
A Configurable Shared Scratchpad Memory for
GPU-like Processors

Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

Abstract During the last years Field Programmable Gate Arrays and Graphics Pro-
cessing Units have become increasingly important for high-performance computing.
In particular, a number of industrial solutions and academic projects are proposing
design frameworks based on FPGA-implemented GPU-like compute units. Exist-
ing GPU-like core projects provide limited hardware support for shared scratch-
pad memory and particularly for the problem of bank conflicts, a major source of
performance loss with many parallel kernels. In this paper, we present a config-
urable, GPU-like oriented scratchpad memory with built-in support for bank remap-
ping. The core is fully synthetizable on FPGA with a contained hardware cost. We
also validated the presented architecture with a cycle-accurate event-driven emu-
lator written in C++ as well as an RTL simulator tool. Last, we demonstrated the
impact of bank remapping and other parameters available with the proposed config-
urable shared scratchpad memory by evaluating the performance of two real-world
parallelized kernels.

1 Introduction

Current trends in high-performance computing (HPC) are increasingly moving to-
wards heterogeneous platforms [25], i.e. systems made of different computational
units, like general-purpose CPUs, digital signal processors (DSPs), graphics pro-

Alessandro Cilardo
University of Naples Federico II and Centro Regionale ICT (CeRICT), Naples, Italy, e-mail:
acilardo@unina.it

Mirko Gagliardi
University of Naples Federico II and Centro Regionale ICT (CeRICT), Naples, Italy, e-mail:
mirko.gagliardi@unina.it

Ciro Donnarumma
University of Naples Federico II, Naples, Italy

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Napoli Federico Il Open Archive

https://core.ac.uk/display/78396101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

cessing units (GPUs), co-processors, and custom acceleration logic, enabling sig-
nificant benefits in terms of both power and performance.

While HPC covers today disparate applications [27, 7, 6], historically it has never
extensively relied on FPGAs, mostly because of the reduced support for floating-
point arithmetic. On the other hand, FPGAs and special-purpose hardware in gen-
eral, e.g. used for arithmetic operations requiring specialized circuit solutions in var-
ious areas [11, 10, 15, 14], provide a huge potential for improved power efficiency
compared to software-programmable platforms.

Furthermore, while numerous approaches exist for raising somewhat the level
of abstraction for hardware design [18, 16], developing an FPGA-based hardware
accelerator is still challenging as seen from a software programmer. Consequently,
high-performance platforms mostly rely on general-purpose compute units such as
CPUs and/or GPUs. However, pure general-purpose hardware is affected by in-
herently limited power-efficiency, i.e., low GFLOPS-per-Watt. Architectural cus-
tomization can play here a key role, as it enables unprecedented levels of power-
efficiency compared to CPUs/GPUs. This is the essential reason while very recent
trends are putting more emphasis on the potential role of FPGAs.

In fact, recent FPGA families, such as the Xilinx Virtex-7 or the Altera Stratix 5,
have innovative features, providing significantly reduced power, high speed, lower
cost, and reconfigurability [24]. Due to these changes, in the very recent years many
innovative companies, including Convey, Maxeler, SRC, Nimbix [25], have intro-
duced FPGA-based heterogeneous platforms used in a large range of HPC appli-
cations, e.g. multimedia, bioinformatics, security-related processing, etc. [27, 25],
with speedups in the range of 10x to 100x.

This paper explores the adoption of a deeply customizable scratchpad memory
system for FPGA-oriented accelerator designs. At the heart of the proposed archi-
tecture is a multi-bank parallel access memory system for GPU-like processors. The
proposed architecture enables a dynamic bank remapping hardware mechanism, al-
lowing data to be redistributed across banks according to the specific access pattern
of the kernel being executed, miminizing the number of conflicts and thereby im-
proving the ultimate performance of the accelerated application. In particular, re-
lying on an advanced configurable crossbar, on a hardware-supported remapping
mechanism, and extensive parameterization, the proposed architecture can enable
highly parallel accesses matching the potential of current HPC-oriented FPGA tech-
nologies. The paper describes the main insights behind by dynamic bank remapping
as well as the key role that scratchpad memory might play for hardware-accelerated
computing applications.

2 Related work

FPGAs have been used in a vast range of applications [5, 9], although the need
for floating point operations has delayed their adoption in HPC. Recently Altera
and Xilinx, the two prominent FPGA manufacturers, focused on overcoming FPGA

A Configurable Shared Scratchpad Memory for GPU-like Processors 3

floating-point limitations. In particular, Altera, now part of Intel Corporation, has
developed a new floating-point technology (called Fused Datapath) and toolkit (DSP
Builder) intended to achieve maximum performance in floating-point design imple-
menting on Altera FPGAs [3]. The other historical problem with FPGAs is pro-
grammability. Designing a complex architecture on FPGA, as mentioned above,
requires a highly-skilled hardware designer. To overcome this limitation, Altera and
Xilinx are bringing the GPU programming model to the FPGA domain. The Al-
tera SDK for OpenCL [1] makes FPGAs accessible to non-expert users. This toolkit
allows a user to abstract away the traditional hardware FPGA development flow,
effectively creating custom hardware on FPGAs for each instruction being accel-
erated. Altera claims that this SDK provides much more power-efficient use of the
hardware than a traditional CPU or GPU architecture. On other hand, similar to
the Altera SDK for OpenCL, Xilinx SDAccel [30], enables traditional CPU and
GPU developers to easily migrate their applications to FPGAs while maintaining
and reusing their OpenCL, C, and C++ code. Driven by these innovations, FPGAs
are becoming increasingly attractive for HPC applications, offering a fine grained
parallelism and low power consumption compared to other accelerators.

In line with the above trends, academic and industrial research is focusing on
GPU-like paradigms to introduce some form of programmability in FPGA design.
In the last years, a few GPU-like projects have appeared. Kingyens and Steffan [23]
propose a softcore architecture inspired by graphics processing units (GPUs) mostly
oriented to FPGAs. The architecture supports multithreading, vector operations, and
can handle up to 256 concurrent threads. Nyami/Nyuzi [12] is a GPU-like RISC ar-
chitecture inspired by Intel Larrabee. The Nyami HDL code is fully parameterizable
and provides a flexible framework for exploring architectural tradeoffs. The Nyami
project provides an LLVM-based C/C++ compiler and can be synthesized on FPGA.
Guppy [4] (GPU-like cUstomizable Parallel Processor prototYpe) is based on the
LEON3 parameterizable soft core. Guppy main feature is to support CUDA-like
threads in a lock-step manner to emulate the CUDA execution model. MIAOW [8]
(Many-core Integrated Accelerator Of Wisconsin) provides an open-source RTL im-
plementation of the AMD Southern Islands GPGPU ISA. MIAOW’s main goal is to
be flexible and to support OpenCL-based applications.

Data movement and memory access has traditionally been an important opti-
mization problem and in many classes of systems it may significantly impact perfo-
mance, along with the interconnection subsystem [21, 22]. This also applies for
GPU-like processors. Cache hierarchy has been the traditional way to alleviate
the memory bottleneck. However, cache coherence mechanisms are complex and
not needed in some applications. Many modern parallel architectures utilize fast
non-coherent user-managed on-chip memories, called scratchpad memories (SPM).
Since NVIDIA Fermi family [2], GPUs are equipped with this kind of memories. In
NVIDIA architectures this memory can be used to facilitate communication across
threads, and it is hence referred to as shared memory. Typically, scratchpad mem-
ories are organized in multiple independently-accessible memory banks. Therefore
if all memory accesses request data mapped to different banks, they can be han-
dled in parallel. Bank conflicts occur whenever multiple requests are made for data

4 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

In
s
tr

u
c
ti
o

n

F
e

tc
h

In
s
tr

u
c
ti
o

n

D
e

c
o

d
e

Register File

L
o

a
d

/S
to

re

U
n

it
S

P
M

W
ri

te
b

a
c
k

Fig. 1 High-level generic GPU-like core with scratchpad memory.

within the same bank [20]. If N parallel memory accesses request the same bank,
the hardware serializes the memory accesses, causing an N-times slowdown [19]. In
this context, a dynamic bank remapping mechanism, based on specific kernel access
pattern, may help minimize bank conflicts.

Bank conflict reduction has been addressed by several scientific works during the
last years. A generalized memory-partitioning (GPM) framework to provide high
data throughput of on-chip memories using a polyhedral mode is proposed in [29].
GPM allows intra-bank offset generation in order to reduce bank conflicts. Memory
partitioning adopted in these works are cyclic partitioning and block partitioning, as
presented in [13]. In [17] the authors address the problem of automated memory par-
titioning providing the opportunity of customizing the memory architecture based
on the application access patterns and the bank mapping problem with a lattice-
based approach. While bank conflicts in shared memory is a significant problem,
existing GPU-like accelerators [12, 8, 4, 23] lack bank remapping mechanisms to
minimize such conflicts.

3 Architecture

SPM interface and operation. Figure 1 depicts a block diagram of the SPM in the
context of a GPU-like core architecture. A GPU-like core has a SIMD structure
with L multiple lanes. All lanes share the same control unit, hence in each clock
cycle they execute the same instruction, although on different data. Every time a
new instruction is issued, it is propagated to all execution lanes, each taking the
operands from their corresponding portion of a vectorial register file addressed by
the instruction. The typical memory instructions provided by a SIMD ISA offer
gather and scatter operations. Such operations are respectively vectorial memory
load and store memory accesses. If the SIMD core has a single-bank SPM with a
single memory port, the previous instructions require al least L clock cycles. This is

A Configurable Shared Scratchpad Memory for GPU-like Processors 5

S
e

ri
a

liz
a

ti
o

n
 L

o
g

ic

A
d

d
re

s
s
 R

e
m

a
p

p
in

g
 U

n
it

In
p

u
t

In
te

rc
o

n
n

e
c
t

O
u

tp
u

t
In

te
rc

o
n

n
e

c
t

C
o

lle
c
to

r
U

n
it

B
a

n
k

0

B
a

n
k

1

B
a

n
k

B
-1

A
0

A
1

A
L-1

Din
0

Din
1

Din
L-1

BI
0

BI
1

BI
L-1

BO
0

BO
1

BO
L-1

BI
0

BI
1

BI
L-1

BO
0

BO
1

BO
L-1

BO

Din

BO

Din

BO

Din

Dout

Dout

Dout

Dout
0

Dout
1

Dout
L-1

Dout
0

Dout
1

Dout
L-1

Fig. 2 Architecture overview.

because the L lanes cannot access a single memory port with different addresses in
the same clock cycle.

Architecture. Figure 2 shows the internal architecture of the proposed SPM. The
SPM takes as input L different addresses to provides support to the scattered mem-
ory access. It can be regarded as an FSM with two states: Ready and Busy. In the
Ready state, the SPM is ready to accept a new memory request. In the Busy state,
the SPM cannot accept any request as it is still processing the previous one, so in
this state all input requests will be ignored. The Address Mapping Unit computes
in parallel the bank index and the bank offset for each of the L memory addresses
coming from the processor lanes. Bank index (BIi in Figure 2) is the index of the
bank to which the address is mapped. Bank offset (BOi in Figure 2) is the address
of the word into the bank. The Address Mapping Unit behaviour can be changed at
run time in order to change the relationship between addresses and banks. This is a
key feature in that it allows the adoption of the mapping strategy that best suits the
executed workload. The Serialization Logic Unit performs the conflict detection and
the serialization of the conflicting requests. Whenever an n-way conflict is detected,
the Serialization Logic Unit puts the SPM in the busy state and splits the requests
into n conflict-free requests issued serially in the next n clock cycles. When the last
request is issued, the Serialization Logic Unit put the SPM in the ready state. Notice
that for the Serialization Logic Unit, multiple accesses to the same address are not
seen as a conflict, as in this occurrence a broadcast mechanism is activated. This
broadcast mechanism provides an efficient way to satisfy multiple load requests for
the same constant parameters. The Input Interconnect is an interconnection network
that steers source data and/or control signals coming from a lane in the GPU-like
processor to the destination bank. Because the Input Interconnect follows the Se-
rialization Logic Unit, it only accepts one request per bank. Then, there are the B
memory banks providing the required memory elements. Each memory bank re-
ceives the bank offset, the source data, and the control signal form the lane that
addressed it. Each bank has a single read/write port with a byte-level write enable
signal to support instructions with operand sizes smaller than word. Furthermore,

6 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

Fig. 3 The figure shows how addresses are mapped onto the banks. The memory is byte address-
able and each word is four byte wide. In the case of generalized cyclic mapping the remapping
factor is 1.

each lane controls a bit in an L-bit mask bus that is propagated through the Input
Interconnect to the appropriate bank. This bit acts as a bank enable signal. In this
way, we can disable some lanes and execute operations on a vector smaller than L
elements. The Output Interconnect propagates the loaded data to the lane that re-
quested it. Last, there is a Collector Unit which is a set of L registers that collect the
results coming from the serialized requests outputting them as a single vector.

Remapping. As mentioned above, the mapping between addresses and banks can
be changed at run time through the Address Mapping Unit. The technical literature
presents several mapping strategies, including cyclic and block mapping [13, 29].
These strategies are summarized in Figure 3. Cyclic mapping assigns consecutive
words to adjacent banks (Bank B− 1 is adjacent to Bank 0). Block mapping maps
consecutive words onto consecutive lines of the same banks. The block-cycle map-
ping is a hybrid strategy. With B = 2b banks, W = 2w bytes in a word, and D = 2d

words in a single bank, a scratchpad memory address is made of w+ b+ d bits.
Figure 3 shows a cycling remapping, which can be easily obtained by repartitioning
the memory address. The Address Mapping Unit described in this work implements
a generalization of cyclic mapping, which we call generalized-cyclic mapping. By
adopting this strategy, many kernels that generate conflicts with cyclic mapping
change their pattern by accessing data on the memory diagonal, thereby reducing
the number of conflicts.

Implementation details. The proposed configurable scratchpad memory was de-
scribed in HDL and synthesized for a Xilinx FPGA device. In particular, we used
Xilinx Vivado to synthesize the proposed architecture on a Xilinx Virtex7-2000t
FPGA (part number xc7v2000tflg1925-2). We built our architecture with a variable
number of banks and lanes. Figure 4 reports our SPM occupation in terms of LUTs
and Flip-Flops (FFs) for a variable number of banks. On the other hand, Figure 5
reports our SPM occupation in terms of LUTs and Flip-Flops (FFs) for a variable
number of lanes. Increasing the number of banks heavily affects LUTs occupation,
while the number of lanes mostly affects the FF count.

The proposed SPM has been validated with the Verilator RTL simulator tool [28],
which compiles synthesizable Verilog, SystemVerilog, and Synthesis assertions into
a C++ behavioural model (called the verilated model), effectively converting RTL
design validation into C++ program validation. In addition, a cycle accurate event-
driven emulator written in C++ was purposely developed for verifying the proposed
design. The SPM verilated model and the SPM emulator are integrated in a test-

A Configurable Shared Scratchpad Memory for GPU-like Processors 7

4 8 16 32 64 128
0

2

4

·104

2,3404,047
7,238

14,107

24,802

48,656

Banks number

L
U

T
s

LUTs

4 8 16 32 64 128

2.4

2.6

2.8

·103

2,3972,4132,437
2,487

2,573

2,779

Banks number

FF
s

FFs

Fig. 4 LUTs and FFs occupation of the FPGA-based SPM design for a variable number of banks

4 8 16 32 64 128
0

2

4

6

8

·104

1,4793,0987,238
14,446

32,516

73,809

Banks number

L
U

T
s

LUTs

4 8 16 32 64 128

1

2

·104

617 1,221
2,437

4,865

9,704

19,347

Banks number

FF
s

FFs

Fig. 5 LUTs and FFs occupation of the FPGA-based SPM design for a variable number of lanes

bench platform, that provides the same inputs to the emulator and the verilated
model. The test platform compares the outputs from the two models at every sim-
ulation cycle, checking if the verilated model and the emulator generate the same
responses. Notice that the Verilator tool supports the HDL code coverage analysis
feature, which helped us create a test suite with full coverage of the SystemVerilog
code.

Integration in a GPU-like core. The presented SPM, as previously explained, has
a variable latency, which may be a potential complication for integration in GPU-
like architectures. At issue time, before the operand fetch, the control unit is unaware
of the actual latency of a scratchpad memory instruction and can not detect possible
Writeback structural hazards. To avoid this problem, a core must support a dynamic
on-the-fly structural hazard handler at Writeback stage.

8 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

4 Evaluation

The experimental evaluation was essentially meant to demonstrate to which extent
the amount of bank conflicts can be reduced by changing the parameters in the pro-
posed configurable scratchpad memory. In particular, to this end, our experiments
assess how simultaneous memory accesses, as well as the bank remapping feature
may affect the total bank conflict count.

Methodology. We first identified a few kernels that have potentially highly par-
allel memory accesses and that can benefit from the scratchpad memory support.
Many such kernels exist in benchmark suites like PolyBench [26]. Next, we rewrote
each of those kernels to increase the kernel memory access parallelism, as our aim
was to study how conflicts vary with a variable number of parallel memory requests.
We then extracted the access patterns for each kernel and we run it on our scratchpad
emulator. The emulator is cycle-accurate, ensuring exact timings for the simulated
accesses as the scratchpad memory and the emulator proceed in a lock-step fashion
under the same inputs. Last, we collected the emulator response in terms of total
bank conflicts for all the memory accesses issued by the kernel, through a counter
that is incremented whenever a bank conflict occurs. We repeated this experiment
for different remapping functions identified for the specific kernel as well as for a
variable number of banks.

Matrix Multiplication. Square matrix-matrix multiplication is a classic bank con-
flict sensitive kernel. In this benchmark, we evaluated the square matrix access pat-
terns and how the configurable parameters influence the scratchpad bank conflict
count.

Listing 1 Matrix Multiplication parameterized on the number of lanes.
f o r (i n t i = 0 ; i < DIM; ++ i)

f o r (i n t j = 0 ; j < DIM; ++ j)
f o r (i n t k = 0 ; k < DIM/ numLane ; ++k)

f o r (i n t l a n e = 0 ; l a n e < numLane ; l a n e ++){
accessA [i n d e x] [l a n e] = (i∗DIM + k∗numLane + l a n e)∗4 ;
acces sB [i n d e x] [l a n e] = ((k∗numLane + l a n e)∗DIM + j)∗4 ;

}
i n d e x ++;

We rewrote the code so as to maximize the exploitation of the available num-
ber of lanes in the target model of GPU-like processor. The inner cycle, shown in
Listing 1, calculates which memory address will be accessed by each lane for both
matrices. We have a fixed square matrix size DIM = 128. The number of hard-
ware lanes is numLane = [4,8,16,32] while the number of banks is numBanks =
[16,32,64,128,256,512,1024]. The function bank remapping is (Entry·c+Bank) mod
(NUMBANK) with c = [1,2,4,8,16].

The total scratchpad memory is kept constant and equal to BANKnumber ×
ENT RY perBank = 2×DIM2, so that the SPM can store both matrices completely.

A Configurable Shared Scratchpad Memory for GPU-like Processors 9

Table 1 Matrix Multiplication results.

Lanes Banks Remapping factor

No Remap 1 2 4 8

4

16 262146 131072 262146 262146 262146
32 262146 0 0 131072 262146
64 262146 0 0 0 0
128 262146 0 0 0 0
256 131072 0 0 0 0
512 0 0 0 0 0
1024 0 0 0 0 0

8

16 183505 131073 183505 183505 183505
32 183505 0 65536 131073 183505
64 183505 0 0 0 65536
128 183505 0 0 0 0
256 131073 0 0 0 0
512 65536 0 0 0 0
1024 0 0 0 0 0

16

16 109230 91756 109230 109230 109230
32 109230 32768 65538 91756 109230
64 109230 0 0 32768 65538
128 109230 0 0 0 0
256 91756 0 0 0 0
512 65538 0 0 0 0
1024 32768 0 0 0 0

32

16 61696 58256 61696 61696 61696
32 59768 32769 45878 54615 59768
64 59768 0 16384 32769 45878
128 59768 0 0 0 16384
256 54615 0 0 0 0
512 45878 0 0 0 0
1024 32769 0 0 0 0

Results in Table 1 show that bank remapping has a greater impact than the other
parameters. A remapping coefficient c = 1 drastically reduces bank conflicts, even
with a limited number of banks, while adding little resource overhead compared to
a solution relying on a large number of parallel banks.

Image Mean Filter 5× 5. Mean filtering is a simple kernel to implement image
smoothing. It is used to reduce noise in images. The filter replaces each pixel value
in an image with the mean value of its neighbors, including itself. In our study a
5×5 square kernel is used.

Listing 2 shows our parallelized version of the mean filter. For this kernel we
keep a fixed square matrix size DIM = 128 and a fixed number of lanes numLane =
30. The total scratchpad memory is kept constant and equal to BANKnumber ×
ENT RY perBank = DIM2. We evaluated the bank conflicts for a variable num-
ber of banks and for two bank remapping functions: no remap and (Entry · 5 +
Bank) mod (NUMBANK). The results are shown in Table 2. As in the case of the

10 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

Listing 2 Image Mean Filter 5x5.
d e f i n e OFFSET (x , y) (((x)∗DIM + y)∗4)

f o r (i n t i = 2 ; i < DIM − 3 ; ++ i)
f o r (i n t j = 2 ; j < DIM − 3 ; ++ j) {

f o r (i n t w1 = −W1; w1 <=W1; w1++){
f o r (i n t w2 = −W2; w2 <= W2; w2++){

a = baseA . g e t A d d r e s s () + OFFSET (i +w1 , j +w2) ;
l = (w1 + 2)∗5 + (w2 + 2) ;
accessA [i n d e x] [l] = a ;

}
}
i n d e x ++;

}

matrix multiplication kernel, the remapping function has the largest impact on the
bank conflict count.

Table 2 Image Mean Filter 5x5.

Banks No Remap Remap

16 7565 1722
32 7565 0
64 7565 0
128 7565 0
256 0 0
512 0 0

1024 0 0

5 Conclusion

In this work we presented a configurable GPU-like oriented scratchpad memory
fully synthesizable on FPGAs. Various architectural aspects like the number of
banks, the number of lanes, the bank remapping function, and the size of the total
memory are parameterized. Reconfigurability helped explore architectural choices
and assess their impact. We described the SPM design in HDL and extensively val-
idated it. We also developed a software cycle accurate and event-driven emulator of
our SPM component to support the experimental evaluation with real code. Through
two case studies, a matrix multiplication and a 5×5 image mean filter, we showed
the performance implications with different configurations and demonstrated the
benefits of using a dedicated hardware bank remapping function over other archi-
tectural parameters. As a long-term goal of this research, we aim to integrate our

A Configurable Shared Scratchpad Memory for GPU-like Processors 11

SPM architecture in an open source GPU-like core, enabling it to take full advan-
tage of the underlying reconfigurable hardware technologies.

Acknowledgments. This work is supported by the European Commission in the
framework of the H2020-FETHPC-2014 project n. 671668 - MANGO: exploring
Manycore Architectures for Next-GeneratiOn HPC systems.

References

1. The Altera SDK for open computing language (OpenCL).
https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.html

2. Nvidia’s next generation cuda compute architecture. NVidia, Santa Clara, Calif, USA (2009)
3. An independent analysis of Altera’s FPGA floating-point DSP design flow. Berkeley Design

Technology, Inc (2011)
4. Al-Dujaili, A., Deragisch, F., Hagiescu, A., Wong, W.F.: Guppy: A GPU-like soft-core proces-

sor. In: Field-Programmable Technology (FPT), 2012 International Conference on, pp. 57–60
(2012)

5. Amato, F., Barbareschi, M., Casola, V., Mazzeo, A.: An FPGA-based smart classifier for de-
cision support systems. Studies in Computational Intelligence 511, 289–299 (2014)

6. Amato, F., Fasolino, A., Mazzeo, A., Moscato, V., Picariello, A., Romano, S., Tramontana, P.:
Ensuring semantic interoperability for e-health applications. In: Proceedings of the Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2011, pp.
315–320 (2011)

7. Amato, F., Mazzeo, A., Penta, A., Picariello, A.: Building RDF ontologies from semi-
structured legal documents. pp. 997–1002 (2008)

8. Balasubramanian, R., Gangadhar, V., Guo, Z., Ho, C.H., Joseph, C., Menon, J., Drumond,
M.P., Paul, R., Prasad, S., Valathol, P., Sankaralingam, K.: Enabling GPGPU low-level hard-
ware explorations with MIAOW: An open-source RTL implementation of a GPGPU. ACM
Trans. Archit. Code Optim. 12(2), 21:21:1–21:21:25 (2015)

9. Barbareschi, M., Del Prete, S., Gargiulo, F., Mazzeo, A., Sansone, C.: Decision tree-based
multiple classifier systems: An FPGA perspective. In: International Workshop on Multiple
Classifier Systems, pp. 194–205. Springer (2015)

10. Barbareschi, M., Iannucci, F., Mazzeo, A.: Automatic design space exploration of approximate
algorithms for big data applications. In: 2016 30th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pp. 40–45. IEEE (2016)

11. Barbareschi, M., Iannucci, F., Mazzeo, A.: An extendible design exploration tool for support-
ing approximate computing techniques. In: 2016 International Conference on Design and
Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6. IEEE (2016)

12. Bush, J., Dexter, P., Miller, T.N.: Nyami: a synthesizable GPU architectural model for general-
purpose and graphics-specific workloads. In: Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, pp. 173–182 (2015)

13. Chatterjee, S., et al.: Generating local addresses and communication sets for data-parallel
programs. SIGPLAN Not. 28(7), 149–158 (1993)

14. Cilardo, A.: Exploring the potential of threshold logic for cryptography-related operations.
IEEE Transactions on Computers 60(4), 452–462 (2011)

15. Cilardo, A., De Caro, D., Petra, N., Caserta, F., Mazzocca, N., Napoli, E., Strollo, A.: High
speed speculative multipliers based on speculative carry-save tree. IEEE Transactions on
Circuits and Systems I: Regular Papers 61(12), 3426–3435 (2014)

16. Cilardo, A., Durante, P., Lofiego, C., Mazzeo, A.: Early prediction of hardware complexity in
HLL-to-HDL translation. pp. 483–488 (2010)

12 Alessandro Cilardo, Mirko Gagliardi, Ciro Donnarumma

17. Cilardo, A., Gallo, L.: Improving multibank memory access parallelism with lattice-based
partitioning. ACM Transactions on Architecture and Code Optimization (TACO) 11(4), 45
(2015)

18. Cilardo, A., Gallo, L., Mazzeo, A., Mazzocca, N.: Efficient and scalable OpenMP-based
system-level design. pp. 988–991 (2013)

19. Coon, B., et al.: Shared memory with parallel access and access conflict resolution mechanism.
U.S. Patent No. 8,108,625 (2012)

20. Farber, R.: CUDA application design and development. Elsevier (2011)
21. Fusella, E., Cilardo, A.: H2ONoC: A hybrid optical-electronic NoC based on hybrid topology.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2016)
22. Fusella, E., Cilardo, A.: Minimizing power loss in optical networks-on-chip through

application-specific mapping. Microprocessors and Microsystems (2016)
23. Kingyens, J., Steffan, J.: The potential for a GPU-like overlay architecture for FPGAs. Inter-

national Journal of Reconfigurable Computing (2011)
24. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. In: Proceedings of the 2006

ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, FPGA ’06,
pp. 21–30. ACM, New York, NY, USA (2006)

25. Paranjape, K., Hebert, S., Masson, B.: Heterogeneous computing in the cloud: Crunching big
data and democratizing HPC access for the life sciences. Intel Corporation (2010)

26. Pouchet, L.N.: Polybench: The polyhedral benchmark suite. http://www. cs. ucla.
edu/pouchet/software/polybench (2012)

27. Sarkar, S., et al.: Hardware accelerators for biocomputing: A survey. In: Proceedings of 2010
IEEE International Symposium on Circuits and Systems (2010)

28. Snyder, W., Wasson, P., Galbi, D.: Verilator (2007)
29. Wang, Y., Li, P., Cong, J.: Theory and algorithm for generalized memory partitioning in high-

level synthesis. In: Proceedings of the 2014 ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, FPGA ’14, pp. 199–208. ACM, New York, NY, USA (2014)

30. Wirbel, L.: Xilinx SDAccel: a unified development environment for tomorrow’s data center.
The Linley Group Inc (2014)

