
 
 
 
 

Unravelling the molecular bases of carotenoid 
biosynthesis in maize 

 
Judit Berman Quintana 

 
 
 
 

 http://hdl.handle.net/10803/382835 
 
 
 
 

 
Nom/Logotip de la  
Universitat on s’ha  

llegit la tesi 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Unravelling the molecular bases of 
carotenoid biosynthesis in maize

by Judit Berman Quintana

 

 

 
 

 

Departament de Producció V

 

Unravelling the molecular bases of 
carotenoid biosynthesis in maize

by Judit Berman Quintana 

Doctoral Dissertation 

January 2016 

 

 

 
 

Universitat de Lleida 

Escola Tècnica i Superior  
d’Enginyeria Agrària 

Departament de Producció Vegetal i 
Ciència Forestal 

 

Unravelling the molecular bases of 
carotenoid biosynthesis in maize 

 

 



 
 
 

 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The photo on the cover of the thesis appeared as a covered page on an issue of Plant 

Molecular Biology in which the article Berman et al., 2013 was featured. The full 

reference is: Berman J, Zhu C, Pérez-Massot E, Arjó G, Zorrilla-López U, Masip G, et al. 

(2013) Can the world afford to ignore biotechnology solutions that address food insecurity? 

Plant Mol Biol. 83:5–19.  

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Dr Paul Christou 

Departament de Producció Vegetal i Ciència Forestal 

Escola Tècnica i Superior d’Enginyeria Agrària 

Universitat de Lleida 

 

 

Co-Supervisor: Dr Changfu Zhu 

Departament de Producció Vegetal i Ciència Forestal 

Escola Tècnica i Superior d’Enginyeria Agrària 

Universitat de Lleida 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

  



 

VII 
 

TABLE OF CONTENTS 

INDEX OF FIGURES ......................................................................................................... XIII 

INDEX OF TABLES ......................................................................................................... XVII 

ACKNOWLEDGEMENTS ................................................................................................ XIX 

SUMMARY .......................................................................................................................... XXI 

RESUMEN ........................................................................................................................ XXIII 

RESUM .............................................................................................................................. XXV 

LIST OF ABREVIATIONS .......................................................................................... XXVII  

GENERAL INTRODUCTION ............................................................................................... 3 

Definition and classification of carotenoids ....................................................................................... 3 

Natural sources of carotenoids ........................................................................................................... 3 

Carotenoid biosynthesis ...................................................................................................................... 4 

Functional characterization of carotenogenic genes .......................................................................... 6 

Metabolic engineering strategies to modulate carotenoid levels and composition in plants ............. 9 

Impact of carotenoid enhancement on general metabolism ............................................................. 12 

Applications of carotenoid lines accumulating specific carotenoids ................................................ 12 

Reduce Vitamin A Deficiency (VAD) ......................................................................................... 12 

Animal Feed ................................................................................................................................. 13 

Human food .................................................................................................................................. 15 

References ......................................................................................................................................... 16 

AIMS AND OBJECTIVES ................................................................................................... 25 

CHAPTER 1: CLONING AND FUNCTIONAL CHARACTERIZATION OF MAIZE 

(Zea mays L.) CAROTENOID EPSILON HYDROXYLASE ............................................ 29 

1.1 Abstract ....................................................................................................................................... 29 

1.2 Introduction ................................................................................................................................. 29 

 



 

 
VIII 

 

1.3 Materials and methods ................................................................................................................ 31 

1.3.1. Plant materials .................................................................................................................... 31 

1.3.2 Nucleic acid isolation and cDNA synthesis ......................................................................... 32 

1.3.3 Cloning and sequencing of the putative maize CYP97C cDNA ......................................... 32 

1.3.4 Bioinformatic analysis ......................................................................................................... 33 

1.3.5 Construction of maize CYP97C gene expression vector for A. thaliana transformation .... 33 

1.3.6 Transformation and selection of A. thaliana ....................................................................... 33 

1.3.7 DNA and RNA analyses ...................................................................................................... 34 

1.3.8 Carotenoid extraction and quantification ............................................................................. 35 

1.4 Results ......................................................................................................................................... 35 

1.4.1 Cloning and characterization of the maize cyp97C19 gene................................................. 35 

1.4.2 Screening and selection of transgenic A. thaliana plants ..................................................... 37 

1.4.3 Analysis of transgene integration ........................................................................................ 38 

1.4.4 Analysis of transgene expression ......................................................................................... 39 

1.4.5 Analysis of carotenoid profiles ............................................................................................ 39 

1.5 Discussion ................................................................................................................................... 41 

1.6 Conclusions ................................................................................................................................. 43 

1.7 References ................................................................................................................................... 44 

CHAPTER 2: THE ROLE OF THE ARABIDOPSIS ORANGE GENE ON 

CAROTENOID AND KETOCAROTENOID ACCUMULATION IN MAIZE  

HYBRIDS ................................................................................................................................ 51 

2.1 Abstract ....................................................................................................................................... 51 

2.2 Introduction ................................................................................................................................. 51 

2.3 Materials and methods ................................................................................................................ 54 

2.3.1 Gene cloning and vector construction ................................................................................. 54 

2.3.2 Maize transformation and plant growth ............................................................................... 56 

2.3.3 RNA extraction and cDNA synthesis .................................................................................. 59 

2.3.4 Real-time qRT-PCR............................................................................................................. 59 

2.3.5 Carotenoid extraction and UPLC analysis ........................................................................... 60 

2.3.6 TEM microscopy analysis ................................................................................................... 61 

2.4 Results ......................................................................................................................................... 62 

2.4.1 Transgenic lines overexpressing the Arabidopsis Orange (AtOR) gene exhibit an increase 

in carotenoid content without concomitant upregulation of carotenogenic gene expression ....... 62 



 

IX 
 

2.4.2 Genetic background influences seed color phenotype in hybrids between AtOR transgenic 

lines and different parents but only when the carotenoid content of the parents is low ............... 64 

2.4.3 Introgression of AtOR reveals an increase in carotenoid content and composition of 

transgenic hybrids but only when the carotenoid content of the parents is low ........................... 66 

2.4.4 Transcript analysis of endogenous carotenoid and MEP pathway genes and pftf  indicates 

no obvious changes in the levels of accumulation of these endogenous genes in hybrids and their 

respective parents ......................................................................................................................... 71 

2.4.5. Increase of carotenoid content in diverse genetic backgrounds leads to the creation of a 

metabolic sink ............................................................................................................................... 73 

2.5 Discussion ................................................................................................................................... 75 

2.5.1 The AtOR transgene enhances total carotenoid content without altering composition in the 

endosperm of hybrids only when the pre-existing carotenoid pool in the parents is low ............. 75 

2.5.2 Endogenous carotenoid biosynthetic genes, MEP pathway genes, and the pftf transcriptor 

factor are not upregulated in hybrids harboring the AtOR gene despite increases in total 

endosperm carotenoid content ...................................................................................................... 77 

2.5.3 Formation of carotenoid-rich plastoglobuli in endosperm tissues is due to high levels of 

newly synthesized carotenoids rather than a direct effect of AtOR gene expression ................... 79 

2.6 Conclusions ................................................................................................................................. 81 

2.7 References ................................................................................................................................... 81 

CHAPTER 3: INCREASED β-CAROTENE CONTENT IN MAIZE ENDOSPERM 

THROUGH RNAi-MEDIATED SILENCING OF CAROTENOID β-

HYDROXYLASES IN DIFFERENT GENETIC BACKGROUNDS ..... .......................... 87 

3.1 Abstract ....................................................................................................................................... 87 

3.2 Introduction ................................................................................................................................. 87 

3.3 Materials and methods ................................................................................................................ 90 

3.3.1 Gene cloning and vector construction ................................................................................. 90 

3.3.2. Maize transformation and plant growth .............................................................................. 90 

3.3.3 RNA extraction and cDNA synthesis .................................................................................. 91 

3.3.4. RNA blot analysis ............................................................................................................... 91 

3.3.5. Real-time qRT-PCR............................................................................................................ 91 

3.3.6. Carotenoid extraction and UPLC analysis .......................................................................... 91 

3.4 Results ......................................................................................................................................... 92 

3.4.1 Transgenic maize lines with RNAi-mediated gene silencing of Zmbch1 and Zmbch2 ....... 92 

3.4.2 Carotenoid composition in inbred lines used as parents to introgress RNAibch ................. 93 



 

 
X 

 

3.4.3 Carotenoid content and composition of hybrids derived from parents with diverse 

carotenoid profiles and transgenic line in which endogenous Zmbch1 and Zmbch2 were silenced

 ...................................................................................................................................................... 94 

3.4.5 Transcriptomic analysis of transgenes and endogenous carotene β- and ε-hydroxylase genes 

in maize hybrids reveals different expression profiles amongst hybrids due to the effect of RNAi-

mediated gene silencing ................................................................................................................ 99 

3.5 Discussion ................................................................................................................................. 104 

3.5.1 RNAi-mediated silencing of endogenous Zmbch1 and Zmbch2 genes leads to a significant 

increase of β-carotene accumulation in the endosperm of hybrids derived from parents with 

diverse carotenoid profiles .......................................................................................................... 104 

3.5.2 RNAi-mediated Zmbch1 and Zmbch2 silencing impacts differently the expression of P450-

carotene β-hydroxylase and ε-hydroxylase genes ...................................................................... 106 

3.6 Conclusions ............................................................................................................................... 108 

3.7 References ................................................................................................................................. 108 

CHAPTER 4: IMPACT OF INCREASED CAROTENOID CONTENT O N STARCH 

ACCUMULATION IN TRANSGENIC MAIZE .................. ............................................ 113 

4.1 Abstract ..................................................................................................................................... 113 

4.2 Introduction ............................................................................................................................... 113 

4.3 Materials and methods .............................................................................................................. 117 

4.3.1. Plant material .................................................................................................................... 117 

4.3.2. RNA extraction and cDNA synthesis ............................................................................... 117 

4.3.3. Quantitative real-time RT-PCR ........................................................................................ 118 

4.3.3. Carotenoid extraction and UPLC analysis ........................................................................ 118 

4.3.4. Starch extraction and quantification ................................................................................. 118 

4.3.5. TEM and SEM .................................................................................................................. 118 

4.4 Results ....................................................................................................................................... 119 

4.4.1 Plant growth and transgene expression .............................................................................. 119 

4.4.2 Total carotenoid content of the transgenic lines ................................................................ 120 

4.4.3 Total starch content of the transgenic lines ....................................................................... 120 

4.4.4 TEM and SEM of endosperm tissues in carotenoid-enhanced transgenic lines ................ 121 

4.4.5 Transcriptomic analysis of starch-related genes in the endosperm of carotenoid-enhanced 

transgenic lines ........................................................................................................................... 124 

 



 

XI 
 

4.5 Discussion ................................................................................................................................. 125 

4.5.1 Selection of transgenic maize with different endosperm carotenoid contents and 

compositions to investigate the impact on starch endosperm content ........................................ 125 

4.5.2 Carotenoid accumulation reduces the total starch content in the endosperm .................... 125 

4.5.3 Endogenous starch pathway gene expression reveals an alternative mechanism to reduce 

the starch content in carotenoid-enhanced maize lines ............................................................... 126 

4.6 Conclusions ............................................................................................................................... 129 

4.7 References ................................................................................................................................. 130 

CHAPTER 5: GENERATION OF HIGH CAROTENOID TRANSGENIC  MAIZE 

HYGRIDS WITH AGRONOMIC PERFORMANCE SIMILAR TO COMME RCIAL 

HYBRIDS .............................................................................................................................. 137 

5.3 Materials and methods .............................................................................................................. 141 

5.3.1 Plant material ..................................................................................................................... 141 

5.3.2 Field trials .......................................................................................................................... 141 

5.3.3 Agronomic and morphologic trait assessment of transgenic maize hybrids ...................... 143 

5.3.5 Statistical analysis .............................................................................................................. 144 

5.4 Results ....................................................................................................................................... 144 

5.4.1 Development of high carotenoid transgenic maize hybrids ............................................... 144 

5.4.2 Agronomic traits ................................................................................................................ 144 

5.4.3 Ear morphology ................................................................................................................. 146 

5.4.4 High-yielding transgenic maize hybrids ............................................................................ 148 

5.4.5. Heterosis of transgenic maize hybrids .............................................................................. 148 

5.5 Discussion ................................................................................................................................. 150 

5.5.1 Genotype of the parental inbred lines had significant influence on agronomic and 

morphological traits in resulting hybrids demonstrating different field performance depending on 

the hybrid .................................................................................................................................... 150 

5.5.3 Statistical analysis shows that B73xHC, Mo17xHC and EZ6xHC are the highest yielding 

hybrids ........................................................................................................................................ 151 

5.6 Conclusions ............................................................................................................................... 152 

5.7 References ................................................................................................................................. 153 

General conclusions .............................................................................................................. 157 



 

 
 

 

 

  



 

XIII 
 

INDEX OF FIGURES 

GENERAL INTRODUCTION 

Figure 1 – Carotenoid biosyntethic pathway in plants (blue) and equivalent steps in bacteria (red). .... 5 

Figure 2 – The carotenoid biosynthesis in living color.. ........................................................................ 7 

Figure 3 – Flowers of wf mutants.. ......................................................................................................... 8 

Figure 4 – Phenotypes of eight transgene combinations expressed in rice callus. ................................. 9 

Figure 5 – Strategies to modulate carotenoid levels in plants. ............................................................. 10 

CHAPTER 1: CLONING AND FUNCTIONAL CHARACTERIZATION OF MAIZE 

(Zea mays L.) CAROTENOID EPSILON HYDROXYLASE 

Figure 1.1 – Biosynthesis pathway from lycopene to lutein and the characterized CYP-type 

hydroxylases for lutein synthesis. ................................................................................................. 30 

Figure 1.2 – Multiple alignments of CYP97C protein sequences from maize (Zm, Zea mays; 

GenBank: GU130217), rice (Os, Oryza sativa; GenBank: AK065689), Arabidopsis (At, 

Arabidopsis thaliana; GenBank: NM_115173) and tomato (Sl, Solanum lycopersicon; GenBank: 

EU849604).................................................................................................................................... 36 

Figure 1.3 – Gene structures for maize, rice, tomato and A. thaliana CYP97C homologs.. ................ 37 

Figure 1.4 – DNA blot analysis of Zmcyp97C19 transgene in A. thaliana wild type, lut1 mutant and 

three different transgenic lines transformed with Zmcyp97C19 driven by the CaMV 35S 

promoter........................................................................................................................................ 38 

Figure 1.5 – RNA blot analysis of maize cyp97C19 transgene expression in A. thaliana wild-type, lut1 

mutant and three different transgenic lines transformed with Zmcyp97C19 driven by the CaMV 

35S promoter.. .............................................................................................................................. 39 

Figure 1. 6 – HPLC  analysis of carotenoids in rosette leaves of A. thaliana wild-type, lut1 mutant and 

transgenic lines transformed with ZmCYP97C19 driven by the CaMV 35S promoter. ............... 40 

CHAPTER 2: THE ROLE OF THE ARABIDOPSIS ORANGE GENE ON 

CAROTENOID AND KETOCAROTENOID ACCUMULATION IN MAIZE  

HYBRIDS 

Figure 2.1 – Chromoplast biogenesis from other plastids.. .................................................................. 52 

Figure 2.2 – Schematic representation of transgenes used in this experiment. .................................... 56 

Figure 2.3 – Maize transformation process. ......................................................................................... 58 

Figure 2.4 – mRNA blot analysis of AtOR in wild type (M37W) and two different transgenic lines 

(OR1 and OR2) transformed with AtOR gene driven by the wheat LMW-glutelin promoter. .... 62 



 

XIV 
 

 

Figure 2.5 – Carotenoid content and composition in wild-type M37W and transgenic lines OR1 and 

OR2 T2 at 30 DAP (µg/g DW±SE) (n= 3-5 seeds). ...................................................................... 63 

Figure 2.6 – Relative mRNA expression of endogenous carotenogenic genes (A), MEP pathway-

related genes (B) and pftf (C) in 30 DAP maize endosperm, normalized against actin mRNA and 

presented as the mean of three biological replicates ± SE.. .......................................................... 64 

Figure 2.7 – Phenotype of wild-type (A) and transgenic seeds with different carotenoid and 

ketocarotenoid profiles: CARO1 (B), CARO2 (C), KETO1 (D) and KETO2 (E) and the resulting 

seeds from the cross with OR; (F): ORxCARO1 (G), ORxCARO2 (H), ORxKETO1 (I) and 

ORxKETO2 (J). ............................................................................................................................ 65 

Figure 2.8 –Transcript accumulation normalized against actin in wild-type and transgenic lines 

presented as mean of three technical replicates. ........................................................................... 66 

Figure 2.9 – Relative mRNA expression for endogenous carotenogenic genes, MEP pathway-related 

genes and Zmpftf in 30 DAP maize endosperm, normalized against actin mRNA and presented 

as the mean of three biological replicates.. ................................................................................... 72 

Figure 2.10 – Micrographs of 30 DAP endosperm from WT and transgenic maize lines OR, CARO1, 

CARO2, KETO1, KETO2 and ORxKETO1. ............................................................................... 74 

Figure 2.11 – Total carotenoid content and composition in wild-type M37W, transgenic lines OR and 

KETO1 and hybrid ORxKETO1 ORxKETO2 in T1 generation at 30 DAP (*) and 60 DAP (**) 

(n=3-5 seeds). ............................................................................................................................... 76 

Figure 2.12 – Carotenoid content and composition in CARO1, CARO2 and KETO 2; and hybrids 

ORxCARO1, ORxCARO2 and ORxKETO2 in T1 generation at 30 DAP (*) and 60 DAP (**) 

(n=3-5 seeds). ............................................................................................................................... 77 

CHAPTER 3: INCREASED β-CAROTENE CONTENT IN MAIZE ENDOSPERM 

THROUGH RNAI-MEDIATED SILENCING OF CAROTENOID β-HYDROXYLASE 

(Zmbch1 AND Zmbch2) IN DIFFERENT GENOTYPES  

Figure 3.1 – Xanthophyll biosynthetic pathway. .................................................................................. 88 

Figure 3.2 – Schematic representation of pHorP-RNAi-Zmbch. .......................................................... 90 

Figure 3.3 – mRNA blot analysis (25 µg of total RNA per lane) was used to monitor Zmbch2 mRNA 

accumulation in the endosperm at 30 DAP of wild type (M37W) and independent transgenic 

lines B1, B7, B9 and B13 ............................................................................................................. 92 

Figure 3.4 – Transcript levels of endogenous Zmbch1 gene in wild-type (M37W) and transgenic lines 

B1, B7, B9 and B13 presented as mean of three technical replicates ± SD (n=3-5 seeds) ........... 93 

Figure 3. 5 – Carotenoid composition of lines used to cross with B7 and B13. ................................... 93 

Figure 3. 6 - Schematic representation indicating how the hybrids were generated. ........................... 94 



 

XV 
 

Figure 3. 7 – Carotenoid composition of B7, B13, B73, C17, NC356, O1-3, O2-9, psy1 and the 

corresponding hybrids with B7 and B13 at 30 DAP. ................................................................... 96 

Figure 3. 8 – Transgene expression normalized against actin in the wild-type (M37W) and transgenic 

lines presented as mean of three technical replicates. ................................................................ 100 

Figure 3. 9 – Relative mRNA accumulation of endogenous hydroxylase genes in wild type (M37W); 

Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B and Zmcyp97C in 30 DAP maize endosperm, 

normalized against actin mRNA, relative to Zmbch1 and presented as the mean of three technical 

replicates ± SE. ........................................................................................................................... 100 

Figure 3. 10 – mRNA accumulation of endogenous hydroxylases: Zmbch1, Zmbch2, Zmcyp97A, 

Zmcyp97B and Zmcyp97C in 30 DAP maize endosperm, normalized against actin and relative to 

M37W mRNA and presented as the mean of three technical replicates ± SE. ........................... 102 

CHAPTER 4: IMPACT OF INCREASED CAROTENOID CONTENT O N STARCH 

ACCUMULATION IN TRANSGENIC MAIZE  

Figure 4. 1 – Overview of general metabolism in maize and relation between products in the different 

pathways. .................................................................................................................................... 114 

Figure 4.2 – The starch biosynthesis pathway in maize endosperm. Asterisks indicate enzymes 

evaluated in the experiments reported in this chapter. ................................................................ 116 

Figure 4.3 – Transgene expression normalized against actin in wild-type and transgenic lines 

presented as mean of three technical replicates. ......................................................................... 119 

Figure 4.4 – Total endosperm carotenoid content presented as µg⁄g dry weight (DW) ± SE (n = 3–5 

seeds) of wild-type (WT) and transgenic lines L1, L2, L3 and L4. ............................................ 120 

Figure 4.5 – Total endosperm starch content (presented as % ± SE (n = 3–5 seeds) of wild-type (WT) 

and transgenic lines L1, L2, L3 and L4 ...................................................................................... 121 

Figure 4.6 – SEM micrographs indicating a reduction in the number of starch granules in the 

endosperm in L2, L3 and L4 compared with WT.. ..................................................................... 122 

Figure 4.7 – Microscopic analysis of WT and transgenic lines. ......................................................... 123 

Figure 4.8 – Relative mRNA expression of endogenous starch-related genes in 30 DAP maize 

endosperm, normalized against actin mRNA and presented as the mean of three biological 

replicates.  ................................................................................................................................... 124 

 

 



 

XVI 
 

 

CHAPTER 5: DEVELOPMENT OF HIGH CAROTENOID TRANSGENI C MAIZE 

HYBRIDS WITH AGRONOMIC PERFORMANCE SIMILAR TO COMME RCIAL 

HYBRIDS 

Figure 5. 1– Phenotypic manifestation of heterosis. Heterosis is typically seen in adult traits such as 

yield or ear size (a) but it already manifests during seedling development (b) (Hochholdinger and 

Hoecker 2007). ........................................................................................................................... 138 

Figure 5. 2 – Schematic representation of different techniques used to produce high carotenoid maize 

hybrids. ....................................................................................................................................... 140 

Figure 5. 3 - Inbred lines, transgenic hybrids and commercial hybrid phenotypes of (A) seeds, and (B) 

ears. Scale bar: A, 1cm; B, 5cm.................................................................................................. 145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XVII 
 

INDEX OF TABLES 

GENERAL INTRODUCTION 

Table 1 – List of authorized additives in feedingstuffs published in application of article 9t(b) of 

Council Directive 70/524/EEC concerning additives in feedingstuffs: 1. Carotenoids and 

xanthopylls (2004). ....................................................................................................................... 14 

Table 2 – List of carotenoids used in food industry. ............................................................................ 16 

 

CHAPTER 1: CLONING AND FUNCTIONAL CHARACTERIZATION OF MAIZE 

(Zea mays L.) CAROTENOID EPSILON HYDROXYLASE 

Table 1.1 – Abundance of individual carotenoids in Arabidopsis thaliana leaves (%) and the total 

carotenoid content (µg/g dry weight)............................................................................................ 40 

 

CHAPTER 2: THE ROLE OF THE ARABIDOPSIS OR GENE ON C AROTENOID 

AND KETOCAROTENOID ACCUMULATION IN MAIZE HYBRIDS 

Table 2.1. – Media composition (amounts listed to prepare 1l). .......................................................... 57 

Table 2.2. – Transgenic lines used in this experiment to generate hybrids with AtOR transgenic line.

 ...................................................................................................................................................... 59 

Table 2.3 – Oligonucleotide sequences of maize actin, endogenous carotenogenic genes and 

transgenes for Real-Time PCR analysis. ...................................................................................... 60 

Table 2.4 – Carotenoid content and composition in wild-type M37W, transgenic lines OR, CARO1, 

CARO2, KETO1 and KETO2; and hybrids ORxCARO1, ORxCARO2, ORxKETO1 and 

ORxKETO2 T1 at 30 (*) and 60 DAP (**) (µg/g DW±SE) (n= 3-5 seeds). ................................ 68 

Table 2.5 – Ketocarotenoid content and composition of wild-type (M37W) and transgenic lines OR, 

CARO1, CARO2, KETO1 and KETO2; and hybrids ORxCARO1, ORxCARO2, ORxKETO1 

and ORxKETO2 T1 at 30 (*) and 60 DAP (**) (µg/g DW±SE) (n= 3-5 seeds). ......................... 69 

 

CHAPTER 3: INCREASED β-CAROTENE CONTENT IN MAIZE ENDOSPERM 

THROUGH RNAI-MEDIATED SILENCING OF CAROTENOID β-HYDROXYLASE 

(Zmbch1 AND Zmbch2) IN DIFFERENT GENOTYPES  

Table 3.1 – Maize lines with specific carotenoid accumulation used in this study to evaluate the effect 

of BCH downregulation by RNAi. ............................................................................................... 91 



 

XVIII 
 

 

Table 3. 2 – Carotenoid content and composition  of wild-type (M37W), B7, B13, B73, C17, NC356, 

O1-3, O2-9 and psy1 parents and the corresponding hybrids at 30 DAP (µg/g DW±SE) (n= 3-5 

seeds).  .......................................................................................................................................... 95 

 

CHAPTER 4: IMPACT OF INCREASED CAROTENOID CONTENT O N STARCH 

ACCUMULATION IN TRANSGENIC MAIZE  

Table 4.1 – Maize lines used in this study. ......................................................................................... 117 

Table 4.2 – Oligonucleotide sequences for the detection of maize actin, endogenous starch-related 

genes and transgenes for real-time PCR analysis. ...................................................................... 118 

 

CHAPTER 5: DEVELOPMENT OF HIGH CAROTENOID TRANSGENI C MAIZE 

HYBRIDS WITH AGRONOMIC PERFORMANCE SIMILAR TO COMME RCIAL 

HYBRIDS 

Table 5. 1 – Maize Tester lines used to evaluate the combining ability of HC. ................................. 141 

Table 5. 2 – Weather conditions during the maize growing season (May-August) 2014. .................. 142 

Table 5. 3 – Results from ANOVA of agronomical and morphological traits of 6 maize inbreed lines 

and 6 hybrids in 2 sites. .............................................................................................................. 147 

Table 5. 4 – Results from ANOVA of heterosis of agronomic and morphological traits of 5 hybrids of 

inbred line HC crossed with 5 testers in 2 sites. ......................................................................... 149 

 

 

 

 

 

 

 

 



 

XIX 
 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my supervisor Paul Christou for his valuable and 

patient guidance, enthusiastic encouragement and excellent advice in science and beyond. I 

would have not achieved this success without his endless support during my PhD. I am 

grateful to acknowledge Teresa Capell for her constant feedback and her energetic personality 

and enthusiasm on disseminating our scientific work all around the world. 

I also would like to express my great appreciation to my co-supervisor Changfu Zhu, who was 

always ready to help me with constructive suggestions and useful advice. I would like to offer 

my special thanks to Ludovic Bassie for useful discussions; his in depth knowledge in 

analytical procedures was invaluable to me. 

My PhD work was immeasurable aided by the friendly atmosphere and continuous technical 

and emotional support during the last four years. It is a pleasure to convey my gratitude to all 

the people who helped me in reaching this important goal. I wish you lot of luck and success 

in your work and personal life. 

I would like to thank my very good lab mate Gemma Farré for helping me getting started in 

the lab with good tutoring and useful scientific advice. Thank you for developing the basis I 

used for my experiments. 

To all my good friends and ex-colleagues: Bruna Miralpeix, Maite Sabalza, Georgina 

Sanahuja, Evangelia Vamvaka, Chao Bai and Raviraj Banakar; all the moments we shared in 

and out of the lab helped me to become the scientist I am right now.  

To Eduard Pérez, Uxue Zorrilla, Gemma Massip, Gemma Arjó and Daniela Zanga, we shared 

many fun moments during our PhD research together and in the future we will have more 

lovely time together. I value our friendship very much. 

A en Jaume Capell, per ensenyar-me a estimar la feina i les plantes, pels consells de vida i per 

aconseguir que a l’hivernacle no hi hagi lloc per a les preocupacions. 

I am thankful to Núria Cabernet for dealing with administrative work and for always being 

kind and helpful. 

I also would like to acknowledge many professors and PAS whose contribution enriched my 

work professionally. To Paquita Vilaró, for her technical support in HPLC analysis; Ramon 



 

XX 
 

 

Canela, for his help in the interpretation of the results as well as Gerhard Sandmann, 

Biosynthesis Group, Molecular Biosciences, J.W. Goethe Universitaet; Albert Tomas, for 

facilitating the equipment management for carotenoid extraction, and to the other members of 

the chemistry department; Xavier Calomarde, for his technical support in microscopy and 

Vicente Medina and Pilar Muñoz for their support in microscopy analysis and passion for this 

technique; Antonio Michelena and Jaume Lloveres, for their advice on field experiments.  

To Ana Pelacho, thank you for introducing me to Paul and Teresa; and thanks to the 

Universitat de Lleida for giving me the opportunity to develop myself during the degree, the 

master and finally the PhD. 

My PhD thesis could never have been fulfilled without the full support of my family and 

friends. I am deeply and forever indebted to them. 

Vull agrair als meus pares i tiets el suport, l’amor i l’educació que he rebut des de sempre. 

Sense vosaltres hagués ensopegat més de dos cops amb la mateixa pedra. Als avis, la seva 

comprensió incondicional. Gràcies a la meva germana Alba per cedir-me el seu caràcter 

perfeccionista durant la redacció i per seguir el fil de les explicacions. Finalment, moltes 

gràcies, Santiago Chauvell, pel suport moral i la passió que em demostres cada dia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

XXI 
 

SUMMARY 

My research program focused on the elucidation of the mechanisms of carotenoid 

accumulation in maize (Zea mays). I amplified a putative carotenoid ε-hydroxylase, named 

CYP97C19, from the yellow maize variety B73. Metabolic profiling of the carotenoid 

pathway in Arabidopsis lut1 mutant (lacking lutein) overexpressing maize CYP97C19 

confirmed the accumulation of lutein in transgenic lines at the expense of zeinoxanthin. This 

allowed me to conclude that maize CYP97C19 is a functional ε-hydroxylase. In a separate 

experiment, I characterized two transgenic lines overexpressing the Arabidopsis ORANGE 

gene (AtOR). Both lines exhibited an increase in carotenoid content without any concomitant 

upregulation of endogenous carotenogenic gene expression. The highest carotenoid 

accumulating line was crossed with different transgenic lines with diverse carotenoid profiles. 

In cases in which the original transgenic parent that was crossed with the AtOR line 

accumulated low levels of total carotenoids, resulting hybrid exhibited a substantial increase 

of total carotenoid content without any changes in the qualitative carotenoid composition. No 

changes at the metabolite and transcript profiles were observed in the hybrids when the 

carotenoid content in the original parents used to cross with the AtOR line was high. Results 

from these experiments suggest that one of the functions of the ORANGE gene in maize 

endosperm is to generate a metabolic sink for carotenoids because of the increase of 

carotenoid content. Results from experiments in which carotenoid β-hydroxylase (BCH1 and 

BCH2) was silenced in genotypes able to accumulate high lutein and high zeaxanthin levels 

indicated that these genes are determinants of β-carotene and zeaxanthin accumulation. I also 

investigated the interactions between the carotenoid and starch biosynthetic pathways as they 

share common precursors. I analyzed total starch content in four transgenic maize lines: one 

line overexpressing AtOR (L1) and three lines expressing different carotenogenic gene 

combinations (L2, L3 and L4, expressing Zmpsy1; Zmpsy1, PacrtI and ParacrtW; and 

Zmpsy1; PacrtI and Gllycb, respectively). In transgenic lines with a high carotenoid content 

total starch content was lower by approximately 8%. I established that this effect was due to 

downregulation of starch-related biosynthetic genes. Finally, a transgenic line (HC) 

overexpressing Zmpsy1 and PacrtI was crossed with different inbred lines belonging to well-

known heterotic groups in order to obtain high-yielding hybrids accumulating carotenoids. I 

assessed the performance of the hybrids (agronomic and ear morphologic traits) in two 

different locations in one growing season. Results indicated that field performance of high 
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carotenoid maize hybrids was similar or on occasion superior to commercial hybrids 

commonly grown in the area. 
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RESUMEN 

Mi programa de investigación se ha centrado en el estudio de los mecanismos de acumulación 

de carotenoides en maíz (Zea mays). Inicialmente, cloné de la variedad de maíz B73 un gen 

candidato para la enzima ε-hidroxilasa de carotenoides (CYP97C19). Basándome en los 

resultados del perfil metabólico de la ruta de los carotenoides en líneas transgénicas del 

mutante de Arabidopsis lut1 (carente de luteína) que sobre expresaban CYP97C de maíz (la 

acumulación de luteína en las líneas transgénicas se producía a expensas de una reducción de 

zeinoxantina), concluí que el gen CYP97C19 de maíz era una ε-hidroxilasa de carotenoides 

funcional. En un proyecto independiente, caractericé dos líneas transgénicas de maíz que 

sobreexpresaban el gen ORANGE de Arabidopsis (AtOR). Las dos líneas mostraron un 

incremento del contenido de carotenoides sin variar la expresión de genes carotenogénicos 

endógenos. Posteriormente, crucé la línea que acumulaba más carotenoides con líneas 

transgénicas con perfiles de carotenoides distintos. En los casos en que el parental transgénico 

acumulaba pocos carotenoides, el híbrido resultante mostró un incremento sustancial del 

contenido de carotenoides sin cambios aparentes en la composición de éstos. En cambio, 

ningún efecto se observó en los niveles metabólicos y transcriptómicos de los híbridos cuando 

el contenido de carotenoides de los parentales era elevado. Los resultados de estos 

experimentos indican que una de las funciones del gen ORANGE de Arabidopsis en 

endospermo de maíz es generar un sumidero metabólico para la acumulación de carotenoides 

debido al incremento del contenido de carotenoides provocados por éste. Paralelamente, 

silencié las enzimas β-hidroxilasa de carotenoides, la BCH1 y la BCH2, mediante RNAi en 

cultivares de maíz que acumulan elevadas cantidades de luteína y zeaxantina. Los resultados 

me permitieron concluir que estas dos enzimas son clave para la determinación del contenido 

de β-caroteno y zexantina en maíz. También analicé la interacción entre la ruta metabólica de 

los carotenoides y la del almidón ya que comparten precursores comunes. El análisis del 

contenido total de almidón en cuatro líneas transgénicas (L1: sobreexpresión de AtOR; L2, 

sobreexpresión de Zmpsy1; L3, sobreexpresión de Zmpsy1, PacrtI y ParacrtW; L4, 

sobreexpresión de Zmpsy1, PacrtI y Gllycb) demostró que se producía una disminución de 

hasta el 8%. Confirmé que este efecto se debía a la reducción de la capacidad biosintética de 

formación de almidón a distintos niveles. Finalmente, crucé una línea transgénica (HC) que 

sobreexpresaba Zmpsy1 y PacrtI con diferentes líneas puras pertenecientes a grupos 

heteróticos conocidos para obtener híbridos de maíz de alta producción y acumulación de 
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carotenoides. Evalué el desarrollo de los híbridos (caracteres agronómicos y morfológicos) en 

dos localidades distintas durante una estación de cultivo. Los resultados indicaron que el 

comportamiento en campo de los híbridos con alto contenido de carotenoides fue similar y en 

ocasiones superior a los híbridos comerciales que se cultivan en la zona.  
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RESUM 

El programa de recerca que he desenvolupat s’ha centrat en l’estudi dels mecanismes 

d’acumulació de carotenoides en blat de moro (Zea mays). Inicialment, vaig clonar de la 

varietat de blat de moro B73 un gen candidat a ε-hidroxilasa de la ruta biocinètica dels 

carotenoides (CYP97C19). En base als resultats obtinguts en línies transgèniques derivades 

del mutant d’Arabidopsis lut1 (mancat de luteïna) en les quals es va sobreexpressar el gen 

CYP9719 de blat de moro, que confirmaven l’acumulació de luteïna a expenses de 

zeinoxantina, vaig concloure que CYP97C19 és una ε-hidroxilasa de carotenoides funcional. 

En un segon projecte, vaig generar i caracteritzar dues línies transgèniques de blat de moro 

que sobreexpressaven el gen ORANGE d’Arabidopsis (AtOR). Les dues línies mostraren un 

increment en el contingut de carotenoides sense augmentar l’expressió de gens carotenogènics 

endògens. Posteriorment vaig creuar la línia que acumulava més carotenoides amb línies 

transgèniques que presentaven perfils de carotenoides diferents. En els casos en què el 

parental transgènic original creuat amb AtOR tenia poca concentració de carotenoides, l’híbrid 

resultant va mostrar un increment substancial del contingut de carotenoides, sense canvis 

aparents en la composició d’aquests. En canvi, quan el contingut de carotenoides dels 

parentals era elevat no es van observar canvis a nivell de metabòlits i transcripts en els 

híbrids. Els resultats d’aquests experiments suggereixen que una de les funcions del gen 

ORANGE d’Arabidopsis en l’endosperma de blat de moro és generar un depòsit metabòlic per 

a carotenoides arran de l’increment de carotenoides que provoca la seva sobreexpressió. 

Paral·lelament, vaig silenciar els enzims β-hidroxilasa de carotenoides, el BCH1 i el BCH2, a 

través de RNAi en diferents cultivars de blat de moro que acumulaven elevades quantitats de 

luteïna i zeaxantina. Els resultats que vaig obtenir em van permetre concloure que aquestes 

dos enzims eren clau per a modular el contingut de β-carotè en blat de moro. També vaig 

investigar la interacció entre la ruta metabòlica dels carotenoides i la del midó, ja que 

comparteixen precursors comuns. L’anàlisi del contingut total de midó en quatre línies 

transgèniques (L1: sobreexpressió de AtOR; L2, sobreexpressió de Zmpsy1; L3, 

sobreexpressió de Zmpsy1, PacrtI i ParacrtW; L4, sobreexpressió de Zmpsy1, PacrtI i 

Gllycb) va mostrar fins a una disminució del 8%. A més, vaig establir que aquest efecte era 

degut a la reducció de la capacitat biosintètica per formar midó a diferents nivells. Finalment, 

vaig creuar una línia transgènica (HC) que sobreexpressa Zmpsy1 i PacrtI amb diferents línies 

pures representants de grups heteròtics coneguts per tal d’obtenir híbrids de blat de moro 
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d’altra producció i acumulació de carotenoides. Vaig avaluar el desenvolupament dels híbrids 

(caràcters agronòmics i morfològics) en dos localitats diferents durant una estació de cultiu. 

Els resultats indicaren que el comportament en el camp dels híbrids amb alt contingut de 

carotenoides era semblant, i en ocasions superior, als híbrids comercials que es cultiven a la 

zona. 
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LIST OF ABREVIATIONS 

ADGPP: ADP-glucose pyrophosphorylase 

AFLPs: amplified fragment length polymorphisms (AFLPs) 

AGPase: ADP-glucose pyrophosphorylase 

ANOVA: Analysis of variance 

ATP: adenosine triphosphate 

BCH: carotenoid β-hydroxylase 

BKT: β-carotene ketolase 

CaMV 35S: Cauliflower Mosaic Virus 35S 

CCD: Capsanthin and capsorubin synthase 

cDNA: complementary DNA 

CRTB: bacterial phytoene synthase 

CRTI: bacterial β-carotene desaturase 

CRTISO: carotenoid isomerase 

CRTW: bacterial β-carotene ketolase 

CRTY: bacterial lycopene cyclase 

CRTZ: bacterial β-carotene hydroxylase 

CSPD:Disodium3-(4-methoxyspiro{1,2-dioxetane-3,2′-(5′-chloro)tricyclo [3.3.1.13,7]decan}-

4-yl)phenyl phosphate 

CYP97: carotene ε-ring hydroxylase 

DAP: days after pollination 

DBE: starch debranching enzyme  

DMAPP: dimethylallyl diphosphate 

DNA: deoxyribonucleic acid 

DW: dry weight 

DPPH: 2,2-diphenyl-1-picrylhydrazyl 

DXP: 1-deoxy-D-xylulose-5-phosphate 

DXS: 1-deoxy-D-xylulose 5-phosphate synthase 

EST: Expressed Sequence Taq 

FW: fresh weigh 

G: genotype 

GBSS: granule-bound starch synthase 



 

XXVIII 
 

 

GBSS: tuber-specific granule-bound starch synthase 

GGPP: geranylgeranyl diphosphate 

GGPPS: geranylgeranyl diphosphate synthase 

Gl: Gentiana lutea 

GOPOD: glucose oxidase/peroxidase 

GPI: glucose phosphate isomerase 

HC: High Carotenoid 

HDR: DXP reductoisomerase 

HK: Hexo kinase 

Hp: Haematococcus pluvialis 

HPLC: high performance liquid chromatography 

HPT: Hygromycin phosphotransferase 
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Ib: Ipomea batatas 

IZE: Immature zygoti embryos 

IPP: isopentenyl diphosphate 

IPPI: isopentenyl diphosphate isomerase 

L: location 

LYCB: lycopene β-cyclase 

LYCE: lycopene ε-cyclase 

MEP: 2-C-Methyl-D-erythritol 4-phosphate pathway 

mRNA: messenger RNA 

MS: Murashige and Skoog 

MSO: Osmoticum MS media 

MSS: Selection MS media 

MSR1: Regeneration 1 MS media 

MSR1: Regeneration 2 MS media 

MVA: mevalonic acid pathway 

OR: orange gene 
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PCR: Polymerase chain reaction 
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QTL: quantitative trait locus 

RNA: ribonucleic acid 

RNAi: RNA interference 
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GENERAL INTRODUCTION 

Definition and classification of carotenoids 

Carotenoids are natural pigments that are synthesized in the plastids of plants and in other 

photosynthetic organisms such as algae, bacteria and fungi (Zhu et al. 2010). They are 

essential components of photosynthetic membranes and they can prevent the oxidative 

disruption of the photosynthetic process (Bartley and Scolnik 1995; Bassi et al. 1993). In 

addition, they are precursors in the biosynthesis of abscisic acid (Lindgren et al. 2003). 

Humans and most animals cannot synthesize carotenoids, and must obtain them from dietary 

sources. Two rare exceptions are the red pea aphid (Acyrthosiphon pisum) and the two-spotted 

spider mite (Tetranychus urticae), which have acquired the ability to produce carotenoids 

from fungi by horizontal gene transfer (Altincicek et al. 2012; Moran and Jarvik 2010). 

Carotenoids are divided into two classes. Carotenes are hydrocarbon carotenoids (e.g. α-

carotene, β-carotene and lycopene) whereas xanthophylls are molecules containing oxygen, 

such as lutein and zeaxanthin (hydroxy), echinenone and canthaxanthin (oxo), antheraxanthin 

(epoxy) and spirilloxanthin (methoxy). Most carotenoids are tetraterpenoids, produced from 8 

isoprene molecules and contain 40 carbon atoms. Essentially all carotenoids possess certain 

common structural features: a polyisoprenoid backbone comprising a long conjugated chain 

of double bonds in the central portion of the molecule, and near symmetry around the central 

double bond. This basic structure can be modified in a variety of ways, most frequently by 

cyclization of the end groups and by the introduction of oxygen functionality, to yield a large 

family of > 700 compounds, exclusive as cis and trans isomers (Berman et al. 2015. Because 

of their structure, carotenoids are efficient free-radical scavengers, and they enhance the 

vertebrate immune system. Their antioxidant activity is based on their singlet oxygen 

quenching properties and their ability to trap peroxyl radicals (Krinsky 1998; Rice-Evans et 

al. 1997). 

Natural sources of carotenoids 

Carotenoids are present in many fruits and vegetables. For example, β-carotene is present in a 

wide variety of yellow-orange colored fruits and dark green and orange vegetables such as 

broccoli, spinach, carrots, squash, sweet potatoes and pumpkin (Farré et al. 2010; Bai et al. 
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2011). β-Cryptoxanthin is a carotenoid pigment found in peach, papaya, and citrus fruits such 

as orange and tangerine. Lycopene is the red fruit pigment in tomato, watermelon, pink 

grapefruit and guava (Bramley 2000). Vietnamese Gac (Momordica cochinchinensis) fruit 

contains the highest known concentration of lycopene (Aoki et al. 2002). Lutein is the most 

abundant carotenoid in all green vegetables, often representing 50% of the total carotenoid 

pool. In contrast, zeaxanthin is present in small quantities in most foods (Sommerburg et al. 

1998) although some varieties of yellow corn and yellow pepper accumulate high amounts 

(Minguez-Mosquera and Hornero-Mendez 1994; Quackenbush et al. 1963). Astaxanthin is 

found in microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans and the feathers 

of some birds. It is responsible for the pink color of salmon flesh and the pink-red color of 

cooked shellfish (Zhu et al. 2009). In Bixa orellana, the orange-red apocarotenoid bixin is 

accumulated in high concentrations, mainly in seeds, and accounts for 80% of the total 

carotenoids present in the seeds (Rivera-Madrid et al. 2006). Saffron apocarotenoids – crocin, 

crocetin and picrocrocin – are only found in the red stigma of Crocus sativus (Bouvier et al. 

2003).  

Carotenoid biosynthesis  

Terpenoid biosynthesis begins with the condensation of three molecules of isopentenyl 

diphosphate (IPP) with one molecule of dimethylallyl diphosphate (DMAPP) to produce the 

C20 compound geranylgeranyl diphosphate (GGPP). In plants, this reaction is catalyzed by 

GGPP synthase (GGPPS) in the plastids (Chappell 1995) and the equivalent enzyme in 

bacteria is CRTE (Figure 1). The isomeric precursors IPP and DMAPP are derived 

predominantly from the plastidial methylerythritol 4-phosphate (MEP) pathway although the 

same precursors are formed by the cytosolic mevalonic acid (MVA) pathway, with which 

there may be some cross-talk (Rodríguez-Concepción 2006). The first committed step in plant 

carotenoid biosynthesis is the condensation of two GGPP molecules into 15-cis-phytoene by 

the enzyme phytoene synthase (PSY) (Misawa et al. 1994) and the equivalent enzyme in 

bacteria is CRTB. This intermediate then undergoes a two-step desaturation reaction in plants 

catalyzed by phytoene desaturase (PDS) to generate 9,15-cis-phytofluene and then 9,15,9’-tri-

cis-ζ-carotene. This is isomerized by light and/or ζ-carotene isomerase (ZISO) to yield 9,9’-

di-cis-ζ-carotene, which is converted by ζ-carotene desaturase (ZDS) into 7,9,9’-tri-cis-

neurosporene and then 7,9,7’9’-tetra-cis-lycopene (Chen et al. 2010; Li et al. 2007). The end  
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Figure 1 – Carotenoid biosyntethic pathway in plants (blue) and equivalent steps in bacteria (red). 
Abbreviations: IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GGPP, geranylgeranyl 
diphosphate; GGPPS, GGPP synthase; PSY, phytoene synthase; PDS, phytoene desaturase; ZISO, ζ-carotene 
isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LYCB, lycopene β-cyclase; LYCE, 
lycopene ε-cyclase; CYP97C, carotene ε-ring hydroxylase; HYDB, carotenoid β-hydroxylase; CRTE, bacterial 
GGPP synthase; CRTB, bacterial phytoene synthase; CRTI, bacterial phytoene desaturase/isomerase; CRTY, 
bacterial lycopene β-cyclase; CRTZ, bacterial β-carotene hydroxylase (Berman et al. 2015). 
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product of the desaturation reactions is converted to all-trans-lycopene by carotenoid 

isomerase (CRTISO) in non-green tissue, and by light and chlorophyll (acting as a sensitizer) 

in green tissue (Breitenbach and Sandmann 2005; Chen et al. 2010; Isaacson et al. 2004).  

In non-photosynthetic bacteria, the single enzyme CRTI accomplishes all the above steps and 

produces all-trans-lycopene directly from 15-cis-phytoene (Figure 1). Lycopene is an 

important branch point in the carotenoid pathway because it acts as the substrate for two 

competing enzymes: lycopene β-cyclase (LYCB), and lycopene ε-cyclase (LYCE) 

(Cunningham and Gantt 2011). Both enzymes cyclize the linear backbone to generate 

terminal α- or β-ionone rings, differing by the 4,5- or 5,6-position of the double bond. The 

addition of one β-ring by LYCB generates γ-carotene, and the addition of a second β-ring to 

the free end by the same enzyme produces β-carotene. This reaction is rapid, so γ-carotene 

tends not to accumulate. In bacteria, this reaction is carried out by CRTY. Alternatively, the 

addition of one ε-ring to lycopene by LYCE generates δ-carotene. This is a poor substrate for 

LYCE so it is unusual for the second ε-cyclization to take place, but it is a good substrate for 

LYCB, which adds a β-ring to the free end to produce α-carotene. In the presence of the 

enzyme carotenoid β-hydroxylase (HYDB), both α-carotene and β-carotene can be converted 

into more complex downstream carotenoids. In the case of α-carotene, this downstream 

product is lutein, and in the case of β-carotene the downstream product is zeaxanthin, 

although the reactions involve the intermediates α-cryptoxanthin and β-cryptoxanthin, 

respectively (Figure 1). A single hydroxylase is required to produce zeaxanthin but two 

different hydroxylases are essential for the synthesis of lutein (Kim et al. 2009). In bacteria, a 

functionally similar enzyme is CRTZ. Whereas lutein represents the natural end point of the 

α-carotene branch, zeaxanthin can be further converted to 5,6-epoxy derivatives, which are 

part of the xanthophyll cycle. This cycle involves the enzymatic removal of epoxy groups 

from violaxanthin, antheraxanthin and zeaxanthin which play a critical role in stimulating 

energy dissipation in photosystem II. At the end of the pathway these products can be 

converted through a number of additional steps into the important plant hormone abscisic acid 

(Seo and Koshiba 2002) (Figure 1). 

Functional characterization of carotenogenic genes 

The functional characterization of enzymes in any organism, including plants is essential for 

the development of targeted metabolic interventions and a better understanding of global 
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metabolism. Most of the carotenogenic genes were previously functionally characterized 

through a combination of sequence analysis and complementation in E. coli, a non-

carotenogenic bacterium. E. coli is suitable for this task because the absence of carotenoid 

synthesis means that recombinant strains can be created to reproduce the target reaction of 

analysis (Misawa et al. 1990). The products synthesized in E. coli can be analyzed by 

chromatography even thought the colonies exhibit a color phenotype ranging from yellow to 

red which often provides a quicker means of identification (Figure 2). However, the GGPP 

pool in E. coli is not large enough to sustain high levels of carotenoid synthesis. Therefore, 

prior to heterologous expression of target genes for complementation studies, the amount of 

GGPP must be increased through the expression of GGPP synthase (encoded by crtE), which 

catalyzes the addition of a C5 isoprenoid unit onto GGPP. The addition of further 

carotenogenic genes then leads to the production of specific intermediates and downstream 

carotenoids. For example, the introduction of crtE, crtB, crtI and crtY facilitates the de novo 

synthesis of lycopene, β-carotene and zeaxanthin (Misawa et al. 1990; Hundle et al. 1994) and 

the further addition of crtZ and crtW (bacterial carotenoid ketolase) facilitates the synthesis of 

astaxanthin (Misawa et al. 1995). P450 carotene hydroxylases have been successfully 

characterized in E. coli (Quinlan et al. 2007). Other bacteria suitable for functional 

characterization of carotenogenic candidate genes include Zymomonas mobilis, 

Agrobacterium tumefaciens (Misawa et al. 1991) and Rhodobacter capsulatus (Bartley et al. 

1991) and the fungus Mucor circinelloides (Álvarez et al. 2006). 

 
Figure 2 – The carotenoid biosynthesis in living color. Escherichia coli strain TOP 10 was genetically 
engineered to accumulate different carotenoids as indicated (Cunningham and Grantt 1998). 
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An alternative system to validate gene function in plants is the use of loss of function mutants 

and subsequent phenotypic characterization. Mutations in pds, zds, crtiso and lycbe in rice 

produced albinism and viviparity and high accumulation of phytoene, 9,9’-di-cis-ζ-carotene 

and lycopene, respectively, confirming the function of these genes and their importance in the 

synthesis of abscisic acid (ABA) (Fang et al. 2008). Similar effects were observed in maize 

(Matthews et al. 2003; Singh et al. 2003). In pepper, a mutation in the y locus (yellow) which 

affects the enzymes capsanthin and capsorubin synthase (CCS) results in yellow fruit 

(Lefebvre et al, 1998) and in tomato the wf (white flower) locus was related with HYDB 

(Galpaz et al. 2006) (Figure 3).  

 
Figure 3 – Flowers of wf mutants. (A) wf1-1 (F2 of a cross LA23703IL3-2) (left) and its nearly isogenic wild- 
type line (F2 of the same cross). (B) wf1-2 (e1827) (left) and its isogenic line M82. (C) Flower of wf1-2 (left) 
and the wild type (right) in developmental stages 1 to 3 (Galpaz et al. 2006). 

A third method for functional gene characterization relies on the use of transgenic plants 

accumulating higher amounts or new metabolites in vivo. In this context, the hemizygous 

tomato plants overexpressing cyp97A29 and cyp97C11 genes encoding the P450 carotenoid β- 

and ε-hydroxylases, respectively, resulted in an increase of leaf violaxanthin content in the 

case of cyp97A29 and an increase of lutein and reduction in the β,β-xanthophylls in cyp97C11 

transgenic plants (Stigliani et al.  2011). Recently, a new method to functionally characterize 

carotenoid genes based on heterologous gene expression was described in rice callus (Bai et 

al. 2014). This tissue is white and just accumulates traces levels of carotenoids so the 
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release key bottlenecks in the pathway and, consequently, increase total or particular 

carotenoid levels (Figure 5). Golden Rice II (Paine et al. 2005) or high carotenoid maize (Zhu 

et al. 2008) are good examples of this strategy where the overexpression of maize psy1 and 

Pantoea ananatis crtI resulted in 26- and 156-fold increase total carotenoids, respectively. 

The third strategy involves RNAi to down regulate gene expression, thus blocking an entire 

branch of a particular pathway (e.g. α-branch in the case of carotenoids) or the conversion of a 

compound to downstream metabolites (Figure 5).  

 
Figure 5 – Strategies to modulate carotenoid levels in plants. Abbreviations as in figure 1. BKT, β-carotene 
ketolase; CRTW, bacterial β-carotene ketolase (Adapted from Berman et al. 2015; light microscopy from Bai et 
al., 2014, scale bar 20µm). 

Yu et al. (2008) reported down regulation of lyce in Brassica napus to direct the metabolic 

flux to the β-branch of the pathway, enhancing seed carotenoid content up to ca: 227 µg/g 

fresh weight (FW) (45-fold). The β-carotene to lutein ratio increased ca: 8-fold. Blocking 

HYDB through RNAi resulted in potatoes with β-carotene content of ca: 330µg/g FW 

compared to trace amounts in wild type (Van Eck et al. 2007). It is also possible to extend the 
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pathway to produce novel compounds which are not commonly present in plants (Figure 5). 

A good example is accumulation of the valuable ketocarotenoid astaxanthin in carrot, 

reaching ca: 91µg/g FW by the introduction of β-carotene ketolase from Haematococcus 

pluvialis (HpBKT) (Jayaraj et al. 2008).  Carotenoid content in plants can also be modulated 

through the creation of a metabolic sink by inducing large carotenoid-sequestering organelles 

and influencing the differentiation of proplastids into chromoplasts. The orange gene (or) 

originally discovered in a cauliflower mutant is able to catalyze the transition of proplastids to 

chromoplasts (Li et al. 2001; Lu et al, 2006; Paolillo et al. 2004). In potato, overexpression of 

cauliflower or resulted in a 10-fold increase in total carotenoids. Carotenoid levels remained 

stable after long term cold storage (Lopez et al. 2008) (Figure 5).  

Different strategies can be combined to accumulate even higher levels of carotenoids by 

influencing metabolism in a more profound manner. In rice endosperm, increasing precursor 

supply (overexpression of AtDXS) simultaneously with overexpressing carotenogenic genes 

(Zmpsy1 and PacrtI) increased total carotenoid content to ca: 30 µg/g dry weight (DW) 

compared to plants overexpressing the carotenogenic genes alone (ca: 5.5 µg/g DW; (Bai et 

al. 2015). In addition, overexpression of Arabidopsis OR together with psy1 and crtI resulted 

in ca: 25 µg/g DW (Bai et al. 2015). In maize, the development of a combinatorial nuclear 

transformation strategy designed to modify the carotenoid pathway using the elite white-

endosperm South African inbred M37W allowed the generation of transgenic plants 

expressing multiple heterologous enzymes that extended the pathway to ketocarotenoids (Zhu 

et al. 2008). The pilot study involved the introduction of five genes (Zmpsy1, Gentania lutea 

llycb and bch, and bacterial crtI and crtW) under the control of endosperm-specific promoters. 

This strategy recreated the entire pathway from GGPP to zeaxanthin and also added the 

enzyme CRTW that converts β-carotene to downstream ketocarotenoids. The recovery of 

plants carrying random combinations of genes resulted in a metabolically diverse library 

comprising plants with a range of carotenoid profiles, revealed by easily identifiable 

endosperm colors ranging from yellow to scarlet. The kernels contained high levels of β-

carotene, lycopene, zeaxanthin and lutein, as well as further commercially-relevant 

ketocarotenoids such as astaxanthin and adonixanthin (Zhu et al. 2008). 

 



General introduction 

 

 

  
12 

 
  

Impact of carotenoid enhancement on general metabolism 

Genetic engineering of a pathway may have a global effect on global metabolism due to the 

fact that precursors are consumed at the expense of other resident (Sandmann 2001).  One 

example is dwarfism of transgenic tomato plants with higher levels of carotenoids. In such 

plants GGPP was diverted away from gibberellins biosynthesis causing the dwarf phenotype. 

In other cases organ-specific promoters can direct accumulation of newly synthesized 

compounds to a particular sub-cellular compartment so the impact on plant growth and 

development is not compromised (reviewed in Peremarti et al. 2010). In addition, not all the 

collateral effects produced by metabolic engineering are detrimental and there examples in 

which carotenoid enhancement is positively correlated with stress tolerance (Goo et al. 2015; 

Kim et al. 2013) or enhancement of other nutrients like oleate and proteins (Schmidt et al. 

2015). Recently, a combined transcript, proteome, and metabolite analysis of transgenic 

maize seeds engineered for enhanced carotenoid synthesis revealed pleotropic effects in core 

metabolism, mainly in sterol and fatty acid synthesis as well as in soluble sugars (Decourcelle 

et al. 2015). Little is known regarding the effects of carotenoid-enhanced transgenic plants on 

global metabolism so it is important to address this aspect as well because of its biochemical 

and metabolic implications.  

Applications of carotenoid lines accumulating specific carotenoids 

Reduce Vitamin A Deficiency (VAD) 

Vitamin A is an essential nutrient for humans because its reduced form (retinal or 

retinaldehyde) is required for the production of rhodopsin, an indispensable component for 

vision and maintenance of epithelial and immune cells. In addition, the acidic form of vitamin 

A (retinoic acid) is a morphogen in development. Humans can produce retinal and retinoic 

acid if provided a source of retinol or one of its esters, which are abundant in meat and dietary 

products. However, retinal can also be synthesized from plant sources, which contain pro-

vitamin A carotenoids (β-carotene, α-carotene, γ-carotene, and β-cryptoxanthin), by the 

enzyme β-carotene 15,15’-monooxygenase (reviewed by Bai et al., 2011; Farré et al., 2011). 

The dietary reference intake (DRI) for vitamin A is 900 RAE (Retinol Activity Equivalents) 

for males, 700 RAE for females and 400-500 RAE for children (US Institute of Medicine 

2001). One RAE is equivalent to 1 µg of pure retinol, 2 µg of pure β-carotene dissolved in oil, 



General introduction 

 

 

  
13 

 

  

12 µg of β-carotene in food or 24 µg of other pro-vitamin A carotenoids (US Institute of 

Medicine 2001).  

Most people in the developed world have diets of sufficient diversity to ensure they achieve 

the DRI for vitamin A, but the situation in developing countries is very different. More than 

four million children, most from developing countries, exhibit clinical symptoms of severe 

VAD, including poor immunity, loss of vision in low light conditions (night blindness) and in 

extreme cases an irreversible form of blindness called xerophthalmia (Sommer 2008). VAD 

has been addressed by supplementation with an estimated cost of US$ 130 million per year 

(Berman et al. 2013). Alternative strategies include industrial fortification, biofortification, 

dietary diversification and the support of public health measures (Stein et al. 2006). In this 

context, carotenoid enhanced staple crops such as Golden Rice (Paine et al. 2005) and 

Multivitamin Corn (Naqvi et al. 2009) can cost-effectively reduce VAD (Berman et al. 2013; 

Stein et al. 2006). 

Animal Feed 

As animals do not synthesize carotenoids de novo these compounds need to be present in 

sufficient levels as components in animal feed. Feed needs to provide a balanced diet, specific 

for each animal type in order to achieve high performance. Carotenoids commercially 

produced for feed can be obtained by chemical synthesis, extracted from natural sources 

(Tagetes erecta, Capsicum and tomato) or biosynthesized by microorganisms 

(Haematococcus pluvialis, Phaffia rhodozyma, Blakeslea trispora) (Berman et al. 2015).  The 

main carotenoids used in animal nutrition include astaxanthin, β-apo-8’-carotenoic acid ethyl 

ester, lutein, zeaxanthin, canthaxanthin and capsanthin. These are approved feed additives for 

animal nutrition in the European Union (Regulation (EC) No 1831/2003) (Table 1) and in 

most of the countries around the world. These additives are classified in the EU as ‘sensory 

additives’ because they are substances that add or restore color in feedstuff; substances which, 

when fed to animals, add color to food of animal origin; and/or substances which favorably 

affect the color of ornamental fish or birds.  

For each animal type, industry requires specific carotenoids. For example, in the case of 

salmonids (e.g. salmon and trout) the orange-pink color of the flesh is normally attained by 

the addition of astaxanthin which is sometimes combined with canthaxanthin (Breithaupt 

2007) (Table 1). In crustaceans, carotenoids are used to enhance the pigmentation of the 



General introduction 

 

 

  
14 

 
  

exoskeleton. Similarly to fish, the carotenoid most commonly used in crustaceans is 

astaxanthin, but also β-carotene is used, although in some markets it is combined with 

canthaxanthin (Breithaupt 2007). Feed for ornamental birds, mainly canaries, is supplemented 

with β-carotene, canthaxanthin and lutein to pigment the plumage. In dogs and cats lycopene, 

β-carotene, lutein and zeaxanthin are usually used as antioxidant source, to enhance immune 

status, as well as to prevent age-related macular degeneration (ARMD) (Kim et al. 2000). Egg 

yolk of laying hens is enhanced by the addition of xanthophylls in feed because nonpolar 

carotenes do not contribute to its pigmentation (Hencken 1992). To this end, yellow and red 

pigments alone or in combination are used according to the color desired by the market 

(Table 1).  

Table 1 – List of authorized additives in feedingstuffs published in application of article 9t(b) of Council 
Directive 70/524/EEC concerning additives in feedingstuffs: 1. Carotenoids and xanthopylls (2004). 

Additive (EC no) Source 
Species or category of 

animal 
Maximum content (mg/kg) of 

complete feedingstuff 

Capsanthin  
(E 160c) 

Capsicum Poultry 80a 

β-Apo-8’-carotenal  
(E 160e) 

Synthetic Poultry 80a 

β-Apo-8’-carotenoic 
acid ethyl ester  

(E 160f) 
Synthetic Poultry 80a 

Lutein  
(E 161b) 

Tagetes erecta Poultry 80a 

Cryptoxanthin  
(E 161c) 

Tagetes erecta Poultry 80a 

Canthaxanthin  
(E 161g) 

Synthetic 
Poultry 

Laying hens 

Salmon / Trout 

25b 

8b 

25c 

Zeaxanthin  
(E 161h) 

Tagetes erecta 
Synthetic 

Poultry 80a 

Citranaxanthin  
(E 161i) 

Synthetic Laying hens 80a 

Astaxanthin 
(E 161j) 

Synthetic 
Biosynthesized 

Salmon / Trout 100c 

a  Alone or with other carotenes and xanthophylls. 
b Mixtures of canthaxanthin with other carotenes and xanthophylls are premitted provided that the total 
concentration of the mixture does not exceed 80 mg/kg in the complete feedingstuff.  
c  Use permitted from the age of six months onwards. The mixture of astaxanthin with canthaxanthin is permitted 
provided that the total concentration of the mixture does not exceed 100 mg/kg in the complete feedingstuff. 
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Commercial xanthophyll sources typically used to achieve the desired pigmentation and color 

include: lutein, zeaxanthin and the β-apo-8’-carotenoic acid ethyl ester as yellow sources and 

capsanthin, citranaxanthin or canthaxanthin as red sources. Similarly to laying hens, 

carotenoids are used for broilers and other meat poultry species to confer the desired yellow 

orange color of skin preferred by some consumers (Breithaupt 2007). 

Maize is an important ingredient in poultry feed often representing up to ca: 60% of the total 

feedingstuff, followed by soybean (15-30%). In this context, the use of engineered maize 

accumulating specific carotenoids might provide all nutritional requirements and xanthophylls 

to obtain the desired color in eggs or meat without additional supplements. In addition, most 

of the feed formulations of poultry and other species such as cows and pigs contain vitamin A 

as a micronutrient (e.g. 12,000 International Units per ton).  

Human food 

Most carotenoids are used in the food industry as additives due to their antioxidant and 

colorant properties (Table 2).  

Principal processed foods that include carotenoids are cheese, fruit and vegetable preparations 

and jam, jellies and marmalades. The main carotenoids used as food additives are produced 

by chemical synthesis or purification from a natural source (e.g. Bixa orellana, Solanum 

lycopersicum, Paprika and Tagetes erecta). Biosynthesis by yeast or algae in a reactor is also 

possible. In Europe, before a new additive can be used in foods it has to be approved by the 

European Commission which also regulates the maximum level permitted in the final food 

product (Table 2). Similarly to Paprika extracts, the generation of new maize lines 

accumulating specific carotenoids or carotenoid mixtures could allow the possibility of 

extracting them and further use them as additives in processed foods. 
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Table 2 – List of carotenoids used in food industry. 

Additive 
(EC no) 

Source Applications in food industry 
Maximum 

limit (mg/kg)  
Regulation 

β-carotene 
(E 160a) 

Synthetic 

Biosynthesized 

fats and oils, cheese products, processed 
meat and fish, jam, jellies and marmalades, 

fruit and vegetable preparations, butters, 
breakfast cereals 

quantum satis 
(EU)No 129/2011 
(EU) No 738/2013 

Annato, 
bixin, 

norbixin 

(E 160b) 

Bixa orellana 

drinks, desserts, edible ices, fats and oils, 
bakery, batters, cheese products, breakfast 
cereals, decorations and coatings, snacks, 

milk products, processed fish and nuts 

10-50 (EU)No 129/2011 

Paprika 
extract, 

capsanthin, 
capsorubin 

(E 160c) 

Paprika 
cheese products, processed meat and fish, 

jam, jellies and marmalades, fruit and 
vegetable preparations, breakfast cereals 

quantum satis 

(EU) No 129/2011 
(EC) No 738/2013 
(EC) No 601/2014 
(EC)No 093/2014 

Lycopene 
(E 160d) 

Solanum 
lycopersicum 

Synthetic 

drinks, desserts, edible ices, milk products, 
protein products, food supplements, fruits 

and vegetables, chewing gum, cheese 
products, seasonings and condiments, jam, 

jellies and marmalades, coatings and 
decorations for meat, dietary foods for 
weight control diets, dietary foods for 

special medical purposes, soups, bakery, 
batters, sauces, snacks, processed fish and 

nuts 

5-500 
(EU)No 129/2011 
(EU) No 232/2012 

β-Apo-8’-
carotenal 

(E 160e) 
Synthetic 

processed cheese, fruit and vegetable 
preparations, processed fish 

100-250 (EU) No 232/2012 

Lutein 

(E 161b) 
Tagetes erecta 
Biosynthesized 

processed cheese, fruit and vegetable 
preparations, jam, jellies and marmalades, 

processed fish 
100-250 (EU) No 232/2012 
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AIMS AND OBJECTIVES 

The overarching aim of my dissertation has been to develop a mechanistic understanding of 

carotenoid accumulation, especially β-carotene, in maize endosperm by using different 

approaches and to evaluate the impact of high carotenoid transgenic lines on starch 

metabolism. A further aim was to generate transgenic maize hybrids with high carotenoid 

content and investigate their agronomic properties. 

My specific objectives were to: 

1.  Analyze the effects of Zmcyp97C on carotenoid metabolism in an Arabidopsis 

mutant lacking lutein. 

2.  Generate different transgenic M37W maize lines with downregulated β-hydroxylase 

genes and evaluate the impact of this downregulation in different genetic 

backgrounds generated through crossing with inbred lines and transgenic lines with 

specific lutein and zeaxanthin content. 

3. Unravel the mechanism(s) of carotenoid accumulation in maize as a result of creating 

a carotenoid sink in endosperm. 

4.  Investigate the interaction between the carotenoid and starch biosynthetic pathways 

as they share common precursors. 

5. Investigate the agronomic performance of transgenic maize hybrids by crossing a 

high carotenoid accumulating transgenic line with different inbred lines belonging to 

well-known heterotic groups. 
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CHAPTER 1: CLONING AND FUNCTIONAL 

CHARACTERIZATION OF MAIZE ( Zea mays L.) 

CAROTENOID EPSILON HYDROXYLASE  

1.1 Abstract 

The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to 

understand how the pathway is regulated and to obtain the basic information required for 

metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized 

in plants although this would provide insight into the hydroxylation steps in the pathway. I 

therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and 

cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε 

hydroxylase and member of the cytochrome P450 family. The corresponding cyp97C19 

genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. 

We expressed cyp97C19 cDNA under the control of the constitutive CaMV 35S promoter in 

the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional cyp97C (lut1) gene. 

The analysis of carotenoid levels and composition showed that lutein accumulated to high 

levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. 

These results allowed the unambiguous functional annotation of maize CYP97C19 as an 

enzyme with strong zeinoxanthin ε-ring hydroxylation activity. 

1.2 Introduction 

Gene functional characterization is important to elucidate the regulatory mechanism of a 

biosynthetic pathway and to acquire fundamental information for pathway engineering. Non-

heme di-iron carotenoid β-hydroxylases (BCH) and heme-containing cytochrome P450 

hydroxylases, (CYP)-type hydroxylases are primarily responsible for β- hydroxylation of β,β-

carotenoids and α-hydroxylation of ε,β-carotenoids, respectively, but exhibit some 

overlapping activities, most notably in hydroxylation of the β-ring of α-carotene (Kim et al. 

2009). To date, multiple BCH-type hydroxylases from plants and bacteria have been cloned 

and functionally characterized (Farré et al. 2010; Li et al. 2010; Zhu et al. 2009) but only a 

few carotenoid ε-hydroxylases, which are indispensable for e.g. lutein synthesis, have been 

functionally characterized in plants (Figure 1.1).  
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Figure 1.1 – Biosynthesis pathway from lycopene to lutein and the characterized CYP-type hydroxylases 
for lutein synthesis. Abbreviations: LYCB, lycopene β-cyclase; LYCE, lycopene ε-cyclase; CYP97C, carotene 
ε-ring hydroxylase; HYDB, β-carotene hydroxylase (Adapted from Kim et al. 2009). 

In Arabidopsis thaliana, two genes encode BCH (BCH1 and BCH2) and two genes code for 

CYP-type (carotenoid β-hydroxylase CYP97A3 and carotenoid ε-hydroxylase CYP97C1) 

(Kim and DellaPenna 2006; Kim et al. 2009; Sun et al. 1996; Tian and Dellapenna 2001).  

These genes were successfully characterized by the identification of lut1 and lut5 locus 

mutants (lacking lutein). CYP97C1 catalyzes hydroxylation of the ε-ring of α-carotene to 

produce α-cryptoxanthin or ε-ring of zeinoxanthin to yield lutein, whereas CYP97A3 is 

responsible mainly for the hydroxylation of the β-ring of α-carotene to produce zeinoxanthin 

or β-ring of α-cryptoxanthin to yield lutein (Kim and DellaPenna 2006; Tian et al. 2003) 

(Figure 1.1).  

Rice CYP97C2 and CYP97A4, the orthologs of A. thaliana CYP97C1 and CYP97A3, have 

been isolated and characterized through in vitro functional complementation in E. coli 

(Quinlan et al. 2007). Rice CYP97A4 is highly active towards the β-ring of both α-carotene 

and β-carotene, but it is inactive towards the ε-ring of α-carotene. Conversely, rice CYP97C2 

shows high activity towards the ε-ring and a moderate activity toward the β-ring of α-

all-trans-lycopene

δ-carotene

α-carotene

lutein

LYCE

LYCB

CYP97C

HYDBCYP97C
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carotene, but a very low activity toward the β-rings of β-carotene in an E. coli functional 

complementation system (Quinlan et al. 2007). Rice carotenoid β-ring hydroxylase CYP97A4 

was demonstrated to play an important role in α-carotene hydroxylation through the analysis 

of rice CYP97A4 mutants (Lv et al. 2012) (Figure 1.1).  

Tomato CYP97C11 and CYP97A29 genes were isolated and characterized by in planta 

analysis using transgenic tomato plants (Stigliani et al. 2011). The constitutive overexpression 

of the tomato carotenoid ε-hydroxylase cyp97C11 in transgenic tobacco significantly 

increased the amount of lutein in the leaves and was found to have an important function in 

alleviating chilling stress-induced photoinhibition and photooxidation (Zhou et al. 2013) 

(Figure 1.1). In addition to CYP97 P450 type carotenoid hydroxylases in higher plants, 

cytochrome P450 type β-carotene hydroxylases CYP175 are exclusively present in the 

thermostable bacterium Thermus thermophilus HB27 and Asy the yeast Xanthophyllomyces 

dendrorhous shows β-carotene hydroxylase activity in the conversion of β-carotene to 

zeaxanthin (Blasco et al. 2004; Ojima et al. 2006). Recently the cytochrome P450-type 

PuCHY1 belonging to the CYP97B subfamily from red algae Porphyra umbilicalis was found 

to encode functional β-carotene hydroxylase (Yang et al. 2014). 

To date, only carotenoid ε-hydroxylases from A. thaliana, rice and tomato have been 

functionally characterized (Kim et al. 2009; Lv et al. 2012; Quinlan et al. 2007; Stigliani et al. 

2011; Tian et al. 2003) (Figure 1.1) by using different strategies described in the general 

introduction. In maize, the P450-type carotenoid hydroxylase cyp97C19 gene represents the 

ortholog of A. thaliana CYP97C1. However, the gene has not been functionally characterized. 

Here I describe the isolation of the maize cyp97C19 gene and the elucidation of its genomic 

structure, followed by a functional characterization in transgenic Arabidopsis thaliana mutant 

lut1 (lacking CYP97C). 

1.3 Materials and methods 

1.3.1. Plant materials  

Maize plants (Zea mays L. cv B73) were grown in the greenhouse and growth chamber at 

28/20°C day/night temperature with a 10 h photoperiod and 60–90% relative humidity for the 

first 50 days, followed by maintenance at 21/18°C day/night temperature with a 16-h 
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photoperiod thereafter. Plants were self-pollinated to obtain seeds. Mature leaf and endosperm 

tissues were frozen rapidly in liquid nitrogen and stored at –80°C.  

Control A. thaliana plants (wild-type Col-0 or lut1 mutant; Tian et al. 2004) and transgenic 

plants derived from these, were grown in a growth chamber or greenhouse with a 16h 

photoperiod at 23°C. Harvested dry A. thaliana seeds were stored for 2 weeks at 4°C before 

planting in soil or on agar. 

1.3.2 Nucleic acid isolation and cDNA synthesis 

Genomic DNA was extracted from leaf tissue as described by Edwards et al. (1991). Total 

RNA was isolated using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) and DNA 

was removed with DNase I (RNase-free DNase Set, Qiagen). Total RNA was quantified using 

a Nanodrop 1000 spectrophotometer (Thermo Scientific, Vernon Hills, Illinois, USA), and 2 

µg total RNA was used as template for first strand cDNA synthesis with Ominiscript reverse 

transcriptase (Qiagen) in a 20 µl total reaction volume, following the manufacturer’s 

recommendations. 

1.3.3 Cloning and sequencing of the putative maize CYP97C cDNA 

The rice cyp97C2 cDNA (GenBank: AK065689) was used as a query to search the maize 

expressed sequence tag (EST) database, and matches were used to design primers for full-

length cDNA cloning. EST sequences (GenBank: CF244398 and CF245241) from inbred line 

B73 were found with high sequence identity to the ends of the rice cyp97C2 cDNA. The full-

length cDNA was amplified using 1 µl cDNA prepared as above from the endosperm of 

maize inbred line B73, 25 days after pollination (DAP), primers forward 5́-CAC ACG GCG 

ATG CCT GCC ACG GTC TTC-3ʹ and reverse 5ʹ-TCT ATT TCG ATT CGC TCA GCG 

CTA ACT C-3́, and the GoTaq DNA Polymerase Kit (Promega, Madison, WI, USA) in a 50 

µl reaction volume. The samples were heated to 95°C for 3 min, followed by 30 cycles at 

94°C for 45 s, 60°C for 45 s and 72°C for 2 min. After the last amplification cycle, the 

samples were incubated at 72°C for 10 min. The products were purified from a 0.8% w/v 

agarose gel using the Geneclean II Kit (BIO 101 Systems, Solon, OH, USA) and cloned into 

the PCR II TOPO vector (TA Cloning Kit, Invitrogen, Carlsbad, CA, USA) for sequencing 

using the Big Dye Terminator v3.1 Cycle Sequencing Kit on a 3130x1 Genetic Analyzer 

(Applied Biosystems, Foster City, CA, USA).  
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1.3.4 Bioinformatic analysis 

The Maize Genetics and Genomic Database (http://www.maizegdb.org/), the GRAMENE 

database (http://www.gramene.org/) and GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

were searched for homologous sequences using BLAST, and multiple sequences were aligned 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Protein sequences were 

screened for chloroplast signal peptides using the ChloroP 1.1 server at http://www.cbs. 

dtu.dk/services/ChloroP/ (Emanuelsson et al. 1999). Gene structures were predicted by 

aligning mRNA to genomic DNA using Spidey (http://www.ncbi.nlm.nih.gov/spidey/). 

1.3.5  Construction of maize CYP97C gene expression vector for A. thaliana 

transformation 

Gene-specific primers, with a NcoI restriction site (underlined) in the forward primer 5́-CCA 

TGG ATT AGA TGC CTG CCA CGG TCT TCG CCT CC-3ʹ and a BstEII restriction site in 

the reverse primer 5ʹ GGT CAC CTA TTT CGA TTC GCT CAG CGC TAA CT-3́ were used 

to amplify the full-length maize CYP97C19 coding sequence, which was then inserted into 

binary vector pCAMBIA1302, linearized with the same enzymes to yield pCAMBIA-

ZmCYP97C19.  

1.3.6 Transformation and selection of A. thaliana 

The pCAMBIA-ZmCYP97C19 plasmids were introduced into Agrobacterium tumefaciens 

strain GV3101 by electroporation (Mattanovich et al. 1989) and the recombinant bacteria 

were grown at 28°C overnight before the A. thaliana lut1 mutant was transformed using the 

floral dip method (Clough and Bent 1998). A. thaliana seeds were wetted with 75% ethanol 

for 1 min, washed once with sterile water, surface sterilized with a 50% bleach containing 

0.05% Tween-20 for 10 min, and rinsed with sterile water five times. A. thaliana T1 seeds 

obtained after floral dip transformation were selected on 0.7% agar plates containing half-

strength Murashige and Skoog (MS) medium (Murashige and Skoog 1962) containing 1% 

sucrose, supplemented with 50 mg/l hygromycin B (Roche, Mannheim, Germany) for 10 days 

in a growth chamber, before transfer to standard horticultural soil in the greenhouse. A. 

thaliana transformation was performed in School of Life Sciences, Changchun Normal 

University, Changchun, China. T2 seeds were harvested and germinated seedlings were 

selected on half-strength MS medium containing 1% sucrose, 0.7% agar and 50 mg/l 
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hygromycin B for 7 days in a growth chamber. Five hygromycin-resistant plants were 

transferred to individual glass pots (7 cm diameter x 11 cm) filled with MS medium 

containing 2% sucrose and 0.7% agar for 2 weeks in the growth chamber. A. thaliana (Col-0 

and lut1 mutant) plants were cultured on the same MS medium without hygromycin B as 

controls. For each line and control, the rosette leaves from at least 50 plants were pooled in 

three biological replicates for HPLC analysis, DNA and RNA extraction.  

1.3.7 DNA and RNA analyses 

Leaf genomic DNA (10 µg for A. thaliana) was digested with appropriate restriction enzymes 

and fractionated by 0.8% (w/v) agarose gel electrophoresis before blotting onto a positively-

charged nylon membrane (Roche) according to the manufacturer’s instructions. Nucleic acids 

were fixed by UV crosslinking. The transferred DNA fragments were hybridized with 

appropriate digoxigenin-labeled probes at 42°C overnight using DIG Easy Hyb buffer 

(Roche). The membrane was washed twice for 10 min in 2x SSC, 0.1% SDS at room 

temperature, twice for 30 min in 0.5x SSC, 0.1% SDS at 68°C, once for 20 min in 0.2x SSC, 

0.1% SDS at 68ºC and then once for 10 min in 0.1x SSC, 0.1% SDS at 68°C. After 

immunological detection with anti-DIG-AP (Roche) chemiluminescence generated by 

disodium 3-(4-methoxyspiro(1,2-dioxetane-3,2ʹ-(5ʹ-chloro)tricyclo[3.3.1.13,7]decan)-4-yl)phe 

nyl phosphate (CSPD) (Roche) was detected on Kodak BioMax light film (Sigma-Aldrich, St. 

Louis, USA) according to the manufacturer’s instructions. The 1228-bp maize CYP97C19 

probe for DNA blot analysis was prepared by PCR under the conditions described above 

using primers forward 5ʹ-GTC TCC GAG TTC CTC TTC GGC TCC GGC T-3ʹ and reverse 

5ʹ-CTA TTT CGA TTC GCT CAG CGC TAA CTC A-3ʹ. 

Total RNA (20 µg) extracted from A. thaliana leaves was fractionated on a denaturing 1.2% 

(w/v) agarose gel containing formaldehyde prior to blotting. The membrane was probed with 

digoxigenin-labeled partial cDNAs prepared as above using the PCR-DIG Probe Synthesis 

Kit (Roche), with hybridization carried out at 50°C overnight using DIG Easy Hyb buffer and 

the same probe as described above. Washing, immunological detection and CSPD 

chemiluminescence were also carried out as described above.  
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1.3.8 Carotenoid extraction and quantification 

Carotenoids were extracted from A. thaliana freeze-dried leaves by heating in methanol 

containing 6% KOH for 20 min at 60°C. The extract was partitioned into 10% ether in 

petroleum ether (bp 40-60°C), the upper phase was collected and the solvent evaporated. 

After re-dissolving in acetone, the carotenoids were analyzed by HPLC on a 15 cm Nucleosil 

C18 column at 20°C with a mobile phase of acetonitrile/methanol /2-propanol (85:10:5). 

Absorbance at 450 nm and individual peaks were recorded with a Kontron DAD 440 

photodiode array detector. Individual carotenoids were identified by comparing with authentic 

standards, their retention times, and absorbance spectra. Carotenoid extraction and 

quantification was performed in Biosynthesis Group, Molecular Biosciences, Goethe 

University Frankfurt, Frankfurt, Germany. 

1.4 Results 

1.4.1 Cloning and characterization of the maize cyp97C19 gene 

The maize cyp97C19 cDNA encoding a full-length putative carotenoid ε-hydroxylase was 

amplified from the 25-DAP endosperm mRNA of maize inbred line B73 by RT-PCR 

(GenBank: GU130217). The full-length Zmcyp97C19 cDNA encoded a 556-residue protein 

with a predicted molecular weight of 61.9 kDa. The chloroplast transit peptide prediction 

software ChloroP v1.1 indicated the presence of a putative 53-residue transit peptide. The 

ZmCYP97C19 amino acid sequence showed 88.6% similarity and 82.6% identity to rice 

CYP97C2, 80.8% similarity and 69.9% identity to A. thaliana CYP97C1, and 78.4% 

similarity and 68.7% identity to tomato CYP97C11 (Figure 1.2). 

The Zmcyp97C19 cDNA sequence was used to screen MaizeGDB maize genomic resources 

to identify the corresponding gene. A single genomic sequence from chromosome 1 of the 

maize B73 genome matched the Zmcyp97C19 cDNA sequence with 100% identity, 

suggesting that Zmcyp97C19 is a single-copy gene (GenBank: AC177851). The Zmcyp97C19 

gene was found to have nine introns and ten exons (Figure 1.3) which is the same structure as 

the homologous rice gene cyp97C2 (Quinlan et al. 2007). In contrast, the homologous genes 

in A. thaliana (CYP97C1) and tomato (cyp97C11) have eight introns and nine exons (Tian et 

al. 2004; Stigliani et al. 2011). 
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Figure 1.2 – Multiple alignments of CYP97C protein sequences from maize (Zm, Zea mays; GenBank: 
GU130217), rice (Os, Oryza sativa; GenBank: AK065689), Arabidopsis (At, Arabidopsis thaliana; 
GenBank: NM_115173) and tomato (Sl, Solanum lycopersicon; GenBank: EU849604). 
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Figure 1.3 – Gene structures for maize, rice, tomato and A. thaliana CYP97C homologs. Orange boxes 
represent exons. Blue lines represent introns. The lengths of DNA sequences are indicated on the above. Zm, Zea 
mays cDNA; GenBank: GU130217), rice (Os, Oryza sativa cDNA; GenBank: AK065689), Arabidopsis (At, 
Arabidopsis thaliana cDNA; GenBank: NM_115173), tomato (Sl, Solanum lycopersicon cDNA and genomic 
DNA; GenBank: EU849604 and EU849603). 

1.4.2 Screening and selection of transgenic A. thaliana plants 

A. thaliana lut1 mutant plants were transformed with the maize CYP97C19 gene controlled by 

the constitutive CaMV 35S promoter, and self-pollination gave rise to T1 seeds that yielded 

hygromycin-resistant T1 plants. These plants were analyzed by genomic PCR to confirm the 

integrity of the ZmCYP97C19 transgene using primers that annealed to the CaMV 35S 

promoter and ZmCYP97C19 sequences. The complete ZmCYP97C19 transgene was present in 

15 T1 lines and leaves from these lines were used to determine carotenoid profiles by HPLC 

analysis. Three lines that accumulated the highest levels of lutein in the leaves were used for 

in depth analysis. T2 seedlings from these three self-pollinated T1 lines were selected on 

hygromycin, and rosette leaves were taken from these transgenic T2 plants as well as lut1 

mutant and wild-type controls. The leaves were used for HPLC analysis to determine the 

carotenoid profiles and DNA and RNA extraction for molecular characterization.  
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1.4.3 Analysis of transgene integration 

The three transgenic T2 lines were compared by DNA blot analysis with wild-type and lut1 

mutant controls. The DNA was digested with EcoRI and XbaI and the blots were probed 

under high stringency conditions with a 1228-bp ZmCYP97C19 DNA sequence lacking 

EcoRI and XbaI restriction sites.  

 
Figure 1.4 – DNA blot analysis of Zmcyp97C19 transgene in A. thaliana wild type, lut1 mutant and three 
different transgenic lines transformed with Zmcyp97C19 driven by the CaMV 35S promoter. Genomic 
DNA (10 µg) from rosette leaves was separately digested with EcoRI (A) and XbaI (B). The DNA blot was 
hybridized with a Zmcyp97C19 gene probe.  WT, wild-type (Col-0); Lut1, lut1 mutant; L1, line 1; L2, line 2; L3, 
line 3. 

 

The results showed that the three transgenic lines had different hybridization band patterns 

indicating they were independent transformants, whereas the wild-type and lut1 mutant 

controls did not show any hybridizing bands as expected (Figure 1.4). Multiple bands were 

visible on the DNA blots representing lines 1 and 3 regardless of which enzyme was used, 

indicating multiple copies of the transgene were present in the genome, whereas line 2 

presented three bands with each of the enzymes, suggesting the presence of three transgene 

integration sites (Figure 1.4). 

WT Lut1 L1    L2     L3   

A

Kb

WT Lut1 L1    L2    L3
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1.4.4 Analysis of transgene expression  

Transgene expression was analyzed by mRNA blot, revealing that Zmcyp97C19 mRNA was 

present in the rosette leaves of all three transgenic lines, whereas no mRNA was present in the 

controls (Figure 1.5). This confirmed that the transgene was intact and strongly expressed in 

all three transgenic lines. 

 
Figure 1.5 – RNA blot analysis of maize cyp97C19 transgene expression in A. thaliana wild-type, lut1 
mutant and three different transgenic lines transformed with Zmcyp97C19 driven by the CaMV 35S 
promoter. Each lane was loaded with 20 µg total RNA from rosette leaves. Ribosomal RNA stained with 
ethidium bromide is shown as a loading control. The blot was hybridized with a Zmcyp97C19 probe. WT, wild 
type (Col-0); Lut1, lut1 mutant; L1, line 1; L2, line 2; L3, line 3. 

1.4.5 Analysis of carotenoid profiles  

The carotenoid composition of rosette leaves from the transgenic lines, wild-type plants and 

lut1 mutants was determined by HPLC, and the results are summarized in Table 1.1. Lutein 

and β-carotene were the predominant carotenoids in wild-type leaves, whereas zeinoxanthin 

and β-carotene were the major carotenoids in the leaves of lut1 mutant plants, but lutein was 

only present in trace amounts (Figure 1.6). In contrast, the expression of Zmcyp97C19 in the 

lut1 mutant background caused a significant increase in the lutein content (to 26.5%, 32.2% 

and 49.6% of total carotenoids in transgenic lines 1, 2 and 3, respectively). The lutein 

appeared to be derived from zeinoxanthin, because the abundance of this carotenoid was 

reduced from 36.5% in the lut1 mutant to 15.5%, 14.7% and 7.3% in transgenic lines 1, 2 and 

3, respectively (Figure 1.6 and Table 1). Zmcyp97C19 therefore appears to encode a 

functional carotenoid ε-hydroxylase, which catalyzes the conversion of zeinoxanthin to lutein 

by adding a hydroxyl group at the 3ʹ position of the ε-ring (Figure 1.1). The transgenic lines 

also accumulated higher levels of violaxanthin than the lut1 mutant, this being the major β,β-

xanthophyll, but lower levels of β-carotene, zeaxanthin and antheraxanthin (Table 1.1).   

WT Lut1 L1   L2     L3  

Zmcyp97C

rRNA
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Table 1.1 – Abundance of individual carotenoids in Arabidopsis thaliana leaves (%) and the total 
carotenoid content (µg/g dry weight). 

 Nx Viox Anx Lut  Zeax HOaC aCar bCar Total Car  

WT  1.1±0.4 5.7±2.6 1.6±1.0 54.9±5.4 tr nd tr 35.8±8.3 1271.3±385.5 

lut1 1.1±0.3 7.5±0.8 10.1±1.1 tr 3.8±0.3 36.5±2.8 tr 41.0±3.1 719.3±208.9 

Line 1 1.6±0.8 17.2±4.6 6.1±1.4 26.5±8.3 tr 15.7±5.3 tr 29.1±2.5 1251.7±116.2 

Line 2 1.2±0.3 20.0±4.2 4.8±0.9 32.2±4.3 2.6±2.0 14.1±0.8 tr 25.2±2.3 923.7±96.5 

Line 3 1.3±0.5 13.4±1.1 4.0±0.4 49.6±2.6 tr 7.3±1.0 tr 22.6±2.3 913.0±202.7 

Values are mean ± standard deviation of at least three replicates. Abbreviations: Nx, neoxanthin; Viox, 
violaxanthin; Anx, antheraxanthin; Lut, lutein; Zeax, zeaxanthin;  HOaC, zeinoxanthin; aCar, α-carotene; bCar, 
β-carotene; Total Car, total carotenoids; nd, not detected; tr, trace, less than 0.1%; WT, wild type. 

 

 

 
Figure 1. 6 – HPLC  analysis of carotenoids in rosette leaves of A. thaliana wild-type, lut1 mutant and 
transgenic lines transformed with ZmCYP97C19 driven by the CaMV 35S promoter. Peak 1, violaxanthin; 
peak 2, lutein, peak 3, β-carotene; peak 3', β-carotene cis isomer; peak 4, antheraxanthin; peak 5, zeaxanthin; 
peak 6, zeinoxanthin; peak 7, α-carotene. Wild type, Col-0; Lut1, lut1 mutant; CYP97C19 in Lut1, transgenic 
lines. 
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1.5 Discussion  

The catalytic activities of different carotenogenic enzymes determine the abundance and 

composition of carotenoids in maize endosperm. Phytoene synthase (PSY) is a major rate-

limiting step in the carotenoid biosynthesis pathway. Multiple isozymes of PSY regulate 

carotenogenesis in a tissue-specific manner in maize and rice (Li et al. 2008; Welsch et al. 

2008) and fluctuating levels of the enzymes exert quantitative effects on the carotenoid 

content, as demonstrated in transgenic canola (Shewmaker et al. 1999), tomato (Fraser et al. 

2002) and maize (Zhu et al. 2008). Other enzymes are responsible for the carotenoid profile. 

For example, lycopene ε-cyclase (LYCE) plays a key role by competing with lycopene β-

cyclase (LYCB) to regulate the formation of α-carotene and its derivatives in maize 

endosperm (Harjes et al. 2008).  

Two classes of structurally-unrelated enzymes catalyze the hydroxylation of α- and β- ionone 

rings in higher plants. These are the CYP97-type heme-containing cytochrome P450 

hydroxylases (Tian et al. 2004; Kim and DellaPenna, 2006) and the ferredoxin-dependent 

BCH-type non-heme di-iron hydroxylases (Sun et al. 1996, Tian and DellaPenna, 2001; Tian 

et al. 2003). These enzyme classes have overlapping substrate specificities but in vivo analysis 

has shown that BCH isozymes are predominantly responsible for the synthesis of β,β-

xanthophylls, i.e. they have limited activity towards the ε-ring of α-carotene but significant 

activity towards the β-ring with exception of the maize crtRB3 (also known as BCH1) that 

affects the accumulation of α-carotene (Zhou et al. 2012).  In contrast, the CYP97 enzymes 

have evolved to function preferentially the synthesis of α-xanthophylls and show substantial 

divergence in their preferences for in vivo substrates. Maize BCH2 (also known as hyd3 and 

CrtRB1) is developmentally regulated but preferentially expressed in the endosperm, where it 

governs the critical steps in the conversion of β-carotene to zeaxanthin via β-cryptoxanthin 

(Vallabhaneni et al. 2009; Li et al. 2010; Babu et al. 2012, Yan et al. 2010; Naqvi et al. 2011). 

Hypomorphic alleles therefore cause the accumulation of β-carotene (Vallabheneni et al. 

2009; Yan et al. 2010).  

Many BCH-type β-carotene hydroxylases from higher plants have been extensively 

characterized, allowing their use in rational metabolic engineering strategies (Farré et al. 

2010; 2014; 2015). However, only the Arabidopsis, rice and tomato CYP P450 carotenoid ε-

hydroxylases have received similar attention (Tian et al. 2004; Kim et al 2009; Quinlan et al. 

2007; Stigliani et al. 2011). A. thaliana CYP97C1 shows high activity towards the α-carotene 
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ε-ring and moderate activity toward the β-ring, but minimal activity toward the β-rings of β-

carotene (Tian et al. 2004; Kim et al. 2009). In contrast, rice CYP97C2 shows weak ε-ring 

hydroxylase activity and no β-ring hydroxylase activity in E. coli cells accumulating α-

carotene (not an in vivo substrate) or β-carotene (Quinlan et al. 2007). Tomato CYP97C11 

only shows activity towards the ε-ring of α-carotene (Stigliani et al. 2011). The preferred 

pathway for lutein synthesis in Arabidopsis, rice and tomato is through the sequential action 

of CYP97A and CYP97C (Kim et al. 2009; Stigliani et al. 2011; Quinlan et al. 2012). 

CYP97A converts α-carotene to zeinoxanthin, which is in turn hydroxylated by CYP97C to 

form lutein. In tomato, hydroxylation of the ε-ring of zeinoxanthin by CYP97C11 appears to 

be the most critical step in lutein synthesis because the activity of this enzyme cannot be 

replaced by CYP97A29 or by either of the tomato BCH-type carotenoid hydroxylases. The 

hydroxylation of α-carotene to lutein in tomato is therefore mediated by the β-hydroxylation 

of α-carotene to zeinoxanthin catalyzed by CYP97A29 followed by the ε-ring hydroxylation 

of zeinoxanthin to lutein by CYP97C11 (Stigliani et al. 2011). The first step can be partially 

complemented by CRTR-B1 (BCH1), CRTR-B2 (BCH2) or CYP97C11, but the ε-ring of 

zeinoxanthin can only be hydroxylated by CYP97C11 (Stigliani et al. 2011). The constitutive 

overexpression of the tomato carotenoid ε-hydroxylase CYP97C11 in transgenic tobacco 

significantly increased the amount of lutein in the leaves and alleviated the photo-inhibition 

and photo-oxidation caused by chilling stress (Zhou et al. 2013).  

The cDNA encoding the putative carotenoid ε-hydroxylase CYP97C19 was isolated from 

maize endosperm and constitutively overexpressed in the A. thaliana lut1 knockout mutant, 

which has the low-lutein cyp97C1 mutant phenotype. This was confirmed by the analysis of 

carotenoid pigments in wild-type and lut1 mutant plants, which showed carotenoid profiles 

consistent with previous results (Kim et al. 2009). The lutein levels in transgenic A. thaliana 

plants overexpressing Zmcyp97C19 were much higher than in the untransformed lut1 mutant 

although not as high as wild-type levels (Table 1.1). Furthermore, the high levels of 

zeinoxanthin in the lut1 mutant were reduced in the transgenic lines, confirming that 

ZmCYP97C19 is an ε-hydroxylase that can use zeinoxanthin as a substrate. However, we did 

not detect α-cryptoxanthin, the α-carotene derivative hydroxylated at position 3 of the ε-ring, 

in either the lut1 mutant or the transgenic lines, whereas trace amounts were present in wild-

type leaves (Table 1.1 and Figure 1.6).  This suggests that α-carotene may not be a preferred 

substrate for ZmCYP97C19, or that any α-cryptoxanthin thus formed is efficiently converted 

to lutein by the endogenous β-ionone ring hydroxylase.  
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The carotenoid content and composition of maize endosperm varies substantially between 

varieties reflecting different patterns of carotenogenic gene expression (Harjes et al. 2008; 

Messias et al. 2014). The expression of psy1, hyd3 (bch2) and cyp97C has recently been 

evaluated in 22 different maize landraces (Messias et al. 2014). High levels of Zmcyp97C 

expression levels or a low hyd3/cyp97C expression ratio correlated positively with high lutein 

levels, which is consistent with our finding that ZmCYP97C is needed to produce lutein. In 

contrast, high levels of hyd3 expression or a high hyd3/cyp97C expression ratio correlated 

positively with high zeaxanthin levels (Messias et al. 2014). The Zmcyp97C19 mRNA levels 

remained constant throughout endosperm development in the white maize inbred variety 

M37W (Farre et al. 2013).  

The functional analysis of enzymes in crops is necessary for the development of targeted 

metabolic interventions. In this context, ZmCYP97C19 appears to be important because of its 

key role in lutein biosynthesis and therefore its potential application in cereals for lutein 

biofortification. Lutein is increasingly regarded as an essential nutrient because of its 

proposed role in maintaining vision and preventing age-related maculopathy (Farre et al. 

2013). Lutein is also valuable in the food, feed and nutraceutical markets as an additive and 

health-promoting natural product (Giorio et al. 2013; Berman et al. 2014). A better 

understanding of the regulation of lutein synthesis in plants is therefore likely to be valuable 

for human and animal health and in the commercial development of carotenoid-based 

supplements. 

1.6 Conclusions 

A putative carotenoid ε-hydroxylase, named CYP97C19, was correctly amplified from B73 

maize. An in depth bioinformatic analysis revealed that CYP97C19 sequence has high 

similarity and identity of those CYP97C previously functional characterized in rice, 

Arabidopsis and tomato and that it is single copy in maize. Overexpression of maize 

CYP97C19 in Arabidopsis lut1 mutant (lacking of lutein) is a good system to functional 

characterize the gene. Up to 15 independent transgenic lines were regenerated and 3 of them 

were analyzed in detail. Nucleic acid blots confirmed multiple transgene integration sites and 

high transgene expression. Metabolic profile of the carotenoid pathway confirmed the 

presence of lutein in transgenic lines at expenses of zeinoxanthin which allows getting the 

conclusion that maize CYP97C19 is a functional ε-hydroxylase. 
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CHAPTER 2: THE ROLE OF THE ARABIDOPSIS ORANGE 

GENE (OR) ON CAROTENOID AND KETOCAROTENOID 

ACCUMULATION IN MAIZE HYBRIDS  

2.1 Abstract 

The Arabidopsis ORANGE gene (OR) has been reported to play an important role in 

carotenoid accumulation in cauliflower, potato and rice. I overexpressed AtOR in white maize, 

which normally accumulates only trace amounts of carotenoids (lutein and zeaxanthin), under 

the control of the endosperm specific wheat LMW glutenin promoter in order to understand 

its function and ascertain its impact on carotenoid accumulation. Carotenoid content in OR 

lines increased up to 17µg/g DW (20-fold increase) compared with wild type. Zeaxanthin and 

lutein were the predominant carotenoids in OR lines. Transcript analysis of endogenous genes 

in the carotenoid and MEP pathways and also pftf (a transcription factor involved in 

chromoplasts formation), revealed that only 1–deoxy-D–xylulose 5–phosphate synthase 1 

gene (dxs1) was upregulated in OR lines compared with wild type, whereas expression of all 

other genes I analyzed remained unchanged. The highest carotenoid accumulating OR line 

was crossed with four transgenic lines with different carotenoid and ketocarotenoid content 

and composition in order to evaluate the role of OR on carotenoid accumulation in different 

genetic backgrounds. My results indicate that OR increased carotenoid content when the 

endogenous carotenoid pool in specific lines was low; whereas it had no effect when the 

native carotenoid pool was high.  

2.2 Introduction 

Strategies to modulate carotenoid content and composition were described in the general 

introduction. One of the strategies does not involve modulation of the carotenoid pathway per 

se; rather it allows increasing carotenoid accumulation by enhancing storage capacity. 

Chromoplasts accumulate high levels of carotenoid pigments other than chlorophyll in 

various structures, such as crystalloids (tomato fruits), fibrils (pepper fruits) or membranes 

(daffodil petals) (Camara et al. 1995). Chromoplasts confer bright yellow, orange or red 

colors to many flowers (e.g. daffodil, sunflower) and fruits (e.g. tomato, orange, pepper). 
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Work on chromoplast differentiation in tomato, pepper and cucumber has resulted in the 

cloning of genes encoding carotenoid biosynthesis enzymes or putative carotenoid-binding 

proteins (reviewed in Cunningham and Gantt 1998). However, no gene product able to trigger 

chromoplast differentiation on its own was reported until relatively recently. Chromoplasts 

are differentiated from proplastids (relatively undifferentiated form of plastids found in 

meristematic tissues), chloroplasts (photosynthetic plastids in green tissues) or amyloplasts 

(starch accumulating plastids in storage organs, such as maize endosperm) (Figure 2.1).  

 
Figure 2.1 – Chromoplast biogenesis from other plastids. Chromoplasts are derived from fully developed 
chloroplasts or from non-green plastids (proplastids or amyloplasts). (Adapted from Li and Yuan 2013). 

A spontaneous mutation of the orange (or) gene in cauliflower (Brassica oleracea var. 

botrytis) showed a profound effect on carotenoid accumulation (Crisp et al. 1975). Li et al. 

(2001) reported that or did not affect the metabolic flux through the carotenoid pathway and 

that transcript levels of carotenoid enzymes were unaltered in cauliflower or mutant compared 

with wild-type. Positive regulation of chromoplast-associated genes such as pftf and the fact 

that or encodes a plastid associated protein with a DnaJ cysteine-rich domain involved in 

chromoplasts differentiation, suggested that the role of or might be to sequester carotenoids 

Proplastid

Chloroplast Amyloplast

Chromoplast

Induced by Or
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into chromoplasts by differentiating them from non-differentiated proplastids (Lu et al. 2006) 

(Figure 2.1). In addition, the or mutation limits plastid replication so that a single 

chromoplast constitutes the plastidome and carotenoid inclusions in or chromoplasts resemble 

those found in carrot root (Paolillo et al. 2004).  

The effect of the cauliflower or gene was further evaluated in transgenic potatoes, revealing 

chromoplast differentiation and a 6-fold increase in total carotenoids (Lopez et al. 2008).  The 

only carotenoids present in wild-type tuber were violaxanthin and lutein, but when or was 

overexpressed in the tubers new carotenoids such as phytoene, phytofluene and ζ-carotene 

accumulated; β-carotene also accumulated (12-17% of total carotenoids) (Lopez et al. 2008). 

Expression of or in transgenic potatoes allowed not only an increase in carotenoid stability for 

up to 6 months cold storage but also increased carotenoid amounts during this time (18- and 

13-fold increase at 5 and 6 months upon storage, respectively; Li et al. 2012; Lopez et al. 

2008). Cauliflower or has also been used to increase ketocarotenoid content in potato 

(Campbell et al. 2015).  

Orthologs of cauliflower wild-type or have been identified in other species, but only the sweet 

potato and Arabidopsis ortholog have been shown to induce carotenoid accumulation (Kim et 

al. 2013; Bai et al. 2014, 2015). The or gene isolated from orange-fleshed sweet potato (Ibor) 

was implicated in the increased accumulation of carotenoids via upregulating expression of 

biosynthetic genes as well as the homolog of pftf, involved in chromoplasts differentiation, in 

transgenic sweet potato callus (Kim et al. 2013; Park et al. 2015). Total carotenoid content 

increased up to 12-fold (Kim et al. 2013). In rice callus, the Arabidopsis OR gene (AtOR), 

which was 74.4% identical to its cauliflower wild-type ortholog, increased 2.2-fold total 

carotenoid content when it was co-expressed with maize psy1 and Pantonea Ananatis crtI 

compared with just expression of maize psy1 and Pantonea Ananatis crtI (Bai et al. 2014). 

Orange crystal-like structures were observed in the chromoplasts of orange callus expressing 

or, similarly to those reported in transgenic plants expressing the cauliflower or (Li et al. 

2006; Lopez et al. 2008). Interestingly, the same structures were observed in transgenic callus 

co-expressing AtDXS, Zmpsy1 and PacrtI, suggesting that chromoplast differentiation may be 

triggered either by direct expression of a gene involved in the differentiation process (OR) or 

by increasing the flux through the carotenoid pathway to such an extent that the process of 

chromoplast differentiation is triggered by the abundance of carotenoids (Fraser et al. 2007; 

Maass et al. 2009). Similarly, plastoglobuli-containing plastids were observed in rice 
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endosperm overexpressing AtOR but in this case expression of the endogenous carotenogenic 

genes lyce, lycb and bch2 was upregulated (Bai et al. 2015).  

A number of reports have correlated or overexpression with stress tolerance. Carotenoid-

enhanced sweet potato callus through overexpression of Ibor exhibited increased tolerance to 

salt-mediated oxidative stress (Kim et al. 2013) and transgenic potato lines overexpressing 

Ibor had a significantly enhanced tolerance to NaCl and Methylviologen-mediated oxidative 

stress as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (Goo et al. 

2015). These results suggest that Ibor may be utilized to develop crops tolerant to salinity and 

other environmental stresses in addition to improving the nutritional quality by increasing the 

carotenoid content through the enhancement of sink capacity (Goo et al. 2015). 

Transgenic rice plants overexpressing AtOR had been generated earlier (Bai et al. 2014, 

2015). In maize, the genetic background of the transgenic plants (M37W) provides a blank 

template for carotenoid biosynthesis because the white endosperm contains only trace 

amounts of carotenoids due to the very low Zmpsy1 expression.  A representative AtOR maize 

line with increased 32-fold total carotenoid content compared with wild-type without any 

changes in the qualitative carotenoid profile was crossed with a number of transgenic maize 

lines expressing different carotenoid- and ketocarotenoid-pathway genes in order to determine 

the impact of AtOR on carotenoid metabolism and accumulation at the mRNA and metabolite 

levels.  

2.3 Materials and methods 

2.3.1 Gene cloning and vector construction 

The AtOR cDNA was cloned directly from A. thaliana mRNA by RT–PCR using forward 

primer (5’-GATGTCATCTTTGGGTAGGATTTTGTCTG-3’) and reverse primer (5’-

TGAGATTCTAAGGAAGTAGAATGTGTTGC-3’) based on sequence data in GenBank 

(accession number NM 203246). The cDNA was transferred to the pGEM-T Easy vector 

(Promega), and the resulting plasmid pGEM-AtOR was digested with EcoRI. AtOR was 

introduced into vector p326 (Stoger et al., 1999), between the wheat low-molecular weight 

(LMW) glutenin gene promoter and the nos terminator (Figure 2.2). The right orientation of 

AtOR driven by LMW promoter was selected by PCR with the forward primer from LMW 



The role of the Arabidopsis OR gene on carotenoid and ketocarotenoid accumulation in maize hybrids 

    

 

  
55 

 
  

promoter and reverse primer from AtOR, and the final plasmid of p326-AtOR was further 

confirmed by sequencing the whole plasmid.  

A truncated β–carotene ketolase gene (bkt) from C. reinhardtii (Zhong et al. 2011) was 

chemically synthesized by a commercial vendor (MWG eurofins, Ebersberg, Germany) and 

optimized for maize codon usage. The modified gene (sCrbkt) was fused with the transit 

peptide sequence (TPS) from the Phaseolus vulgaris small subunit of ribulose bisphosphate 

carboxylase (Schreier et al. 1985) and the 5’-untranslated region of the rice alcohol 

dehydrogenase gene (OsADH-UTR) (Sugio et al. 2008) under the control of the maize γ–zein 

promoter. The TPS was also optimized for maize codon usage (Figure 2.2).  

The CrtZ gene encoding β-carotene hydroxylase (sBrCrtZ) from Brevundimonas sp. Strain 

SD212 (MBIC 03018) was chemically synthesized according to the codon usage of Brassica 

napus (accession number AB377272) (provided by Dr. Norihiko Misawa, Japan). The sBrcrtZ 

gene fused with the pea small subunit of Rubisco as TPS and OsADH-UTR was digested with 

BamHI and SacI and the digested fragments were cloned into the BamHI and SacI site of 

plasmid pGZ63 containing the maize γ-zein gene promoter, OsADH-UTR-TPS and the nos 

terminator (Figure 2.2).  

The β-carotene ketolase sBrcrtW from Brevundimonas sp. Strain SD212 (Nishida et al. 2005) 

was chemically synthesized according to the codon usage of Brassica napus (provided by Dr. 

Norihiko Misawa, Japan) and fused to the full-length OsADH-UTR (Sugio et al., 2008) and to 

the transit peptide sequence from pea ribulose 1, 5-bisphospate carboxylase small subunit 

(Schreier et al. 1985). These DNA fragments were inserted into plasmid GZ63 containing the 

maize γ-zein gene promoter and the nos terminator (Figure 2.2). 

Zea mays lycopene ε-cyclase lyce cDNA fragment was amplified by RT-PCR using forward 

(5’-GGAATTCTCTAGACGATCTCGGCGCCGCTCGGCTGCT-3’) and reverse primers 

(5’-GACTAGTGGATCCCAATGAGACCTACAGTGAGACCT-3’) based on sequence 

information in GenBank (accession numbers EF622043) and suitable restriction sites were 

incorporated subsequently by PCR. The amplified lyce genes were sub-cloned into the pHorP 

vector containing the Barley D-hordein promoter, a 300 bp-long gusA gene fragment and the 

ADP-glucose pyrophosphorylase (ADGPP) terminator. To incorporate the target gene 

fragments into pHorP, the vector was digested with XbaI and BamHI to introduce a sense lyce 

fragment between the barley D-hordein promoter and the gusA gene fragment, resulting in 
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pHorP-ZmLYCE sense. In the second step, the pHorP-ZmLYCE sense plasmid was digested 

with SpeI and EcoRI, to introduce the antisense lyce fragment between the gusA gene 

fragment and ADGPP terminator, resulting in pHorP-RNAi-ZmLYCE (Figure 2.2).  

Transgene expression vectors for Zmpsy1, Gllycb and PacrtI were previously described (Zhu 

et al. 2008) (Figure 2.2). 

 
Figure 2.2 – Schematic representation of transgenes used in this experiment. 

2.3.2 Maize transformation and plant growth 

To obtain transgenic maize plants expressing AtOR (OR line), Zmpsy1 (CARO1 line), 

sBrcrtZ, sBrcrtW and sCrbkt (KETO1 line) and Zmpsy1, PacrtI, RNAiLYCE and sCrbkt 

(KETO2 line), wild type maize plants (Zea mays L., cv. M37W) were grown in the 

greenhouse or growth room with a 10 h photoperiod (28/20°C day/night temperature) and 60–

90% relative humidity for 50 days, followed by a 16 h photoperiod (21/18°C day/night 

temperature) thereafter. Fourteen-day-old immature zygotic embryos (IZEs) were excised 

aseptically and cultured on N6 medium (MSP, Table 2.1).  
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Table 2.1. – Media composition (amounts listed to prepare 1l). 

ÍTEM 
CALLUS 

INDUCTION 

(MSP) 

OSMOTICUM 
MEDIUM 

(MSO) 

SELECTION 
MEDIUM 

(MSS) 

SHOOTING 
MEDIUM 

(MSR1) 

ROOTING 
MEDIUM 

(MSR2) 

Dark / light Dark Dark Dark Light Light 

Approx. time 
in culture 

4 days 4 h before and  
16 h after 

bombardment 

4-6 weeks (two 
subcultures) 

2-3 weeks 
Until plantlets 
have sufficient 

roots 
2 days after 

bombardment 

N6 macro-
nutrients1 

50 ml 50 ml 50 ml -- -- 

N6 micro-
nutrients2 

5 ml 5 ml 5 ml -- -- 

Fe-EDTA3 5 ml 5 ml 5 ml 5 ml 5 ml 
MS Powder 
(Duchefa, 
Haarlem, 

Nederland) 

-- -- -- 4.4 g 4.4g 

Casein 
Hydrolysate 

(Duchefa) 
0.1 g 0.1 g 0.1 g -- -- 

L-Proline 
(Sigma) 

2.8 g 2.8 g 2.8 g -- -- 

Sucrose 
(Sigma) 

20 g 20 g 20 g 30g 30g 

Mannitol 
(Sigma) 

-- 36.4 g -- -- -- 

Sorbitol 
(Sigma) 

-- 36.4 g -- -- -- 

2,4-D4 

(Duchefa) 
200µl 200µl 200µl 50µl -- 

Adjusted pH to 5.8 with KOH 
Gelrite 
(Sigma) 

4 g -- 4 g 4 g 4 g 

Agarose 
(Sigma) 

-- 4 g -- -- -- 

Autoclaved at 121ºC for 20 min 
BAP5 -- -- -- 10ml -- 
PPT6 -- -- 300µl 300µl 300µl 

N6 Vitamins7 5 ml 5 ml 5 ml 5 ml 5 ml 
AgNO3

8
 1ml 1ml 1ml 85ul 85ul 

1 N6-macronutrients (1L, 20x): 9.26 g (NH4)2·SO4, 56.6 g KNO3, 3.32 g CaCl2·2H2O, 3.7 g MgSO4·7H2O and 
8g KH2PO4. 
2 N6-micronutrients (500 mL, 200x): 250 mg MnS4·H2O, 150 mg ZnSO4·7H2O, 160 mg H3BO3, 80 mg KI, 2 
5mg Na2MoO4·H2O and 2.5 mg CuSO4·5H2O. 
3 Fe-EDTA: 1.112 g FeSO4·7H2O and 1.49 g EDTA-Na2·2H2O. 
4 2,4-D (2,4-Dichlorophenoxyacetic acid) 4 mg/mL: 0.04 g to 10 mL 100% EtOH. 
5 BAP (benzylaminopurine) 1 mg/mL: 0.01g to 10 mL dH2O. 
6 PPT (phosphinothricin) 10 mg/mL: 0.1g to 10 mL dH2O. 
7 N6 Vitamins (200 mL, 200x): 20mg nicotinic acid, 20 mg pyridoxine HCL, 40 mg Thiamine HCL and 80 mg 
Glycine. 
8AgNO3 10 mg/mL: 0.3g AgNO3 to 30 mL dH2O. 

After 4 days, IZEs were placed on osmoticum media (MSO, Table 2.1) four hours before 

bombardment with 10 mg of gold particles coated with the constructs and the selectable 
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marker bar (Christensen and Quail 1996) at a molar ratio of 3:1 as reported (Christou et al. 

1991) and returned to MSO for 16 h before selection. Bombarded callus were selected on 

phosphinothricin-supplemented medium (MSS, Table 2.1) and transgenic plantlets were 

regenerated on regeneration media (MSR1 and MSR2, Table 2.1) and hardened off in soil 

(Figure 2.3). Two independent lines for OR and 1 line for the other combinations (CARO1, 

KETO1 and KETO2, respectively) were selected for further analysis. 

 

 
Figure 2.3 – Maize transformation process. 

The highest-expressing line for each transgene combination was selected by mRNA blot 

analysis and was self-pollinated to homozygosity. Homozygous OR, CARO1, KETO1, 

KETO2, one already available transgenic line carrying Zmpsy1+PaCrtI+Gllycb (Ph4, named 

here CARO2; Zhu et al. 2008) (Table 2.2) and wild type M37W plants were grown in the 

greenhouse at 28/20°C day/night temperature with a 10 h photoperiod and 60%–90% 

humidity during the first 50 days, followed by maintenance at 28/20°C day/night temperature 

with a 16 h photoperiod and 60%–90% humidity thereafter. All lines were self-pollinated to 

be used as controls and out-crossed with an OR line (pollen donor) to obtain ORxCARO1, 

ORxCARO2, ORxKETO1 and ORxKETO2. For further analysis endosperm samples were 

taken from immature seeds at 30 days after pollination (DAP), frozen in liquid nitrogen and 

stored at -80°C until analysis. 
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Table 2.2. – Transgenic lines used in this experiment to generate hybrids with AtOR transgenic line. 

Transgenic line Foreign genes 

CARO1 Zmpsy1 

CARO2 Zmpsy1, PacrtI, Gllycb 

KETO1 sCrbkt, sBrcrtW, sBrcrtZ 

KETO2 Zmpsy1, RNAiLYCE, sCrbkt, sBrcrtZ 

 

2.3.3 RNA extraction and cDNA synthesis 

The protocols are described in detail in Chapter 1, section 1.2.2. 

2.3.4 Real-time qRT-PCR 

Real-time RT-PCR was performed on a BioRad CFX96TM system using 25µl mixtures 

containing 10 ng of synthesized cDNA, 1x iQ SYBR green supermix (BioRad, Hercules, CA, 

USA) and 0.2 µM forward and reverse primers (Table 2.3).  

Cyp97A (carotenoid β-hydroxylase) and cyp97C (carotenoid ε-hydroxylase) gene primer 

information was obtained from Naqvi et al., 2011. Serial dilutions of cDNA (125–0.2 ng) 

were used to generate standard curves for each gene. PCR was performed in triplicate using 

96-well optical reaction plates. Cycling conditions consisted of a single incubation step at 

98ºC for 2 min followed by 35 cycles of 98ºC for 5 s and 59.4ºC for 30 s. Specificity was 

confirmed by product melt curve analysis over the temperature range 65–95ºC with 

fluorescence acquired after every 0.5ºC increase, and the fluorescence threshold value and 

gene expression data were calculated with BioRad CFX96TM software. Values represent the 

mean of three biological replicates ± SE. Amplification efficiencies were compared by 

plotting the ∆Ct values of different primer combinations of serial dilutions against the log of 

starting template concentrations using the CFX96TM software. 

 

 

 



Chapter 2 

 

 

  
60 

 
  

Table 2.3 – Oligonucleotide sequences of maize actin, endogenous carotenogenic genes and transgenes for 
Real-Time PCR analysis. 

Gene Forward Reverse 

Zmactin 5’-CGATTGAGCATGGCATTGT-3’ 5’-CCCACTAGCGTACAACGAA-3’ 

Zmbch1 5’-CCACGACCAGAACCTCCAGA-3’ 5’-CATGGCACCAGACATCTCCA-3’ 

Zmbch2 5’-GCTTGTTAGCAGTCCGGT-3’ 5’-GAAAGGAGGATGGCGATAGAT-3’ 

Zmlycb 5’-GACGCCATCGTAAGGTTCCTC-3’ 5’-TCGAGGTCCAGCTTGAGCAG-3’ 

Zmlyce 5’-AGTCCATCAATGCTTGCATGG-3’ 5’-CATCTCGGCACCCTGAAAAAG-3’ 

Zmcyp97A 5’-CTGGAGCGTCTGAAAGTCA-3’ 5’-GGACCAAATCCAAACGAGAT-3’  

Zmcyp97B 5’-CTGAGGAGAAGGACTTGA-3’ 5’-TCCACTGGTCTGTCTGCGAT-3’ 

Zmcyp97C 5’-GTTGACATTGGATGTGATTGG-3’ 5’-AACCAACCTTCCAGTATGGC-3’ 

Zmdxs1 5’-AGGTCGGCAAGGCAGGAT-3’ 5’-TCCAGCGGCTTGCAGAACCT-3’ 

Zmdxs2 5’-GCTGAACTACTTCCAGAAGCG-3’ 5’-CTGCAGGAACGACGAGTAGA-3’ 

Zmdxs3 5’-GGCACGCTTCAGTTCTATCCA-3’ 5’-CTCTTAGGGCGTCATCGTG-3’ 

Zmdxr 5’-TCCATTGTCACGCTTCTAGC-3’ 5’-TGGCGAGCAACTTCTATGAC-3’ 

Zmpftf 5’-CATTGAGAAGGAGACACTGGC-3’ 5’-TTGACTTTAGGCAGGGAGGG-3’ 

Zmpsy1 5’-CATCTTCAAAGGGGTCGTCA-3’ 5’-CAGGATCTGCCTGTACAACA-3’ 

Zmpsy2 5’-TCACCCATCTCGACTCTGCTA-3’ 5’-GATGTGATCTACGGATGGTTCAT-3’ 

PacrtI 5’-GTGGCGCAAGATGATCGTCAA-3’ 5’-GCCAGAAGACCACGTACATCCA-3’ 

sCrbkt 5’-CCACCATCACACAGGGGAA-3’ 5’-AGGTTCGGATTGCCCCTATG-3’ 

Gllycb 5’-TAAGGCTGGAAGTAGCAGTGC-3’ 5’-GCAGGACCACCACCAACAAT-3’ 

sBrcrtz 5’-GAGGGATGCGTTTCTTTCG-3’ 5’-AGCCAACTCAGCCTCCAAA-3’ 

sBrcrtw 5’-TCTCTTGTTATCGTGCCAGC -3’ 5’-GCCACAATGAAAAGTCCCA -3’ 

AtOR 5’- TTCTCTATCACCGCCCAAAAC -3’ 5’- GCCATAGCCATTCCTGTGC -3’ 

 

2.3.5 Carotenoid extraction and UPLC analysis 

Maize endosperm was excised by removing the seed coat and embryo. Samples were freeze-

dried before extraction and 3-5 seeds per sample were ground to a fine powder. Carotenoids 

in 50-100mg samples were extracted in 15 ml methanol:ethyl acetate (6:4 v/v) at 58ºC for 20 

min. The mixture was filtered, transferred to a separatory funnel, 15 ml hexane:diethyl ether 

(9:1 v/v) were added and agitated gently for 1 min. The organic phase was washed twice with 

saturated NaCl water and the aqueous phase was removed. The samples were dried under N2 

and stored at -80ºC until injection. 
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The extracts were dissolved in 210-600 µl injection solvent [ACN/MeOH 7:3, v/v]/acetone 

3:2, v/v. UHPLC analysis was carried out at SCT-DATCEM, University of Lleida, Spain, 

using an Acquity Ultra Performance LC system linked to a PDA 2996 detector (Waters, 

Milford, USA). Mass detection was carried out using an Acquity TQD tandem-quadrupole 

MS equipped with a Zspray electrospray interface (Waters). MassLynx software version 4.1 

(Waters) was used to control the instruments and also for data acquisition and processing. 

UHPLC separations were performed on a reversed-phase column Acquity UPLC C18 BEH 

130 Å, 1.7 µm, 2.1 × 150 mm (Waters). The mobile phase consisted of solvent A, 

ACN/MeOH 7:3, v/v, and solvent B, water 100%. Carotenoids in samples were quantified 

using a PDA detector through the external standard method. Identification of carotenoids was 

carried out as previously described (Rivera et al. 2013). MS analyses were conducted by 

atmospheric pressure chemical ionization (APCI), and the conditions used are the same as 

those described by Rivera et al. 2011. Authentic standards used for quantification were β-

carotene, lutein, β-cryptoxanthin and astaxanthin (Sigma), zeaxanthin (Fluka, Buchs SG, 

Switzerland), phytoene and antheraxanthin (Carotenature, Lupsingen, Switzerland). 

2.3.6 TEM microscopy analysis 

Maize 30 DAP endosperm pieces (0.5 x 2.0 mm) were fixed in 2.5% v/v glutaraldehyde in 0.1 

M phosphate buffer (pH 7.2) overnight at 4°C. Samples were washed twice for 10 minutes 

with 0.1 M sodium phosphate buffer (pH 7.2) at 4ºC and then fixed in 1% w/v osmium 

tetroxide in water for 2 h. After washing twice with sodium acetate (0.1M for 2 minutes) they 

were incubated in uranyl acetate (0.5% in water) for 30 minutes and washed twice with 

sodium acetate (0.1M) for 2 min). Samples were then dehydrated in an acetonitrile (Panreac 

Química SLU, Barcelona, Spain) series (30–100%) before embedding in epoxy resin 

Araldite® Embed 812 (Epon-812) (Aname Electron Microscopy Sciences, Madrid, Spain) 

and polymerized at 60°C for 48 h. Ultra-thin sections (75-80 nm) were prepared with a 

diamond knife using a Reichert Jung Ultramicrotome Ultracut E (Leica Nova Scotia, 

Dartmouth, Canada), mounted on SPI-ChemTM Formvar film/carbon-coated copper grids, 

and stained with uranyl acetate and Reynold’s lead citrate prior to examination using an EM 

910 (80 kV) transmission electron microscope (Zeiss, Oberkochen, Germany). TEM 

microscopy was performed in SCT – Electron microscopy, Universitat de Lleida, Spain. 
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2.4 Results 

2.4.1 Transgenic lines overexpressing the Arabidopsis Orange (AtOR) gene exhibit an 

increase in carotenoid content without concomitant upregulation of carotenogenic gene 

expression 

Two AtOR-expressing lines (OR1 and OR2) were previously obtained following direct DNA 

transfer of the AtOR into M37W immature maize embryos in earlier experiments in the 

laboratory. T0 plants were self-pollinated to obtain T1 plants that were used for further 

analysis. T2 seeds from T1 plants obtained by self-pollination were by mRNA blot to monitor 

AtOR transcript levels (Figure 2.4). 

 
Figure 2.4 –mRNA blot analysis of AtOR in wild type (M37W) and two different transgenic lines (OR1 
and OR2) transformed with AtOR gene driven by the wheat LMW-glutelin promoter.  Each lane was 
loaded with 25 µg total RNA isolated from endosperm tissue. Ribosomal RNA stained with ethidium bromide is 
shown as a loading control. 

Carotenoid quantification revealed that M37W (wild-type) endosperm accumulated traces of 

zeaxanthin, lutein, violaxanthin and antheraxanthin. Total carotenoids were ca: 1 µg/g DW. 

Line OR1 accumulated high amounts of zeaxanthin (ca: 10 µg/g DW) followed by lutein (ca: 

2 µg/g DW), antheraxanthin (ca: 2 µg/g DW), β-cryptoxanthin (ca: 1 µg/g DW) and traces of 

violaxanthin in the endosperm. Line OR2 accumulated high amounts of zeaxanthin (ca: 6 

µg/g DW) followed by lutein (ca: 2 µg/g DW) and traces of β-cryptoxanthin, antheraxanthin 

and violaxanthin in the endosperm. Total carotenoid content in lines OR1 and OR2 was ca: 17 

µg/g DW and 9 µg/g DW, respectively (Figure 2.5). 

OR1     M37W  OR2

AtOR

rRNA



The role of the Arabidopsis OR gene on carotenoid and ketocarotenoid accumulation in maize hybrids 

    

 

  
63 

 
  

 
Figure 2.5 – Carotenoid content and composition in wild-type M37W and transgenic lines OR1 and OR2 
T2 at 30 DAP (µg/g DW±SE) (n= 3-5 seeds). 

Quantitative real-time RT-PCR was used to compare relative transcript levels of endogenous 

genes in the carotenoid pathway, MEP pathway and pftf, a transcription factor involved in 

chromoplast formation in OR1, OR2 and M37W (Figure 2.6). The following endogenous 

carotenogenic genes were analyzed at the mRNA level: phytoene synthase 1 and 2 

(Zmpsy1/2), lycopene ε-cyclase (Zmlyce), lycopene β-cyclase (Zmlycb), carotenoid β-

hydroxylases (Zmbch1, Zmbch2, Zmcyp97A and Zmcyp97B) and carotenoid ε-hydroxylase 

(Zmcyp97C). Transcript levels of all the endogenous genes analyzed were similar in OR1 and 

OR2 compared with M37W, with the exception of Zmlyce transcript levels which were 

downregulated in the  transgenic lines compared to M37W (Figure 2.6A). 1-Deoxy-D-

xylulose-5-phosphate synthase 1, 2 and 3 (Zmdxs1/2/3), 1-deoxy-D-xylulose-5-phosphate 

reductase (Zmdxr) and methylbut-2-enyl-diphosphate reductase (Zmhdr), endogenous genes 

in the MEP pathway were analyzed at the mRNA level. Transcript levels of the endogenous 

genes described above were similar in OR1 and OR2 compared with M37W wild-type, with 

the exception of dxs1 transcript levels which were upregulated (ca: 2-fold) in transgenic lines 

compared with wild-type (Figure 2.6B). Transcript levels of plastid fusion/translocation 

factor (Zmpftf) implicated in chromoplasts formation were not significantly different in OR1 

and OR2 transgenic lines compared with M37W (Figure 2.6C). 
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Figure 2.6 – Relative mRNA expression of endogenous carotenogenic genes (A), MEP pathway-related 
genes (B) and pftf (C) in 30 DAP maize endosperm, normalized against actin mRNA and presented as the 
mean of three biological replicates ± SE. Abbreviations: Zmpsy1, phytoene synthase 1; Zmpsy2, phytoene 
synthase 2; Zmlyce, lycopene ε-cyclase; Zmlycb, lycopene β-cyclase; Zmbch1, carotenoid β-hydroxylase 1; 
Zmbch2, carotenoid β-hydroxylase 2; Zmcyp97A/B, carotene β-hydroxylase; Zmcyp97C, carotene ε-hydroxylase, 
Zmdxs1/2/3, 1-Deoxy-D-xylulose-5-phosphate synthase; Zmdxr, 1-Deoxy-D-xylulose-5-phosphate reductase; 
Zmhdr, methylbut-2-enyl-diphosphate reductase; Zmpftf, plastid fusion/translocation factor. 

2.4.2 Genetic background influences seed color phenotype in hybrids between AtOR 

transgenic lines and different parents but only when the carotenoid content of the 

parents is low 

In order to evaluate the role of the Arabidopsis OR in carotenoid and ketocarotenoid 

accumulation I crossed OR line with transgenic lines having different genetic backgrounds: 

two different transgenic lines accumulating medium (CARO1) or high (CARO2) levels of 

carotenoids and two different transgenic lines accumulating low (KETO1) or high (KETO2) 
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levels of ketocarotenoids. CARO1 (transgenic line expressing Zmpsy1), KETO1 (transgenic 

line expressing a combination of hydroxylase (sBrcrtZ) and two ketolases: sCrbkt and 

sBrcrtW) and KETO2 line (transgenic line expressing Zmpsy1, sCrbkt, sBrcrtZ and RNAi 

construct to block endogenous lyce) were obtained by using the same procedure employed to 

generate the original OR lines, whereas CARO2 (transgenic line expressing Zmpsy1, PacrtI 

and Gllycb) was described previously (Zhu et al. 2008) (Table 2.2, see section 2.3). The 

highest carotenoid accumulating OR line (OR1) was used as pollen donor to pollinate 

CARO1, CARO2, KETO1 and KETO2 to obtain ORxCARO1, ORxCARO2, ORxKETO1 

and ORxKETO2 lines (Figure 2.7).  

 
Figure 2.7 – Phenotype of wild-type (A) and transgenic seeds with different carotenoid and ketocarotenoid 
profiles: CARO1 (B), CARO2 (C), KETO1 (D) and KETO2 (E) and the resulting seeds from the cross 
with OR; (F): ORxCARO1 (G), ORxCARO2 (H), ORxKETO1 (I) and ORxKETO2 (J). A substantial 
change in seed color phenotype resulted when AtOR was expressed in M37W background (white to yellow) and 
in low-ketocarotenoid (KETO1) background (light pink to redish-pink) suggesting that AtOR plays an important 
role in carotenoid and ketocarotenoid accumulation when the amounts of carotenoids were low in the original 
(parent) line (KETO1). No changes in color phenotype were observed when the amounts of carotenoids were 
high in the parents (CARO1, CARO2 and KETO2). 

When AtOR was expressed in white maize, the phenotype of resulting seeds was yellow in 

color, suggesting a substantial increase in carotenoids (e.g. lutein and/or zeaxanthin) in the 

transgenic seeds. Seeds from CARO1 and CARO2 lines were orange and intense orange, 

respectively, due to the accumulation of β-carotene, lutein and zeaxanthin, whereas seeds 

from KETO1 and KETO2 lines were pink and red, respectively, as a result of accumulation of 

different amount of ketocarotenoids. T1 seeds from the crosses referred to above exhibited 

similar phenotypes in the case of ORxCARO1, ORxCARO2 and ORxKETO2 compared with 

the corresponding parents. Seeds from ORxKETO1 exhibited a substantial change in color 
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from pale pink (KETO1) to deep red-pink (ORxKETO1) suggesting a substantial increase in 

the accumulation of ketocarotenoids (Figure 2.7). 

At 30 DAP endosperm samples were frozen in liquid nitrogen and stored at -80ºC until RNA 

extraction was performed to measure transgene expression by qRT-PCR (Figure 2.8).  

 
Figure 2.8 –Transcript accumulation normalized against actin in wild-type and transgenic lines presented 
as mean of three technical replicates. Standard error bars were not included because of the use of technical 
replicates rather than biological replicates. The aim was to show expression of the introduced transgenes rather 
than compare different transcript profiles. 

As expected, WT seeds did not express any of the transgenes; OR expressed only AtOR, as 

expected; CARO1 expressed only Zmpsy1; CARO2 expressed Zmpsy1, PacrtI and Gllycb; 

KETO1 expressed sBrcrtZ, sCrbkt and sBrcrtW; KETO2 expressed Zmpsy1, sCrbkt and 

sBrcrtZ; the corresponding crosses expressed AtOR in addition to the transgenes present in 

their respective parents. 

2.4.3 Introgression of AtOR reveals an increase in carotenoid content and composition of 

transgenic hybrids but only when the carotenoid content of the parents is low  

Carotenoid content of wild-type, transgenic lines (OR, CARO1, CARO2, KETO1 and 

KETO2) and the crosses generated with OR (ORxCARO1, ORxCARO2, ORxKETO1 and 

ORxKETO2) was evaluated at 30 and 60 DAP in order to measure differences in carotenoid 

content and composition at two different developmental stages: middle stage of grain filling 

and completely developed seeds.  

In the 2013 growing season, M37W accumulated low levels of zeaxanthin (ca: 0.4 µg/g DW), 

lutein (ca: 0.2 µg/g DW) and violaxanthin (0.1 µg/g DW) and traces of antheraxanthin at 
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30DAP. At 60DAP, M37W accumulated low amounts of zeaxanthin (ca: 0.3 µg/g DW) and 

lutein (ca: 0.2 µg/g DW) but violaxanthin was not detected. When AtOR was overexpressed 

into M37W the carotenoid composition in the endosperm remained the same, although the 

quantity of each compound increased drastically at 30 DAP from ca: 1 µg/g DW in M37W to 

ca: 25 µg/g DW (35-fold increase) in OR line: zeaxanthin (ca: 12 µg/g DW; 30-fold increase), 

antheraxanthin (ca: 7 µg/g DW; 170-fold increase), lutein (ca: 5 µg/g DW; 23-fold increase) 

and violaxanthin (ca: 2 µg/g DW; 15-fold increase). At 60 DAP total carotenoid content in 

OR was ca: 20 µg/g DW. Downstream compounds, violaxanthin and antheraxanthin did not 

accumulate but β-cryptoxanthin was detectable (ca: 1 µg/g DW). Zeaxanthin (ca: 11 µg/g 

DW; 38-fold increase over WT) and lutein (ca: 8 µg/g DW; 39-fold increase over WT) were 

the main carotenoids in OR transgenic line (Table 2.4). 

CARO1 accumulated ca: 66 µg/g DW (94-fold increase over WT) total carotenoids at 30 

DAP and ca: 91 µg/g DW (181-fold increase over WT) at 60 DAP. At 30 DAP zeaxanthin 

(ca: 23 µg/g DW; 58-fold increase over WT), antheraxanthin (ca: 14 µg/g DW; 350-fold 

increase over WT), lutein (ca: 9 µg/g DW; 47-fold increase over WT) and phytoene (ca: 8 

µg/g DW) were the main carotenoids, followed by violaxanthin (ca: 4 µg/g DW; 39-fold 

increase over WT), β-carotene (ca: 3 µg/g DW), lycopene (ca: 3 µg/g DW) and β-

cryptoxanthin (ca: 1 µg/g DW). When seeds were completely dry there was a shift in the 

carotenoid composition towards a reduction of downstream compounds and a concomitant 

increase in the first precursor in the pathway, phytoene (ca: 61 µg/g DW). At 60 DAP 

zeaxanthin (ca: 12 µg/g DW; 39-fold increase over WT), lutein (ca: 6 µg/g DW; 32-fold 

increase over WT) and antheraxanthin (ca: 6 µg/g DW) were the main carotenoids followed 

by β-carotene (ca: 2 µg/g DW), violaxanthin (ca: 2 µg/g DW), β-cryptoxanthin (ca: 1 µg/g 

DW) and lycopene (ca: 1 µg/g DW) (Table 2.4). When OR was crossed with CARO1 

transgenic line to generate ORxCARO1 hybrid, carotenoid content and composition did not 

change substantially in the hybrid compared with CARO1. ORxCARO1 accumulated ca: 68 

µg/g DW total carotenoids. Unfortunately, the analysis of ORxCARO1 at 60 DAP was not 

possible due to technical problems (Table 2.4). 
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Table 2.4 – Carotenoid content and composition in wild-type M37W, transgenic lines OR, CARO1, 
CARO2, KETO1 and KETO2; and hybrids ORxCARO1, ORxCARO2, ORxKETO1 and ORxKETO2 T1 
at 30 (*) and 60 DAP (**) (µg/g DW±SE) (n= 3-5 seeds). Abbreviations: Phyt, phytoene; Lyco, lycopene; 
βcryp, β-cryptoxanthin; βcaro, β-carotene; Lut, lutein; Zea, zeaxanthin; Anthe, antheraxanthin; Viola, 
violaxanthin; CAROT, carotenoids. 

Sample Phyt Lyco βcryp βcaro Lut Zea Anthe Viola 
TOTAL 
CAROT 

M37W * 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.0 0.4±0.1 0.0±0.0 0.1±0.0 0.7 

M37W** 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.0 0.3±0.0 0.0±0.0 0.0±0.0 0.5 

OR * 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 4.5±0.2 12.1±1.8 6.8±0.4 1.5±0.3 24.9 

OR** 0.0±0.0 0.0±0.0 1.2±0.0 0.0±0.0 7.8±0.8 11.4±1.5 0.0±0.0 0.0±0.0 20.4 

CARO1* 7.8±0.2 2.6±0.4 1.4±0.1 3.4±0.7 9.4±0.4 23.2±2.8 14.0±1.1 3.9±0.0 65.7 

CARO1** 60.7±0.7 0.8±0.1 0.9±0.0 2.3±0.1 6.4±0.3 11.8±0.8 5.8±0.4 2.1±0.0 90.8 

CARO2* 17.5±0.6 0.0±0.0 2.0±0.0 11.3±0.4 9.4±0.1 23.3±2.5 13.2±0.5 2.4±0.1 79.1 

CARO2** 117.0±1.0 0.0±0.0 1.5±0.0 8.2±0.2 8.8±0.3 18.1±0.9 1.8±0.2 0.0±0.0 155.4 

KETO1* 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

KETO1** 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

KETO2* 4.1±0.2 5.2±0.4 2.8±0.7 6.9±0.3 1.2±0.0 7.5±0.3 4.5±0.1 0.8±0.1 33 

KETO2** 53.7±1.0 5.0±0.5 0.0±0.0 11.8±0.6 0.7±0.1 6.4±0.4 1.3±0.0 0.0±0.0 78.9 

ORx 

CARO1* 
8.8±0.3 1.9±0.2 1.4±0.2 3.7±0.2 8.7±0.3 23.9±1.6 15.1±0.8 4.2±0.1 67.7 

ORx 

CARO2* 
20.0±0.8 0.0±0.0 1.9±0.1 9.0±0.3 9.9±0.3 23.1±0.6 12.6±1.6 2.5±0.1 79.0 

ORx 

CARO2** 
102.2±2.8 0.0±0.0 0.8±0.7 5.9±0.2 9.8±0.6 14.6±1.7 1.6±0.1 0.0±0.0 134.9 

ORx 

KETO1* 
0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

ORx 

KETO1** 
0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

ORx 

KETO2* 
11.7±0.4 6.6±0.4 0.0±0.0 4.2±0.1 1.0±0.1 3.3±0.9 2.8±0.1 0.8±0.0 30.4 

ORx 

KETO2** 
61.3±2.0 4.2±0.0 0.0±0.0 5.2±0.1 0.5±0.0 1.6±0.2 0.9±0.1 0.0±0.0 73.7 

 

CARO2 had a higher carotenoid content compared to CARO1 [ca: 79 µg/g DW at 30 DAP 

(113-fold increase over WT) and ca: 155 µg/g DW (311-fold increase over WT) at 60 DAP]. 

At 30 DAP CARO2 accumulated mainly zeaxanthin (ca: 23 µg/g DW; 58-fold increase over 

WT), phytoene (ca: 18 µg/g DW), antheraxanthin (ca: 13 µg/g DW; 330-fold increase over 
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WT), β-carotene (ca: 11 µg/g DW) and lutein (ca: 9 µg/g DW; 47-fold increase over WT) 

followed by violaxanthin (ca: 2 µg/g DW; 24-fold increase over WT) and β-cryptoxanthin 

(ca: 2 µg/g DW). Similarly to CARO1, phytoene accumulation increased (ca: 117 µg/g DW) 

at the expense of downstream carotenoids at 60 DAP. Zeaxanthin (ca: 18 µg/g DW; 60-fold 

increase over WT), lutein (ca: 6 µg/g DW; 44-fold increase over WT) and β-carotene (ca: 8 

µg/g DW) were the prevalent carotenoids followed by antheraxanthin (ca: 2 µg/g DW) and β-

cryptoxanthin (ca: 2 µg/g DW) in mature seeds at 60DAP (Table 2.4). When OR was crossed 

with CARO2 to generate ORxCARO2, the carotenoid content and composition in the hybrid 

did not change substantially compared to CARO2 which already accumulated high amounts 

of carotenoids at 30 and 60 DAP. Total carotenoid  conent in ORxCARO2 was ca: 79 µg/g 

DW and ca: 135 µg/g DW at 30 DAP and 60 DAP, respectively (Table 2.4). 

Table 2.5 – Ketocarotenoid content and composition of wild-type (M37W) and transgenic lines OR, 
CARO1, CARO2, KETO1 and KETO2; and hybrids ORxCARO1, ORxCARO2, ORxKETO1 and 
ORxKETO2 T1 at 30 (*) and 60 DAP (**) (µg/g DW±SE) (n= 3-5 seeds). Abbreviations: Asta, astaxanthin; 
Cantha, canthaxanthin; Adonir, adonirubin; Adonix, adonixanthin; 3OH.echi, 3-OH-echinenone; KETO, 
ketocarotenoids. 

Sample Astax Cantha Adonir  Adonix 3OH.echi 
TOTAL 
KETO  

M37W*  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

M37W**  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

OR *  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

OR**  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

CARO1*  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

CARO1**  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

CARO2*  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

CARO2**  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

KETO1*  0.4±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.4 

KETO1**  0.6±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.6 

KETO2*  22.1±0.3 1.9±0.1 3.0±0.1 1.7±0.6 2.8±0.0 31.5 

KETO2**  16.0±0.5 2.9±0.1 4.0±0.1 1.1±0.4 1.7±0.0 25.7 

ORxCARO1*  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

ORxCARO2*  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

ORxCARO2**  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 

ORxKETO1*  8.6±0.6 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.6 

ORxKETO1**  8.1±0.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.1 

ORxKETO2*  19.9±0.6 1.5±0.0 2.7±0.1 0.9±0.5 2.9±0.1 27.9 

ORxKETO2**  9.4±0.4 2.0±0.0 2.6±0.1 0.6±0.2 1.5±0.0 16.1 
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KETO1 accumulated relatively low amounts of ketocarotenoids (ca: 0.4 µg/g DW at 30 DAP 

and ca: 0.6 µg/g DW at 60 DAP) and accumulated astaxanthin as the only carotenoid at both 

time points (ca: 0.4 and 0.6 µg/g DW at 30 and 60 DAP, respectively). Thus, the small 

amount of carotenoids present at basal levels in M37W was converted to ketocarotenoids as a 

result of the expression of the heterologous carotenoid β-hydroxylase (sBrcrtZ) and β-

carotene ketolases (sCrbkt and sBrcrtW) (Table 2.5). In the case of ORxKETO1, the 

carotenoid profile was similar to the KETO1 parent but the total amount of carotenoids 

increased up to ca: 9 µg/g DW (22-fold increase over KETO1) at 30 DAP and ca: 8 µg/g DW 

(14-fold increase over KETO1) at 60 DAP. The only ketocarotenoid in ORxKETO1 was 

astaxanthin (ca: 9 µg/g DW; 22-fold increase over KETO1). At 60 DAP astaxanthin was the 

only ketocarotenoid (ca: 8 µg/g DW; 14-fold increase over KETO1) (Table 2.4; Table 2.5). 

KETO2 accumulated high levels of ketocarotenoids compared to KETO1 [ca: 32 µg/g DW 

(80-fold increase over KETO1) and ca: 26 µg/g DW (17-fold increase over KETO1) at 30 and 

60 DAP, respectively]. In addition, KETO2 accumulated ca: 33 µg/g DW and ca: 79 µg/g 

DW total carotenoids at 30 and 60 DAP, respectively. At 30 DAP it accumulated high 

amounts of astaxanthin (ca: 22 µg/g DW) and low amounts of other ketocarotenoids such as 

adonirubin (ca: 3 µg/g DW), 3-OH-echinenone (ca: 3 µg/g DW), canthaxanthin (ca: 2 µg/g 

DW) and adonixanthin (ca: 2 µg/g DW). It also accumulated small amounts of lutein (ca: 1 

µg/g DW; 6-fold increase over WT) and other β,β-carotenes and xanthophylls compared to 

WT, including zeaxanthin (ca: 8 µg/g DW; 19-fold increase over WT), β-carotene (ca: 7 µg/g 

DW), antheraxanthin (ca: 5 µg/g DW; 113-fold increase over WT), β-cryptoxanthin (ca: 3 

µg/g DW) and violaxanthin (ca: 1 µg/g DW; 8-fold over WT). In addition, it accumulated 

upstream precursors including lycopene (ca: 5 µg/g DW) and phytoene (ca: 4 µg/g DW). 

Similarly to CARO1 and CARO2, dry seeds from KETO2 accumulated higher amounts of the 

upstream precursor phytoene (ca: 54 µg/g DW) whereas downstream metabolites decreased. 

Astaxanthin was still the predominant ketocarotenoid at 60 DAP (ca: 16 µg/g DW), followed 

by adonirubin (ca: 4 µg/g DW), canthaxanthin (ca: 3 µg/g DW), 3-OH-equinenone (ca: 2 µg/g 

DW) and adonixanthin (ca: 1 µg/g DW) (Table 2.5). β-Carotene (ca: 12 µg/g DW) was the 

predominant carotene and zeaxanthin (ca: 6 µg/g DW; 21-fold increase over WT) was the 

predominant xanthophyll at 60 DAP. Levels of lutein were very low compared to CARO1 and 

CARO2 (ca: 1 µg/g DW) (Table 2.4). When OR was crossed with KETO2 to generate 
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ORxKETO2 the carotenoid profile in the endosperm did not change substantially compared to 

KETO2 parent which accumulated high amounts of carotenoids and ketocarotenoids. 

ORxKETO2 accumulated ca: 30 µg/g DW and ca: 74 µg/g DW total carotenoids at 30 and 60 

DAP, respectively, and ca: 28 µg/g DW and ca: 16 µg/g DW total ketocarotenoids at 30 and 

60 DAP, respectively (Table 2.4; Table 2.5). 

2.4.4 Transcript analysis of endogenous carotenoid and MEP pathway genes and pftf 

indicates no obvious changes in the levels of accumulation of these endogenous genes in 

hybrids and their respective parents 

Quantitative real-time RT-PCR was used to compare relative transcript levels of endogenous 

carotenogenic genes, MEP pathway genes and Zmpftf, as described in section 2.3.1. 

Transcript levels of each gene in the WT were taken as reference (value 1.00). Levels of 

expression of each gene in transgenic lines CARO2 and KETO2 and their corresponding 

crosses ORxCARO2 and ORxKETO2 were compared relatively to the WT (Figure 2.9). 

In CARO2, transcript levels of Zmpsy2, Zmlyce, Zmbch2, Zmcyp97B, Zmcyp97C in the 

carotenoid pathway, Zmdxs1, Zmdxs3, Zmdxr and Zmhd  in the MEP pathway and Zmpftf 

remained the same as in the WT. Transcript levels of Zmcyp97A, Zmbch1, Zmlycb in the 

carotenoid pathway and Zmdxs2 in the MEP pathway were higher in CARO2 compared with 

WT (ca: 2-, 3-, 6- and 11-fold increase over WT, respectively) and transcript levels of psy1 

increased substantially due to the expression of the transgene (ca: 10,000 fold increase over 

WT). In ORxCARO2, transcript analysis indicated that transcript levels of Zmpsy2, Zmlyce, 

Zmcyp97B and Zmcyp97C in the carotenoid pathway, Zmdxs1, Zmdxs3 and Zmhdr in the 

MEP pathway and Zmpftf remained similar to WT.  Zmcyp97A transcript levels were similar 

to WT and lower than in the CARO2 parent, whereas transcript levels of Zmbch1 were higher 

than WT and similar to CARO2 in the hybrid. Transcript levels of Zmpsy1 (ca: 5,600 fold 

increase over WT), Zmlycb (ca: 2-fold increase over WT) and Zmdxs2 (ca: 7 fold-increase 

over WT) were higher than WT and lower than CARO2. Transcript levels of Zmbch2 (ca: 3-

fold increase over WT) and Zmdxr (ca: 2-fold increase over WT) were higher in ORxCARO2 

than in WT and CARO2 parents.  

In KETO2, transcript levels of Zmpsy2, Zmlyce, Zmbch2 in the carotenoid pathway, Zmdxs1, 

Zmdx3, Zmdxr and Zmhdr in the MEP pathway and Zmpftf did not changed compared with 

WT. Transcript levels of Zmlycb, Zmbch1, Zmcyp97A, Zmcyp97B, Zmcyp97C and Zmdxs2 
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were higher (ca: maximum 4-fold) in KETO2 compared to WT. Levels of psy1 increased 

substantially due to the expression of the transgene (ca: 1,000 fold increase over WT). In 

ORxKETO2 transcript levels of Zmlyce, Zmbch2, Zmdxs1, Zmdxs3, Zmdxr and Zmpftf were 

similar to WT. Transcript levels of Zmcyp97A and Zmcyp97B remained similar in 

ORxKETO2 line compared with WT but lower than KETO2 parent. However, transcript 

levels of Zmpsy1, Zmpsy2, Zmlycb, Zmbch2, Zmhdr and Zmdxs2 were similar to KETO2 

parent and higher than WT. Transcript levels of Zmcyp97C were similar to WT and KETO2.  

GENES WT CARO2 ORxCARO2 KETO2 ORxKETO2  KETO1 ORxKETO1 

Zmpsy1 1.00 d 9940 a 5585 b 1027 c 927 c 1.08 d 1.10 d 

Zmpsy2 1.00 b 0.79 b 1.20 b 1.48 ab 2.34 a 1.03 b 1.05 b 

Zmlyce 1.00 ab 1.23 ab 1.91 a 0.83 b 1.06 ab 0.35 c 0.45 c 

Zmlycb 1.00 c 5.94 a 2.35 b 3.21 ab 2.34 b 0.85 c 0. 77 c 

Zmbch1 1.00 c 2.95 b 2.11 b 4.34 a 4.51 a 0.52 d 0.64 d 

Zmbch2 1.00 b 1.53 b 2.55 a 1.86 ab 1.75 ab 1.43 b 1.38 b 

Zmcyp97A 1.00 b 1.60 a 1.10 b 1.61 a 1.09 b 1.24 b 1.16 b 

Zmcyp97B 1.00 b 1.34 b 2.16 ab 3.25 a 2.17 ab 1.15 b 1.28 b 

Zmcyp97C 1.00 b 1.26 b 1.37 ab 2.20 a 1.51 ab 1.09 b 1.16 b 

Zmdxs1 1.00 b 1.01 b 0.68 b 0.81 b 0.67 b 0.83 b 1.40 a 

Zmdxs2 1.00 c 11.13 a 6.74 b 3.79 b 4.35 b 0.72 c 0.86 c 

Zmdxs3 1.00 a 0.90 a 1.21 a 0.94 a 1.80 a 0.69 a 0.75 a 

Zmdxr 1.00 b 1.06 b 1.64 a 1.05 b 0.83 b 0.42 c 1.08 b 

Zmhdr 1.00 b 1.80 ab 2.27 ab 2.92 ab 3.22 a 1.13 b 1.06 b 

Zmpftf 1.00 a 0.90 a 1.08 a 1.02 a 1.28 a 1.35 b 1.10 b 

Figure 2.9 – Relative mRNA expression for endogenous carotenogenic genes, MEP pathway-related genes 
and Zmpftf in 30 DAP maize endosperm, normalized against actin mRNA and presented as the mean of 
three biological replicates. Transcript levels in WT (M37W) were taken as reference and given the value 1.00. 
Down-regulated and up-regulated gene expression compared with WT, shown in different intensity red and 
green color, respectively, corresponding to lower or higher values. Abbreviations: Zmpsy1, phytoene synthase 1; 
Zmpsy2, phytoene synthase 2; Zmlyce, lycopene ε-cyclase; Zmlycb, lycopene β-cyclase; Zmbch1, carotenoid β-
hydroxylase 1; Zmbch2, carotenoid β-hydroxylase 2; Zmcyp97A/B, P450-carotenoid β-hydroxylase; Zmcyp97C, 
P450-carotenoid ε-hydroxylase, Zmdxs1/2/3, 1-Deoxy-D-xylulose-5-phosphate synthase; Zmdxr, 1-Deoxy-D-
xylulose-5-phosphate reductase; Zmhdr, methylbut-2-enyl-diphosphate reductase; Zmpftf, plastid 
fusion/translocation factor. Different letters correspond to statistical significant different groups at P>0.01. 
Means not sharing the same letter are significantly different (Tukey HSD, P < 0.05). 
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In KETO1 transcript levels of Zmpsy1, Zmpsy2, Zmbch2, Zmlycb, Zmcyp97A, Zmcyp97B, 

Zmcyp97C in the carotenoid pathway, Zmdxs1, Zmdxs2, Zmdxs3 and Zmhdr in the MEP 

pathway and Zmpftf remained similar to WT. Transcript levels of Zmlyce and Zmbch1 were 

downregulated ca: maximum 3-fold in KETO1 over WT. Finally, transcript profile of 

carotenogenic genes, MEP pathway-related genes and Zmpftf in ORxKETO1 were similar to 

KETO1 with the exception of Zmdxs1 which accumulated at statistically significant higher 

levels than in the WT. Zmdxr levels remained similar to the WT but were statistically 

significantly higher compared to KETO1 (Figure 2.9). 

2.4.5. Increase of carotenoid content in diverse genetic backgrounds leads to the creation 

of a metabolic sink 

Endosperm transmission electron microscopy (TEM) analysis of the first layer of cells under 

the epithelium of WT, OR, CARO1, CARO2, KETO1, KETO2 and ORxKETO1 at 30 DAP 

revealed electron-dense plastoglobuli inside plastids. Analysis of ORxCARO1, ORxCARO2 

and ORxKETO2 were not performed due to the fact that no differences were observed in seed 

color phenotype, carotenoid content and endogenous gene expression amongst hybrids and 

their corresponding parents CARO1, CARO2 and KETO2. Plastoglobuli inside plastids of 

WT and KETO1 were present in very few plastids, whereas lines accumulating higher 

amounts of total carotenoids, CARO1, CARO2 and KETO2, contained many plastids with 

plastoglobuli. The number of plastoglobuli in OR and ORxKETO1 was higher compared to 

WT and KETO1, respectively (Figure 2.10). 
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Figure 2.10 – Micrographs of 30 DAP endosperm from WT and transgenic maize lines OR, CARO1, 
CARO2, KETO1, KETO2 and ORxKETO1. A. Light micrograph of WT endosperm; arrows indicate 
aleurone cell layer. B-H Transmission electron microscopy of WT (B), OR (C), CARO1 (D), CARO2 (E), 
KETO2 (F), KETO1 (G) and ORxKETO1 (H). Arrows indicate plastoglobuli inside plastids. Abbreviations: m, 
mitochondria; cw, cell wall; N, nucleus. Scale bar: 30µm (A), 0.7 µm (B-H).  
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2.5 Discussion 

2.5.1 The AtOR transgene enhances total carotenoid content without altering 

composition in the endosperm of hybrids only when the pre-existing carotenoid pool in 

the parents is low 

The identification of a splicing mutation of the orange (or) gene (which is not a carotenoid 

pathway gene) increases carotenoid accumulation, especially β-carotene, via induction of 

chromoplast differentiation in cauliflower (Li et al. 2001). Thus, the generation of metabolic 

sink due to overexpression of or has been used as a strategy to increase carotenoid content in 

different plant species. In potato tubers cv. Desiree, overexpression of cauliflower or 

increased the carotenoid content, specially β-carotene, which continuously increased under 

cold storage (Lopez et al. 2008; Li et al. 2012). However, in potato tubers cv. Phureja no 

increase on cold storage was observed and carotenoid increased ca. 60%, mainly because of 

zeaxanthin, antheraxanthin, violaxanthin and lutein (Campbell et al. 2015). Different behavior 

in terms of carotenoid accumulation in different potato cultivars (cv. Desiree vs cv. Phureja) 

suggests that endogenous carotenoid profiles might influence the manner through which 

expression of the or gene affects carotenoid accumulation. In rice, the overexpression of 

Arabidopsis OR (AtOR) increases the carotenoid content of callus (Bai et al. 2014) and seeds 

(Bai et al. 2015) when it is overexpressed in combination with carotenogenic genes Zmpsy1 

and PacrtI. However, no increase of carotenoid content was observed when AtOR was 

overexpressed alone which suggest that chromoplast differentiation is primarily triggered by 

carotenoid accumulation above a certain threshold and that the presence of orange protein 

may augment or potentiate this process but is not sufficient without other drivers of 

carotenoid accumulation (Bai et al. 2014, 2015). Overexpression of sweetpotato or (Ibor) not 

only increases the β-carotene content in transgenic Ibor calli, but also significantly increases 

the α-carotene, lutein, β-crytoxanthin and zeaxanthin content suggesting that Ibor influences 

carotenogenic gene expression. The transgenic Ibor calli also exhibit increased antioxidant 

activity and tolerance to salt stress most likely because of the increase in carotenoid content 

(Kim et al. 2013). Furthermore, overexpression of Ibor in sweet potato resulted in ca: 3-fold 

increase of total carotenoid content although the composition was not influenced by the 

overexpression of Ibor since only pre-existing carotenoids in the non-transgenic control were 

elevated (Goo et al. 2015). Introduction of IbOr-Ins into purple-fleshed sweetpotato plants 
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enhanced both anthocyanin and carotenoid accumulation in their storage roots suggesting the 

generation of metabolic sink for pigments (Park et al. 2015).  

In maize, I observed two distinct situations concerning the role of AtOR in increasing total 

carotenoid accumulation in the endosperm. In the first scenario, when pre-existing total 

carotenoids were low in the parent used to cross with OR (e.g. KETO1), introgression of 

AtOR increased the total carotenoid content up to 22-fold at 30 DAP in the corresponding 

hybrid (Table 2.3). Interestingly, carotenoid composition did not change suggesting that 

AtOR enhances carotenoid accumulation rather than modifying the endogenous carotenoid 

pathway. Carotenoid composition of KETO1 did not change substantially at 60 DAP 

compared to 30 DAP and the behavior of the hybrid (ORxKETO1) was similar to the parent 

(KETO1) revealing that carotenoid levels remain relatively constant throughout seed 

development in this line (Figure 2.10).  

 
Figure 2.11 – Total carotenoid content and composition in wild-type M37W, transgenic lines OR and 
KETO1 and hybrid ORxKETO1 ORxKETO2 in T 1 generation at 30 DAP (*) and 60 DAP (**) (n=3-5 
seeds). 

The second situation is defined when the pre-existing total carotenoid content was high in the 

parent used to cross with OR (e.g. CARO1, CARO2 and KETO2). In this scenario AtOR did 

not influence carotenoid content and composition at 30 or 60 DAP in the resulting hybrids. 

Carotenoid composition of CARO1, CARO2 and KETO2 changed slightly at 60 DAP 

compared to 30 DAP mainly because of the increase of phytoene and reduction of other 

carotenoids such as lutein, zeaxanthin and antheraxanthin. The behavior of the hybrid was 

similar to the corresponding parent. Novel compounds accumulated in hybrids that were only 
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detected at trace amounts in the corresponding parents confirmed that AtOR increased the 

amount of pre-existing carotenoids (Figure 2.11). 

 
Figure 2. 12 – Carotenoid content and composition in CARO1, CARO2 and KETO 2; and hybrids 
ORxCARO1, ORxCARO2 and ORxKETO2 in T1 generation at 30 DAP (*) and 60 DAP (**) (n=3-5 
seeds). 

2.5.2 Endogenous carotenoid biosynthetic genes, MEP pathway genes, and the pftf 

transcriptor factor are not upregulated in hybrids harboring the AtOR gene despite 

increases in total endosperm carotenoid content 

In previous reports, there was no indication that the cauliflower or induced carotenoid 

biosynthesis gene expression (Li et al. 2001, 2006; Lu et al. 2006). However, it has been 

shown in potato that cauliflower or regulated stability of PSY protein, which provided higher 

enzyme activity for continuous biosynthesis of carotenoids during storage (Li et al. 2012). In 

addition, cauliflower OR protein may function in association with the molecular chaperone 

system to stabilize protein folding (Li et al. 2012). Furthermore, a recent report revealed that 

Arabidopsis OR proteins function as the major regulators of PSY protein and activity and that 

OR modulates carotenoid biosynthesis by means of post-transcriptional regulation of PSY 

(Zhou et al. 2015). In contrast, in sweet potato callus overexpression of Ibor revealed that 

increased carotenoid accumulation was via an upregulation of carotenoid biosynthetic genes 

Ibpsy, Ibcrtiso, Iblycb and Ibbch (Kim et al. 2013). Similarly, the overexpression of Ibor in an 

anthocyanin-rich purple-fleshed cultivar resulted in upregulation of carotenogenic genes 

Ibpds, Ibzds, Iblycb, Ibbch and Ibzep. Interestingly, Iblyce was downregulated and carotenoid 
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cleavage dioxygenases Ibccd1, Ibccd4 and 9-cis-epoxycarotenoid dioxygenases (nced) were 

also upregulated (Goo et al. 2015; Park et al. 2015). In transgenic rice endosperm 

overexpressing AtOR resulted in upregulation of the endogenous carotenogenic genes Oslyce, 

Oslycb and Osbch2 (Bai et al. 2015). These results suggested that OR might increase 

carotenoid content because of the upregulation of endogenous carotenoid biosynthetic 

pathway genes. 

In maize, a detailed transcript analysis of carotenogenic genes revealed no dramatic changes 

in transcript accumulation in OR lines compared to wild-type, with the exception of ca: 2-fold 

downregulation of Zmlyce, which correlates with high zeaxanthin content in the OR lines 

because the metabolic flux was directed through β-branch of the pathway (Figure 2.5). Lower 

transcript levels of Zmlyce were also measured in KETO1 compared to WT (3-fold decrease), 

suggesting that extension of the carotenoid pathway to ketocarotenoids directs flux to the β-

branch of the pathway. Lower transcript levels of Zmlyce compared to WT were also 

measured when OR was introgressed into a more complex transgenic maize line with a 

combination of a β-carotenoid hydroxylase gene (sBrcrtZ) and two carotenoid ketolase genes 

(sCrbkt and sBrcrtW) (ORxKETO1) even transcript levels were similar to OR and KETO1 

parents (Figures 2.6 and 2.8). Thus, no synergistic effect was observed in transcript levels of 

Zmlyce in the ORxKETO1 hybrid. However, downregulation of Zmlyce transcript levels 

compared to WT was not observed in transgenic lines overexpressing carotenogenic genes 

(CARO1, CARO2 and KETO2) or their corresponding hybrids with OR (ORxCARO1, 

ORxCARO2 and ORxKETO2), suggesting that AtOR does not affect endogenous gene 

expression in this lines. Furthermore, transgenic lines overexpressing carotenogenic genes 

(CARO1, CARO2 and KETO2) and their corresponding hybrids with OR (ORxCARO1, 

ORxCARO2 and ORxKETO2) showed a significant increase of Zmlycb transcript levels 

suggesting that overexpression of carotenogenic genes directs the flux through the β-branch of 

the carotenoid pathway in the M37W background. 

In order to assess the potential influence of AtOR on early precursors of the carotenoid 

pathway, Zmdxs1, Zmdxs2, Zmdxs3, Zmdxr and Zmhdr gene expression involved in the MEP 

pathway was evaluated. No changes in transcript levels of MEP pathway genes were 

measured in transgenic line overexpressing AtOR with the exception of ca: 2-fold 

upregulation of Zmdxs1, which might suggest slight flux increase in the carotenoid pathway 

resulting in increase of accumulation of carotenoids (Figure 2.5). Similar results were 

obtained when OR was introgressed into a more complex transgenic maize line with a 
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combination of a β-carotenoid hydroxylase gene (sBrcrtZ) and two carotenoid ketolase genes 

(Crbkt and sBrcrtW) (ORxKETO1). However, upregulation of Zmdxs1 transcript levels 

compared to WT was not observed in transgenic lines overexpressing carotenogenic genes 

(CARO1, CARO2 and KETO2) and their corresponding hybrids with OR (ORxCARO1, 

ORxCARO2 and ORxKETO2) (Figure 2.8). Furthermore, transgenic lines overexpressing 

carotenogenic genes (CARO1, CARO2 and KETO2) and their corresponding hybrids with 

OR (ORxCARO1, ORxCARO2 and ORxKETO2) exhibited a significant increase of Zmdxs2 

transcript levels compared to WT, suggesting that overexpression of carotenogenic genes 

produces a positive feedback regulation and increases the metabolic flux through the 

carotenoid pathway in M37W background. In Arabidopsis callus, the effect of AtOR in the 

expression of two MEP pathway genes (AtDXS and AtDXR) was evaluated, resulting in up to 

1.2- and 1.3-fold increase over WT, respectively (Yuan et al. 2015). However, authors 

concluded that expression of carotenoid biosynthetic genes were not greatly affected in AtOR 

callus (Yuan et al. 2015). 

 The plastid fusion/translocation factor pftf is known to be involved in chromoplast 

differentiation in red pepper (Hugueney et al. 1995). Overexpression of Ibor resulted in 

increase of pftf transcript levels in sweet potato callus and tubers, suggesting that chromoplast 

formation is triggered (Kim et al. 2013; Goo et al. 2015; Park et al. 2015). No changes in the 

Zmpftf transcript levels were observed in transgenic maize hybrids in which AtOR was 

introgressed compared to WT (Figure 2.8), suggesting that AtOR does not trigger 

chromoplast formation by itself. 

2.5.3 Formation of carotenoid-rich plastoglobuli in endosperm tissues is due to high 

levels of newly synthesized carotenoids rather than a direct effect of AtOR gene 

expression 

The cauliflower or gene is the only known gene that acts as a bona fide molecular switch to 

trigger chromoplasts differentiation of non-colored plastids into chromoplasts (Li et al. 2006; 

Lu et al. 2006; Li et al. 2012). In addition, or induced the formation of chromoplasts 

containing carotenoid sequestering structures in potato, which were not observed in tubers of 

potato cultivars that accumulate high levels of carotenoids (Lopez et al. 2008). Recently, 

alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote 

carotenoid accumulation by triggering biogenesis of membranous chromoplasts in 
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Arabidopsis callus without altering carotenogenic gene expression (Yuan et al. 2015).  

However, morphological changes in plastids have been observed in tomato fruits and canola 

endosperm expressing PSY (Shewmaker et al. 1999; Fraser et al. 2007; Nogueira et al. 2013). 

These observations suggest that plastids are modified to accommodate increased levels of 

carotenoids produced in them. Overexpression of PSY can also induce crystalline-type 

carotenoid sequestering structures in Arabidopsis callus, suggesting that the chromoplast 

differentiation program may be a response to the accumulation of carotenoids above a certain 

threshold unless differentiation is triggered by OR before this threshold is reached (Maass et 

al. 2009). In transgenic rice, AtOR expression might influence carotenoid levels both directly 

and indirectly. Chromoplast differentiation is primarily triggered by carotenoid accumulation 

above a certain threshold and the presence of AtOR protein may augment and potentiate this 

process. However, expression of AtOR alone is not sufficient to trigger chromoplast 

differentiation as no evidence that AtOR triggers chromoplast differentiation in the absence of 

carotenogenic transgenes (Zmpsy1 and PacrtI) (Bai et al. 2014, 2015). Storage organs of 

many species synthesize and deposit carotenoids primarily in amyloplast membranes (Li et al. 

2012). Amyloplasts serve as a crystalline-type β-carotene sequestering sink (Cao et al. 2012). 

These carotenoid sequestering structures have 2 roles: (1) sequester excess carotenoid away 

from plastid membranes, thus stimulating their continuous biosynthesis and (2) are a stable 

deposition sink that protects carotenoids from degradation (Li et al. 2012). Amyloplasts in 

maize contain carotenoids (Wurtzel 2004). In maize, I observed amyloplasts and other 

plastids containing electron-dense plastoglobuli that might contain low amounts of 

carotenoids in a low carotenoid genetic background (M37W and KETO1). More plastoglobuli 

were observed in high carotenoid maize backgrounds (CARO1, CARO2 and KETO2). In 

addition, overexpression of AtOR in OR line and in ORxKETO1, the hybrid resulting from 

OR and KETO1 cross, resulted in a substantial increase in the amount of plastoglobuli 

containing plastids, as well as in the number of plastoglobuli inside the plastids. These 

observations suggest that plastoglobuli are formed as a result of the increase in the carotenoid 

content in transgenic lines. Recently, it has been reported in Arabidopsis callus that AtOR that 

did not change the appearance of the plastids per se but alteration of a single amino acid in 

AtOR results in generation of plastids containing larger and electron-dense plastoglobuli. 

AtOR mutant rather than AtOR appears to be a unique protein able to mediate chromoplast 

biogenesis (Yuan et al. 2015). 
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2.6 Conclusions 

The Arabidopsis ORANGE gene (AtOR) has been overexpressed in the white endosperm 

M37W inbred line. I characterized two independent transgenic lines overexpressing AtOR. 

Both lines exhibited an increase in carotenoid content without any concomitant upregulation 

of endogenous carotenogenic, or MEP pathway genes, with the exception of Zmdxs1. I 

conclude that the increased carotenoid content by overexpression of AtOR is not due to 

upregulation of endogenous transcript levels. The highest carotenoid accumulating line was 

crossed with different transgenic lines with diverse carotenoid profiles. In cases in which the 

original transgenic parent crossed with the OR line accumulated low levels of total 

carotenoids, resulting hybrids exhibited a substantial increase of carotenoid content without 

any changes in the qualitative carotenoid composition. No changes at the metabolite and 

transcript profile levels were observed in the hybrids when the carotenoid content in the 

original parents used to cross with the OR line was high. Overexpression of Zmpsy1 alone or 

in combination with other carotenogenic genes in maize endosperm resulted in the formation 

of plastoglobuli structures that are known to act as a metabolic sink for carotenoids inside 

plastids. These structures were also observed in the original OR line and also in the resulting 

hybrids derived from parent with a low carotenoid content suggesting that a metabolic sink 

inside plastids can also be generated as a result of substantial increases in carotenoid content. 
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CHAPTER 3: INCREASED β-CAROTENE CONTENT IN 

MAIZE ENDOSPERM THROUGH RNAi-MEDIATED 

SILENCING OF CAROTENOID β-HYDROXYLASES IN 

DIFFERENT GENETIC BACKGROUNDS  

3.1 Abstract 

I generated independent transgenic maize lines in which the carotenoid β-hydroxylases 

Zmbch1 and Zmbch2 were downregulated. A RNAi-cassette was introgressed into different 

maize genetic backgrounds selected on the basis of their carotenoid profile in order to 

evaluate the effect of silencing the two hydroxylases on carotenoid content and composition 

in the resulting hybrids. β-Carotene content increases substantially in all hybrids in which 

Zmbch1 and Zmbch2 was silenced  confirming that carotenoid β-hydroxylases play a key role 

in the conversion of β-carotene to zeaxanthin. I also investigated carotenoid accumulation of 

the α-branch of the pathway because Zmbch1 is the only non-heme di-iron carotenoid β-

hydroxylase involved in lutein synthesis. Interestingly, transcript accumulation of carotenoid 

ε-hydroxylase (Zmcyp97C) decreased in hybrids compared to the highest expressing parents. 

3.2 Introduction 

Non-heme di-iron carotenoid β-hydroxylases (BCH) and heme-containing cytochrome P450 

hydroxylases (CYP-type hydroxylases) are primarily responsible carotenoid hydroxylation. 

They exhibit overlapping activities, most notably in the hydroxylation of the β-ring of α-

carotene (Kim et al. 2009). Studies involving mutants suggested that CYP97A and CYP97C 

are responsible for catalyzing the hydroxylation of the β- and ε-rings of α-carotene, 

respectively, while BCH1 and BCH2 catalyze the two β-ring hydroxylations of β-carotene 

(Kim and DellaPenna 2006; Sun et al. 1996; Tian and Dellapenna 2001; Tian et al. 2003)  

(Figure 3.1).  
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Figure 3.1 – Xanthophyll biosynthetic pathway. The gene(s) encoding the major activity at each step are 
shown in bold (blue). Identified maize locus name corresponding to each enzyme is shown in brown. 
Abbreviations: LYCB, lycopene β-cyclase; LYCE, lycopene ε-cyclase; CYP97C, heme-containing cytochrome 
P450 carotene ε-ring hydroxylase; CYP97A, heme-containing cytochrome P450 carotene β-ring hydroxylase; 
BCH1/2, Non-heme di-iron β-carotene hydroxylases (Adapted from Kim et al. 2009). 

In maize, the natural genetic diversity allowed identification of hydroxylation genes 

associated with reduced β-carotene content in the endosperm (Vallabhaneni et al. 2009). Hyd3 

locus in chromosome 10, also named crtRB1, encodes for BCH2 (Vallabhaneni et al. 2009; 

Yan et al. 2010; Babu et al. 2013) (Figure 3.1). Alleles associated with reduced transcript 

accumulation correlate with higher β-carotene concentrations and decreased β-cryptoxanthin 

and zeaxanthin content, revealing its importance in the hydroxylation of the β-ring of β-

carotene and β-cryptoxanthin (Yan et al. 2010). Maize hybrids with higher β-carotene content 

were generated by introgression of reduced transcript accumulation of crtRB1 (Muthusamy et 

al. 2014). The gene encoding BCH1 is crtRB3, and acts as a β-hydroxylase (Zhou et al. 2012). 

An additional locus with allelic variation that correlates with high β-carotene content is lycE. 

This allele directs flux into the α-branch of the pathway reducing levels of β,β-carotenoids 

(Harjes et al. 2008). Carotenoid cleavage dioxygenase 1 (ccd1) that produces apocarotenoids 

mainly from lycopene, β-carotene and zeaxanthin, also has alleles associated with reduced 

transcript that correlate with higher β-carotene amounts (Messias et al. 2014).
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In order to develop a better understanding of the roles of BCH1 and BCH2 in carotenoid 

biosynthesis in maize endosperm, a combination of conventional breeding and metabolic 

engineering approaches can be helpful. First, conventional breeding allowed identification of 

bch1 and bch2 as key genes for β-carotene enhancement (Vallabhnaneni et al. 2009; Zhou et 

al. 2012). CrtRB1 alleles have been correlated with high β-carotene content and the 

introgression of these alleles has been carried out in elite inbred lines resulting in up to 12-

fold increase of β-carotene content over the recurrent parent (Muthusamy et al. 2014). 

However, introgression of specific crtRB1 alleles to the recurrent parent requires extensive 

field trials and it is time-consuming. Thus, down-regulation of bch1 and bch2 through 

metabolic engineering can facilitate the generation of novel lines with low expression of these 

enzymes and high β-carotene content.  

Very few commercial maize lines are amenable to genetic transformation. Transformation of 

the elite South African M37W inbred line with a RNA interference (RNAi) construct that 

down regulates expression of bch1 and bch2 allowed the generation of maize lines in which 

lower transcript levels of bch1 and bch2. A number of studies using RNAi gene silencing in 

plants have been reported. For example down-regulation of the endogenous 

photomorphogenesis regulatory gene, det1, under the control of a fruit-specific promoter in 

tomato increased carotenoid and flavonoid contents, whereas other parameters of fruit quality 

were largely unchanged (Davuluri et al. 2005). Similarly, det1 was down regulated in 

Brassica napus seeds to increase the levels of carotenoids and reduce the levels of sinapate 

esters (Wei et al. 2009). Down-regulation of 9-cis e-epoxycarotenoid dioxygenase (nced), 

which catalyzes epoxidation of zeaxanthin to antheraxanthin and violaxanthin resulted in 

tomato fruit with increased accumulation of upstream carotenoids such as lycopene [1.6-fold; 

220 µg/g fresh weight (FW)] and β-carotene (2-fold; 40 µg/g FW) (Sun et al. 2012). In potato, 

the introduction of an antisense fragment to block the expression of lyce resulted in 14-fold 

increased β-carotene accumulation (ca: 43 µg/g DW) (Diretto et al. 2006). Silencing of bch 

increased β-carotene levels from trace amounts in wild type potato tubers up to 331µg/100 g 

FW in transgenic tubers (Van Eck et al. 2007). In transgenic sweet potato callus (Ipomoea 

batatas), the β-carotene content was approximately 21-fold higher than in controls, whereas 

the lutein content was reduced to undetectable levels when lyce was down regulated (Kim et 

al. 2013). Sweet orange plants (cv. Pineapple) have also been targeted to block bch through 

RNAi resulting in oranges with a deep orange phenotype and significant increases (up to 36-

fold; ca: 114ng/g FW) in β-carotene content in the pulp (Pons et al. 2014). 
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After identification of transgenic maize lines with down regulated bch1 and bch2 expression, 

self-pollination was performed to homozygosis. These lines were subsequently used as donors 

to pollinate different lines with specific carotenoid composition in order to evaluate the effect 

of silencing bch in different maize genetic backgrounds (Table 3.1).  

3.3 Materials and methods  

3.3.1 Gene cloning and vector construction 

Zmbch2 cDNA fragment of Zea mays was cloned by RT-PCR using forward primer 5´-

ggaattctctagactatcgcttcagctggcaaatggag-3´ (EcoRI and XbaI sites are underlined) and reverse 

primer 5´-gactagtggatccaacttgtccatgtggtgtatcttg-3´ (BamHI and SpeI sites are underlined) 

based on sequence information in GenBank (accession number: AY844958) and suitable 

restriction sites were incorporated subsequently by PCR. Genes were sub-cloned into the 

pHorP vector containing the barley D-hordein promoter, a 300 bp-long gusA gene fragment 

and the ADP-glucose pyrophosphorylase terminator (ADGPP). To incorporate the target gene 

fragments into pHorP the vector was digested with XbaI and BamHI to introduce the sense 

bch fragment between the barley D-hordein promoter and the gusA gene fragment, resulting 

in pHorP-bch sense. In the second step, the plasmid was digested with SpeI and EcoRI, to 

introduce the antisense bch fragment between the gusA gene fragment and ADGPP 

terminator, resulting in pHorP-RNAi-bch (Figure 3.2).  

 
Figure 3.2 – Schematic representation of pHorP-RNAi-Zmbch. 

3.3.2. Maize transformation and plant growth 

The maize transformation protocol is described in detail in Chapter 2 section 2.2.2. 

Homozygous lines listed in Table 3.1 were grown under the conditions described in Chapter 

2 section 2.2.2.  

 

 

434 bp 352 bp

D-Hordein Zmbch sense ADGPP

300 bp

HindIII BamHI XbaI / EcoRI
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ClaI

464 bp 464 bp

Zmbch antisensegusA

XbaI SpeI / BamHI
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Table 3.1 – Maize lines with specific carotenoid accumulation used in this study to evaluate the effect of 
BCH downregulation by RNAi. 

Line Genotype Source Carotenoid profile References 

B73 Inbred USDA 
High lutein 

Very low β/ε ratio 

(Harjes et al. 2008) 

(Vallabhaneni and 
Wurtzel 2009) 

C17 Inbred USDA 
High β-carotene 

High β/ε ratio 
(Yan et al. 2010) 

NC356 Inbred USDA 
High zeaxanthin 

Very high β/ε ratio 
(Yan et al. 2010) 

Psy1 
Transgenic 

Zmpsy1 

Applied plant 
biotechnology, Universitat 

de Lleida, Spain 

High zeaxanthin and 
β-carotene 

High β/ε ratio 
See chapter 2 

O1-3 
Transgenic 

AtOR 

Applied plant 
biotechnology, Universitat 

de Lleida, Spain 

High zeaxanthin 

Medium β/ε ratio 
See chapter 2 

O2-9 
Transgenic 

AtOR 

Applied plant 
biotechnology, Universitat 

de Lleida, Spain 

High zeaxanthin 

Medium β/ε ratio 
See chapter 2 

USDA: United States Department of Agriculture 
CSIC: Consejo Superior de Investigaciones Científicas 

 

3.3.3 RNA extraction and cDNA synthesis 

The protocols are described in detail in Chapter 1, section 1.2.2. 

3.3.4. RNA blot analysis 

The protocol is described in detail in Chapter 1, section 1.2.7. 

3.3.5. Real-time qRT-PCR 

The protocol is described in detail in Chapter 2 section 2.2.5. 

3.3.6. Carotenoid extraction and UPLC analysis 

This protocol is described in detail in section 2.2.6. 
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3.4 Results 

3.4.1 Transgenic maize lines with RNAi-mediated gene silencing of Zmbch1 and Zmbch2  

I transformed fourteen-day-old immature zygotic embryos of South African elite white maize 

inbred M37W by bombarding them with gold particles coated with a RNAi construct 

specifically designed to downregulate endogenous β-carotene hydroxylase 2 (Zmbch2) in the 

endosperm under selection with the bar gene. Because of the high homology (96.4%) at the 

DNA level between Zmbch1 and Zmbch2, the same RNAi construct was expected to also 

downregulate Zmbch1. This was confirmed by the results as described subsequently. 

Regenerated plants were self-pollinated to homozygosity (T3). mRNA blot analysis of T3 

endosperm at 30 DAP revealed that endogenous Zmbch2 was totally silenced in two of the 

transgenic lines (B1 and B7) and substantially but not completely in two additional lines (B9 

and B13) (Figure 3.3).  

 
Figure 3.3 – mRNA blot analysis (25 µg of total RNA per lane) was used to monitor Zmbch2 mRNA 
accumulation in the endosperm at 30 DAP of wild type (M37W) and independent transgenic lines B1, B7, 
B9 and B13 

Zmbch1 transcript levels were not detectable by mRNA blot so quantitative RT-PCR was 

used to determine transcript accumulation for this gene in M37W and the transgenic lines. 

Zmbch1 was downregulated in all transgenic lines ca: 3-fold compared to M37W (Figure 

3.4). 

M37W  B1       B7        B9       B13

rRNA

Zmbch2
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Figure 3. 4 – Transcript levels of endogenous Zmbch1 gene in wild-type (M37W) and transgenic lines B1, 
B7, B9 and B13 presented as mean of three technical replicates ± SD (n=3-5 seeds) 

3.4.2 Carotenoid composition in inbred lines used as parents to introgress RNAibch 

Transgenic lines B7 and B13 in which Zmbch1 transcript levels were silenced at similar 

levels, and simultaneously Zmbch2 transcript levels were silenced totally or partially, 

respectively, in the same two lines, were used to generate hybrids with different inbred lines. 

The wild type inbred parents had diverse carotenoid profiles. The purpose of these 

experiments was to investigate the impact of the different degrees of silencing of carotene β-

hydroxylases (BCH) introgressed into the hybrids, on carotenoid accumulation in immature 

maize endosperm. Inbred lines B73 and C17 accumulated lutein as the predominant 

carotenoid and lines NC356, O1-3, O2-9 and psy1 accumulated zeaxanthin as the 

predominant carotenoid (Figure 3.5).  

 

 
Figure 3. 5 – Carotenoid composition of lines used to cross with B7 and B13. 
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Different parents, selected on the basis of their endosperm carotenoid content and 

composition, were crossed with B7 and B13 to generate the corresponding hybrids following 

the scheme shown in Figure 3.6. T1 hybrid seeds were collected at 30 DAP and kept at -80ºC 

until further analysis to determine carotenoid content and composition, and transcriptomic 

analysis of endogenous β-carotene hydroxylases. Crosses B7xO1-3, B7xO2-9 could not be 

obtained due to technical problems so they were not included in further analysis. 

 
Figure 3. 6 - Schematic representation indicating how the hybrids were generated. Transgenic lines B7 
and B13 in which Zmbch1 and Zmbch2 were silenced were used to pollinate B73 and C17 (accumulating 
lutein as the predominant carotenoid), NC356, O1-3, O2-9 and psy1 (accumulating zeaxanthin as the 
predominant carotenoid). 

3.4.3 Carotenoid content and composition of hybrids derived from parents with diverse 

carotenoid profiles and transgenic line in which endogenous Zmbch1 and Zmbch2 were 

silenced 

Endosperm carotenoid content and composition of M37W, B7, B13, B73, C17, NC356, O1-3, 

O2-9 and psy1 and the corresponding hybrids (B7xB73, B13xB73, B7xC17, B13xC17, 

B7xNC356, B13xNC356, B13xO1-3, B13xO2-9, B7xpsy1 and B13xpsy1) was evaluated at 

30 DAP (Table 3.2).  
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Table 3. 2 – Carotenoid content and composition  of wild-type (M37W), B7, B13, B73, C17, NC356, O1-3, 
O2-9 and psy1 parents and the corresponding hybrids at 30 DAP (µg/g DW±SE) (n= 3-5 seeds). The 
percentage of individual carotenoids in the endosperm is shown in brackets. Abbreviations: anthera, 
antheraxanthin; zea, zeaxanthin; lut, lutein; β-crypto, β-cryptoxanthin; α-crypto, α-cryptoxanthin; β-caro, β-
carotene; phyto, phytoene; total caro, total carotenoids 

Plant 
line 

anthera 
µg/g DW 

(%) 

zea 
µg/g DW 

(%) 

lut 
µg/g DW 

(%) 

β-crypto 
µg/g DW 

(%) 

α-crypto 
µg/g DW 

(%) 

β-caro 
µg/g DW 

(%) 

phyto 
µg/g DW 

(%) 

Total 
caro 
µg/g 
DW 

WT 
0.0±0.00 

(0) 
2.0±0.10 

(59) 
1.1±0.00 

(32) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.3±0.00 

(9) 
3.4 

B7 
0.0±0.00 

(0) 
2.8±0.27 

(60) 
1.9±0.19 

(40) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
4.7 

B13 
0.3±0.02 

(6) 
2.5±0.19 

(57) 
1.7±0.14 

(37) 
0.0±0.0 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
4.5 

B73 
1.5±0.09 

(5) 
6.1±0.38 

(19) 
18.6±0.93 

(57) 
2.8±0.23 

(8) 
3.6±0.18 

(11) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
32.6 

B7x 
B73 

1.2±0.04 
(3) 

7.4±0.23 
(17) 

18.1±0.18 
(43) 

3.3±0.24 
(8) 

3.5±0.20 
(8) 

7.1±0.45 
(17) 

1.8±0.12 
(4) 

42.4 

B13x 
B73 

0.9±0.05 
(3) 

4.6±0.06 
(13) 

18.5±0.04 
(54) 

1.8±0.24 
(5) 

1.8±0.05 
(5) 

5.8±0.21 
(17) 

0.7±0.02 
(2) 

34.1 

C17 
0.0±0.00 

(0) 
6.2±0.20 

(16) 
12.0±0.30 

(31) 
0.6±0.03 

(1) 
0.0±0.00 

(0) 
11.4±0.90 

(29) 
8.7±0.02 

(22) 
38.9 

B7x 
C17 

0.8±0.01 
(2) 

7.3±0.20 
(19) 

9.0±0.21 
(24) 

2.6±0.15 
(7) 

1.0±0.01 
(3) 

12.6±0.17 
(33) 

4.8±0.13 
(13) 

38.1 

B13x 
C17 

0.4±0.01 
(1) 

11.2±0.22 
(25) 

8.5±0.18 
(19) 

2.8±0.03 
(6) 

1.2±0.01 
(3) 

14.9±0.51 
(34) 

5.4±0.11 
(12) 

44.4 

NC356 
3.0±0.19 

(4) 
45.5±0.78 

(62) 
10.8±0.17 

(15) 
5.0±0.25 

(7) 
3.7±0.16 

(5) 
5.9±0.41 

(8) 
0.0±0.00 

(0) 
73.9 

B7x 
NC356 

3.0±0.04 
(3) 

23.7±0.04 
(23) 

22.7±0.5 
(22) 

10.5±0.19 
(10) 

11.9±0.28 
(12) 

26.0±1.00 
(25) 

4.9±0.15 
(5) 

102.7 

B13x 
NC356 

2.2±0.00 
(3) 

13.2±0.17 
(19) 

20.2±0.10 
(29) 

3.0±0.19 
(4) 

5.2±0.16 
(7) 

25.3±1.40 
(36) 

0.4±0.00 
(1) 

69.5 

O1-3 
0.2±0.02 

(2) 
6.5±0.38 

(61) 
2.6±0.08 

(25) 
1.3±0.01 

(12) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
10.6 

B13x 
O1-3 

0.5±0.03 
(7) 

3.4±0.36 
(45) 

1.1±0.1 
(14) 

0.9±0.05 
(12) 

0.5±0.02 
(6) 

1.2±0.03 
(15) 

0.0±0.00 
(0) 

7.6 

O2-9 
0.0±0.00 

(0) 
9.3±2.02 

(62) 
3.9±0.35 

(26) 
1.9±0.40 

(13) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
0.0±0.00 

(0) 
15.1 

B13x 
OR2-9 

0.8±0.06 
(7) 

6.5±0.04 
(53) 

2.2±0.08 
(18) 

1.2±0.01 
(9) 

0.6±0.05 
(5) 

1.8±0.04 
(15) 

0.0±0.00 
(0) 

13.1 

psy1 
0.0±0.00 

(0) 
25.5±2.14 

(47) 
8.5±0.35 

(16) 
6.6±0.29 

(12) 
0.0±0.00 

(0) 
8.7±0.75 

(16) 
5.0±0.18 

(9) 
54.3 

B7x 
psy1 

4.5±0.05 
(4) 

23.8±0.19 
(22) 

12.3±0.17 
(12) 

10.5±0.25 
(10) 

9.3±0.09 
(9) 

29.9±0.49 
(28) 

15.7±0.10 
(15) 

106.0 

B13x 
psy1 

4.2±0.3 
(5) 

19.2±0.25 
(23) 

7.3±0.15 
(9) 

5.9±0.12 
(7) 

4.6±0.03 
(5) 

20.7±0.09 
(25) 

23.0±0.18 
(27) 

84.9 

 

B7 and B13 transgenic lines accumulated similar amounts of total carotenoids (ca: 4.5 µg/g 

DW) as M37W (ca: 3 µg/g DW). In both lines zeaxanthin (ca: 2.5 µg/g DW) predominated 

over lutein (ca: 2 µg/g DW). Traces of antheraxanthin accumulated in B13 but not in B7 

transgenic lines (Table 3.2; Figure 3.7). 
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Figure 3. 7 – Carotenoid composition of B7, B13, B73, C17, NC356, O1-3, O2-9, psy1 and the 
corresponding hybrids with B7 and B13 at 30 DAP. 

3.4.3.1 Carotenoid content and composition in hybrids and corresponding parents 

accumulating higher amounts of ε-carotenoids relatively to β-carotenoids 

B73 accumulated high amounts of ε-carotenoids relatively to β-carotenoids. Lutein (ca: 19 

µg/g DW) was the predominant carotenoid followed by zeaxanthin (ca: 6 µg/g DW), α-

cryptoxanthin (ca: 4 µg/g DW), β-cryptoxanthin (ca: 3 µg/g DW) and antheraxanthin (ca: 2 

µg/g DW). Total carotenoid content in B73 was ca: 33 µg/g DW. Total carotenoids in 

B7xB73 increased 1.3-fold to ca: 42 µg/g DW. Lutein (ca: 18 µg/g DW; no changes 

compared to B73) and zeaxanthin (ca: 7 µg/g DW; 1.2-fold increase compared to B73) were 

the predominant carotenoids in the hybrid, whereas β-cryptoxanthin (ca: 3 µg/g DW; 1.3-fold 

decrease compared to B73), α-cryptoxanthin (ca: 3 µg/g DW; no changes compared to B73) 

and antheraxanthin (ca: 1 µg/g DW; 1.3-fold decrease compared to B73) accounted for the 

rest of carotenoids. Interestingly, β-carotene (ca: 7 µg/g DW) and phytoene (ca: 2 µg/g DW) 

which were absent in B73, accumulated in the hybrid. Total carotenoid content in B13xB73 

was ca: 34 µg/g DW, which was not significantly different from B73 parent. Lutein was the 

predominant carotenoid in the hybrid (ca: 19 µg/g DW; no changes compared to B73) 

followed by zeaxanthin (ca: 5 µg/g DW; 1.3-fold decrease compared to B73), β-cryptoxanthin 

(ca: 2 µg/g DW; 1.4-fold decrease compared to B73), α-cryptoxanthin (ca: 2 µg/g DW; 2-fold 

decrease compared to B73) and traces of antheraxanthin. Interestingly, β-carotene (ca: 6 µg/g 
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DW) and traces of phytoene (ca: 1 µg/g DW) which were absent in B73, accumulated in the 

hybrid (Table 3.2; Figure 3.7). 

C17 accumulates high amounts of ε-carotenoids relative to β-carotenoids. Lutein (ca: 12 µg/g 

DW) and β-carotene (ca: 11 µg/g DW) were the predominant carotenoids followed by 

phytoene (ca: 9 µg/g DW) and zeaxanthin (ca: 6 µg/g DW) whereas traces of β-cryptoxanthin 

(ca: 1 µg/g DW) accounted for the remaining carotenoids in this line. The total carotenoid 

content in C17 was ca: 39 µg/g DW. Total carotenoid content in B7xC17 was ca: 38 µg/g 

DW, which was not significantly different from C17 parent. β-carotene (ca: 13 µg/g DW; 1.1-

fold increase compared to C17) was the predominant carotenoid followed by lutein (ca: 9 

µg/g DW; 1.3-fold decrease compared to C17), zeaxanthin (ca: 7 µg/g DW; 1.2-fold increase 

compared to C17), phytoene (ca: 5 µg/g DW; 1.8-fold decrease compared to C17) and β-

cryptoxanthin (ca: 3 µg/g DW; 4.4-fold increase compared to C17). Traces of α-cryptoxanthin 

(ca: 1 µg/g DW) and antheraxanthin (ca: 1 µg/g DW), which were absent in C17, accumulated 

in the hybrid. Total carotenoids in B13xC17 hybrid increased by 1.1-fold to ca: 44 µg/g DW. 

β-carotene (ca: 15 µg/g DW; 1.2-fold increase compared to C17) was the predominant 

carotenoid followed by zeaxanthin (ca: 11 µg/g DW; 1.8-fold increase compared to C17), 

lutein (ca: 8 µg/g DW; 1.4-fold decrease compared to C17), phytoene (ca: 5 µg/g DW; 1.6-

fold decrease compared to C17) and β-cryptoxanthin (ca: 3 µg/g DW; 4.9-fold increase 

compared to C17). Traces of α-cryptoxanthin (ca: 1 µg/g DW) and antheraxanthin (ca: 0.5 

µg/g DW), which were absent in C17, accumulated in the hybrid (Table 3.2; Figure 3.7). 

3.4.3.2 Carotenoid content and composition in hybrids and corresponding parents 

accumulating higher amounts of β-carotenoids relatively to ε-carotenoids 

NC356 accumulates the highest amount of total carotenoids among all lines (ca: 74 µg/g 

DW). Zeaxanthin (ca: 46 µg/g DW) and lutein (ca: 11 µg/g DW) were the predominant 

carotenoids. β-Carotene (ca: 6 µg/g DW), β-cryptoxanthin (ca: 5 µg/g DW), α-cryptoxanthin 

(ca: 4 µg/g DW) and antheraxanthin (ca: 3 µg/g DW) accounted for the remaining carotenoids 

in this line). Total carotenoids in B7xNC356 increased by 1.4-fold to ca: 103 µg/g DW. β-

carotene (ca: 26 µg/g DW; 4.4-fold increase compared to NC356) was the predominant 

carotenoid followed by zeaxanthin (ca: 24 µg/g DW; 1.9-fold decrease compared to NC356), 

lutein (ca: 23 µg/g DW; 2.1-fold increase compared to NC356), α-cryptoxanthin (ca: 12 µg/g 

DW; 3.2-fold increase compared to NC356) and β-cryptoxanthin (ca: 11 µg/g DW; 2.1-fold 

increase compared to NC356). Phytoene (ca: 5 µg/g DW), which was absent in NC356, 



Chapter 3 

    

  
98 

 
  

accumulated in the hybrid and antheraxanthin (ca: 3 µg/g DW; no changes compared to 

NC356) accounted for the rest of carotenoids. Total carotenoid content in B13xNC356 

decreased was ca: 68 µg/g DW, which was not significantly different from NC356. β-carotene 

(ca: 25 µg/g DW) was the predominant carotenoid followed by lutein (ca: 20 µg/g DW; 1.9-

fold increase compared to NC356), zeaxanthin (ca: 13 µg/g DW; 3.4-fold decrease compared 

to NC356), α-cryptoxanthin (ca: 5 µg/g DW; 1.4-fold increase compared to NC356), β-

cryptoxanthin (ca: 3 µg/g DW; 1.7-fold decrease compared to NC356) and antheraxanthin 

(ca: 2 µg/g DW; 1.4-fold decrease). Traces of phytoene, which were absent in NC356, 

accumulated in the hybrid (Table 3.2; Figure 3.7). 

O1-3 accumulated high amounts of β-carotenoids relative to ε-carotenoids.  Zeaxanthin (ca: 6 

µg/g DW) was the predominant carotenoid followed by lutein (ca: 3 µg/g DW). β-

cryptoxanthin (ca: 1 µg/g DW) and traces of antheraxanthin accounted for the rest of 

carotenoids (ca: 11 µg/g DW). Total carotenoids in B13xO1-3 decreased by 1.4-fold to ca: 8 

µg/g DW. Zeaxanthin (ca: 3 µg/g DW; 1.9-fold decrease compared to O1-3) was the 

predominant carotenoid followed by lutein (ca: 1 µg/g DW; 2.4-fold decrease compared to 

O1-3), β-cryptoxanthin (ca: 1 µg/g DW; 1.4-fold decrease compared to O1-3) and traces of 

antheraxanthin. Interestingly, β-carotene (ca: 1 µg/g DW) and traces of α-cryptoxanthin, 

which were absent in O1-3 accumulated in the hybrid. Unfortunately, the cross B7xO1-3 was 

not possible due to technical problems (Table 3.2; Figure 3.7).  

O2-9 accumulated high amounts of β-carotenoids relative to ε-carotenoids.  Zeaxanthin (ca: 9 

µg/g DW) was the predominant carotenoid followed by lutein (ca: 4 µg/g DW). β-

cryptoxanthin (ca: 2 µg/g DW) accounted for the rest of carotenoids (ca: 15 µg/g DW). Total 

carotenoids in B13xO2-9 decreased by 1.2-fold to ca: 13 µg/g DW. Zeaxanthin (ca: 7 µg/g 

DW; 1.4-fold decrease compared to O2-9) was the predominant carotenoid followed by lutein 

(ca: 2 µg/g DW; 1.8-fold decrease compared to O2-9) and β-cryptoxanthin (ca: 1 µg/g DW; 

1.6-fold decrease compared to O2-9). Interestingly, β-carotene (ca: 2 µg/g DW) and traces of 

α-cryptoxanthin and antheraxanthin, which were absent in O2-9 accumulated in the hybrid. 

Unfortunately, the cross B7xO2-9 was not possible due to technical problems (Table 3.2; 

Figure 3.7).  

Psy1 accumulated high amounts of β-carotenoids relative to ε-carotenoids. Zeaxanthin (ca: 26 

µg/g DW), β-carotene (ca: 9 µg/g DW), lutein (ca: 9 µg/g DW), β-cryptoxanthin (ca: 7 µg/g 

DW) and phytoene (ca: 5 µg/g DW) accounted for ca: 54 µg/g DW total carotenoids. Total 
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carotenoids in B7xpsy1 increased by 2-fold to ca: 106 µg/g DW. β-carotene (ca: 30 µg/g DW; 

3.4-fold increase compared to psy1), zeaxanthin (ca: 24 µg/g DW; no changes compared to 

psy1) and phytoene (ca: 16 µg/g DW; 3.1-fold increase compared to psy1) were the 

predominant carotenoids followed by lutein (ca: 12 µg/g DW; 1.4-fold increase compared to 

psy1) and β-cryptoxanthin (ca: 11 µg/g DW; 1.6-fold increase compared to psy1). α-

Cryptoxanthin (ca: 9 µg/g DW) and antheraxanthin (ca: 5 µg/g DW) which were absent in 

psy1, accumulated in the hybrid. Total carotenoids in B13xpsy1 increased by 1.6-fold to ca: 

85 µg/g DW. β-carotene (ca: 21 µg/g DW; 2.4-fold increase compared to psy1), phytoene (ca: 

23 µg/g DW; 4.6-fold increase compared to psy1) and zeaxanthin (ca: 19 µg/g DW; 1.3-fold 

decrease compared to psy1) were the predominant carotenoids followed by lutein (ca: 7 µg/g 

DW; 1.2-fold decrease compared to psy1) and β-cryptoxanthin (ca: 6 µg/g DW; 1.1.-fold 

decrease compared to psy1). α-Cryptoxanthin (ca: 5 µg/g DW) and antheraxanthin (ca: 4 µg/g 

DW) which were absent in psy1, accumulated in the hybrid (Table 3.2; Figure 3.7). 

3.4.5 Transcriptomic analysis of transgenes and endogenous carotene β- and ε-

hydroxylase genes in maize hybrids reveals different expression profiles amongst 

hybrids due to the effect of RNAi-mediated gene silencing 

Endosperm samples (30 DAP) were frozen in liquid nitrogen and stored at -80ºC until RNA 

extraction was performed to measure transgene expression by qRT-PCR (Figure 3.8). As 

expected, transgene transcript levels were not detected in M37W, B7 and B13 endosperm; 

AtOR transcripts were detected in O1-3, O2-9 and the corresponding hybrids B13xO1-3 and 

B13xO2-9; Zmpsy1 transcripts were detected in psy1 line and the corresponding hybrids 

B7xpsy1 and B13xpsy1 (Figure 3.8). 

A comparison amongst hydroxylase transcript accumulation in M37W relatively to Zmbch1 

revealed that Zmbch1 and Zmcyp97C transcripts accumulated at similar levels in the wild 

type. Transcript levels of Zmcyp97A and Zmcyp97B in the wild type were 18- and 9-fold 

higher, respectively, than Zmbch1 levels whereas transcript levels of Zmbch2 were 150-fold 

higher than Zmbch1 (Figure 3.9). 
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Figure 3. 8 – Transgene expression normalized against actin in the wild-type (M37W) and transgenic lines 
presented as mean of three technical replicates. Standard error bars were not included because of the use of 
technical replicates rather than biological replicates. The aim was to show expression of the introduced 
transgenes rather than compare different transcript profiles. 

 
Figure 3. 9 – Relative mRNA accumulation of endogenous hydroxylase genes in wild type (M37W); 
Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B and Zmcyp97C in 30 DAP maize endosperm, normalized against 
actin mRNA, relative to Zmbch1 and presented as the mean of three technical replicates ± SE. 
Abbreviations: Zmbch1, carotenoid β-hydroxylase 1; Zmbch2, carotenoid β-hydroxylase 2; Zmcyp97A/B, 
carotene ε-hydroxylase; Zmcyp97C. 

In addition to transgenes, endogenous hydroxylases Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B 

and Zmcyp97C were analyzed at 30 DAP in M37W, B73, C17, NC356, O1-3, O2-9 and psy1 

and the hybrids generated with B7 and B13  (B7xB73, B13xB17, B7xC17, B13xC17, 

B7xNC356, B13xNC356, B13xO1-3, B13xO2-9, B7xpsy1 and B13xpsy1 (Figure 3.10). 

Transcript levels of Zmbch1 and Zmbch2 were downregulated in both transgenic lines (B7 
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and B13) ca: 1.5 and ca: 2-fold, respectively compared to wild type. mRNA accumulation of 

Zmcyp97A and Zmcyp97B were similar in B7 and B13 lines over M37W. However, 

Zmcyp97C was ca: 3.5-fold decreased compared to M37W (Figure 3.10). 
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Figure 3. 10 – mRNA accumulation of endogenous hydroxylases: Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B 
and Zmcyp97C in 30 DAP maize endosperm, normalized against actin and relative to M37W mRNA and 
presented as the mean of three technical replicates ± SE. Abbreviations: Zmbch1, carotenoid β-hydroxylase 
1; Zmbch2, carotenoid β-hydroxylase 2; Zmcyp97A/B, carotene β-hydroxylase; Zmcyp97C, carotene ε-
hydroxylase. 

3.4.5.1 mRNA accumulation of endogenous hydroxylase genes in hybrids and corresponding 

parents accumulating higher amounts of ε-carotenoids relatively to β-carotenoids 

Transcript levels of Zmbch1 and Zmcyp97C were higher in B73 over M37W (ca: 10- and 1.5-

fold, respectively), whereas transcript levels of Zmbch2 and Zmcyp97A were similar to M37W 

and transcript levels of Zmcyp97B were 2-fold downregulated in B73 over M37W. Transcript 

levels of endogenous Zmbch1 and Zmbch2 in B7xB73 and B13xB73 were downregulated (ca: 

5- and 4-fold, respectively) in both hybrids compared to B73. Transcript levels of Zmcyp97A 
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were similar in B7xB73 and B13xB73 hybrids than B73. Transcript levels of Zmcyp97B were 

upregulated (ca: 1.5-fold) in B7xB73 and B13xB73 hybrids compared to B73 and transcript 

levels of Zmcyp97C were decreased (ca: 2-fold and 9-fold, respectively) in B7xB73 and 

B13xB73 hybrids compared to B73 (Figure 3.10).  

Transcript levels of Zmbch1 were higher in C17 compared to M37W (ca: 2-fold), whereas 

transcript levels of Zmbch2, Zmcyp97A, Zmcyp97B and Zmcyp97C were downregulated (ca: 

15-, 2-, 3- and 12-fold, respectively), compared to M37W. In B7xC17 and B13xC17 hybrids, 

transcript levels of endogenous Zmbch1 did not change compared to parents. However, 

transcript levels of Zmbch2 were downregulated (ca: 5- fold) in both hybrids compared to 

M73W although they were slightly higher than C17. Transcript levels of Zmcyp97A were 

decreased (ca: 1.5- fold) in both hybrids compared to M37W parent although they were 

slightly higher than C17. Transcript levels of Zmcyp97B were upregulated (ca: 7- and 2-fold, 

respectively), in B7xC17 and B13xC17 compared to C17 and transcript levels of Zmcyp97C 

were downregulated (ca: 2-fold) over C17 (Figure 3.10).  

3.4.5.2 mRNA accumulation of endogenous hydroxylase genes in hybrids and corresponding 

parents accumulating higher amounts of β-carotenoids relatively to ε-carotenoids  

Transcript levels of Zmbch1 were higher (ca: 15-fold) in NC356 compared to M37W, whereas 

transcript levels of Zmbch2 were similar and transcript levels of Zmcyp97A, Zmcyp97B and 

Zmcyp97C were downregulated (ca: 2-, 5- and 12-fold, respectively), compared to M37W. In 

B7xNC356 and B13xNC356 hybrids, transcript levels of endogenous Zmbch1 and Zmbch2 

were downregulated (ca: 5- and 7-fold, respectively), in both hybrids compared to NC356. 

Transcript levels of Zmcyp97A and Zmcyp97C did not change in both hybrids compared to 

NC356, whereas transcript levels of Zmcyp97B were upregulated (ca: 2- fold) in hybrids 

compared to NC356 (Figure 3.10). 

Transcript levels of Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B and Zmcyp97C did not change 

in O2-9 compared to M37W. In B13xO1-3 hybrid, transcript levels of endogenous Zmbch1 

did not change, whereas transcript levels of Zmbch2 were downregulated (ca: 3- fold) 

compared to O1-3. Transcript levels of Zmcyp97A, Zmcyp97B and Zmcyp97C did not change 

in B13xO1-3 hybrid compared to O1-3 parent (Figure 3.10).  

Transcript levels of Zmbch1, Zmbch2, Zmcyp97A, Zmcyp97B and Zmcyp97C were similar in 

O2-9 compared to M37W. In B13xO2-9 hybrid, transcript levels of endogenous Zmbch1, 
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Zmcyp97A and Zmcyp97B were similar to WT, whereas transcript levels of Zmbch2 and 

Zmcyp97C were downregulated (ca: 2- and 1.2-fold, respectively), in hybrid compared to O2-

9 parent (Figure 3.10).  

Transcript levels of Zmbch1, Zmcyp97A and Zmcyp97B were similar in psy1 compared to 

M37W, whereas transcript levels of Zmbch2 were upregulated (ca: 2-fold) and transcript 

levels of Zmcyp97C were downregulated (ca: 12-fold) in psy1 line compared to M37W. In 

B7xpsy1 and B13xpsy1, transcript levels of endogenous Zmbch2 were downregulated (ca: 5- 

and 3-fold, respectively), in both hybrids compared to psy1 line. Transcript levels of Zmbch1, 

Zmcyp97A, Zmcyp97B and Zmcyp97C were similar in hybrids than psy1 line (Figure 3.10).  

3.5 Discussion 

3.5.1 RNAi-mediated silencing of endogenous Zmbch1 and Zmbch2 genes leads to a 

significant increase of β-carotene accumulation in the endosperm of hybrids derived 

from parents with diverse carotenoid profiles 

Two classes of structurally-unrelated enzymes catalyze the hydroxylation of α- and β- ionone 

rings in higher plants: CYP97-type heme-containing cytochrome P450 hydroxylases and 

BCH-type non-heme di-iron hydroxylases. Maize bch2 (also known as hyd3 and crtRB1) is 

developmentally regulated but preferentially expressed in the endosperm, where it governs the 

critical steps in the conversion of β-carotene to zeaxanthin via β-cryptoxanthin (Vallabhaneni 

et al. 2009; Li et al. 2010; Babu et al. 2012, Yan et al. 2010; Naqvi et al. 2011). Zmbch2 is the 

only carotenoid hydroxylase expressed at high enough levels to be detected by mRNA blot 

(Li et al. 2010). Hypomorphic alleles cause the accumulation of β-carotene in maize 

endosperm (Vallabheneni et al. 2009; Yan et al. 2010). Zmbch2 alleles have been correlated 

with high β-carotene content and the introgression of these alleles has been carried out into 

elite inbred lines resulting in up to 12-fold increase of β-carotene content over the recurrent 

parent (Muthusamy et al. 2014). In contrast, candidate-gene association analysis identified 18 

polymorphic sites in ZmcrtRB3 (BCH1) significantly associated with one or more carotenoid-

related traits in 126 diverse yellow maize inbred lines. These results indicate that bch1 plays a 

role in hydrolyzing both α- and β-carotenes. Polymorphisms in bch1 had higher influence on 

variation of α-carotene than β-carotene levels (Zhou et al. 2012).  
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Zmbch1 and Zmbch2 cDNAs in maize endosperm are highly homologous (96.4%) at the DNA 

level. They map to different chromosomes but encode very similar proteins (76.6% identity, 

with highly conserved motifs typical of an iron-containing monooxygenase) (Li et al. 2010). 

Previous reports indicated that in bacteria producing β-carotene and expressing the Zmbch2 

cDNA, more than half of the β-carotene was converted into downstream products, 

approximately 80% β-cryptoxanthin and 20% zeaxanthin. In contrast, bacteria expressing 

Zmbch1 cDNA were only able to convert less than 5% of the available β-carotene to β-

cryptoxanthin as the sole product. This functional difference might indicate that the two genes 

diverged during evolution to fulfill different roles in carotenoid biosynthesis (Li et al. 2010).  

I generated transgenic plants in which Zmbch1 and Zmbch2 were downregulated 

simultaneously as the RNAi cassette was targeted to a high homology region of the two genes 

(Figures 3.3 and 3.4). Zmbch2 gene silencing varied amongst transgenic lines as indicated by 

mRNA blot analysis: Transgenic lines B1 and B7 exhibited total silencing of Zmbch2 whereas 

in lines B9 and B13, Zmbch2 was only partially silenced. The extent of Zmbch1 silencing 

could only be determined by qPCR because of the low levels of Zmbch1 transcripts which 

accumulated in the endosperm of these lines. I measured a relatively uniform decrease in the 

levels of Zmbch1 transcript accumulation in all the transgenic lines (ca: 3-fold). This suggests 

that the insertion of the RNAi cassette into the maize genome might affect the effectiveness of 

the RNAi construct because the effects observed in independent lines were different. The 

M37W inbred line used for transformation only accumulates traces of carotenoids as Zmpsy1 

expresses at very low level in the endosperm of this line (Zhu et al. 2008; Naqvi et al. 2009). 

Consequently, primary transformants in a M37W genetic background are not suitable to 

evaluate the effects of the silencing of these two β-carotene hydroxylases in the endosperm. 

For this reason I introgressed the RNAi cassette resident in the M37W transformants B7 and 

B13) into different maize lines, selected on the basis of their endosperm carotenoid content 

and composition (Figure 3.5). I chose lines B7 and B13 as introgression parents in order to 

assess whether complete or partial silencing of Zmbch2 might have an effect on carotenoid 

accumulation.  

Carotenoid composition analysis of hybrids generated with transgenic lines B7 and B13 in 

which Zmbch1 transcript levels were downregulated at similar levels and Zmbch2 transcript 

levels were downregulated at high and intermediate levels, respectively, revealed a variation 

in carotenoid composition (Table 3.2; Figure 3.7). The effect of silencing of Zmbch1 and 

Zmbch2 appears to be more pronounced in the β-branch of the pathway. β-Carotene was 
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absent in the endosperm of B73, O1-3 and O2-9. However, the corresponding hybrids 

accumulated up to ca: 5µg/g DW of total carotenoids in the endosperm. NC356 and psy1 

hybrids accumulated β-carotene at levels up to 3.4-fold higher than their corresponding 

parents (ca: 30 µg/g DW). However, no significant changes were observed in β-carotene 

levels of C17 hybrids because Zmbch2 transcript levels were already low in the C17 parent 

(Figure 3.9). β-Cryptoxanthin levels increased in C17 hybrids and decreased in O1-3 and O2-

9 hybrids. β-Cryptoxanthin levels increased in hybrids between B7 and B73, NC356 and 

psy1. In contrast β-cryptoxanthin levels decreased in the corresponding hybrids with B13. The 

higher degrees of Zmbch2 silencing in the B7 parent relative to B13 might explain the 

different β-cryptoxanthin levels in the two situations. The hydroxylation capacity in the B7 

parent is reduced compared to B13, so the monohydroxylated carotenoid β-cryptoxanthin is 

seen to accumulate at the expense of the dihydroxylated β-carotenoid zeaxanthin. Total 

zeaxanthin levels decreased in NC356, O1-3 and O2-9 hybrids (with both B7 and B13 

parents), and zeaxanthin levels relative to total carotenoids increased also in B73 and psy1 

hybrids, suggesting that the increase of β-carotene content correlated with the decrease of 

zeaxanthin content due to Zmbch2. Zmbch2 polymorphisms based on molecular markers 

reported by several authors (Vallabhaneni et al. 2009; Li et al. 2010; Babu et al. 2012, Yan et 

al. 2010) correlated with increase β-carotene content in agreement with my results. In the α-

branch of the pathway, β-hydroxylation of α-cryptoxanthin results in the formation of the end-

product of the pathway, lutein. α-Cryptoxanthin accumulated in C17, O1-3, O2-9 and psy1 

hybrids even though this metabolite was absent in C17, O1-3, O2-9 and psy1. B73 and 

NC356 hybrids, whose parents accumulated the highest transcript levels of Zmbch1, showed 

an increase of α-cryptoxanthin levels in B7 hybrids compared to the parents and α-

cryptoxanthin levels remained the same in B13 hybrids compared to the parents suggesting 

that an additional β-hydroxylase is required to convert α-cryptoxanthin to lutein. Lutein 

accumulation was reduced only in C17, O1-3 and O2-9 hybrids but increased in NC356 

hybrids and psy1 hybrids and did not change in B73 hybrids, suggesting again that an 

additional β-hydroxylase is required to convert α-cryptoxanthin to lutein. 

3.5.2 RNAi-mediated Zmbch1 and Zmbch2 silencing impacts differently the expression 

of P450-carotene β-hydroxylase and ε-hydroxylase genes  

In M37W endosperm Zmbch2 is highly expressed compared to Zmbch1, Zmcyp97A, 

Zmcyp97B and Zmcyp97C (Figure 3.9).  Zmbch1 has been reported to have a higher impact 
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on β-hydroxylation of α-carotenoids rather than β-hydroxylation of β-carotenoids as 

polymorphisms of this gene correlated well with more variation in α- than in β-carotene 

(Zhou et al. 2012). Transcript levels of Zmbch1 exhibited the highest variability amongst 

parents relative to M37W, representing a maximum ca: 15-fold increase. Transcript levels of 

Zmbch1 were highly downregulated in B73 and NC356 hybrids compared to their parents, 

representing a maximum of ca: 5-fold decrease, revealing an efficient downregulation of 

Zmbch1 by the RNAi construct in the parent. However, Zmbch1 transcript downregulation in 

O1-3, O2-9 and psy1 hybrids was not significant and Zmbch1 transcript levels in C17 hybrids 

were higher than in the C17 and M37W parents, suggesting that endogenous Zmbch1 alleles 

might influence the effectiveness of the RNAi construct introgressed into these hybrids. Up to 

ca: 5-fold lower Zmbch1 transcript levels in hybrids of B73, NC356 compared to their 

corresponding parents did not correlate with increased α-cryptoxanthin and decreased lutein 

levels, which suggests that an additional carotenoid β-hydroxylase might be involved in the 

conversion of α-cryptoxanthin to lutein. In the case of Zmbch2, up to 2.5-fold variation was 

observed amongst all lines (parents and hybrids), revealing low variability in gene expression. 

However, crtRB1 (BCH2) locus has been reported to have high impact on β-carotene 

accumulation (Vallabhaneni et al. 2009), correlating with high expression levels of Zmbch2 

compared to the other β-hydroxylases. Zmbch2 transcript levels were lower in all hybrids 

compared to the respective parents with the exception of C17 hybrids in which transcript 

levels were lower than in the M37W parent (containing the RNAi construct) but higher than 

the C17 parent. In addition, the different degrees of gene silencing in B7 and B13 also 

manifested in the hybrids derived from these lines. This indicates that the effectiveness of the 

RNAi construct is stable over generations. Variation amongst Zmcyp97A and Zmcyp97B 

transcript levels in parent lines and hybrids was too low to note significant differences, so 

differences of transcript levels of Zmcyp97A and Zmcyp97B might be attributable to natural 

variation of transcript levels. Low transcript variability suggests that Zmcyp97A and 

Zmcyp97B are tightly regulated. Transcript levels of Zmcyp97A and Zmcyp97B were similar 

in hybrids compared to their respective parents. In contrast, transcript levels of carotenoid ε-

hydroxylase Zmcyp97C varied up to 19-fold (increased in B73 relative to C17, which are the 

two extremes in the variation amongst all the parents). Zmcyp97C transcript levels in hybrids 

were downregulated in B73, C17, O1-3 and O2-9 hybrids, but not in NC356 and psy1 hybrids 

with respect to their corresponding parents. Interestingly, hybrids which did not have 

significantly reduced levels of Zmvyp97C compared to the parents did not show a reduction in 

lutein content. This suggests that a downregulation of carotenoid β-hydroxylase transcript 
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levels might have a collateral effect on downregulation of transcript levels of carotenoid ε-

hydroxylase. 

3.6 Conclusions 

Four independent transgenic lines with RNAi-mediated gene silencing of Zmbch1 and 

Zmbch2 in a M37W genetic background were generated. No differences in carotenoid content 

and composition of transgenic lines B7 and B13 compared to M37W were measured because 

of the low pool of carotenoids in the M37W line used for the transformation experiments. 

Thus, the RNAibch cassette in transgenic lines B7 and B13 lines was introgressed into several 

lines with different carotenoid profiles. Targeted metabolomics analysis revealed an increase 

of β-carotene levels at the expense of zeaxanthin in all the hybrids in which Zmbch1 and 

Zmbch2 were downregulated, confirming that the two hydroxylases are crucial for the 

conversion of β-carotene to zeaxanthin through β-cryptoxanthin. The maximum carotenoid 

content was in B7xpsy1 hybrid (ca: 30 µg/g DW). Transcript analysis revealed a substantial 

downregulation of Zmbch1 in B73 and NC356 hybrids compared to their parents as well as 

downregulation of Zmbch2 in all hybrids with the exception of hybrids with C17.  A decrease 

of carotenoid ε-hydroxylase Zmcyp97C transcript accumulation in B7 and B13 lines 

compared to wild-type and in B73, C17, O1-3, O2-9 hybrids compared to their respective 

parents suggests a pleotropic effect of the downregulation of Zmbch1 and Zmbch2. 
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CHAPTER 4: IMPACT OF INCREASED CAROTENOID 

CONTENT ON STARCH ACCUMULATION IN TRANSGENIC 

MAIZE  

4.1 Abstract 

Modulation of a particular biosynthetic pathway may have effects on global metabolism due 

to the fact that precursors for common pathways may be shared by multiple pathways. 

Carotenoids are lipid-soluble compounds derived from the condensation of IPP and DMAPP 

units which are derived from glucose metabolism. Here, I investigated the impact of 

carotenoid enhancement in transgenic lines on starch metabolism. Total starch decreased up 

to 8% in transgenic lines compared with wild type, whereas carotenoid content was increased 

up to 40-fold. Transcriptomic analysis of key endogenous enzymes involved in starch 

metabolism indicated downregulation of starch synthase 1 (SS1) and starch branching enzyme 

1 (SBE1) and upregulation of debranching enzyme (ISA1 and ISA2) in transgenic lines with 

higher carotenoid content compared with wild type. In addition, phosphoglucomutase (PGM), 

which catalyzes the production of glucose-1-phosphate from glucose-6-phosphate, was 

downregulated 2-fold in transgenic lines compared with wild type. Few reports have 

described the effects of carotenoid enhancement on general metabolism. Consequently these 

findings provide a starting point to develop a more in depth understanding of the impact of 

modulating a pathway in the context of global metabolism, particularly if the pathways share 

common precursors and/or products. 

4.2 Introduction 

Metabolic engineering to increase particular compounds in plants may have a global effect on 

the whole metabolism because the novel products synthesized might be produced at the 

expense of other metabolites (Sandmann 2001). Relatively few studies have reported the 

impact of carotenoid enhancement in transgenic plants on global metabolism. Microarray 

analysis in tomato revealed that the constitutive expression of lycb affected a number of 

pathways including the synthesis of fatty acids, flavonoids and phenylpropanoids, the 

degradation of limonene and pinene, starch and sucrose metabolism and photosynthesis (Guo 

et al. 2012). A metabolomic analysis of tomato expressing CrtB (phytoene synthase) and CrtI 
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(bacterial phytoene desaturase/isomerase), encoding pytoene syntase revealed changes in the 

steady state levels of metabolites in unrelated pathways, such as amino acid, isoprenoid, lipid, 

organic acid and sugar metabolism (Nogueira et al. 2013). Transgenic soybean (Glycine max) 

plants overexpressing a seed-specific CrtB exhibited a shift in oil composition increasing 

oleic at the expense of linoleic acid, and a 4% increase in protein content (Schmidt et al. 

2015). In maize expressing Zmpsy1 and PacrtI (Zhu et al. 2008), combined transcript, 

proteome and metabolite analysis revealed pleiotropic effects in core metabolism 

(Decourcelle et al. 2015). Main changes occurred in sugar metabolism as well as an increase 

in sterol and fatty acid content (Decourcelle et al. 2015). Carotenoid biosynthesis requires 

precursors derived from sugars such as pyruvate so it is important that the amount of soluble 

sugars is adequate to ensure the appropriate amount of precursors for carotenoid biosynthesis. 

The increase of soluble sugars takes place at the expense of starch (carbohydrate reservoir) 

(Figure 4.1). A decrease of starch content was reported in citrus callus overexpressing CrtB 

where starch level reduction occurred in parallel with significant carotenoid accumulation 

(Cao et al. 2015b). Alterations of starch in tomato during ripening were also correlated with 

increased carotenoid accumulation (Tohge et al. 2014). 

 
Figure 4. 1 – Overview of general metabolism in maize and relation between products in the different 
pathways. Metabolites that have been altered as a consequence of increased carotenoid content reported in 
previous studies are shown in bold. Abbreviations: PEP, phosphoenolpyruvate; E4P, erythrose-4-phosphate; P, 
phosphate; PP, pyrophosphate. (Adapted from Decourcelle et al. 2015; Tohge et al. 2014; Gallagher et al. 2003). 
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In order to evaluate the impact of carotenoid enhancement on starch biosynthesis, it is 

essential to understand starch synthesis in detail. Cereals store energy in the endosperm in the 

form of starch, which generally consists of two D-glucose homopolymers, the linear polymer 

amylose and a highly branched glucan (amylopectin) that connects linear chains (James et al. 

2003; Jeon et al. 2010). Starch is derived from sucrose, which is the primary form of 

assimilated carbon in plants. Sucrose is transported from source tissues (leaves) to sink tissues 

(seeds) where it is converted into uridine diphosphate (UDP)-glucose and -fructose by soluble 

and membrane-bound forms of the enzyme sucrose synthase. Whereas the latter channels 

UDP-glucose towards the cellulose synthase complex on the plasma membrane (Hardin et al. 

2006), the major soluble form of sucrose synthase in maize seeds, encoded by the Shrunken1 

(Sh1) gene (Carlson and Chourey, 1996) provides UDP-glucose as a precursor for starch 

biosynthesis. UDP-glucose is converted into glucose-1-phosphate by UDP-glucose 

pyrophosphorylase. Alternatively, fructose derived from sucrose is converted to fructose-6-

phosphate by hexose kinase (HI). Fructose-6-phosphate is then converted to glucose-6-

phosphate by the action of glucose phosphate isomerise (GPI). Glucose-6-phosphate is in turn 

converted into glucose-1-phosphate by phosphogluco-mutase (PGM). Glucose-6-phosphate, 

glucose-1-phosphate and fructose-6-phosphate are key metabolites because they can be 

directed to both starch synthesis and glycolysis (Gallagher et al. 2003). The committed starch 

biosynthesis pathway in maize endosperm requires the coordinated activities of multiple 

enzymes, including ADP-glucose pyrophosphorylase (AGPase), granule-bound starch 

synthase (GBSS), soluble starch synthase (SS), starch branching enzyme (SBE), starch 

debranching enzyme (DBE), and plastidial starch phosphorylase (Pho1) (James et al. 2003; 

Jeon et al. 2010) (Figure 4.2). The rate-limiting step is the synthesis of ADP-glucose from 

glucose-1-phosphate and ATP by AGPase (Russell et al. 1993). AGPase is a heterotetramer 

comprising two large subunits (AGP-L; encoded by sh2, agplemzm, agpllzm or agpl3) and 

two small subunits (AGP-S; encoded by bt2, agpszm or agpslzm) (Hannah et al. 2001; Huang 

et al. 2014). There are two known GBSS isoforms in maize, with GBSSI playing the major 

role in the endosperm and GBSSII producing transitory starch in non-storage tissues (Dian et 

al. 2003; Hirose and Terao, 2004; Vrinten and Nakamura, 2000). Four different SS enzymes 

have been identified in plants but DU1 and zSSI most likely account for all of the soluble SS 

activity in developing kernels (Cao et al. 1999; Jeon et al. 2010). SBE generates amylopectin 

by cleaving the α(1, 4) bonds in polyglucans and reattaching the chain via α(1, 6) bonds. The 

three major SBE isoforms in developing maize kernels are SBEI, SBEIIa and SBEIIb (Ball 

and Morell, 2003) and these are encoded by different genes (Ballicora et al. 1995; Beatty et al. 
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1999; Blauth et al. 2001, 2002). SBEI has no impact on endosperm starch structure, whereas 

the deficiency of SBEIIb is well known to reduce the branching of starch (Li et al. 2007).  

 
Figure 4.2 – The starch biosynthesis pathway in maize endosperm. Asterisks indicate genes from those 
transcript levels were evaluated in the experiments reported in this chapter. Metabolite abbreviations: UDP, 
uridine diphosphate; UDP-Glc, UDP-glucose; Fru-6-P, fructose-6-phosphate; Glc-6-P, glucose-6-phosphate; 
Glc-1-phosphate, glucose-1-phosphate; ADP-Glc, adenosine diphosphate-glucose. Enzyme abbreviations: SSuc 
S, soluble sucrose synthase; HK, hexose kinase; GPI, glucose phosphate isomerase; PGM, phosphoglucomutase; 
AGPase, ADP-Glc pyrophosphorylase, Pho1, plastidial starch phosphorylase; GBSS, granule-bond starch 
synthase; DBE, debranching enzyme, SS, starch synthase, BE, branching enzyme (Adapted from Jeon et al. 
2010; Jiang et al. 2013; Tuncel and Okita 2013). 
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protein ISA2 or as a homomeric complex containing only ISA1 (Kubo et al. 2010). Finally, 

Pho catalyzes the transfer of glucosyl units from glucose-1-phosphate to the non-reducing end 

of α(1,4)-linked glucan chains. Pho1 and Pho2 are localized in the plastid and cytosol, 

respectively (Jeon et al. 2010) (Figure 4.2). Starch can be degraded in the endosperm of 

maize seeds by four isozymes of α-amylase (α-amylase-1 to -4) and one isozyme of β-

amylase, although this step occurs mainly in germinating seeds (Subbarao et al. 1998). 

Wild-type M37W and four different transgenic maize lines overexpressing (L1) AtOR, (L2) 

Zmpsy1, (L3) Zmpsy1, PacrtI and Gllycb or (L4) Zmpsy1, PacrtI and ParacrtW were 

analyzed to determine total carotenoid and total starch content. A targeted transcriptomic 

analysis of relevant starch biosynthesis genes by qRT-PCR (Figure 4.2), transmission 

electron microscopy (TEM) and scanning electron microscopy (SEM) of endosperm sections 

revealed a major reduction in the abundance of starch granules in transgenic lines compared 

to wild-type lines.  

4.3 Materials and methods 

4.3.1. Plant material 

Homozygous lines listed in Table 4.1 were grown under the conditions described in Chapter 

2 section 2.2.2. 

Table 4.1 – Maize lines used in this study. 
Line Genotype Source References 
WT Inbred CSIR, Pretoria, South Africa  

L1 
Transgenic 

AtOR 
Applied plant biotechnology, Universitat de Lleida, Spain See Chapter 2 

L2 
Transgenic 

Zmpsy1 
Applied plant biotechnology, Universitat de Lleida, Spain See Chapter 2 

L3 
Transgenic 

Zmpsy1, PacrtI, 
ParacrtW 

Applied plant biotechnology, Universitat de Lleida, Spain (Zhu et al. 2008) 

L4 
Transgenic 

Zmpsy1, PacrtI 
Gllycb 

Applied plant biotechnology, Universitat de Lleida, Spain (Zhu et al. 2008) 

4.3.2. RNA extraction and cDNA synthesis 

The protocols are described in detail in Chapter 1, section 1.2.2. 
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4.3.3. Quantitative real-time RT-PCR 

The protocol is described in detail in Chapter 2 section 2.2.5. Primer sequences to detect 

endogenous genes and transgenes are listed in Table 4.2. 

Table 4.2 – Oligonucleotide sequences for the detection of maize actin, endogenous starch-related genes 
and transgenes for real-time PCR analysis. 

Gene Forward Reverse 

Zmactin 5’-CGATTGAGCATGGCATTGT-3’ 5’-CCCACTAGCGTACAACGAA-3’ 

Zmpgi 5’-GCACCTGATAACCCTCCACT-3’ 5’-AGTAGTTGCCAGTCCAGGTCC-3’ 

Zmpgm 5’-GGGAGCGTGTTTCTTGTAATC-3’ 5’-TCCCTAAACAGCCATCAAAAG-3’ 

Zmagplem 5’-GATGGGTGCGGATTTGTAT-3’ 5’-TTGGAACGCCCTCTTTGT-3’ 

Zmagpsem 5’-CTCGCAAACGTGCCTTGAT-3’ 5’-TCAGGATCAGGCCCAA-3’ 

ZmphoI 5’-AGGAAATGAAGGTTACGGACG-3’ 5’-CCAGCCGTGTTGAGGATAGAC-3’ 

Zmisa1 5’-TTCGTTGCCTTCACCATGAA-3’ 5’-CCGGAAGGTGACTGGTGTTG-3’ 

Zmisa2 5’-GGCTGTTCGCAATGTTTG-3’ 5’-CAGGATCAAATGCTATGGCTTCC-3’ 

Zmss1 5’-TGAAGGTAGGAAGGGGAGC-3’ 5’-TCAGCCCTAACGAGCAAAG-3’ 

Zmsbe1 5’-AACGGCTGGTGGCAAGAAG-3’ 5’-GCCAGTCCAGTCCTCACCAA-3’ 

Zmpsy1 5’-CATCTTCAAAGGGGTCGTCA-3’ 5’-CAGGATCTGCCTGTACAACA-3’ 

PacrtI 5’-GTGGCGCAAGATGATCGTCAA-3’ 5’-GCCAGAAGACCACGTACATCCA-3’ 

Gllycb 5’-TAAGGCTGGAAGTAGCAGTGC-3’ 5’-GCAGGACCACCACCAACAAT-3’ 

ParacrtW 5’-GTGGCGCAAGATGATCGTCAA-3’ 5’-GCCAGACCACGTACATCCA-3’ 

AtOR 5’- TTCTCTATCACCGCCCAAAAC -3’ 5’- GCCATAGCCATTCCTGTGC -3’ 

4.3.3. Carotenoid extraction and UPLC analysis 

This protocol is described in detail in section 2.2.6. 

4.3.4. Starch extraction and quantification 

Maize endosperm samples were dried at 55ºC overnight and ground into a fine powder. Starch 

extraction and quantification was performed according to the manufacturer’s instructions, 

using Megazyme total starch kit (Megazyme, Wicklow, Ireland).  

4.3.5. TEM and SEM  

Maize 30 DAP endosperm pieces (0.5 x 2.0 mm) were fixed in 2.5% v/v glutaraldehyde in 0.1 

M phosphate buffer (pH 7.2) overnight at 4°C. TEM samples were prepared as previously 

described in Chapter 2 section 2.2.7. For SEM DSM 940A (10 kV and 10 mm work distance) 
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samples were critical-point dried using CPD Emitech K850 (Emitech, Laughton, United 

Kingdom) and Stub assembled. Finally, they were charcoal coated with Auto 306 (Edwards, 

Crawley, United Kingdom), gold was evaporated with Balzers SCD 050, Sputter Coated 

(Leica) and kept at 60ºC until observation. 

4.4 Results  

4.4.1 Plant growth and transgene expression 

Wild-type M37W and transgenic lines L1, L2, L3 and L4 were grown in the greenhouse 

under controlled conditions to minimize environmental effects. At 30 DAP, endosperm from 

three independent plants representing each line was excised and stored at -80ºC. The 

accumulation of Zmpsy1, PacrtI, Gllycb, ParacrtW and AtOR mRNA was confirmed by qRT-

PCR. As expected transcript levels of Zmpsy1 were detected in at high level in L2, L3 and L4. 

Low amounts of Zmpsy1 mRNA accumulated in WT and L1 due to the endogenous Zmpsy1 

gene. Transcript levels of PacrtI were detected in L3 and L4, Gllycb was detected only in L4, 

ParacrtW was detected only in L3 and AtOR was detected only in L1 (Figure 4.3). 

 
Figure 4.3 – Transgene expression normalized against actin in wild-type and transgenic lines presented as 
mean of three technical replicates. Transcript levels in the lowest expressing line for each transgene were used 
as a reference and given the value of 1.0. Color bars represent the different plant lines under investigation. 
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4.4.2 Total carotenoid content of the transgenic lines 

Carotenoid content determined by UHPLC indicated that M37W accumulated low levels of 

total carotenoids (ca: 3 µg/g DW). L1 accumulated ca: 13 µg/g DW, L2 accumulated ca: 89 

µg/g DW, L3 accumulated ca: 127 µg/g DW and L4 accumulated ca: 115 µg/g DW total 

carotenoids (Figure 4.4). The total carotenoid content was determined as the sum of 

violaxanthin, antheraxanthin, zeaxanthin, lutein, α-cryptoxanthin, β-cryptoxanthin, β-carotene 

and phytoene.  

 
Figure 4.4 – Total endosperm carotenoid content (presented as µg⁄g dry weight (DW) ± SE (n = 3–5 seeds) 
of wild-type (WT) and transgenic lines L1, L2, L3 and L4, determined by UHPLC analysis.  

4.4.3 Total starch content of the transgenic lines  

Total starch from 30 DAP maize endosperm was extracted with ethanol and treated with α-

amylase and amyloglucosidase to obtain free glucose which reacts with GOPOD (glucose 

oxidase/peroxidase) reagent to produce a pink product (quinone imine). Starch was quantified 

by measuring absorbance produced by the reaction in a spectrophotometer at 510 nm relative 

to the absorbance of the product with 100 mg/l glucose. Total starch in M37W and L1 

represented ca: 65% of the total endosperm weight, whereas total starch in L2, L3 and L4 

represented ca: 57%, 61% and 59%, respectively, of the total endosperm weight (Figure 4.5).   
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Figure 4.5 – Total endosperm starch content (presented as % ± SE (n = 3–5 seeds) of wild-type (WT) and 
transgenic lines L1, L2, L3 and L4 determined by spectrophotometry.  

4.4.4 TEM and SEM of endosperm tissues in carotenoid-enhanced transgenic lines 

SEM analysis of the endosperm from WT plants and the four transgenic lines indicated a 

reduction in the number of starch granules in the endosperm of transgenic lines L2, L3 and L4 

compared with WT and L1 (Figure 4.6).  
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Figure 4.6 – SEM micrographs indicating a reduction in the number of starch granules in the endosperm 
in L2, L3 and L4 compared with WT. A: WT; B: L1; C: L2; D: L3; E: L4. F: WT endosperm (right) and 
pericarp epithelium (left). Scale bar A-E:  ~ 20µm; F: ~ 50µm. 
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TEM analysis of the first layer of endosperm cells under the epithelium of WT, L1, L2, L3 

and L4 seeds revealed starch deposits in amyloplasts. Even though TEM does not allow the 

quantification of starch content, WT sections appeared to contain more amyloplasts compared 

to L2, L3 and L4 (Figure 4.7). 

 
Figure 4.7 – Microscopic analysis of WT and transgenic lines. A. Light micrograph of WT endosperm; 
arrows indicate aleurone cell layer. B (WT); C (L1); D (L2); E (L3) and F (L4) TEM micrographs of aleurone 
cell layer indicated a reduction in the number of amyloplasts in transgenic lines L2, L3 and L4, compared with 
WT. Abbreviations: s, starch deposits; n nucleus; per, pericarp epithelium; acl, aleurone cell layer; sec, starchy 
endosperm cells. Scale bar: A, 10µm; C-F: 0.19µm. 
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4.4.5 Transcriptc analysis of starch-related genes in the endosperm of carotenoid-

enhanced transgenic lines  

Transcript levels of endogenous GPI (glucose 6-phosphate isomerase), PGM (phosphogluco 

mutase), AGPsem (ADP-glucose pyrophosporylase small subunit isolated from embryo), 

AGPlem (ADP-glucose pyrophosporylase large subunit isolated from embryo), PHO1 

(plastidial starch phosphorylase), ISA1/2 (isoamylase 1/2; debranching enzyme), SS1 (starch 

synthase 1) and SBE1 (starch branching enzyme 1) were monitored by quantitative real-time 

RT-PCR in the endosperm at 30 DAP in order to investigate whether endogenous starch-

related gene expression was influenced in the carotenoid-enhanced transgenic lines (Figure 

4.8). 

 
Figure 4.8 – Relative mRNA expression of endogenous starch-related genes in 30 DAP maize endosperm, 
normalized against actin mRNA and relative to WT and presented as the mean of three biological 
replicates. Bars represent standard errors. Abbreviations: GPI, glucose 6-phosphate isomerase; PGM, 
phosphoglucomutase; AGPsem, ADP-glucose pyrophosphorylase small unit isolated from embryo; AGPlem, 
ADP-glucose pyrophosphorylase large subunit isolated form embryo; PHO1, starch phosphorylase; ISA1/2, 
isoamylase 1/2 (debranching enzyme); SS1, starch synthase 1; SBE1, starch branching enzyme 1. 

GPI transcript levels were similar in the WT, L1, L2 and L3 endosperm, whereas transcript 

levels in L4 were 1.3-fold lower than WT. PGM mRNA levels were downregulated ca: 2-fold 

in transgenic lines L2, L3 and L4, and 1.3-fold in transgenic line L1 compared to WT. 

AGPsem mRNA levels were similar in all lines, whereas AGPlem mRNA levels were up to 2-

fold higher in L2, L3 and L4, compared to WT and L1. WT, L1, L3 and L4 seeds contained 

similar levels of PHO1 mRNA, but there was a 2-fold reduction in L2. ISA1 mRNA 

accumulation increased by up to 2-fold in L1, L2 and L3 but no changes were observed in L4 
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compared to WT. ISA2 mRNA levels increased by up to 2-fold in L2 and L3 compared to 

WT. SS1 mRNA levels reduced by up to 2-fold in L2, L3 and L4, compared to WT and L1. 

SBE1 mRNA levels were reduced 1.5-fold in L2 and L3 but not in L1 and L4 compared to 

WT. 

4.5 Discussion  

4.5.1 Selection of transgenic maize with different endosperm carotenoid contents and 

compositions to investigate the impact on starch endosperm content 

Transgenic lines expressing different transgenes influencing carotenoid metabolism were 

selected to investigate the impact on starch metabolism in the endosperm. Line L1 expressed 

only AtOR; L2 expressed only Zmpsy1; L3 expressed Zmpsy1, PacrtI, and ParacrtW; and L4 

expressed Zmpsy1, PacrtI and Gllycb. Lines L2, L3 and L4 accumulated Zmpsy1 mRNA at 

different levels (Figure 4.3) resulting in different levels of total carotenoids (Figure 4.4.). 

PacrtI and Gllycb catalyze the synthesis of downstream carotenoids and ParacrtW extends 

the pathway to ketocarotenoids. AtOR increases total carotenoid content without altering 

carotenoid composition in the endosperm (see Chapter 2). The selected lines therefore provide 

a diverse genetic background with different transgene mRNA levels, resulting in different 

carotenoid profiles. 

4.5.2 Carotenoid accumulation reduces the total starch content in the endosperm  

In plant storage organs, carotenoids are synthesized and deposited in amyloplast membranes, 

which generally have limited capacity for carotenoid production and storage (Wurtzel 2004; 

Li et al. 2012). Amyloplasts can be converted to chromoplasts when starch breakdown begins, 

and the starch granules begin to disappear as carotenoid sequestering structures such as 

plastoglobulis and carotenoid crystals accumulate (Horner et al. 2007). During the ripening of 

tobacco floral nectarines, a mutually exclusive relationship between carotenoid accumulation 

and starch deposition has been observed (Horner et al. 2007). The biosynthesis of isoprenoids 

(carotenoid precursors) in plant cells requires precursors produced in the cytosol by the 

mevalonate (MVA) pathway and in the plastid by the methylerythritol 4-phosphate (MEP) 

pathway. A direct correlation between sugar levels and isoprenoid metabolism was observed 

in an Arabidopsis thaliana mutant with increased levels of MEP-derived isoprenoid products 
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(chlorophylls and carotenoids) without changes in the levels of relevant MEP pathway 

transcripts, proteins, or enzyme activities (Flores-Pérez et al. 2010). The soluble sugars may 

therefore accumulate at the expenses of starch, which is a carbohydrate reservoir. 

Biochemical analysis revealed that the total starch content fell by up to 8% in the endosperm 

of carotenoid-enhanced transgenic lines (Figure 4.5). This was supported by the cytological 

analysis of endosperm cells using TEM and SEM (Figure 4.6 and 4.7) also revealed no 

changes in the morphology of starch granules. My data revealed a correlation between 

carotenoid accumulation and the loss of total starch, suggesting that carotenoid synthesis 

might occur at the expense of starch-derived carbohydrate metabolism. In citrus callus, the 

lower starch content reported by (Cao et al. 2015) presumably reflected the plastid 

modification process induced by significant carotenoid accumulation. Furthermore, declining 

starch levels during the ripening of tomato fruits were also correlated with increased 

carotenoid accumulation (Tohge et al. 2014). The carotenoid content of the transgenic lines 

ranged from ca: 13 µg/g DW in L1 to ca: 127 µg/g DW in L3 (Figure 4.4), whereas the starch 

content was up to 8% lower in L2, L3 and L4, but not in L1. This suggests that an extreme 

increase in carotenoid accumulation is required to induce collateral effects on starch 

accumulation.  

4.5.3 Endogenous starch pathway gene expression reveals an alternative mechanism to 

reduce the starch content in carotenoid-enhanced maize lines  

Targeted transcript analysis focusing on genes related to starch biosynthesis was carried out to 

evaluate differences between the wild-type and transgenic lines at key points in the pathway 

affecting starch accumulation. The evaluation of GPI and PGM, which are early precursors of 

sugar metabolism that can be directed to either the carotenoid or starch pathways (Gallagher 

et al. 2003), revealed no differences in GPI expression between WT and transgenic lines, but 

a 2-fold downregulation of PGM mRNA levels in L2, L3 and L4 compared to WT, and a 1.3-

fold decrease in L1 compared to WT. These results suggest that PGM expression plays a key 

role in the choice between starch and carotenoid biosynthesis because transgenic lines 

containing less starch (L2, L3 and L4) produced lower levels of PGM mRNA than L1, which 

accumulated near-wild-type amounts of starch. This hypothesis is supported by the fact that 

the total starch content was reduced in transgenic plants expressing constitutively an antisense 

PGM construct. These plants also displayed a reduced rate of photosynthesis, a dramatic 
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reduction in nucleotide levels, and a general decline in metabolic activity (Lytovchenko et al. 

2002). 

AGPase, which is the first rate-limiting enzyme in the starch biosynthesis pathway, is a 

heterotetramer comprising two large subunits (AGP-L, encoded by sh2, agplemzm, agpllzm or 

AGPL3) and two small subunits (AGP-S, encoded by bt2, agpsemzm or agpslzm) (Hannah et 

al. 2001; Huang et al. 2014). The agpllzm and agpsemzm genes encode a plastidial AGPase in 

the maize endosperm and are required for normal levels of starch accumulation even when the 

cytosolic form of the enzyme is fully functional. The agplem gene also functions in the 

endosperm to generate combinations of subunits that remain functional even when expressed 

in Escherichia coli (Huang et al. 2014). The agpsemzm mRNA levels were similar in WT 

plants and all the transgenic lines, but the agplem mRNA levels were higher in L2, L3 and L4 

than WT and L1. It therefore appears that the plastidial AGPase activity might not be 

downregulated and cannot be correlated with the reduced total starch content observed in 

these lines. 

SSI probably accounts for all of the soluble SS activity in developing kernels (Cao et al. 1999; 

Jeon et al. 2010). The levels of SSI and SBEI mRNA each declined by up to 2-fold in L2, L3 

and L4 compared to WT, but there was no difference when comparing WT and L1. In A. 

thaliana, SSI is a plastidial enzyme that is necessary in leaves for the synthesis of normal 

amylopectin (Delvallé et al. 2005). A. thaliana SSI is biochemically related to maize SSI 

(Commuri and Keeling 2001). However, rice SSI has less impact on starch structure in 

storage tissues than it does in leaves (Nakamura 2002). The expression of antisense SSI in 

potato did not affect the synthesis and structure of amylopectin even when SSI activity in 

potato tubers was no longer detected (Kossmann et al. 1999). The downregulation of SSI may 

therefore not affect the modification of starch properties but it might have an effect on total 

starch content. SBE1 generates amylopectin by cleaving the α(1, 4) bonds in polyglucans and 

reattaching the chain via α(1, 6) bonds  (Ball and Morell 2003; Kubo et al. 2010). The 

observed downregulation of SBEI suggested that the amylopectin content in L2, L3 and L4 

may be distinct to that in L1 and WT plants. A direct analysis of amylose/amylopectin 

profiles was not carried out in the carotenoid-enhanced maize lines, but Blauth et al. (2002) 

reported that a SBEI-deficient maize mutant produces the same amylopectin profile as wild-

type maize. Similarly, the loss of SBEI in the rice sbe1 mutant did not affect the accumulation 

of starch or the morphological characteristics of the plant, including the grain – indeed the 
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starch content in the endosperm of the sbe1 mutant was comparable to that of wild-type grains 

(Satoh et al. 2003). However, maize double sbe1 and sbeIIb mutants in a waxy background 

contained less total starch and altered morphology and physical properties in the endosperm, 

compared to WT (Li et al. 2007).  

Kubo et al. (2010) reported that ISA1 is required for the accumulation of ISA2, which is post-

transcriptionally regulated. Transcript analysis showed that ISA1 mRNA is induced in tissues 

that synthesize starch but returns to low levels during starch degradation, whereas ISA2 

mRNA levels remain relatively abundant during periods of both starch biosynthesis and 

degradation (Kubo et al. 2010). In the carotenoid-enhanced lines, ISA1 mRNA levels 

increased by up to 2-fold in L1, L2 and L3 but no changes compared to WT were observed in 

L4, whereas ISA2 mRNA levels increased by up to 2-fold in L2 and L3 compared to WT. The 

levels of ISA1 and ISA2 mRNA therefore do not correlate with the loss of starch content. 

The plastidial isoform of starch phosphorylase (PHO1) has an 80-amino-acid insertion which 

is not present in PHO2, and binds with high affinity to low-molecular-weight linear malto-

oligosaccharides and amylose. In contrast, the cytosolic isoform (PHO2 or PHO-H) binds 

with high affinity to highly-branched polyglucans such as glycogen (Satoh et al. 2008). Both 

isoforms catalyze a reversible reaction: in the forward reaction, glucose-1-phosphate donates 

a glucose unit to the non-reducing end of the α-glucan chain thus releasing inorganic 

phosphate, whereas the reverse reaction generates glucose-1-phosphate in the presence of 

inorganic phosphate. Although the enzyme can facilitate both the synthesis and degradation of 

starch in plants, the degradation role appears to be favored in sink tissues (Satoh et al. 2008). 

In the carotenoid-enhanced transgenic lines, PHO1 mRNA levels in L1, L3 and L4 were 

similar to WT plants, but were less abundant in L2.  

The transcript analysis of key enzymes in the starch biosynthesis pathway suggests that 

differences in starch accumulation among the carotenoid-enhanced transgenic maize lines 

cannot be exclusively attributed to changes in starch biosynthesis. Thus, an alternative 

mechanism should exist that reduces the starch content in the transgenic lines, such as 

upregulation of α-amylase and β-amylase, which hydrolyze starch into sugars. Three different 

mechanisms that modulate the accumulation of metabolites are represented in Figure 4.9, i.e. 

changing the availability of precursors, the capacity for biosynthesis or the capacity for 

degradation. In carotenoid-enhanced citrus callus, the lower starch content was correlated 

with the upregulation of α-amylase activity (Cao et al. 2015). However, the upregulation of α-
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amylase observed by Cao et al. (2015) appeared to contradict proteomic data reported by 

Barsan et al. (2012) showing that proteins involved in starch metabolism became less 

abundant during chromoplastogenesis. In addition, plastid modifications associated with 

engineered carotenoid accumulation may involve protein dynamics that differ from those 

reflecting natural chromoplastogenesis in fruit. Despite the strong conservation of the 

chromoplast proteome between ripening sweet orange and tomato fruits (Zeng et al. 2011), 

the plastids in the citrus flower petals, roots, embryoids, petioles and callus systems are never 

involved in natural chromoplastogenesis, and they are distinct from those in the fruits (Cao et 

al. 2015a).  

 
Figure 4.9 – Mechanisms to control the accumulation of specific metabolites. 

4.6 Conclusions 

The lower total starch content in three transgenic maize lines engineered to accumulate high 

carotenoid content suggests that carotenoid biosynthesis in maize endosperm may occur at the 

expense of early precursors that are also required for starch biosynthesis. Lower transcript 

levels of PGM were detected in high carotenoid accumulating transgenic lines, which might 

indicate a lower pool of precursors available for starch synthesis. In addition, downregulation 

of SBE1 and SS1, genes related to starch biosynthesis, suggest that the decrease of starch 
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content is produced without altering amylopectin structure. A combination of different 

mechanisms is necessary to reduce the total amount of starch in carotenoid-enhanced maize 

endosperm. 

4.7 References 

Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis 

of the plant starch granule. Annu Rev Plant Biol. 54:207–233.  

Ballicora MA, Laughlin MJ, Fu Y, Okita TW, Barry GF, Preiss J (1995) Adenosine 5’-

diphosphate-glucose pyrophosphorylase from potato tuber. Significance of the N 

terminus of the small subunit for catalytic properties and heat stability. Plant Physiol. 

109:245–251.  

Beatty MK, Rahman A, Cao H, Woodman W, Lee M, Myers AM, et al. (1999) Purification 

and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching 

enzyme from maize. Plant Physiol. 119:255–266.  

Blauth SL, Kim KN, Klucinec J, Shannon JC, Thompson D, Guiltinan M (2002) 

Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea 

mays L. Plant Mol Biol. 48:287–297.  

Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, Guilitinan MJ (2001) 

Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. 

Plant Physiol. 125:1396–1405.  

Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, et al. (2015) Carotenoid accumulation 

affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in 

citrus. BMC Plant Biol. 15:27-33.  

Carlson SJ, Chourey PS (1996) Evidence for plasma membrane-associated forms of sucrose 

synthase in maize. Mol Gen Genet. 252:303–310.  

Commuri PD, Keeling PL (2001) Chain-length specificities of maize starch synthase I 

enzyme: Studies of glucan affinity and catalytic properties. Plant J. 25:475–486.  

Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, et al. (2015) 

Combined transcript, proteome, and metabolite analysis of transgenic maize seeds 

engineered for enhanced carotenoid synthesis reveals pleotropic effects in core 

metabolism. J Exp Bot. 2015 (in press) DOI: 10.1093/jxb/erv120 



Impact of increased carotenoid content on starch metabolism in transgenic maize 

 

  
131 

 
  

Delvallé D, Dumez S, Wattebled F, Roldán I, Planchot V, Berbezy P, et al. (2005) Soluble 

starch synthase I: A major determinant for the synthesis of amylopectin in Arabidopsis 

thaliana leaves. Plant J.43:398–412.  

Dian W, Jiang H, Chen Q, Liu F, Wu P (2003) Cloning and characterization of the granule-

bound starch synthase II gene in rice: Gene expression is regulated by the nitrogen level, 

sugar and circadian rhythm. Planta. 218:261–268.  

Flores-Pérez Ú, Pérez-Gil J, Closa M, Wright LP, Botella-Pavía P, Phillips MA, et al. (2001) 

PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) integrates the regulation of sugar 

responses with isoprenoid metabolism in Arabidopsis. Mol Plant. 3:101–112.  

Gallagher CE, Cervantes-Cervantes M, Wurtzel ET (2003) Surrogate biochemistry: use of 

Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid 

accumulation. Appl Microbiol Biotechnol. 60:713-719. 

Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the citrus lycopene β-cyclase 

transgene on carotenoid metabolism in transgenic tomato fruits. PLoS One. 7:e32221.  

Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, et al. (2001) Maize genes 

encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol.127:173–

183.  

Hardin SC, Duncan KA, Huber SC (2006) Determination of structural requirements and 

probable regulatory effectors for membrane association of maize sucrose synthase 1. 

Plant Physiol. 141:1106–1119.  

Hirose T, Terao T (2004) A comprehensive expression analysis of the starch synthase gene 

family in rice (Oryza sativa L.). Planta. 220:9–16.  

Horner HT, Healy R a., Ren G, Fritz D, Klyne a., Seames C, et al. (2007) Amyloplast to 

chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar 

for nectar and antioxidants for protection. Am J Bot. 94:12–24.  

Huang B, Hennen-bierwagen TA, Myers AM (2014) Functions of Multiple Genes Encoding 

ADP-Glucose Pyrophosphorylase Subunits in Maize Endosperm. Plant Physiol. 

164:596–611.  

James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin 

Plant Biol. 6:215–222.  



Chapter 4 

 

  
132 

 
  

Jeon J, Ryoo N, Hahn T, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal 

endosperm. Plant Physiol Biochem. 48:383–392. 

 Jiang L, Yu X, Qi X, Deng S, Bai B, Li N, et al. (2013) Multigene engineering of starch 

biosynthesis in maize endosperm increases the total starch content and the proportion of 

amylose. Transgenic Res. 22:1133–1142.  

Kossmann J, Abel GJ, Springer F, Lloyd JR, Willmitzer L (1999) Cloning and functional 

analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that 

is predominantly expressed in leaf tissue. Planta. 208:503–511.  

Kubo A, Colleoni C, Dinges JR, Lin Q, Lappe RR, Rivenbark JG, et al. (2010) Functions of 

heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing 

maize endosperm. Plant Physiol.153:956–969.  

Li J, Guiltinan MJ, Thompson DB (2007) Mutation of the maize sbe1a and ae genes alters 

morphology and physical behavior of wx-type endosperm starch granules. Carbohydrate 

Res. 342:2619-2627.  

Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, et al. The or gene 

enhances carotenoid accumulation and stability during post-harvest storage of potato 

tubers. Mol Plant. 2012;5(2):339–52.  

Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin 

biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol.43:718–725.  

Nogueira M, Mora L, En EMA, Bramley PM, Fraser PD (2013) Subchromoplast 

Sequestration of Carotenoids Affects Regulatory Mechanisms in Tomato Lines 

Expressing Different Carotenoid Gene Combinations. Plant Cell. 25:1–20.  

Russell D, DeBoer D, Stark D, Preiss J, Fromm M (1993) Plastid targeting of E. coli β-

glucuronidase and ADP-glucose pyrophosphorylase in maize (Zea mays L.) cells. Plant 

Cell Rep. 13:24–27.  

Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems 

and achievements. Trends Plant Sci. 6:14–17.  

Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, et al. (2003) Starch-

branching enzyme I-deficient mutation specifically affects the structure and properties of 

starch in rice endosperm. Plant Physiol. 133:1111–1121.  



Impact of increased carotenoid content on starch metabolism in transgenic maize 

 

  
133 

 
  

Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S-K, et al. (2008) Mutation of 

the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure 

of starch in the endosperm. Plant Cell. 20:1833–1849.  

Schmidt M, Parrott W, Hildebrand DF, Berg RH, Cooksey A, Pendarvis K, et al. (2015) 

Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements 

of oleate and protein content traits. Plant Biotechnol J. 13:590–600. 

Subbarao K, Datta R, Sharma R (1998) Amylases synthesis in scutellum and aleurone layer of 

maize seeds. Phytochemistry. 49:657-666. 

 Tohge T, Alseekh S, Fernie AR (2014) On the regulation and function of secondary 

metabolism during fruit development and ripening. J Exp Bot. 65:4599–4611.  

Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of 

ADPglucose pyrophosphorylase: Expectations and unanticipated outcomes. Plant Sci. 

211:52–60. 

Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by 

separate genes that are expressed in different tissues. Plant Physiol. 122:255–264.  

Wurtzel ET (2004) Chapter five Genomics, genetics, and biochemistry of maize carotenoid 

biosynthesis. Recent Adv Phytochem. 38:85–110.  

Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, et al. (2011) A proteomic analysis of the 

chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. J Exp Bot. 

62:5297–5309.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

Development of high carotenoid transgenic 
maize hybrids with agronomic performance 

similar to commercial hybrids 
 

 

  



 

 

 

  



 

  
137 

 
  

CHAPTER 5: GENERATION OF HIGH CAROTENOID 

TRANSGENIC MAIZE HYGRIDS WITH AGRONOMIC 

PERFORMANCE SIMILAR TO COMMERCIAL HYBRIDS 

5.1 Abstract  

Transgenic maize hybrids with high carotenoid content were developed by crossing a high 

carotenoid transgenic maize line (HC), overexpressing Zmpsy1 and PartI, with different tester 

lines from different heterotic groups. Agronomic traits (days to flower, plant height, ear 

height and yield) and ear morphological traits (ear length, kernel rows per ear, conicity and 

ear grain percentage) were evaluated in two different locations in field trials in Spain in inbred 

lines and the corresponding hybrids. Statistical analysis indicated that most of the parameters 

were influenced by genotype rather than location. In addition, calculation of heterosis for all 

the traits was performed in order to determine the performance of hybrids compared with the 

corresponding parental lines. Higher yields were obtained in hybrids with testers having 

longer FAO cycles (B73, Mo17 and EZ6), whereas heterosis was higher in hybrids with flint 

rather than dent kernel types. These experiments resulted in high yielding, carotenoid 

enriched maize hybrids with agronomic properties equal to or on occasion superior to 

commercial hybrids commonly grown in the area. 

5.2 Introduction 

Heterosis or hybrid vigour, describes the superior performance of heterozygous F1-hybrid 

plants compared to the average performance of their homozygous inbred parents (Shull 1952; 

Figure 5.1). The most important parameter considered by plant breeders is yield heterosis. 

However, heterosis can be calculated for increased biomass, size, growth rate and 

development, resistance to diseases and to insect pests, or to biotic stresses (Shull 1952). Self-

pollination of hybrids over several generations leads to a gradual reduction of heterosis and 

vigor, a phenomenon known as inbreeding depression. Heterosis was first described by 

Charles Darwin in 1876 after he observed that progeny of cross-pollinated maize were 25% 

taller than progeny of inbred maize (Darwin 1876). Since then, heterosis has been extensively 

exploited in plant breeding, particularly in maize because maize can be easily cross-

pollinated. The molecular basis of heterosis is not completely understood (reviewed by 

Hochholdinger and Hoecker 2007). 
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Figure 5. 1– Phenotypic manifestation of heterosis. Heterosis is typically seen in adult traits such as yield or 
ear size (a) but it already manifests during seedling development (b) (Hochholdinger and Hoecker 2007). 

The development of competitive maize hybrids requires the establishment of heterotic 

patterns, defined as the cross between known genotypes that express a high level of heterosis 

(Carena and Hallauer, 2001). Crosses among inbred lines from unrelated heterotic groups 

have better grain yield performance than those crosses among lines in the same group (Moll et 

al., 1965; Hallauer et al., 1988; Melchinger, 1999). Reid Yellow Dent and Lancaster Sure 

Crop are two groups of open-pollinated maize cultivars that provide most of the germplasm 

used to develop early testing inbred lines (evaluation of inbred lines in the first 3 generations) 

that are used for commercial hybrid seed production. The most exploited heterotic pattern is 

the cross between Iowa Stiff Stalk Synthetic (BSSS, type Reid) and the Lancaster Sure Crop 

heterotic groups (Barata and Carena, 2006).The Reid x Lancaster cross is commonly used in 

hybrid programs in Spain and other areas of Southern Europe (Galarreta and Álbarez 2010). 

In order to develop new maize hybrids, breeders select better heterotic patterns crossing 

inbred lines in a heterotic group with tester lines in a different group to evaluate the General 

Combining Ability between them. Tester lines are representative inbred lines from a known 

origin that can be used as practical tool in determining heterotic patterns, combining ability 

and breeding values (Li et al. 2007). 

Improved cultivars are a key element among practices used to achieve greater yield, 

integrated pest management and other properties to increase agricultural sustainability (Kutka 

2011). The primary purpose of plant breeding is to develop varieties or hybrids that are 

efficient in their use of nutrients, give the greatest return of high-quality products per unit area 
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in relation to cost and ease of production and that, are adapted to the needs of the grower and 

the consumer. The use of hybrids in maize at the beginning of the 20th century focused on 

high-yield but new generations of hybrids incorporate new traits for easier pest management, 

stress tolerance and recently, improved nutrition.  

Most of the reports on high carotenoid maize focused on the identification of alleles of key 

loci that correlate with higher β-carotene content such as lyce (Harjes et al. 2008) and hyd3 

(Vallabhaneni et al. 2009) in order to use them in future breeding programs to generate new 

inbred lines or hybrids with higher carotenoid content. In addition, carotenoid content and 

heterosis for carotenoid content and composition has been studied in commercial maize 

hybrids (Egesel et al. 2003; Kljak and Grbeša 2015).  

Few reports have been published on the production of hybrids with high carotenoid content by 

using different approaches: backcross for marker-assisted introgression of an allele 

(Muthusamy et al. 2014), factorial mating (Menkir et al. 2014) and half-diallel crossing 

(Senete et al. 2011) (Figure 5.2). Marker-assisted introgression by backcross of a β-carotene 

hydroxylase (BCH) allele corresponding to low capacity of conversion of β-carotene to 

zeaxanthin, allowed the generation of high β-carotene maize hybrids (Muthusamy et al. 

2014). Authors identified 7 inbred lines commonly used to produce commercial hybrids in 

India (recurrent parents) and 7 inbred lines with high β-carotene content due to a BCH allele 

provided by CIMMYT-Harvest Plus (donor parents). Two backcross generations and three 

rounds of self-pollination were required to recover ca: 90% of the recurrent parent genome 

with the BCH allele of interest from the parents. Thirteen selected improved progenies of the 

seven inbred lines were used in a breeding program to reconstitute F1 hybrids. Field trials in 

two different locations in India in 2013 allowed agronomic characterization of the novel 

hybrids (Muthusamy et al. 2014) (Figure 5.2). Assessment of genetic diversity of 38 orange 

and yellow endosperm maize inbred lines using Amplified Fragment Length Polymorphism 

(AFLP) markers classified the lines into two groups with varying levels of pro-vitamin A 

(Adeyemo et al. 2011). Eight inbred lines selected from each AFLP group were divided into 

two sets each of four inbred lines. The four inbred lines in each set selected from the first 

AFLP group were used as female parents and crossed with the four inbred lines in another set, 

selected from the second AFLP group as male parents using a factorial mating scheme. Each 

inbred line was used as a female parent in one set of crosses and as a male parent in the 

second set of crosses (Set 1 x Set 2, Set 2 x Set 4, Set 3 x Set 1, and Set 4 x Set 3) to form 

hybrids (Figure 5.2). The resulting 62 hybrids along with duplicate entries of an orange 
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endosperm commercial hybrid (Oba Super II) were evaluated in 4 locations in Nigeria in 2009 

and 2010 cropping seasons (Menkir et al. 2014). In this case, hybrids were generated without 

previous genomic modification thus accelerating hybrid production. However, an in depth 

AFPL study was necessary to identify valuable lines in terms of provitamin A content, 

although traits for good field performance of inbred lines were not considered (Menkir et al. 

2014). Twenty-one hybrids were generated from seven inbred lines, selected on the basis of 

their pro-vitamin A content, following a half-diallel mating design (Senete et al. 2011) 

(Figure 5.2).  The F1 seed of each cross was bulked together with the respective reciprocal 

cross and four locally adapted commercial hybrids were used as experimental checks. 

Similarly to Menkir et al. 2014, inbred lines used as parents for hybrid production were 

selected on the basis of carotenoid content rather than good agronomic performance. Thus, 

traits for good field performance were not assured so they were evaluated in the experiment.   

 

Figure 5. 2 – Schematic representation of different techniques used to produce high carotenoid maize 
hybrids. Abbreviations: BC, backcross; IL, inbred line, AFLP, Amplified Fragment Length Polymorphism. 

A high-carotenoid maize line was generated by the genetic transformation of the elite M37W 

inbred line with Zmpsy1 and PacrtI (HC) (Zhu et al. 2008). The low field performance and 

yield of inbred lines make their cultivation economically unattractive. Crosses of parents of 

diverse origin produce higher grain yields than crosses amongst lines with the same genetic 
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background (Melchinger & Gumber, 1998) so HC was crossed with five different tester lines 

(Mo17, B73, EZ6, EZ59 and A619) from different heterotic groups in order to create novel 

hybrids, with comparable or superior field performance to commercial hybrids, that 

incorporate the carotenoid-enriched traits conferred by the Zmpsy1 and PacrtI transgenes. 

Only one growing season is required to generate hybrids by simple cross of a transgenic line 

with inbred lines from the different heterotic groups. Utilizing the simple cross strategy, we 

generated 5 hybrids which provided the material for the experiments described in this chapter.  

5.3 Materials and methods 

5.3.1 Plant material 

Five maize tester lines belonging to well-known heterotic groups and commonly used in 

conventional breeding programs were chosen to evaluate the performance of high carotenoid 

transgenic maize line (HC) to generate high-yielding hybrids. Specific traits of these lines are 

listed in Table 5.1. 

Table 5. 1 – Maize Tester lines used to evaluate the combining ability of HC. 

Line Genotype Heterotic group FAO Cycle Days to Flower Kernel type 

A632 Inbred Reid 500 87 Dent 

B73 Inbred Reid 700 100 Dent 

EZ6 Inbred OP Orange flint 700 98 Flint 

EZ59 Inbred OP Estarville 500 85 Flint 

Mo17 Inbred Lancaster 700 102 Dent 

All lines were provided by Dr. Angel Alvarez, EEAD-CSIC, Zaragoza, Spain 

5.3.2 Field trials 

In 2013, HC was crossed with the different testers (Table 5.1) in experimental field in Lleida 

(41° 37′ 0″ N, 0° 38′ 0″ E, altitude ~ 167 m). The field trial was under a semiarid climate with 

low precipitation (38 mm) and high average temperature (23.5°C) in the maize growing 

period (May to October). The field was irrigated by sprinkler 2-3 times per week, with 

approximately 600 mm of water per season. Hybrids were generated by collecting HC pollen 

in standard paper pollinating bags and transferred to the silks of the female parents. To 

prevent pollen from contaminating the samples a ‘shoot bag’ was kept over the ear until 

pollination, and the pollinating bag was left over the ear after pollination until harvest. As 
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maize inbred lines correspond to different FAO cycles, repeat sowing dates were 6th, 14th and 

23rd May in order to ensure pollination of all the crosses. Harvest was done in November after 

physiological maturity which was indicated by a ‘black layer’, located at the base of the 

kernels.  

In the 2014 growing season, the hybrids obtained the previous season (2013) were evaluated 

in two different locations in NE Spain (Lleida, 41° 37′ 0″ N, 0° 38′ 0″ E, altitude ~ 167 m; 

and Sucs, 41° 42′ 7″ N, 0° 24′ 42″ E, altitude ~ 258 m), under similar weather conditions 

(Table 5.2). 

Table 5. 2 – Weather conditions during the maize growing season (May-August) 2014. (Source: 
www.ruralcat.net). 

 
Month 

Maximum T  

(ºC) 

Minimum T  

(ºC) 

Average day T  

(ºC) 

Average precipitation  

(mm) 

Lleida 

May 30.5 5.1 17 41.2 

June 34.9 10.9 22.2 27.6 

July 36.5 12 23.2 21.6 

August 36.4 10.6 23.6 35.9 

September 33.2 8.9 21.2 126.9 

October 30.7 5.3 16.5 21 

Sucs 

May 28.7 2.8 16 22.7 

June 32.4 9.6 21.4 10.4 

July 34.6 9.8 22.4 6 

August 34.6 9.6 22.8 41.2 

September 32 8.1 20.8 118.6 

October 28.5 3.9 16.7 21.4 

 

Both fields were irrigated at 500-600 mm by sprinkler. The Sucs field trial site experienced 

drought periods because of lack of irrigation on occasion.  

In each experiment, 6 maize inbred lines (five testers and HC) and 6 hybrids (the 5 

corresponding crosses with HC and one commercial cultivar, Lerma) were evaluated in a 

random block design with four replicates per location, grouping inbred lines and hybrids 

independently in order to minimize the effect of hybrids on the growth of the inbred lines. 

The experimental plot dimensions were 4 m x 0.65 m with 20 plants per row (0.2 m distance 

between plants in row). Plants were sowed on the 22nd (Lleida) and the 23th (Sucs) of April 

and harvested in October 2014, after black layer.  
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5.3.3 Agronomic and morphologic trait assessment of transgenic maize hybrids 

Agronomic and morphological traits were measured by harvesting 5 representative plants in 1 

m of the field plot per replicate.  

Agronomic trait assessment included:  

• Flowering date: number of days from sowing when 50% of plants were at the anthesis 

stage. 

• Plant height: distance from stem base to last leaf 

• Ear height: distance from stem base to main ear joint 

• Yield: kg produced in 1 hectare of cultivated field 

����� = 	
�	
��	����ℎ�	��	5	��
���	����
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Morphological trait assessment included: 

• Ear length: mean distance in mm from base to apex 

• Kernel rows per ear 

• Grain percentage: weight of total grains of an ear with respect to the full ear weight 

�	
��	��	����
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��	����ℎ�	��	5	��
���	����

�
		����ℎ�	��	5	��
���	����
× 100 

• Conicity, a parameter used to determine ear shape was calculated according the 

following formula: 

��������	����� =

�� − ��
2
�
3

× 100 

where  di is diameter at the base of the ear (mm) 

 ds is diameter at the apex of the ear (mm)  

 l is the length of the ear (mm) 

5.3.4 Heterosis of transgenic maize hybrids 

Heterosis of transgenic maize hybrids versus their corresponding parents was calculated for 

all the morphological and agronomic parameters described above (days to flower, plant 

height, ear height, yield, ear length, kernel rows per ear, grain percentage and conicity) 

according to the following formula: 

#���	���� =
$%&'(

'(
, 

where  F1 is the value of the relevant parameter in F1 offspring (e.g. days, cm, kg/ha, 

etc.) 

PA is the mean value of the parameter of the parents (e.g. days, cm, kg/ha, etc) 
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5.3.5 Statistical analysis 

A general linear model was used to determine statistically significant differences in the 

agronomic and morphological traits as well as in heterosis for these parameters. Traits were 

compared by Tukey’s mean separation procedure (p < 0.05). All the analyses were performed 

using the JMP Pro (JMP®, Version 11.0.0. SAS Institute Inc., Cary, NC, 2013). Two-factorial 

analysis of variance (ANOVA) with genotype (G) and location (L) as random factors was applied 

to the means per location and genotype. Analysis was performed independently for inbred lines 

and hybrids. 

5.4 Results 

5.4.1 Development of high carotenoid transgenic maize hybrids 

Hybrids were developed by cross-pollination of HC with different tester lines (Mo17, B73, 

EZ6, EZ59 and A632) from different heterotic groups, in the 2013 growing season. Tester 

lines and HC fit in different FAO cycles so, in order to assure successful pollination, all 

parents were sown at three consecutive dates. Resulting hybrid seeds were harvested after 

black layer. To avoid cross-pollination several precautions were taken, such as keeping a bag 

over the ear until pollination and the pollinating bags were left over the ear until harvest. In 

addition, the tassel of female plants was removed to prevent self-pollination. The phenotype 

of hybrid seeds was clearly different from that of the corresponding parents, as expected. The 

orange color conferred by the expression of Zmpsy1 and PacrtI from HC, male parent or dent 

grain morphology due to Mo17, B73 and A632 female parents were the most relevant traits in 

the hybrids (Figure 5.3A).  

5.4.2 Evaluation of agronomic traits  

In the 2014 growing season, the hybrids obtained in 2013 were evaluated in two different 

locations in NE Spain (Lleida and Sucs), under similar climatic conditions. Agronomic traits 

including days to flower, plant height (cm), and ear height (cm) were evaluated in the hybrids 

and parent inbred lines in order to assess agronomic performance. As expected, different 

inbred lines and the hybrids derived from their cross with HC exhibited statistically 

significant differences for all parameters we measured and all parameters were improved in 

the hybrids compared to the corresponding inbred lines (Table 5.3).  
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Figure 5. 3 Inbred lines, transgenic hybrids and comm
Scale bar: A, 1cm; B, 5cm. 

Mean days to flower of inbred lines were in the range 71

hybrids were in the range 76-85. Lerma, a commercial hybrid used as a local check flo

in 71 days, the shortest period observed amongst all the hybrids. Mean days to flower was 

significantly different amongst genotypes (G) (inbred lines or hybrids) and location (L) 

(Lleida or Sucs) but not G x L interaction, suggesting that differences

due to a genotype effect, influenced by the location even though each genotype performed 

similarly in each location (Table 5.3
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Mean plant and ear height of inbred lines were in the range 91-180 cm and 52-94 cm, 

respectively, whereas mean plant and ear height of hybrids were in the range 172-220 and 

100-122 cm, respectively. Lerma plant height was 143 cm and ear height 60 cm, the lowest 

height from all the hybrids we evaluated. Mean plant and ear height was significantly 

different amongst G (inbred lines or hybrids) and L (Lleida or Sucs), suggesting that 

differences in this parameter were due to a genotype effect, influenced by the location. 

However, G x L interaction of plant height was not significant, suggesting that each genotype 

behaved similarly in each location. Ear height of hybrids showed statistically significant 

differences in the interaction G x L (Table 5.3). 

5.4.3 Ear morphology  

Parameters to determine ear morphology were ear length (cm), number of kernel rows per ear, 

conicity (ear morphology) and ear grain percentage (weight of total grain of an ear with 

respect to the weight of the full ear). As expected, different inbred lines and hybrids derived 

from crosses with HC showed morphological differences. From all the morphological 

parameters evaluated, ear length was the most increased in the hybrids compared with inbred 

lines. (Figure 5.3B; Table 5.3). 

Mean ear length of inbred lines was in the range 10-15 cm with the exception of Mo17 that 

was 17.6 cm; whereas mean ear length of hybrids was in the range 16-19 cm. Lerma was 14 

cm long. Mean ear lenght was significantly different amongst G (inbred lines or hybrids) and 

L (Lleida or Sucs) but not G x L interaction was found, suggesting that differences in this 

parameter were due to a genotype effect, influenced by the location even though each 

genotype performed similarly in each location (Table 5.3).   

Mean conicity index of inbred lines was in the range 2.8-4.3, whereas mean conicity index of 

hybrids was in the range 3.8-4.9. Lerma conicity index was 5.4, the highest index observed 

amongst all the hybrids.  Mean conicity index was significantly different amongst G (inbred 

lines or hybrids) but not amongst L (Lleida or Sucs), suggesting that differences in this 

parameter were due to a genotype effect (Table 5.3).   
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Table 5. 3 – Results from ANOVA of agronomical and morphological traits of 6 maize inbreed lines and 6 
hybrids in 2 sites.   

Source of 
variation  

df 
Days to 
flower 
(days) 

Plant 
height 
(cm) 

Ear 
height 
(cm) 

Yield 
(kg/ha) 

Ear 
length 
(cm) 

Kernel 
rows 

per ear 
Coniticy  

Ear grain 
percentage 

(%)  

Inbred lines          
Genotype 

         

SS 5 
1051.1 
(***) 

31639.3 
(***) 

7938.4 
(***) 

11638493.0 
(***) 

251.8 
(***) 

199.6 
(***) 

9.6 
(*) 

643.7 
(***) 

Mo17 
 

78.5 ab 180.0 a 94.4 a 7315.1 a 17.6 a 16.5 a 3.9 a 81.8 a 

EZ6 
 

77.6 ab 132.3 b 72.4 bc 4987.5 ab 11.8 cd 11.2 c 3.9 a 81.2 a 

A632 
 

82.3 a 135.9 b 60.5 cd 4115.4 ab 11.6 cd 13.2 b 4.3 a 80.5 a 

EZ59 
 

70.8 b 91.3 c 51.7 d 2136.5 b 10.6 d 11.7 c 2.8 b 71.5 b 

B73 
 

85.1 a 156.9 ab 80.8 b 6608.1 a 13.6 bc 16.1 a 3.6 ab 81.2 a 

HC  
 

86.3 a 159.0 ab 74.2 bc 5254.5 ab 15.2 b 12.1 bc 3.4 ab 74.0 b 

Location 
         

SS 1 
3045.1 
(***) 

41378.3 
(***) 

15326.3 
(***) 

89617074.0 
(**) 

151.1 
(***) 

0.3 
(ns) 

3.0 
(ns) 

232.5 
(***) 

Lleida 
 

71.6 a 173.4 a 91.4 a 6499.1 a 15.3 a 13.6 a 3.9 a 80.7 a 

Sucs 
 

88.6 b 110.7 b 53.2 b 3611.3 b 11.5 b 13.4 a 3.4 a 76.0 b 

Genotype* 
Location          

SS 5 
164.1 
(ns) 

2705.9 
(ns) 

1585.4 
(ns) 

31560046.0 
(ns) 

5.8 
(ns) 

5.7 
(ns) 

6.9 
(ns) 

353.3 
(***) 

Hybrids          
Genotype 

         

SS 5 
1028.3 
(***) 

31790.0 
(***) 

20396.8 
(***) 

217519227.0 
(***) 

115.4 
(***) 

54.1 
(***) 

16.1 
(**) 

269.8 
(***) 

HCxMo17 
 

82.8 a 194.6 ab 110.0 ab 11501.3 abc 18.7 ab 13.9 bcd 3.8 c 82.4 b 

HCxEZ6 
 

81.8 a 212.3 a 121.9 a 14828.9 a 18.8 a 13.1 cd 3.8 c 81.8 b 

HCxA632 
 

80.9 a 182.5 b 98.4 b 10740.4 bc 16.6 b 14.5 abc 4.9 bc 82.7 b 

HCxEZ59 
 

75.5 b 172.0 b 100.3 b 9444.3 bc 17.3 ab 12.8 d 4.2 bc 82.5 b 

HCxB73 
 

84.6 a 219.8 a 118.8 a 12401.8 ab 17.2 ab 15.1 ab 4.9 ab 84.2 b 

 Lerma  
 

71.1 b 142.6 c 59.5 c 8165.3 c 14.1 c 15.8 a 5.4 a 88.8 a 

Location 
         

SS 1 
3794.6 
(***) 

55163.5 
(***) 

32693.9 
(***) 

79266915.0 
(***) 

60.2 
(***) 

3.1 
(ns) 

0.3 
(ns) 

23.0 
(ns) 

Lleida 
 

70.4 a 221.7 a 12.9 a 12483.1 a 18.3 a 14.4 a 4.5 a 83.0 a 

Sucs 
 

88.5 b 152.9 b 75.0 b 9877.5 b 16.0 b 13.9 a 4.3 a 84.4 a 

Genotype* 
Location          

SS 5 
94.3 
(ns) 

1583.5 
(ns) 

3694.3 
(**) 

33257194.0 
(ns) 

6.8 
(ns) 

1.3 
(ns) 

4.3 
(ns) 

17.6 
(ns) 

*, **, ***: significant difference at P<0.05, P<0.01 and P<0.001, respectively. Abbreviations: 
SS: sum of squares, df: degrees of freedom. Means not sharing the same letter are 
significantly different. 
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Mean kernel rows per ear of inbred lines were in the range 11-17, whereas mean kernel rows 

per ear of hybrids were in the range 13-15. Lerma kernel rows per ear were 16, the highest 

number of kernel rows per ear observed amongst all the hybrids. Mean kernel rows per ear 

was significantly different amongst G (inbred lines or hybrids) but neither amongst L (Lleida 

or Sucs) or the interaction G x L, suggesting that differences in this parameter were due to a 

genotype effect (Table 5.3). 

Mean ear grain percentage of inbred lines were in the range 71.5-81.8, whereas mean ear 

grain percentage of hybrids were in the range 81.8-84.2. Lerma ear grain percentage was 88.8, 

the highest ear grain percentage observed amongst the hybrids. Mean ear grain percentage 

was significantly different amongst inbred lines, L (Lleida or Sucs) and G x L, suggesting that 

the differences in this parameter were due to a genotype effect, influenced by the location and 

each phenotype performed differently in the different locations. However, mean ear grain 

percentage was significantly different amongst hybrids but not for L and G x L, suggesting 

that differences in this parameter were due to a genotype effect (Table 5.3). 

5.4.4 High-yielding transgenic maize hybrids 

Grain yield is the most important parameter in an agronomic evaluation. Mean yield of inbred 

lines was in the range 2,100-7,300kg/ha; whereas mean yield of hybrids was in the range 

9,400-14,800kg/ha. The yield of Lerma was 8,100 kg/ha, the lowest yield observed amongst 

all the hybrids. Mean yield was significantly different amongst G (inbred lines or hybrids) and 

L (Lleida or Sucs), suggesting that differences in this parameter were due to a genotype effect, 

influenced by the location. In addition, mean yield was not significantly different amongst the 

interaction G x L, suggesting that each genotype performed similarly in each location. The 

highest yield was measured in HCxEZ6, HCxB73 and HCxMo17 hybrids, which was similar 

to commercial hybrids grown in the area. Mo17 and B73 inbred lines are widely used in 

hybrid production because of their high yield potential. EZ6 was also suitable to be crossed 

with HC because yield reached almost 15,000kg/ha, in the resulting hybrid, ca: 1.8-fold 

increase compared to Lerma. 

5.4.5. Heterosis of transgenic maize hybrids 

No statistical difference was found in any of the genotypes in heterosis for flowering date and 

kernel rows per ear suggesting that these two parameters were not affected by genotype. 
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Heterosis for conicity and ear height were significantly different by G and they were not 

affected by L suggesting that these two parameters were very stable. HCxEZ59 and HCxB73 

showed the higher value of heterosis for conicity (0.46 and 0.33, respectively) and EZ6xHC, 

B73xHC, EZ59xHC and A632xHC showed high ear height heterosis (0.77, 0.62, 0.65 and 

0.54, respectively). Heterosis for plant height, ear length and ear grain percentage was 

significantly different by G and E, but no difference in the G x L interaction was measured, 

suggesting that each genotype performed similarly in the different locations. HCxEZ6, 

HCxB73, HCxEZ59 and HCxA632 showed the highest values for heterosis for plant height 

and ear length, whereas HCxEZ59 and HCxB73 were the hybrids most influenced by 

heterosis for ear grain percentage showing 0.15 and 0.09, heterosis, respectively. Calculation 

of heterosis for yield revealed that HCxEZ6, and HCxEZ59 showed the highest differences 

compared with their respective parents (2.33 and 3.06, respectively). In addition, yield 

heterosis was significantly different by L and G x L, revealing that yield was strongly affected 

by the location. 

Table 5. 4 – Results from ANOVA of heterosis of agronomic and morphological traits of 5 hybrids of 
inbred line HC crossed with 5 testers in 2 sites.   

Source of 
variation df Days to 

flower  
Plant 
height 

Ear 
height Yield Ear 

length 

Kernel 
rows 

per ear 

Conicity 
index 

Ear grain 
percentage 

Heterosis          
Genotype 

         

SS 4 
0.01 
(ns) 

0.47 
(***) 

0.76 
(**) 

25.59 
(***) 

0.30 
(***) 

0.10 
(ns) 

0.79 
(*) 

0.04 
(*) 

HCxMo17 
 

-0.01 a 0.15 b 0.29 b 0.27 c 0.16 b -0.02 a 0.00 b 0.05 b 

HCxEZ6 
 

-0.01 a 0.52 a 0.77 a 2.33ab 0.41 a 0.15 a 0.12b 0.06 b 

HCxA632 
 

-0.03 a 0.33 ab 0.54 ab 1.70 b 0.27 ab 0.12 a 0.14b 0.07 b 

HCxEZ59 
 

-0.05 a 0.37 a 0.65 a 3.06 a 0.42 a 0.09 a 0.46 a 0.15 a 

HCxB73 
 

-0.02 a 0.44 a 0.62 ab 1.57 b 0.24 b 0.09 a 0.33a 0.09 ab 

Location 
         

SS 1 
0.04 
(*) 

0.10 
(*) 

0.17 
(ns) 

28.30 
(***) 

0.35 
(***) 

0.00 
(ns) 

0.01 
(ns) 

0.07 
(***) 

Lleida 
 

-0.06 a 0.30 a 0.50 a 0.81 a 0.19 a 0.09 a 0.23 a 0.04 a 

Sucs 
 

0.01 b 0.42 b 0.65 a 2.76 b 0.41 b 0.09 a 0.19 a 0.13 b 

Genotype* 
Location          

SS 4 
0.01 
(ns) 

0.08 
(ns) 

0.15 
(ns) 

9.85 
(*) 

0.03 
(ns) 

0.01 
(ns) 

0.05 
(ns) 

0.02 
(ns) 

*, **, ***: significant difference at P<0.05, P<0.01 and P<0.001, respectively. Abbreviations: 
SS: sum of squares, df: degrees of freedom. Means not sharing the same letter are 
significantly different. 
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Relative heterosis of all the parameters was higher for yield (0.27-3.06), followed by ear 

height (0.29-0.76), plant height (0.15-0.52), ear length (0.16-0.42), conicity (0-0.46), kernel 

rows per ear (0-0.15), ear grain percentage (0-0.15) and days to flower (0). The higher the 

heterosis, the better performance of hybrids compared to the corresponding parents. Thus, 

parameters showing higher heterosis values suggest a stronger influence of the interaction of 

the parents and they can be increased by choosing different parental genotypes. However, 

parameters showing lower heterosis values are strictly controlled genetically and they cannot 

be modified because of the low variability amongst inbred lines. 

5.5 Discussion 

5.5.1 Genotype of the parental inbred lines had significant influence on agronomic and 

morphological traits in resulting hybrids demonstrating different field performance 

depending on the hybrid  

In the 2014 growing season, a range of agronomic (days to flower, plant height, and ear 

height and yield) and morphological (ear length, kernel rows per ear, conicity and ear grain 

percentage) traits were evaluated in the hybrids and inbred parent lines in order to assess 

agronomic performance in two different locations (Table 5.3). Hybrids and inbred lines were 

grown in independent plots to assure that the superior field performance of the hybrids did not 

have a negative influence on the growth of the inbred lines. Thus, statistic analysis of 

parameters measured in inbred lines and hybrids was performed independently. The 

performance of the hybrids followed additive genetic effects because plant height, ear height, 

yield and ear length were superior in the hybrids than in the inbred lines, as reported 

previously in the literature (Melani and Carena 2005; Galarreta and Álvarez 2010).  

Statistical analysis revealed that all agronomic traits were influenced by genotype and that 

each genotype performed similarly in the different locations with the exception of ear height 

in the hybrids. B73 and Mo17 are usually used as parents for hybrid production because of 

their good field performance (Stojaković et al. 2005; Eichten et al. 2011). HCxB73 and 

HCxMo17 hybrids were taller, had a higher value for ear height and ear length than HCxA632 

and HCxEZ59. In contrast, the dent Spanish inbred line EZ6 crossed with HC demonstrated 

similar performance to HCxB73 and HCxMo17 in both locations, in agreement with the fact 

that hybrids between flint and dent kernel types commonly result in good field performance 
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(Ordás 1991). Kernel rows per ear and ear length are the two most common measurements to 

determine ear morphology (Stojaković et al. 2005). Kernel rows per ear and conicity were the 

most stable parameters in inbred lines and hybrids because they were only influenced by 

genotype. Ear length analysis revealed that it was influenced by genotype and that each 

genotype performed similar in different locations. Differences in grain percentage of inbred 

lines were due to a genotype effect, influenced by the location, and each genotype performed 

differently in the different locations. However, mean grain percentage of hybrids was due to 

genotype effect (Table 5.3). Therefore, genetic component of the traits we evaluated in inbred 

lines and hybrids mostly account for the variation observed (Galarreta and Álvarez 2010).  

FAO’s cycle classification of a crop estimates the length of growing period of the crop. 

According to FAO’s cycle classification, B73, EZ6 and Mo17 growing cycles are longer than 

those of A632 and EZ59. However, days to flower (an indication of length of the growing 

period) in this study revealed that HC, Mo17, EZ6, A632 and B73 needed more days to 

flower than EZ59, although Mo17 and EZ6 did not differ statistically from EZ59. All hybrids 

had similar days to flower with the exception of HCxEZ59 which was earlier but similar to 

the Lerma local check.  

5.5.3 Statistical analysis shows that B73xHC, Mo17xHC and EZ6xHC are the highest 

yielding hybrids 

Even though all the parameters described above are important in order to properly 

characterize field performance of hybrids, the most important parameter is yield. High-

yielding hybrids (9,400-14,800kg/ha), comparable with commercial hybrids grown in North 

East Spain were obtained which means they could be easily adopted by farmers and 

competitively grown in the area on the basis of agronomic performance. Statistical analysis of 

yield data suggested that each hybrid or inbred line performed similarly in each location, 

which is essential to obtain reproducible and reliable field performance. Local checks are 

commercial cultivars used in the area of the evaluation of new varieties because of their good 

field performance. It is essential to include local checks in field trials of new hybrids as a 

reference for their performance in the area of the assessment (Senete et al. 2011). In this 

study, all hybrids had higher mean yields than the local check Lerma, although only HCxEZ6, 

and HCxB73 were statistically different from Lerma. However, the yield of the local check 

Lerma (mean ca: 8,200kg/ha) was lower than expected most likely due to the fact that Lerma 

had a short phenotype (plant height ca: 140 cm in this study) (Fito, Barcelona, personal 
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communication) and the superior plant height of HC hybrids (plant height ca: 170-220 cm) 

allowed them to easily take resources for growth at the expenses of Lerma. Higher yields of 

HC hybrids were obtained with inbred lines corresponding to longer days to flower (Mo17, 

B73 and EZ6).. In addition, B73 and Mo17 are usually used as parents for hybrid production 

because of their high yield (Stojaković et al. 2005; Eichten et al. 2011).  

The dent Spanish inbred line EZ6 crossed with HC demonstrated similar yield than HCxB73 

and HCxMo17 in both locations, in agreement with hybrids between flint and dent kernel 

commonly result in good yield (Ordás 1991).  

5.5.4 Agronomic performance of hybrids relatively to their corresponding parents 

resulted in superior heterotic effects in EZ6 and EZ59 hybrids  

It is important that heterosis remains stable in different locations to confirm that it is 

exclusively the result of the interaction of different parent genotypes. In this study, stable 

heterosis was achieved for all the parameters with exception of yield which suggested that 

yield is highly influenced by genotype but also by location. Higher heterosis was achieved in 

hybrids from HC crossed with flint kernel type (EZ6 and EZ59) rather than hybrids from HC 

crossed with dent kernel type (Mo17, B73 and A632). Even though in all the parameters 

where heterosis was calculated indicated a positive change in performance of hybrids 

compared with their corresponding parental, the most impressive result was found in yield 

(maximum ca: 3 heterosis for yield in HCxEZ59), which confirmed the high variability of this 

parameter amongst different lines and that could be used to improve new generations of 

hybrids (Melchinger and Gumber 1998). 

5.6 Conclusions 

A detailed characterization of agronomic (days to flower, plant height, ear height and yield) 

and morphological (ear length, kernel rows per ear, conicity and ear grain percentage) traits 

was performed in inbred lines and hybrids in a pool of plants grown in two different locations 

in 2014. In addition, calculation of heterosis was performed to compare the performance of 

the hybrids and their corresponding parents. High heterosis values were obtained for yield, ear 

height, plant height, ear length and conicity, where two hybrids with flint kernels (EZ6 and 

EZ59), had the highest values. Even though all parameters are important for a complete 

characterization, yield is the most relevant in terms of production. In these experiments, high-
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yielding maize hybrids were obtained, where the higher yield was achieved in longer 

flowering dates, HCxEZ63, HCxB73 and HCxMo17 hybrids, which was similar to 

commercial hybrids grown in the area. EZ6 was shown to be also suitable for HC because 

yield of the hybrid with HC reached almost 15,000kg/ha, a 1.8-fold increase compared to the 

commercial hybrid Lerma. 
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GENERAL CONCLUSIONS 

1. Maize CYP97C19 is a functional ε-hydroxylase which is indispensable for lutein 

synthesis at the expense of zeinoxanthin in the Arabidopsis lut1 mutant (lacking lutein). 

2. Overexpression of Zmpsy1 alone or in combination with other carotenogenic genes in 

maize endosperm resulted in substantial increases in the carotenoid content and the 

formation of plastoglobuli inside plastids.  

3. Higher transcript levels of the endogenous carotenogenic genes Zmlycb, Zmbch1 and 

Zmbch2 as well as the MEP-pathway gene Zmdxs2 were measured in transgenic lines 

overexpressing carotenogenic transgenes. This suggested that the carotenoid biosynthetic 

pathway is regulated in a complex way and that introgressed carotenogenic transgenes 

influence different steps of the pathway in maize endosperm. 

4. Overexpression of the Arabidopsis Orange gene (AtOR) triggers carotenoid accumulation 

in M37W wild-type maize endosperm without concomitant upregulation of carotenogenic 

and MEP pathway gene expression, with the exception of Zmlyce which correlates with 

higher zeaxanthin content and Zmdxs1 which might be responsible for a slight increase of 

metabolic flux through the carotenoid pathway. 

5. In contrast, introgression of AtOR into transgenic maize lines with high carotenoid or 

high ketocarotenoid content, having different carotenoid profiles in the endosperm did 

not alter metabolite or transcript levels of carotenogenic, MEP pathway endogenous 

genes and pftf in the resulting hybrids.  However, when the pre-existing levels of 

carotenoids was low in the starting line used to introgress AtOR, ketocarotenoid 

accumulation increased without concomitant upregulation of carotenogenic and MEP 

pathway gene expression, with the exception of Zmdxs1. 

6. RNAi-mediated Zmbch1 and Zmbch2 gene silencing in transgenic maize endosperm 

indicated that these two hydroxylases are key determinants of β-carotene and zeaxanthin 

accumulation.  

7. The more in depth understanding of the mechanisms of carotenoid accumulation in maize 

endosperm resulting from the work described in this thesis will permit the design and 
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implementation of more targeted strategies for the creation of plants able to accumulate 

particular carotenoid profiles for diverse applications. 

8. Lower total starch content measured in three high-carotenoid accumulating transgenic 

maize lines suggested that the accumulation of higher amounts of carotenoids in maize 

endosperm might occur at the expense of early precursors, also involved in starch 

biosynthesis. I established that this effect was not due to downregulation of starch-related 

biosynthetic genes, which suggests that reduction in starch levels is due to alternative 

mechanisms. 

9. Transgenic maize hybrids with field performance similar to, or on occasion, superior to 

commercial hybrids commonly grown in the area were developed by breeding a high-

carotenoid accumulating transgenic line with different inbred lines belonging to well-

known heterotic groups. This is the first example of the generation of high-carotenoid 

transgenic maize hybrids.  
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