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Introduction: psychoactive substances are associated with the idea of drugs with high addictive 

liability, affecting mental states, cognition, emotion and motor behavior. However these 

substances can modify synaptic transmission and help to disclose some mechanisms underlying 

alterations in brain processing and pathophysiology of motor disease.  Hence, the “bright side” of 

e cannabinoid-based drugs must be thoroughly examined to be identified within the latter 

framework.  

Areas covered:  we will analyze the preclinical and clinical evidence of cannabinoid-based drugs, 

discussing their therapeutic value in basal ganglia motor disorders such as Parkinson’s disease 

and Huntington disease.  

Expert commentary: despite the knowledge acquired in the last years, the therapeutic potential of 

cannabinoid-based drugs should be further tested by novel routes of investigation. This should be 

focused on the role of cannabinoid signaling system in mitochondrial function as well as on the 

physical and functional interaction with other key receptorial targets belonging to this network. 

 

 

Key words: Parkinson’s disease; Huntington disease; endocannabinoid system; motor diseases; 

cannabinoid-based drugs; neuroprotection. 

 

1. Cannabinoids and the “tune up” of brain locomotor circuits 

The major and measurable impact of psychoactive substances (PS) is on motor function, and the 

extent to which PS affect, alter or modulate psychomotricity and locomotor patterns can be 

assumed as index of their whole action on central nervous system functioning. Indeed, a non-

exhaustive list of PS should include at least ethanol, nicotine, hypnotics and sedatives, opioids, 

dopamine-active compounds and cannabinoids. All these PS have a dramatic impact on motor 

function producing sedation and motor incoordination (ethanol, hypnotics and sedatives, 

opioids), arousal, sensitization and locomotor-enhancing effects (nicotine), hyperlocomotion and 

motor sensitization (cocaine, amphetamines) and dose- and context-dependent opposite effects 

on motor activity (cannabinoids).  

Thus, quite a few of these PS are considered of key importance for their action in the control of 

motor function and consequently for the therapeutic potential in specific pathophysiologic 

conditions. Here, we discuss some motor dysfunctions and disorders in which endocannabinoids 

(eCBs), synthetic and plant derivative cannabinoids modulate motor symptoms and can be 
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explored as therapeutic option for the treatment of movement disorders. However, given the 

broad definition of movement disorders we will focus on one selected hypokinetic disorder such 

as Parkinson’s disease (PD) and one hyperkinetic and akinetic-rigid (in advanced stage) disorder 

such as Huntington’s disease (HD). It is worth mention that focusing on PD and HD does not 

imply that cannabinoids are not involved in other extrapyramidal disorders such as Gilles de la 

Tourette’s syndrome (TS), tardive dyskinesia and dystonia and would not be of interest to assess 

the effects of cannabinoid-based drugs in these disorders.Nevertheless, one may ask why 

cannabinoid-based drugs should be favored candidates for therapeutic intervention over other PS 

targeting for instance the cholinergic receptors. The legitimate question calls into play their 

special role in synaptic plasticity and balance of the basal ganglia (BG) output and their 

interaction with the major BG neurotransmitter systems (glutamatergic, dopamine-(DA)ergic, 

GABAergic and cholinergic) to select appropriate motor responses. The identification and 

cloning, in the brain and in immune organs of cannabinoid receptor type-1 (CB1) and type-2 

(CB2), respectively, have opened new opportunities to understand how Δ9-tetrahydrocannabinol 

(THC), the main psychoactive component of Cannabis sativa, and its synthetic analogs, act to 

produce their pharmacological responses [1]. Both CB1 and CB2 receptors are seven-

transmembrane domain proteins coupled to G-proteins type Gi/o and, less frequently, to the Gs 

type [2]. The existence of these two receptors entailed the presence of endogenous ligands or 

eCBs, i.e. N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoyl-glycerol (2-

AG) that activate these receptors, were identified in mammals [1]. These molecules are 

biosynthesized (Figure 1) via the processing of membrane lipid precursors, i.e. N-arachidonoyl-

phosphatidylethanolamine (N-ArPE) and sn-2-arachidonate containing diacylglycerols (DAG), 

by the action of N-acyl-phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and 

diacylglycerol lipases (DAGL) α and β, in AEA and 2-AG, respectively. eCBs are then 

inactivated by intracellular hydrolyzing enzymes, i.e. fatty acid amide hydrolase (FAAH) and the 

monoacylglycerol lipase (MAGL), respectively [3,4]. Receptors, eCBs and the proteins 

responsible for their metabolism are the key components of the complex endogenous signaling 

network known as the eCB system. Recent comprehensive reviews highlighted as complexity 

and redundancy of eCB molecular targets and metabolic pathways required a full revision of this 

definition [5-7]. Briefly, eCBs as well as some plant derived cannabinoids, phytocannabinoids, 

bind to molecular targets different from CB1 and CB2 such as orphan G-protein-coupled 

receptors (GPR55), peroxisome proliferator-activated nuclear receptors (PPARs) and transient 
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receptor potential (TRP) channels. Moreover, several metabolic enzymes contributed to 

biosynthesis or inactivation of the main eCBs. In particular, N-ArPE might release AEA in one 

step by NAPE-PLD action or multiple steps that involve: 1) α,β -hydrolase-4 (ABHD4) followed 

by glycerophosphodiester phosphodiesterase 1 GDE1; 2) soluble phospholipase A2 (sPLA2) 

followed by lysophospholipase D (lyso-PLD); 3) phospholipase C (PLC) enzymes followed by 

PTPN22 phosphatase. Again, eCB degradative pathways are not limited to the action of FAAH 

or MAGL but other enzymes such as α,β-hydrolase-6 (ABHD6) and -12 (ABHD12) are able to 

hydrolyze 2-AG as well as lipoxygenases and cycloxygenase-2 might oxidize eCBs to produce 

several potential novel lipid mediators [3,7]. On a final note, except for THC and Δ9-

tetrahydrocannabivarin (THCV), other pharmacologically active phytocannabinoids do not bind 

to CB receptors but modulate eCB metabolism and/or activate eCB off-target receptors [3,5,7]. 

The eCB system signaling as well as synthetic cannabinoids and phytocannabinoids represent an 

important field of research in order to design and develop novel therapeutic agents for symptom 

relief or control of disease progression in several human diseases.  In the next sections, we will 

collect and discuss data concerning the therapeutic value of compounds that acting on the eCB 

system might contribute to counteract or slow down motor disease progression. The major 

mechanisms involving protection of nigrostriatal neurons and recruitment of anti-inflammatory 

responses (microglial toxicity) in PD and HD will be scrutinized and reported. 

 

2. Parkinson’s disease  

Caudate-putamen, globus pallidus (GP), subthalamic nucleus (STN) and substantia nigra (SN) 

form the BG. The BG are a highly interconnected set of nuclei responsible for motor skill and the 

correct and balanced selection of appropriate movements. The PD pathogenesis is characterized 

by the progressive loss of DA neurons in the SN pars compacta (SNpc) and neurodegeneration 

of the DA innervation of the dorsal striatum (i.e., DA nigrostriatal system). In PD is also 

recognizable the deposition of α-synuclein aggregates in surviving nigral neurons as well as in 

other brain regions. Moreover, there is also evidence of neuroinflammatory processes such as 

microglial cell activation and production of proinflammatory mediators and T cell infiltrations 

[8]. However, despite the severe impact of neuroinflammation to PD pathogenesis there is no 

consensus about the underlying mechanisms responsible of inflammatory responses. 

Accordingly, there are no disease-modifying therapies available and currently approved drugs 

can only improve PD symptomatology but also elicit motor complications after long-term 
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treatment. The existing therapies are based on the idea of DA replacement and restoring of DA 

signaling such as 3,4-dihydroxyphenyl-l-alanine (L-DOPA), DA reuptake inhibitors (e.g., 

amantadine) and DA agonists (e.g., ropinirole, pramipexole) [9].The serious consequences of DA 

loss for the selection-execution of movements and accurate motor skills uncover the key 

importance played by DA in BG function. The BG network itself can be conceptualized as a DA-

dependent system consisting of two dominant pathways: the direct one associated to the D1-like 

DA receptors, dynorphin-, and substantia P-expressing neurons, and the indirect pathway 

predominantly expressing encephalin and D2-like DA receptors [10]. The large part (90-95%) of 

striatal neurons are the GABAergic medium spiny neurons (MSNs) that link the cortical input 

and the striatum to the different output nuclei (Figure 2). The tight functional interaction between 

DA signaling and eCBs at BG level is epitomized by the effects induced by the alteration of 

eCB-mediated action on motor activity and by the fact that these effects largely depend on the 

DAergic system. The MSNs project to SN pars reticulata (SNpr) and the internal segment of GP 

(GPi) and originate the striatonigral direct pathway whereas the striatopallidal indirect pathway 

projects to the SNpr via the GP pars externa (GPe) and the STN [11]. In this regard, the MSN 

can be viewed as a central gateway that integrates information incoming from different cortical 

regions and mediates changes in synaptic strength in striatal circuits to shape adaptive behavioral 

responses. The execution of movements is the result of the fine-tuned balance between the D1 

receptor-dependent facilitatory signaling and activation of motor programs through the direct 

striatonigral pathway and the D2 receptor-dependent inhibition of the indirect striatopallidal 

pathways (Figure 2).  

 

2.1 PD, CB1 distribution and eCB-dependent plasticity 

mRNA expression of CB1 receptors are maximally present at BG level [12]. The localization of 

CB1 receptors on presynaptic axon terminals of glutamatergic corticostriatal projecting neurons 

represents a key factor in the fundamental contribution of the eCB system to different forms of 

striatal plasticity. CB1 receptors are also densely located on presynaptic terminals of GABAergic 

MSNs projecting to SNpr [13]. CB1 receptors have been detected both in direct striatonigral and 

D1-expressing neurons and in striatopallidal and D2-expressing neurons [12]. Also other efferent 

striatal outputs such as GP in humans, the entopeduncular nucleus in rodents, and the 

GABAergic projections from the GP to the STN contain high level of CB1 receptors [13].  
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The DA transmission controls the plasticity of glutamatergic synapses at dorsal striatal level, and 

the long-term depression (LTD) at corticostriatal synapses is a well-known form of non NMDA 

and activity-dependent plasticity. Notably, this form of plasticity is eCB-mediated and requires 

the stimulation of D2 receptors as demonstrated by the potentiation of eCB signaling and LTD 

enhancement upon D2 receptor activation [14,15].  

The progressive loss of DAergic neurons and DA innervation of striatal circuits severely 

undermine corticostriatal plasticity, and in particular D2 receptor-dependent eCB-induced LTD. 

The impairment of corticostriatal eCB-induced LTD is responsible for the development of 

cardinal symptoms in PD such as tremor and bradykinesia and also for the appearance of 

detrimental side effects such as L-DOPA-induced dyskinesia [14,16]. From here, it emerges that 

striatal eCB-LTD represents a key target for novel therapeutics options in PD (Figure 2).  

 

2.2 The eCB signaling system: control of motor behavior and neuroinflammation in PD 

CB1 receptor binding is increased in PD patients and 1-methyl-4-phenyl-1,2,3,6-tetra 

hydropyridine (MPTP)-treated marmosets at caudate-putamen level [17] while a decrease in CB1 

receptor availability has been observed in the SN of PD patients [18]. The eCB system undergoes 

a drastic remodeling during the course of PD pathogenesis. The disease modifies not only 

receptors but also levels of eCBs. AEA levels were found considerably amplified in 

cerebrospinal fluid of PD patients [19] and L-DOPA or DA receptor agonist treatment was 

shown to restore back AEA levels to control subjects [20]. Nevertheless, AEA levels do not 

change according to disease development, stages and severity, leading to suggest that these 

alterations might be considered as adaptive changes secondary to DA depletion [21]. 

Experimental reserpine- or 6-hydroxy(OH)DA-induced DA depletion abolish LTD in indirect 

pathway MSNs and the treatment with the FAAH inhibitor, URB597, rescues the eCB-induced 

LTD and ameliorate Parkinsonian motor deficits (catalepsy, motor hypoactivity) but only when 

co-administered with the D2 receptor agonist quinpirole [14]. This study further corroborates the 

notion that eCBs exert an inhibitory control on movement and motor execution and these effects 

depend on DAergic transmission. Systemic AEA and THC administration or synthetic CB 

agonists (e.g., WIN 55,212-2 or CP 55,940) reduce locomotor activity both in intact and in DA-

depleted animals [22]. Since there are no CB1 receptors on DAergic neurons, the effects on 

DAergic transmission are indirectly mediated by CB1-containing GABAergic and glutamatergic 

neurons. This may help to understand why the eCB system results overactivated in PD as 
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consequence of the loss of DAergic innervation and facilitation of DA-evoked motor behavior 

[18,23]. 

In the context of the interaction between microglial cells, neurons and astrocytes there is the 

possibility to investigate the role of CB2-mediated signaling in PD-associated neuroinflammatory 

responses. Remarkably, CB2 receptors are densely expressed in the brain in the activated 

microglia while their expression is low in microglia quiescent state [24]. Although controversial 

for a long time, several recent evidence support the concept of CB2 receptors neural expression 

in prefrontal cortex, hippocampus, SN and in GP [24]. CB2 receptors appeared involved in the 

degeneration of nigrostriatal DAergic neurons as for the increase of CB2 receptors at the level of 

the microglial activation recruited by MPTP-induced neural lesion [25] (Table 1). This study 

further shows that administration of CB1/CB2 agonist, WIN 55,212-2, or selective CB2 receptor 

agonist, JWH015, reduced microglial activation and infiltration [25].  

In different models of PD, the unilateral intra-striatal infusion of either 6-OHDA or the bacterial 

endotoxin lipopolysaccharide (LPS) produced an increase of CB2 receptor gene expression and, 

for LPS alone, also the increase of AEA and 2-AG levels [26]. This study reported a correlation 

between CB2 receptor overexpression and increased microglial activation, thus suggesting 

microglia as possible source for the increase in CB2 receptor expression and CB2 receptors as 

potential targets against PD-associated neuroinflammation. An increase of CB2 receptor 

expression was also found earlier in the LPS-based inflammation model of PD and a 

neuroprotective effects after administration of the selective CB2 receptor agonist HU-308 [27]. 

Recently, the same group [28] identified the presence of CB2 receptors in nigrostriatal neurons of 

the human SN of PD patients that resulted expressed at lower level than control subjects. 

Notably, a later study [29] has found an upregulation of CB2 receptor in glial cells in the SN of 

PD patients together with a parallel increase of activated microglia and infiltrated macrophages. 

This study also reveals that the pharmacological activation of CB2 receptors via the 

administration of HU-308 counteracted LPS-induced proinflammatory responses in mice (i.e., 

elevation of striatal CD68 immunofluorescence and inducible nitric oxide synthase (iNOS) gene 

overexpression). The administration of HU-308 was also shown to be partially effective against 

6-OHDA-induced DA depletion whereas the use of selective and non-selective CB1 receptor 

agonists failed to confer protection [30] (Table 1).  

2.3 The therapeutic potential of eCB-based agents in PD: to boost or to shrink? 
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In animal models of PD the activity of the eCB system appear enhanced as a result of the 

amplification of CB1 and CB2 mRNA levels and decreased FAAH activity [30-32]. The key 

objective of PD-like animal models is to improve the motor impairment evoked by the 

experimental depletion of DAergic source to BG (Table 1).  

The administration of CB1 receptor agonists produces inhibition of both motor behavior and DA 

release in the BG, thus revealing its inadequacy in counteracting the motor deficits in PD and 

also revealing the potential exacerbation of motor symptoms as for the induction of bradykinesia 

[33]. Nevertheless, the stimulation of CB1 receptors can disclose its potential as option to reduce 

the impact of the disabling involuntary movements induced by protracted treatment with L-

DOPA. In a recent study [34], L-DOPA-induced dyskinetic movements (LIDs) were reduced by 

subchronic administration of WIN 55,212-2 in rats unilaterally lesioned via 6-OHDA in the 

medial forebrain bundle. The stimulation of CB1 receptors can provide an anti-excitotoxic 

response and a neuroprotective action via the reduction of glutamate release [36]. The 

overactivity of glutamatergic input through the corticostriatal pathway is believed to underlie 

LIDs, and reduction of glutamate release by CB1 receptor stimulation might therefore be used to 

reduce the incidence of LIDs. Moreover, the use of CB1 receptor agonists against LIDs might 

also be supported by the decrease of GPe GABAergic output induced by the stimulation of CB1 

receptors located on the presynaptic terminals of the indirect striatopallidal pathway (see figure 

2). However, at the highest dose tested, the preferential CB1 receptor agonist HU-210 has shown 

only partial efficacy towards L-DOPA-induced abnormal involuntary movements (AIMs) and 

also elicited unwanted motor suppressant effects [37]. The anti-excitotoxic response is an 

important consequence of CB1 receptors stimulation that has been described also for the decrease 

of glutamate release from STN-nigral neurons thus corroborating the idea that CB1 receptor 

agonists might have a therapeutic value in alleviating PD-associated tremors [38]. 

Interestingly, the stimulation of CB1 receptors and the increase of AEA availability via FAAH 

inhibition do not show the same anti-dyskinetic potential. While WIN 55,212-2 administration 

attenuated L-DOPA-induced abnormal AIMs, FAAH inhibition was ineffective against AIMs 

except when co-administered with the TRP vanilloid (TRPV1) antagonist capsazepine [39]. The 

latter results are in agreement with the hypothesis that the hypokinetic effects evoked by AEA 

might be attributable to the involvement of TRPV1-mediated transmission and, in particular, that 

the increase of AEA levels induce a decrease of DA release from nigrostriatal terminals [40]. 
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On the other hand, blockade of CB1 receptors has been reported to improve spontaneous motor 

activity after severe nigral DAergic degeneration in rats and therefore after the effects of CB1 

receptor antagonism, via SR 141716A, on striatonigral D1-mediated activity are reduced or 

suppressed [41].  

With regard to the beneficial effects of CB1 receptor blockade in late-stages of PD, the lack of 

CB1 receptor expression in SNpc might account for the overactivity of eCB system and the 

upregulation of CB1–mediated activity observed in PD. From this view the clinical use of CB1 

receptor antagonists appears to provide a higher therapeutical potential that is been also 

associated to the increase of glutamate release induced by SR 141716A [ 42]. 

 

Moreover, there is evidence of antagonistic relationship between eCB-mediated signaling and 

D1- and D2-dependent motor behavior. The potentiation of eCB signaling by the inhibition of 

AEA transport abolishes D1- and D2-dependent grooming and oral stereotypies, respectively 

[12]. The contralateral turning induced by intra-striatal unilateral D1 receptor stimulation is 

potentiated by CB1 receptor blockade, thus demonstrating the negative modulation exerted by 

CB1 receptors on D1-mediated neurotransmission [12].  

In another study, SR 141716A administration improved hypokinesia in intracerebroventricular 6-

OHDA lesioned rats [43]. Thus, despite the moderate degree of DA loss obtained in a model of 

bilateral DAergic lesion, the blockade of CB1 receptors induced positive effects on bradykinetic-

like symptoms [43]. According to the enhancement of D2-dependent motor activity induced by 

SR 141716A administration, these results corroborate the idea that inhibition of CB1 receptor-

mediated signaling might occlude the eCB-induced inhibition of DAergic receptors. The efficacy 

of SR 141716A administration in improving forepaw stepping in rats with unilateral 6-OHDA-

lesioned was demonstrated both alone and in concomitant administration with low dosage L-

DOPA [44]. Nevertheless, it should be mentioned that SR 141716A administration failed to 

improve Parkinsonian-like symptoms in MPTP-treated in primates [34]. Mixed results were 

obtained in MPTP-treated rhesus monkeys were the selective CB1 antagonist CE-178,253 was 

ineffective against motor disabilities except when co-administered with subthreshold doses of L-

DOPA, thus enhancing the anti-Parkinsonian effects of L-DOPA treatment [45].  

The block of CB1-mediated signaling may reveal its potential as strategy to reduce LIDs [46]. As 

shown in MPTP-treated marmosets, SR 141716A administration can improve motor function and 

reduce L-DOPA-induced dyskinesia [46]. Similar findings were described later in the 6-OHDA 
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rat model of PD in which the co-administration of SR 141716A and L-DOPA reduced the AIMs 

elicited by repeated L-DOPA treatment also exerting some anti-degenerative effects in terms of 

preservation of DAergic nigral cells [47]. This study provides an interesting therapeutic 

perspective in which CB1 receptor blockade parallels, and not follows, L-DOPA treatment and 

therefore might prevent the development of the AIMs. 

 

With regard to the neuroprotective potential provided by CB1 receptor modulation there is also 

evidence that CB1 receptor stimulation can protect against MPTP-induced DAergic neuronal loss 

by the way of microglial activation [48] (Table 1). Nevertheless, the increase of CB1-mediated 

signaling might aggravate some Parkinsonian symptoms such as bradykinesia. Moreover, an 

approach based on CB1-receptor appears irreconcilable with the progressive loss of CB1 

receptors that is observed in neurodegenerative diseases. For this reason, a neuroprotective eCB-

based approach would rely on other non-mutually exclusive targets as for the particular role 

played by CB2 receptors in neuroinflammation. 

 

2.4 Targeting eCB signaling in PD patients 

Clinical studies/trials have been extensively reviewed by Kluger and co-authors [49]. Briefly, 

these studies described that PD patients who made use of cannabis or received nabilone (i.e., a 

THC mimetic) reported an improvement of motor impairment and in particular of bradykinesia, 

tremor and L-DOPA-induced dyskinesia. Moreover, there is evidence for possible beneficial 

effects of eCB system stimulation and decrease of PD-associated comorbidities such as 

psychosis and REM sleep behavior disorder. However, another trial that implemented a four-

week oral cannabis administration in PD patients failed to show any significant anti-Parkinsonian 

activity. Although with a limited sample size, also a case study in which patients smoked 

marijuana at different THC concentrations did not report improvement of tremor symptoms. In a 

randomized placebo-controlled study, the administration of SR141716A was ineffective against 

motor symptoms and also LIDs [49]. 

 

3. Huntington disease 

Huntington disease (HD) is a neurodegenerative genetic disorder caused by a polyglutamine 

expansion mutation (a CAG trinucleotide expansion) in exon 1 of the IT15 gene coding for 

huntingtin protein (Htt) on chromosome 4 [50]. The most characteristic symptoms of disease are 
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abnormal involuntary movements called chorea, which are produced by neuronal dysfunction in 

the striatum, and dementia caused by neuronal decline in the cortical structures. Moreover, 

multiple molecular and cellular events including aggregation of mutated Htt, transcriptional 

dysregulation, altered energy metabolism, excitotoxicity, impaired axonal transport and altered 

synaptic transmission contributed to neuronal dysfunction and death [50]. Most HD patients 

carry CAG repeats in the range of 38–55 and develop neurological symptoms in mid-life, larger 

repeats (>60Q) can cause juvenile onset HD [50]. Unfortunately, HD is a disease with no cure 

and Tetrabenazine is the only pharmacological treatment approved by the Food and Drug 

Administration against chorea associated with HD. 

 

3.1 The link between HD and CB1 receptor-mediated protective action 

One of the earliest changes observed in HD patients and animal models of HD is transcriptional 

dysregulation of a subset of genes including CB1 receptors. The CB1 is high expressed in the 

brain areas that control motor and social behaviors as well as learning and memory function 

impaired in HD [13]. CB1 receptors are significantly reduced in MSN projections of the caudate-

putamen [51-53] and is thought to participate in HD pathogenesis. The downregulation of CB1, 

observed in post-mortem tissue of HD patients and in most mouse models of HD, including 

R6/2, R6/1, YAC128 and HdhQ150 mice [52,54-56], seems to occur at early stages of the 

disease and prior the onset of choreic symptoms and neuronal death. Moreover, CB1 receptor 

genetic ablation in mice deteriorated HD symptoms and pathology, while treatment with THC, or 

WIN 55,212-2 delayed the onset of motor and neurochemical alterations [36,57-59] (Table 1). A 

variant of the CB1 gene (CNR1 rs4707436) that is related with lower levels of CB1 has been 

associated with age at onset in HD patients [60]. Further, mutant Htt affects CB1 promoter 

activity [59] through repressor element 1 silencing transcription factor, REST, which is 

implicated in the pathogenesis of HD [61,62]. 

Recently, the development of conditional mutant mice lacking CB1 in glutamatergic excitatory 

neurons or GABAergic inhibitory neurons has helped to clarify the CB1 receptor-dependent 

neuroprotective activity in HD. This neuroprotective potential appears due to a unique and well-

defined population of CB1 receptors located on cortical glutamatergic neurons that project to the 

striatum. The identification of this population of CB1, preserved during HD progression, 

supported the development of therapeutic approaches aimed at targeting glutamatergic CB1 

receptors in spite of their loss [63]. In addition, eCB, synthetic cannabinoids and 
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phytocannabinoids exhibited biased signaling at CB1, and activation of CB1 by Gαi/o- and Gβγ-

selective ligands might be therapeutically beneficial in HD [64-66]. Indeed, in vitro treatment of 

striatal cell model of HD with AEA normalized CB1 protein levels and this effect was associated 

with improved cell viability, ATP production, BDNF-2 expression and inhibition of GABA 

release [64-66]. 

 

3.3 eCBs, CB2 receptor and the therapeutic promise in HD 

However, recent evidence suggested that CB2 receptor is much more widely distributed in the 

CNS than originally thought, where it plays multiple and unexpected neuroprotectant roles. 

Compounds that selectively activate the CB2 receptor also appear to be effective in different 

animal models of HD. In particular, the expression of CB2 receptors is upregulated in the 

striatum of R6/2 mice at both pre-symptomatic and symptomatic stages and genetic ablation of 

CB2 receptors exacerbated disease symptomatology and neurochemical alterations in same model 

[67]. Moreover, CB2 receptor stimulation by the selective CB2 agonist HU-308 attenuated glial 

activation and protected striatal neurons from damage induced by intrastriatal injection of 

quinolinic acid or the mitochondrial complex II inhibitor malonate [67,68].  

Besides the pivotal role of cannabinoid receptors, the participation of other elements of the eCB 

system in HD pathology might also be considered. In particular, FAAH activity was reported to 

be downregulated and eCB upregulated in peripheral lymphocytes from HD patients [69]. 

Striatal FAAH messenger RNA levels were upregulated in symptomatic R6/2 mice and in the 

caudate-putamen of patients with HD compared to control subjects [59] while Bari and co-

workers [70] reported that striatal FAAH enzymatic activity was reduced in 12-week-old R6/2 

mice. Again, the gene expression of MAGL remained unchanged in the striatum of R6/2 along 

disease progression [59] while the enzymatic activities of the main eCB biosynthetic enzymes, 

DAGL and NAPE-PLD, decreased in 12-week-old R6/2 mice compared to control wild-type 

mice [70]. Finally, a region-specific decline of eCB levels were reported in the striatum of 3-

nitropropionic acid (3-NP)-lesioned rats and in symptomatic R6/2mice [71,72].  

The preclinical data reported above support the development of novel therapeutic strategies that 

by targeting the eCB system might contribute to new routes for drug design against HD. This 

might include the “direct” activation of eCB system by using specific agonists, the use of 

“indirect” cannabinoid receptor agonists as inhibitors of eCB inactivation or as alternative 

strategy the use of positive allosteric modulators.  
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On the other hand, the inhibitors of eCB catabolism have been tested in different animal models 

of HD showing controversial results and additional studies are needed to understand how 

elevating eCB levels affects the signs and symptoms of disease [57,72-76]. An another approach 

of enhancing eCB signaling is the use of positive allosteric modulators (PAMs) able to potentiate 

agonist binding to the CB receptors and at the same time inhibiting agonist activity in numerous 

functional assays [77,78]. However, further investigation is necessary to better understand the 

correlation between in vitro and in vivo pharmacology of PAMs [66,78]. On a final note, also the 

beneficial effect of the phytocannabinoids Δ9-THC and cannabidiol (CBD), alone or in 

combination in the form of mouth spray, Sativex®, has been investigated in several animal 

models of HD. Multiple mechanisms of action including CB1 or CB2 receptors, additional eCB-

binding receptors like PPARs, non-eCB targets like 5HT1A receptors or even anti-oxidant 

properties have been supposed to be responsible of their beneficial action [79,80]. Controversial 

results were obtained by using phytocannabinoids [68,73,81], and improvements of hyperkinesia 

and behavioral alterations have been reported in clinical trials with nabilone [82]. Unfortunately, 

a recent phase II clinical trial with Sativex® was unsuccessful [83] probably due to short 

treatment period and low dose administered. More recently, cannabigerol (CBG), another 

phytocannabinoid with non-psychotropic profile, was investigated in both R6/2 and 3NP-

lesioned mice models of HD [81]. CBG preserved striatal neurons death as well as neurological 

deterioration and improved motor deficits, although these effects were much more evident in 

3NP-lesioned mice than in R6/2 mice. Since CBG exhibited poor affinity for CB1 and/or CB2 

receptors, the mechanisms responsible for the beneficial effects of CBG in HD await to be better 

investigated [81].  

 
4. Expert commentary 
 
The eCB system is part of a wider lipid-signaling pathway capable to provide unique anti-

oxidative, anti-excitotoxic, anti-inflammatory and neuroprotective properties. The expression 

and distribution of the major eCB system components all over the BG network and their tight 

interaction with DAergic, GABAergic and glutamatergic systems contribute to support the view 

of the therapeutic potential of eCB system in motor diseases. The protective action conferred by 

eCB-based drugs against age-dependent pathologies such as neuroinflammatory insult and 

neurodegeneration further supports the exploitation of eCB signaling in motor diseases. Ageing 

is associated with mitochondrial dysfunction that also occurs in occurs in PD and in HD. Since 
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CB1 receptors have been found localized on brain mitochondria and contribute to reduce 

mitochondrial respiration and alter eCB-mediated synaptic plasticity [84,85] the eCB system can 

play a relevant role in mitochondrial function. Mitochondrial ROS production and in particular 

the oxidative stress induced by the exposure of mitochondria to paraquat were attenuated via 

CP55,940 and JWH-015 [86]. However, while increasing CB1 receptor activity might impair 

mitochondrial function, enhancing CB2 receptor activity exerts a neuroprotective action against 

inhibition of mitochondrial function as demonstrated in a rat model of HD [68]. Collectively, the 

possibility to limit microglial overactivation, infiltrating macrophages and confer defense against 

mitochondrial dysfunction given by CB2 receptor stimulation appears the most promising 

strategy to fight inflammation, regulate autophagy and reduce neural death in neurotoxic models 

of PD and HD and potentially in multiple BG-associated motor diseases. 

The examination of the key outcomes emerging from the use of cannabinoid-based drugs in BG-

associated motor diseases reveals the existence of a gap between preclinical and clinical 

investigations. In the current scenario, preclinical studies in animal models of PD and HD are 

only partially convincing providing limited evidence as for the impact of cannabinoid-based 

drugs to attenuate bradykinesia, tremor, hypokinesia and choreic motor signs. On the other hand, 

clinical trials appear not to be sufficient to draw conclusive assumptions. As above mentioned, 

the clinical use of CB1 receptor antagonists might reveal unexpected therapeutical chances in 

case of advanced stages of PD [41] or marked refractariety to DA replacement therapy. This 

therapeutic opportunity appears confirmed by the predictions made possible by recent models of 

BG functioning as for the case of the dynamic “centre-surround model”[87]. This model 

emphasizes the role of BG in facilitating motor programs but also in the inhibition of competing 

and interfering movements that might elicit movement disorders such as PD and HD. The 

“centre-surround model” is based on the idea of the selective facilitation of motor programs and 

concurrent “surround” inhibition of competing motor patterns. As elsewhere underlined [88], the 

“centre-surround model” can help to account for the failure to accomplish desired movements or 

inhibit undesired movements as for PD and HD, respectively. Within this context, we believe 

that the “centre-surround model” could be used to evaluate the predictive potential at the light of 

the idea of the overactivity of the CB system in movement disorders (see Figure 3 for the model 

adaptation to PD). Hence, CB1 receptor blockade is expected to reduce the inhibition in 

striatopallidal projecting neurons and alleviate hypokinesia.  
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Another stimulating therapeutic field for the investigation of cannabinoid-based drugs is offered 

by the anti-dyskinetic potential for the clinical management of PD-associated motor symptoms 

[46,47].  We believe that cannabinoid-based drugs possess a great therapeutic potential that 

should be further explored taking into account the knowledge developed on the interaction 

between CB1 receptors and other targets of the BG network that have provided robust evidence 

as non-DAergic substitutes to alleviate motor deficits in PD. Among non-DAergic mechanisms, 

the role of the adenosine A2A receptor subtype acquires a particular relevance. Besides to D2-A2A 

receptor interaction and its role in striatal plasticity, there is evidence that A2A and CB1 receptors 

co-localize in corticostriatal glutamatergic terminals and in dendrites of MSNs of the indirect 

pathway. D2-A2A and also A2A-CB1 receptors can form heteromeric complexes in the striatum 

[89] providing the morphological basis for functional A2A-CB1 receptor interaction subserving 

the control of motor output [90]. Moreover there is evidence of physical A2A- CB1 receptor 

interaction on the same corticostriatal glutamatergic terminal and that A2A receptor activation 

reduce the CB1 receptor-mediated inhibition of synaptic transmission with major effects on 

motor coordination and PD pathophysiology [91]. Moreover, as recently reported in different PD 

models, the altered expression of A2A/CB1/D2 heteromers induced by DA depletion can be 

restored by L-DOPA treatment and therefore contribute to normalize the functioning of BG 

network [92,93]. Although different hypotheses might be formulated to understand the influence 

of presynaptic A2A receptor populations on CB1 receptor signaling at corticostriatal synapses, it is 

also clear that the A2A receptor is a key target for the modulation of CB1 receptor functioning.  

 

5. Five-year view 
 
One of the major challenge for the use of cannabinoid-based drugs as therapeutic option for the 

treatment of BG-associated movement disorders is linked to the assessment of their efficacy on 

disease progression. Although the studies summarized in this review provided either marginal or 

substantial evidence to support their use in clinical practice, they have been performed in cellular 

or animal models whereas the few clinical trials have been focused on the alleviation of specific 

symptoms rather than on the control of disease progression. This could, at least in part, help to 

explain the controversial results obtained in clinical studies. 

In our view, the approval for clinical use of Sativex and Epidiolex might facilitate in the near 

future the clinical utilization and development of cannabinoid-based drugs. These formulations, 
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or additional combination of phytocannabinoids, seem to be suitable to treat pathological 

situations in which the involvement of different toxic mechanisms contributes to the damage. 

There are nonetheless specific clues that should be followed within a short-term perspective.  

1) First, it should be examined the opportunity to implement combined therapies and develop 

dual-acting drugs targeting the A2A-CB1 receptors taking advantage of their physical and 

functional interaction to rebalance the DAergic signaling and striatal plasticity. 

2) Next in order, it should be further explored the impact of cannabinoid-based drugs on 

mitochondrial function. eCBs interfere with mitochondrial respiration by receptor- and 

nonreceptor-mediated mechanisms [94] and consequently affect energy homeostasis and 

metabolic-associated functions. Remarkably, overactivation and/or alteration of eCB system 

does not occur only in motor diseases but also in other neurodegenerative conditions. From this 

point of view, the use of CB1 receptor antagonist/inverse agonists might offer new elements of 

analysis and investigation along with the neuroprotective effects of CB2 receptor stimulation on 

mitochondrial function.  

3) Other targets of eCBs and/or related compounds such as TRP channels and PPARs should be 

also carefully considered. For instance, other N-acylethanolamines (e.g., oleoylethanolamide and 

palmitoylethanolamide) are endogenous activators of PPARs and hold a neuroprotective and/or 

anti-excitoxic potential. Moreover, it should be further investigated the role played by the 

different members of TRP channels (e.g. vanilloid-, melastatin- and ankirin-type), their 

activation by exogenous or endogenous cannabinoid-related compounds as well as their potential 

synergic or antagonistic effects in BG. 

4) Finally, the role of eCB system in the regulation of autophagy machinery represents a novel 

and promising field of investigation. eCBs have been shown to induce autophagy in several 

cancer cell lines, thus contributing to cytoprotection. Considering the key role of oxidative stress 

and autophagy dysregulation in PD and HD there is a solid rationale to solicit future 

investigations on the activity of cannabinoid-based drugs in autophagy function and rebalance of 

cellular homeostasis. 

 

6. Key issues   

 
● The existence of a “bright” side of psychoactive substances is corroborated by the 

therapeutic use of cannabinoid-based drugs. 
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● eCBs and cannabinoid-based drugs can “tune up” brain locomotor circuits and play a key 

role in BG neural plasticity. 

● eCB system shapes information processing within the BG network and participate to the 

function and physiology of BG. 

● Time- and space-selective alterations of eCB system are linked to the onset and 

progression of several BG-associated diseases. 

● eCBs and cannabinoid-based drugs are one of the first lines of investigations to treat BG-

associated motor diseases such as PD and HD. 

● The widespread diffusion of eCB targets within the different excitatory and inhibitory 

nuclei of BG might account for the disappointing and often inconsistent results obtained 

by the use of selective cannabinoid-based “magic” drug bullets. 

● The great potential provided by CB2 receptors in terms of defense against 

neuroinflammation and mitochondrial dysfunction is another frontier for development of 

cannabinoid-based drugs.  

● The exploration of the potential therapeutic provided by co-localization of CB1 receptors 

with other family of receptors (e.g., A2A, TRPs and PPARs) involved in BG-associated 

motor diseases offer novel opportunities in clinical trials. 
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Legend to figures and tables 

Figure 1 

Schematic representation of the eCB system and the interactions with some phytocannabinoids. 

N-acyl-phosphatidylethanolamine-selective phospholipase D, NAPE-PLD; 2-arachidonoyl-

glycerol, 2-AG; N-arachidonoyl-ethanolamine, AEA; cannabidiol, CBD; cannabinoid receptor 

type-1, CB1; cannabinoid receptor type-2, CB2; cycloxygenase-2, COX-2; diacylglycerol lipases, 

DAGL; fatty acid amide hydrolase, FAAH; glycerophosphodiester phosphodiesterase 1, GDE1; 
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G-protein-coupled receptors 55, GPR55; α,β –hydrolase domain containing 4, ABHD4; α,β –

hydrolase domain containing 6, ABHD6; α,β –hydrolase domain containing 12, ABHD12; 

lipoxygenase, LOX; lysophospholipase D, lyso-PLD; monoacylglycerol lipase, MAGL; 

peroxisome proliferator-activated nuclear receptors, PPARs; phospholipase C, PLC; protein 

tyrosine phosphatase non-receptor type 22, PTPN22; soluble phospholipase A2, sPLA2; Δ
9-

tetrahydrocannabinol, THC; Δ9-tetrahydrocannabivarin, THCV; transient receptor potential 

(TRP) channels. 
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Figure 2 

Schematic model of direct and indirect pathways of BG and distribution of CB1 receptors 

including their relationship with DA D2 and adenosine A2A receptors. The striatum is the main 

input of BG and the output nuclei of BG are the GPe and GPi/SNr as striatonigral D1 receptor-

expressing direct pathway and striatopallidal D2 receptor-expressing indirect pathway, 

respectively. The GABAergic projections of D1-mediated direct pathway inhibit GPi/SNr cells 

and stimulate motor behavior, whereas the D2-mediated indirect pathway inhibit the GPe, 

disinhibit the subthalamic nucleus and stimulate/excite the GPi/SNr. Arrow-ending solid lines 

are glutamatergic excitatory output, dotted lines are GABAergic inhibitory output and solid 

circle lines depict DAergic pathway. Adenosine A2A receptor, A2A; cannabinoid receptor type-1, 

CB1; dopamine D1 receptor, D1; dopamine D2 receptor, D2; globus pallidus pars externa, GPe; 

globus pallidus pars interna, GPi; glutamate, Glu; medium spiny neurons, MSN; substantia nigra 

pars compacta, SNpc; substantia nigra pars reticulata; subthalamic nucleus, STN. 
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Figure 3 

Schematic diagram of the dynamic “centre-surround model” (adapted from [88]). According to 

its early formulation [87], the model attempts to explain the role of BG in the execution of 

voluntary movements that include the projection between cortex and STN (i.e., hyperdirect 

pathway) and the widespread fibers connecting the STN to the GPi/SNpr of the direct pathway. 

Here, to reduce the complexity, the indirect pathway is omitted. A) In normal conditions, inputs 

from the cortex to the striatum (i.e., direct pathway) or to the GPi/SNr (i.e., hyperdirect pathway) 

can induce inhibition (grey area) or excitation (white area) of the efferent stations. The 

dynamism of the model depends on the “corollary” signals triggered when a voluntary 

movement is initiated. Corollary signals are conveyed from cortex to GPi/SNr via the hyperdirect 

pathway contributing to inhibit the thalamic area, competing motor programs and facilitate motor 

execution. Other corollary signals are transmitted in parallel through the direct pathway 

contributing to inhibit certain neuronal populations of GPi/SNr (see the centre area) and 

consequently disinhibit excitatory thalamic areas (see the centre white area of the thalamus, at 

the bottom). B) In PD, the activity of the hyperdirect pathway is increased whereas the activity of 

the direct pathway is decreased. This reduction of activity is hypothesized to increase the 

inhibitory output from the GPi/SNr to the excitatory thalamic areas and decrease the inhibitory 

output to the inhibitory thalamic areas (see the peripheral grey area of the thalamus, at the 

bottom) leading to hypokinesia.  

Arrow-ending solid lines are glutamatergic excitatory and dotted lines are GABAergic inhibitory 

inputs and outputs. The different thickness of excitatory solid lines or inhibitory dotted lines 

designate the relative degree of excitatory or inhibitory stimulation through the cortex-striatum-

GPi/SNr-thalamus axis. The different number of CB1 receptors indicate the relative degree of 

functional activity. Cannabinoid receptor type-1, CB1; globus pallidus pars interna, GPi; 

substantia nigra pars reticulata, SNpr; subthalamic nucleus, STN. 
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Table 1 

Experimental use of cannabinoid-based drugs in BG disorders: selected studies. 

Disease Target Drug Effect Model Refs 

Parkinson’s 
disease 

CB1/CB2 

Agonist 
THC Increased 

bradykinesia 
 

MPTP-treated mice 
[34] 

 
 

CB1/CB2 

Agonist 

 
 

WIN 
55,212-2 

Reduced 
microglial 
activation 

 
MPTP-treated mice 

[25] 

Neuroprotection MPTP-treated mice [48] 
Reduced 

dyskinetic 
movements 

 
6-OHDA-treated rats 

[35] 

 
CB1 

Antagonist/inverse 
agonist 

 
SR 141716A 

Improved 
hypokinesia 

6-OHDA-treated rats [43] 

Neuroprotection MPTP-lesioned 
marmosets 

[46] 

CB2 

Agonist 
JWH015 Reduced 

microglial 
activation 

 
MPTP-treated mice 

[25] 

 
 

CB2 

Agonist 

 
 

HU-308 

Neuroprotection LPS-induced 
inflammation 

[27] 

Neuroprotection 6-OHDA- treated rats [30] 

 
 
 
 

CB1/CB2 

Agonist 

 
 
 

THC 
 

Attenuated 
motor deficit 

R6/2 mice [59]

Huntington’s 
disease 

Neuroprotection striatal neuroblasts [59] 
Neuroprotection 3-Nitropropionic acid 

induced striatal lesions 
[58] 

Neurotoxic Malonate-induced 
toxicity in rats 

[57] 

CB1/CB2 

Agonist 
WIN 

55,212-2 
Neuroprotection Quinolinic acid- 

induced 
toxicity in rats 

[36] 

 
CB2 

Agonist 

 
 

HU-308 

Neuroprotection Quinolinic acid-
induced 

toxicity in rats 

[67] 

Neuroprotection Malonate- induced 
toxicity in rats 

[68] 
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