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Abstract 

Mucus penetrating nanoparticle-based delivery systems of macromolecular drugs 

are currently receiving increasing attention in both academic and industrial research. 

Synthetic delivery systems provide highly suitable and tunable platform for the delivery of 

the macromolecules. However, a highly viscoelastic and adhesive mucus layer generally 

traps and rapidly removes most foreign substance from the mucosal surfaces, thereby 

limiting effectiveness of these nanocarriers. This Thesis is addressed to the development 

of engineering DNA delivery systems capable of high stability and transfection efficiency 

with low toxicity, and quickly crossing the mucus layer. Moreover, this Thesis is focused on 

design and development of methods and techniques in vitro in order to select more efficient 

delivery systems. 

A simple and efficient method, based on the use of the quartz crystal microbalance 

with dissipation (QCM-D) technique, is developed and evaluated the interaction of the 

polymers and nanoparticles with the mucin layer, resulting in the development of 

nanoparticle-based delivery systems to mucosal tissue. This highly sensitive technique 

also offers to evaluate the two opposing properties, needed for the design of efficient 

mucous permeation systems: mucoadhesion vs mucus penetration. 

Poly(β-amino ester)s (PBAEs) are currently considered of great interest as 

biodegradable polymeric carriers of DNA delivery, but they present limited stability in 

physiological conditions and the inability to penetrate the mucus layer. In this Thesis, we 

describe a novel surface-modified formulation of DNA delivery systems consisting of 

PBAE/DNA complexes and the coating agents, including: i) sugars (sucrose, trehalose or 

mannitol), ii) unmodified chitosan with a 22 kDa (CS) and a with a 60-120 kDa (CSM), iii) 

chitosan-thioglycolic acid (CS-TGA), and iv) poly(acrylic acid)-bromelain (PAA-BRO) 

conjugates. All novel formulations formed with different amounts of the coating agents  are 

evaluated the physicochemical properties. The influence of coating agents on transfection 

efficiency and cytotoxicity is evaluated in COS-7 cells. Particle diffusion through porcine 

intestinal mucus (PImucus) is assessed by either rotating silicone tube technique or 

multiple particle tracking (MPT). The results highlight the superior stability, transfection 

efficiency and mucus permeability of the novel nanoparticle-based drug delivery systems. 

The effect of the amount of coating agents is also discussed.  
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Resumen 

Existe un interés creciente, tanto en el mundo académico como en la investigación 

industrial en el desarrollo de sistemas de liberación de fármacos macromoleculares 

(proteínas, péptidos, oligonucleótidos) capaces de atravesar la mucosa. En este sentido, la  

utilización de vectores sintéticos para la liberación de dichas macromoléculas, permite 

disponer de una plataforma versátil y altamente eficiente. Sin embargo, la capa de mucosa 

con propiedades adhesivas y altamente viscoelástica, tiene una elevada capacidad de 

atrapar y eliminar cualquier sustancia extraña que quede adherida sobre su superficie, 

limitando, de forma evidente, la eficacia de cualquier tratamiento 

Esta Tesis se centra en el desarrollo de sistemas de liberación de ADN, diseñados 

a medida, que presentan una elevada estabilidad y eficacia de transfección con un nivel 

muy bajo de toxicidad y muy importante en el contexto de la tesis, una capacidad de 

permeación a través de la mucosa. Además la tesis también se centra en el diseño y el 

desarrollo de métodos y técnicas in vitro que ayuden a una mejor selección de sistemas 

eficientes de liberación a través de la mucosa. 

Así se ha desarrollado un método simple y eficiente, basado en la utilización de 

una microbalanza de cuarzo con disipación (QCM-D). Este método ha permitido evaluar la 

interacción de polímeros y nanopartículas con una capa de mucina. Los resultados 

obtenidos con el método desarrollado han permitido diseñar sistemas de nanopartículas 

con un mayor potencial de permeación a través de la mucosa. Esta técnica de alta 

sensibilidad también ha ofrecido la posibilidad de evaluar las dos propiedades opuestas, el 

conocimiento de las cuales es necesario para un correcto diseño de sistemas cpaços de 

cruzar la mucosa: mucoadhesió vs mucopenetració. 

Los Poly (β-amino ester)s (PBAEs) se han propuesto como sistemas 

biodegradables capaces de formar nanopartículas, por complejación con ADN, que 

presentan una elevada capacidad de transfección. Sin embargo, muestran problemas de 

estabilidad en condiciones fisiológicas y son incapaces de atravesar la capa de mucosa. 

En esta tesis se describe una nueva solución en la preparación de las formulaciones de 

los nanocomplejos basada en la utilización de recubrimientos que estabilizan las 

nanopartículas y aumentan su permeabilidad. Los recubrimeintos propuestos inclutyen: i) 

azúcares (sucrosa, trhalosa y manitol), ii) quitosano sin modificar de 22 KDa y con 60-120 

kDa, iii) quitosano modificado con ácido tioglicólico y iv) ácido poliacrílico-bromelaina. 

Todas las nuevas formulaciones se han evaluado con diferentes cantidades de 

recubrimiento. Se han determinado sus propiedades fisicoquímicas y su eficacia de 
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transfección y citotoxicidad frente a células COS-7. Se ha estudiado La difusión de las 

partículas a través de la mucosa gástrica de cerdo utilizando diferentes técnicas como el 

tubo rotatorio de silicona o el múltiple particle tracking (MPT). 

Los resultados obtenidos han mostrado superior estabilidad, eficacia de 

transfección y permeabilidad sobre la mucosa de las nuevas formulaciones diseñadas.   
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Resum 

Existeix un interès creixent, tant en el món acadèmic com en la recerca industrial 

en el desenvolupament de sistemes d’alliberament de fàrmacs macromoleculars 

(proteïnes, pèptids, oligonucleotids) capaços de travessar la mucosa. En aquest sentit, la 

utilització de vectors sintètics per a l’alliberament de les esmentades macromolècules, 

permet disposar d’una plataforma versàtil i altament eficient. Tanmateix, la capa de 

mucosa amb propietats adhesives i altament viscoelàstica, té una elevada capacitat 

d’atrapar i eliminar qualsevol substància estranya que quedi adherida sobre la seva 

superfície, limitant, de forma evident, la eficàcia de qualsevol tractament  

Aquesta Tesi es centra en el desenvolupament de sistemes d’alliberament de 

DNA, dissenyats a mida, que presenten una elevada estabilitat i eficàcia de transfecció  

amb un nivell molt baix de toxicitat i molt important en el context de la tesi, una capacita t 

de permeació a través de la mucosa. A més la tesi també es centra en el disseny i el 

desenvolupament de mètodes i tècniques in vitro que ajudin a una millor selecció de 

sistemes eficients d’alliberament a través de la mucosa. 

Així s’ha desenvolupat un mètode simple i eficient, basat en la utilització de una 

microbalança de quartz amb dissipació (QCM-D). Aquest mètode ha permès avaluar la 

interacció de polímers i nanopartícules amb una capa de mucina. Els resultats obtinguts 

amb el mètode desenvolupat han permés dissenyar sistemes de nanopartícules amb un 

potencial més gran de permeació a través de la mucosa. Aquesta tècnica d’alta sensibilitat 

també ha ofert la possibilitat d’avaluar las dos propietats oposades, el coneixement de les 

quals és necessari per un correcte disseny de sistemes cpaços de creuar la mucosa: 

mucoadhesió vs mucopenetració.  

Los Poly(β-amino ester)s (PBAEs) s’han proposat com a sistemes biodegradables 

capaços de formar nanopartícules, per complexació amb DNA, que presenten una elevada 

capacitat de transfecció. Tanmateix, mostren problemes d’estabilitat en condicions 

fisiològiques i són incapaços de travessar la capa de mucosa. En aquesta tesi es descriu 

una nova solució en la preparació de les formulacions dels nanocomplejos basada en la 

utilització de recobriments que estabilitzen les nanopartícules i augmenten la seva 

permeabilitat. Els recubrimeintos proposats inclutyen: i) sucres (sucroses, trhalosa i 

manitol), ii) quitosà sense modificar de 22 KDa i amb 60-120 kDa, iii) quitosan modificat 

amb àcid tioglicolidoi i iv) acid poliacrílic-bromelaina. Totes les noves formulacions s’han 

avaluat amb diferents quantitat de recobriment. S’han determinat les seves propietats 

fisicoquímiques i la seva eficàcia de transfecció i citotoxicitat en front de cèl.lules COS-7. 
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S’ha estudiat La difusió de las partícules a través de la mucosa gàstrica de porc utilitzant 

diferents tècniques com el tub rotatori de silicona o el multiple particle tracking (MPT). 

Els resultats obtinguts han mostrat la superior estabilitat, eficàcia de transfecció i 

permeabilitat sobre la mucosa de las noves formulacions dissenyades.  
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Aim and outline of this Thesis   
 
 
    

 

Introduction 

The development of engineering nanoparticles-based delivery systems for 

macromolecular drugs, such as peptides, proteins and nucleic acids (DNA and RNA), to 

mucosal tissue has attracted increasing interest. Drug delivery technologies have been 

extensively investigated, in the last few decades, for improvement of therapeutic efficacy. It 

is well defined that drug delivery systems must possess a number of desirable features for 

therapy, including: i) sustained and controlled release of drugs locally (Langer 1998; 

Farokhad and Langer 2006), ii) deep tissue penetration due to the nanomeric size (Dawson 

et al., 2003 and 2004; Prego et al., 2005; Mackay et al., 2005), iii) cellular uptake and sub-

cellular trafficking (Medina-Kauwe et al., 2005; Lai et al., 2007), iv) protection of cargo 

therapeutics from degradation and removal in the mucus (Allemann et al., 1998; Panyam 

and Labhasetwar et al., 2003) and v) penetration through the mucus barrier, which has 

been a key for achieving therapeutic efficacy in target tissue or cells (Lai et al., 2009). 

Mucosal membranes cover natural body cavities such as the eye, gastrointestinal 

(GI) track, lung airway, nasal/pharyngeal region, and female reproductive track . Besides, it 

servers many functions in those locations, among which are lubrication for the passage of 

objects, maintenance of a hydrated layer over the epithelium, a barrier to foreign 

substances (Allen 1981; Neutra and Forstner 1987). In the GI track, for example, the 

majority of administered particles does not adhere or transport through the mucus layer, 

but undergo direct transit through the GI track (Galindo-Rodriguez et al., 2005). Thus, 

research has largely focused on minimizing the fraction of therapeutics undergoing direct 

transit and fecal elimination by improving their association to mucus.  

According to this consideration, the concept of mucoadhesion, as a new strategy 

for drug delivery systems, was introduced by the pioneering work of several research 

groups in pharmaceutical technology in the early 1980 (Nagai 1985; Peppas and Buri 

1985). Since then the use of mucoadhesive polymers was considered in drug delivery 

applications due to their ability to prolong residence time of the drug at mucosal surface, 

thus increasing drug absorption (Maggi et al., 1994; Mortazavi and Samrt 1994; Caramella 

et al., 1994). Later, it was discovered that some mucoadhesive polymers, such as 

polyacrylic acid and chitosan, possess multifunctional properties, and can modulate the 

permeability of the epithelial tissues by partially opening the tight junctions (Borchard et al., 

1996; Schipper et al., 1997). In addition, these systems can also adhere to specific sites of 

the body leading to greater bioavailability (Peppas et al., 2000; Ahn et al., 2002; Chowdary 

and Srinivasa 2004). The ability of mucoadhesion depends on the structure of mucosal 

membranes, the properties of mucus gels, and the physicochemical properties of 

mucoadhesive polymers (Boddupalli et al., 2010; Shaikh et al., 2011). One of the most 

popular mucoadhesive polymers is a poly(acrylic acid) (Rowe et al., 2006). Mechanisms of 
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mucoadhesion are largely attributed to a combination of H-bonding and molecular 

entanglements of this polymer with mucus glycoproteins (Park and Robinson 1985). 

Additionally, the cationic polymer chitosan has a well-known mucoadhesive nature (Sogias 

et al., 2008; Bravo-Osuna et al., 2014), by the establishment of electrostatic interactions 

between their primary amino groups and sialic acid/sulfonic acid groups of the mucus 

(Gaserod et al., 1998). Moreover, it was demonstrated that chitosan can enhance the 

absorption of hydrophilic molecules by promoting a structural reorganisation of the tight 

junction-associated proteins (Jung et al., 2000). However, current mucoadhesive polymers 

provide only a weak adhesion for the localization of delivery systems to mucosal tissue, 

thus still required to enhance mucoadhesion.  

Fortunately, these mucoadhesive polymers can be improved by modifying their 

chemical structure. In the late 1990s, Bernkop-Schnürch and coworkers firstly proposed the 

concept of thiolated polymers, designated as thiomers, showing the potential of 

mucoadhesion through chemical modification (Bernkop-Schnürch et al., 1999). They proposed 

the use of thiol groups in polymers to increase mucoadhesion. They showed that 

polycarbophil-cystein conjugates exhibited high mucoadhesion due to the formation of 

covalent bonds with cysteine-rich domains of glycoproteins in the mucus layer (Kast et al., 

2003). These covalent bonds are supposedly stronger than non-covalent bonds such as 

ionic interactions. To date, numerous thiomers have been developed, e.g. chitosan-

thioglycolic acid conjugates, and applied for the novel mucoadhesive drug delivery systems 

as drug carriers capable of prolonging residence time of drug in body via effective adhesion to 

the mucus layer (Bernkop-Schnürch 2005; Andrew et al., 2009; Serra et al., 2009).  

In spite of their advantages described above, the mucoadhesive drug delivery 

systems have limitations. The critical shortcoming of the mucoadhesive systems is that their 

transit time is limited to the physiological turnover rate of the mucus layer (Galindo-Rodriguez 

et al., 2005). In other words, these systems are trapped in mucus layers via steric or adhesive 

forces, and then rapidly eliminated by mucus clearance mechanisms over time scale that 

ranges from seconds in the eyes (Greaves and Wilson 1993) to a few hours in the GI track, 

lung airways and female reproductive tract (Lehr et al., 1991; Kieweg et al., 2004; Galindo-

Rodriguez et al., 2005; Ali and Pearson 2007). Furthermore, mucoadhesive systems are fully 

immobilized in the luminal mucus gel are therefore unable to penetrate the mucus layer and 

reach the underlying epithelia. Thus, mucoadhesive systems are inefficient for applications 

that require intracellular delivery of drugs for gene therapy and/or sustained drug release over 

longer duration than the time scale of mucus renewal (Lai et al., 2009). To overcome this 

issue, the concept of mucus-penetrating nanoparticles technology capable of overcoming the 

mucus barrier was pioneered, and there has been designed and developed the novel drug 

delivery systems using this technique (Scheme 1.1) (Lai et al., 2009; Hanes 2009).   
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Scheme 1.1. Schematic illustration of the fate of mucus-penetrating particles (MPP) and conventional 

(mucoadhesive) particles (CP) administered to a mucosal surface. MPP readily penetrate the luminal 

mucus layer (LML) and enter the underlying adherent mucus layer (AML). In contrast, CP are largely 

immobilized in the LML. Because MPP can enter the AML and thus are in closer proximity to the cells, 

cells will be exposed to a greater dose of drug released from MPP compared to drug released from CP. 

As the LML layer is cleared, CP are removed along with the LML whereas MPP are retained in the AML, 

leading to prolonged residence time for MPP at the mucosal surface. Thus, at long times, there is almost 

no drug dosing to cells with CP, whereas MPP, because they are retained longer, will continue to release 

drug to cells. Since MPP can penetrate both the LML and AML, a fraction may reach and bind to the 

underlying epithelia and thus further improve drug delivery (Lai et al., 2009). 

 

It should be noted that Hanes and coworkers proposed the effectiveness of 

nanoparticles for drug delivery to mucosal sites that relies on the ability of these particles to 

cross mucosal barrier (Hanes et al., 2004). The primary component of mucus is high 

molecular weight mucin glycoproteins exhibiting cysteine-rich subunits, which are connected 

with each other via disulfide bonds (Scheme 1.2) (Cone 2008). This stable three-dimensional 

network (the so-called adherent mucus layer) forms a thick layer on surfaces, ranging from 

0.05 µm in ocular surface to 640 µm in the large intestine (Khanvilkar et al., 2001; Strugala et 

al., 2003; Bansil and Turner 2006), and gives rise to a highly viscoelastic gel, which 

significantly impedes the transport rates of nanoparticles for drug delivery (Sanders et al., 

2000; Olmsted et al., 2001). The work by Knowles and Boucher supported that most foreign 

particles, including many benificial drugs, were traped by mucus via steric or adhesive forces 

and rapidly removed via mucus clearance (Knowles and Boucher 2002). Accordingly, the 

nanoparticles must be suitable adhesive, small (nanomeric) and smooth enough for mucosal 

drug delivery systems. In order to achieve the desired nanoparticles characteristics, the 

combination of both mucosadhesive and mucus penetrating properties of delivery systems 
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has been required. Since then, considerable attention has been focused on the development 

of both type of novel nanoparticle delivery systems that can transport through the mucus 

layer, based on using the several different strategies (e.g. size-dependent and surface 

change, surface-modification, mucolytic agents, etc) as described below. Thus, it has been a 

main challenge to develop and optimize the strategies for the novel drug delivery systems to 

mucosal tissue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.2. Major biochemical features of gel-forming mucins. (A) Mucin monomers are cross-linked 

end-to-end via disulfide bonds between disulfide-rich domains (labeled ‘‘D’’) near the amino- and 

carboxyl-termini. (B) Interspersed along each fiber are ‘‘naked’’ globular protein regions, with small 

exposed hydrophobic patches, stabilized by multiple disulfide bonds. (C) Individual mucin fibers are 

densely glycosylated with O- and N-linked glycans, most of which are negatively charged with sialic acids 

or sulfate groups (Cone 2009). 

 

According to this issue, there is a growing appreciation that an understanding of 

fundamental interaction of nanoscale objects with biological barriers will play a central role in 

nanomedicine (Lundqvist et al., 2008).  Due to the special biological role, mucus significantly 

limits the drug delivery across biological barriers (Lopez-Vidriero 1989). To gain insight into 

particle transport mechanisms through mucus, it was focused on understanding the 

physicochemical properties (i.e. size and surface charge) that govern the rapid transport of 

specific viruses, which have evolved over thousands of years to infect mucosal tissues (Cone 

1999). It was demonstrated the size dependent diffusion of macromolecules (proteins) and 

particulate systems (viruses) through the mucus gel layer. The study suggested that small 

molecules diffuse rapidly through mucus barrier, while large molecules become trapped due to 

steric hindrance (Cone 1999; Sanders et al., 2000; Olmsted et al., 2001). For example, small 
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viruses up to 55 nm showed to diffuse in mucus as rapidly as in water, while a larger virus, 

180 nm herpes simplex virus, was nearly completely inhibited, proposing that the mucus mesh 

spacing is approximately 20-180 nm. On the other hand, Dowson et al. demonstrated that that 

neutrally charged hydrophobic particles, regardless of surface chemistry (COOH or PEG), with 

200- and 500- nm in size moved faster in mucus than anionic but otherwise similar particles, 

suggesting charge may be an important parameter in governing transport rates of 

nanoparticles in mucus (Dawson et al., 2003 and 2004).     

Later, Lai and colleagues found that large nanoparticles, 200 and 500 nm in diameter, 

if properly coated, can transport much more rapidly than 100 nm nanoparticles in physiological 

human cervicovaginal track (CV) mucus (Lai et al., 2007). The faster transport of the large 

particles is contrary to the expectation described above that smaller particle should move 

faster in mucus as well as mucus mesh spacing. These results suggested that the coating 

modification may be an important factor for mucus penetration. This finding strongly 

encouraged the commercial development of new nanoparticle-based drug delivery systems 

for the CV track and potentially other mucosal surfaces, because drug delivery kinetic and 

loading efficiency are vastly improved as particle size increases. In parallel, Lai et al. have 

developed the mucus-penetrating particles technology by mimicking the essential surface 

properties of viruses that allow them to avoid mucoadhesion, resulting in great promise in 

mucosal drug delivery (Lai et al., 2009). According to a hypothesis first proposed by Cone et 

al., they suggested that an equal density of positive and negative charges, a net neutral 

surface, may facilitate efficient mucus transport by allowing the viruses to avoid electrostatic 

adhesive interactions. 

 Last but not least, understanding the biochemical basis of the viscoelastic properties 

of mucus, which can be manipulated by mucolytic agents, has important consequences to the 

development and selection of potential therapeutic strategies (Lai et al., 2009). Mucolytic 

agents currently used clinically to reduce mucus viscosity and increase mucociliary clearance 

rates may be important adjuvants to delivery for macromolecular drugs (Mrsny et al., 1996; 

Ferrari et al., 2001; Dawson et al., 2003; Decramen et al., 2005).  For example, cystic fibrosis 

patients often need to inhale specific mucolytic for enzymatic cleavage of mucus constituents 

to facilitate mucus clearance from lungs by coughing. Commonly used mucolytic agents are 

recombinant human DNase (rhDNase) (Shak et al., 1990; Ulmer et al., 1996) and N-

acetylcysteine (NAC) (Henke et al., 2007). Recently, Suk and coworkers reported that the 

gene carriers with NAC or NAC + rhDNase transfer genes more effectively into the cells (Suk 

et al., 2011). Yet, there has been no cure to date, a challenge widely attributed to inefficient 

mucosal delivery for biopharmaceutics. In the case of mucosal delivery of DNA-based drugs in 

particular, the development of the strategies allowing delivery systems to cross the mucus 

layer and consequently be taken up by epithelial cell will certainly lead to improvement in non-

viral gene therapy (EU-project FP7). The surface-modification technique has been generally 



Chapter 1 

8 

 
 
 
 

 

applied as non-viral vectors for gene therapy. Especially, the surface-modification of delivery 

vehicles with polyethylene glycol (PEG), or PEGylation, has shown promise as a method to 

improve the stability and in vivo performance of various delivery systems for macromolecular 

drugs (Sanders et al., 2002; Ogris et al., 2003; Lenter et al., 2004; Mishra et al., 2004; Pun et 

al., 2004; Sun et al., 2005; Zahr et al., 2005). In addition, the surface-modification technique 

has been shown to enhance particle transport through mucus (Suh et al., 2007; Lai et al., 

2007; Tang et al., 2009; Cu et al., 2009; Boylan et al., 2011; Ensign et al., 2012; Suk et al., 

2014; Mastorakos et al.,  2015). Nevertheless, gene therapy has by far not reached its full 

potential owing to the lack of enabling delivery technologies. Thus, it will be a great challenge 

to develop and optimize the novel technologies for delivery systems of biopharmaceutics to 

mucosal tissue. These novel delivery systems must be evaluated by precise and accurate 

methods and techniques in vitro in order to select the best mucosal delivery systems for in 

vivo test. Therefore, the design and development of methods and techniques will be a 

promising approach to achieve the challenge described above. 
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Aim and scope of this Thesis 

A main objective of this Thesis is to develop and optimize a nanotechnology-based 

strategy for solving the major limitation of crossing the mucus layer and thus enabling the 

efficient delivery of macromolecules, especially DNA-based drugs. Additionally, it is aimed to 

develop an in vitro method utilizing a quartz crystal microbalance with dissipation (QCM-D) 

technique in order to evaluate the interaction between the novel nanoparticulate drug delivery 

systems and mucins, thus allowing for selecting the best candidates for in vivo testing. The 

aims of this Thesis are briefly described below:  

 To establish and develop a QCM-D method as an in vitro model with mucins. 

 To compare and evaluate two sources of mucin; native porcine gastric mucin 

(NPGM) vs commercially available porcine gastric mucin (CPGM). 

 To evaluate the interaction between mucoadhesive polymers and NPGM 

 To assess the interaction of mucoadhesive and mucus penetrating nanoparticles 

with NPGM 

 To prepare and characterize the polymers or conjugates described as follows: 

oligopeptide-terminated poly(β-amino ester)s (PBAEs), the mixtures of PBAE with 

trehalose (TreR), sucrose (SucR) and mannitol (MntR), chitosan-thioglycolic acid 

(CS-TGA) and poly(acrylic acid)-bromelain (PAA-BRO) conjugates. 

 To investigate the effect of experimental conditions such as ionic strength of 

medium, incubation time and temperature on stability and transfection efficiency 

of the conventional PBAE/DNA complexes nanoparticles.  

 To develop and optimize a novel surface-modified formulation of PBAE/DNA 

nanoparticles with coating agents (e.g. Tre, Suc, Mnt, chitosan (CS), CS-TGA 

and PAA-BRO) 

 To evaluate the physicochemical properties (e.g. size, surface charge and 

agarose gel electrophoretic mobility). 

 To investigate the influence of coating on stability, transfection efficiency and 

cytotoxicity of all the testing nanoparticles. 

 To study the effect of the coating agents, especially CS-TGA and PAA-BRO, on 

mucus penetration. 
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Structure of the Thesis 

  

This Thesis consists of four Chapters followed by a summary of the conclusions 

drawn from the whole work. 

 

Chapter 1 is a general introduction of the Thesis which includes its aims and 

organization.  

 

Chapter 2 describes the development of an efficient and simple method, based on the 

use of quartz crystal microbalance with dissipation, to evaluate the mucoadhesive 

characteristics of mucoadhesive polymers as well as the permeability of thiolated chitosan-

based complexes into the mucin layer. This technique allows an initial screening of the novel 

nanocarriers to select the best efficient drug delivery systems. 

 

Chapter 3 presents a novel gene delivery system with enhanced stability and 

transfection efficiency. Trehalose, sucrose, mannitol, and chitosan are employed as 

modification agents to prepare the novel carrier by two different strategies using surface 

modification technique consisting in coating and blending. For example, sugar was added 

after-the so-called coating- or before-the so-called blending- the polymerization of poly(β-

amino ester)s.   

 

In Chapter 4, it is focused on a simple surface-modified formulation of functionalized 

nanocarriers capable of permeating the mucus gel layer and efficient gene delivery with low 

toxicity. Biodegradable poly(β-amino ester)s/DNA are prepared with either thiolated chitosan 

or poly(acrylic acid)-bromelain conjugates, which are employed as disulfide breaking agents 

or mucolytic agents, respectively.  

 

 

 

References 

 
Ahn, J.S.; Choi, H.K.; Chun, M.K.; Ryu, J.M.; Jung, J.H.; Kim, Y.U.; Cho, C.S. Biomaterials 2002, 
23, 1411-1416. 
 
Ali, M.S.; Pearson, J.P. Laryngoscope 2007, 117, 932–938. 
 
Allemann, E.; Leroux, J.C.; Gurny, R. Adv. Drug Deliv. Rev. 1998, 34, 171–189. 
 
Allen A. Structure and function of gastrointestinal mucus. In: Physiology of the gastroenterology 
tract, 1st edn. New York, NY: Raven Press; 1981. p. 617– 639. 
 
Andrew, G.P.; Laverty, T.P.; Jones, D.S. Eur. J. Pharm. Biopharm. 2009, 71, 505-518. 



11 

Aim and outline of this Thesis   
 
 
    

 

Bansil, R.; Turner, B.S. Curr. Opin. Colloid. Interface Sci. 2006, 11, 164-170. 
 
Bernkop-Schnürch, A.; Schwarz, A.; Steininger, S. Pharm. Res. 1999, 16, 876–881. 
 
Bernkop-Schnürch, A. Drug Discov.Today: Technol. 2005, 2, 83–87. 
 
Bernkop-Schnürch, A. Adv. Drug Deliv. Rev. 2005, 57, 1569-1585.   
 
Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. J. Adv. Pharm. Technol. Res. 2010,1, 
381–387. 
 
Borchard, G.; Luessen, H.L.; deBoer, A.G.; Verhoef, I.C;, Lehr, C.M.; Junginger, H.E. J. Control 
Release 1996, 39, 131-138.  
 
Bravo-Osuna, I.; Vauthier, C.; Farabollini, A.; Palmieri, G.F.; Ponchel, G. Biomaterials 2007, 28, 
2233-2243. 
 
Breunig, M.; Bauer, S.; Goepferich, A. Eur. J. Pharm. Biopharm. 2008, 68, 112–128. 
 
Caramella, C.; Bonferoni, MC.; Rossi, S.; Ferrari, F. Eur J. Pharm. Biopharm. 1994, 40, 213–
217. 
 
Chowdary, K.P.R.; Srinivasa, Y.  Biol. Pharm. Bull. 2004, 27, 1717–1724. 
 
Cone, R.A. Mucus. In Mucosal Immunology; 2nd edn; Orga PL, edn. Academic Press:San Diego, 
1999; 43–64. 
 
Cone, R.A. Adv. Drug Deliv. Rev. 2009, 61, 75–85.  
 
Cu, Y.; Saltzman, W.M. Mol. Pharm. 2009, 6, 173–181. 
 
Dawson, M.; Wirtz, D.; Hanes, J. J. Biol. Chem.  2003, 278, 50393–50401. 
 
Dawson, M.; Krauland, E.; Wirtz, D.; Hanes, J. Biotechnol. Prog.  2004, 20, 851–857. 
 
Ehrhardt, C.; Fiegel, J.; Fuchs, S.; Abu-Dahab, R.; Schaefer, U.F.; Hanes, J.; Lehr, C.M. J. 
Aerosol. Med. 2002, 15, 131-139. 
 
Ensign, L.M.; Cone, R.; Hanes, J. Adv. Drug Deliv. Rev. 2012, 64, 557-570. 
 
Ensign, L.M.; Tang, B.C.; Wang, Y.Y.; Tse, T.A.; Hoen, T.; Cone, R.; Hanes, J. Sci. Transl. Med. 
2012, 4, 138ra79.  
 
Farokhzad, O.C.; Langer, R. Adv. Drug Deliv. Rev. 2006, 58, 1456–1459. 
 
Ferrari, S.; Kitson, C.; Farley, R.; Steel, R.; Marriott, C.; Parkins, D.A.; Scarpa, M.; Wainwright, 
B.; Evans, M.J.; Colledge, W.H.; Geddes, D.M.; Alton, E.W. Gene Ther. 2001, 8, 1380–1386 
 
Galindo-Rodriguez, S.A.; Allemann, E.; Fessi, H.; Doelker, E. Crit. Rev. Ther. Drug Carr. Syst. 
2005, 22, 419–464. 
 
Garcia-Contreras, L.; Hickey, A.J. Adv. Drug Deliv. Rev. 2002, 54,1491–1504. 
 
Gaserod, O.; Jolliffe, I.G.; Hampson, F.C.; Dettmar, P.W.; Skjak-Braek, G. Int. J. Pharm. 
1998,175, 237–246 
 
Greaves, J.L.; Wilson, .CG. Adv. Drug Deliv. Rev. 1993, 11, 349–383. 
 



Chapter 1 

12 

 
 
 
 

 

Hanes, J.; Dawson, M.; Har-el, Y.; Suh, J.; Fiegel, J. Gene therapy in the lung. In 
Pharmaceutical Inhalation Aerosol Technology, 2nd edn.; Marcel Dekker Inc.: New York, 2004, 
pp 489-539. 
 
Hanes, R. . Adv. Drug Deliv. Rev.2009, 61, 73-74. 
 
Heller, J. Hoffman, A.S. Drug delivery systems. In: Biomaterials science, 2

nd
 edn. San Diego, 

California: Elsevier Academic Press; 2004. pp. 639. 
 
Henke, M.O.; Ratjen, F. Paediatr. Respir. Rev. 2007, 8, 24–29. 
 
Jung, T.; Kamm,  W.; Breitenbach, A.; Kaiserling, E.; Xiao, J.X.; Kissel, T. Eur. J. Pharm. 
Biopharm. 2000, 50,147–60. 
 
Kieweg, S.L.; Geonnotti, A.R.; Katz, D.F. J. Pharm. Sci. 2004, 93, 2941–2952. 
 
Kast, C.E.; Guggi, D.; Langoth, N.; Bernkop-Schnürch, A. Pharm. Res.2003, 20, 931–936. 
 
Khanvilkar, K.; Donovan, M. D.; Flanagan, D. R. Adv. Drug Deliv. Rev. 2001, 48, 173-193. 
 
Kim, A.J.; Boylan, N.J.; Suk, J.S.; Hwangbo, M.; Yu, T.; Schuster, B.S.; et al. Angew. Chem. Int. 
Ed. 2013, 52, 3985–3988. 
 
Knowles, M.R.; Boucher, R.C. J. Clin. Invest. 2002,109, 571–577. 
 
Lai, S.K.; O’Hanlon, D.E.; Harrold, S.; Man, S.T.; Wang, Y.Y.; Cone, R.; Hanes, J. Proc. Natl. 
Acad. Sci. U.S.A. 2007, 104, 1482-1487. 
 
Lai, S.K.; Hida, K.; Man, S.T.; Chen, C.; Machamer, C.; Schroer, T.A.; Hanes, J. Biomaterials 
2007, 28, 2876-2884. 
 
Lai, S.K.; Wang, Y.Y.; Wirtz, D.; Hanes, J. Adv. Drug Deliv. Rev. 2009, 61, 86–100. 
 
Lai, S.K.; Wang, Y.Y.; Hanes, J.  Adv. Drug Deliv. Rev. 2009, 61, 158–171. 
 
Lai, S.K.; Wang, Cone, R.;  Wirtz, D.; Hanes, J. PloS. ONE. 2009; 4, e4294. 
 
Langer, R. Nature 1998, 392, 5–10. 
 
Leitner, V.M.; Walker, G.F.; Bernkop-Schnu¨rch, A. Eur. J. Pharm. Biopharm. 2003, 56, 207–214. 
 
Lehr, C.M.; Bouwstra, J.A.; Kok, W. et al. Pharm. Res. 1992, 9, 547–553. 
 
MacKay, J.A.; Deen, D.F.; Szoka, J.F.C. Brain Res. 2005, 1035, 139–153. 
Maggi, L.; Carena, E.; Torre, M.L.; Giunchedi, P.; Conte, U. STP Pharma. Sci. 1994, 4, 343–348. 
 
Mastorakos, P.; de Silva, A.L.; Chisholm, J.; Song, E.; Choi, W.K.; Boyle, M.P.; Morales, M.M.; 
Hanes, J.; Suk, J.S. PANS 2015, 112, 8720-8725. 
 
Mrsny, R.; Daugherty, A.; Short, S.; Widmer, R.; Siegel, M.; Keller, G. J. Drug Target. 1996, 4, 
233–243 
 
Medina-Kauwe, L.K.; Xie, J.; Hamm-Alvarez, S. Gene Ther. 2005, 12, 1734–1751. 
 
Mortazavi, S.A.; Smart, J.D. J. Control Release 1994, 31, 207–212. 
 
Nagai, T. J. Control Release 1985, 2, 121-34 
Nance, E.A.; Woodworth, G.F.; Sailor, K.A.; Shih, T.Y.; Xu, Q.; Swaminathan, G.; Xiang, D.; 



13 

Aim and outline of this Thesis   
 
 
    

 

Eberhart, C.; Hanes, J. Sci. Transl. Med. 2012, 4, 149ra19.  
 
Neutra, M.; Forstner, J. Gastrointestinal mucus: synthesis, secretion, and function. In: Johnson, 
L., editor. Physiology of the gastrointestinal tract, 2nd edn. New York, NY Raven Press; 1987. 
Chapter 34. 
 
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Proc. Natl. Acad. Sci. 
U.S.A. 2008, 105, 14265–14270. 
 
Lopez-Vidriero, M.T. Respiration 1989, 55, 28-32. 
 
Olmsted, S.S.; Padgett, J.L.; Yudin, A.I.; Whaley, K.J.; Moench, T.R. et al. Biophys. J. 2001, 81, 
1930-1937. 
 
Ozturk, E.; Eroqlu, M.; Ozdemir, N.; Denkbas, E.B. Adv. Exp. Med. Biol. 2004, 553, 231-242. 
 
Panyam, J.; Labhasetwar,. V. Drug Deliv. Rev. 2003, 55, 329–347. 
 
Peppas, N.A.; Buri. P.; J. Control Release 1985, 2, 257-275. 
 
Peppas, N.A.; Little, M.D.; Huang, Y. Bioadhesive controlled release systems in: Wise, D.L.; 
Brannon-Peppas, L.; Klibanov, A.M.; Langer, R.L.; Mikos, A.G.; Peppas, N.A.; Trantolo, D.J.; 
Wnek, G.E.; Yaszemski, M.J. (Eds.), Handbook of Pharmaceutical Controlled Release 
Technology, Dekker, New York, 2000, pp. 255–269. 
 
Park, H., and Robinson, J. J. Controlled Release 1985, 2, 47–57. 
 
Prego, C.; Garcia, M.; Torres, D.; Alonso, M.J. J. Control. Release 2005, 101, 151–162 
 
Rowe, R.C.; Sheskey, P.J.; Owen, S. Handbook of Pharmaceutical Excipients, 5th edn., The 
Pharmaceutical Press and the American Pharmacists Association, London, UK, 2006. 
 
Sanders, N.N.; De Smedt, S.C.; Rompaey, E.; Simoens, P.; de Baets, F. et al. Am. J. Respir. 
Crit. Care Med. 2000, 162, 1905-1911. 
 
Seisenberger, G.; Ried, M.U.; Endress, T.; Buning, H.; Hallek, M.; Brauchle, C. Science 2001, 
294, 1929–1932.  
 
Serra, L.; Doménech, J.; Peppas, N.A. Eur. J. Pharm. Biopharm. 2009, 71, 519–528.   
 
Schipper, N.G.M.; Olsson, S.; Hoogstraate, J.A.; de Boer, A.G.; Varum, K.M.; Artursson, P. 
Pharm. Res. 1997, 14, 923-929. 
 
Shaikh, R.; Raj, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. J. Pharm. Bioallied. Sci. 
2011, 3, 89-100.  
 
Shak, S.; Capon, D.J.; Hellmiss, R.; Marsters, S.A.; Baker, C.L. Proc. Natl. Acad. Sci. 1990, 87, 
9188–9192. 
 
Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Biomacromolecules 2008, 9, 1837–1842.  
 
Strugala, V.; Allen, A.; Dettmar, PW.; Pearson, J.P. Proc. Nutr. Soc. 2003, 62,:237–243. 
 
Suk JS, Boylan, N.; Trehan, K.; Tang, B.C.; Schneider, C.S.; Lin, J.M.; Boyle, M.P.; Zeitlin, P.L.; 
Lai, S.K. Cooper, M.J.; Hanes, J. Mol. Ther. 2011, 19, 1981–1989. 
 
Suk, J.S.; Lai, S.K.; Boylan, N.J.; Dawson, M.R.; Boyle, M.P.; Hanes, J. Nanomedicine (Lond) 
2011, 6, 365–375. 



Chapter 1 

14 

 
 
 
 

 

Suh, J.; Wirtz, D.; Hanes, J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3878–3882. 
 
Tang, B.C.; Dawson, M.D.; Lai, S.K.; Wang, Y.Y.; Suk, J.S.; Yang, M.; Zeitlin, P.; Boyle, M.P.; 
Fu, J.; Hanes, J. PNAS 2009, 160, 19268-19273. 
 
Ulmer, J.S.; Herzka, A.; Toy, K.J.; Baker, D.L.; Dodge, A.H.; Sinicropi, D.; Shak, S.; Lazarus, 
R.A. Proc. Natl. Acad. Sci. 1996, 93, 8225–8229 
 
Welsher, K.; Yang, H. Nat. Nanotechnol. 2014, 9, 198–203. 
 
 
 
 
  
 
 
 
 

 



15 

15 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
CHAPTER 2 

 
  

DEVELOPMENT OF 

 A QCM-D TECHNIQUE FOR  

 STUDING THE INTERACTIONS OF 

            POLYMERS/PARTICLES WITH MUCIN 

 
 
 
 
 
 
 
 
 
 
 

Publications derived from this work: 
 

Oh, S.; Wilcox, M.; Pearson, J.P.; Borrós. S. Eur. J. Pharm. Biopharm. 2015, 96, 
477-483. 

Oh, S. et al., ‘In vitro evaluation of the combined properties between mucoadhesion 
and mucus permeability of thiolated chitosan polymers and their complexes using 
quartz crystal microbalance with dissipation (QCM-D)’ (Submitted to Langmuir 
2016). 
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2.1. Introduction 

As explained earlier, the development of the mucosal drug delivery systems has been 

of great interest as drug carriers capable of adhering and rapidly penetrating through the 

mucus layer. The recent advanced in techniques for nanoparticle diffusional kinetics through 

the mucus have resulted in this development of the novel delivery systems for 

biopharmaceutics. In this Chapter, therefore, the utilizing of a quartz crystal microbalance with 

dissipation (QCM-D) technique for evaluating the interaction of nanoparticles with mucin is 

highlighted.  

As mentioned in the previous Chapter, mucus plays a key role of the defence 

mechanism from nanoparticulate drug delivery systems because it covers and protects the 

body by lubricating, trapping and removing foreign particles. Thus, it is important to note 

the properties of mucus that need to be overcome in mucosal drug delivery application. 

The ability of mucus to function as an effective lubricant and selective diffusional barrier is 

critically dependent on adherent mucus layer and the biochemical interactions between mucus 

constituents, including mainly of water (up to 95% weight) lipids, inorganic salts, and 

glycoproteins called mucins (Allen et al., 1981; Cone 1999; Thornton and Sheehan 2004).  In 

particular, mucins are the most important components determining viscoelastic gel-like 

properties of mucus. Mucins consist of large macromolecular monomers with a protein 

backbone with one or more heavily glycosylated domains, rich in serine and threonine 

residues which serve as anchoring points for the oligosaccharide side chains (Bansil and 

Turner, 2006; Cone et al., 2009). The oligosaccharide chains have sugar residues such as 

galactose, fructose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. At pH > 3, 

both sialic acid and sulphated sugars are fully ionized and this confers a net negative charge 

to the molecules (Marriott and Gregory 1990). Due to their importance the relevance for 

mucoadhesion and mucus permeability, interaction of mucins has been considerably studied 

to a variety of surfaces and by applying different techniques (Svensson and Arnebrant 2010).  

Therefore, it will be a great challenge to design and develop methods and techniques in vitro 

in order to evaluate the interaction between the polymers or nanoparticles and mucin. A 

profound knowledge about methods and techniques allowing a precise and accurate 

evaluation of interactions between particles and mucin/mucus is consequently substantial for 

the design and development of more efficient drug delivery systems (Grießinger et al., 2015). 

Regarding this issue, different methods and techniques including, QCM-D, multiple particle 

tracking (MPT), transwell diffusion system, and rotating silicone tube technique are utilized by 

various research groups to assess the behaviour of drug delivery systems in the mucus. 

In this Chapter, we have focused and developed a simple and efficient method, based 

on the use of the QCM-D monitoring, to elucidate the relationship of polymers or particles with 

mucin/mucus. The results will be further compared with those obtained by different methods 
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and techniques described above, and they may help to better understand and select 

promising drug delivery systems in vitro screening. Moreover, the developed QCM-D method 

could give insight on the mechanisms of two opposing properties of mucoadhesion and mucus 

penetration of the engineering nanoparticles. 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.1. Scheme of the QCM-D instrument and the different part used in the protocol described in 

detail 2.3.4 

 

 

The QCM-D is a high sensitive and versatile instrument for real-time study of the 

dynamic behaviors of a layer on the crystal surface (O’Sullivan and Guilbault, 1999; Marx et 

al., 2003; Halthur et al., 2010). QCM-D technique provides information of both the mass and 

structural changes occurring to the layer by simultaneous measurements of the frequency (f) 

and dissipation factor (D) (Scheme. 2.1) (Rodahl et al., 1996; Hook et al., 1998; Lu et al., 

2013; Barrantes et al., 2014). From these changes it is possible to calculate the 

mass/thickness of the adsorbed layer and also its viscoelastic properties (Rodahl et al., 1997; 

Voinova et al., 2002; Molino et al., 2006; Xu et al., 2013). Therefore, QCM-D is a powerful 

technique to evaluate interactions or reaction on various surfaces.    

 This technique can be adapted to study the interaction of polymers and nanoparticles 

with mucin. In detail, the QCM-D instrument is able to measure two things.  

First, the variation in quartz crystal resonance frequency (∆f), which is related with the 

mass uptake and release at the sensor surface, can be measured. There are different 

approaches both for rigid (Sauerbrey equation) and flexible films to correlate the variation in f 
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with the mass change (Rodahl et al., 1995). Thus, the instrument can be calibrated for 

calculating the mass absorbed on the sensor. Changes in mass on the quartz surface related 

to changes in f of the oscillating crystal according to the Sauerbrey relation (equation 2.1) 

(Rodahl et al., 1995). The constant C represents the mass sensitivity (17.7 ng/cm∙Hz for a 5 

MHz sensor). The Sauerbrey relation is valid for rigid. 

∆m = -C∙∆f (equation 2.1) 

Secondly, the energy dissipation (∆D), which is related with the structure and 

viscoelasticity of the non-rigid or viscoelastic film like mucins, can be determined. Briefly, 

QCM-D measures the dissipation of energy by the system, which is the part of accumulated 

energy lost at each oscillation, after switching off the exciting electric field (Fredriksson et al., 

1998; Voinova et al., 1999 and 2002). D is defined as:   

D = EDissipated2πEstored (equation 2.2) 

When the film is rigid, the oscillation decays very slowly. When the viscoelasticity of 

the film increases (for instance in a hydrogel water absorption) the decay is much faster 

(Scheme 2.2).  

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.2. Scheme of the different dissipation signal generated by a rigid (red) and soft (green) 

molecular layer on the sensor crystal (adopted from Q-Sense basic training 2006). 

 

 

Moreover, sequential multi-frequency measurement (the frequencies corresponding to 

the harmonic frequencies of the crystal) is carried out in order to record the different overtones 

of the oscillating system. It is important to point out that each overtone has a specific 

penetration depth, and they are measuring the behaviour at different depths of the attached 

film (Lens et al., 2003). The sensor´s overtones have higher f, so the penetration depth 
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(sensitivity range) will be smaller as shown in Scheme 2.3. This means that, as 

measurements are at different depths of the deposited film, they can be used to record the 

film response in several points at the same time. It is the maximum recording distance. For a 5 

MHz crystal in water, the maximum penetration depth is is δ ≈ 250 nm. This characteristic may 

offer how the polymers and the nanoparticles interact with the mucin film. If the samples are 

adsorbed on the mucin film surface, the overtones response would be similar. However, a 

penetration that affects the whole mucin would lead to different overtones behaviour.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Scheme 2.3. Scheme of viscous penetration depth as function of overtone (adapted from Q-Sense basic 

training 2006). 

 

 

There are numerous publications that illustrated the interaction, especially adsorption, 

of particles with mucin using QCM-D. However, so far, no studies evaluating the permeation 

of particles through the mucin layer has been conducted. According to their interrelationship, it 

should be noted that the particles, when interact with the mucin, modify its viscoelasticity, 

resulting in that the monitoring of changes in D with behavior of overtones gives insights about 

the nature of this interaction.    

Chayed and Winnik studied the interaction between mucin (bovine submaxillary 

mucin, a sigma preparation that is unlikely to be native) and mucoadhesive polymers-based 

nanoparticles by means of QCM-D, and demonstrated that QCM-D was a promising technique 

for studying the mucoadhesive properties (Chayed and Winnik 2007). Sandberg et al. 

reported that adsorption of porcine gastric mucin (PGM) was proven a useful route for the 

biomaterials of highly surface-passivating mucin coating, suggesting that pre-adsorbed 

mucins could provide favorable support for adsorbing host components (Sandber et al., 2008). 
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Later, Pedersen et al. showed QCM-D can be used as a screening method of biodurability of 

toxic nanoparticles (Pedersen et al., 2009). They suggested that the interaction of 

nanoparticles with PGM could be a good model to understand the impact of nanoparticles in 

the body. Recently, it was reported that the interrelation for the mucoadhesive mechanism 

using QCM-D is affected by the complexation between particles and mucin. As a result, QCM-

D technique may be useful for analysing the behaviour of the drug carriers into the mucin 

layer (Mazzarino et al., 2013). It should be stated that, as far as we know, all the experiments 

described in literature have been carried out using commercially available porcine gastric 

mucin (CPGM), and no comparison with mucins with different origins has been reported yet. 

Commercially available porcine gastric mucin (CPGM) has been widely used for 

mucus-relevant investigation because it is simple and inexpensive to purchase. However, 

Kocevar-Nared et al. (Kocervar-Nared et al., 1997) compared the rheological properties of 

CPGM obtained from Sigma Aldrich (Type II) and isolated native porcine gastric mucus. It was 

demonstrated that the usage of rehydrated CPGM for the preparation of in vitro membranes is 

limited because CPGM is isolated after enzymatic hydrolysis treatment that can affect its 

primary structure. After this study, several groups have reported the differences in the gel 

behaviour (rheology) within native gastric mucus and mucin (NPGM) (Pearson et al., 2000; 

Taylor et al., 2004, 2005). Here we evaluate how the differences in structure can affect the 

ability of the different mucins to interact with the described mucoadhesive polymers.  

Thereafter, we will evaluate the interaction of polymers and particles with the NPGM. 

 

 

 

2.2. Aim and scope of this Chapter 

The first objective of this Chapter is to develop an in vitro method, based on the use of 

the QCM-D technique, to evaluate the mucoadhesive properties of cationic polymers; 

chitosan, thiolated chitosan (TC), and poly(allylamine hydrochloride) (PAH), and anionic 

polymers; hyaluronic acid (HA) and thiolated hyaluronic acid (HA-SH). Positively charged 

chitosan polymer forms polyelectrolyte complexes with negative charged mucins, whereas 

negatively charged HA polymers have mucoadhesive properties due to hydrogen bonding with 

the mucus layer. Both chitosan and HA exhibit excellent mucoadhesive properties (Ludwig, 

2005; Andrew et al., 2009; Woertz et al., 2013). Recently, it has been shown that polymers 

with thiol groups provide much higher adhesive properties (Kast and Bernkop-Schnürch 2001; 

Grabovac et al., 2005; Wang et al., 2012), resulting from covalent bonds with cysteine-rich 

subdomains of mucins, than polymers generally considered to be mucoadhesive. PAH 

composed of a large number of primary amine groups and can also improve mucoadhesion 

(Thomson et al., 2009) via electrostatic interactions between negative charges on the mucin 
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and positively charged amino groups on the polymer.  

Here, two types of mucin have been used: native porcine gastric mucin (NPGM) and 

commercially available porcine gastric mucin (CPGM). We will compare the mechanism of the 

interaction between polymers and either NPGM or CPGM layers. Thus, it is proposed to use 

the QCM-D protocol developed to study the behaviour of the different mucins and their 

interaction with the different polymers analysed.  

The second objective of this Chapter is to understand in vitro screening using the 

QCM-D technique to assess the combination properties between mucoadhesion of thiolated 

polymers with the different amount of the thiol groups. The advantages related to 

mucoadhesive drug delivery systems include improved drug bioavailability, reduced 

administration frequency, besides to permit the modification of mucosa permeability 

(Chowdary et al., 2004, Khutoryanskiy et al., 2011, Mazzariono et al., 2014). Among several 

promising mucoadhesive polymers, thiolated chitosan is currently considered of great interest 

as a potential carrier for the drug delivery applications due to biocompatibility, biodegradability 

and low toxicity (Bernkop-Schnürch 2003; Lee et al., 2007).  Positively charged amino groups 

of the polymer allow for electrostatic interactions with negatively charged nucleic acids to form 

stable complexes (Mao et al., 2010; Park et al., 2013).  In this study we would like to evaluate 

the interaction between mucoadhesive systems and mucin, and to examine how these 

characteristics impart the physicochemical properties of the produced polymers/ nanoparticles 

in order to selectively systematically modify the nanocarriers. Moreover, the combination 

properties of mucoadhesion and mucus permeation of nanoparticles are assessed. 

The QCM-D experiments are conducted at pH 4 or 6.8 to evaluate the interaction of 

thiolated chitosan polymers, with low (TCL), medium (TCM) and high (TCH) contents of free 

thiol groups, with NPGM. TCL, which showed relatively higher permeability, was chosen for 

further DNA carriers. Here we describe a formulation of a novel carrier comprised by positively 

charged TCL, and negatively charged both DNA and degradable oligopeptide-modified poly(β-

amino ester)s (PBAEs), which were employed in order to approach for tuning particle size and 

surface charge of complexes. PBAEs will be described in detail in Chapter 3. The results 

show the adsorption of thiolated chitosan polymers and nanoparticles with NPGM as well as 

the permeation, which can be characterized by measuring at multiple frequencies and 

applying a viscoelastic model (e.g. the so called Voigt model) incorporated in Q-Sense 

software QTools. 

Simultaneously, it is to elucidate the interrelationship between the nanoparticles, 

which are obtained by 4 different strategies; slippery surface, proteolytic enzyme, thiomer and 

SNEDDS, and NPGM for a profound study of both mucoadhesive and mucus permeating drug 

delivery systems. A set of different nanoparticles, coming from different EU-project FP7 
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ALEXANDER partners, is monitored using the method described above. The results show the 

QCM technique is well suited for measuring adsorption of nanoparticles with NPGM. On the 

other hand, this technique may give insight into the particle permeability through the mucin 

layer. 

To accomplish these aims the following steps will be developed: 

 To develop the QCM-D method of the viscoelastic model with NPGM and CPGM on 

the surface of gold-sensor. 

 

 To evaluate the interaction of the mucoadhesive polymers; chitosan, thiolated 

chitosan (TC), and polyallylamine hydrochloride (PAH), hyaluronic acid (HA) and 

thiolated hyaluronic acid (HA-SH), with NPGM and CPGM at pH 4 and compare the 

mechanism of this interaction for studying the effect of mucin origins. 

 

 To assess the combination properties of mucoadhesive and mucus permeability of 

thiolated chitosan polymers, with low (TCL), medium (TCM) and high (TCH) contents of 

free thiol groups, with NPGM at pH 4 or 6.8.  

 

 To formulate the novel nanoparticles comprising thiolated chitosan and poly(β-amino 

esters) and the developed nanoparticles with NPGM at pH 4 or 6.8. 

 

 To evaluate mucoadhesive and mucus permeation properties of the developed 

particles with NPGM at pH 4 or 6.8.using the QCM-D technique.  

 

 To investigate interrelation between the novel particles, obtained by different 

strategies, and NPGM at pH 4 in order to select the best candidate for further 

studies. 

 

 

 

2.3. Experimental section 

 

2.3.1. Materials 

Commercially available porcine gastric mucin (CPGM, Type III) containing 0.5-1.5% 

bound sialic acid was purchased from Sigma Aldrich. All chemicals were purchased from 

Sigma Aldrich and used as received, unless otherwise mentioned. All reagents were analytical 

grade and used without further purification. The samples tested here were supplied by 
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different FP 7 Alexander European Project Partners. The preparation of negative oligopeptide-

terminated poly(β-amino ester)s (PBAEs) (e.g. D and E polymers) was described in detail in 

4.3.2.   

Thiolated chitosans with a low, medium and high content of thiol groups were referred 

to as TCL, TCM and TCH, respectively. 

 

2.3.2. Mucin purification 

The procedure of purification of native porcine gastric mucin (NPGM) was described in 

a previous paper in detail by Fogg et al. (Fogg et al., 1996). Briefly, the mucus gel, from 

freshly slaughtered pig stomach, was scraped from the mucosal surface of the gastric fundus 

using a glass microscope slide. The mucin was purified by equilibrium density gradient 

centrifugation in CsCl (1.42 g/mL starting density). The final NPGM sample has been freeze-

dried and kept at -20 
º
C until use.  

 

2.3.3. Sample preparation 

Two buffer solutions were prepared depending on the type of mucin used: For NPGM, 

the citric acid/phosphate buffer was prepared by mixing a solution of 0.1 M citric acid and 0.2 

M disodium hydrogen phosphate. NPGM was dissolved in 150 mM buffer with gentle stirring 

at least for 1 h at room temperature. For CPGM, succinate/phosphate buffer was obtained 

from a mixture solution of 0.01 M H3PO4/succinic acid and 0.01 M Na3PO4/sodium succinate 

dibasic. CPGM was dissolved in 30 mM NaCl buffer and left under stirring for 1 h at room 

temperature. A buffer solution was prepared to optimal isoionic conditions with mucin at 

appropriated concentrations of NaCl (Wiecinski et al., 2009 and Celli et al., 2007).  
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2.3.4. QCM-D experiments 

Polymer interaction assays were performed using a Q-Sense E1 instrument (Q-Sense 

AB, Gothenburg, Sweden) with a window module. The QCM-D sensors used here were the 

piezoelectric AT-cut quartz crystals with gold electrodes on both sides with a fundamental 

frequency of 4.95 MHz (QSX301, Q-Sense AB). All experiments were conducted at 37.0 ± 0.1 

ºC using a flow rate of 0.11 mL/min in a flow mode, and the 3rd, 5th, 7th, 9th, 11th, and 13th 

overtones were recorded. For each type of surface the experiments were run twice and the 

results are presented as mean values ± standard deviation from the mean. All sample 

solutions were degassed before measurement to avoid bubble formation. The procedure of 

the surface modification followed different steps described below (Lu et al., 2013):  

1) Prior to the PGM layer deposition, buffer was injected into the flow cell to allow a 

stable baseline. 

2) After stabilization of the signals, PGM (25 mg/L in buffer) was introduced to the crystal 

until both ∆f and ∆D stabilized. 

3) Rinsing with buffer for approximately 10 min to remove unbound mucin. 

4) After establishing a mucin layer, sample solutions (100 mg/L in buffer) were 

introduced to the measurement cell for approximately 60 min.  

5) Finally, unbound polymers or particles were removed by rinsing with buffer for 10 min.  

The principle of the QCM-D technique is illustrated in Scheme  2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.4. Scheme of the experiment described in the protocol. Blue and red arrows indicate the 

addition of mucin and sample solutions, respectively. Black arrow indicates the introduction of buffer 

solution. Gold bar, cyan line, red circle with black coating indicate the crystal gold-coated sensor, mucins 

and samples, respectively.  
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2.3.5. Preparation QCM-D sensor 

Gold-coated QCM-D sensors were cleaned prior to use or re-use by immersion in 

1:1:5 mixture of H2O2 (30%), NH3 (25%) and Milli-Q water for 10 min at 75 ºC, followed by 

rinsing with Milli-Q water, dried with nitrogen, rinsing with ethanol (≥ 99%), and dried with 

nitrogen. This cleaning procedure was repeated at least three times. The procedure followed a 

standard of protocol supplied by Q-Sense. 

 

2.3.6. QCM-D data analysis 

The ∆f and ∆D results were evaluated with the software QTools 3 data analysis so-

called Voigt model for viscoelastic representation (Q-Sense AB, Sweden) (Rodahl et al., 

1995). Changes in interaction, viscosity and shear modulus of the layer of particles with 

NPGM were calculated as follows, respectively:  

1) ∆Particles Interaction (PI) = Thickness of the total layer – Thickness of the NPGM 

layer 

2) ∆Viscosity = Viscosity of the total layer – Viscosity of the NPGM layer 

3) ∆Shear modulus = Shear modulus of the total layer – Shear modulus of the NPGM 

layer 

The fixed parameters were the solvent density as 1000 kg/m
3
, the solvent viscosity as 

0.00071 Pas, and the mucin layer density, which was set to theoretical value of 1050 kg/m3 

(Celli et al., 2007), and the range of them were set to get a good fit between 0.001 and 0.01 

kg/ms, 10000 and 1 E
8
 Pa, and 1 E

-10
 and 1 E

-6
 m, respectively. The QTools software was 

used to numerically fit the measured changes in f and D, which were recorded with 6 

overtones. From this fitting the values for the thickness, viscosity, and shear modulus of mucin 

layer and polymer layer were obtained. 

 

2.3.7. Preparation of TC/PBAE complexes 

Thiolated chitosan:PBAE complexes were prepared by mixing and positively charged 

thiolated chitosan and negatively charged PBAE. In brief, thiolated chitosan (TC, 2 mg/ml) 

was dissolved in 10 mM phosphate buffer (pH 6.2). Anionic PBAE stock solutions (100 mg/ml 

in DMSO) were diluted in same buffer used for TC solution at appropriated concentrations to 

obtain the desired complexes. To form complexes, 100 μl of TC solution was added to 100 μl 

of PBAE solution, and vigorously mixed with vortex for a few seconds and incubated at room 

temperature for 20 min.  
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2.3.8. Formulation of complexes of polymers with DNA 

For the DNA complexes, polymers:DNA complexes were formulated by mixing 

polymer and pGFP (plasmid green fluorescent protein) in a weight ratio of 150:1. The 

preparation of diluted polymer solutions was described above. All polymer solutions were 

filtered through a 0.2 μm membrane. 85 μl of DNA (0.06 mg/ml in phosphate buffer) was 

added to 100 μl of PBAE, and mixed with vortex. 100 μl of positively charged TC solution was 

added to negatively charged mixture solutions, mixed vigorously with vortex and incubated at 

room temperature for 20 min.  

 

2.3.9. Dynamic light scattering 

Dynamic light scattering (DLS) was used to characterize the unmodified and thiolated 

chitosan-based complexes. The particle size, polydispersity index and zeta potential of the 

resulting complexes diluted in simulated intestinal fluid without pancreatin (SIF) at pH 6.8 to a 

final concentration of 0.25 mg/ml, by DLS using a Zetasizer Nano ZS (Malvern Instruments, 

Ltd., UK) at 25 ºC. Each experiment was carried out in triplicate and the mean result was 

reported. 

 

 

 

2.4. Results and discussion 

 

2.4.1. Study of mucin origin at pH 4 

It was pointed out previously that the rheological behaviour of commercially available 

porcine gastric mucin (CPGM) was more like a dilute polymer solution rather than the 

viscoelastic gel of native porcine gastric mucin (NPGM). In spite of this inconsistency, CPGM 

is still widely used for mucus-relevant investigations. In this 2.4.1, we will evaluate and 

compare the viscoelastic behaviours of polymers with either NPGM or CPGM. This study was 

carried out at pH 4 because PGM is very nearly a critical gel at pH 4 (Celli et al., 2007). 

 

2.4.1.1. Characterization of NPGM and CPGM 

The mucins were characterised by determining the viscosity of a 5% solution in PBS 

and by elution profiles on sepharose 2B gel filtration. The NPGM had a viscosity between 2.5 

and 4 (10
-3

) Pas whereas the CPGM had a viscosity 1-1.5 (10
-3

) Pas. On gel filtration the 

NPGM was 70-80% excluded whereas the CPGM was only about 10% excluded, indicating 

little evidence of polymeric mucins in the CPGM. This is almost certainly as a result of 
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proteolysis during isolation. In addition, the NPGM forms a gel at 50 mg/ml, but the CPGM will 

not.  

 

2.4.1.2. Adsorption of NPGM and CPGM 

As described before, the main aim of this Chapter was to investigate the use of the 

QCM-D technique for studying the mucoadhesive polymers adsorption to mucin-modified 

sensors. In the first step, we have developed a method based on either NPGM or CPGM 

immobilized gold-coated crystals for in vitro mucoadhesive assessment by QCM-D 

measurements in order to study the effect of mucin origin. Generally, changes in f are 

qualitatively related to mass change in the system, either adsorption (negative shift) or 

desorption (positive shift) (Wang et al., 2014). Conversely, changes in D are qualitatively 

related to mechanical properties of the system becoming more viscous (increase) or more stiff 

(decrease). The experiments were conducted at pH 4 in buffer solutions of appropriate ionic 

strength for different mucins, and it was performed as follows. Initially, buffer solutions were 

added for 5 min to be a stable surface of crystal, and then approximately 5 mL of mucin 

solutions were switched and injected into the crystal. The sensor was rinsed with buffer to 

remove unmodified mucin. The adsorption of a 25 mg/L of NPGM solution in citric 

acid/phosphate buffer (150 mM NaCl) and that of CPGM solution in succinate/phosphate 

buffer (30 mM NaCl) are presented in Fig. 2.1A and 2.1B, respectively.  

When the mucin solutions were introduced in the flow module, the adsorbed mucin 

films (either NPGM or CPGM) resulted in an immediate decrease in f, indicating a mass 

increase, and an increase in D, indicating that the adsorbed mucin films are a soft layer, not a 

rigid one (D ≥ 1). After rinsing, in order to remove the unbounded PGM solutions, there were 

changes in f and D. These results support that both NPGM and CPGM films at pH 4 were 

effectively formed on the gold-coated QCM-D surface, and the system of a PGM-coated QCM-

D sensor is easily reproducible and can be manipulated. This model system was used for the 

evaluation of mucoadhesive polymer interactions with mucin. It was also observed that the 

changes in f and D were larger when NPGM was added than CPGM. This is the first indication 

that the adsorbed NPGM layer was larger and it forms faster than the adsorbed CPGM layer.  
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Fig. 2.1. Frequency and dissipation changes with time, blue line and red line, respectively, for QCM-D 

monitoring of mucin adsorption on gold-coated sensor at pH 4: (A) NPGM and (B) CPGM. The 3rd (●), 

5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown 

 

 

The value of the ratio between the changes in D vs. f (∆D/∆f) gives qualitative 

information regarding the viscoelasticity (Feiler et al., 2007). Fig. 2.2 compares the ∆D/∆f plot 

for adsorption of NPGM and CPGM onto gold-coated sensor taken from Figs. 2.1A and 1B, 

respectively. The slope of ∆D/∆f plot for CPGM adsorption was slightly higher than that for 

NPGM adsorption, indicating that the CPGM film is relatively less rigid than NPGM film. After 

the addition of mucins for 40 min, however, changes in frequency and dissipation of NPGM 

(5th overtone) are twice lager than those of CPGM. These results further support the idea of 

the higher capability of the NPGM layer to swell in comparison with the CPGM layer. 
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Fig. 2.2. Representative change of dissipation vs. frequency (5th overtone) obtained of the adsorption of 

NPGM (lower) and CPGM (upper) onto the gold-coated surface. 

 

 

It was studied viscoelastic properties such as viscosity or shear modulus correlating 

with thickness of mucin layer. As the results are obtained for the soft layer of mucin film, these 

values were calculated by using Voigt model instead of Sauerbrey model. Table 2.1 shows 

thickness, viscosity, and shear modulus of NPGM film compared to those of CPGM film. The 

thickness values of NPGM film and CPGM film are 16.2 and 8.6 nm, respectively. The 

thickness value of CPGM film onto the gold surface is in agreement with that obtained by 

Wiecinski and colleagues (Wiecinski et al., 2009). NPGM film was formed for the first time in 

our study and was twice thicker than CPGM film. There were observed higher viscosity and 

shear modulus values for the film of NPGM compared to that of CPGM. In other words, the 

thicker films have higher viscosity and shear modulus values. 

 

Table 2.1. Mean values ± deviation for the properties of the NPGM and CPGM 
layers, before rinsing obtained by using Voigt model. The results shown represent 
the mean values obtained from two independent measurements and the error 
values (±) are the deviation from the mean.    

 Thickness (nm) 
Viscosity (10

-3
) 

(Pas) 

Shear modulus 

(10
3
)  (Pa) 

NPGM 16.2 ± 0.6 1.46 ± 0.07 92.6 ± 9.8 

CPGM
 

8.6 ± 0.1 1.22 ± 0.02  

. 

66.2 ± 4.5 
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2.4.1.3. Interaction of polymers with the layer of mucins  

The cationic and anionic polymers selected enhanced the mucoadhesive behaviour 

as a result of non-covalent interactions (ionic interaction or hydrogen bonds) with the mucus 

layer (Ludwig, 2005; Andrew et al., 2009; Woertz et al., 2013). The thiolated polymers 

selected are also beneficial to mucoadhesion due to disulfide bonds (Kast and Bernkop-

Schnürch 2001; Grabovac et al., 2005; Wang et al., 2012). Poly(allylamine hydrochloride) 

(PAH) is a weak cationic polyelectrolyte and exhibits less mucoadhesion than chitosans, thus 

it was chosen for this study for comparison of its mucoadhesive behaviour with those of 

chitosans. All polymers were kindly supplied by Croma GmbH. (Austria). 

In order to study the interaction between polymers and NPGM, the adsorption of 5 

mucoadhesive polymers described above on the NPGM layer was carried out using QCM-D. 

All mucoadhesive experiments with the polymers were performed when the mucins layer was 

completely established on the surface of the QCM-D sensor. All results of the adsorbed mucin 

layers on the gold surface are in full agreement with those shown in Fig. 2.1. Here, we 

focused on explaining and interpreting the interaction of the polymers with mucins. There were 

changes detected in f and D to all 6 overtones, which cover different depths into the sample 

materials. It is often informative to compare the results for many overtones, which show the 

sample response. For the liquid-like layer, the film will not couple perfectly to the oscillation 

sensor surface. As a result, there will be spread of overtones since they will sense differently 

into the sample materials and displays different perspectives of the materials (Feiler et al., 

2007). The lower overtones will sense a large volume (mass uptake) due to the large 

penetration depth compared to higher overtones.  

In Fig. 2.3, the results corresponding to the interaction of cationic charged polymers 

for 25 mg/L of NPGM solution at pH 4 are presented.  Fig. 2.3A shows that introduction of 

chitosan resulted in a large decrease in f and a large increase in D accompanied with 

spreading of overtones for f and D, indicating a significant increase in mass and 

viscoelasticity. These results confirm previous results on the mucoadhesive properties of 

chitosan and can be explained due to an ability of the highly positive charged chitosan to 

improve molecular attraction forces by electrostatic interaction with negatively charged mucin. 

Interestingly, a small decrease in D accompanied without spreading of overtones was 

observed within the first few minute upon the addition of chitosan, indicating that chitosan 

permeated somewhat into the mucin film. This finding has important implications in assessing 

polymers-mucin interactions. Similar trends of changes in f and D for thiolated chitosan (TC) 

polymer were shown in Fig. 2.3B. However, changes in f and D were much larger for TC than 

those for chitosan, indicating higher adsorption of chitosan-SH onto the NPGM film. This is in 

accordance with the results described in the literature (Bernkop-Schnürch, 2005) for the 

significantly improved mucoadhesion enhancing properties of thiolated chitosan polymers in 
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comparison to unmodified chitosan polymers. Fig. 2.3C exhibits the adsorption of 

poly(allylamine hydrochloride) (PAH) onto NPGM, as seen by the decrease in f shift. Unlike 

the results observed for chitosan and chitosan-SH, the addition of PAH induced decreases in 

both f and D, indicating an increase in mass but a decrease in viscoelasticity. The smallest 

decrease in f was obtained for the adsorption of PAH onto NPGM in comparison with those of 

chitosan and TC, indicating relatively poor mucoadhesive characteristic of PAH. This may be 

due to the weak ionic interaction with mucin. As reported in literature (Choi and Rubner 2005) 

the pKa of PAH is approximately 8, meaning that PAH will be fully ionized at low pH values 

(lower than pH 6). However, PAH has identical polymer backbones and differs only in the ionic 

side groups (Mihai et al., 2011), was chosen as model weak polymer for this study. In all 

cases, after rinsing with buffer, there were observed small decreases in f and increases in D. 

These results suggest that the interaction of these cationic polymers with NPGM film clearly 

modifies the capability of the mucin to absorb water. 
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Fig. 2.3. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, 

were recorded with QCM-D for interactions between NPGM with (A) chitosan, (B) TC, and (C) PAH. The 

3rd (●), 5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown. 
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Regarding the anionic polymers, as mentioned in 2.2, the mucoadhesive properties of 

hyaluronic acid (HA) and its derivatives have been attributed to its ability to establish hydrogen 

bonding and electrostatic interaction with mucin. Figs. 2.4A and 2.4B show the adsorption of 

anionic polymers of hyaluronic acid (HA) and thiolated hyaluronic acid (HA-SH) onto the 

NPGM film at pH 4, respectively, which followed the same procedure describe above. 

Introduction of HA produced a negligible change in f, indicating a slight change in mass. 

However, a reduction of D shift and less spreading of overtones were simultaneously obtained 

in the first few minutes, indicating a conformational change. This effect can be explained by 

slight interaction with the mucin film due to the electrostatic repulsion with the negatively 

charged polymers. These results agree with those obtained by Sigurdsson et al. (Sigurdsson 

et al., 2006) who reported the limited interaction of HA with mucin in the range of pH 4.0-8.2. 

This fact may be related to the low pKa of the polymer (~3.2), at the considered pH values, the 

molecule is ionized, which can lead to repulsive electrostatic interaction with the also 

negatively charged mucin (isoelectric point around 2-3). The addition of HA-SH resulted in 

similar trends for HA. After the addition of HA-SH, however, small differences were observed 

in the second changes in f and D within 10 min. Moreover, a slight difference in behaviour of 

the adsorbed HA film was also observed when rinsing with buffer, indicating a greater water 

adsorption. These findings suggest that the viscoelastic properties of the adsorbed thiolated 

HA film was not significantly altered in comparison with HA, but water uptake was. According 

to these results, the QCM-D technique could be also regarded as an alternative to detect 

negligible interaction between polymers and mucin.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, 

were recorded with QCM-D for interactions between NPGM with (A) HA and (B) HA-SH. The 3rd (●), 5th 

(▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown. 
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In order to compare the effect of mucin origin using the QCM-D technique, the 

interaction of polymers with CPGM at pH 4 are shown in Fig. 2.5. 100 mg/L of polymer 

solution was followed by 25 mg/L of CPGM solution on the QCM-D sensor and rinsed with 

buffer. Similar trends of the interaction of chitosan, TC, and HA with CPGM film were detected 

with those shown for NPGM in Figs. 2.3A and B, and 2.4A, respectively. However, changes in 

f and D during the interaction of both chitosan and TC with CPGM (Figs. 2.5A and 2.5B) were 

approximately 3 times smaller than those with NPGM (Figs. 2.3A and 2.3B), indicating that the 

polymers layer on the CPGM is adsorbed in a less viscous conformation. These findings 

suggest that the viscoelastic behaviour of CPGM is not similar to that of NPGM. This is in 

accordance with the different rheological behaviour reported for both mucins (Kocevar-Nard et 

al., 1997). Furthermore, this is clearly supported by the results obtained for the interaction of 

HA-SH with CPGM (Fig. 2.5D) compared to those with NPGM (Fig. 2.4B). Introduction of HA-

SH progressively produced a large negative f and a positive D with CPGM film, while there 

were negligible changes in f and D observed for the interaction of HA-SH with NPGM. This 

may be because the film of HA-SH with CPGM is more hydrated than those with NPGM. 

According to the overall results, NPGM was chosen for further studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5. Changes in frequency (∆f) and dissipation (∆D) versus time curves, blue line and red line, 

respectively, were recorded with QCM-D for interactions between CPGM with (A) chitosan, (B) chitosan-

SH, (C) HA, and (D) HA-SH. The 3rd (●), 5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are 

shown  
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2.4.2. Study of the interaction between samples and NPGM at pH 4 or 6.8 

In the previous section, we have developed the method of NPGM immobilized gold-

coated crystal for mucoadhesive assessment, which was carried out at pH 4, by QCM-D 

measurement. To further investigate the interaction between complexes and NPGM, the 

adsorption of NPGM onto gold-coated sensor was firstly evaluated for two different pH values 

of the buffer solutions: pH 4 and pH 6.8, which was chosen for this study under the working in 

the gastrointestinal (GI) track conditions. The preparation of 25 mg/L NPGM solution at pH 4 

was followed as described in 2.4.1.2 and that at pH 6.8 was conducted by the same method 

for pH 4.  

2.4.2.1. Adsorption of NPGM  

The experiments were performed in citric acid/phosphate pH 4 or 6.8 buffer (150 mM 

NaCl). In brief, prior to adsorb the NPGM layer, buffer solutions were added for 5 min to be 

stable on the surface of the sensor. The NPGM solutions were then added into the crystal for 

40 min and the sensor was rinsed with buffer to remove unmodified NPGM.  

The changes in f and D (5th overtone) of the adsorption of NPGM onto the sensor in 

buffers of pH 4 or 6.8 are shown in Fig. 2.6A. In both cases, NPGM solutions were rapidly 

adsorbed on the gold-coated sensor, as evidenced by the decrease in f (mass increase) and 

increase in D (viscoelasticity increase). As described in 2.4.1.2, this binding can be explained 

that the hydrophobic peptides residues of the non-glycosylated domains of mucin are exposed 

onto the gold surface by strong covalent bond (Sandberg et al., 2008). When the signals of f 

and D of the mucin layer are stable, the buffer solution was added in order to remove 

unbounded NPGM by rinsing. This rinsing step confirms that the adsorption of NPGM is 

irreversible under the experiments, since rinsing induces no significant changes in f and D 

(Belegrinou et al., 2008). These results support that the NPGM solutions at both pH were 

perfectly deposited on the QCM sensors. However, there were two differences observed. 

First, the changes in f and D were larger for pH 4 compared to those for pH 6.8, indicating 

higher adsorption for the NPGM layer at pH 4. These findings agree with the previous studies 

reported the binding of the probe to the diluted NPGM solutions varied with the pH of the 

medium, being highest at low pH and lowest at high pH (Gwozdnski et al., 2014). In addition, 

at pH 6.8, the system of a NPGM-coated QCM-D sensor is not easily reproducible, resulting in 

the differences between 6 overtones for f and D that were not uniform (Fig. 2.7 and 2.8).  
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Fig. 2.6. (A) The changes in frequency and dissipation with time for the adsorption of NPGM at pH 4 

(solid) and pH 6.8 (dot) onto the sensor. Arrow and star indicate the NPGM injection and the rinsing with 

buffer, respectively. (B) The change of dissipation vs. frequency obtained from these data: pH 4 (lower) 

and pH 6.8 (upper). Presented data were obtained at the 5th overtone. 
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The ratio between the changes in D vs. f (∆D/∆f) provides qualitative information 

regarding the viscoelasticity as described in 2.4.1.2. As shown in Fig. 2.6B, the ∆D/∆f plot for 

adsorption of the NPGM film at pH 4 onto the crystal was compared to that at pH 6.8. There 

were negligible differences in the slope of the ∆D/∆f plot observed for NPGM at pH 4 

compared to pH 6.8, but lager changes in of f and D of NPGM, leading to the higher swelling 

capacity for pH 4.  

The viscoelastic properties such as thickness, viscosity and shear modules of NPGM 

layer, which was shown to be not a rigid film (D ≥ 1), were characterized by using Voigt model 

and the results were shown in Table 2.2. The thickness values of the NPGM layer at pH 4 and 

pH 6.8 are 15.9 and 12.6 nm, respectively, indicating that the mass of the adsorption of 

NPGM was higher at pH 4 buffers than at pH 6.8. The viscosity and shear modulus values for 

the NPGM layer at pH 4 are higher compared to those at pH 6.8. These results indicate that 

higher viscoelasticity of the NPGM film was obtained when prepared in buffers of pH 4. 

 
 

Table 2.2. Mean values ± deviation for the thickness of the NPGM layers at pH 4 
and 6.8 and its viscoelasticity properties, before rinsing obtained by using Voigt 
model. The results shown represent the mean values obtained from two 
independent measurements and the error values (±) are the deviation from the 
mean. 

NPGM Thickness 

 (nm) 

Viscosity  

(10
-3

) (Pa) 

Shear modulus  

(10
3
) (Pa) 

pH 4 15.9 ± 1.1 1.46 ± 0.05 113.1 ± 10.3 

pH 6.8
 

12.6 ± 3.8 1.43 ± 0.12  67.8 ± 11.1 

 
 
 

2.4.2.2. Interaction of thiolated chitosan polymers with NPGM  

Previously, it was reported the interaction between several mucoadhseive polymers 

and a NPGM-coated gold sensor at pH 4. The results were described that the thiolated 

chitosan showed the highest adsorption, indicating the highest mucoadhesive properties, 

among the polymers tested. Regarding these findings, thiolated chitosans were chosen for 

further studies of thiolated chitosan-based complexes interaction with NPGM, and the 

experiments were carried out at two different pHs 4 and 6.8. In fact, it was reported that 

CPGM undergoes a pH dependent sol-gel transition, and CPGM at pH 4 is very nearly a 

critical gel (Celli et al., 2007), thus it was chosen for previous study. In this section, we would 

like to evaluate the effect of pH factor on the behaviour of both NPGM and NPGM-particles 

Here, the interaction of thiolated chitosans with the different content of thiol groups as 

a thiolated chitosan polymer, with low (TCL), medium (TCM), or high (TCH) contents of free 

thiol groups, was carried out at pH 4 and 6.8 using QCM-D and compared in order to study 
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the effect of the content of thiol groups on mucoadhesive character and swelling behaviour. All 

experiments with the thiolated chitosans were performed when the NPGM layer was 

completely established on the surface of the QCM-D sensor as shown in Fig. 2.7. A system of 

the NPGM layer formed on the gold-coated sensor in buffers for pH 4 is easier reproducible 

compared with that for pH 6.8 as described above. 5 overtones were recorded for TCL and 

TCM at pH 6.8 due to the difficult formed mucin-coated sensor, whereas the others were 

measured with 6 overtones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 2.7. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, were 

recorded with QCM-D for interactions between NPGM with (A) TCL, (B) TCM and (C) TCH in buffers of pH 

4 or 6.8. The 3rd (●), 5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown. First and 

second arrows indicate the addition of NPGM and polymers, respectively. Star indicates the rinsing with 

buffer.   
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At pH 4, the addition of 100 mg/L of thiolated chitosans resulted in a large decrease in 

f, indicating a mass increase. On adding these polymers, there were simultaneously observed 

a reduction of D within the first few minute and an increase in D accompanied without 

spreading of overtones, indicating a permeation or corruption of polymers into the mucin layer 

for a moment. After the first observation of the decline in D, Fig. 2.7A displays that the addition 

of TCL solution caused in a gradual increase in D. Unlike this result, the introduction of TCM 

induced that D rapidly increases for a moment and then remains constant (Fig. 2.7B). In the 

case of TCH as shown in Fig. 2.7C, the smallest increase in D was obtained in comparison 

with those of TCL and TCM, indicating relatively poor mucus permeating properties of TCH.  

In this study, it is important to notice the changes in D of the polymer layers after 

shown the reduction. The increases in D of polymers were larger with decreasing the content 

of thiol groups, indicating higher viscoelastic properties of the polymer films. These findings 

are not in accordance with the results described in the literature (Kast and Bernkop-Schnürch 

2001; Wang et al., 2012). Regarding this concern, we focused on explaining and interpreting 

the combination of both mucus permeability and mucoadhesive properties of thiolated 

chitosan.    

In the first step, all chitosan polymers with thiol bearing side changes exhibited an 

increase in permeability into the mucin layer. Afterwards, there was obtained stronger 

immobilization by forming covalent bonds with cysteine-rich subdomains between mucins and 

polymers via thiol-disulfide exchange reactions with higher amount of thiol groups (Bernkop-

Schnürch 2005). In other words, TCL demonstrated an increase in viscoelasticity relatively 

higher than that of TCM and TCH, indicating that thiolated chitosan polymers with lower 

content of thiol groups still permeated into the mucin layers. However, we can hypothesize 

that the others may be only immobilized. Recently, Shahnaz et al. reported that there was 

observed an improved permeability of thiolated chitosan-based nanoparticles prepared by the 

oxidation process, resulting in a decrease in thiol groups (Shahnaz et al., 2012). It is believed 

that the specific content of free thiol groups of polymers would play an important role in mucus 

permeability. Accordingly, TCL might be a promising candidate for the preparation of carriers 

capable of giving mucus permeability.  

On the other hand, at pH 6.8, introduction of all thiolated chitosans induced decreased 

in f, indicating an increase in mass. At the same time, D immediately decreased in the first few 

minutes but then remained constant, indicating no mucus permeability. On the other hand, the 

polymer layers showed a higher immobilization with the NPGM layer. The higher the pH, the 

more thiolated anions are available, thus leading to strong immobilization into the mucin layer 

(Bernkop-Schnürch 2005). However, a slight increase in D was detected for TCL while there 

were negligible changes in D for the TCM and TCH layers observed. These results indicate 

that the viscoelastic changes for TCL are larger than the others. 
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According to the overall results obtained at both pHs, TCL polymer was chosen for 

further studies formulating nanoparticles as it showed higher both mucoadhesion and mucus 

permeability. In next study, it will be assessed the interaction between TCL-based particles 

and NPGM at pH 4 and 6.8 In all cases, there were detected small decreases in f and 

increases in D when rinsing with last buffer. These confirm the results obtained previously that 

the interaction of thiolated polymers with the NPGM layer clearly modifies the capability of the 

mucin to absorb water  

 

2.4.2.3. Formation and characterization of complexes 

Once we have established the QCM-D technique that can discriminate the 

mucoadhesive and mucus penetrating properties of polymers by characterizing the 

mechanism of interaction between polymers and mucins. We proposed that the developed 

QCM-D protocol can be used to study the behaviour of particles into the mucins. Recently, 

thiolated chitosan polymers have attractive considerable attention as potential mucosal 

delivery systems of macromolecular drugs such as DNA. However, a near neutral surface 

charge of drug delivery systems requires in order to avoid strong adhesion between particles 

and mucin fibers (EU-project FP7). To accomplish this, biodegradable poly(β-amino ester)s 

(PBAEs) were applied for the development of thiolated chitosan-based delivery systems with 

slightly positive zeta potential capable of both mucoadhesion and mucus permeability. Here 

PBAEs end-modified with two negative charged oligopeptide bearing aspartic or glutamic acid 

moieties were applies to formulate complexes. It is well known that PBAEs are a promising 

polymer for delivery systems of macromolecules. We will explain and discuss about PBAEs in 

detail in the next Chapter.  

Polyelectrolyte complexes nanoparticles were prepared via electrostatic interaction 

between the positive charge (the amino groups) of thiolated chitosan and the negative charge 

(the carboxylic groups) of PBAEs in phosphate buffer at pH 6.2. The resulting complexes were 

diluted in simulated intestinal fluid without pancreatin (SIF) at pH 6.8 for complexes 

characterization. Table 2.3 shows the particle size, polydispersity index and zeta potential of 

TC/PBAE complexes with various weight ratios. TCL/D (TCD) complexes ranged from 130.3 

to 259.4 nm in the particle size and from 2 to 7.1 mV in zeta potential depending on weight 

ratio. The physicochemical properties of TCL/E (TCE) complexes are similar to the values 

obtained for the TCD complexes. In both cases, the zeta potential decreased with increasing 

the amount of negative charged polymers. These results indicate that the physicochemical 

properties of thiolated chitosan-based nanoparticles can be adjusted by PBAEs bearing with 

negatively charged oligopeptides. The TCD and TCE complexes showed the smallest size 

when TCL:D=1.4:1 and TCL:E=1.2:1, respectively. Thus, these weight ratios were considered 

to be an optimal formulation for TCL/PBAE complexes due to their small size and slightly 

positive zeta potential.   
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Table 2.3. Particle size, polydispersity index (PI), and zeta potential of TCL/PBAE 
complexes. Results are mean ± SD (n ≥ 3). 

Formulation 
Weight ratio 

(TC:PABE) 

Particle size 
(nm) 

PI 
Zeta potential 

(mV) 

TCD 3:1 156.8 ± 2.0 0.282 ± 0.040 8.9 ± 0.5 

 2:1 146.8 ± 2.0 0.178 ± 0.025 7.1 ± 1.0 

 1.4:1 130.3 ± 1.0 0.082 ± 0.020 3.9 ± 0.5 

 1:1 164.2 ± 3.5 0.064 ± 0.020 3.4 ± 0.5 

 1:2 227.7 ± 5.5 0.163 ± 0.015 2.2 ± 0.5 

 1:3 259.4 ± 7.0 0.155 ± 0.025 2.0 ± 0.5 

      

TCE 3:1 189.4 ± 3.5 0.392 ± 0.045 8.5 ± 1 

 2:1 163.0 ± 0.5 0.164± 0.010 7.1 ± 0.5 

 1.2:1 145.4 ± 2.0 0.117 ± 0.020 4.2 ± 0.5 

 1:1 212.1 ± 2.5 0.141 ± 0.010 3.5 ± 0.5 

 1:2 302.5 ± 12.0 0.173 ± 0.035 2.4 ± 0.5 

 1:3 387.1 ± 17.5 0.200 ± 0.010 1.5 ± 0.5 

 

After developing the TCL/PBAE nanoparticles, we attempted to prepare the novel 

formulation that can condense DNA into the nanoparticles. TCL/PBAE/DNA complexes 

nanoparticles were formulated by mixing polymer and DNA in a weight ratio of 100:1 or 150:1.  

There was optically observed some aggregation of nanoparticles when prepared with low 

amount of polymers (below 100:1 weight ratios) (data not shown). As shown in Table 2.4, 

smaller particle size formed with a 150:1 ratio of PBAE:DNA compared with a 100:1. The 

TCD/DNA complexes had a small particle size of 141.4 ± 1.1 nm and a slightly positive zeta 

potential of 2.4 ± 0.5 mV. The TCE/DNA complexes showed a little larger particle size of 

175.2 ± 1.4 nm compared with TCD/DNA, but similar zeta potential. These results indicate that 

the formulation of these nanoparticles can condense DNA, and may tune their unique 

properties of mucoadhesion and mucus permeability due to changes in the zeta potential. 

 

  

Table 2.4. Particle size, polydispersity index (PI), and zeta potential of TCL/PBAE/DNA 
complexes. Results are mean ± SD (n ≥ 3). 

Formulation 
Weight ratio 

(Polymer:DNA) 
Particle size 

(nm) 
PI 

Zeta potential 
(mV) 

TCD/DNA 100:1 212.6 ± 7.5 0.208 ± 0.220 1.9 ± 0.5 

TCE/DNA 100:1 251.0 ± 9.5 0.195 ± 0.130 2.0 ± 0.5 

     

TCD/DNA 150:1 141.4 ± 1.0 0.123 ± 0.010 2.4 ± 0.5 

TCE/DNA 150:1 175.2 ± 1.5 0.191 ± 0.055 2.5 ± 0.5 
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2.4.2.4. Interaction of thiolated chitosan-based particles with NPGM  

In order to study the interaction of TCD/DNA and TCE/DNA complexes with the 

NPGM layer, all experiments with complexes were conducted using QCM-D. Fig. 2.8 

demonstrates the interaction between slightly positively charged TCL/PBAE/DNA complexes 

and negatively charged NPGM at pH 4 or 6.8, which followed the same procedure described 

above for thiolated chitosan polymers. Both nanoparticles were performed when the NPGM 

layer was completely established on the surface of the sensor. Fig. 2.8A shows that the 

introduction of TCD/DNA complexes in buffers of both pH 4 and 6.8 resulted in a large 

decrease in f, indicating a considerable increase in mass. In the case of the pH 4 buffers, 

there was detected simultaneously a noticeable decrease in D within in the first few minutes 

upon the addition of complexes and successively a large increase in D accompanied with 

spreading of overtones, indicating an increase in mucoadhesion as well as permeability into 

the NPGM layer. As described in 2.4.2, these findings had important implications in assessing 

the partial permeation of the mucoadhesive polymers through the NPGM film. These results 

support that complexes bearing with thiol groups led to transport into the mucin layer via thiol-

disulfide exchange reaction (Dünnhaput et al., 2015). Thus, these results might give insight on 

the mechanisms of the combination properties – mucoadhesion and mucus permeability - of 

thiolated chitosan-based nanoparticles. Unlike the results observed for pH 4, introduction of 

complexes at pH 6.8 produced a small reduction of D shift in the first few minutes, then D 

accompanied without spreading of overtones increased slightly for a moment and remained 

constant. These results indicate that there was firstly observed a little permeation of particles, 

then a large immobilization between particles and the NPGM layer. These confirmed previous 

results on the mucoadhesive properties of thiolated chitosan at pH 6.8 described above. 

These suggest that the viscoelastic properties of the thiolated chitosan-based nanoparticles at 

pH 4 were significantly altered compared to those at pH 6.8. Similar trends were observed for 

TCE/DNA complexes in buffers at pH 4 and 6.8 as shown in Fig. 2.8B. These indicate that the 

viscoelastic properties of the nanoparticles tested, which have shown the similar 

physicochemical properties, would be affected by thiolated chitosans. After rinsing with last 

buffer, in both pH, the changes in f and D follow the similar trends for thiolated chitosan 

polymers.  

 

 

  



Chapter 2 

44 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, were 

recorded with QCM-D for interactions between NPGM with (A) TCD/DNA and (B) TCE/DNA in buffers of 

pH 4 or 6.8. The 3rd (●), 5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown. First and 

second arrows indicate the addition of NPGM and polymers, respectively. Star indicates the rinsing with 

buffer.  

 

 

2.4.3. Study of interaction between particles and NPGM at pH 4 

We have previously developed the efficient and simple QCM-D method to assess the 

interaction of thiolated chitosan polymers and their particles with NPGM at pH 4 and 6.8. The 

results obtained from previous section have shown that the QCM-D technique can allow to 

evaluate the mechanism of both mucoadhesion and mucus permeability. In addition, the 

experiments at pH 4 may provide more information regarding the viscoelastic properties. In 

this section, thus, we will evaluate the behaviours of several mucosal delivery systems into 

NPGM at pH 4. 

2.4.3.1. Description of particles  

We have analysed different particles coming from different EU- project FP7 Alexander 

Partners. To facilitate the reading of this part and the finding of a specific sample, we have 
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presented the results classified by mechanism of particle formation. These particles were 

prepared by 4 different strategies: (i) slippery surface; (ii) proteolytic enzyme; (iii) thiomer; (iv) 

SNEDDS. The description of particles analysed is shown in table 2.5. 

 

2.4.3.2. Interaction of particles with NPGM 

All particles were performed using QCM-D to study the interaction between particles 

and NPGM and the experiments were carried out in citric acid/phosphate buffer at pH 4. 

Briefly, particle solutions (100 mg/L) were conducted when the NPGM layer (25 mg/L) was 

perfectly coated on the surface of the QCM-D sensor. All results of the mucin layer are in 

accordance with previous reports. Recently, we studied the combined properties between 

mucoadhesion and mucus permeability of polymers or nanoparticles by means of QCM-D and 

the results were described by the changes in f and D, which were recorded with the several 

overtones.  

Here 20 particles tested ranged from -54 to 20.2 mV in zeta potential and from 35 to 

342 nm in the particle size. As shown in Fig. 1, the introduction of particles resulted in 

changes in f and D accompanied with 6 overtones. When particles had a highly negative zeta 

potential (≤-15 mV) except [F4], there were detected a slight change in f. Theoretically, the 

results used to be explained no interaction of samples with the negatively charged mucin layer 

due to the electrostatic repulsion However, there were simultaneously observed a change in 

D, indicating a change in viscoelastic properties. By studying how D changes with the sample 

film, it is possible to identify at which surface coverage particle-mucin interaction occurs 

(Olsson et al., 2014). Conversely, the addition of particles with a highly positive zeta potential 

(≥ 15 mV) induced a large decrease in f and a large increase in D accompanied with 

spreading overtones for f and D. These results indicate a considerable increase in mass and 

viscoelasticity that is a significant interaction. Similar trends of changes in f and D for thiolated 

particles with a positive zeta potential from 1.1 to 6.2 mV were observed. In particular, there 

were observed the partial permeation, D rapidly decreases and then increases for the first few 

minutes upon the addition of particles. These confirm the results obtained previously. 

Interestingly, there were obtained this behaviour only for thiolated particles, which exhibit both 

mucoadhesive and mucus permeability properties. SNEDDSs, which had a small size from 35 

to 45 nm with a neutral zeta potential except [S20], clearly interact with the NPGM layer, as 

seen by the decrease f. Moreover, there were obtained changes in D without spreading 

overtones. Since lower overtones, which senses the ‘‘entire film’’, is relatively to higher 

penetration/detection depth (Q-Sense reported data). Interestingly, all overtones of SNEDDSs 

were reversed after the addition of the samples. These resulted from that it is denser at the 

upper layer than at the down. Thus, it may be explained that the particles permeate through 

NPGM, but not all the way down to the bottom of the first layer. As described above, 

simultaneous measurements of multiple overtones is required to model viscoelastic 
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properties, and thus the different overtones may give information about the permeable 

behaviour.   

To gain a deeper understanding of interaction of particles with the NPGM layer, not 

only the monitoring data were interpreted (changes in f and D) but also the calculated 

parameters such as thickness, viscous and shear modulus were reported. These values were 

calculated by using Voigt model. We hypothesize that the permeation of particles through the 

mucin layer is determined by the relationship between the dynamic thickness and the 

viscoelastic properties. When the adsorbed film is viscous and sufficiently soft like particles 

analysed here that it does not follow the sensor oscillation perfectly, this leads to internal 

friction (due to the deformation) in the adlayer (Dixon et al., 2008). Thus, the calculated data 

of the layer is not the rest mass/thickness, but the hydrodynamic one (incorporating 

associated water). The calculated parameters and their relationship were presented in Table 

2.5 and Fig 2, respectively.  As shown in Fig 2, it was shown the relationship between 

interactions of particles (PI) with NPGM to viscoelastic properties. Positive and negative 

values of PI indicate adsorption and permeation of particles with the NPGM layer, 

respectively. If these values are close to zero or within 5% of the first layer, this indicates no 

interaction. When it is proposed to higher adsorbed or permeable particles to the NPGM layer, 

there were obtained higher changes in hydrodynamic both viscosity and shear modulus. 

[E10] and [S19] had a relatively higher negative value of PI with larger differences in 

viscoelasticity before or after the addition of particles, indicating higher permeability of 

particles among the tested one. On the other hand, there were obtained a relatively higher 

positive value of PI with larger changes in viscosity for [E12], [T14] and [S17]. These indicate 

the adsorption of particles. In particular, the addition of [E12] induced a large difference in 

shear modulus, indicating the highest interaction among the particles shown PI > 0.  



Development of a QCM-D technique for studying the interactions of polymers/particles with mucin 
 

47 

 
 
 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5. The characteristics of particles and the changes in properties of the layers of particles with NPGM using QCM-D. 

Strategy Formulation Code 
Zeta potential 

(mV) 

Particle size 

(nm) 
∆ Interaction 

∆ viscosity 

(10
-3

) (Pa) 

∆  shear modulus 
(10

3
) (Pa) 

Slippery 
surface 

NPA-L F1 -54 265 -0.068 0.006 0.61 

1-LMPEC-NPB-L F2 -47 225 -0.853 0.049 5.26 

 1-LMPEC-NPA-L F3 -44 179 -7.799 0.264 43.28 

 PLGA F4 -30 161 3.699 0.331 26.23 

 752peg5000 F5 -9.9 342 -0.713 0.022 0.52 

 502peg2000 F6 0.1 291 2.307 0.089 1.64 

 502peg5000 F7 6.1 286 -0.35 0.01 2.50 

 R/DNA F8 20.2 149 6.514 0.15 12.14 

        
Proteolytic 
Eenzyme 

PLGA-TRY E9 -27.4 432 -2.121 0.103 5.63 

PLGA-BRO E10 -22.4 352 -10.355 0.488 68.65 

 PLGA-PAP E11 -20.3 303 -3.274 0.114 7.41 

 R/DNA/PB E12 18.6 121 6.116 0.378 84.84 

        
Thiomer CSSH/DNA T13 1.1 141 6.623 0.22 11.59 

 CS-TGA/D/DNA T14 2.8 167 6.352 0.343 36.21 

 

 

CS-MPA3/DNA T15 4.8 140 5.711 0.051 11.85 

 CS-NAC/D/DNA T16 6.2 156 3.703 

 

0.026 57.29 

        
SNEDDS SNEDDSa S17 0.2 35 6.233 0.56 0.17 

 SNEDDSb S18 -0.1 45 2.610 0.464 30.03 

  
SNEDDSc

 
S19 0.1 40 -2.135 0.489 42.04 

 
SNEDDSb(UNA) S20 -22 139 -0.702  

 

0.047 3.78 



Chapter 2 

48 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, were 

recorded with QCM-D for interactions between NPGM with 8 particles, which were prepared by slippery 
surface strategy. The 3rd (●), 5th (▲), 7th (▼), 9th (♦), 11th (◄), and 13th (ӿ) overtones are shown. Arrow 
and star indicate the addition of particles and the rinsing with buffer, respectively.  

 

  

(F4) (F3) 

(F1) (F2) 

(F5) (F6) 

(F7) (F8) 



49 

Development of a QCM-D technique for studying the interactions of polymers/particles with mucin 
 

49 

 
 
 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, 

were recorded with QCM-D for interactions between NPGM with 8 particles, which were prepared by 
proteolytic enzyme strategy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, respectively, 

were recorded with QCM-D for interactions between NPGM with 8 particles, which were prepared by 
thiomer strategy. .   
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Fig. 2.12. Changes in frequency (∆f) and dissipation (∆D) with time, blue line and red line, 

respectively, were recorded with QCM-D for interactions between NPGM with 8 particles, which 
were prepared bySNEDDS strategy.  
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Fig. 2.13. Relationship between interactions of particles with NPGM to their viscoelastic 

properties. (A) changes in viscosity; (B) changes in shear modulus.   
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2.5. Concluding remarks 

For the first time, this study reports the interaction of mucoadhesive polymers with a 

NPGM layer, which was extracted from porcine stomach without enzymatic hydrolysis, using a 

developed QCM-D technique. As expected, due the net negative charge of the mucin layer, 

cationic polymers were significantly adsorbed onto the negative charged NPGM layer, but 

there was no interaction of anionic polymers to NPGM. In addition, the layer of cationic 

polymers-NPGM was dramatically increased in flexibility. In contrast, all polymers were 

unstably and successively adsorbed onto the precoated CPGM layer. The results presented in 

this study prove that the adsorption shape and viscoelastic behaviour of NPGM is clearly 

different to those of CPGM, thus it is recommended to use NPGM for interactions between 

mucin and either polymers or nanoparticles. More importantly, the developed QCM-D method 

is able to discriminate the partial permeation of the polymers into the mucin. It should be noted 

that when permeation is produced, D rapidly decreases and then increases, and then remains 

constant. The study of the change in the viscoelastic properties of the mucin using the D plot 

could give insight on the mechanisms of the interaction between polymers and mucin layers.  

Thereafter, we investigated the combined properties between mucoadhesion and 

permeability of thiolated chitosans and their complexes with the NPGM layer using QCM-D 

technique. In parallel, the influence of pH buffer on the viscoelastic properties was examined. 

The higher the pH, the polymers and complexes bearing with thiol groups led to strong 

immobilization onto the NPGM layer. In all thiolated chitosan polymers, there were observed a 

small permeation and a significant adsorption with NPGM. Thiolated chitosan with low content 

of thiol groups showed the highest permeability among the polymers tested, and it was 

employed for further DNA carriers. These results support that these combined properties are 

strongly dependent on the content of the thiol groups. The changes in f and D of both 

TCD/DNA and TCE/DNA complexes showed the similar trend for those of thiolated chitosan, 

which was employed for the formulation of complexes. Unlike polymers, interestingly, there 

was obtained D accompanied with spreading overtones of complexes, resulting in that the 

movements of the transported particles was clearly observed into the NPGM layer.   

Lastly, a set of different nanoparticles, coming from EU-project partners, was 

monitored using the QCM-D model. There were observed no interaction of highly negatively 

charged nanoparticles with NPGM while there were clearly shown the adsorption of highly 

positively charged nanoparticles. Similar trends of changes in f and D for polymers were 

shown previously. However, these results are not in accordance with those obtained by 

multiple particle tracking (MPT) technique. To better understand how nanoparticles may 

interact with the NPGM layer, the changes in thickness, viscosity and shear modulus of the 

layer of particles with NPGM were calculated, and these data were interpreted by comparison 

with the monitoring results described above. 
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This Chapter might provide that the QCM-D technique would be a promising method 

to monitor the interaction of polymers and particles with NPGM. Besides, this work may give 

that the novel formulation of TCL/PBAE/DNA complexes still required to improve the 

permeability through the mucin layer. More importantly, this formulation for mucosal delivery 

systems of macromolecular drugs must have high transfection efficiency. In fact, we evaluated 

and observed very low transfection efficiency of this formulation (data not shown). Therefore, 

in the next chapter, we will attempt to develop and optimize a novel formulation of DNA 

delivery systems. 
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3.1. Introduction 

As described in Chapter 1, the main objective of this Thesis is to develop and optimize 

the innovative strategies for efficient delivery systems of macromolecules to mucosal tissue. 

The macromolecules such as peptides, proteins and nucleic acids (DNA and RNA) are very 

unstable that need to be protected from degradation in the biological environments. Moreover, 

their efficiency is highly limited by their ability to cross biological barriers and reach the target 

site (Janes et al., 2001). Thus, the development of appropriate vehicles to deliver the 

macromolecules through those barriers has been attracting a great deal of interest in the 

pharmaceutical industry. As such, mucosal delivery of the macromolecular drugs is evidently 

dependent on design and development of nanoparticle-based drug delivery systems. In this 

Chapter, we focus on developing the novel drug delivery systems capable of both retaining 

stability in the physiological solution and high transfection efficiency.  

Drug delivery system is defined as a formulation or device that enables the 

introduction of a therapeutic substance in the body and improves its efficacy and safety by 

controlling the rate, time, and place of release of drugs in the body (Jain 2008). The term 

therapeutic substance applies to an agent such as gene therapy that will induce in vivo 

production of the active therapeutic agent. Gene therapy can fit in the basic and abroad 

definition of the drug delivery system (Jain 2008). Over the past two decades, the clinical 

application of gene therapy for treating or preventing a wide range of both inherited and 

acquired disease has been investigated (Ginn et al., 2013). However, as discussed above, the 

lack of safe and efficient vectors to deliver polynucleotides such as DNA and RNA remains the 

principal drawback for the success of gene therapy (Luo and Saltzman 2000; Kamimura et al., 

2011; Miele et al., 2012; Mastorakos et al., 2015). Given the large size and the negative 

charge of large molecules, their delivery is typically mediated by carriers or vectors (Yin et al., 

2014).  

There are two approaches to gene delivery: viral and non-viral. Viral vectors are the 

more conventional approach because viruses have evolved to infect cells with high efficacy 

(Green et al., 2008). In fact, ~70% of gene therapy clinical trials carried out so far have used 

modified viruses to delivery genes (Yin et al., 2014). However, clinical trials have underscored 

the safety risks, such as immunogenicity and integration into the host genome which may lead 

to insertional mutagenesis (Robbins and Ghivizzani 1998; Walther and Stein 2000; Themis et 

al., 2005; Basarkar and Singh 2007; Huang and Kamihira 2013). For this reasons, new 

attention has been focused on non-viral approaches for gene therapy as these have the 

potential to overcome many of the inherent challenges of viral vectors. Use of non-viral 

vectors in clinical trials increased from 2004-2014 while that of viral vector saw significant 

decrease (Ramamoorth and Narvekar 2015). 
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Non-viral vectors have been widely proposed for gene transfer because of safety and 

simplicity of the production procedure (Edelstein et al., 2004; Green et al., 2007 and 2008; 

Elfinger et al., 2009). Numerous biomaterials have been studied as potential non-viral gene 

delivery vectors to enable improved DNA stability and uptake including lipids, 

polysaccharides, cationic polymers, and dendrimers (Merdan et al., 2002; Putnam 2006). 

These non-viral vectors either bind to, complex with, or encapsulate DNA into systems that 

are comparatively easier to manufacture and scale-up than viral systems, although they are 

lower efficacy relative to viral vectors (Green et al., 2008). For efficient gene delivery, several 

important steps must be overcome. Scheme 3.1 represents the mechanism of non-viral gene 

delivery, including: i) the non-viral vectors must be bind to and condense or encapsulate DNA, 

ii) facilitating cellular uptake of the DNA-containing particle, iii) the particles are inside the cell 

but is in the endosomal compartment instead of the cytoplasm, iv) the particle trafficks through 

the cell, v) vectors escape from endosome, vi) DNA dissociation from vector and nuclear 

translocation for gene expression to occur (Green et al., 2008; Jin et al., 2014; Yin et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Mechanism of non-viral gene delivery (Yin et al., 2014).  
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Typical non-viral vectors include lipid, such as 2,3-dioleyloxy-N-

(sperminecarboxamido)ethyl-N,Ndimethyl-1-propanaminium trifluoroacetate (DOSPA) and 

dioleyl phosphatidylethanolamine (DOPE) and (Simoes et al., 2005), or cationic polymers, 

such as poly(L-lysine) (PLL) and polyethylenimine (PEI) (Scheme 3.2) (Eliyahu et al., 2005). 

Recently, there have been extensively investigated non-viral gene vectors composed of 

plasmid DNA (pDNA) and cationic polymers are promising vector systems for gene delivery 

due to capability of condensing anionic DNA (Yin et al., 2014).  

 

 

 

 

 

 

 

 

 

Scheme 3.2. Scheme of chemical structures of typical non-viral vectors. a) Cationic lipids of DOSPA and 
a neutral lipid of DOPE. b) Cationic polymers of PLL y PEI (Yin et al., 2014).  

 

 

Among cationic polymers, poly(β-amino ester)s (PBAEs) are a promising class of 

polymeric non-viral gene delivery vectors due to i) their ease of synthesis by Michael addition 

of amine monomers to diacrylates (Lynn et al., 2000-2001; Akinc et al., 2003; Anderson et al., 

2003-2004) (Scheme 3.3), ii) ability to condense DNA into small and stable nanoparticles 

(Luten et al., 2008), iii) ability to buffer the endosome and facilitate endosomal escape 

(Anderson et al., 2005; Green et al., 2008), iv) biodegradability via hydrolytically degradable 

ester groups, v) low cytotoxicity compared with some other cationic polymers, and vi) relatively 

high efficacy in vitro and in vivo (Vuorimaa et al., 2011; Sunshine et al., 2012; Eltoukhy et al., 

2012; Sabzevari et al., 2013; Mastorakos et al., 2013). Chemical modification at the termini of 

PBAEs with primary amines has been shown to produce higher transfection efficacy with low 

toxicity than commercial transfection agents such as Lipofectamine 2000 (DOSPA:DOPE AT 

3:1 molar ratio)  (Green et al., 2008) and PEI (Zugates et al., 2007).      
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Scheme 3.3. Synthetic scheme of end-modified poly(β-amino ester)s (Green et al., 2008).  
 

 

In a previous study, our group reported the development of a novel PBAEs chemically 

modified at one or both termini with oligonucleotides which shown to be more biocompatible to 

cells than commercial transfection agents (Segovia et al., 2014; Dosta et al., 2015). Moreover, 

the new non-viral vectors resulted to present high gene expression levels and to be able to 

deliver polynucleotides directly into cells in vitro without the need for ligand-mediated 

mechanisms. However, there is a fundamental limitation of using these vectors in clinical 

trials. Most of these delivery systems are likely to be degraded or aggregated in 

endonucleases in physiological fluids and the extracellular space (Scheme 3.1). Thus, an 

emerging need still exists for improvement of stability of current nanoparticles, which could be 

used to transfect efficiently polynucleotides, to their biological functions (Pavlin and Bregar 

2012, Xu et al., 2015). If the drug is prematurely release, even if the nanoparticles reach its 

target, there will no longer be a therapeutic benefit (Patri et al., 2005). In addition, the poor 

stability of polymeric gene delivery systems in an aqueous medium represents a major barrier 

to the development of these systems as marketable products (Anchordoquy et al., 1999). 

Regarding these concerns, further an enhancement of stability in physiological condition is 

required for their practical use.  

In this Chapter, we have developed the novel nanoparticles capable of being stable in 

the physiological solution for use in delivery of active agents comprising PBAEs and additives 

that are sugar and sugar alcohol, and chitosan. 

Nature offers creative and sustainable alternatives to promote nanosystem 

stabilization, through the use of carbohydrate (Sizovs et al., 2014). Thus, carbohydrate-

modified delivery systems (such as sugar or chitosan-based modification) have become 

promising for clinical application (Ma et al., 2015). Here we start by introducing the properties 
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and use of sugar and its derivatives for gene delivery systems, then address those of 

chitosan.  

Sugar and its derivatives (the so-called sugars), which are common functional entities 

in biological systems, have been focused on developing new strategies to fabricate 

nanoconstructs for gene delivery systems (Abdelwahed et al., 2006; Katti et al., 2009; Noga et 

al., 2014). Most of the materials under investigation were stabilized by surface coatings with 

sugars in order to enhance the stability of nanoparticles (Sameti et al., 2003). Sugars are used 

as cryoprotectants and/or lyoprotectants and to increase stability on storage using freeze-

drying, which is widely applied for stabilizing various pharmaceutical products (Tang and Pikal 

2008). These systems are of current interest as a drug delivery system for gene materials 

including DNA and/or preventing aggregation (Tseng et al., 2007; Wada et al., 2011; Mancini 

et al., 2012).  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 3.4. Chemical structures of disaccharides composed of glucose. The individual glucopyranose 

rings are labeled A and B, and the glycoside bonding is circled in light blue. (Farmer and Emeritus. 

http://chemwiki.ucdavis.edu/Organic_Chemistry/Carbohydrates/Disaccharides). 
 
 

Among the sugars reported in the literature, trehalose, sucrose and mannitol are the 

most popular, which are also called stabilizers (Kim et al., 1998; Wang 2000; Zilles et al., 

2008; Agirre et al., 2014). Trehalose and sucrose are disaccharides. Several disaccharides 

http://chemwiki.ucdavis.edu/Organic_Chemistry/Carbohydrates/Disaccharides
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composed of two glucose units are shown in Scheme 3.4. Both trehalose and sucrose: 1) 

protect proteins during both freezing and dehydration; 2) are non-reducing; 3) tend to remain 

amorphous during lyophilization; and 4) have been used in approved parenteral therapeutic 

products (Carpenter and Manning 2002; Jovanovic et al., 2006). However, trehalose 

demonstrates unique stability, it is not easily hydrolyzed by acid, even at high temperature 

(Kumar and Roy 2008; Teramoto et al., 2008; Ohtake and Wang 2011). This unusual property 

of trehalose has been attributed to its exceptionally large hydrated volume and the ability of 

this carbohydrate to modify the solvation layer around various biomolecules (Srinivasachari Li 

et al., 2006). The use of reducing disaccharides, such as maltose or lactose, was restricted 

because they can degrade proteins between carbonyls of the sugar and free amino groups on 

the protein (Hageman 1992; Li et al., 1996). (D-) Mannitol is a naturally occurring 6-carbon 

sugar alcohol or polyol. Mannitol is a unique cryoprotectant that crystallizes in frozen aqueous 

solutions (Al-Hussein and Gieseler 2012; Lindholm et al., 2014). On the other hand, mannitol 

has the lowest aqueous solubility among the evaluated cryprotectants and this is due to ability 

to form intramolecular hydrogen bonding at the expense of solute-water hydrogen bonding 

(Alkilany et al., 2014).   

As described above, to date, sugars have been widely applied as nanoparticle 

stabilizers during the freeze-drying process. According to this conception, sugars are of 

current interest for their ability to enhance stability of nanoparticles in an aqueous medium 

before freeze-drying. Bae et al. have demonstrated that it is possible to utilize sugars, as 

dispersing and stabilizing agents for colloidal particles (Bae et al., 2006). Srinivasachari et al. 

have shown that step-growth cationic polymers containing alternating units of ethyleneamine 

and sugars in their backbones yield high cellular delivery efficiency of pDNA (Srinivasachari et 

al., 2006). Recently, Sizovs and coworkers have reported the synthesis of a methacrylamido 

trehalose monomer, its subsequent polymerization to poly(methacrylamidotrehalose) or 

‘’poly(trehalose)’’, followed by a synthetic procedure of reversible addition-fragmentation chain 

transfer (RAFT). The complexes comprising of these new polymers and siRNA were shown to 

promote stabilization and effective gene delivery (Sizovs et al., 2014).  

In parallel with sugars-modified delivery systems, there have been also investigated 

chitosan-modified formulations. Chitosan is typically obtained by the deacetylation of chitin, 

which is the second most abundant natural biopolymer found in the exoskeleton of crustacean 

(Du et al., 2013). Chitosan is a linear polysaccharide, composed of glucosamine and N-acetyl-

D-glucosamine units linked by β (1-4) glycosidic bonds (Scheme 3.5) (Rinki et al., 2009).  The 

content of glucosamine is called the degree of deacetylation. In fact, in a general way, it is 

considered that when the degree of deacetylation of chitin is higher than about 50% 

(depending on the origin of the polymer and on the distribution of acetyl groups along the 

chains), it becomes soluble in an aqueous acidic medium, and it is named chitosan (Alves and 

Mano 2008). Every deacetylated subunit of chitosan contains a primary amine group with a 
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pKa value of around 6.3-6.5 (Li et al., 1996). Thus chitosan is generally soluble in acidic 

media, at pH below 6. The solution properties of chitosan depend on its molecular weight, 

degree of deacetylation and ionic strength of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.5. The chemical structure and deacetylation process of chitin to chitosan (Rinki et al., 2009).   

 

 

Among non-viral vectors, chitosan has been considered to be a potential gene carrier 

candidate because it is known as a natural-derived, biocompatible, biodegradable, high 

stability, and low toxic material with high cationic charge potentials (Borchard et al., 2001; Shu 

et al., 2002; Agnihotri et al., 2004; Alves et al., 2008; de la Fuente et al., 2010; Shi et al., 

2012; Bernkop-Schnürch and Dunnhaüpt 2012). At acidic pH, below the pKa, these primary 

amines in the chitosan backbone become positively charged (Kumar et al., 2004). These 

protonated amines enable chitosan to bind to negatively charged nucleotides via an 

electrostatic interaction, which leads to the spontaneous formation of nano-size complexes 

(polyplexes) in the aqueous milieu. (Mao et al., 2010).  

However, as mentioned above, chitosan is only soluble in few dilute acid solutions, 

thus limits its applications (Sugimoto et al., 1998). The acid solubility is explained by the 

protonation of the free amino group, characteristic in the chitosan, which change from NH2 to 

NH3
+
, whereas in alkaline condition, the hydro solubility is due to the formation of carboxylate, 

from the introduced carboxylic group (Pillai et al., 2009). Another drawback of chitosan is its 

strong condensation with DNA, resulting in the formation of highly stable particles. This 

condensation prevents DNA dissociation to the nucleus, which ultimately precludes the 

translation of DNA (Koping-Hoggard et al., 2004; Toh et al., 2010). It is well known that the 
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binding affinity of chitosan for DNA, the stability and the transfection efficiency of the 

chitosan/DNA is significantly influenced by formulation-related parameters, such as the 

molecular weight of chitosan, degree of deacetylation, stoichiometry of the chitosan/DNA 

complex (N/P ratio, charge ratio of amine (chitosan) to phosphate (DNA), plasmid 

concentration, serum concentration, pH of the transfection medium, cell type and so on (Sato 

et al., 2001; Hoggard et al., 2001; Romoren et al., 2003; Kiang et al., 2004; Strand et al., 

2005; Liu et al., 2005; Lavertu et al., 2006; Kumirska et al., 2011). According to the 

investigation of the effect of these parameters, several groups have developed and optimized 

the chitosan/DNA complexes, resulting in improvement of transfection efficiency (Mao et al., 

2010; Buschmann et al., 2013; Hu et al., 2014). Nevertheless, enhancing transfection 

efficiency of chitosan-based complexes still remains a challenge for non-viral gene delivery. 

Therefore, in this Chapter, chitosan or sugar has been employed as a coating agent to shield 

on the surface of PBAE/DNA complexes, which already shown high gene transfection 

efficiency. We expect that a design and development of the the novel nanocarriers comprising 

PBAE/DNA and the additives may enhance the stability in physiological conditions while 

maintaining high transfection efficiency.  

 

 

 

3.2. Aim and scope of this Chapter 

The first aim of this Chapter is to enhance the stability of novel nanocomplexes 

comprising oligopeptide-modified PBAEs and sugars while maintaining high transfection 

efficiency. Trehalose, sucrose and mannitol have been chosen for this study as described 

above the most popular stabilizers. Two procedures of a simple formulation of the PBAE/DNA 

complexes based on the sugars were carried out and demonstrated the effect of these agents 

on the nanocomplexes stability and gene transfection efficiency. In a first approach, the sugar-

coated PBAE/DNA complexes have been formulated in trehalose, sucrose or mannitol at 

various weight percentages, which was expressed relative to the total weight of the PBAEs. In 

a second approach, the sugar-modified complexes have been formulated by mixing DNA and 

a simple polymer mixture of the sugar or sugar alcohol and PBAEs. The PBAE/sugar polymer 

mixture was prepared by the same method for synthesis of PBAEs in the presence of 

trehalose, sucrose or mannitol at 10, 20 and 30% relative to the weight of the polymers. Prior 

to this study, we investigated the effect of experimental conditions such as ionic strength of 

medium, incubation time and temperature on the stability and transfection of unmodified 

PBAE/DNA complexes and the optimal method found here was used for further work 

described above. The results show a noticeable enhancement of stability and transfection 

efficiency of the sugar-modified PBAE/DNA complexes at optimum conditions, which are used 

for further studies. 
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The second aim of the Chapter is to develop a novel carrier based on a combination 

of PBAE and chitosan polymers. We propose that this system may integrate their advantages 

with minimizing their drawback, thus leading to enhanced transfection efficiency as well as 

stability. To approach this aim, chitosan has been employed as a coating agent to cover on 

the surface of PBAE/DNA complexes. We expect that the small amount of chitosan may 

improve the stability of complexes whilst maintaining their high transfection level. Here two 

different molecular weights of chitosan were chosen for this study as it showed higher gene 

expression in the literature: Chitosan with a 22 kDa (CS) and a 60-120 kDa (CSM) (Sato et al., 

2001; Mao et al., 2010). All coating complexes tested exhibit a noticeable enhancement of 

stability. High transfection efficiency is sustained when prepared with CS while 

PBAE/DNA/CSM showed a significant decrease in transfection efficiency with increasing 

amount of CSM. 

To achieve these aims the following steps will be developed: 

 To synthesize arginine-terminated poly(β-amino ester)s (R). 

 

 To investigate the influence of R/DNA formation factors such as ionic strength of 

medium, incubation time and temperature on the stability and transfection efficiency.  

 

 To develop the sugar-coated R/DNA complexes, which were formulated in 

trehalose, sucrose and mannitol at 10, 20, 30 and 40 %, relative to the weight of the 

PBAEs.  

 

 To synthesize PBAEs in the presence of trehalose, sucrose and mannitol (TreR, 

SucR and MntR) at 10, 20 and  30%, relative to the weight of the PBAEs, and to 

develop the sugar-modified R/DNA complexes. 

 

 To develop the chitosan-coated R/DNA complexes, which were formulated with a 

coating of 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of chitosans (CS and CSM). 

 

 To evaluate stability, transfection efficiency and cell viability of the developed 

nanocomplexes described above. 
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3.3. Experimental section 

 

3.3.1. Materials 

H-Cys-Arg-Arg-Arg-NH2 (CR3) was obtained from GL Biochem Ltd. (Shanghai, 

China). Chitosan with a medium molecular weight (CSM, 60-120 kDa and deacetylation 

degree, DDA, 60%) and low molecular weight (CS, 22 kDa and DDA, 85%) were purchased 

from Sigma Aldrich and Fluka (Vienna, Austria), respectively. All chemicals were obtained 

from Sigma Aldrich and used as received, unless otherwise stated. All regents were analytical 

grade and used without further purification. Plasmid DNA encoding green fluorescent protein 

(pmaxGFP, 3486 bp) was purchased from Amaxa Inc. (Gaithersburg, MD, USA). COS-7 cells 

were obtained from ATCC (Manassas, VA) and cultured in DMEM (Gibco) supplemented with 

10% fetal bovin serum (FBS), 1% Glutamine and 1% Streptomycin/Penicillin (complete 

DMEM).  

 

3.3.2. Synthesis of polymers 

3.3.2.1. Acrylate-terminated PBAEs 

Acrylate-terminated PBAE was synthesized as the method described previously 

(Green et al., 2007). In brief, acrylate-terminated C32 was obtained by the addition of 5-

amino-1-pentanol (3.44 g, 33 mmol) to 1,4-butanediol diacrylate (8.81 g, 40 mmol) at a 1.2:1 

molar ratio of amine monomer to diacrylate monomer under stirring at 90ºC for 24 h. Then it 

was cooled to room temperature to form a transparent yellow viscous solid, C32, dissolved in 

DMSO to 100 mg/ml, and stored at -20 ºC until further use. 

 

3.3.2.2. Oligopeptide-terminated PBAEs 

The procedure of synthesis has been previously described in detail in our research 

group (Segovia et al., 2014). Oligopeptide-modified PBAEs were synthesized by end-

modification of acrylate-terminated C32 with thiol-terminated oligopeptide at a 1:2.5 molar 

ratio. Briefly, C32 (150 mg, 0.07 mmol), CR3 (115 mg, 0.18 mmol) and DMSO (3 mL) were 

placed in Teflon-lined screw cap vials and stirred at room temperature for 24 h. Tri-arginine 

end-modified PBAE polymer (R) was purified by precipitation in diethyl ether/acetone (7:3 v/v) 

for twice and dried under vacuum. Dried polymers were finally dissolved at 100 mg/ml in 

DMSO and stored at -20 ºC until further use.  

 

3.3.2.3. MntR, SucR and TreR 

The R polymer was prepared in the presence of mannitol, sucrose or trehalose to form 
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MntR, TreR, or SucR, respectively. The procedure was as follows: C32 (75 mg, 0.035 mmol) 

and CR3 (55 mg, 0.09 mmol) were dissolved in DMSO (1.5 ml) and placed in Teflon-lined 

screw cap vials. Then, 10, 20, or 30% (w/w) of mannitol, sucrose or trehalose were added in 

each vial and stirred at room temperature for 24 h. The final products were purified and 

prepared by same procedure as described above for oligopeptide-modified PBAE polymers.  

 

3.3.3. Characterization of polymers 

The chemical structures of these functional polymers, C32, R, MntR, SucR and TreR 

were characterized by 
1
H-NMR spectroscopy. 

1
H-NMR spectra were acquired at 25 ºC on a 

Varian NMR instrument operating at 400 MHz with samples dissolved in deuterated dimethyl 

sulfoxide (d6-DMSO) or methanol-d4 and using tetramethylsilane (TMS) as internal reference. 

8-10 mg of sample dissolved in 1 ml of solvent was used for 
1
H-NMR. Gel permeating 

chromatogram was carried out at 35 ºC with a refraction-index detector. C32 was 

chromatographed with 0.05 M tetrahydrofuran (THF) using a GPC KF-603 column with a flow 

rate of 0.5 ml/min. Chromatograms were calibrated against polystyrene monodisperse 

standards.  

 

3.3.4. Formulation of complexes  

3.3.4.1. Conventional method for formation of PBAE/DNA complexes 

Complexes were formulated by mixing polymer and pGFP (plasmid green fluorescent 

protein) in a weight ratio of 50:1. In the conventional method of PABE/DNA formulation 

(Nathay), DNA solution was diluted to 60 µg/ml in a final concentration of ~5 mM sodium 

acetate (NaAc) buffer at pH 5.2 and PBAE stock solution (100 mg/ml) in DMSO was diluted in 

the same buffer. 100 µl of diluted PBAE solution (3 mg/ml) was added to 100 µl of DNA, and 

mixed with vortex for a few seconds and incubated at 37 ºC for 30 min. 

 

3.3.4.2. Further method for formulation of PBAE/DNA complexes 

DNA stock solution was diluted to 60 μg/mL in a final concentration of 11-12 mM of 

NaAc buffer at pH 5.2. Polymer stock solutions (for example R, MntR, TreR or SucR; 100 

mg/ml in DMSO) were diluted in the same buffer. 100 μl of diluted DNA was added into 100 μl 

of PBAE solutions (3 mg/ml), and mixed with vortex for a few seconds and incubated at room 

temperature for 10 min.  
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3.3.4.3. Formulation of sugar-coated PBAE/DNA complexes 

Complexes of R and DNA prepared according to the method described above were 

coated with 10, 20 20, 30 and 40 weight percent of mannitol, sucrose or trehalose by 

incubation at room temperature for 10 min with a solution containing the relevant amount of 

mannitol, sucrose or trehalose.  

 

3.3.4.4. Formulation of chitosan-coated PBAE/DNA complexes 

Complexes were formulated by mixing polymer and pGFP (plasmid green fluorescent 

protein) in a weight ratio of 50:1, which is an optimal ratio as described in our previous 

research (Segovia et al., 2014). The R polymer solution and pGFP solution were diluted to 25 

mM sodium acetate (NaAc, pH 5.2) to a final concentration of 6 mg/ml and 0.06 mg/ml, 

respectively. To prepare CS solution, 16 mg of chitosan was suspended in 0.5% acetic acid 

(10 ml) and left overnight under stirring at room temperature. The CS stock solution (1.6 

mg/ml) was adjusted at pH 5 with 0.1 M NaOH and filtered through 0.2 μm. The CS stock 

solution was diluted with 25 mM NaAc buffer in a proportion ranging from 0.17 to 2.67 weight 

percent relative to the weight of PBAE when mixed with the PBAE solution. 50 μl of diluted 

chitosan solution was then added to 50 μl of diluted PBAE solution, and mixed with vortex. 

100 μl of GFP (60 μg/mL in the same buffer) was then added to the mixture solution, mixed 

slightly with vortex and incubated at room temperature for 10 min. As control, R/DNA 

complexes were formulated by same process as described for complexes coated with CT 

above. In this case, 0.06 mg/ml of pDNA was mixed into 3 mg/ml of R solutions.  

 

3.3.5. Characterization of complexes 

The particle size, zeta potential, and stability of complexes were determined, diluted in 

phosphate-buffered saline (PBS) at pH 7.4, by DLS using a Zetasizer Nano ZS (Malvern 

Instruments, Ltd., UK) at 25 ºC. Each experiment was carried out in triplicate and the means ± 

SD result was reported.  

Complex formulation was evaluated by agarose gel electrophoresis. R/DNA 

complexes modified with or without chitosan were loaded onto a 0.8% agarose gel in Tris-

Acetate-EDTA (TAE) buffer containing ethidium bromide (1µg/ml). The samples were run on 

the gel at 120 V for 80 min (Apelex PS305, France) and visualized using UV irradiation. 
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3.3.6. In vitro transfection and flow cytometry 

Cellular transfection was carried out using pDNA plasmid in COS-7 cells. Cells were 

seeded at a density of 1 x 10
5
 cells/well in 96-well plates and incubated overnight prior to 

performing the transfection experiments. PBAE/DNA complexes were prepared as described 

above (PABE:DNA =wt:wt, 50:1). Complexes were diluted in serum-free DMEM medium and 

added to cells at a final plasmid concentration of 0.3 µg pDNA/well. Briefly, 33 µl of 

PBAE/DNA complexes were diluted into 450 µl of serum-free DMEM medium and cells were 

washed once with PBS. Then, 150 µl of the resulting solutions were added to each well, 

achieving a final concentration of 0.3 µg DNA/well. Cells were incubated for 3 h at 37 ºC in 5% 

CO2 atmosphere. Subsequently, cells were washed once with PBS, and complete DMEM 

medium was added. Cells were harvested after 48 h and analysed by flow cytometry (BD 

LSRFortessa cell analyzer) for GFP expression. GFP expression was compared against 

negative control (NC, untreated cells) and unmodified R/DNA as a positive control. 

For effect of factors on transfection efficiency of R/DNA complexes, GeneJuice (Merck 

KGaA, Germany) was used as a positive control at a dose of 2.88 µl of GeneJuice and 0.3 µg 

DNA/well.  

 

3.3.7. Cytotoxicity assay 

MTS assay (CellTiter 96
® 

AQueous One Solution Cell Proliferation Assay, Promega 

Corporation, USA) was used to evaluate the viability of COS-7 cells transfected with 

complexes at 48 h after post-transfection, as instructed by the manufacturer. At 48 h after 

transfection, the medium was removed, cells were washed with PBS and complete medium 

supplemented with 20% MTS reagent (v/v) was added. Cells were incubated at 37 °C and the 

absorbance was measured at 490 nm using a microplate reader (Elx808 Biotek Instruments 

Ltd, USA). Cell viability was expressed as a relative percentage compared with untreated 

cells. 
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3.4. Results and discussion 

 

3.4.1. Synthesis and characterization of polymers 

As discussed in 3.1, poly(β-amino ester)s (PBAEs), which is  a specific class of 

cationic polymers, are promising for delivery systems of macromolecular drugs. In this section, 

we synthesized conventional acrylate and oligopeptide-terminated PBAEs and the novel 

polymer blending of PBAE/sugar. 

3.4.1.1. C32 PBAEs 

Firstly, we synthesized acrylate-terminated C32 PBAEs that was followed via two-

steps procedure. Scheme 3.6A shows that Acrylate-terminated C32 intermediate polymer was 

obtained in the first step by conjugate addition of amines to acrylate groups. The chemical 

structure and the purity of C32 were assessed by 
1
H-NMR spectroscopy (Fig. 3.1A). GPC 

analysis showed that the resulting C32 polymer was obtained with weight-average molecular 

weights of 2100 and number-average molecular weights of 1320, relative to polystyrene 

standard. C32 polymer was further modified with oligopeptide moieties to obtain a new family 

of oligopeptide-terminated PBAEs. 

1
H NMR of C32 (400 MHz, d6-DMSO, TMS), δ (ppm): 6.3–6.4 (m, CH2CHCOOCH2CH2–), 6.1–

6.2 (m, CH2CH COOCH2CH2–), 5.9 (m, CH2CHCOOCH2CH2–), 4.3 (bs, –N(CH2)5OH), 4.1 (m, 

CH2CHCOOCH2CH2–), 4.0 (bs, -N(CH2)2COOCH2CH2–), 3.4 (bs, –N(CH2)4CH2OH), 2.6-2.7 

(m, -COOCH2CH2N–), 2.3–2.5 (m,–COOCH2CH2N– and –NCH2(CH2)4OH), 1.6 (bs, -

N(CH2)2COOCH2CH2–), 1.2–1.4 (m, –NCH2(CH2)3CH2OH), 

3.4.1.2. Tri-arginine end-modified PBAEs 

As shown in Scheme 3.6B, oligopeptide-terminated PBAEs were obtained via addition 

of the thiol group of cysteine-terminate oligopeptides to the acrylate-terminated end-groups of 

C32 polymer. Oligopeptide-terminated PBAEs were characterized in terms of molecular 

structure by 
1
H-NMR spectroscopy (Fig. 3.1B). The chemical structure of new oligopeptide-

modified PBAEs was confirmed by the disappearance of acrylate signals and the presence of 

signals typically associated with amino acid moieties. 

1
H-NMR of R (400 MHz, CD3OD, TMS), δ (ppm): 4.45-4.35 (br, NH2COCHNHCOCHNH- and 

COCHNHCOCHCH2-), 4.15 (t, CH2CH2O), 3.56 (t, –N(CH2)4CH2OH), 3.22 (br, NH2C(NH)2CH2- 

and –N(CH2)4CH2OH), 3.09 (br, CH2CH2N-), 2.85 (br, -CH2SCH2-), 2.78 (m, CH2CH2N-), 2.67 

(br, NH2C(NH)2CH-), 1.92 (m, NH2C(NH)2(CH2)2CH2CH-), 1.75 (br, -OCH2(CH2)2CH2O), 1.57 

(br, -N(CH2)2COOCH2CH2–), 1.3-1.4 (br, –NCH2(CH2)3CH2OH). 
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Scheme 3.6. Synthesis of end-modified poly(β-amino ester)s. (A) acrylated-terminated C32 polymer by 

1.2:1, diacrylate:amine polymerization. (B) arginine end-modified PBAE polymers by 1:2.5, 

C32:oligopeptide polymerization.   
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Fig. 3.1. 

1
H NMR spectrum of (A) acrylate-terminated PBAE and (B) oligopeptide-terminated PBAE; The 

1
H NMR spectrum of the polymer mixture of (C) MntR, (D) SucR and (E) TreR. 
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3.4.1.3. Sugar/PBAEs blending 

To develop the novel sugar-modified formulations, as described in 3.2, two 

procedures such as blending and coating strategies were conducted. For the blending 

approach, the sugar/PBAE mixture polymers were prepared before formulating nanoparticles. 

The polymer mixture (MntR, SucR or TreR) was obtained by simple mixing oligopeptide-

modified PBAEs and sugar or sugar alcohol (Scheme 3.7). 10, 20, or 30% of mannitol, 

sucrose or trehalose was added prior to the polymerization step of oligopeptide-modified 

PBAE polymers. The chemical structure of all polymer mixtures was assessed by 
1
H-NMR 

spectroscopy and confirmed by the presence of signals of both tri-arginine end-modified 

PBAEs and the agents (Fig. 3.1C-E). Interestingly, SucR20 showed the chemical shift of 2.9 

ppm and the disappearance of glycosidic linkage signal of 5.4 ppm. It may be explained that 

20% of sugar would be somewhat polymerized with the PBAEs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 3.7. Preparation of the polymer mixture: i) MntR; ii) SucR; iii) TreR  
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3.4.2. Factors affecting stability and in vitro transfection 

The main challenge in this Chapter was to study and develop the novel nanoparticles 

capable of stability and transfection efficiency. Prior to approach this objective, we firstly 

focused on studying the experimental conditions to improve the conventional complexes 

nanoparticles. It is well known that cationic polymer/DNA complexes are vulnerable to external 

ionic strength, thus required for the formation of stable complexes (Kim et al., 2004; Jeong et 

al., 2011; Jonassen et al., 2012). Consequently, the effect of the factors such as ionic strength 

and incubation conditions on the stability of complexes was investigated. (i) Preparation 

according to method described above (i.e. incubation at 37 °C for 30 min) with a final 

concentration of ~5mM sodium acetate; (ii) Preparation according to the same method but 

with a final concentration of 11-12mM sodium acetate and (iii) The complexes were prepared 

by different procedures (i.e. incubation at 37 ºC for 10 or 30 min, room temperature (RT) for 

10 or 30 min) with a final concentration of 11-12mM sodium acetate. The stability of the 

complexes, diluted in PBS, was determined by DLS.   

It should be noted that DNA stock solutions can be obtained at various concentrations 

while PBAE stock solutions can be obtained at a constant concentration of 100 mg/ml. 

However, an initial concentration of 25 mM NaAc buffer has been always applied for 

conventional formulation comprising of PBAE and DNA, inducing that there have obtained 

various size and zeta potential of these complexes. In other words, it is difficult to obtain 

reproducible formulations. As such, we expected that the factor of ionic strength between 

polymers and DNA may influence the various size and zeta potential of complexes. To explore 

the relationship between the final concentration of buffer solution and the stability of 

complexes, PBAE and DNA stock solutions were diluted in an initial concentration of buffers 

range up to 30 mM. The effects of ionic strength on the size of PABE/DNA complexes were 

studied and the results are shown in Fig. 3.2. The complexes at a final concentration of 11-12 

mM of NaAc buffer were slightly smaller and much more stable than those in ~5 mM of NaAc. 

These results suggest that the final concentration of NaAc buffer affects the ionic strength of 

the complexes, and preparation of complexes in the presence of buffers at 11-12 mM 

significantly increases stability. On the other hand, the complexes at a final concentration of 

above 12 mM buffer showed slightly lower stability relative to those of 11-12 mM (data not 

shown). These indicate that the particle size may be dependent on the ionic strength of the 

medium concentration, resulting in that the physicochemical properties of complexes can be 

adjusted to a preferred value by changing the medium concentration. Thus, the final 

concentration of 11-12 mM of buffer was chosen and used for all further studies due to the 

highest stability of complexes. 
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Fig. 3.2. The particle size of complexes in the presence of buffers of different ionic strength. 

 

 

Thereafter, the influence of the incubation conditions was studied for the stability of 

complexes. The PBAE/DNA complexes were prepared by various procedures (i.e. incubation 

time and temperature) in the literature. In order to achieve the optimum formulation of 

complexes, indicating of the stable complexes in PBS, we studied the effects of the 

procedures on the stability of complexes. As shown in Fig. 3.3, the particle size and zeta 

potential of PBAE/DNA complexes formulated by 4 different conditions of incubation; i) at 37 

ºC for 30 min, ii) at 37 ºC for 10 min. iii) at RT for 30 min, and iv) at RT for 10 min. There were 

obtained slight changes in the particle size and zeta potential of all complexes. However, the 

complexes incubated at RT for 10 min considerably enhanced the stability in PBS for 60 min. 

On the other hand, zeta potential of all complexes gradually decreased in PBS for 60 min. 

These results indicate the duration of incubation for preparing the formulations did not have a 

significant effect on the stability of the complexes over the 30 min measurement time frame, 

whereas the temperature of incubation noticeably affected. Accordingly, it is noted that the 

stability of complexes are not influenced by the incubation time, but by the concentration of 

sodium acetate buffer (ionic strength) as well as the incubation conditions.   
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Fig. 3.3. The particle size and zeta potential of complexes prepared by different procedures. 

 
 
 
 
 

It has been previously reported the transfection results for various oligopeptide-

terminated PBAE polymers at 50:1 ratio (w/w) without modification and they were shown 

higher transfection efficacy than other end-modified PBAE and commercial transfection 

agents, i.e. GeneJuice (Segovia et. al., 2014). As stated above, the particle size and the 

stability were dependent on the incubation procedures. Thus, the influence of incubation 

conditions on transfection efficiency was also investigated. The transfection efficiency of 

R/DNA obtained under different incubation conditions as shown in Fig. 3.4. The transfection 

efficiency complexes considerably increased when prepared at RT. However, there were 
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negligible changes in expression efficiency between those made at different time. Similar 

trends were obtained from MntR20/DNA (data not shown). These results indicate that 

transfection efficiency was also influenced by the complexes made by different incubation 

temperature. PBAE/DNA formulated at RT was considered to be an optimal formulation 

procedure, thus it was selected for further study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Transfection efficiency of complexes formulated by different procedures in COS-7 cells was 

determined by flow cytometry. (A) Fluorescent images of GFP expression in COS-7 cells: (i) NC; (ii) 

GeneJuice; (iii) 37 ºC, 30 min; (iv) 37 ºC, 10 min; (v) RT, 30 min; (vi) RT, 10 min. (B) Bars represent a 

percentage of GFP-positive cells multiplied by the GeoMean fluorescence of the positive population. 

Percentage numbers above each bar represent percentage of transfected cell (%). Each bar presents the 

mean ± SD of three experiments. NC: negative control (the group without any treatment).  
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3.4.3. Sugar-modified PBAE/DNA complexes 

3.4.3.1. Stability of R/DNA complexes coated with mannitol, sucrose or trehalose 

We have previously described experimental preparing conditions for enhancing 

stability of R/DNA complexes, which had a particle size of 143.2 ± 0.3 nm with a positive zeta 

potential of 22.1 mV, and the size of complexes increased slightly within 1 h (Fig. 3.3). After 2 

h in PBS, however, the size of complexes increased readily (n ≥ 1000 nm). Thus, further work 

is needed to have an enough stable formulation for in vivo applications. In order to overcome 

this issue, mannitol, sucrose or trehalose was employed as coating agents for complexes. The 

particle size and zeta potential of R/DNA complexes with a coating of 10, 20, 30 and 40 wt% 

of mannitol, sucrose or trehalose in PBS were analysed by DLS and the results are shown in 

Fig. 3.5. The R/DNA complexes coated with different amount of coating agents ranged from 

130.2 to 154.3 nm in diameter and from 19.2 to 23.2 mV in zeta potential, indicating that there 

were observed the small differences in size and zeta potential of complexes when prepared 

with sugar or sugar alcohol compared to non-coated complexes. In the case of mannitol 

coating, the particle size of complexes increased from 130.2 to 149.7 nm with increasing the 

amount of mannitol, whereas there were no significant changes in zeta potential observed. 

These results indicate that the size of R/DNA complexes depended on the amount of 

mannitol. On the contrary, the particle size and zeta potential of complexes coated with 

sucrose or trehalose were not dependent on the amount of coating agents. As a result, no 

significant changes in the size and zeta potential were observed for the complexes coated 

with and/or without all the additives, indicating that they are unlikely to affect the ionic strength 

between polymers and DNA. Surprisingly, however, there were observed a notable change in 

the size of some coating complexes for 4 h in PBS, which were described below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. The particle size and zeta potential of complexes coated with mannitol, sucrose and trehalose at 

various weight percent. Each bar represents the mean ± SD (n ≥ 3). 
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Complexes having from 10 to 40% of coating agents were incubated for 4 h in PBS 

and analysed by DLS every hour in order to observe changes in the size of complexes and 

the results are shown in Fig. 3.6. There were obtained the highest stability of R/DNA coated 

with 10% of mannitol (R/Mnt10%), 30 % of both sucrose (R/Suc30%) and trehalose 

(R/Tre30%), which were shown the highest stability among each family. It should be noted 

that we proposed that high stability can be considered maintained if the particle size is ≤1000 

nm (nanomeric particle) for 4 hours, which is turnover time in gastricintestinal (GI) track as 

described in Chapter 1. These results indicate that the stability of complexes was independent 

on the amount of coating agents. Surprisingly, the mean size of R/Mnt10% and R/Tre30% was 

less than 1000 nm within 4h. These results indicate that these complexes improved the 

stability with the specific amount of mannitol and trehalose. In the case of R/Suc complexes, 

on the other hand, the size of R/Suc30% (1502 nm) increased larger than that of the other 

coating complexes within 4 h. Nevertheless, the coating with sucrose also considerably 

enhanced the stability of non-coated complexes. This observation supports that the sugar 

additives affect the formulation of the non-coated one. Moreover, 10 weight percent of 

mannitol or 30 weight percent of both sucrose and trehalose are the optimal contents for 

improving the stability of R/DNA complexes. We expect that the additives may cover the 

surface of the R/DNA complexes via hydrogen bonding interaction. The functional groups 

such as hydroxyl and/or carbonyl groups of sugars can offer sugar-coated formation of 

complexes due to a unique H-bonding capability in constructing supramolecular architecture 

(Katti et al., 2009). In general, sugar-polymer conjugates have been applied for enhancing the 

stability of nanoparticles in either physiological condition, such as PBS, or freeze-drying 

process. This general concept motivated us to attempt to develop nanoparticles capable of 

being stable in PBS by a simple coating formulation with crude sugar before or after 

polymerization of PBAE polymers. In a first approach, sugars were added into PBAE/DNA 

complexes, related to after polymerization of PBAEs. The results obtained here clearly 

support our hypothesis of coating particles that may improve the stability. 

.  



83 

Development of nanocarriers with enhanced stability and transfection efficiency   
 
 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Time-dependent changes in the size of complexes coated with 10, 20, 30 and 40 wt% of (A) 

mannitol; (B) sucrose; (C) trehalose. Complexes were incubated for 4 h in phosphate buffer saline at pH 

7.4 and were analyzed by DLS every hour. Each bar represents the mean ± SD (n ≥ 3). 
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3.4.3.2. Stability of DNA-based complexes formed from MntR, SucR and TreR 

In a second approach, we introduced a novel polymer blending of PBAEs and the 

additives, which were added prior to polymerization step of PBAEs (R). The preparation of 

mannitol, sucrose or trehalose containing R polymers, the so called MntR, SucR and TreR, 

was described above. The particle size and zeta potential of complexes of DNA and polymer 

formed in the presence of 10, 20 or 30% of mannitol, sucrose or trehalose are shown in Fig. 

3.7. MntR and SucR polymers were formulated with DNA at a weight ratio of 50:1, which was 

general ratio of formulation for PBAE/DNA, and the complexes were prepared according to 

the same protocol as PBAE/DNA complexes. MntR/DNA and SucR/DNA formed with a 20% 

of mannitol (MntR20) and sucrose (SucR20) showed smaller size of 120.7 ± 1.1 and 133.9 ± 

2.7 nm, respectively, compared to those with 10 or 30%. Moreover, MntR20/DNA showed the 

smallest particle size with the highest zeta potential among all tested complexes via two 

approaches, indicating of more compact particles. These results indicate that the particle size 

and zeta potential of complexes were independent on the amount of mannitol or sucrose of 

blending PBAEs. As described previously, the changes in size and zeta potential of 

complexes suggest the role of the hydrogen bonding interactions in their stabilization. This is 

supported the high stabilization obtained using mannitol and sucrose, which would present 

stronger hydrogen bonding interactions, due to their small size.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.7. The particle size and zeta potential of complexes formulated with mannitol, sucrose and trehalose 
at 10, 20 or 30%. Each bar represents the mean ± SD (n ≥ 3). 
 
 
 

In the case of TreR, increasing the amount of trehalose from 10 to 30 decreased the 

mean size of TreR/DNA complexes from 202.4 to 154.3 nm and negligible changed their zeta 

potential. Interestingly, unlike the blending with PBAEs and mannitol or sucrose, a blending of 

PBAE and trehalose required use of TreR/DNA with weight ratios up to 100:1 to reach an 

optimal formulation. These indicate that the trehalose motif in PBAEs may obstacle PBAEs to 
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condense DNA. It is important to notice that the using at a 50:1 PBAE polymer to DNA weight 

ratio as the optimum ratio caused higher transfection efficiency with low toxicity. As a result, 

using of TreR/DNA complexes would be limited for further biological evaluation study. For this 

reason, the stability of TreR/DNA complexes was not evaluated. 

Fig. 3.8 shows the stability over 10 h of complexes formed with 20% of mannitol and 

sucrose, which displayed the highest stability among the complexes having sugar or sugar 

alcohol added prior to the polymerization step of oligopeptide-modified PBAEs. Very 

surprisingly, there was shown no significant increase in the particle size of MntR20 and 

SucR20 within 4 h in PBS, indicating that a polymer blend with 20% of mannitol or sucrose 

noticeably enhanced the stability of complexes (n ≤ 160 nm). These results exhibited much 

higher stability compared to the R/DNA complexes coated with sugar by first approach. These 

findings suggest two hypotheses. In the first hypothesis, it may be possible to obtain 

unexpected sugar-PBAE conjugates during polymerization step. In the second one, sugars 

might stay between the functional groups of PBAEs and play as conjugates. It could be 

expected that a lot of hydroxyl and carboxyl groups of sugars may interact with PBAE 

polymers somehow, via H-bonding or entanglement interaction, thus demonstrated the 

significant improvement of stability. The detailed mechanism of these complexes is not yet 

well understood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Time-dependent changes in the size of representative complexes of MntR20/DNA and 

SucR20/DNA. Complexes were incubated for 4 h in phosphate buffer saline at pH 7.4 and were analyzed 

by DLS every hour. Each bar represents the mean ± SD (n ≥ 3). 

  



Chapter 3 

86 

 
 
 
 

 

The stability of these particles overtime was also measured. The particle size of 

MntR20/DNA was 827.3 ± 26.7 nm within 9 h, while SucR/DNA has a size of 1053 ± 25.4 nm 

within 8 h. These indicate that DNA complexes formed with MntR20 or SucR20 significantly 

increased the stability of the complexes. The particle size of complexes increased with 

decreasing zeta potential, indicating the weak binding between DNA and polymers (data not 

shown). All results support that the mixture of PABE and mannitol or sucrose may promote the 

stability of complexes with DNA. 

 

3.4.3.3. Effect of sugar or sugar alcohol on in vitro transfection efficiency 

To accomplish the main objective of this Chapter, firstly, we developed the sugar-

modified formulation that can considerably enhance the stability of R/DNA complexes. As 

important as stability, the novel DNA-based complexes must play a fundamental role in the 

efficiency of transfection. In order to study the influence of sugar or sugar alcohol on gene 

transfection efficiency in vitro, all the experiments were performed in COS-7 cells, using pGFP 

plasmid DNA. Cells were incubated with complexes for 3 h and the results were analysed for 

GFP expression by flow cytometry at 48 h post-transfection as illustrated in Fig. 3.9. Non-

modified R/DNA (RD) complexes was used here as a positive control to compare the effect of 

mannitol, sucrose or trehalose on transfection efficiency. Based on optimized R/DNA 

complexes (the final concentration of 11-12 mM of buffer, RT, 10 min), sugar or sugar alcohol-

modified PBAE/DNA complexes were prepared. In the group of the coated complexes, a 

coating of 10 wt% of mannitol or 30 wt% of sucrose depicted higher transfection efficiency 

compared with non-coated complexes while the lowest expression efficiencies were seen 

using 20 wt% of mannitol and 10 wt% of trehalose. These results indicate the transfection 

efficiency of complexes is dependent on either amount or type of sugar or sugar alcohol, and 

mannitol and sucrose can enhance higher both stability and transfection of complexes than 

those of trehalsoe. In the group of complexes based on the polymer blending, overall high 

transfection efficiency was obtained from MntR/DNA and SucR/DNA. In particular, an 

appreciable increase of transfection efficiency with both 10 and 30 wt% of sucrose was 

observed for SucR10/DNA and SucR30/DNA complexes, respectively, being a 1.5- and 1.7-

fold, respectively, more effective than non-coated complexes. On the other hand, complexes 

having 20 wt% of sucrose (SucR20/DNA) demonstrated the lowest transfection efficiency 

among the mixture of sucrose. Interestingly, the polymer blending of mannitol resulted in 

similar trends for that of sucrose. MntR10/DNA and MntR30/DNA showed a 1.2-fold increase 

in transfection efficiency compared to RD complexes, while MntR20/DNA significantly 

decreased the transfection efficiency. These results confirm that the transfection efficiency of 

complexes is dependent on either weight percent or type of sugar, and sucrose and mannitol 

can promote higher both stability and transfection of particles than those of trehalose. Most of 

the mixture polymers with mannitol and sucrose showed much higher transfection efficiency 
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than the coated complexes. Moreover, SucR showed the highest expression efficiency among 

all complexes tested. Interestingly, there was observed a significant decrease in transfection 

efficiency for MntR20. This corresponds to the results obtained from the complexes coated 

with 20 wt% of mannitol (R/Mnt20%). The lowest transfection efficiency was detected for 

MntR20 and SucR20, which showed the best formulation and the highest stability, among 

their series. Similar trends were detected in the results of percentage of positive cells. Overall, 

the transfection efficiency was above 70%. It is well known that polymer/DNA binding helps 

determine particle stability, which is important to ensure that the DNA stays protected from 

degradation and has high cell uptake efficiency (Green et al., 2007-2008, Mintzer et al., 2009). 

However, it is also important to consider that the particle should not bind or encapsulate the 

DNA so tightly as to prevent the timely release of the DNA once in the cytoplasm (Green et 

al., 2008; Vuorimaa et al., 2011). According to this, the transfection efficiency is strongly 

correlated with the stability of complexes, indicating that the lower GFP expression after 

transfection with 20% of both mannitol and sucrose seems to be a result of the increased 

stability of these particles, which leads to decreased release of GFP within transfected cells. 

On the other hand, very low transfection efficiency was observed with the TreR-based 

complexes, which may be a result of the lower plasmid dosage of 0.075 µg/well. This dosage 

was used to avoid cytotoxicity resulting from the high TreR:DNA ratio of 100:1 that was 

needed for formulated complexes. In fact, we attempted to study the toxicity of TreR/DNA as 

same dosage as the other complexes (0.3 µg/well) and there was obtained very low viability of 

TreR/DNA complexes (data not shown), inducing the reduced plasmid dosage. As described 

in 3.1, PBAEs have lower cytotoxicity compared to other cationic polymers. However, 

increasing PBAE content, whether through increasing wt/wt content of PBAE within the 

particles, or via increasing NP dose, resulted in increasing toxicity of the particles (Fields et 

al., 2012). It is important to notice that the using at a 50:1 PBAEs to DNA weight ratio as the 

optimum ratio caused higher transfection efficiency with low toxicity as described previously. 

Thus, the use of the polymer blending of R and trehalose would be limited due to the lower 

transfection efficiency.  
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Fig. 3.9. Transfection efficiency of sugar or sugar alcohol-modified PBAE/DNA complexes in COS-7 cells 

was determined by flow cytometry. (A) Bars represent a percentage of GFP positive cells multiplied by the 

GeoMean fluorescence of the positive population. (B) GFP expression was determined after 48 h by flow 

cytometry and bars represent percentage of cells positively transfected and the normalized total gene 

expression. Each bar presents the mean ± SD (n ≥ 3). NC: negative control (the group without any 

treatment).  
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3.4.3.4. Cell viability  

All modified complexes were tested for their effect on cell viability of transfected cells. 

Most of complexes formulated at a 50:1 polymer:DNA weight ratio was tested using a plasmid 

dosage of 0.3 µg/well, while TreR/DNA complexes formulated at a 100:1 weight ratio of 

polymer to DNA was tested using a 0.075 µg DNA /well. As shown in Fig. 3.10, no significant 

decrease in cell viability was observed for all complexes tested in this study compared with 

the unmodified RD complexes, which presented cell viability ~81%. These results indicate that 

the sugar or sugar alcohol would be safer additives for modified-PBAE/DNA complexes. 

TreR/DNA complexes showed relatively lower viability among the complexes based on the 

polymer mixture although lower plasmid and polymer dosage per well was used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Cell viability of cells after transfection, measured using the MTS assay. Viability was determined 

at 48 h post-transfection. Bars represent a percentage of viable cells relative to a control of untreated cells 

(NC). Each bar represents the mean ± SD (n ≥ 3). 
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3.4.4. Chitosan-modified PBAE/DNA complexes 

In parallel with the development of sugar-modified formulations, we have designed 

and developed a chitosan-coated formulation of PBAE/DNA complexes nanoparticles. As 

described in 3.1, in general, chitosan as a non-viral vehicle for transferring DNA molecules 

into the cells has recently attracted much attention because of its unique properties such as 

high stability, but lack the efficacy in transfection compared to commercial agents. It is known 

that numerous factors affect the stability and transfection efficiency of chitosan-based 

nanoparticles. Among them, the molecular weight of chitosan is one of the most important 

factors to enhance the transfection efficiency. Here we have studied the effect of chitosan as a 

coating agent on stability, transfection efficiency and viability. Moreover, two different 

molecular weights were applied to evaluate the effect of this factor. 

3.4.4.1. Formulation and characterization of chitosan-coated R/DNA complexes 

The formation of PBAEs with DNA coated with CS (22 kDa) or CSM (60-120 kDa) 

added in a proportion ranging from 0.17 to 2.67 wt% of the PBAE polymers was confirmed by 

agarose gel electrophoresis. In comparison with the mobility of the naked pDNA, the 

movement of DNA was completely retarded in all test complexes. As shown in Fig. 3.11, DNA 

was retained completely at all differing weight ratios. These indicate that the addition of CS or 

CSM did not affect the PBAE/DNA complex formation ability.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.11. Gel retardation assay of R/DNA coated with CS or CSM. Complexes were formulated by mixing 

polymers and GFP in a weight ratio of 50:1 and loaded onto an agarose gel containing ethidium bromide to 

assess DNA mobility by electrophoresis.  
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The particle size and zeta potential of R/DNA complexes without or with a coating of 

0.17, 0.33, 0.67, 1.33, and 2.67 weight percent of CS or CSM was measured and the results 

are shown in Fig. 3.12. The particle size and zeta potential of R/DNA (RD) used as control 

was 149 nm and 19.5 mV, respectively. The RD complexes coated with CS (RDCS) ranged 

from 134 to 165 nm in the mean diameter and from 12 to 14 mV in zeta potential (Fig. 3.12A). 

There were obtained small differences in size between CS-coated complexes and non-coated 

complexes. However, zeta potential values show a notable decrease when prepared with CS. 

Interestingly, the smallest size was obtained when prepared with 0.67 wt% of CS, indicating 

that the size of complexes was not dependent on the amount of CS. In the case of a coating 

of CSM, the particle size of CSM-coated RD (RDCSM) complexes was found in a range of 

165-232 nm with a zeta potential of 10-3 mV (Fig. 3.12B). With an increased in the amount of 

CSM among coating complexes, the size of complexes increased considerably while zeta 

potential value decreased significantly, resulting in less compact complexes. These results 

suggest that the size and zeta potential of complexes were dependent on the amount of CSM. 

The complexes with 0.67 wt% of CS and 0.33 wt% of CSM was considered to be an optimal 

formulation among their series due to their small size, and high stability as described below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.12. The particle size and zeta potential of complexes coated with CS (A) and CSM (B) at various 

weight percent. Each bar represents the mean ± SD (n ≥ 3).    



Chapter 3 

92 

 
 
 
 

 

3.4.4.2. Effect of chitosan of different molecular weights on stability 

We have previously found that the sugar-modified formulations via both coating and 

blending significantly improved the stability of non-modified R/DNA complexes. In order to 

compare with the results obtained with the novel sugar-modified formulations, there has been 

studied the effect of chitosan on stability. The stability of R/DNA complexes prepared with a 

coating of 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of CS or CSM was measured. All the testing 

complexes were incubated for 4 h in PBS and analysed every hour and monitored changes in 

the particle size. The results of complexes comprising PBAE/DNA in combination with 

different amount of CS or CSM are shown in Fig. 3.13. Surprisingly, we saw an appreciable 

enhancement of the overall stability compared with both sugar-coated complexes and non-

coated one. In the case of a CS coating (Fig. 3.13A), all complexes coated with CS improved 

the stability over time and the size of them were less than 750 nm within 4 h. Notably, the 

particle size of RD coated with 0.67 wt% of CS was still less than 400 nm, indicating that 0.67 

wt% of CS may be an optimal content to sustain the formulation of RDCS complexes. On the 

other hand, there was shown a gradually increase in size of complexes with increasing the 

amount of CSM (Fig. 3.13B). The size of all CSM-coated complexes were still less than 450 

nm within 4 h, indicating that the coating of CSM were more stable than that of CS. These 

results confirm that the stability of complexes was strongly dependent on a coating agent of 

chitosan and its molecular mass is considered to influence the stability of PBAE/DNA 

complexes. In particular, the complexes coated with 0.33 wt% of CSM showed the smallest 

size and the highest stability among all testing complexes, indicating that this amount could be 

an optimal content for enhancing the stability of RDCSM complexes.   
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Fig. 3.13. Time-dependent changes in the size of R/DNA coated without or with 0.17, 0.33, 0.67, 1.33 and 

2.67 wt% of CS (A) and CSM (B). Complexes were incubated for 4 h in phosphate buffer saline at pH 7.4 

and were analyzed by DLS every hour. Each bar represents the mean ± SD (n ≥ 3).  
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3.4.4.3. Effect of chitosan of different molecular weights on transfection in vitro 

After studying the effect of a coating of chitosan and its different molecular weights on 

stability, the effect of those on transfection efficiency was studied. To accomplish this, all the 

experiments were performed in COS-7 cells, using pGFP plasmid DNA. The pGFP expression 

was determined by flow cytometry analysis at 48 h post-transfection. Results of flow cytometry 

and fluorescence microscopy are illustrated in Fig. 3.14. R/DNA complexes were reported 

higher gene expression in cell-type-specific manner and better cellular viability compared to 

other end-modified PBAE and commercial transfection agents (Segovia et al., 2014). Thus, 

non-coated RD was used here as a positive control to compare the influence of CS or CSM on 

the transfection efficiency. The objective of this study was to sustain high transfection 

efficiency of PBAE/DNA complexes when bearing chitosan as enhancing the stability.  

In the case of a coating of chitosan 60-120 kDa, the transfection efficiency of R/DNA 

coated with chitosan 60-120 kDa decreased noticeably with increasing the amount of CSM, 

indicating that CSM caused a significant decrease in transfection efficiency. The lower GFP 

expression after transfection with complexes comprising CSM seems to be a result of the 

increased size and the decreased zeta potential of these complexes, which leads to reduced 

release of GFP within transfected cells. In addition, it is also because the transfection 

efficiency of complexes formulated with chitosan is largely dependent on the pH of the 

medium due to its pKa, and efficiency is dramatically decreased at a transfection medium pH 

of 7.4 (Mao et al., 2010). On the other hand, with a coating of chitosan 20-40 kDa, GFP 

expression levels slightly decreased with increasing the amount of CS. However, all RDCS 

complexes except RDCS2.67 showed high transfection efficiency, which can be considered if 

it is ≥ 75% (Fig. 3.14C). These indicate that transfection efficiency mediated by chitosan of 

medium molecular mass was much less than that by chitosan of low molecular mass. 

Interestingly, higher gene expression was maintained at a coated with 0.67 wt% of CS, which 

showed the smallest size and the highest stability among the RDCS complexes. These 

confirmed that 0.67 wt% of CS may be an optimal weight for chitosan coating the PBAE/DNA 

complexes due to their relative small size, higher stability and transfection efficiency. As a 

result, there were observed the reduction in transfection efficiency of the overall chitosan-

coated complexes. Thus, this formulation still requires improving its transfection efficiency,  
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Fig. 3.14. Transfection efficiency of complexes with or without coating agents in COS-7 cells was 

determined by flow cytometry. (A) Fluorescent images of GFP expression in COS-7 cells: (i) RD; (ii) 

RDCS0.17; (iii) RDCSM0.17. (B) Bars represent a percentage of GFP positive cells multiplied by the 

GeoMean fluorescence of the positive population. (C) GFP expression was determined after 48 h by flow 

cytometry and bars represent percentage of cells positively transfected and the normalized total gene 

expression. Each bar presents the mean ± SD (n ≥ 3). NC: negative control (the group without any 

treatment).    
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3.4.4.4. Cell viability 

All modified complexes were tested for their effect on cell viability of transfected cells. 

Fig. 3.15 showed the viability of COS-7 cells in media treated with PABE/DNA/chitosan 

complexes. The viability of RDCS and RDCSM complexes increased with an increase in the 

amount of the coating agents. All chitosan coated complexes showed relatively high cell 

viability when compared to non-coated complexes. These results indicate that coating 

PBAE/DNA/chitosan complexes should be safer carriers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15. Cell viability of cells after transfection, measured using the MTS assay. Viability was determined 

at 48 h post-transfection. Bars represent a percentage of viable cells relative to a control of untreated cells 

(NC). Each bar represents the mean ± SD (n ≥ 3). 
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3.5. Concluding remarks 

We investigated the stability and cell transfection efficiency of PBAE/DNA complexes 

modified with mannitol, sucrose or trehalose as a non-viral gene delivery system. Our first 

approach was to develop a sugar coating formulation, which further improved the stability of 

complexes and maintained high transfection efficiency compared to non-coating complexes. 

Our second approach was to prepare DNA complexes based on a novel polymer mixture of 

PBAEs and mannitol, sucrose or trehalose (MntR, SucR or TreR). As compared with 

unmodified complexes, MntR and SucR enhanced considerably stability and transfection 

efficiency. We reported here that the novel surface-modified formulation with mannitol or 

sucrose provide an attractive biocompatible profile with high stability and transfection 

efficiency, high biodegradability and reduced toxicity, thus would be applied as a promising 

gene delivery vehicle.  

In parallel, we investigated the effect of chitosan and its molecular weight on the 

stability and transfection efficiency of the resulting PBAE/DNA/chitosan complexes. Therefore, 

we have developed promising PBAE/DNA/chitosan complexes via electrostatically coatings as 

non-delivery gene carriers to integrate the advantages of PBAE and chitosan. We found that 

the addition of chitosan with a 22 kDa (CS) led to enhanced stability of PBAE/DNA/CS 

compared to non-coated PBAE/DNA complexes while sustaining high transfection efficiency 

at the specific weight ratio. Chitosan with a 60-120 kDa (CSM) is superior to those with CS in 

enhancing the stability of complexes, but inhibit the release of DNA from its complex when 

using COS-7 cells, indicating of low transfection efficiency. On the other hand, CS exhibited 

enhanced stability compared to the RD complexes while transfection efficiency is slightly 

decreased with increasing the amount of CS. Consequently, CS for surface-modified 

formulations may be more efficient coating agent compared with CSM. However, chitosan-

coated formulation still remains to improve transfection efficiency. As discussed in the 

previous Chapter, the thiolated chitosan has been a promising polymer for gene delivery 

applications due to its efficacy for gene transfer. Thus, in the next Chapter, we will develop an 

engineer formulation modified with thiolated chitosan that can enhance the stability, 

transfection efficiency as well as mucus permeability. Moreover, polymer-bromelain 

conjugates will be applied as a coating agent for the PBAE/DNA formulations since it showed 

highest mucus permeability in Chapter 2. 
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4.1. Introduction 

As described in Chapter 3, we developed the novel formulation consisting of the 

poly(β-amino ester)s/DNA the coating agents stabilized by surface-modification strategies, and 

investigated the effect of the additives such as chitosan polymers on their stability and 

transfection efficiency. The results obtained in the previous Chapter demonstrated that 

chitosan-coated formulation of PBAE/DNA complexes significantly enhanced their stability with 

increasing the amount of chitosan, but presented lower transfection efficiency compared with 

non-coated formulations. According to this result, we hypothesize that the coating agents may 

play an important role in developing the delivery systems of macromolecular drugs. In this 

Chapter, therefore, our interest has been focused on the development the suitable coating 

agents, and further design and development of engineer PBAE/DNA formulations with the 

advanced coating agents in order to enhance stability and transfection level, and facilitate 

efficient mucus transport, which is the main objective of this Thesis.  

In the previous Chapter, we have chosen chitosan as coating agents for the 

PBAE/DNA formulations due to its favorable properties, such as biodegradability, 

biocompatibility, non-toxic, and high stability (Felt et al., 1998; Lee et al., 1998; Shu et al., 

2002; Lee et al., 2007; Mao et al., 2010). However, we found that its low transfection efficiency 

still limits its application as a gene delivery system. To overcome this problem, various 

modifications have been carried out on chitosan as an alternative for gene vectors. The 

abundant amine and hydroxyl groups on the chitosan backbone allow easy chemical 

modification which further enhanced its efficacy for gene transfer (Zhao et al., 2010). Thiolated 

chitosan is a class of chitosan derivatives showing desired features in the field of mucosal gene 

delivery (Guang 2002; Lee et al., 2007; Martien et al., 2007). As introduced in Chapter 1, since 

the concept of thiolated polymers-or so-called thiomers- had been pioneered in the late 1990s, 

thiolated chitosan polymers have gained considerable attention due to their valuable properties, 

especially mucoadhesive and permeation enhancing properties (Kast and Bernkop-Schnürch 

2001; Bernkop-Schnürch et al., 1999, 2003, 2004, 2007; Bravo-Osuna et al., 2007; Lichen et 

al., 2009; Anitha et al., 2010). These unique properties have been also investigated and 

described in detail in Chapter 2. 

Bernkop-Schnürch et al. firstly synthesized the thiolated chitosan polymers such as 

chitosan-cysteine (CS-Cys) (Bernkop-Schnürch et al., 1999). Thereafter, as shown in scheme 

4.1, various thiolated chitosans including, chitosan-thioglycolic acid (CS-TGA) (Kast and 

Bernkop-Schnürch 2001; Hornof et al., 2003), chitosan-tributylamidine (CS-TBA) (Bernkop-

Schnürch et al., 2003), chitosan-glutathione (CS-GSH) (Kafedjiiski et al., 2005), chitosan-

glutatione (CS-GSH), chitosan-6-mercaptonicotinic acid (CS-6MNA) and chitosan-N-acytel 

cysteine (CS-NAC) (Schmiz et al., 2008) have been synthesized and evaluated. Thiolated 

chitosans, which display thiol bearing side chains, were shown to improve the mucoadhesion 
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properties by forming covalent bonds with cysteine-rich subdomains of mucins via thiol-

disulfide exchange reactions. The bridging structure most commonly encountered in biological 

systems-the disulfide bond-has thereby been discovered for the covalent adhesion of polymers 

to the mucus gel layer of the mucosa (Bernkop-Schnürch et al., 2005). Moreover, thiolated 

chitosan exhibited significant enhancement of both transfection efficiency and mucosal 

permeation properties. For this reason, these thiolated chitosans have been recently used for 

the development of efficient mucosal delivery systems of macromolecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 4.1. Chemical structures of thiolated chitosan (Sakloetasakun et al., 2011).  

 
 
 

As explained in the previous paragraph, the free sulphydryl groups (-SH) can form 

disulfide bonds with cysteine-rich subdomains of mucus glycoproteins on cell membranes, 

thereby promoting cellular uptake of the thiolated chitosan/DNA complexes. This mechanism 

may result in high transfection efficiency (Loretz et al., 2007; Lee et al., 2007; Martien et al., 

2007; Schmitz et al., 2007; Zaho et al., 2010). However, it should be noteworthy that 

transfection of thiolated chitosan-based vectors is highly pH-dependent. Martien and coworkers 

reported that nanocarriers based on chitosan-thioglycolic acid conjugates (CS-TGA) improved 

gene transfer efficiency with low toxicity (Martien et al., 2007). This study was carried out at pH 

4 compared to pH 5, and the results showed that the transfection of nanoparticles was higher 

at pH 4 than those of pH 5. Lee et al. demonstrated that nanocomplexes composing CS-TGA 

and DNA exhibit a significantly higher gene transfer potential and sustained gene expression, 

indicating their great potential for gene therapy. Both unmodified and thiolated chitosans 
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showed considerably higher transfection efficient at pH 7 than at pH 7.5 (Lee et al., 2007). 

Recently, Li et al. developed the novel gene vector based on poly[poly(ethylene glycol) 

methacrylate]-CS-GSH (CS-PMPEG-GSH) conjugates that improved the binding ability to cell 

membrane efficiency, resulting in high transfection efficiency compared to unmodified chitosan 

or CS-PMPEG. However, they showed still lower transfection efficiency at pH 7.2 compared to 

commercial transfection agents such as polyethylenimine (PEI) (Li et al., 20011). To our 

knowledge, applications of thoilated chitosans in gene delivery systems are still limited due to 

low transfection efficiency under physiological pH conditions. Thus, thiolated chitosan have 

been employed here as coating agents in order to formulate the novel mucosal drug delivery 

systems consisting of PBAE/DNA and thiolated chitosan. We propose that these formulations 

can integrate the benefits of both PBAEs and coating agents with minimizing their 

disadvantages.  

With the same hypothesis mentioned above, proteolytic enzymes have been also 

applied as the coating agents in order to achieve the main objective of this Thesis, which is to 

develop the delivery systems based on PBAE/DNA that can enhance stability and transfection 

efficiency, and cross the mucus gel layer. Proteases such as trypsin, papain or bromelain are 

well established to cleave protein structures within the mucus, resulting in reducing rheological 

properties of mucus (Majjima et al., 1988; Lai et al., 2009). Thereby, they can play as mucolytic 

agents.   

In this sense, nanoparticles based on biopolymers in combination with proteolytic 

enzymes have been recently considered as promising nanocarriers for facilitated deep mucus 

penetration (Müller et al., 2014; Samaridou et al., 2014). Müller and coworkers studied the 

efficiency of proteolytic enzymes such as trypsin, chymotrypsin, papain, bromelain, pepsin, and 

proteinase. Among all enzyme tested, papain and proteinase exhibited a considerable 

decrease in the viscous and elastic properties of mucus through the enzymatic breakdown of 

complex protein substances (Müller et al., 2013). In addition, they firstly synthesized 

poly(acrylic acid)-papain conjugates by covalent attachment of papain to poly(acrylic acid), and 

prepared nanoparticles by ionic gelation. The results exhibited that these conjugates facilitated 

their transport through the mucus layer (Müller et al., 2014). Recently, Köllner et al. supported 

that the nanocarriers composed of poly(acrylic acid) and mucolytic enzyme such as papain, 

cysteine or papain-cysteine, considerably improved the particle transport rates and decreased 

the viscoelastic properties of the mucus compared to unmodified (Köllner et al., 2015). 

Afterward, it was compared that other mucolytic enzyme bromelain, which is a cysteine 

protease (thiol protease) derived from the stem of the pineapple plant (Borrelli et al., 2012), 

exhibited more significant effect in altering the mucus structure and higher performance in 

permeating the mucus layer comparison with poly(acrylic acid)-papain (Pereira de Sousa et al., 

2015). For this reason, poly(acrylic acid)-bromelain conjugates have been chosen for this study 

as coating agents for PBAE/DNA complexes. In fact, in Chapter 2, we have evaluated and 



Chapter 4 

108 

 
 
 
 

 

studied the interaction between mucin and the several mucosal delivery systems using the 

quartz crystal microbalance with dissipation (QCM-D) technique. Among all nanocarriers tested 

using QCM-D, nanoparticles bearing with bromelain have shown the highest permeation 

through the mucin layer. For investigating the interaction of particles with mucus, in this 

Chapter, the novel mucosal nanocarriers have been assessed for the mucus permeation 

behaviour by rotating silicone tube technique and/or multiple particle tracking (MPT).  

After preparing two different coating agents; chitosan-thioglycolic acid (CS-TGA or CT) 

and poly(acrylic acid)-bromelain (PAA-BRO or PB) conjugates, we have designed and 

developed the surface-modified formulation of PBAE/DNA with coating agents via electrostatic 

interaction. We propose that this coating formulation can show the synergistic effect of 

PBAE/DNA, related to high transfection efficiency, and the coating agents, related to high 

stability and facilitating particle transport through the mucus layer.  

 

 

 

4.2. Aim and scope of this Chapter 

As presented above, the first aim of this Chapter is to develop a simple surface-

modified formulation of PBAE/DNA complexes with different amounts of CS-TGA via 

electrostatic interaction. PBAEs bearing with arginine (R), which showed higher gene 

expression among non-mixtures of PBAEs, have been chosen as control. Here PBAEs bearing 

with other oligopeptides such as histidine (H) and lysine (K) have been applied. The polymer 

mixture of K/H and R/H-based complexes has been chosen for this study since it showed 

highest transfection efficiencies for COS-7 cells in comparison with other PBAEs bearing 

oligopeptide moieties, but with inferior viability (Segovia et al. 2014). The results show that the 

coating PBAE/DNA/CS-TGA complexes improved significantly the stability with increasing the 

amounts of CS-TGA. In addition, there are observed the sustained high transfection efficiency 

with low toxicity and the improved particle diffusion through the mucus layer. 

The second aim of this Chapter is to develop a coating formulation of the cationic 

PBAE/DNA complexes with anionic PAA-BRO via electrostatic interaction. The formation of 

complexes having different amount of coating agents is determined using agarose gel 

electrophoresis. The effect of the variety of PAA-BRO on physicochemical properties and 

particle diffusion studies using two different techniques are investigated. Furthermore, 

transfection efficiency and cytotoxicity are evaluated in COS-7 cells. The non-coating 

PBAE/DNA complexes without PAA-BRO are used as a control. The results show the coating 

PBAE/DNA/PAA-BRO complexes could improve particle penetration through the mucus layer, 

stability and transfection efficiency with low cytotoxicity. 
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To achieve these aims the following steps will be developed: 

 To synthesize and characterize poly(β-amino ester)s bearing with arginine, histidine 

and lysine (R, H and K). 

 

 To prepare the polymer mixtures (K/H and R/H) 

 

 To synthesize and characterize chitosan-thioglycolic acid (CS-TGA) and poly(acrylic 

acid)-bromelain (PAA-BRO) conjugates. 

 

 To develop the thiolated chitosan-coated PBAE/DNA formulations, which were 

formulated with a coating of 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of CS-TGA, and 

these formulations incorporating fluorescence dye Lumogen. 

 

 To evaluate stability, transfection efficiency, cell viability and particle diffusion study 

of the developed PBAE/DNA/CS-TGA. 

 

 To develop the proteolytic enzyme-coated PBAE/DNA formulations, which were 

formulated with a coating of 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of PAA-BRO, and 

these formulations incorporating fluorescence dye Lumogen. 

 

 To evaluate stability, transfection efficiency, cell viability and particle diffusion study 

of the developed R/DNA/PAA-BRO. 

 

 

 

4.3. Experimental section 

 

4.3.1. Materials 

Reagents and solvent were obtained from Sigma Aldrich and used as received, unless 

otherwise stated. Chitosan (22 kDa) with a degree of deacetylation of 85% was purchased 

from Fluka (Vienna, Austria). HS-Cys-Arg-Arg-Arg-NH2 (CR3), H-Cys-Lys-Lys-Lys-NH2 (CK3), 

H-Cys-His-His-His-NH2 (CH3), H-Cys-Asp-Asp-Asp-NH2 (CD3) and H-Cys-Glu-Glu-Glu-NH2 

(CE3) were obtained from GL Biochem Ltd. (Shanghai, China). Lumogen red was purchased 

from Kremerpigmente GmbH & Co.KG (Aichstetten, Germany).  Bicinchoninic acid kit (BCA) 

was purchased from Thermo Scientific (Vienna, Austria). Native porcine intestinal mucus 

(PImucus) was purified and kindly provided by Prof. Jeffrey Pearson of Newcastle University 

(UK). Plasmid DNA encoding green fluorescent protein (pmaxGFP, 3486 bp) was purchased 
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from Amaxa Inc. (Gaithersburg, MD, USA). COS-7 cells were obtained from ATCC 

(Manassas, VA) and cultured in DMEM (Gibco) supplemented with 10% fetal bovin serum 

(FBS), 1% Glutamine and 1% Streptomycin/Penicillin (complete DMEM). All regents were 

analytical grade and used without further purification.   

 

4.3.2. Synthesis and characterization of polymers 

4.3.2.1. Oligopeptide-terminated PBAEs  

 

The procedure of synthesis of acrylate or oligopeptide-terminated poly(β-amino 

ester)s (PBAEs) has been described in detail in 3.3.2. In brief, oligopeptide-modified PBAEs 

were synthesized by end-modification of acrylate-terminated C32 with thiol-terminated 

oligopeptide at 1:2.5 molar ratio in dimethyl sulfoxide (DMSO). The mixture was stirred at 

room temperature for 24 h and the resulting polymer was purified by precipitation in diethyl 

ether and acetone for twice and dried under vacuum. The polymers were then dissolved at 

100 mg/ml in DMSO and stored at -20 ºC until further use. The chemical structure of the 

oligopeptide-modified PBAEs was confirmed by 
1
H-NMR spectroscopy. The chemical 

structure of the acrylate-terminated and the oligopeptide-terminated PBAE polymers were 

confirmed by 
1
H-NMR, which was conducted on a Varian NMR instrument operating at 400 

MHz.  

 
1
H-NMR of R (400 MHz, CD3OD, TMS), δ (ppm): 4.45-4.35 (br, NH2COCHNHCOCHNH- and 

COCHNHCOCHCH2-), 4.15 (t, CH2CH2O), 3.56 (t, –N(CH2)4CH2OH), 3.22 (br, NH2C(NH)2CH2- 

and –N(CH2)4CH2OH), 3.09 (br, CH2CH2N-), 2.85 (br, -CH2SCH2-), 2.78 (m, CH2CH2N-), 2.67 

(br, NH2C(NH)2CH-), 1.92 (m, NH2C(NH)2(CH2)2CH2CH-), 1.75 (br, -OCH2(CH2)2CH2O), 1.57 

(br, -N(CH2)2COOCH2CH2–), 1.3-1.4 (br, –NCH2(CH2)3CH2OH). 

1
H-NMR of K (Tri-lysine end-modified PBAE polymer, K3C-C32-CK3) (400 MHz, CD3OD, TMS), 

δ (ppm): 4.38-4.29 (br, NH2(CH2)4CH-) 4.13 (t, CH2CH2O-), 3.73 (br, NH2CHCH2S-), 3.55 (t, 

CH2CH2OH), 2.94 (br, CH2CH2N, NH2CH2(CH2)3CH-), 2.83 (dd, -CH2SCH2-), 2.57 (br, -

NCH2CH2COO-), 1.86 (m, NH2(CH2)3CH2CH-), 1.73 (br, -OCH2CH2CH2CH2O), 1.69 (m, 

NH2CH2CH2(CH2)2CH-), 1.54 (br, -CH2CH2CH2CH2OH), 1.37 (br, -N(CH2)2CH2(CH2)2OH). 

1
H-NMR of H (Tri-histidine end-modified PBAE polymer, H3C-C32-CH3) (400 MHz, CD3OD, 

TMS), δ (ppm): 8.0-7.0 (br, -NCHNHCCH-), 4.60-4.36 (br, -CH2CH-), 4.17 (t, CH2CH2O), 3.56 (t, 

CH2CH2OH), 3.05 (dd, -CH2CH-), 2.88 (br, OH(CH2)4CH2N-), 2.83 (dd, -CH2SCH2-), 2.72 (br, -

NCH2CH2COO), 1.65 (m, NH2CH2CH2(CH2)2CH-), 1.56 (br, -CH2CH2CH2CH2OH), 1.39 (br, -

N(CH2)2CH2(CH2)2OH).   
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1
H-NMR of D (Tri-aspartic acid end-modified PBAE polymer, D3C-C32-CD3) (400 MHz, 

CD3OD, TMS), δ (ppm): 4.44-4.55 (br, NH2COCHNHCOCHNH- and COCHNHCOCHCH2-4.11 

(br, NH2CHCH2S–),  3.9-4.03 (t, –N(CH2)2COOCH2CH2–), 3.36 (t, –N(CH2)4CH2OH), 2.95(dd, 

-CH2SCH2-), 2.64–2.78 (m, –COOCH2CH2N–), 2.47–2.49 (t,– CHCH2COO-),  1.62 (br, –

N(CH2)2COOCH2CH2– and CH2CHCOOCH2CH2–), 1.23–1.4 (br, –NCH2(CH2)3CH2OH). 

 

1
H-NMR of E (Tri-glutamic acid end-modified PBAE polymer, E3C-C32-CE3) (400 MHz, 

CD3OD, TMS), δ (ppm): 4.22-4.36 (br, NH2COCHNHCOCHNH- and COCHNHCOCHCH2-4.13 

(br, NH2CHCH2S–), 4.04 (t, –N(CH2)2COOCH2CH2–), 3.38 (t, –N(CH2)4CH2OH),  2.95(dd, –

CH2SCH2–),  2.64–2.78 (m, –COOCH2CH2N–),  2.47–2.49 (t,–CHCH2CH2COO–, -

CHCH2CH2COO–, –CHCH2CH2COO–),  1.62 (br, –N(CH2)2COOCH2CH2– and 

CH2CHCOOCH2CH2–), 1.25–1.4 (br, –NCH2(CH2)3CH2OH). 

 

 

4.3.2.2. Chitosan-thioglycolic acid conjugates 

The covalent attachment of thioglycolic acid (TGA) to chitosan was achieved by the 

formation of amide bonds between the primary amino groups of the polymer and the 

carboxylic acid group of TGA (Friedl et al., 2013). Briefly, 500 mg of chitosan was dissolved in 

2% of acetic acid and then adjust to pH 5 with 5 M sodium hydroxide. Additionally, 500 mg of 

TGA was dissolved in demineralized water and TGA was chemically treated with 

ethyl(dimethylaminopropyl)carbodiimide (EDAC) in a final concentration of 50 mM in order to 

activate the carboxylic acid moieties. Afterward, activate TGA solutions were slowly added in 

chitosan solution and adjust to pH 5. The mixture solution was vigorously stirred at room 

temperature for 3 h and dialyzed (MWCO 12 kDa) for 3 days at 10 ºC. The resulting solutions 

were lyophilized and stored at 4 ºC until further use.   

The degree of modification was determined with Ellman’s reagent quantifying free thiol 

groups, as described by Friedl et al (Friedl et al., 2013). In brief, 0.5 mg each conjugate was 

hydrated in 250 µl of demineralized water. Then, 250 µl of 0.5 M phosphate buffer at pH 8 and 

500 µl of Ellman’s reagent (3 mg of and 5,5’-dithiolbis(2-nitrobenzoic acid) dissolved in 10 mL 

of 0.5 M phosphate buffer at pH 8) was added and the mixture was incubated for 2 h at 37 ºC 

in dark. 150 µl of each sample was then transferred into a 96-well plate and the absorbance 

was measured at 450 nm using a microplate reader (TECAN infinite M200 spectrophotometer, 

Austria). The amount of free thiol groups was calculated using a standard curve obtained by 

chitosan solutions with increasing concentration of L-cysteine prepared in exact the same way 

as the samples. The disulfide content was evaluated after reduction with NaBH4 and 

determined by Ellman’s reagent. The total amount of these moieties is represented by the 

summation of reduced thiol groups and oxidized thiol groups in form of disulfide bonds 

(Sakloestusakun et al., 2009).  
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4.3.2.3. Poly(acrylic acid)-bromelain conjugates 

Poly(acrylic acid)-bromelain (PAA-BRO) conjugates were synthesized as previously 

described (Pereira de Sousa et al., 2015). Briefly, 3.26 g of PAA solution (0.01 mmol) was 

dissolved in 1 L of demineralized water and adjust to pH 6. Then, 5g of EDAC and 3 g of NHS 

dissolved in 100 mL of demineralized water were added to the PAA solution and stirred for 1 

h. Thereafter, 1.42 g of BRO (0.043 mmol) dissolved in 500 mL of demineralized water was 

slowly added to the reaction solution and stirred for 24 h at 10 ºC. The mixture solutions were 

dialyzed for 3 days at 10 ºC, lyophilized and stored at 4 ºC until further use.  

The amount of enzyme conjugated to polymers was determined by micro BCA protein 

assay as described earlier (Pereira de Sousa et al., 2015). Briefly, the conjugates were 

dissolved in 0.1 M NaOH solution containing 1.5 wt% of sodium dodecyl sulfate to obtain a 

concentration of 0.1 mg/mL. The mixtures were incubated at room temperature in a 

thermomixer (Thermomixer Conform; Eppendorf, Hamburg, Germany) under constant 

shaking, 1000 rpm for 2h. Finally, 150 µl of each sample was transferred into a 96-well plate 

and the absorbance was measured at 562 nm using the microplate reader. The amount of 

enzyme was extrapolated by fitting the data to a calibration curve obtained via analyzing 

solution with different concentration of bromelain. The enzyme content of polymers was 

reported on a weighted base as the ratio between the amount of conjugated enzyme and the 

amount of polymers. 

 

4.3.3. Formulation of complexes  

4.3.3.1. PBAE/DNA complexes with CS-TGA 

Complexes were formulated by mixing polymer and pGFP (plasmid green fluorescent 

protein) in a weight ratio of 50:1. The PBAE solutions and pGFP solutions were diluted to 25 

mM sodium acetate (NaAc, pH 5.2) to a final concentration of 6 mg/ml and 0.06 mg/ml, 

respectively. The chitosan-TGA conjugates (CS-TGA or CT) were dissolved in the same 

buffer (1.6 mg/ml) and filtered through 0.2 μm. The CT stock solution was diluted with 25 mM 

NaAc in a proportional ranging from 0.17 to 2.67 wt% relative to the wt% of PBAE solutions 

when mixed with the PBAE solution. Briefly, 50 μl of diluted CT solution was added to 50 μl of 

diluted PBAE solution, and vigorously mixed with vortex. 100 μl of diluted pGFP was then 

added to the mixture PBAE/CT solutions, mixed with vortex and incubated at room 

temperature for 10 min. The formulation of mixture PBAE polymers was prepared with lysine-

histidine (K/H) or arginine-histidine (R/H) at 1:1 weight ratio.  

  



113 

Engineering mucus permeating nanoparticles  
 
 
    

 

4.3.3.2. PBAE/DNA complexes with PAA-BRO 

Nanocomplexes were formulated by mixing polymer and pGFP (plasmid green 

fluorescent protein) in a weight ratio of 50:1. The R polymer solution and pGFP solution were 

diluted to 25 mM sodium acetate (NaAc, pH 5.2) to a final concentration of 6 mg/ml and 0.06 

mg/ml, respectively. The PAA-BRO was dissolved in the same buffer (0.8 mg/ml) and filtered 

through 0.2 μm. The PAA-BRO stock solution was diluted with 25 mM NaAc in a proportion 

ranging from 0.17 to 1.33 wt% relative to the wt% of PBAE solutions when mixed with the 

PBAE solution. Briefly, 100 μl of diluted pDNA was added to 50 μl of diluted R solution, and 

gently mixed with vortex. 50 μl of diluted PAA-BRO was then added to the mixture solution, 

mixed vigorously with vortex and incubated at room temperature for 10 min. As control, 

R/DNA complexes were formulated by same process as described for complexes coated with 

PAA-BRO above. In this case, 0.06 mg/ml of pDNA was mixed into 3 mg/ml of R solution. 

 

4.3.3.3. Coating the complexes labeled with Lumogen 

For permeation study, 6.1 μl of Lumogen solution (0.5 mg/ml in DMSO) was mixed 

into R solution and incorporated into complexes. The resulting labeled particle suspension 

was used for further particle diffusion and tracking analysis. 

 

4.3.4. Characterization of complexes 

The particle size, zeta potential, and stability of complexes were determined, diluted in 

phosphate-buffered saline (PBS) at pH 7.4, by DLS using a Zetasizer Nano ZS (Malvern 

Instruments, Ltd., UK) at 25 ºC. Each experiment was carried out in triplicate and the means ± 

SD result was reported.  

Complex formulation was evaluated by agarose gel electrophoresis. PBAE/DNA 

complexes modified with or without coating agents were loaded onto a 0.8% agarose gel in 

Tris-Acetate-EDTA (TAE) buffer containing ethidium bromide (1µg/ml). The samples were run 

on the gel at 120 V for 80 min (Apelex PS305, France) and visualized using UV irradiation. 

 

4.3.5. In vitro transfection and flow cytometry 

Cellular transfection was carried out using pDNA plasmid in COS-7 cells. Cells were 

seeded on 96-well plates at a density of 1 x 10
5
 cells/well in 150 µl of DMEM medium and 

incubated overnight to reach 80% confluence. PBAE/DNA incorporated with or without coating 

agents such as CT or PAA-BRO were prepared as described above (polymer/DNA = 50/1, 

wt/wt). Complexes were diluted in serum-free DMEM medium and added to cells at a final 
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plasmid concentration of 0.3 µg DNA/well. Briefly, 33 µl of complexes were diluted into 450 µl 

of serum-free DMEM medium and cells were washed once with PBS. Then, 150 µl of the 

resulting solutions were added to each well, achieving a final concentration of 0.3 µg 

DNA/well. Cells were incubated for 3 h and washed once with PBS, and incubated in 

complete DMEM. After 48 h, cells were imaged using fluorescence microscopy and then 

prepared for analysis by flow cytometry (BD LSRFortessa cell analyzer) to look for GFP 

expression. Untreated cells were used as a negative control. The non-coating PBAE/DNA 

complexes without the coating agents were used as a positive control. 

 

4.3.6. Cytotoxicity assay 

MTS assay (CellTiter 96
® 

AQueous One Solution Cell Proliferation Assay, Promega 

Corporation, USA) was used to assess the viability of COS-7 cells transfected with 

complexes. Cell viability was evaluated 48 h after transfection using MTS assay as instructed 

by the manufacturer. At 48 h after transfection, the medium was removed, cells were washed 

with PBS and complete medium supplemented with 20% MTS reagent (v/v) was added. Cells 

were incubated at 37 °C and the absorbance was measured at 490 nm using a microplate 

reader (Elx808 Biotek Instruments Ltd, USA). Cell viability was expressed as a relative 

percentage compared with untreated cells. 

 

4.3.7. Diffusion study 

To investigate the transport of nanocomplexes across the mucus barrier, a 

quantitative permeation study in PImucus was performed following a method described 

previously by Köllner et al. (Köllner et al., 2015). In brief, 200 μl of PImucus was slowly filled in 

a silicon tube with a length of 30 mm and a diameter of 3 mm and closed on one end with a 

silicon cap. 50 μl of each labeled particle suspension was added into the other open end and 

closed with another silicon cap. As blank value, 50 μl of diluted Lumogen solution in NaAc 

without particles was prepared by same process as described above for labeled particle 

suspension. All tubes were incubated at 37 °C for 4 h under continuous rotation. Thereafter, 

the tubes were frozen at -80 °C for 1 h and cut into 10 slices of 2 mm length. Each slice was 

treated with 200 μl of DMSO, and vigorously vortexed and ultrasonicated for 1 h. Afterwards it 

was left at room temperature for 24 h. Fluorescence was determined in order to assess the 

depth of diffusion into the mucus. The resulting fluorescence was determined using 100% 

value of each particle suspension.  
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4.3.8. Multiple particle tracking 

Nanoparticle diffusion through intestinal mucus was assessed by multiple particle 

tracking (MPT) (Hanes and Lai 2007). The MPT technique can track particle displacement 

with a resolution to within 5 nm (Apgar et al., 2000). Samples (0.5 g) of mucus were incubated 

in glass-bottom MatTek imaging dishes at 37 °C. The fluorescently labelled NPs were 

inoculated into each 0.5 g mucus sample in a 25 µl aliquots.  To ensure effective particle 

distribution within the matrix a 2 hr period of equilibration was allowed following inoculation 

and prior to video microscopy capture of NP movement within the mucus. Video capture  

involved 2-dimensional imaging on a  Leica DM IRB wide-field epifluorescence microscope 

(x63 magnification oil immersion lens) using a high speed camera  (Allied Vision 

Technologies, UK) running at a frame rate of  33 ms i.e. capturing 30 frames sec
-1

;  each 

completed video film comprised 300 frames. For each 0.5 g mucus sample approximately 120 

NPs were simultaneously tracked and their movements captured. For any distinct NP species, 

e.g. a particular polyelectrolyte mass ratio, a minimum of three distinct mucus samples were 

analysed, i.e. minimum of 360 individual NP trajectories assessed.  

Videos were imported into Fiji ImageJ software which converts the movement of each 

NP into individual NP trajectories across the full duration of the 10 videos.  However, for the 

analysis of particle diffusion only a 30 frame video period (1 sec) was used where the 

respective particle must have displayed a continuous presence in the X-Y plane for the 30 

sequential frames.  Limiting the period of analysis to 30 frames minimises the impact of mucin 

movement upon the particle diffusion calculations (Lai et al., 2007).  The individual particle 

trajectories were converted into numeric pixel data (Mosaic Particle Tracker within Fiji 

ImageJ). This data was then converted from pixels into metric distance based on the 

microscope and video capture settings. The distances moved by each particle over a selected 

time interval (Δt) in the X-Y trajectory were then expressed as a squared displacement (SD). 

The mean square displacement (MSD) of one particle represents the geometric mean of the 

particle’s squared displacements throughout it’s entire trajectory (Griessinger et al., 2014). 

MSD was determined as follows (Macierzanka et al., 2014): 

MSD(n) = (XΔt)
2 

+ (YΔt)
2
  (equation 4.1) 

In any single experiment an MSD was calculated for at least 120 individual droplets 

with the experiment replicated a further two times, i.e. 360 droplets studied in total. For each 

droplets species under study an “ensemble mean square displacement” (defined by ‹MSD›) 

was determined for each of the three replicate studies. The effective diffusion coefficient 

(‹Deff›) for a particular droplets species was then calculated by: 

‹Deff› = ‹MSD›/(4 * Δt) (equation 4.2) 
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where 4 is a constant relating to a 2-dimensional mode of video capture and Δt is the 

selected time interval. 

Proportion of diffusive droplets: Measuring droplet diffusion across various time 

intervals allows description of the proportion of droplets that are diffusive through the mucus 

matrix (Lai et al., 2007). Equation 3 was used to determine a diffusivity factor (DF) which 

expresses the effective diffusion coefficient for each individual droplet (Deff) across the time 

intervals (Δt) of 1 s and 0.2 s 

DF = Deff Δt=1 s / Deff Δt=0.2 s (equation 4.3) 

where the individual droplet Deff = MSD/(4 * Δt). Droplets with a DF value of 0.9 and 

greater were defined as diffusive. The proportion of diffusive droplets within a given droplets 

type was then calculated and expressed as % Diffusive droplets. 

Heterogeneity in droplet diffusion: Profiling the diffusive properties of each droplet 

within an entire population provides information on the heterogeneity of droplet movement and 

the presence of outlier sub-populations indicative of distinctive pathways of diffusion through 

the matrix. Here the effective diffusion coefficient for each individual droplet (Deff) was 

calculated at the time interval (Δt) of 1 s, and for any droplets type all 360 Deff Δt=1 s were then 

ranked to allow comparison of the highest (90
th
) and lowest (10

th
) percentiles, where for 

example the 90
th
 percentile is the Deff value below which 90% of the Deff observations may 

be found. 

Droplet diffusion in water: The droplets’ diffusion coefficient (D°) in water was 

calculated by the Stock-Einstein equation at 37 C°(Philibert 2005):  

[D° = κT / 6πηr]  (equation 4.4) 

where  is Boltzmann constant, T is absolute temperature, η is water viscosity, r is 

radius of the droplet. The diffusion of all droplets was also expressed as the parameter, % 

ratio [Deff] /[D°]. 

 

 

  



117 

Engineering mucus permeating nanoparticles  
 
 
    

 

4.4. Results and discussion 

 

4.4.1. Synthesis and characterization of polymers 

4.4.1.1. Oligopeptide-terminated PBAEs  

In Chapter 3.4.1, the synthesis of both acrylate-terminated C32 intermediate polymers 

was described in detail. This C32 polymer was applied for synthesis of all oligopeptide-

terminated poly(β-amino ester)s (PBAEs). Synthesis of oligopeptide-terminated PBAEs was 

followed via two-steps procedure (Scheme 4.2). Oligopeptide end-modified PBAEs were 

obtained via addition of the thiol group of cysteine-oligopeptide moieties consisting of basic 

amino acids, i.e. arginine, lysine, histidine, glutamic acid and aspartic acid, to the acrylate-

terminated end-groups of C32 polymer (Table 4.1). Oligopeptide-terminated PBAEs were 

characterized in terms of molecular structure by 
1
H-NMR spectroscopy. The chemical 

structure of oligopeptide-modified PBAEs was confirmed by the disappearance of acrylate 

signals and the presence of signals typically associated with amino acid moieties. All polymers 

were obtained from the same C32 precursor. PBAEs bearing with glutamic acid and aspartic 

acid were used in Chapter 2.4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2. Synthesis of oligopeptide-modified poly(β-amino ester)s. Terminal groups (G): arginine-, 

lysine-, histidine-, glutamic acid- and aspartic acid- oligopeptide. 
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Table 4.1. Synthesized oligopeptide-modified PBAE polymers and 
corresponding end-capping moieties.  

Oligopeptide-modified PBAEs Cysteine-oligopeptide moieties 

Arginine-modified PBAEs, 

R or CR3-C32-CR3 

 

 

Lysine-modified PBAEs, 

K or CK3-C32-CK3 

 

Histidine-modified PBAEs, 

H or CH3-C32-CH3 

 

Aspartate acid-modified PBAEs,  

D or CD3-C32-CD3 

 

Glutamate acid-modified PBAEs,  

E or CE3-C32-CE3 
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4.4.1.2. Chitosan-thiolglycolic acid conjugates 

As it has been described before, in this Chapter, we have chosen two promising 

candidates as coating agents for the surface-modification of PBAE/DNA complexes. Thiolated 

chitosan is one of them. Scheme 4.3 shows the chemical structure of an immobilization of thiol 

groups on chitosan. The amount of free and total thiol groups was quantified according to the 

method described above (Friedl et al., 2013). CS-TGA exhibited 402.15 ± 26.32 µmol free 

thiol groups and 408.87 ± 26.32 µmol disulfide bonds per gram polymer. A control was 

prepared in the same way as the CS-TGA conjugate but without the carbodiimide (EDAC) 

during the coupling reaction. This polymer displayed a negligible amount of remaining trace of 

TGA. After freeze-drying, the final products were obtained white powder of fibrous structure. 

 

 

 

 

 

 
 
 
Scheme 4.3. Synthesis of chitosan-thiolglycolic acid conjugates. 

 
 

4.4.1.3. Poly(acrylic acid)-bromelain conjugates 

Poly(acrylic acid)-bromelain (PAA-BRO) conjugates is the other candidate chosen for 

the surface-modification of nanocarriers. The covalently attachment of PAA-BRO conjugates 

were performed via the formation of amide bond between carboxylic group of poly(acrylic 

acid) and amine group of bromelain. EDAC and NHS were used to improve the coupling rate 

of the enzyme (Köllner et al., 2015). Compared with free forms, immobilized enzymes are more 

stable and easier to handle (Homaei et al., 2010). The amount of enzyme conjugated to PAA 

was determined via micro BCA protein assay to be 789.31 ± 4.5 µg of enzyme per milligram of 

polymer. After freeze-drying, the final products appeared as white powder of fibrous structure. 
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4.4.2. PBAE/DNA complexes coated with CS-TGA 

4.4.2.1. Formulation and characterization of complexes 

In this Chapter, we have investigated the design and development of surface-

modification formulation of PBAE/DNA with CS-TGA capable of enhancing stability, 

transfection efficiency with low cytotoxicity, and crossing the mucus layer. With thiolated-

chitosan coating formulations, the mixtures of PBAE bearing lysine/histidine (K/H) and 

arginine/histidine (R/H) were selected for this study because they showed higher gene 

expression relatively to other oligopeptide-modified polymers (Segovia et al., 2015). The 

formation of PBAEs with DNA having different weight ratios of CS-TGA was confirmed by 

agarose gel electrophoresis (Fig. 4.1). In comparison with the mobility of the naked pDNA, the 

movement of DNA was completely retarded in all test complexes. In other words, there was 

observed no significant DNA release when the PBAE/DNA complexes were coated with CS-

TGA. These indicate that the addition of CS-TGA did not alter the formation ability of the 

PBAE/DNA complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Gel retardation assay of R/DNA coated with CS-TGA. Complexes were formulated by mixing 
polymers and GFP in a weight ratio of 50:1 and loaded onto an agarose gel containing ethidium bromide to 
assess DNA mobility by electrophoresis. 
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 The particle size and zeta potential of the novel complexes comprising PBAEs and 

thiolated chitosan at 0.17 to 2.67 wt% were determined using a Zetasizer and the results are 

shown in Fig. 4.2. As control, unmodified R/DNA (RD) complexes were performed and had a 

mean size of 133 nm with a positive zeta potential of 20.5 mV (Fig. 4.2A). The RD complexes 

coated with differing amount of CS-TGA ranged from 130.4 to 192.6 nm in particle size and 

from 17 to 7.6 mV in zeta potential. The size of each sample is smaller than 200 nm and the 

smallest size was obtained when modified with 0.67 wt% of CS-TGA. There were small 

differences in size observed between complexes with or without CS-TGA. However, zeta 

potential values show a noticeable decrease with the small amount of the coating agents. 

These results indicate that the CS-TGA was completely covered on the surface of complexes. 

Moreover, they suggest that a range of amount of CS-TGA had an influence on the particle 

size and the surface charge of complexes. In the case of K/H mixtures of PBAEs, the particle 

size and zeta potential of K/H/DNA (K/HD) complexes were 237.8 nm and 17 mV, respectively 

(Fig. 4.2B). Compared to RD complexes, larger size was obtained, but similar zeta potential. 

The mean diameter of the resulting CT-coated K/HD complexes was found in a range of 185-

198 nm with a zeta potential of about 13-10 mV. All coated K/HD complexes showed slightly 

smaller size but a significant decrease in zeta potential when compared to non-coated K/HD 

complexes, indicating that the surface of complexes were perfectly formulated with the coating 

agents. Moreover, the size and zeta potential of complexes were dependent on the weight 

ratio of thiolated chitosan. In the case of R/H mixtures of PBAEs, R/H/DNA (R/HD) complexes 

showed notably larger size (504.6 nm) and lower zeta potential (16.2 mV) compared to RD 

and K/HD complexes (Fig. 4.2C). There were obtained a decrease in particle size with 

increased amount of CS-TGA.  In particular, a coating 0.17 and 0.33 depicted the appreciable 

decrease in size while the others showed little differences in the diameter of 231-247 nm. 

Moreover, R/HDCT complexes showed a significant decrease in zeta potential when coated 

with CS-TGA. The zeta potential of all coated R/HD complexes varied from 11 to 8 mV. These 

results confirmed that the size and zeta potential of the mixtures of PBAE/DNA complexes 

were affected by the amount of CS-TGA, resulting in more compact complexes. Interestingly, 

RD, K/H and R/H complexes coated with 0.67 wt% of thiolated chitosan exhibited the smallest 

size among all testing complexes. 
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Fig. 4.2. The particle size and zeta potential of R/DNA (A), K/H/DNA (B) and R/H/DNA (C) complexes 
coated with or without 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of CS-TGA. Each bar represents the mean ± 
SD (n ≥ 3). 
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4.4.2.2. Stability of PBAE/DNA coated with thiolated chitosan 

In the previous Chapter, we found that chitosan-coated PBAE/DNA formulations 

significantly enhanced the stability compared to non-coated one. According to this, we expect 

that thiolated chitosan may influence the stability. In order to know the effect of thiolated 

chitosan on the stability, all the testing complexes were incubated for 4 h in PBS and analysed 

every hour and monitored changes in the particle size. The results of complexes comprising 

PBAE/DNA in combination with differing amount of CS-TGA are shown in Fig. 4.3. In the case 

of RDCT complexes, the size of all coated complexes except a coating 0.17 was displayed to 

be nearly constant over time (Fig. 4.3A). However, the particle size of RDCT0.17 was still less 

than 600 nm, indicating that all the coating RDCT complexes noticeably enhanced the 

stability. This observation supports that CS-TGA could affect to maintain the formulation of the 

RD complexes. All RDCT complexes showed the highest stability compared to the mixtures of 

PBAE/DNA coated with coating agents.  

In the case of the mixtures of PBAEs, the stability of complexes in PBS within 4 h 

improved with increasing the amount of CS-TGA (Fig. 4.3B and C). In other words, there was 

obtained the significant enhanced stability when prepared with the higher amounts of thiolated 

chitosan. The particle size of both K/HD and R/HD complexes coated with 1.33 and 2.67 wt% 

of CS-TGA was less than 600 nm. Moreover, a coating of 0.67 wt% for R/HD complexes 

showed an improvement of stability. On the other hand, the complexes with lower amount of 

coating agents seemed to be aggregated.  These results confirm that the amount of CS-TGA 

leads to high stability of PBAE/DNA complexes. Both K/H/DNA and R/H/DNA complexes 

coated with 1.33 wt% of CS-TGA showed the highest stability among all testing complexes, 

indicating that 1.33 wt% of coating agents might be an optimal weight content for improving 

the stability of the mixtures of PBAE-based complexes. Interestingly, there was obtained the 

constant particle size within 3 h (near 1000 nm) when the R/HD complexes were coated with 

0.17 wt% of coating agents while the particle size of the coating of 0.17 wt% for K/HD 

complexes increased from 500 to 2600 nm. It had been already found that both unmodified 

and thiolated chitosan can clearly enhance the stability of the complexes based on PBAE 

bearing with arginine oligopeptides with DNA. As the arginine-histidine mixtures showed 

higher stability compared with the lysine-histidine mixtures, PBAE bearing with arginine may 

be favourably incorporated into thiolated chitosan. Although the initial particle size of R/HDCT 

complexes was larger than that of K/HDCT, there was obtained higher the stability of R/HD 

complexes coated with tholated chitosan relative to that of K/HDCT. 
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Fig. 4.3. Time-dependent changes in the size of R/DNA (A), K/H/DNA (B) and R/H/DNA (C) coated with or 
without 0.17, 0.33, 0.67, 1.33 and 2.67 wt% of CS-TGA. Complexes were incubated for 4 h in phosphate 
buffer saline at pH 7.4 and were analyzed by DLS every hour. Each bar represents the mean ± SD (n ≥ 3). 
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4.4.2.3. In vitro transfection efficiency  

As described in Chapter 3, non-coated R/DNA complexes showed higher gene 

expression efficiency compared to a commercial transfection agents. Thus, the RD complexes 

were used here as a positive control instead of the commercial one. The transfection 

efficiency of PBAE/DNA complexes having different amount of CS-TGA were evaluated in 

COS-7 cells, using pGFP plasmid DNA, and the gene expression was determined by flow 

cytometry at 48 h post-transfection as shown in Fig. 4.4. In the case of RDCT complexes, a 

coating with 0.17 wt% of CS-TGA slightly improved the transfection efficiency while the other 

RDCT complexes maintained as high efficiency of gene transfer as the control. In the case of 

the mixtures of PBAEs, surprisingly, K/H and R/H-based complexes exhibited a 2.1- and 2.5-

fold increase in transfection efficiency, respectively, compared to the control. In addition, all 

coated complexes except a coating of 2.67 wt% showed at least a 1.4-fold more effective than 

the RD complexes. The results showed that the transfection efficiency of the mixture of 

PBAEs coated with or without CS-TGA is even higher than that of RD complexes with or 

without coating agents. On the other hand, the transfection efficiency decreased noticeably 

when K/HD and R/HD complexes were prepared with above 1.33 and 0.67 wt% of CS-TGA, 

respectively, compared with non-coated K/HD and R/HD complexes. It should be noted that 

the non-coated complexes showed considerably enhanced stability when started to be 

prepared with above these amount of CS-TGA. These results are in agreement with the 

results obtained in Chapter 3. The coating agents may help PBAEs tightly bind to DNA, 

resulting in decreasing transfection due to the impaired DNA release in the cells. On the other 

hand, the other coated complexes exhibited sustained or improved transfection efficiency. 

Interestingly, R/HD complexes with 0.33 wt% of CS-TGA showed superior transfection 

efficiency among all tested complexes. Moreover, there was observed high stability in 

physiological conditions for 4 h. Thus, a coating 0.33 wt% of CS-TGA for R/HD complexes 

was considered to be an optimal formulation among their series. Thus, this formulation of 

R/HDCT0.33 may be the best candidate for gene delivery systems due to the highest 

transfection efficiency among all the complexes tested so far. Above all results indicate that 

transfection efficiency of the complexes is dependent on the amount of CS-TGA. More 

importantly, these results supported our hypothesis that the coating formulation may allow the 

synergistic effect of PBAE/DNA and the coating agents. 
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Fig. 4.4. Transfection efficiency of thiolated chitosan-modified PBAE/DNA complexes in COS-7 cells was 

determined by flow cytometry. (A) Bars represent a percentage of GFP positive cells multiplied by the 

GeoMean fluorescence of the positive population. (B) GFP expression was determined after 48 h by flow 

cytometry and bars represent percentage of cells positively transfected and the normalized total gene 

expression. Each bar presents the mean ± SD (n ≥ 3). NC: negative control (the group without any 

treatment).  
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4.4.2.4. Cell viability 

To investigate the cytotoxicity of the novel coating carriers, the cell viability was 

determined by MTS assay. The viability of the cells treated with the non-coated K/HD and 

R/HD was even lower than the non-coated RD complexes (75%). We previously reported that 

PBAE bearing histidine termination induced high cell toxicity compared to the other 

oligopeptide-terminated PBAE polymers (Nat 2014), thus limiting their practical use despite 

their high transfection efficiency. However, the viability of complexes increased appreciably 

when prepared with CS-TGA (Fig. 4.5). Indeed, the level of cell viability increased with 

increasing the amounts of the coating agents. These indicate that a coating of CS-TGA led to 

reduce cell toxicity. All coating the complexes except K/HDCT0.17 showed over 80% of cell 

viability. These results support that the PBAE/DNA/CT complexes can be safer carriers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.5. Cell viability of cells after transfection, measured using the MTS assay. Viability was determined at 

48 h post-transfection. Bars represent a percentage of viable cells relative to a control of untreated cells 

(NC). Each bar represents the mean ± SD (n ≥ 3). 
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4.4.2.5. Particle diffusion studies through mucus 

The main aim of this Thesis is to develop the mucosal gene delivery systems capable 

of crossing the mucus gel layer. Prior to achieve this aim, we have evaluated and studied the 

physicochemical properties, the gene expression level and the viability of the PBAE/DNA/CS-

TGA formulations. The complexes based on the mixture polymers coated with 0.33 and 1.33 

wt% of CS-TGA have been chosen for particle diffusion study as they have showed relatively 

either higher stability or higher transfection efficiency among the particles tested.  

In Chapter 2, we have developed the quartz crystal microbalance with dissipation 

(QCM-D) technique in order to study the interaction of the mucosal delivery systems with the 

mucin layer. The results supported that the developed QCM-D technique can be used as a 

simple and effective screening model for the development of efficient mucosal nanocarriers. 

As stated before, the method has allowed us to choose the different strategies that we are 

following in this Chapter for designing nanocarriers with high mucus permeation. This 

permeation behaviour of the nanoparticulate delivery systems developed in this section, the 

rotating silicon tube technique has been utilized. A diffusion system relating to the depth of 

particle diffusion through porcine intestinal mucus (PImucus) was studied using the rotating 

silicon tube. Recently, it was reported that thiolated particles improved particle diffusion rate 

through PImucus barrier due to the thiol groups (Köllner et al., 2015). As shown in Fig. 4.6, 

non-coated K/HD and R/HD complexes diffusion through PImucus reached segment of 6 and 

7, respectively. These results indicate that complexes without coating agents showed the 

lowest diffusion rate. In other words, thiolated chitosan coatings could facilitate particle 

diffusion through mucus. Interestingly, non-coated R/HD complexes were detected higher 

amount in the segment of 1 and 2 relative to non-coated K/HD despite bigger particle size with 

similar zeta potential. We may expect that PBAE bearing arginine oligopeptide could help 

particles transport into mucus although this mechanism has not been defined yet. In the case 

of K/H-based complexes, K/HDCT0.33 was detected the highest amount between the 

segment 1 and 4, which correspond to 2-8 mm. On the other hand, 1.33 wt% coating the 

complexes were detected up to the last segment 10, indicating the highest diffusion rate 

relative to non-coated K/HD or K/HDCT0.33. In addition, 1.33 wt% of CT was detected the 

higher amount between the segment 7 and 10, which is equivalent to 14-20 mm, compared 

to0.33 wt% of CT. This may be due to the stability of the complexes. Both coated complexes 

had nearly the same particle size and zeta potential, but K/HDCT1.33 showed much higher 

stability than K/HDCT0.33. Thus, mucus permeability of particles can be enhanced by the 

formulations which are more compact particles. In the case of complexes based on the 

mixtures of R/H, there were small changes in particle diffusion through PImucus for the R/HD 

complexes with or without thiolated chitosan in the first segment. On the other hand, the 

particle diffusion rate of all R/HD complexes showed a similar trend with K/HD complexes 

between the segment 2 and10. Although lower amount of R/HDCT complexes between the 
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segment 3 and 10 were obtained relatively to K/HDCT complexes, all the coating complexes 

enhanced mucus permeability. It might be expected that thiolated chitosan used as coating 

agents would lead to facilitate diffusion of the novel formulations through mucus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.6. Diffusion studies of Lumogen labeled PBAE/DNA complexes coated without or with thiolated 
chitosan through PImucus at 37 ºC for 4 h. Each bar represents the mean ± SD (n ≥ 3). 
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4.4.3. PBAE/DNA complexes coated with PAA-BRO 

4.4.3.1. Formulation and characterization of complexes 

The second objective of this Chapter was to develop the surface-modified formulation 

of PBAE/DNA with proteolytic enzyme. As described previously, poly(acrylic acid)-bromelain 

(PAA-BRO) conjugates were chosen as coating agents since it showed high mucus 

permeability. In 4.4.3, PBAEs bearing with arginine (R) were firstly chosen among the other 

oligopeptide-terminated PBAEs such as lysine or Histidine. After pre-screening of this study, it 

will be attempted to develop the formulations based on the other PBAEs for further 

investigation. 

The condensation ability of PBAE with DNA complexes having 0.17, 0.33, 0.67, and 

1.33 wt% of PAA-BRO was evaluated using agarose gel electrophoresis. The binding 

capability of PBAE towards DNA without PAA-BRO (RD complex) at a weight ratio of 50:1 

was evaluated in our previous research (Segovia et al., 2014). As shown in Fig. 4.7, DNA was 

completely retained at all differing weight ratios. These indicate that the addition of PAA-BRO 

did not affect the PBAE/DNA complex formation ability. 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4.7. Gel retardation assay of R/DNA coated with CS-TGA. Complexes were formulated by mixing 
polymers and GFP in a weight ratio of 50:1 and loaded onto an agarose gel containing ethidium bromide to 
assess DNA mobility by electrophoresis. 
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Self-assembled PBAE/DNA complexes in the presence/absence of PAA-BRO were 

simply prepared via electrostatic interaction between the positively charged PBAE/DNA 

complexes and the negatively charged PAA-BRO in NaAc buffer at pH 5.2. The particle size, 

polydispersity index and zeta potential of PBAE/DNA complexes with or without a coating of 

0.17, 0.33, 0.67, and 1.33 wt% of PAA-BRO in PBS were measured by DLS and the results 

are presented in Table 4.2. The particle size and zeta potential of non-coated RD complex, 

analyzed as control, were 143 nm and 20.2 mV, respectively. The RD complex coated with 

differing amount of PAA-BRO ranged from 121.3 to 318 nm in diameter and from 18.6 to 12.6 

mV in zeta potential depending on the weight ratio. These results indicate that a range of the 

amount of PAA-BRO had a noticeably effect on the particle size and the surface charge of 

complexes. With an increase in the amount of PAA-BRO among coating the complexes, the 

size of complexes increased appreciably while zeta potential value decreased considerably. 

These results suggest that the surface of complexes were completely covered with PAA-BRO.  

Compared to RD complex, smaller size and lower zeta potential were obtained when modified 

with both 0.17 and 0.33 wt% of PAA-BRO, resulting in more compact complexes. On the other 

hand, there was shown a significant increase in size and noticeable decrease in zeta potential 

with 1.33 wt% of PAA-BRO coating. This might be explained that some of the excessive PAA-

BRO might shield onto the surface of complexes via the weak interaction, which would 

increase the particle size and reduced zeta potential of complexes. The complexes with 0.17 

and 0.33 wt% of PAA-BRO was considered to be an optimum formulation due to their small 

size, and high stability as described below. 

 

 
 
 
 

  

Table 4.2 Composition, particle size, polydispersity index (PI), and zeta potential of R/DNA 

complexes coated with PAA-BRO added in a proportion ranging from 0 to 1.33 wt% of the R 

polymer. Results are mean ± SD (n ≥ 3). 

Formulation 
Weight ratio 

R/DNA/PAA-BRO 

Particle size 

(nm) 
PI 

Zeta potential 

(mV) 

RD 100/2/0 143.0 ± 5.5 0.140 ± 0.015 20.2 ± 2.5 

RDPB0.17 100/2/0.17 121.3 ± 2.0 0.153 ± 0.015 18.6 ± 1.5 

RDPB0.33 100/2/0.33 137.9 ± 5.0 0.158 ± 0.010 18.2 ± 2.0 

RDPB0.67 100/2/0.67 195.5 ± 13.5 0.169 ± 0.035 17.1 ± 2.5 

RDPB1.33 100/2/1.33 318.0 ± 27.5 0.251 ± 0.080 12.6 ± 2.0 
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4.4.3.2. Stability of PBAE/DNA coated with PAA-BRO 

The stability of the novel formulation is one of the main issues in this Thesis. Thus, we 

studied their stability against particle aggregation in phosphate-buffer saline buffer (PBS) at 

pH 7.4. Complexes comprising PBAE/DNA in combination with differing amount of PAA-BRO 

were incubated for 4 h in PBS and analyzed every hour in order to monitor changes in the size 

of the complexes. The results of RD, RDPB0.17, RDPB0.33, RDPB0.67 and RDPB1.33 are 

shown in Fig. 4.8. Surprisingly, there was obtained no significant increase in the particle size 

of RDPB0.17 and RDPB0.33 within 4 h in PBS, while a coating 0.67 and 1.33 depicted an 

extensive increase in the size every hour. Particularly, the size of RDPB0.17 was shown to be 

nearly constant over time. These results confirmed that 0.17 wt% of PAA-BRO could be an 

optimal weight content to sustain the formulation of the complexes. Complexes having 0.67 or 

1.33 wt% PAA-BRO were not seen to be particularly resistant to agglomeration. When the 

PBAE/DNA complexes were not completely covered with the coating materials, these 

nanoparticles were formulated with loose binders, resulted in the larger size and lower stability 

than non-coated complexes. Interestingly, the particle size and zeta potential of complexes 

coated with 0.33 wt% PAA-BRO are similar to those of non-coated complex, but much higher 

stability in PBS. These results support the stability of complexes is dependent on the coating 

of PAA-BRO.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. Time-dependent changes in the size of R/DNA coated without or with 0.17, 0.33, 0.67 and 1.33 
wt% of PAA-BRO. Complexes were incubated for 4 h in phosphate buffer saline at pH 7.4 and were 
analyzed by DLS every hour. Each bar represents the mean ± SD (n ≥ 3). 
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4.4.3.3. In vitro transfection efficiency  

We have demonstrated in Chapter 3 that oligopeptide-modified PBAE/DNA complexes 

formed by mixing PBAEs, especially bearing arginine termination, with plasmid DNA were 

reported higher gene expression in cell-type-specific manner and better cellular viability 

compared to the commercial transfection agents. Thus, non-coated RD was used here as a 

positive control to compare the effect of coating agents on the transfection efficiency. The aim 

of this section was to maintain high transfection efficiency of complexes bearing mucolytic 

agent while enhancing the mucus permeability. In order to achieve this objective, the 

transfection efficiency of PBAE/DNA complexes having differing amount of PAA-BRO were 

evaluated in COS-7 cells, using pGFP plasmid DNA. The pGFP expression was determined 

by flow cytometry analysis at 48 h post-transfection. Results of flow cytometry and 

fluorescence microscopy are illustrated in Fig. 4.9. All complexes with surface coating 

demonstrated higher transfection efficiency compared to non-coated complex. With 0.17 and 

0.33 wt% of PAA-BRO, complexes showed more cells expressing GFP than non-coated 

control. In particular, a coating with 0.17 wt% of PAA-BRO, which showed the smallest size, 

the highest stability and mucus permeability among all tested complexes, induced a 1.4-1.5 

and 2-fold evaluation in the transfection efficiency compared to other coated complexes and 

non-coated one, respectively. These results indicate that transfection efficiency is dependent 

on a specific relative amount of coating agents. This may be considered due to the surface of 

PBAE/DNA/PAA-BRO complexes exhibiting free thiol groups, which would improve 

transfection efficiency. These results indicate that coating agents seems to contribute a 

potential DNA delivery. 0.17 wt% of PAA-BRO was considered to be the optimum weight for 

coating the PBAE/DNA complexes due to their relatively small size, higher stability, and even 

higher particle permeability and transfection efficiency compared to those of other coated 

complexes and non-coated one. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

134 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.9. Transfection efficiency of complexes with or without coating agents in COS-7 cells was 
determined by flow cytometry. (A) Fluorescent images of GFP expression in COS-7 cells at 24 h. (B) Bars 
represent a percentage of GFP-positive cells multiplied by the GeoMean fluorescence of the positive 
population at 48 h. Percentage numbers above each bar represent percentage of transfected cell (%). 
Each bar represents the mean ± SD (n ≥ 3). NC: negative control (the group without any treatment). 
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4.4.3.4. Cell viability  

It has been reported that many cationic delivery vehicles although the polymers are 

effective at improving DNA delivery and expression, the same mechanism that results in this 

improvement also causes toxicity (Hunter et al., 2010, Fields et al., 2012, Gu, et al., 2012). 

However, as described above, we recently reported that oligopeptide-modified PBAE/DNA 

complexes showed high transfection efficiency with low cytotoxicity. We expected that low 

amount of coating agents might not influence the cytotoxicity of coating PBAE/DNA 

complexes. The study was done with PBAE/DNA complexes having differing amount of PAA-

BRO used in transfection study and the viability of cells cultured in the media treated with 

distinct complexes (Fig. 4.10). All the complexes coated with PAA-BRO showed slight 

decrease in cellular toxicity when compared to non-coated PBAE/DNA complexes. Over 80% 

average cell viability was observed for all coated complexes. These results indicate that 

coating the PBAE/DNA/PAA-BRO complexes should be safe carriers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. Cell viability of cells after transfection, measured using the MTS assay. Viability was determined 

at 48 h post-transfection. Bars represent a percentage of viable cells relative to a control of untreated cells 

(NC). Each bar represents the mean ± SD (n ≥ 3). 
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4.4.3.5. Particle diffusion studies through mucus 

Complexes transported through PImucus were studied using the rotating silicon tube 

method, which is related to the depth of mucus penetration. It is well known that mucolytic 

properties of enzyme facilitate particle diffusion through mucus. Thus, the effect of coating the 

complexes having PAA-BRO ranging from 0.17 to 1.33 wt% on mucus permeation was 

evaluated using silicon tube and results of complexes transported through PImucus are shown 

in Fig. 4.9. As control, non-coated RD complexes diffusion through PImucus reached segment 

of 5, indicative of the lowest diffusion rate. As a result of their lack to cleave mucoglycoprotein 

substructure, non-coated one stopped their diffusion earlier. Complexes coated with 0.17 and 

0.33 wt% of PAA-BRO were detected the highest amount in the segment 1 and 2, 

respectively.  Moreover, in the both cases, higher diffusion rate and amount were 

demonstrated compared to other coated complexes and non-coated one. RDPB0.17 and 

RDPB0.33 complexes were detected up to the last segment 10, which is equivalent to 20 mm, 

while other tested complexes were not detected in the last few segment of 8-10, which 

correspond to 16-20 nm. These indicate that the amount of PAA-BRO seems to relate the 

capability of mucus diffusion. Furthermore, in the case of all coated complexes, these results 

except a coating of 0.67 wt% support the strong correlation with the stability of complexes. 

Reason for the lower diffusion rate could be particle aggregation or disassembly, which may 

lead to stability problem overtime and thus these complexes might be lost their ability of 

mucolytic properties of enzyme.  

As can be seen in Table 4.2, surprisingly, all complexes showed highly positive zeta 

potential, which could be expected an interaction with negative charge of mucus and get 

trapped. However, the very small amount of enzyme seems to be sufficient to facilitate particle 

diffusion through mucus although the complexes showed even highly positive charge when 

found in a small particle size (≤140 nm). On the other hand, it is interesting to notice that the 

complexes coated with 0.67 wt% exhibited lower capability to diffuse through mucus 

compared to 1.33 wt%, which were shown the largest size, lowest zeta potential and stability. 

It might be expected that zeta potential would lead to particle transport when the particles are 

not small enough.  However, the mechanism of the coating formulation is still remained to 

further investigate. 
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Fig. 4.9. Diffusion studies of Lumogen labeled R/DNA complexes coated without or with PAA-BRO through 
NPIM at 37 ºC for 4 h. Each bar represents the mean ± SD (n ≥ 3).  

 

 

4.5. Concluding remarks 

In the first work of this Chapter, we have developed surface-coating complexes 

formed by simply mixing PBAE/DNA with CS-TGA via electrostatic interaction. These coatings 

considerably enhanced both stability and cell viability whilst maintaining high transfection 

efficiency. In addition, especially, thiolated chitosan coating led to facilitated K/HD complexes 

transport through PImucus. We found that physicochemical properties and mucus 

permeability of complexes were dependent on the specific amount of coating agents. 

Regarding the safety concerning of the K/HD and R/HD complexes, which showed much 

higher transfection efficiency with high cytotoxicity compared to RD complexes, these 

complexes were formulated with the different weight percent of CS-TGA, resulting in a 

reduction of toxicity. Most of complexes bearing thiolated chitosan maintained high 

transfection efficiency with low cytotoxicity.  

Thereafter, we have developed surface-coating complexes formed by simply mixing 

PABE/DNA with PAA-BRO via electrostatic interaction. The platform consists of a non-viral 

gene carrier created by combining the benefits of PBAE and mucolytic agents. Coated 
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complexes showed the synergistic effects of PBAEs and PAA-BRO, resulting in enhanced 

transfection and particle diffusion through mucus. We found that all coating PBAE/DNA 

complexes exhibited higher particle transport through PImucus and transfection efficiency with 

better cell viability compared to non-coated complexes. In particular, 0.17 wt% of mucolytic 

agent was adequate for coating PBAE/DNA complexes, which showed the smallest size and 

highest stability, to enhance noticeably mucus permeability and gene expression with low 

cytotoxicity. Thus, these novel surface-modified nanocarriers may be applicable for non-viral 

gene therapy to mucosal tissue. 

 

 

 

4.6. References 

 
Anderson, D.G.; Akinc, A.; Hossain, N.; Langer, R. Mol. Ther. 2005, 11, 426-34. 
 
Anitha, A.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar. R. Carbohydr. 
Polym. 2011, 83, 66-73. 
 
Bernkop-Schnürch, A.; Brandt, U.M.; Clausen. A.E. Sci. Pharm.1999, 67, 196–208.  
 
Bernkop-Schnürch, A.; Hornof, M.; Zoidl, T. Int. J. Pharm. 2003, 260, 229–37.  
 
Bernkop-Schnürch, A.; Hornof, M.; Guggi, D. Int. J. Pharm. 2004, 57, 9–7.  
 
Bernkop-Schnürch, A. Adv. Drug Deliv. Rev. 2005, 57,1569–1582.  
 
Borrelli, F.; Capasso, R.; Severino, B.; Fiorino, F.; Aviello, G.; de Rosa, G.; Mazzella, M.; 
Romano, B.; Fasolino, I.; Izzo, A.A. Neurogastroenterol. Motil. 2011, 23, 745-e331.  
 
Bravo-Osuna, I.; Vauthier, C.; Farabollini, A.; Palmieri, G.F.; Ponchel, G. Biomaterials 2007, 28, 
2233-2243. 
 
de la Fuente, M.; Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. Nanomedicine 2008, 3, 845-57. 
 
Dawson, M.; Krauland, E.; Wirtz, D.; Hanes, J. Biotechnol. Prog. 2004, 20, 851-57.  
 
Dosta, P.; Segovia, N.; Cascante, A.; Ramos, V.; Borrós, S. Acta Biomater. 2015. 20, 82-93. 
 
Elfinger, M.; Pfeifer, C.; Uezguen, S.; Golas, M.M.; Sander, B.; Maucksch, C.; Stark, H.; Aneja, 
M.K.; Rudolph, C. Biomacromolecules 2009, 10, 2912-20.  
 
Edelstein, M.L.; Abedi, M.R.; Wixon, J.; Edelstein, R.M. J. Gene. Med. 2004, 6, 597-602. 
 
O. Felt, P. Buri, R. Gurny, Drug Dev. Ind. Pharm.1998, 24, 979–993. 
 
Fields, R.J.; Cheng, C.J.; Quijano, E.; Weller, C.; Kristofik, N.; Duong, N.; Hoimes, C.; Egan, 
M.E.; Saltzman, W.M. J. Controll. Release 2012, 164, 41-8. 
 
Friedl, H.E.; Dunnhaupt, S.; Waldner, C.; Bernkop-Schnurch. A. Biomaterials 2013, 34, 7811-8.  
 
Fogg, F.J.J.; Hutton, D.A.; Jumel, K.; Pearson, J.P.; Harding, S.E.; Allen, A. Biochem. J. 1996, 
316, 937–42. 



139 

Engineering mucus permeating nanoparticles  
 
 
    

 

Guang, W.; Liu, K.; de Yao, J. Controlled Release 2002, 83. 1–11. 
 
Galindo-Rodriguez, S.A.; Allemann, E.; Fessi, H.; Doelker, E. Crit. Rev. Ther. Drug Carr. Syst. 
2005, 22, 419–64.  
 
Green, J.J.; Shi, J.; Chiu, E.; Leshchiner, E.S.; Langer, R.; Anderson, D.G. Bioconjug. Chem. 
2006, 17, 1162-9.   
 
Green, J.J.; Zugates, G.T.; Tedford, N.C.; Huang, Y.H.; Griffith, L.G.; Lauffenburger, D.A.; 
Sawicki, J.A.; Langer, R.; Anderson, D.G. Adv. Mater. 2007, 19, 2836-42.  
 
Green, J.J.; Zugates, G.T.; Langer, R.; Anderson, D.G. Methods Mol. Biol. 2009, 480, 53-63. 
 
Gao, Y.; Xu, Z.; Chen, S.; Gu, W.; Chen, L.; Li, Y. Int. J. Pharm. 2008, 359, 241-6. 
 
Gu, J.; Wang, X.; Jiang, X.; Chen, Y.; Chen, L.; Fang, X.; Sha, X. Biomaterials 2012, 33, 644-58. 
 
Harris, T.J.; Green, J.J.; Fung, P.W.; Langer, R.; Anderson, D.G.; Bhatia, S.N.Biomaterials 2010, 
31, 998-1006. 
 
Homaei, A.; Sajedi, R.; Sariri, R.; Seyfzadeh, S.; Stevanato, R. Amino Acids 2010, 38, 937–942. 
 
Hornof, M. D.; Kast, C.E.; Bernkop-Schnürch, A. Eur. J. Pharm. Biopharm. 2003, 55, 185–190 
 
Hunter, A.C.; Moghimi, S.M. Biochim. Biophys. Acta 2010, 1797, 1203–9.  
 
Kafedjiiski, K.; Hoffer, M.; Werle, M.; Bernkop-Schnürch. A. Biomaterials 2006, 27, 127-35.  
 
Kaparissides, C.; Alexandridou, S.; Kotti, K.; Chaitidou, S. J. Nanotechnol. 2006, 2, 1-11. 
 
Kast, C.E.; Bernkop-Schnurch. A. Biomaterials 2001, 22,  2345–52.  
 
Keeney, M.; Ong, S.G.; Padilla, A.; Yao, Z.; Goodman, S.; Wu, J.C.; Yang, F. ACS Nano 2013, 
7, 7241-50.  
 
Köllner, S.; Dünnhaupt, S.; Waldner, C.; Hauptstein, S.; Pereira de Sousa, I.; Bernkop-Schnürch, 
A. Eur. J. Pharm. Biopharm. 2015, 97, 265-72. 
 
Kursa, M.; Walker, G.F.; Roessler, V.; Ogris, M.; Roedl, W.; Kircheis, R.; Wagner, E. Bioconjug. 
Chem. 2003, 14, 222–31. 
 
Lai, S.K.; Wang, Y.Y.; Hanes, J. Adv. Drug Deliv. Rev. 2009, 61, 158-71.  
 
Lee, D.; Zhang, W.; Shirley, S.A.; Kong, X.; Hellermann, G.R.; Lockey, R.F.; Mohapatra. S.S. 
Pharm. Ref. 2007, 24, 157-67. 
 
Li, C.; Guo, T.; Zhou, D.; Hu, Y.; Zhou, H.; Wang, S.; Chen, J.; Zhang, Z. J. Controlled Release 
2011, 154, 177-188. 
 
Liao, Z.X.; Peng, S.F.; Hong, Y.C.; Mi, F.L.; Maiti, B.; Sung, H.W. Biomaterials 2012, 33, 3306-
15. 
 
Lichen, Y.; Jieying, D.; Chunbai, H.; Liming, C.; Cui, T. Biomaterials 2009, 30, 5691–5700. 
 
Loretz, B.; Thaler, M.; Schnurch, A.B. Bioconjug. Chem. 2007, 18, 1028–1035. 
 
Luo, X.; Feng, M.; Pan, S.; Wen, Y.; Zhang, W.; Wu, C. J. Mater. Sci. Mater. Med. 2012, 23, 
1685-95.  



Chapter 4 

140 

 
 
 
 

 

Majima, Y.; Inagaki, M.; Hirata, K.; Takeuchi, K.; Morishita, A.; Sakakura, Y. Arch. 
Oto.RhinoLaryngol. 1998, 244, 355–359. 
 
Mao, S.; Leong, K. Adv. Drug Deliv. Rev. 2010, 62, 12-27.   
 
Martien, R.; Loretz, B.; Thaler, M.; Majoob, S.; Bernkop-Schnurch. A. J. Biomed. Mater. Res. A. 
2007, 82, 1-9. 
 
Mastorakos, P.; de Silva, A.L.; Chisholm, J.; Song, E.; Choi, W.K.; Boyle, M.P.; Morales, M.M.; 
Hanes, J.; Suk, J.S. Proc. Nati. Acad. Sci. USA. 2015, 112, 8720-5. 
 
Mintzer, M.A.; Simanek, E.E. Chem. Rev. 2009, 109, 259-302. 
 
Miyata, K.; Gouda, N.; Takemoto, H.; Oba, M.; Lee, Y.; Koyama, H.; Yamasaki, Y.; Itaka, K.; 
Nishiyama, N.; Kataoka, K. Biomaterials 2010, 31, 4764-70. 
 
Müller, C.; Leithner, K.; Hauptstein, S.; Hintzen, F.; Salvenmoser, W.; Bernkop-Schnürch, A. J. 
Nanopart. Res. 2013, 15, 1–13. 
 
Müller, C.; Perera, G.; König, V.; Bernkop-Schnürch, A. Eur. J. Pharm. Biopharm. 2014, 87, 
125–31. 
 

Lee, K.Y.; Kwon, I.C.; Kim, Y.H.; Jo, W.H.; Jeong, S.Y. J. Controlled Release 1998, 51, 213−
220. 

 

Lee, M.K.; Chun, S.K.; Choi, W.J.; Kim, J.K.; Choi, S.H.; Kim, A.; Oungbho, K.; Park, J.S.; Ahn, 
W.S.; Kim, C.K. Biomaterials 2005, 26, 2147–2156.  
 
Luo, X.; Feng, M.; Pan, S.; Wen, Y.; Zhang, W.; Wu, C. J. Mater. Sci. Mater. Med. 2012, 23, 
1685-1695. 
 
Peng, S.F.; Yang, M.J.; Su, C.J.; Chen, H.L.; Lee, P.W.; Wei, M.C.; Sung, H.W. Biomaterials 
2009, 30, 1797-808. 
 
Pereira de Sousa, I.; Cattoz, B.; Wilcox, M.D.; Griffiths, P.C.; Dalgliesh, R.; Roger, S.; Bernkop-
Schnürch, A. Eur. J. Pharm. Biopharm. 2015, 97, 257-64.  
 
Sakloetsakun, D.; Hombach, J.M.R.; Bernkop-Schnürch, A. Biomaterials 2009, 30, 6151-6157. 
 
Samaridou, E.; Karidi, K.; Pereira de Sousa, I.; Cattoz, B.; Griffiths, P.; Kammona, O. Nano LIFE 
2014, 4, 1441013-1-11. 
 
Schmitz, T.; Bravo-Osuna, I.B.; Vauthier, C.; Ponchel, G.; Loretz, B.; Bernkop-Schnürch, A. 
Biomaterials 2007, 28, 524–531. 
 
Segovia, N.; Dosta, P.; Cascante, A.; Ramos, V.; Borrós, S. Acta Biomaterialia 2014, 10, 2147-
58.  
 
Stephenson, J. J. Am. Med. Assoc. 2001, 285, 2864-2570. 
 
Suh, W.; Han, S.O.; Yu, L.; Kim. S.W. Mol. Ther. 2002, 6, 664–72. 
 
Suh, J.; Dawson, M.; Hanes, J. Adv. Drug Deliv. Rev. 2005, 57, 63-78.  
 
Yamanaka, Y.; Leong, K. J. Biomater. Sci. Polym. Ed. 2008, 19, 1549-70.  
 
Zhao, X.; Yin, L.; Ding, J.; Tang, C.; Gu, S.; Yin, C.; Mao. Y.. J. Control. Release 2010, 144, 46-
54.  



141 

Engineering mucus permeating nanoparticles  
 
 
    

 

Zheng, H.; Tang, C.; Yin, C. Biomaterials 2015, 70, 126-37.  
 
Zugates, G.T.; Peng, W.; Zumbuehl, A.; Jhunjhunwala, S.; Huang, Y.H.; Langer, R.; Sawicki, 
J.A.; Anderson, D.G. Mol. Ther. 2007, 15, 1306-12. 
 
Zugates, G.T.; Tedford, N.C.; Zumbuehl, A.; Jhunjhunwala, S.; Kang, C.S.; Griffith, L.G.; 
Lauffenburger,  D.A.; Langer, R.; Sawicki, J.A.; Anderson, D.G. Bioconjug. Chem. 2007, 18, 
1887-96. 
  



Chapter 4 

142 

 
 
 
 

 

 
 
 
 



143 

 

 
GENERAL CONCLUSIONS 

 

 

 

 

 A quartz crystal microbalance with dissipation (QCM-D) technique was developed for 

mucin-relevant investigations, especially mucosal drug delivery systems. As important as 

this work, in this Thesis, we have developed the novel mucosal nanocarriers of 

biopharmaceutics that can enhance the stability and transfection efficiency, and facilitate 

mucus penetration. 

 

 For the first time, this technique was used for evaluating the viscoelastic behaviour of the 

mucoadhesive polymers with native porcine gastric mucin (NPGM) at pH 4, and the 

results were compared with commercially available porcine gastric mucin (CPGM). We 

revealed that higher viscosity and shear modulus values were obtained for the NPGM 

layer, thus selecting NPGM for further studies. In addition, among mucoadhesive 

polymers tested, thiolated chitosans (TC) showed the highest mucoadhesion. 

 

 It was firstly found that the developed QCM-D technique can be evaluated two different 

properties of mucoadhesion and mucus permeability of polymers or particles. 

Mucoadhesive thiolated chitosans with low (TCL), medium (TCM) and high (TCH) 

contents of free thiol groups were assessed mucus permeability properties at pH 4 and 

6.8, and TCL showed the highest permeation through the mucin layer, thus chosen for 

further formulating mucosal nanocarriers. The positively charged TCL can interact the 

negatively charged both poly(β-amino ester)s (PBAEs) and DNA to form polyelectrolyte 

complexes (TCD/DNA and TCE/DNA). These particles showed higher mucoadhesion 

than mucus permeation, indicating that most particles were immobilized onto the NPGM 

layer, therefore needed to develop the novel formulation. 

 

 To better understand how particles interact with the mucin layer using QCM-D, both the 

calculated data of the changes in thickness, viscosity and shear modulus as well as the 

monitoring data of the changes in frequency and dissipation were evaluated and studied 

in order to select the useful nanoparticulate delivery systems. Thus, the developed QCM-

D method can be used as a simple and effective screening model for developing efficient 

mucosal drug delivery systems. 

 

 We have developed a surface-modified formulation of DNA delivery systems consisting of 

biodegradable PBAEs, which recently demonstrated high buffering capacity and 

transfection efficiency, but required their stability in physiological conditions and mucus 

penetration. Sugars such as mannitol, sucrose or trehalose, unmodified chitosans with 22 
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a 22 kDa (CS) or 60-120 kDa (CSM), CS-thioglycolic acid (CS-TGA) conjugates, and 

poly(acrylic acid)-bromelain (PAA-BRO) conjugates were applied as the additives or 

coating agents for the novel formulation of mucosal systems of DNA delivery. In all the 

formulations of PBAE/DNA delivery systems, the physicochemical properties, stability, 

transfection efficiency, viability and mucus permeability are dependent on the amount of 

the coating agents. Therefore it is important to find the suitable coating agents and their 

specific amounts for the novel formulations. All formulations are compared with 

unmodified PBAE/DNA formulations. 

 

 A sugar-modified formulation of PBAE/DNA delivery systems was developed in order to 

enhance its stability with high transfection efficiency. A sugar coating formulation 

improved the stability and maintained high transfection efficiency compared with non-

coated PBAE/DNA nanocarriers. On the other hand, DNA complexes based on a novel 

polymer blending of PBAEs and mannitol (MntR) and sucrose (SucR) considerably 

enhanced stability and gene expression level. 

 

 A chitosan-coated formulation of PBAE/DNA delivery systems exhibited noticeably 

enhanced stability compared to non-coated one. However, CSM seemed to inhibit the 

release of DNA from its complexes when using COS-7 cells, indicating of low transfection 

efficiency. On the other hand, CS showed slightly decreased transfection efficiency with 

increasing the amount of CS. Consequently, CS may be more efficient coating agent for 

surface-modified formulations compared with CSM. Nevertheless, further an 

enhancement of transfection efficiency is required for mucosal nanocarriers of DNA 

delivery. 

 

 CS-TGA conjugates were synthesized and applied as coating agents for the PBAE/DNA 

formulations. All coatings considerably enhanced stability and cell viability whilst maintain 

high transfection efficiency. In addition, especially, thiolated chitosan coating led to 

facilitated K/HD and R/HD complexes transport through porcine intestinal mucus 

(PImucus). Regarding the safety concerns of K/HD and R/HD complexes, which showed 

much higher transfection efficiency with high cytotoxicity compared to RD complexes, the 

coating formulations of these formulations exhibited high cell viability. Thus, PBAE/DNA 

coated with CS-TGA may be useful for mucosal delivery systems of macromolecular 

drugs. 

 

 PAA-BRO conjugates were synthesized, surface-coating complexes formed by simple 

mixing R/DNA with PAA-BRO via electrostatic interaction. Coated complexes showed the 

synergistic effects of PBAEs and PAA-BRO, resulting in enhanced transfection and 

particle diffusion through mucus. All coating PBAE/DNA complexes exhibited higher 

particle transport through mucus and transfection efficiency with better cell viability 

compared to non-coated complexes. In particular, 0.17 wt% of mucolytic agent was 

adequate for coating PBAE/DNA complexes, which showed the smallest size and highest 
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stability, to enhance noticeably mucus permeability and gene expression with low 

cytotoxicity. Thus, these novel nanocarriers may be applicable for non-viral gene therapy 

to mucosal tissue. 
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