individual 

among both groups.  

The classification tree used in the process was the one provided by MATLAB 

v.10 (classregtree) maximizing the results from the “splitmin” argument (range [10, 

22]). To conclude every iteration, the characteristics that better described the system 

(more frequents) were also extracted from the final model (classification tree) 

 

8. Statistical analysis of the network metrics 

 

In order to determine those putative global metrics, either MDD markers, as 

predictors for each clinical variable (HDRS, length of the episodes, total number of 

episodes, initial date of depression), multivariate analyses ANCOVA were used. The 

ANCOVA tests were built from the General Lineal Model (GLM, SPSS Chicago IL), 

where the main effects were used in the interaction among variables (factors and 

covariant) and the type II were employed for the squares addition. Besides, the variable 

'gender' was defined like a factor, and 'age' like a covariant into the GLM. 

Regarding the classification between groups, once these preselected network 

metrics were obtained, a binary logistic regression model was built from the global 

metrics which showed the best fit with the group variable (Controls, Patients). In this 

case, all subjects were used. 

Then, regarding the prediction of clinical variables from these preselected 

network metrics, a multiple lineal regression model was built from the global metrics 

which showed the best fit for each clinical variable. In this case, only the patients were 

used. 
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FIGURES 

 

 

Figure 1. Pipeline. Schematic representation of the pipeline used in the present study. (A) The 120 rs-

fMRI volumes (slices) are co-registered to the anatomical T1, then each voxel is mapped to 90 regions of 

interest (ROI)s in the AAL atlas by subject in the study (27 Controls + 27 patients with MDD). (B) [For 

each subject]: After artifacts removal, the time series were obtained by the average of the BOLD signal 

activation probability in each ROI. Then, (B, top) a band-pass filter was applied obtaining the rs-fMRI 

narrow-band signal between 0.04-0.07Hz. Next, (B, bottom) an analytic component of the oscillatory 

activity (instantaneous phase) was extracted. (C) [For each subject]: Two types of functional connectivity 

normalized matrices were obtained, on the one hand (C, top) applying the positive values of partial 

correlation among the narrow-band signals (pos-FC), and on the other hand (C, bottom) applying 

correlation on instantaneous phase (IDP matrices). (D) [For each subject]: Next, different matrices by 

each RSN were obtained applying different masks on whole brain matrices (i.e DMN, RSN_S2). (E) [For 

each Subject, RSN matrix and approach]: Networks Based Statistic (NBS) was obtained on the different 

matrices; (F, top) NBS on pos-FC RSN matrices (i.e RSN_S2); (F, bottom) on IDP RSN matrices (i.e 

RSN_S2). (F) [For each subject, RSN and approach]: Graph-theorical measures were obtained for each 

region (nodal variables, nodal descriptors) and network (global variables, network descriptors). (G) [For 

each approach]: Putative features associated to regions (possible markers) were obtained  from 

classification trees on nodal descriptors; (G, top) classification between MDD and Control subjects: 

possible markers of depression on IDP matrices (vFC approach); (G, down) classification between MDD 

and Control subjects: possible markers of depression on pos-FC matrices (sFC approach). (H) The 

different models were obtained combining network descriptors (i.e HDRS). 
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Figure 2A. RSNs. The different Resting State Networks (RSN)s were obtained from an Independent 

Component Analysis (ICA) from Smith et al. Study, and the BOLD signal of the control group was used 

with Group-ICA strategy. Blue indicates a low probability of the existence of this independent component 

(IC) within this area, however, yellow and red show the areas with a strong presence of this component. A 

priori, these areas should work together when they are performing similar tasks or brain complex 

functions. The nodal AAL definition of these networks is shown in Figure 2B and into table 2. (A1) This 

component is extracted from Smith et al. study and it is present in the Prefrontal and Limbic areas (Smith 
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et al.; In the study it is called PFL or RSN_S1). (A2) This component is extracted from the control group 

and it is mainly present in the Dorsal Nexus (In this study is called: DN or RSN 1-1). (A3) This 

component is extracted from the control group and it is present mainly in the prefrontal areas (In this 

study is called PF or RSN 1-2). (B1) This component is extracted from the Smith et al. study and it is 

present in the Default Mode Network (It is called DMN or RSN_S2). (B2) This component is extracted 

from the control group and it is present in the posterior part of DMN (In the current study is called 

posterior DMN or RSN 2-1). (B3) This component is extracted from the control group and it is mainly 

present in the anterior part of the PF or DMN. (In this study we define this component like anterior part of 

DMN or RSN 2-2). (C1) This component is extracted from the Smith et al. study and it is present in the 

left hemisphere, mainly within the left Frontal and Parietal areas. (It is called left-FP or RSN_S3). (C2) 

This component is extracted from the control group, and it seems to be a sub-network of the left-FP (It is 

called RSN 3-1). (D1) This component is extracted from the Smith et al. study and it is present in the 

right hemisphere, mainly within the right Frontal and Parietal areas (It is called right-FP or RSN_S4). 

(D2) This component is extracted from the control group, and it seems to be a sub-network of the right-FP 

(it is called RSN 4-1). (E1 and E2) These components are extracted from the control group, and they 

located on the occipital and temporal areas (They are called RSN 5-1 and RSN 5-2). 

 

Figure 2B. RSN - nodes. After the ICs are extracted we define the networks at a node level from the IC 

average probability in each AAL region. [A-E] corresponds to the components shown in Figure 1A and 

Table 2. (A) These components seem to be working into Prefrontal and Limbic areas. (B) They are 

components seem to be working into the DMN. (C) They are components seem to be working into the 

Left FP areas or left hemisphere. (D) They are components seem to be working into the Right FP areas or 

right hemisphere. (E) They are components seem to be working into the occipital and temporal or visual 

areas. 
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Figure 3A. Default Mode Network alterations in the FC. An NBS strategy is used to discover 

alterations in the FC between the control and the patient group in the different RSNs by both sFC and 

vFC approaches. The connectivity alterations are shown in Tables 3 (3A for the sFC approach, 3B for the 

vFC approach). (A) [RSN_S2]: The DMN shows hyperconnectivity between its anterior and posterior 

parts (left, red), and a loss of variability in phase-coupling (right, purple). Besides, they seem to be in an 

interhemispheric symmetry way. It suggests two levels of disruptions in the functional connectivity (FC) 

of the DMN in resting-state condition. Here, the NBS strategy reveals possible hubs for hyperconnectivity 

between areas, and rigidity of phase-coupling in the ORBsupmed and ACC for the anterior part and PCC, 

and the Precuneus for the posterior part. This hyperconnectivity could be due to a hypogryrification in 

MDD, and this support the idea of a vulnearbility at a biological level in front of depression. Besides, we 

hypothesize that it might be more severe depending on the level of HDRS and time  of depression. These 

abnormalities could produce depressive ruminations and brooding. (B)  [RSN 2-1]: A hyperconnectivity 

(left, red) and a decrease in the index of dispersion of the phase (right, purple) between the posterior part 

of brain (mainly PCC and Precuneus) and the Hippocampal-Thalamic pathway are found, using an NBS 

strategy on the posterior DMN. This suggests a putative anomaly in the path responsible for managing the 

episodic memories. It might trigger an over general AM in patients with MDD.  
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Figure 3B. PFL and FP Network. An NBS strategy is used to discover alterations in the FC the between 

control and the patient group in the different RSN with both sFC and vFC approaches. The connectivity 

alterations are shown in Tables 3 (3A sFC approach, 3B for the vFC approach). (A)  [RSN_S1]: The PFL 

shows a loss of variability in phase-coupling among the DLPFC, OPFC and the right cuneus region. This 

might produce negative emotional judgment and anxiety problems in the patients. (B)  [RSN_S3]: The 

left hemisphere, specially the left FP,  shows general problems of connectivity. The static approach in the 

left FP unmasks a decrement of connectivity between parietal areas and frontal (specially with the left 

SFGdor area). Besides, we found a disconnectivity between MFG.L and both the left Thalamus and 

ORBinf areas. (C)  [RSN_S3]: The left FP also shows a loss of variability in phase-coupling, mainly 

among the SFGdor.L and inferior parietal regions. (A,B,C) The left SFGdor could play a relevant role in 

the depressive maladaptive, negative emotional judgment and anxiety traits of depression. (D) [RSN_S4]: 

The NBS applied on the right FP unmasks a decrement in the index of dispersion in the phase among the 

right cingulate regions and IFGoperc.R. This may influence in the flexibility that should exist in the 

control of human goal-directed behavior (maintaining cognitive faculties). (A,B,C,D) The alterations in 

both static and dynamic measures suggest that the disconnection between frontal and parietal regions 

might produce a maladaptive control in front of errors of transmission in patients with MDD, generating 

problems in the control of cognitive faculties and in the adaptive response of feedbacks between frontal 

and intra/parietal regions. 
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Figure 4. Classification Tree. A Classification Tree procedure with a LOOCV strategy are used together 

to classify individuals between the control and MDD group from nodal descriptors of graph theory by 

approach (static and dynamic). The descriptors obtained are shown into table 5, and their accuracy values 

using an LOOCV strategy are shown in the tables 4A-4B. The size defines the occurrence frequency of 

this metric in the model across the LOO iterations. This frequency is described in the table 5. Thus, small 

nodes represents a low occurrence of this metric, associated to one region, in the final model. In these 

cases, these nodes could not be realied on for the classification because of its presence in only some 

subjects. The color represents the priority the Classification Tree uses it to build the model (table 5). The 

root of the tree (high priority to build the model) is represented in strong blue, the first level of tree is 

represented in light blue, intermediate levels in yellow and the last levels of the tree in red. (A) The best 

classification using dynamic nodal descriptors is located on the right FP network. It shows 85.2% of 

accuracy. (B) The best classification using static nodal descriptors is located on the PFL. It shows 83.3% 

of accuracy. (A,B) They could be putative markers of the disorder. 
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Figure 5. Clinical variables are explained by the combination of network descriptors. Static and 

dynamic network descriptors of RSN such as: DMN, specially the posterior part of DMN, PFL and the 

right FPN can explain partially different clinical variables of patients with MDD (A,B,C,D). Besides 

these networks are also involved in the classification model built by binary logistic regression (E). The 

global descriptors used to build the models and the R² are shown into the tables 6 and 7 (In concret, the 

classification model is described into the tables 6A-C, and the models which describe different clinical 

variables in patients are explained into the table 7). In the first column (left), those components that are 

related to prefrontal and limbic areas which contain some global descriptor in the model are shown; in the 

second the right FP and the thrid the DMN or posterior DMN components. (A) Aterations in the FC 

among areas or global abnormalities of the activity in the prefrontal and limbic areas (RSN_S1) together 

with problems in the posterior DMN (RSN 2-1) would partially explain the HDRS (R²=0.48). (B) 
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Alterations in the FC among areas or global abnormalities of the activity in the prefrontal and limbic areas 

(RSN_S1) together with problems DMN (RSN_S2) migh know historial traits of the major depression 

(linear model: R²=0.57, Cubic model: R²=0.62). (C) Alterations of activity in resting state in the DN 

(RSN 1-1) and the right hemisphere, specially into the right FP network (RSN_S4), might predict the 

current length of episode (Linear model: R²=0.46, using a square model: R²=0.67). (D) Alterations of 

activity at rest in the right hemisphere, specially in the right FP network (RSN_S4) together with 

problems in the posterior DMN (RSN 2-1) might predict the total number of episodes in a patient. 

(A,B,C,D) This networks descriptors could be used like markers to monitoring at strong phases of 

depression in the patients.(E) The major depression could be explained for alterations or global 

oscillatory problems in the global signal activity in the PFL, right FP and posterior DMN. 
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TABLES 

 

 

Table 1. ROIs of AAL atlas. The definition of the 90 regions of the atlas AAL used in the study and their 

positions (x,y,z) in the brain into the MNI space. 

 

ID AAL ID ID ROI x y z ID AAL ID ID ROI x y z

1 Precentral_L PreCG.L -38,65 -5,68 50,94 46 Cuneus_R CUN.R 13,51 -79,36 28,23

2 Precentral_R PreCG.R 41,37 -8,21 52,09 47 Lingual_L LING.L -14,62 -67,56 -4,63

3 Frontal_Sup_L SFGdor.L -18,45 34,81 42,20 48 Lingual_R LING.R 16,29 -66,93 -3,87

4 Frontal_Sup_R SFGdor.R 21,90 31,12 43,82 49 Occipital_Sup_L SOG.L -16,54 -84,26 28,17

5 Frontal_Sup_Orb_L ORBsup.L -16,56 47,32 -13,31 50 Occipital_Sup_R SOG.R 24,29 -80,85 30,59

6 Frontal_Sup_Orb_R ORBsup.R 18,49 48,10 -14,02 51 Occipital_Mid_L MOG.L -32,39 -80,73 16,11

7 Frontal_Mid_L MFG.L -33,43 32,73 35,46 52 Occipital_Mid_R MOG.R 37,39 -79,70 19,42

8 Frontal_Mid_R MFG.R 37,59 33,06 34,04 53 Occipital_Inf_L IOG.L -36,36 -78,29 -7,84

9 Frontal_Mid_Orb_L ORBmid.L -30,65 50,43 -9,62 54 Occipital_Inf_R IOG.R 38,16 -81,99 -7,61

10 Frontal_Mid_Orb_R ORBmid.R 33,18 52,59 -10,73 55 Fusiform_L FFG.L -31,16 -40,30 -20,23

11 Frontal_Inf_Oper_L IFGoperc.L -48,43 12,73 19,02 56 Fusiform_R FFG.R 33,97 -39,10 -20,18

12 Frontal_Inf_Oper_R IFGoperc.R 50,20 14,98 21,41 57 Postcentral_L PoCG.L -42,46 -22,63 48,92

13 Frontal_Inf_Tri_L IFGtriang.L -45,58 29,91 13,99 58 Postcentral_R PoCG.R 41,43 -25,49 52,55

14 Frontal_Inf_Tri_R IFGtriang.R 50,33 30,16 14,17 59 Parietal_Sup_L SPG.L -23,45 -59,56 58,96

15 Frontal_Inf_Orb_L ORBinf.L -35,98 30,71 -12,11 60 Parietal_Sup_R SPG.R 26,11 -59,18 62,06

16 Frontal_Inf_Orb_R ORBinf.R 41,22 32,23 -11,91 61 Parietal_Inf_L IPL.L -42,80 -45,82 46,74

17 Rolandic_Oper_L ROL.L -47,16 -8,48 13,95 62 Parietal_Inf_R IPL.R 46,46 -46,29 49,54

18 Rolandic_Oper_R ROL.R 52,65 -6,25 14,63 63 SupraMarginal_L SMG.L -55,79 -33,64 30,45

19 Supp_Motor_Area_L SMA.L -5,32 4,85 61,38 64 SupraMarginal_R SMG.R 57,61 -31,50 34,48

20 Supp_Motor_Area_R SMA.R 8,62 0,17 61,85 65 Angular_L ANG.L -44,14 -60,82 35,59

21 Olfactory_L OLF.L -8,06 15,05 -11,46 66 Angular_R ANG.R 45,51 -59,98 38,63

22 Olfactory_R OLF.R 10,43 15,91 -11,26 67 Precuneus_L PCUN.L -7,24 -56,07 48,01

23 Frontal_Sup_Medial_L SFGmed.L -4,80 49,17 30,89 68 Precuneus_R PCUN.R 9,98 -56,05 43,77

24 Frontal_Sup_Medial_R SFGmed.R 9,10 50,84 30,22 69 Paracentral_Lobule_L PCL.L -7,63 -25,36 70,07

25 Frontal_Med_Orb_L ORBsupmed.L -5,17 54,06 -7,40 70 Paracentral_Lobule_R PCL.R 7,48 -31,59 68,09

26 Frontal_Med_Orb_R ORBsupmed.R 8,16 51,67 -7,13 71 Caudate_L CAU.L -11,46 11,00 9,24

27 Rectus_L REC.L -5,08 37,07 -18,14 72 Caudate_R CAU.R 14,84 12,07 9,42

28 Rectus_R REC.R 8,35 35,64 -18,04 73 Putamen_L PUT.L -23,91 3,86 2,40

29 Insula_L INS.L -35,13 6,65 3,44 74 Putamen_R PUT.R 27,78 4,91 2,46

30 Insula_R INS.R 39,02 6,25 2,08 75 Pallidum_L PAL.L -17,75 -0,03 0,21

31 Cingulum_Ant_L ACG.L -4,04 35,40 13,95 76 Pallidum_R PAL.R 21,20 0,18 0,23

32 Cingulum_Ant_R ACG.R 8,46 37,01 15,84 77 Thalamus_L THA.L -10,85 -17,56 7,98

33 Cingulum_Mid_L DCG.L -5,48 -14,92 41,57 78 Thalamus_R THA.R 13,00 -17,55 8,09

34 Cingulum_Mid_R DCG.R 8,02 -8,83 39,79 79 Heschl_L HES.L -41,99 -18,88 9,98

35 Cingulum_Post_L PCG.L -4,85 -42,92 24,67 80 Heschl_R HES.R 45,86 -17,15 10,41

36 Cingulum_Post_R PCG.R 7,44 -41,81 21,87 81 Temporal_Sup_L STG.L -53,16 -20,68 7,13

37 Hippocampus_L HIP.L -25,03 -20,74 -10,13 82 Temporal_Sup_R STG.R 58,15 -21,78 6,80

38 Hippocampus_R HIP.R 29,23 -19,78 -10,33 83 Temporal_Pole_Sup_L TPOsup.L -39,88 15,14 -20,18

39 ParaHippocampal_L PHG.L -21,17 -15,95 -20,70 84 Temporal_Pole_Sup_R TPOsup.R 48,25 14,75 -16,86

40 ParaHippocampal_R PHG.R 25,38 -15,15 -20,47 85 Temporal_Mid_L MTG.L -55,52 -33,80 -2,20

41 Amygdala_L AMYG.L -23,27 -0,67 -17,14 86 Temporal_Mid_R MTG.R 57,47 -37,23 -1,47

42 Amygdala_R AMYG.R 27,32 0,64 -17,50 87 Temporal_Pole_Mid_L TPOmid.L -36,32 14,59 -34,08

43 Calcarine_L CAL.L -7,14 -78,67 6,44 88 Temporal_Pole_Mid_R TPOmid.R 44,22 14,55 -32,23

44 Calcarine_R CAL.R 15,99 -73,15 9,40 89 Temporal_Inf_L ITG.L -49,77 -28,05 -23,17

45 Cuneus_L CUN.L -5,93 -80,13 27,22 90 Temporal_Inf_R ITG.R 53,69 -31,07 -22,32
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Table 2. RSN - ROIs. The definition of the resting state networks (RSNs) at ROI level used in the study 

described in the figure 2A and 2B. The ROIs are defined into the Table 1. 

 

 

RSN_S1 PFL RSN_S2 DMN RSN_S3 L_FP RSN_S4 R_FP RSN 5-1 Visual

SFGdor.L ORBsupmed.L PreCG.L PreCG.R CAL.L

SFGdor.R ORBsupmed.R SFGdor.L SFGdor.R CAL.R

MFG.L REC.L MFG.L MFG.R CUN.R

MFG.R REC.R ORBmid.L ORBmid.R LING.L

ORBmid.R ACG.L IFGoperc.L IFGoperc.R LING.R

OLF.L ACG.R IFGtriang.L IFGtriang.R MOG.L

OLF.R PCG.L ORBinf.L ORBinf.R IOG.L

SFGmed.L PCG.R ROL.L ROL.R RSN 5-2 VM

SFGmed.R CAL.L PCG.L SFGmed.R ACG.L

ORBsupmed.L CAL.R SOG.L INS.R DCG.L

ORBsupmed.R CUN.L MOG.L ACG.R DCG.R

INS.L CUN.R IOG.L DCG.R SPG.L

INS.R ANG.L SPG.L PCG.R SPG.R

ACG.L ANG.R IPL.L MOG.R IPL.L

ACG.R PCUN.L IPL.R SPG.R IPL.R

DCG.L PCUN.R SMG.L IPL.L SMG.L

DCG.R HES.L ANG.L IPL.R SMG.R

AMYG.L HES.R PCUN.L SMG.R PCUN.L

CUN.L STG.R PAL.L ANG.L PCUN.R

CUN.R MTG.L THA.L ANG.R PCL.L

SOG.L MTG.R MTG.L STG.R PCL.R

CAU.L RSN_2-1 Post-DMN ITG.L TPOsup.R

CAU.R DCG.L RSN 3-1 MTG.R

PUT.L PCG.L IFGoperc.L ITG.R

PUT.R PCG.R IFGtriang.L RSN 4-1

PAL.L HIP.R ORBinf.L PreCG.R

PAL.R ANG.L SFGmed.L ORBmid.R

THA.L ANG.R INS.L IFGtriang.R

THA.R PCUN.L ACG.L ORBinf.R

RSN 1-1 DN PCUN.R PCG.L ROL.L

IFGoperc.L THA.R IPL.L AMYG.R

ROL.L RSN_2-2 Pre-DMN SMG.L PoCG.R

INS.R ORBsup.R ANG.L SMG.R

ACG.L OLF.R HES.L HES.L

ACG.R ORBsupmed.L MTG.L

CAU.L ORBsupmed.R

HES.R REC.L

RSN 1-2 PF REC.R

OLF.L ACG.L

OLF.R ACG.R

ORBsupmed.R DCG.L

ACG.L PCG.L

AMYG.L CAU.R

CAU.L MTG.L

CAU.R MTG.R

PUT.R

PAL.L

PAL.R

HES.L
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Table 3A. NBS – sFC approach. The NBS strategy allows to detect functional connectivity problems 

between groups when they are forming connected components (altered sub-networks on a system). This 

strategy can be used both on Whole Brain Network (WB) and RSNs. The input are usually matrices of 

correlations between the activity of regions. In this case, we show altered connections with their 

respectives ttest one-tailed values (non-corrected) for each RSN (ttest one-tailed value corrected). We 

want to learn those connections which show an increment or decrement of functional connectivity in the 

MDD. The representation of this table is in the figures 3A.A, 3A.B (connections in red color) and in the 

3B.B. We apply an threshold of t>1.67 to be sure that each connection has a pvalue p<0.05. Depending on 

the method used to calculate the input matrices for the NBS strategy, the interpretation of results will be 

different. In this case, we discover alterations on pos-FC. So, this table indicates likely an increment or a 

loss of connectivity in resting-state between regions. The results show an general hiperconnectivity 

(MDD>HC) into the DMN and a loss of connectivity (MDD<HC) among frontal and parietal regions. 

 

 

 

 

 

 

 

 

 

 

 

 

MDD > HC MDD > HC MDD < HC

RSN_S2 Net1 t=1,93 RSN 2-1 Post-DMN t=1,78 RSN S3 Left FP. Net1 t=2,13

PCG.L-REC.R 2,38 PCG.R-HIP.R 1,78 PreCG.L-SFGdor.L 2,75

ORBsupmed.R-PCG.R 2,01 DCG.L-ANG.R 2,05 ORBmid.L-IFGtriang.L 2,18

ACG.R-PCG.R 1,93 DCG.L-PCUN.R 1,87 PCG.L-IFGtriang.L 2,51

CAL.R-CUN.R 2,41 PCG.R-PCUN.R 1,99 SFGdor.L-IOG.L 2,13

PCG.R-PCUN.R 1,99 IFGtriang.L-IOG.L 2,17

PCG.R-HES.L 2,27 PreCG.L-SPG.L 2,87

CAL.R-HES.L 2,66 IOG.L-ITG.L 2,44

CAL.R-STG.R 2,11 RSN S3 Left FP. Net2 (Lef t=2,14

MTG.L-REC.R 2,02 MFG.L-THA.L 3,14

MTG.L-CUN.R 2,54 MFG.L-SOG.L 2,19

RSN_S2 Net2 (Left CAL) t=2,56 MFG.L-ORBinf.L 2,14

ORBsupmed.L-CAL.L 2,56 SMG.L-ORBinf.L 2,34

CAL.L-CUN.L 3,57
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Table 3B. NBS – vFC approach.  The NBS strategy allows to detect functional connectivity problems 

between groups when they are forming connected components (altered sub-networks on a system). This 

strategy can be used both on Whole Brain Network (WB) and RSNs. The input are usually matrices of 

correlations between the activity of regions. In this case, we show  anomalies in the phase-coupling with 

their respectives ttest one-tailed values (non-corrected) for each RSN (ttest one-tailed value corrected). 

We want to learn those connections which show an increment or decrement of variability in the phase-

coupling. The representation of this table is in the figures 3A.A, 3A.B (connections in purple), 3B.A, 

3B.C, 3B.D. We apply an threshold of t>1.67 to be sure that each connection has a P<0.05 (non-

corrected) between groups. Depending on the method used to calculate the input matrices for the NBS 

strategy, the interpretation of results will be different. In this case, we unmask problems on the IDP 

matrices. So, this table indicates likely an increment or a loss of index of dispersion in the phase between 

regions at rest. The results show an general loss of variability in the phase-coupling (loss of flexibility in 

the transmission of information, rigidity) into the DMN (MDD < HC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

vFC approach

MDD < HC MDD < HC MDD < HC MDD < HC

RSN_S2 t=2,68 RSN 2-1 Post-DMN t=2,25 RSN S3 Left FP. Net1 t=3,23 RSN_S1 PFC. Net1 t=3,00

ORBsupmed.R-PCG.R 2,75 PCG.L-PCUN.L 2,43 SFGdor.L-IPL.L 3,34 SFGdor.R-SFGdor.L 3,01

ORBsupmed.R-ANG.R 2,69 PCUN.L-ANG.R 2,95 SFGdor.L-IPL.R 3,43 MFG.R-SFGdor.L 3,54

ACG.L-ANG.R 2,99 PCG.L-PCUN.R 2,72 PCUN.L-IPL.R 3,31 MFG.R-SFGmed.L 3,96

PCUN.L-ANG.R 2,95 PCG.R-PCUN.R 2,73 IPL.L-MTG.L 3,23 SFGdor.L-CUN.R 3,00

PCG.L-PCUN.R 2,72 ANG.L-PCUN.R 2,41 RSN S3 Left FP. Net2 T=3,00 RSN S1 PFC. Net2 t=3,51

PCG.R-PCUN.R 2,73 ANG.R-PCUN.R 2,66 PCG.L-SPG.L 3,00 ORBsupmed.L-ORBmid.R 3,51

STG.R-ANG.R 2,68 PCG.L-THA.R 2,72 RSN S4 Right FP T=4,21

PCG.R-THA.R 2,54 PCG.R-IFGoperc.R 4,43

PCG.R-DCG.R 4,21
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Table 4A. Classification Tree by RSN – vFC approach. A strategy of classification by means of 

Classification Tree with LOOCV on nodal measures from graph theory was used for unmasking possible 

markers in the major depression. Each feature is associated to one region which describes the role of this 

area into its network (graph). An input matrix (NxM) was used for this strategy where N=54 individuals, 

split into the two groups (control or patient), and M is the number of measures. However, the value of 

each measure depends on its network and the M depends on both the number of measures and regions. 

The goal was to find the best combination of network and its nodal measures that best separate the 

individuals among both groups. So, each value in this table represents the accuracy value for one 

combination. In this case, the measures are extracted from graph theory on IDP matrices (dynamic 

approach). The values under the column “All Nodal graph” indicates that those models were built using 

all nodal measures (both nodal efficiency and strength) both on corrected and on weighted matrices. The 

models under “All Nodal weighted” used all nodal measures on weighted IDP matrices. “All Nodal 

corrected” indicates that those models used all nodal measures on corrected IDP matrices. “All Nodal 

Strength”: it was strength nodal measures which come from both weighted and corrected IDP matrices. 

“All Nodal Efficiency”: it was nodal efficiency which come from both weighted and corrected IDP 

matrices. “Corrected Strength”: these models only used the nodal strength measures that come from 

corrected IDP matrices. “Strength”: these models only used nodal strength on weighted IDP matrices. 

“Nodal cost Efficiency”: these models only used the nodal efficiency on corrected IDP matrices. “Nodal 

Efficiency”: these models only used the nodal efficiency on weighted IDP matrices. The results in the 

dynamic approach show that the right FP network, in general, gets a good ratios of accuracy, specially the 

model that uses only corrected nodal strength measures (red). It is represented in the figure 4.A. Nodal 

efficiency into the DN and nodal strength of whole brain show also good ratio of accuracy 83.3% (blue). 

 

 

 

 

 

 

 

RSN All Nodal graph All Nodal Weighted All Nodal Corrected All Nodal Strength All Nodal Efficiency Corrected Strength Strength Nodal cost Efficiency Nodal Efficiency

RSN_S2 0.5741 0.7037 0.6852 0.5556 0.6296 0.6481 0.7037 0.7037 0.7222

RSN 2-1 0.6296 0.7593 0.4259 0.6296 0.6481 0.4259 0.6852 0.4815 0.6667

RSN 2-2 0.6481 0.6111 0.5741 0.4259 0.7593 0.5370 0.5556 0.7037 0.5926

RSN 1-1 0.6481 0.6111 0.6852 0.5741 0.8333 0.6296 0.6481 0.4630 0.6481

RSN 1-2 0.5185 0.6481 0.6667 0.5926 0.5741 0.7778 0.5556 0.4815 0.5926

RSN 4-1 0.6481 0.7037 0.6852 0.6111 0.6481 0.4444 0.6481 0.6667 0.7037

RSN 3-1 0.7593 0.6667 0.6852 0.5556 0.6667 0.6852 0.6111 0.5370 0.6667

RSN 5-2 0.5370 0.5000 0.4815 0.5556 0.6667 0.5370 0.5000 0.4630 0.3889

RSN 5-1 0.6481 0.5000 0.5185 0.7593 0.6296 0.5926 0.5741 0.4630 0.5741

RSN_S1 0.5370 0.6111 0.5741 0.3519 0.5370 0.5926 0.4630 0.4259 0.6296

RSN_S4 0.7593 0.6667 0.8148 0.8333 0.5185 0.8519 0.7037 0.4444 0.6296

RSN_S3 0.5370 0.6852 0.6111 0.3704 0.4444 0.5370 0.4630 0.7407 0.5370

Whole Brain 0.6852 0.7222 0.7222 0.7222 0.6667 0.7407 0.8333 0.5556 0.6111
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Table 4B. Classification Tree by RSN – sFC approach.  A strategy of classification by means of 

Classification Tree with LOOCV on nodal measures from graph theory was used for unmasking possible 

markers in the major depression. The goal was to find the best combination of network and its nodal 

measures that best separate the individuals among both groups. So, each value in this table represents the 

accuracy value for one combination. In this case, the measures are extracted from graph theory on pos-FC 

matrices (static approach). The values under the column “All Nodal graph” indicates that those models 

were built using all nodal measures (both nodal efficiency and nodal degree) both on binarized and on 

weighted matrices. The models under “All Nodal weighted” used all nodal measures on weighted pos-FC 

matrices. “All Nodal Binarized” indicates that those models used all nodal measures on binarized pos-FC 

matrices. “All Nodal Strength”: it was strength nodal measures which come from both weighted and 

binarized pos-FC matrices. “All Nodal Efficiency”: it was nodal efficiency which come from both 

weighted and binarized pos-FC matrices. “Degree”: these models only used the nodal degree that come 

from binarized pos-FC matrices. “Strength”: these models only used nodal strength on weighted IDP 

matrices. “Nodal Bin Efficiency”: these models only used the nodal efficiency on binarized pos-FC 

matrices. “Nodal Efficiency”: these models only used the nodal efficiency on weighted pos-FC matrices. 

The results in the static approach show that the best model to classify the subjects of this study is build by 

binarized and weighted nodal measures of  PFL (red). It is represented in the figure 4.B. 

 

 

 

 

 

 

 

 

 

 

 

RSN All Nodal graph All Nodal Weighted All Nodal Binarized All Nodal Strength All Nodal Efficiency Degree Strength Nodal Bin Efficiency Nodal Efficiency

RSN_S2 0.7037 0.4074 0.7778 0.6296 0.7037 0.5741 0.6296 0.7037 0.7037

RSN 2-1 0.6481 0.6296 0.6481 0.6481 0.6481 0.6111 0.6481 0.6481 0.7037

RSN 2-2 0.7778 0.7778 0.6111 0.7778 0.6667 0.4074 0.7778 0.7222 0.5370

RSN 1-1 0.5556 0.5741 0.5926 0.5185 0.6667 0.7222 0.5185 0.6667 0.6852

RSN 1-2 0.3704 0.3889 0.4815 0.5185 0.4630 0.6481 0.5556 0.5185 0.4259

RSN 4-1 0.4815 0.5000 0.5000 0.5370 0.5741 0.3333 0.5741 0.4815 0.5741

RSN 3-1 0.6296 0.3333 0.5370 0.5556 0.3704 0.7407 0.5741 0.5741 0.4259

RSN 5-2 0.6852 0.4630 0.3704 0.3889 0.4259 0.7037 0.3889 0.3519 0.4630

RSN 5-1 0.6481 0.6481 0.6296 0.4259 0.6667 0.7407 0.4259 0.7222 0.5556

RSN_S1 0.8333 0.6111 0.8148 0.5926 0.7037 0.5926 0.4444 0.7778 0.7407

RSN_S4 0.3889 0.5556 0.5926 0.5556 0.4259 0.7222 0.4815 0.6481 0.5556

RSN_S3 0.6852 0.6852 0.5185 0.7222 0.4259 0.4259 0.7222 0.5370 0.5741

Whole Brain 0.7037 0.46296 0.7593 0.7963 0.5000 0.7963 0.4259 0.6481 0.4630
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Table 5. Classification Tree – ROIs description. Only the best descriptors that classify the individuals 

between groups by approach (sFC static; vFC dynamic) are shown. The classification model is built by 

using binary trees with Leave-One-Out strategy (LOO). The accuracy values that correspond to each 

approach are into the Table 4A and 4B (red). The column “ROI” describes the regions present in the best 

model for each approach. “Frequency” is the frequency of occurrence of this region a long of LOO 

strategy in this approach. “Tree Level”: describes the priorty level of this region to build the best tree 

model for this approach (level of information that can be explained by this region in that model). 

“Feature”: is the measure used in this classification model on this particular region in this approach. The 

results from classification tree using static measures on FC (under a point of view of static functional 

connectivity among regions) show that the features that describe ROIs in the PFL are the best descriptors 

to classify the individual in the current study, however the features that describe ROIs in the right-PF are 

the best descriptors to classify the subjects between groups under a dynamic point of view (analyzing the 

phase coupling among regions in a possible transmission of information). 

 

 

 

 

 

 

 

 

 

 

sFC approach : RSN_S1 (PFL): 83.3% of accuracy

ROI Frequency Tree Level Feature

SFGmed.R 54/54 root Degree

PAL.R 54/54 1st Binarized nodal Efficiency

AMYG.L 15/54 1st Binarized nodal Efficiency

CAU.R 54/54 intermediate Weighted nodal Efficiency

ACG.R 7/54 intermediate Weighted nodal Efficiency

MFG.L 54/54 last Weighted nodal Efficiency

ORBsupmed.R 7/54 last Weighted nodal Efficiency

vFC approach : RSN_S3 (right-FP): 85.2% of accuracy

ROI Frequency Tree Level Feature

TPOsup.R 54/54 root Corrected Strength

IFGtriang.R 54/54 1st Corrected Strength

IPL.R 54/54 1st Corrected Strength

MFG.R 9/54 intermediate Corrected Strength

PreCG.R 54/54 last Corrected Strength

SPG.R 54/54 last Corrected Strength
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Table 6A. Global descriptors before to logistic regression (correlation & predict pvalue).  A binary 

logistic model was built to classify the subjects between Control and MDD groups. The correlation values 

of the independent variables used into this binary logistic regression model and their predict score test in 

the model before to equation are shown in this table. The table show that all global metrics (“Variables”) 

which describe the behaviour of the whole networks would be statistically significant. Gender and Age a 

priori would not be statistically significant in the model. On the other hand, we observe that any 

independent variable of the model present moderate or strong correlation between them before to 

equation. 

 

 

 

Table 6B. Binary Logistic Regression – Classification & Results of equation. 

A binary logistic model was built to classify the subjects between Control and MDD groups. The overall 

percent of cases that are correctly predicted by the model, the pseudo-R² and chi-square together with its 

significant level of the binary logistic regression model are shown in this table. In specially, “Observed” 

indicates the number 0's and 1's that are observed in the dependent variable (group) however the 

“Predicted” show the predict values (results) of this model. The results show that an moderate capacity of 

prediction of subjects in the group (70,4%; R²=0.45; p=0.0004) using global metrics (descriptors) on the 

PFL, posterior part DMN and right-FP .  We observed equilibrate capacity to predict both control case and 

patients (19/27, 19/27). 

 

Before to equation Correlation Predict

Variables Gender Age

Gender 1,0000 -,0359 -,1606 -,3187 ,1080 1,5429 ,2142

Age -,0359 1,0000 ,0008 -,1793 -,1468 ,0388 ,8438

-,1606 ,0008 1,0000 ,3074 -,2955 5,7234 ,0167

-,3187 -,1793 ,3074 1,0000 -,2031 4,6714 ,0307

,1080 -,1468 -,2955 -,2031 1,0000 7,5597 ,0060

Efficiency 

PFL 

(Binarized 

pos-FC)

Average Degree 

right-FP 

(Binarized    

pos-FC)

Average Strength 

Posterior-DMN 

(Weighted IDP)

Score 

test

pvalue 

P

Efficiency PFL 

(Binarized pos-FC)

Average Degree 

right-FP         

(Binarized pos-FC)

Average Strength 

Posterior-DMN 

(Weighted IDP)

Observed

Predicted

Nagelkerke R² Chi-square (X²) df PGroup

Control Patient

Group
Control 19 8 70,4

0,453 22,443 5 0,00043Patient 8 19 70,4

Overall 70,4

Percentage 

Correct
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Table 6C. Variables in the equation. The dependent variables into the binary logistic regression model 

are shown in this table. The overall and the significiant value of this model are shown in the table 6B. 

“B”: are the coefficient values for the model for predicting the group from the these independent variables 

(they are in log-odds unit). “S.E” is the standard errors associated with the coefficients. “df”: degree of 

freedon for each of the test of the coefficients. “X² and P”: are the Wald Chi-square and the 2-pvalue used 

in the testing the null hypothesis for each parameter of this model. The results show that all global metrics 

on RSN such as: PFL, right-FP and posterior DMN, are parameters stastistically significant for this 

model. So, despise the model have a moderate level for predicting group, a priori these global metrics 

would be indicating that these three RSN might be involved in the major depression and might be used 

like a general markers to monitoring the major depression in patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables B S.E X² df P

Gender
-1,342 ,849 2,498 1 ,11398

Age
-,007 ,035 ,044 1 ,83347

Efficiency PFL (Binarized pos-FC)
127,922 55,072 5,395 1 ,02019

2,076 ,843 6,069 1 ,01376

-5,914 2,546 5,397 1 ,02018

Constant -116,510 45,213 6,641 1 ,00997

Average Degree right-FP 

(Binarized pos-FC)

Average Strength Posterior-DMN 

(Weighted IDP)
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Table 7. Multiple Linear Regressions Models from Network descriptors. Multiple Linear regression 

were built from network descriptors, that characterize different RSNs (DMN, especially the Posterior part 

of the DMN, PFL and your DN area and right FP), for predicting different clinical variables such as: the 

level of severity of major depression (HDRS), initial age of the first episode of depression, the length of 

current episode of depression, the total number of episodes, in patients with MDD. The overall fits 

statistics, the level of significance from ANOVA (F-test) and the description of the parameters, together 

with their coefficients and pvalues, which compose the different models are shown in this table. The 

results show that HDRS of patients can be moderately explained by global metrics on posterior-DMN and 

PFL at 48.1%. The prefrontal and limbic areas would be specially relevants in this model (Beta=0.6, 

contribution in this model). Besides the parameters of the model (independent variables) a priori do not 

show collineality (tolerance > 0.1 and VIF < 10; partial correlation controled by gender and age between 

the network metric of posterior-DMN and the PFL pcorr=-0.159 p=0.45) and all global metrics values 

are statistically significative in the model p<0.05. The age and gender do not seem to have much 

influence in the model. The results also show that initial age of depression (“initialDate”) in patients can 

be quite explained by global metrics on DMN, specially by its posterior area, and PFL at 56.7%. The 

Linear Model R R² Adjusted R² S.E (e) ndf - ddf F P Variables B S.E Beta t P VIF Tolerance

HDRS ,693 ,481 ,386 1,719 4 – 22 5,093 ,005 Constant 4,183 4,431 ,944 ,3554

Gender 1,011 ,966 ,182 1,046 ,3067 1,288 ,777

Age ,009 ,033 ,048 ,283 ,7796 1,228 ,814

RSN 2-1 36,638 13,759 ,434 2,663 ,0142 1,124 ,890

RSN_S1 50,440 13,402 ,600 3,764 ,0011 1,076 ,930

Linear Model R R² Adjusted R² S.E (e) ndf - ddf F P Variables B S.E Beta t P VIF Tolerance

InitialDate ,752 ,566 ,487 7,506 4 – 22 7,174 ,001 Constant 153,118 39,665 3,860 ,0008

Gender -8,192 4,008 -,309 -2,044 ,0531 ,861 1,162

RSN 2-1 24,177 7,595 ,456 3,183 ,0043 ,962 1,040

RSN_S1 -201,080 89,374 -,327 -2,250 ,0348 ,936 1,068

RSN_S2 -9,171 3,581 -,379 -2,561 ,0178 ,900 1,111

Linear Model R R² Adjusted R² S.E (e) ndf - ddf F P Variables B S.E Beta t P VIF Tolerance

LengthEpi ,680 ,462 ,364 244,999 4 – 22 4,722 ,007 Constant 1695,124 393,049 4,313 ,0003

Gender -264,368 133,618 -,341 -1,979 ,0605 ,825 1,212

Age 4,070 4,843 ,152 ,841 ,4097 ,747 1,338

RSN 1-1 -609,512 294,900 -,348 -2,067 ,0507 ,863 1,159

RSN_S4 -3554,301 1160,101 -,488 -3,064 ,0057 ,965 1,036

Linear Model R R² Adjusted R² S.E (e) ndf - ddf F P Variables B S.E Beta t P VIF Tolerance

TotalEpi ,776 ,602 ,530 1,365 4 – 22 8,324 ,000 Constant -27,003 7,077 -3,815 ,0009

Gender 2,576 ,764 ,512 3,373 ,0027 ,784 1,276

Age ,093 ,026 ,537 3,645 ,0014 ,832 1,201

RSN_S4 2,011 ,569 ,508 3,534 ,0019 ,874 1,144

RSN 2-1 -3,897 1,398 -,387 -2,787 ,0107 ,938 1,066

Global Efficiency 

posterior-DMN 

(Weighted IDP)

Local Efficiency 

PFL            

(Weighted pos-FC)

Local Efficiency 

Posterior-DMN 

(Binarized pos-FC)

Global Efficiency 

PFL              

(Weighted IDP)

Global Efficiency 

DMN              

(Binarized pos-FC)

Global Efficiency 

PF-DN          

(Binarized pos-FC)

Local Efficiency 

Right-FP 

(Weighted pos-FC)

Average Degree 

Right-FP    

(Binarized pos-FC)

Local Efficiency 

Posterior-DMN 

(Binarized pos-FC)
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descriptor of the posterior-DMN component seems to be the most relevant in this model (Beta=0.456). 

Besides, parameters of this model do not seem to be collineality (tolerance > 0.1 and VIF < 10; partial 

correlation controled by gender among these globals metrics: pcorr(DMN-posteriror_DMN)=0.188 

p=0.37; pcorr(DMN-FPL)=-0.135 p=0.52; pcorr(PFL-posterior_DMN)=0.022 p=0.916) and all global 

metrics values are statistically significative in the model p<0.05. The gender may have some influence in 

the model. As well, the results show that length of current episode (“LengthEpi”) of patients can be 

moderately predicted by global metrics on DN area and right-FP at 46.2%. The right FP network might be 

the most relevant in this model (Beta=-0.488, negative contribution in this model). Besides the parameters 

of the model do not show collineality (tolerance > 0.1 and VIF < 10; partial correlation controled by 

gender and age between both network metrics pcorr=0.086 p=0.68) and all global metrics values are 

statistically significative in the model. The age does not seem to have much influence in the model but the 

gender seems that might have some weight in the prediction of this variable (Beta=-0.34, p=0.06). 

Finally, the results show that total number of episodes (“TotalEpi”) can be quite explained by network 

descriptors of posterior-DMN and specially right-FP (Beta=0.5) with a fits R²=0.6. In this case all 

variables, including gender and age, are statistically significatives in the model, and even the gender and 

age would be contributing significantly to explain the variability. Besides the parameters of the model do 

not show collineality (tolerance > 0.1 and VIF < 10) and the partial correlation controled by gender and 

age between both network metrics pcorr=0.085 p=0.69). The representation of this model are shown in 

the figure 5.  
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Abstract  

 

 Hosting nearly eighty percent of all human neurons, the cerebellum is functionally 

connected to large regions of the brain. Accumulating evidences suggest that some 

cerebellar resting-state alterations may constitute a key candidate mechanism for 

psychopathology, particularly with regards to depression liability. While there is some 

evidence linking cerebellar function and depression, two topics remain largely unexplored. 

First, the potential genetic or environmental roots of this putative association have not been 

elicited. Secondly, different mathematical representations of resting-state fMRI patterns can 

embed diverse information of relevance for health and disease, though many of these 

representations have not been studied in detail regarding the cerebellum and depression.  

 Here, high-resolution fMRI scans were examined to estimate functional 

connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins 

(24 pairs) informative for depression liability (8 discordant, 6 concordant and 10 healthy 

pairs). A network-based statistic approach was employed to analyze cerebellar functional 

networks built using three methods: the conventional approach of filtered BOLD fMRI 

time-series, and two analytic components of this oscillatory activity (amplitude envelope 

and instantaneous phase).  

 Results using fMRI wave amplitude envelopes indicate that the environmental 

liability for depression is associated with altered resting-state activity across a network 

involving eight cerebellar subdivisions, including portions of the vermis and the crus.  

The findings indicate that some environmental factors may lead to depression through 

alterations of the neural oscillatory activity of the cerebellum during the resting-state. These 

effects may be observed particularly when exploring the amplitude envelope of fMRI 

oscillations.  
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1. Introduction  

 

 Although the cerebellum embodies only 10% of total brain mass, it hosts almost 70 

billion neurons, nearly 80% of all neural cells in the human brain (Azevedo, et al., 2009). 

Through resting-state oscillatory activity, the cerebellum is functionally connected to large 

regions of the cerebral cortex, including not only the motor areas but also the prefrontal and 

parietal cortices (O'Reilly, et al., 2010). These observations may partly explain the 

biological relevance of cerebellar resting-state activity disruptions observed across several 

psychiatric disorders (Anticevic, et al., 2014; Bernard, et al., 2014; E, et al., 2014; Kucyi, et 

al., 2015; Van Overwalle, et al., 2015). Notably, recent research findings have consistently 

suggested cerebellar resting-state connectivity changes in depression, making it one of the 

best candidate mechanisms to elicit the neural alterations of the depressed brain (Dutta, et 

al., 2014; Guo, et al., 2013a; Guo, et al., 2013b; Guo, et al., 2012; Kaiser, et al., 2015).  

Both cerebellar resting-state connectivity and depression liability, when considered 

independently, are caused by the confluence of many genetic and environmental factors 

(Fu, et al., 2015; Glahn, et al., 2010; Sullivan, et al., 2000). Although disengaging genes 

and environment has a prominent value in psychiatric research (Caspi and Moffitt, 2006), 

whether the association between cerebellar functionality and depression can be explained 

by genetic or non-genetic factors remains largely unexplored. Genetically-informative 

studies need to be implemented to elicit this topic for two main reasons. First, it has been 

proposed that some alternative phenotypes (i.e., endophenotypes) would have a tougher 

connection with the genetic basis of psychopathology than phenomenologically-derived 

clinical diagnoses (Glahn, et al., 2014; Gottesman and Gould, 2003). This should be 

highlighted here since a novel study has found that some resting-state networks including 

cerebellar regions are likely to serve as endophenotypes in brain research (Fu, et al., 2015). 

 Thus, it is feasible hypothesizing that some genetic factors determining cerebellar 

resting-state activity may also modify depression risk. Secondly, the link between the 

cerebellum and depression may perhaps be due to non-genetic (i.e., environmental) factors. 

One could thus postulate that some environmental factors alter the cerebellar functionality 

and then lead to depressive psychopathology. This would have significant implications as 

there are several well-identified environmental risk factors for depression –such as adverse 
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infancy experiences and stressful adult life events (Kendler, et al., 2003; Moffitt, et al., 

2007)– whose underlying neurobiology has been only partly explained. Discerning 

environmental mechanisms triggering specific neurobiological correlates of depression 

would have many epidemiological and public health implications (Duncan and Keller, 

2011; Freeman and Stansfeld, 2008; Lundberg, 1998).  

The mentioned alterations in cerebellar resting-state connectivity observed in 

depressive psychopathology suggest a number of (potential) functional disruptions. 

Importantly, although using diverse neuroimaging techniques to assess resting-state 

patterns, several authors have agreed that there are many differences in cerebellar function 

between depressed and healthy individuals (Dutta, et al., 2014). These different imaging 

analysis methods allow evaluating putative functional alterations from several viewpoints. 

While each of them might have its own potential relevance in the clinical settings (Lee, et 

al., 2013), one of the most promising approaches to study resting-state neural activity in 

vivo is the examination of spatio-temporal synchrony patterns between regions using 

network theory (Richiardi, et al., 2011; Smith, et al., 2013; van den Heuvel and Hulshoff 

Pol, 2010). In terms of large-scale neuronal networks, the brain disturbances reported in the 

literature of depression would indicate modifications of the information processing 

performance through the cerebellum.  

Typically, the study of resting-state functional brain networks is based upon the 

extraction of low-frequency periodic time series from a set of pre-defined anatomical 

regions. Robust first-order correlations in temporal activation patterns of two anatomically-

segregated regions (nodes) are considered a functional connection (edge) (De Vico Fallani, 

et al., 2014; van den Heuvel and Hulshoff Pol, 2010). Highly synchronized (correlated) 

wave amplitudes of two brain regions during resting-state are thus interpreted as a strong 

edge linking those two regions. Although this method has certainly led to remarkable 

clinical and neurobiological findings (Lee, et al., 2013), recent findings have highlighted 

that neural synchronization patterns observed through neuroimaging can occur at different 

levels, and that each of these levels may have different behavioral significance 

(Guggisberg, et al., 2014). For instance, Guggisberg, et al. (2014) have recently described 

three types of synchronization that may have large implications for behavior analysis. 

Namely, along with the aforesaid amplitude correlation mechanism –probably the most 
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used–, neural coupling can also take place as amplitude envelope correlation or as 

oscillation phase synchronization.  

These three different types of synchronization have mostly been used in magneto- 

and electroencephalography. Their potential relevance to analyze resting-state fMRI brain 

scans has been specially highlighted during recent years, since i) they allow increasing 

temporal resolution of hemodynamic (fMRI) signals (Glerean, et al., 2012), ii) they may 

explain an important extent of the relationship between brain structure and function (Ponce-

Alvarez, et al., 2015) and iii) they could partly explain brain deficits in psychopathology 

(Cordova-Palomera, et al., 2015). In biological terms, these observations on 

synchronization phenomena observed in fMRI signals would parallel the compelling 

evidence showing that higher-order brain function may be closely related to neural 

communication established from coherent oscillatory activity of brain regions at specific 

frequencies (Fries, 2005; Fries, 2009). Namely, distinct components of neuronal activity 

waves can encode and transmit information efficiently, although these components may not 

be directly deduced by examining raw fMRI time series.  

Considering these elements, the present study was aimed at examining the putative 

association between cerebellar resting-state fMRI alterations and both the genetic and the 

environmental factors leading to depressive psychopathology. High resolution fMRI brain 

scans were used to extract cerebellar resting-state time series from a group of 48 

monozygotic (MZ) twins (24 pairs) informative for depression. As co-twins of a MZ pair 

have almost identical DNA sequences, their phenotypic similarities and differences were 

investigated to gain insights on putative familial and environmental influences. An 

anatomically-restricted 26-node network comprising different subdivisions of the 

cerebellum (including the vermis) was examined. Functional connections (edges) between 

regions were defined using three complementary conceptions of neural synchrony 

(Guggisberg, et al., 2014): i) amplitude correlation –the conventional method–, ii) 

amplitude envelope correlation and iii) phase synchrony.  
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2. Methods  

 

2.1. Sample description 

 

 The participants of this study were selected from a larger group of 115 Spanish 

Caucasian adult twin pairs (230 individuals) from the general population, who gave their 

consent to be contacted for research purposes. All the subjects were contacted by telephone 

and invited to participate in a general study of adult cognition and psychopathology. 

Trained psychologists administered a battery of neurocognitive and psychological tests to 

the twins. Also, they were interviewed for medical records. Exclusion criteria applied were 

a medical history of neurological disturbance, presence of sensory or motor alterations, 

current substance misuse or dependence and age under 18 and over 65 years. After a 

detailed description of the study aims and design, all participants signed a written informed 

consent form approved by the local Ethics Committee. All procedures were conducted in 

accordance with the Declaration of Helsinki.  

Zygosity of all pairs was evaluated by genotyping 16 highly polymorphic 

microsatellite loci from DNA samples (SSRs; PowerPlex® 16 System Promega 

Corporation). Identity on all the markers can be used to assign monozygosity with greater 

than 99% accuracy (Guilherme, et al., 2009). In the whole sample (115 duos), 86 twin pairs 

were MZ.  

From the former collection of participants, using the previously obtained data, a 

subset of 54 individuals (27 MZ twin pairs) was selected, as they were informative for 

psychopathological traits and agreed to participate in the MRI part of the present study. 

These 54 participants met the following criteria: i) age at scan between 20 and 56 years, ii) 

both twins right-handed, and iii) none of the twins manifested liability for DSM-IV-R 

psychiatric diagnoses other than depression and/or anxiety. No participant had a history of 

major medical illnesses.  

Next, due to image artifacts or lack of data about six participants, the final sample 

(i.e., the subset included in all statistical analyses) consisted of 48 individuals (20 males, 

mean age: 33.6 years).  
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2.2. Psychometric measures 

 

 The liability for psychopathology in this general population sample was evaluated 

by a clinical psychologist in a face-to-face interview. Briefly, the Structural Clinical 

Interview for DSM-IV Axis I Disorders (SCID-I) (First, 1997) was applied in a face-to-face 

interview to screen for the presence of any lifetime depression or related anxiety spectrum 

disorder. In this sample, six individuals with a history of (mainly) anxious psychopathology 

were included in the psychopathology-affected group. This apparently wide category of 

outcomes was used in recognition of the evidence on comorbidity, shared etiopathology and 

diagnostic criteria overlap between depressive and anxious disorders (Mosing, et al., 2009; 

Ressler and Mayberg, 2007; Wittchen, et al., 2002; Zbozinek, et al., 2012), as well as 

considering findings of some similar resting-state alterations across both diagnoses (Oathes, 

et al., 2015; Pannekoek, et al., 2015). Of note, repeating the statistical analyses removing 

predominantly anxious individuals did not alter the significance of the results.  

The participants were also asked to report if they had received psychological or 

pharmacological treatment or had consulted a mental health professional since they first 

participated in the study. Only one individual had life-time exposure to 

psychopharmacological treatment for depression. However, excluding this individual from 

the group analyses did not change the significance of the results.  

In the whole sample, there were ten healthy, six concordant and eight discordant 

pairs for lifetime DSM-IV diagnoses. Furthermore, current depression status and other 

psychiatric symptoms were evaluated using the Brief Symptom Inventory (BSI) (Derogatis 

and Melisaratos, 1983; Ruiperez, et al., 2001). The BSI is a self-administered 46-item 

screening instrument designed to identify the experience of psychopathological symptoms 

during the last 30 days. It includes six subscales (depression, phobic anxiety, paranoid 

ideation, obsession-compulsion, somatization and hostility) and is designed to be used in 

both clinical and non-clinical samples. Items are rated on a five-point scale of distress, 

according to self-perception of symptom severity. Table I shows a descriptive summary of 

the data from the current sample. As displayed, twins with no lifetime history of DSM-IV 

diagnosis had fewer self-reported symptoms –lower BSI scores– in both the depressive 

subscale and the whole questionnaire. Moreover, neurocognitive information for this 
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sample was collected by means of the Wechsler Adult Intelligence Scale (Sattler, 2001; 

Wechsler, et al., 1997). The intelligence quotient (IQ) of each participant was estimated 

from five subtests of this battery (block design, digit span, matrix reasoning, information 

and vocabulary). As shown in Table I, the distribution of IQ scores was similar to those 

reported in demographically analogous samples (Lynn and Meisenberg, 2010). No intra-

group differences were found in the IQ scores, likely indicating that neurocognitive effects 

on resting-state brain signals (Douw, et al., 2011; Wang, et al., 2011) do not influence the 

subsequent statistical analyses of this study.  

 

2.3. MRI acquisition and pre-processing 

 

 The brain scans were acquired at the MRI Unit of the Image Platform (IDIBAPS, 

Hospital Clínic de Barcelona), using a TIM TRIO 3T scanner with an 8-channel head coil 

(Siemens, Erlangen, Germany). The resting-state fMRI images comprised 210 echo-planar 

(EPI) blood-oxygen-level dependent (BOLD) sensitive volumes (TR = 2790 ms, TE = 30 

ms, 45 axial slices parallel to anterior-posterior commissure plane acquired in interleaved 

order, 3.0 mm slice thickness and no gap, FOV = 2075 × 1344 mm
2
, voxel size = 2,67 x 

2,67 x 3 mm
3
). Moreover, high-resolution 3D structural datasets were acquired for 

anatomical reference, using a T1-weighted magnetization prepared rapid gradient echo, 

with the next parameters: 3D T1-weighted MPRAGE sequence, TR = 2300 ms, TE = 3.03 

ms, TI = 900 ms, Flip Angle = 9°, 192 slices in the sagittal plane, matrix size=256×256, 1 

mm
3
 isometric voxel.  

Resting-sate time series were obtained using standard image processing protocols 

implemented in the Statistical Parametric Mapping software, version 8 (SPM8) (Friston, et 

al., 1995), running under MATLAB (The Mathworks, Natick, MA). After correction of 

slice-timing differences and head-motion, the fMRI images were co-registered to the 3D 

(T1) anatomical reference and to the mean functional image. Then, the images were 

spatially normalized to the standard stereotaxic space MNI (Evans, et al., 1993). Artifacts 

related to blood pulsation, head movement and instrumental spikes were removed from the 

BOLD time series in MNI space, using independent component analysis as implemented in 

GIFT (Calhoun, et al., 2009; Sui, et al., 2009). No global signal regression or spatial 
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smoothing was applied. Mean BOLD time series were extracted from the 116 regions of 

interest (ROIs) in the standard Automatic Anatomical Labeling (AAL) atlas, which 

comprises 90 cerebral and 26 cerebellar regions (Tzourio-Mazoyer, et al., 2002). The atlas 

had previously been masked with the binarized subjective tissue probability maps to detach 

the mean value of the regions from the gray matter via a conventional protocol (Power, et 

al., 2014; Villain, et al., 2010). The following mask was used: [Atlas * (GM>WM) * 

(GM>CSF) * (GM>0.1)], where GM stands for gray matter, WM is the white matter and 

CSF stands for cerebrospinal fluid. Next, the BOLD time series for each region were band-

pass filtered within the resting-state fMRI narrowband going from 0.04 to 0.07 Hz (Achard, 

et al., 2006; Glerean, et al., 2012). A schematic representation of these steps is shown in 

sections A-D of Figure I.  

 

2.4. Extraction of functional connectivity networks for each individual 

 

 Three different approaches were used here to estimate functional connectivity from 

the band-passed time series described above. First, a conventional approach to examine 

correlations between fMRI BOLD time series was used (Smith, et al., 2013), with twenty-

six x (t)  series per individual (one for each cerebellar AAL ROI). A partial correlation 

matrix was obtained for the 26 ROIs from the 210 slices scanned over time. Each partial 

correlation coefficient from this matrix represents the magnitude of the association between 

every pair of ROIs, controlling for the effect of the other variables (i.e., the remaining 

ROIs). This step produced a 26 × 26 matrix representing the functional connectivity 

between each pair of brain ROIs, which was then normalized using Fischer’s z transform 

(Fox, et al., 2005; Jenkins and Watts, 1968). Subsequently, following a previous technical 

report (Schwarz and McGonigle, 2011), a soft threshold procedure was implemented to 

remove negative edges, since their particular network topology can drastically alter the 

properties of brain fMRI connectivity networks. The sequence of sections D, G and J in 

Figure I schematize this procedure, applied to data from a healthy participant.  

Other two functional connectivity brain networks were retrieved for each 

participant. In order to get them, the analytic components of the resting-state BOLD signals 

from the 26 ROIs were computed following previously published protocols (Glerean, et al., 
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2012; Guggisberg, et al., 2014). Briefly, the analytic representation of each real valued 

band-passed (0.04 - 0.07 Hz) BOLD time series was computed by further processing their 

band-passed time series, using the Hilbert transform. Explicitly, let x (t)  be the band-

passed BOLD time series of a particular ROI. Its analytical representation is the complex 

function  

xa(t )= x (t)+i H [x(t)] ,  

where i  stands for 
2√− 1 , and H [· ]  is the Hilbert transform. The new signal xa(t )  has the 

same Fourier transform as x(t ) , although it is defined only for positive frequencies. 

Similarly, let x(t )  be expressed as an amplitude-modulated signal a(t ) with carrier 

frequency ϕ (t) , so that x(t )= a(t )cos⁡[ϕ (t )] . Then, its Hilbert transform gives  

xa(t )= a (t)e iϕ (t )

,  

where |a (t )| represents the instantaneous envelope and ϕ (t)  stands for the instantaneous 

phase. In the present study, both |a (t )| and ϕ (t)  are later used to estimate two new 26 × 

26 partial correlation matrices as described above, which are later z-transformed and soft-

thresholded. Sections E, F, H, I, K and L in Figure I represent this procedure applied to data 

from one participant.  

 

2.5 Inter-subject analysis of the functional connectivity networks 

 

 A network-based statistic (NBS) approach (Zalesky, et al., 2010) was implemented 

to examine potentially altered connections (edges) between every pair of ROIs (nodes). 

Briefly, NBS performs a statistical examination of potentially altered network edges that 

may differ across groups or conditions. It controls the family-wise error rate when 

statistical tests are conducted at single edges comprising a whole graph, on the basis of 

conventional cluster-based thresholding of statistical parametric maps (Zalesky, et al., 

2010). Since edge weights in the connectivity matrices studied here represent oscillatory 

coupling events between pairs of ROIs, the edge-based strategy of NBS allowed assessing 

potential coupling alterations across combinations of cerebellar regions. These oscillatory 

patterns were examined through independent analyses, implemented for each of the three 

partial correlation matrices: amplitude, amplitude envelope and instantaneous phase 
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(corresponding to x (t) , |a (t )| and ϕ (t) ).  

The design matrices used for NBS were based upon previous literature on 

regression models of clustered data (Begg and Parides, 2003), which can be applied to 

separate familial and environmental components of phenotype associations in twin studies 

(Carlin, et al., 2005). More explicitly, the regression model  

Y ij= β0+βB μi .+βW (X ij− μi .)  

was implemented. Subindex i∈ {1,…,n} stands for pair number (here, n = 24 MZ pairs) 

and j∈ {1,2}  refers to co-twin number (randomly assigned). The diagnostic status was 

coded as the numeric value 0 (healthy) or 1 (depressed) for each individual. An individual’s 

diagnostic is thus represented as X ij∈ {0,1}  in the equation, and a pair’s familial liability 

for depression is expressed as μi .= (X i 1+ X i 2)/2 . The binary codification of the diagnostic 

status thus allows the familial liability (genes plus shared environment) to take only three 

values μi .∈ {0,0.5,1} , corresponding to no familial liability (healthy pairs, μi .= 0 ), 

moderate familial load (discordant pairs, μi .= 0.5 ) or high familial predisposition 

(concordant pairs, μi .= 1 ). This value is then used to estimate a regression coefficient for 

the familial factors ( βB ). Furthermore, the value X ij− μi .  is computed to represent the 

unique environmental influences from non-shared events within a twin pair ( βW ). This 

arithmetic difference may only take three different values: X ij− μi .= 1− 1= 0 , for 

concordant pairs, X ij− μi .= 0− 0= 0  for healthy pairs, and X ij− μi .= 1− 0.5= 0.5  for 

affected co-twins from a discordant pair and X ij− μi .= 0− 0.5= − 0.5  for healthy co-twins 

from a discordant pair. Namely, both concordant and healthy pairs are assumed to have no 

environment-specific differences in depression liability, whereas affected (healthy) 

discordant co-twins are considered to have high (low) environmentally-induced risk. Lastly, 

Y ij  represents the edge weight of each connection between the 26 different nodes in the 

cerebellum. Thus, the equation is solved for all edges separately, although the method 

implemented by NBS already exploits the fact that the connections with an effect of interest 

may usually be interconnected (Zalesky, et al., 2010). Moreover, to control for potential 

confounding demographics (Table I), all analyses were adjusted for gender and age.  

Complementarily, a confirmatory analysis was conducted using R’s software 
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packages rms and mztwinreg (Córdova-Palomera, 2015; Harrel, 2013; R Development Core 

Team, 2011). Namely, the cerebellar subgraph comprising the altered edges from the above 

procedure was retrieved, and total edge weight –a global measure of oscillatory 

synchronization of the potentially-altered connections– was computed. This value ( Y ij ) 

was used as outcome in the equation mentioned above. It was then solved via ordinary least 

squares, and the Huber-White method was implemented to adjust the variance-covariance 

matrix of these regression fits, in order to account for the non-independence of twin data 

(i.e., heteroskedasticity).  
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3. Results  

 

 As stated above, recent evidences suggest that the resting-state connectivity of the 

cerebellum may be influenced by the environment, which would be indexed as MZ twin 

dissimilarities (Fu, et al., 2015). Since the following analyses were mainly edge-based –to 

examine resting-state coupling between pairs of regions–, a first preliminary step consisted 

in the analysis of intrapair correlations in global connectivity metrics describing the links 

between cerebellar subdivisions. As shown in Table II, there were large intrapair differences 

within the MZ pairs across these measures. The table indicates that the largest intrapair 

correlation coefficient for the different network metrics considered was 0.38, suggesting 

that most of the variance in this population should be attributed to unique environmental 

influences. Importantly, none of these correlation coefficients was statistically significant. 

Namely, co-twins from every MZ pair have largely different cerebellar synchronization 

patterns. This prominent role of the environment in modulating cerebellar synchronization 

provides further support to the ensuing analyses separating the variance into genetic and 

non-genetic factors.  

Next, NBS analyses were conducted to examine putative resting-state 

synchronization disruptions in the depressed cerebellum, dividing the depression liability 

into familial and unique environmental, and using three different time series analysis 

methods. When applying either the conventional approach or the instantaneous phase 

coupling methods, NBS analysis revealed no association between cerebellar resting-state 

activity and depression liability. In contrast, there were statistically significant results for 

the cerebellar resting-state network built from amplitude envelope correlations between the 

twenty-six regions of interest (Figure 2). As noticed in Figure 2-B, there was a seven-edge 

network that showed statistically significant differences in resting-state activation 

depending on the environmental liability for depression (NBS p-value for βW  of the sub-

network: 0.002; F = 10.36). As discussed above, the statistical significance of all the p-

values retrieved from the NBS software tool is already controlling for the family-wise error 

rate (section 2.5). Although three different NBS analyses were implemented (conventional 

approach, amplitude envelope and instantaneous phase), the significance of the previous 

finding (p = 0.002) would survive even an additional –and perhaps overly conservative– 
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multiple testing adjustment stage (i.e., padjusted = 0.002 × 3 independent tests = 0.006).  

Further exploratory analysis revealed that these network edges formed stronger 

connections between nodes in the individuals with high environmental load for depression 

(i.e., affected co-twins from discordant pairs) than in the rest of the study population 

(Figure 2-C). This would indicate that an increased environmental liability for 

psychopathology would be related to hyper-synchronized activity across a set of cerebellar 

ROIs, including portions of the left and right crura, parts of the vermis and other 

subdivisions of both cerebellar hemispheres.  

Since the NBS approach does not provide a direct adjust for heteroscedasticity, and 

in order to obtain further insights on the results for this set of edges, a confirmatory 

procedure was conducted. Namely, a linear regression model (section 2.5) was 

implemented to analyze the seven cerebellar edges shown altered by NBS. This new step 

provided evidence suggesting that the previous finding is statistically robust even after 

adjusting for the correlated nature of twin data (familial factors: βB  = 0.11, standard error 

= 0.17, t = 0.62, p = 0.541; unique environment: βW  = 1.34, standard error = 0.29, t = 

4.71, p < 0.0001; adjusted R
2
 for the whole model: 0.45). The results of this step are 

depicted in the barplot of Figure 2-D, which shows that, after adjusting for gender and age, 

the affected co-twins from discordant pairs have more than twice the total network edge 

weight than the rest of the participants.  
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4. Discussion  

 

 In this study, a genetically-informative design was implemented to evaluate the 

putative relationship between depression liability and different cerebellar resting-state 

synchronization patterns, as measured by fMRI. Three different coupling types (amplitude, 

amplitude envelope and instantaneous phase correlation) among the distinct anatomical 

subdivisions of the cerebellum were analyzed in relation to both familial and unique 

environmental factors underlying depression liability. Overall, there were large differences 

in cerebellar synchronization –at all three levels– within MZ twin pairs, likely indicating a 

major environmental modulation. When considering the amplitude envelope of the resting-

state fMRI activity patterns, the temporal correlations between paired cerebellar ROIs 

showed an association with the environmental factors leading to depression. In contrast, 

depression risk –either familial or environmental– was not related to the cerebellar coupling 

patterns of either the amplitude or the instantaneous phase.  

The results suggest that some analytic properties of the resting-state fMRI BOLD 

signal may be associated with differential exposure to environmental factors leading to 

depression. Although association does not necessarily imply causation (Huang, 2014), this 

finding somehow indicates that the environment may increase depression risk through 

alterations of the temporal coupling between different cerebellar regions.  

Specifically, when analyzing the amplitude envelope of the resting-state fMRI 

patterns, individuals with high environmental risk load for depression showed a set of 

overly synchronized cerebellar regions. This hyper-synchronization pattern is analogous to 

other neural coupling impairments observed across different neuropsychiatric pathologies. 

For example, the complexity of the neural oscillatory activity is decreased in schizophrenia, 

as indexed by high synchrony between different cerebral regions (Andreou, et al., 2014; 

Billeci, et al., 2013; Sokunbi, et al., 2013). Perhaps the boundary expression of neural 

hyper-synchronization leading to a functional impairment is observed in the epileptic brain 

(Stamoulis, et al., 2010; Zhang, et al., 2014). Physically, the redundancy in information 

through different sources (i.e., ROIs having very similar oscillatory patterns) is linked to a 

reduction in communicational complexity (Shannon, 1997).  

 



Cerebellar rsfMRI, environment and depression  
Corresponding author: Prof. Dr. Lourdes Fañanás  

 

Página 198 de 257 

 

To the best of our knowledge, this is the first genetically-informative study of 

cerebellar resting-state functional networks in depression examining not only the network 

formed by BOLD wave amplitudes, but also those derived from their analytic components. 

Although functional connectivity has largely been studied in the literature using amplitude 

correlation to define brain networks, the investigation of the analytic components (i.e., 

amplitude envelope or instantaneous phase) of BOLD oscillatory patterns is relatively new 

in psychiatric research (Cordova-Palomera, et al., 2015; Glerean, et al., 2012). Remarkably, 

previous reports with different resting-state fMRI analysis techniques have similarly 

highlighted a role for the cerebellum in depressive psychopathology (Dutta, et al., 2014; 

Guo, et al., 2013a; Guo, et al., 2013b; Guo, et al., 2012; Kaiser, et al., 2015).  

The fact that the observed association is mainly driven by the environment should 

be emphasized, particularly since there is evidence of important environmentally-induced 

physiological changes in the cerebellum (Foti, et al., 2011; Greenough, et al., 1986; Morel, 

et al., 2002; Vazquez-Sanroman, et al., 2013). These non-genetic factors may explain part 

of the relatively high influence of the environment on depression liability (i.e., an 

heritability estimate around 40%) (Sullivan, et al., 2000). Although the evidences on the 

environment and the cerebellum come mainly from animal research developed in 

laboratory settings, extensive epidemiological literature on depression has demonstrated a 

significant role for specific environmental factors leading to depression in humans. 

Interestingly, environmental factors typically associated with adult depression, such as early 

stressful experiences, have recently been suggested in a literature review as potential 

modifiers of the cerebellar functionality (Blanco, et al., 2015).  

Overall, these results indicate that the non-genetic factors leading to depression alter 

the cerebellar synchronization. They also point out that different resting-state cerebral 

phenotypes –extracted using different time-series analysis techniques– may or not be linked 

to particular behaviors. When examining the neurobiological correlates linking an 

environmental exposure with depression, it might be appropriate using the amplitude 

envelop of low-frequency resting-state fMRI BOLD oscillations to build biological 

networks from the cerebellum.  
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Additional considerations  

 

 The previous results suggest that the environment leading to depression modifies the 

cerebellar network. Similarly, according to these analyses, the familial influences on 

depression risk may not be related to cerebellar oscillatory coupling. Recent findings 

indicate that MZ co-twin resemblance –here denoted by the familial factors– is mostly due 

to genetic variation (Polderman, et al., 2015). Hence, the outcomes from this study may 

suggest a lack of association between the genetic load for depression and the cerebellar 

synchrony. Data on brain networks from resting-state fMRI suggest a genetic regulation of 

some functional connections between the cerebellum –as a single anatomical unit– and 

other brain regions (Glahn, et al., 2010). The present results cannot be directly compared 

with this evidence due to differences in parcellation schemes and time-series analysis 

techniques. Despite this, the studies may be complementary, since the results shown here 

only indicate that the phenotypic variance observed in depression due to the genes does not 

seem related to the genetic variance responsible of cerebellar resting-state activity.  

It is also important noticing that a large extent of the brain network literature is 

based upon widespread anatomical parcellation schemes excluding the cerebellum 

(Desikan, et al., 2006; Tzourio-Mazoyer, et al., 2002), and high-resolution fMRI scans are 

needed in order to map all its subdivisions correctly. Thus, many literature reports do not 

evaluate cerebellar regions when studying resting-state fMRI. Having included 26 

cerebellar ROIs as the very focus of this study may have improved the specificity of the 

findings.  

Lastly, some limitations of this study should be mentioned. First, the sample size 

was relatively small. However, having found statistically sound associations may suggest 

the existence of relatively robust effects. Also, the parcellation scheme used to derive the 

brain connectivity matrices was built upon the 26 cerebellar ROIs from the AAL atlas. 

Consequently, these results are not directly comparable with independent studies using 

other parcellation schemes. Although it is an important point, this issue is not specific of the 

current report. The choice of parcellation schemes is a key subject with enormous 

consequences for brain connectomics (de Reus and van den Heuvel, 2013). Future studies 

may combine finer-grained parcellations with higher-resolution neuroimaging scans.  
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Figure legends  

 

Figure I. Schematic representation of the construction of three functional networks for one 

cerebellum.  

 

A: The 210 resting-state fMRI volumes (slices) are co-registered to the anatomical T1 3D reference volume, 

and each voxel is mapped to one of the 116 ROIs in the AAL atlas (including the cerebellum). B: The 

anatomical atlas allows segmenting the brain into 90 cerebral and 26 cerebellar ROIs, and after artefact 

removal, a time series of the mean (BOLD) activation probability for each of the 116 ROIs is obtained. C: For 

each ROI, a raw time series is retrieved using the 210 fMRI slices acquired through 9:56 minutes of scan. D: 

A band-pass filter is applied to obtain the resting-state fMRI narrowband signal (0.04 - 0.07 Hz). E: The 

amplitude envelope of each band-passed wave is estimated for later analysis. F: Similarly, the Hilbert 

transform also allows calculating the instantaneous phase of the waves. G, H, I: Three partial correlation 

matrices are obtained from the previous time-series (band-passed and Hilbert-transformed amplitude envelope 

and phase); they are z-transformed to normalize correlation values across individuals. Warm (cold) colours in 

these matrices represent large (small) correlation values between ROIs. The left tail of these correlation 

matrices (i.e., edges with negative z-scores) are set to 0 following a soft-thresholding procedure. J, K, L: 

Graph-theoretical measures of edge weight are obtained for each pair of cerebellar regions, to be analyzed 

using NBS.  

 

Figure II. Environmental factors associated with depression risk are linked to cerebellar 

synchronization disruptions.  

 

A: The amplitude envelope obtained from the Hilbert-transformed resting-state signal allowed identifying a 

functional network in the cerebellum potentially altered due to environmental liability for depression. B: A 

cerebellar synchronization sub-network comprising seven edges, built from oscillatory amplitude envelopes, 

was shown altered by the NBS approach. C: There are marked network edge differences across individuals 

depending on environmental risk liability for depression. The leftmost plot corresponds to low environmental 

risk –averaged from five healthy co-twins from discordant pairs–, the plot in the middle depicts subjects with 

average environmental risk –average of five brains from randomly chosen concordant and healthy pairs–, and 

the rightmost plot shows participants with high environmental liability –five affected co-twins from 

discordant pairs–. D: The barplot shows the mean and standard deviations of the total edge weights of the 

seven-edge network across the different environmental depression liabilities (red: low environmental risk; 

green: regular environmental risk; blue: high environmental risk). The values in the bars were retrieved by 

residualizing regression procedures from all 48 individuals, adjusting by age, gender and familial depression 

liability. 
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Table I. Demographic, psychopathological and neurocognitive data for DSM-IV 

diagnostic concordant, discordant and healthy MZ twin pairs.  

 

Notes: SD, standard deviation; IQ, intellectual quotient; BSI, Brief Symptom Inventory; 
a
, Kruskal-Wallis 

X-squared, as these variables were continuous; *, statistically significant p-value. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCORDANT 

(12 subjects, 10 

female) 

DISCORDANT 

(16 subjects, 10 

female) 

HEALTHY 

(20 subjects, 8 

female) 

Group 

comparison 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range X-squared
a
; p 

Age 42.5 (13) 22-54 37 (10.9) 20-50 30.3 (7.3) 19-39 5.9; 0.052 

IQ 105.1 (12.5) 87-127 108.1 (11.8) 87-131 110.5 (5.5) 103-118 1.9; 0.393 

Current 

psycho- 

pathology 

(total BSI) 

27.9 (16.5) 6-57 20.9 (13.3) 4-45 10.6 (9.3) 1-33 8.7; 0.013* 

Current 

depressive 

symptoms 

(BSI 

subscale) 

6.9 (6.5) 1-20 3.5 (2.7) 0-9 1.7 (1.8) 0-6 6.4; 0.04* 
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Table II. Edge-based parameters describing the twenty-six-node cerebellar networks.  

 

Three different approaches were used to build fMRI connectivity networks. First, the amplitude 

correlation method for band-passed low-frequency oscillations (a) (Smith, et al., 2013); afterward, the 

Hilbert-transformed signal allowed extracting the amplitude envelope (b) and the instantaneous phase (c) 

correlation methods (Glerean, et al., 2012; Guggisberg, et al., 2014). The results indicate edge weights 

considering both the connected network component, removing all zero entries of the matrix (d), and all 

edges accounting for the zeroed matrix entries (e). S.D., standard deviation.  

 

 INDIVIDUAL LEVEL 

Conventional 

(amplitude correlation)
a
 

Amplitude envelope 

correlation
b
 

Instantaneous phase 

correlation
c 

Mean (S.D.) Range Mean (S.D.) Range Mean (S.D.) Range 

Total edge weight 53.69 (4.51) 45.75-

64.55 

31.54 (2.18) 27.71-36.47 21.67 (2.13) 16.52-27.41 

Average edge 

weight  

(connected)
d
 

0.31 (0.03) 0.25-0.39 0.18 (0.01) 0.16-0.21 0.12 (0.01) 0.1-0.16 

Average edge 

weight  

(all cells)
e
 

0.16 (0.01) 0.13-0.19 0.09 (0.01) 0.08-0.11 0.06 (0.01) 0.05-0.08 

Maximum edge 

weight 

1.12 (0.23) 0.79-2.21 0.81 (0.51) 0.54-3.94 0.57 (0.22) 0.36-1.87 

 INTRAPAIR DIFFERENCES 

Spearman's 

Rho 

p-value Spearman's 

Rho 

p-value Spearman's 

Rho 

p-value 

Total edge weight -0.14 0.5 0.09 0.66 0.25 0.25 

Average edge 

weight  

(connected) 

-0.17 0.42 0.28 0.19 0.25 0.25 

Average edge 

weight  

(all cells) 

-0.38 0.07 0.15 0.48 -0.07 0.73 

Maximum edge 

weight 

-0.14 0.5 0.09 0.66 0.25 0.25 
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 Rs-fMRI has become a noninvasive powerful tool to discover possible 

anomalies in brain connectivity patterns in patients with mental health disorders. The 

ongoing fluctuations in resting-state condition might reflect an evolutionarily conserved 

aspect of cerebral organization (Vincent JL et al. 2007). This could be closely related to 

an underlying anatomical structural connectivity (review Gustavo Deco, Viktor K. Jirsa 

and Anthony R. Mcintosh 2011). However, rs-fMRI studies have still not been part of 

the clinical routine, mostly because of certain inconsistencies among studies about 

mental health disorders. 

 As far as MDD is concerned, different studies have presented inconsistencies in 

the whole brain functional connectivity (Berman et al. 2014; Guo et al. 2011; Li Wang 

et al. 2013) as well as in the  functional connectivity between areas of specific brain 

networks (cognitive control and affective network: Sheline et al. 2010; DMN 

discrepancies: Xueling Zhu et al. 2012; Grecius et al. 2007; Marc G. Berman et al. 

(2011), Zhou et al. (2010); Sheline et al. 2010). 

 Most of the studies on rs-fMRI data evaluate the clinical phenomenon of MDD 

from measurements based on averaged measures such as the correlation coefficient that 

exists among BOLD time series of the different brain regions. The fact that correlation 

is a global measure on the whole temporal series masks temporal aspects of FC which 

could be key to an efficient transmission of the information between brain regions. 

 In this sense, previous studies suggested that organized networks, such as the 

DMN or areas involved in memory processes, would be coordinated for temporary 

adjustments embedded in BOLD signals. That is the reason why a static approach does 

not seem to be satisfactory for a complete characterization of Resting State Networks -

RSNs-(Catherine et al. 2004; Catie Chang and Gary H. Glover 2010).  

 Chapters 1 and 2 present an evaluation of both static and dynamic features of 

time series regarding rs-fMRI data obtained from patients with MDD. These results 

demonstrate the coexistence of abnormalities in both dynamic and static aspects of the 

BOLD signal at rest in patients with major depression. This suggests two levels of 

alteration in the functional connectivity of depressed people. More specifically, it is 

suggested in chapter 1 that the global increment of synchronism observed in patients 

could be due to local modifications of the connectivity between specific regions of the 

DMN and FPN. Changes in behavioral patterns among these regions could induce 

alterations of global signals in these networks at least. The study is subsequently 
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extended in chapter 2, where the contribution of static and dynamic factors to the 

building of activity in RSNs is evaluated in relation to clinical depression activity via 

network descriptors (measures which estimate the efficiency features and structural 

characteristics of the network connectivity). 

 More specifically, the results of chapter 1 show that patients with MDD present 

an amplification of global synchronization at the level of the whole brain. Furthermore, 

the patients show an increment of overall average functional connectivity (static FC, 

sFC) among regions of the DMN, and a loss of variability in functional connectivity 

(dynamic FC, vFC) among specific regions of the FPN and DMN. 

 This suggests that these anomalies discovered in certain regions of the DMN and 

FPN could trigger in some way in this amplification in the global synchronization in 

MDD. Moreover, we discover that the average BOLD signal in parietal and OPFC 

regions fluctuates with the global average signal and shows correlation with global 

synchronization patterns. This observation seems to reveal consistency with recent 

studies where clinical implications of global signal fluctuations are demonstrated (Yang 

et al. 2014). 

 In chapter 2, the results expose structural changes in the functional connectivity 

of the DMN, specially in its posterior part, of the FPL and FPN networks. These 

alterations could trigger depressive traits such as: maladaptive, high level of rumination, 

brooding, overgeneral autobiographical or episodic memories, negative emotional 

judgment and anxiety problems. 

 More specifically, a hyperconnectivity, together with a loss of variability in 

phase-coupling (inflexibility/rigidity in the phase in the resting-state oscillations), is 

observed between the posterior (Posterior cingulate cortex, Pre/Cuneus and Angular 

regions) and the anterior part of the brain (mPFC, OPFC and ACC) , specially among 

the DMN areas. Besides, if we consider that the severity level (HDRS) and the age of 

onset of the disorder are directly correlated with the network descriptors which 

characterize these two areas, we can estimate that patients with MDD present a gradual 

disconnection between these two parts of the brain producing a gradual increment of 

rumination and brooding. In previous studies, the hyperconnectivity in DMN has been 

associated to a gradual process of hypogyrification in these areas in MDD. This 

supports the idea of vulnerability at a biological level in front of depression (N.L Nixon 

et al. 2014). If that were the case, it would indicate that patients with high severity 

levels of the disorder, or who remain in high states of depression could be more likely to 
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suffer from the disorder again. However, additional studies are necessary to confirm this 

hypothesis. 

 Moreover, these disruptions are specially intense between regions of the 

posterior part of the brain (Angular, Precuneus and PCC areas) and the hippocampal-

thalamic pathway. It suggests that this hub could provoke an abnormal inhibitory 

control of negative episodic memories (Grecius et al. 2009) and overgeneral AM (X. 

Zhu et al. 2012; Cavanna & Trimble, 2006; Hassabis, Kumaran, and Maguire, 2007) in 

depressed people. This fact also seems to show a connection with depressive rumination 

(Catherine Crane et al. 2007). 

 The strong loss of variability in phase-coupling between interhemispheric areas 

in the DN (OPFC and DLPFC) is another alteration which has been shown in this 

chapter, and which seems to be relevant a priori in the characterization of MDD and 

may explain part of the clinical heterogeneity that this disorder presents. Previous 

studies have analyzed these areas as another important hub involved in depressive traits, 

precisely in the codification of negative emotional judgment and anxiety problems 

(Sheline et al. 2010; Simone Grimm et al. 2008; Joseph L. Price and Wayne C. Drevets 

2009). 

 Finally, a decrease of the dispersion index of phase-coupling (IDP) is also 

observed among FPN areas in patients with MDD. This could produce an ineffective 

transmission of the information between the executive cortical network and 

intra/parietal regions, with the DMN (Aneta Brzezicka 2013). Besides, other studies 

suggest that this type of inflexibility in FC in MDD could be responsible for 

maladaptive control and problems in the control of cognitive faculties (Nico U. F. 

Dosenbach et al. 2007).   

 However, we observe that clinical depressive phenomenons such as the level of 

depression, length of the episode, total number of episodes and initial age of the first 

depressive episode can be partially explained by the combination of static and dynamic 

network descriptors on these components (networks, RSN) in resting-state condition. 

 In this sense, the results show that both the HDRS and the age of onset of 

depression can be partially predicted from network descriptors of the PFL and posterior 

DMN. In chapter 1, the existence of fluctuations in the OPFC and parietal regions was 

already observed, and it was correlated with the global synchronization signal. This 

suggests that the global synchronization patterns of depression could exist in 

components of the DMN and PFL. They might be caused by altered BOLD signals in 
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specific regions such as the mPFC, ACC, OPFC, Precuneus, Angular, PCC. 

Furthermore, previous studies have demonstrated the existence of a strong association 

between the HDRS and the level of rumination in patients with depression (Hoekseman 

Susan 2000). Consequently, it can also be assumed that these global patterns located in 

the posterior DMN and PFL could be reflected in some way in the severity level of the 

disorder, and thus could be used as prognostic markers for patients with MDD.  

 Moreover, patients suffering from major depression show structural changes in 

the functional connectivity of the right FPN which, together with efficiency problems in 

the functional connectivity found in the PF area on the one hand and the posterior part 

of the DMN on the other hand, seem to enable a partial explanation about the length of 

depression or the total number of depressive episodes, respectively. This suggests that 

the length of an episode in major depression could be a phenotype resulting from the 

static and dynamic anomalies found in functional connectivity between PF and FPN 

regions. Michael D. Grecius et al (2007) observed in his study a certain positive 

correlation between the length and the signal in the ACC region. However, the total 

number of depressive episodes could be explained by the alterations found in regions of 

the posterior part of DMN and FPN. All this leads us to the idea that an unbalanced 

information-processing in the FPN might trigger difficulties in breaking of depressive 

rumination (Donaldson, Lam and Mathews, 2007; Burwell and Shirk, 2007; Joormann, 

2006). In this sense, Ernst H. W. Koster et al. (review, 2010) suggested programs to 

improve attentional control as a protective effect in at-risk patients. 

 Finally, the results also indicate that the length of depression may be correlated 

with the level of anxiety of the patient or with negative emotional judgment traits where 

the serotonin transporter (SERT) would possibly be involved (Ramin V. Parsey et al. 

2006). However, the total number of depressive episodes in patients could be more 

connected with an accumulation of impairment of memory performance (Philip 

Gorwood et al. 2008). The selection of negative autobiographical memories could be 

due to problems of inability to inhibit the attention towards negative episodic past 

events (review Cristiano A. Köhler et al. 2015: C. Lemogne et al. 2006; G. G. Lloyd and 

W. A. Lishman et al. 1975). These inhibitory problems could be caused by 

hyperconnectivity between the posterior hub (PCC, Precunues, Angular cortices) and 

the Hippocampal-Thalamic pathway. 

 In previous studies, the SERT has been associated to genetic factors, increasing 

the risk of developing depression under stress (Caspi et al. in 2003). Besides, it might be 
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directly linked to a possible decrease of volume in the ACC region (Pezawas et al. 

2005). In this sense, regions such as the amygdala, ACC, insula, hippocampus, dorsal 

raphe nuclei and mPFC have shown alterations in the metabolic activity of serotonin 

(Parsey RV et al. 2006; Wayne C. Drevets et al. 2009). Likewise, previous studies have 

demonstrated that structural alterations in the ACC, PFC or amygdala found in 

depression under stress might have some relation with a fall in the metabolic activity of 

serotonin (Joseph L. Price and Wayne C. Drevets, 2009), triggering dysfunctions among 

the limbic structures (Drevets et al. 2006) and problems in emotional expression and 

anxiety. 

 This suggests that these regions- the prefrontal and limbic parts (PFL)- could be 

especially sensitive to changes in the expression level of SERT. This could happen for a 

need of endogenous metabolism, which could trigger changes in the supply of serotonin 

within a stressful environment in individuals with genetic predisposition, provoking 

dysfunctions in connectivity between these regions and other brain systems. That is why 

these areas could play a certain role in the etiology of depression. 

 However, considering depression as a multifactorial mental disorder, to explain 

the incipient psychopathological mechanisms it would be necessary to clarify the 

relation between environmental and genetic factors on these regions. In other words, the 

influence of the environment and genes over alterations in particular areas would have 

to be analyzed. 

 As we commented before, the oingoing spontaneous fluctuations found in 

resting-state might unmask an intrinsic functional architecture reflecting an 

evolutionarily conserved aspect of brain organization. In studies performed on 

macaques, these fluctuations showed characteristics similar to those found in human 

beings (Vincent JL et al. 2007). Moreover, the fluctuations present patterns that would 

form complex organizations or networks which are likely to describe underlying 

structural connectivity (review Gustavo Deco, Viktor K. Jirsa and Anthony R. Mcintosh 

2011). The basis of the working assumption we made in chapters 3 and 4 consists of 

considering that the BOLD signal with rs-fMRI techniques could embed both specific 

genetic traits and environment. It could be differentiated in order to design descriptors 

that could help to evaluate the influence of these factors in alterations in particular brain 

regions of patients with MDD. 

 More specifically in chapter 3, we explored the analytic components of the 

amygdalar resting-state activity due to its close relation with the SERT. However, in 



 

Página 221 de 257 

 

chapter 4, we focus on cerebellar regions, as they can also constitute a key mechanism 

for psypopathology, specially with regards to depression liability and anxiety 

vulnerability. It also seems to be connected to large brain regions for its homeostatic 

regulation. For this second part of the study, we used a sample of 48 twins (24 

monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 

discordant and 10 healthy control pairs). In order to extract these components from the 

rs-fMRI signal, we design descriptors that can evaluate not only the conventional signal 

but also other analytic components of this rs-fMRI activity. 

 The results concerning the amygdala show that both genes and environment 

would modify different patterns in the amygdala, and this would create problems of 

connectivity, increasing thus the risk of developing depression. Besides, we can see that 

analytic components and the amplitude envelope from band-pass time series (Hilber 

transform) elicit better the genetic relation between  amygdala connectivity and 

depression. However, the findings from the study on the cerebellum indicate that some 

environmental factors in some regions of the vermis and crus may lead to depression. It 

could be observed analyzing the amplitude envelope of rs-fMRI oscillations. Non-

genetic factors are thought to be a possible explanation of the strong influence of the 

environment on depressive liability (Sullivan et al. 2000). Furthermore, it has very 

recently been demonstrated that early stressful experiences could modify the cerebellar 

functionality (Blanco et al. 2015). 
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 The main interest in this study was to gain insight into the ongoing fluctuations 

that might be exclusive in patients with depression by means of the BOLD signal in 

resting state. Some of them might unmask underlying structural anomalies which trigger 

depressive behaviors. 

 In the first part of this study, we have focused on discovering those altered 

depressive features in patients that could be susceptible of being considered as putative 

clinical markers for prognosis by using descriptors built from the brain activity at rest.  

 Assuming that both environment and genetic factors are key in the genesis of the 

depression, we explored more precisely the amygdala for its close relation with the 

serotonin transporter (SERT or 5-HTT), and cerebellum regions for their connection to 

large areas of the brain (for their homeostatic regulation) and relation with social 

anxiety, depression liability and anxiety vulnerability, using identical twins rs-fMRI 

data. The second part of this work thus focused on assessing the influence of genes and 

environment on analytic components of the rs-fMRI activity into these areas, in relation 

to depression risk. The main contributions of this study can be summarized as follows: 

 

1. The global synchronization and temporal stability were significantly increased 

in the group of patients with MDD. 

2. Static and dynamic descriptors unmask anomalies in the Default Mode Network 

(DMN), specially in its posterior part: the PreFrontal-Limbic network (PFL) 

and FrontoParietal network (FPN) in patients with MDD. 

3. The group suffering from MDD showed a significant increase in the overall 

average functional connectivity (static FC, hyperconnectivity), however a 

decrease of variability in phase-coupling among regions (dynamic FC) within 

the DMN was observed. 

4. A general loss of variability in phase-coupling in connectivity exists among 

regions of the DMN, PFC and FP networks in the group of patients. 

5. Static network descriptors of the PFL and right FP, and dynamic network 

descriptors of posterior DMN can be used to characterize MDD. 

6. There is a possible disconnection between the anterior and posterior part of 

brain. It is specially noted in the DMN. The SFGdor, mPFC, ACC and ORB 

areas on the one hand, and the PCC, Precuneus and Angular on the other hand 

could be relevant pivote regions of the disconnection in MDD. 
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7. The alterations found in the posterior part of DMN might trigger episodic 

negative memories in patients. 

8. The severity level of depression (HDRS) is strongly associated with local 

deficiencies in the functional connectivity among regions of the PFL such as the 

Orbitofrontal Cortex (OFC), Dorsolateral Prefrontal Cortex (DLPFC) and 

Anterior Cingulate Cortex (ACC) regions, as well as with global problems of 

efficiency on dynamic aspects of the activity in the posterior DMN area. 

9. Both the length and total number of depressive episodes of patients seem to be 

related mainly with alterations in the functional connectivity between FP 

regions. 

10. Both phase-coupling problems in the BOLD signal and possible underlying 

structural alterations seem to coexist within the DMN, PFL and FPN in patients 

with MDD. These might trigger depressive traits such as: maladaptive, high 

level of rumination, brooding, overgeneral autobiographical or episodic 

memories, negative emotional judgment and anxiety problems. 

11. We hypothesize that the inflexibility in phase-coupling found in these RSNs might 

be connected somehow with the idea of a gradual process of hypogyrification, 

specially of the DMN, which might be directly proportional to the length of 

depression or its severity level (HDRS). 

12. Both genes and the environment modify different patterns of the amygdala 

resting-state connectivity to increase depression risk. 

13. The genetic relationship between amygdalar connectivity and depression may be 

better elicited by examining analytic components obtained from rs-fMRI BOLD 

signals. 

14. Non-genetic factors leading to depression alter the cerebellar synchronization. 

15. The alterations in depression, within cerebellar regions such as the crus and 

vermis that are lead by environmental factors may be observed using the 

amplitude envelop of low-frequency rs-fMRI BOLD oscillations. This suggests 

that the activity at rest in these regions could be associated with environmental 

liability. 
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 On the one hand, despite rs-fMRI can provide new insights on the functional 

architecture of the brain and the studies to date are promising- specially regarding 

prognosis and personalized monitoring of mental disorders for prevention and efficient 

treatment- it is still necessary to advance to use it during a clinic routine. 

 As we commented in the introduction, the functional connectivity matrix 

obtained from the BOLD signal with rs-fMRI techniques does not only show 

correlations between regions that have a direct structural connectivity (Michael D. 

Grecius et al. 2009), but also reveals certain correlations due to false positives or simply 

represents indirect connectivity by the synchronization of information among third 

regions which might cooperate in the same task execution (Jessica S. Damoiseaux and 

Michale D. Grecius 2009). Besides, correlations could exist because of the noise in rs-

fMRI, or hemodynamic or vascular artifacts (Honey et al. 2009; Skudlarski et al. 2008).  

 On the other hand, as explained at the time, the data obtained from techniques 

such as diffusion tensor imaging (DTI) also show obvious limitations to identify tracts 

in regions of bilateral basal ganglia circuits- they are currently based on animal models 

(A. Di Martino et al. 2008: Selemon and Goldman-Rakic 1985; Cavada and Goldman-

Rakic 1991; Middleton and Strick 1994; Ferry et al. 2000; Haber et al. 2000, 2006; 

Middleton and Strick 2002). For instance, although a connection between the cingulate 

cortex and the ventral striatum was observed in primates, this connection could not be 

found in human beings (Kunishio and Haber 1994; Haber et al. 2006). Besides, the DTI 

fiber tract reconstruction is quite complex among regions localized on the frontal lobe 

or interhemispheric areas (A. Di Martino et al. 2008). So that, this constitutes a problem 

when searching markers or abnormalities in a disease like MDD, where the basal 

ganglia circuit can be relevant. This could produce a number of inconsistencies among 

studies. 

Thus, the idea is that the EC (see background) could be used for the analysis and 

finding of possible abnormalities in circuitries in patients with MDD which could help 

to clarify neurophysiological factors of the disorder. 

This methodology is being actually applied in studies on patients with Bipolar 

(BP) and Obsessive Compulsive Disorder (OCD). In concrete, in the OCD study, a 

comparative study is carried out between a group of patients (64 subjects) and a group 

of controls (25 subjects), using the EC matrices with the idea of finding potential 

abnormalities in the circuitry in patients with OCD. These matrices, EC, should present 
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less problems in the basal ganglia and angular-lateral regions, among the posterior and 

anterior areas of the DMN, and the prefrontal lobe regarding the SC matrices extracted 

from DTI data (A. Di Martino et al. 2008). For many years, the dysfunctional cortical-

striato-thalamic-cortical circuit has been pointed out as the main cause of OCD 

pathophysiology (Federica Piras et al. Review 2013: Graybiel and Rauch 2000; Menzies 

et al. 2008; Saxena and Rauch 2000). 

Concretely, a putative altered circuit has been found from EC matrices in 

patients, where it seems that the basal ganglia tracts gain weight showing problems in 

the fibers which go from the putamen-thalamus to the cortical regions via both the 

parieto-occipital and prefrontal side. This structural connectivity alteration in patients 

with OCD is not present in the original DTI. This suggests a priori that the EC results 

could be used to complement deficiencies found in the structural connectivity of the SC 

matrix, and which could exist in this case between regions of the reward system, RS. 

Finally, descriptors of the EC have been also extracted improving the models of 

SC. It has to be noted that conventional descriptors obtained through rs-fMRI data did 

not improve the DTI model.  

In sum, the EC matrices might be used to analyze the tracts in the brain in those 

regions where the DTI data present limitations. In concrete, the posterior, together with 

the anterior part of the brain, via the nuclei striato showed to be disconnected in OCD. 

Likewise, it was possible to create a bimodal model to classify the subjects between 

groups by using the nodal descriptors associated to regions such as left putamen and left 

cuneus from SC matrix, and left superior temporal pole from EC matrix.  We consider 

that this approximation could be used on the DMN or PFL in depression for a better 

understanding of the role of these networks in the disorder. 
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