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Foreword

This work investigates the cosmological applications of higher-order theories of

gravity in four dimensions. In particular, we begin dealing with the possibility to ob-

tain massive modes in the framework of effective field theories recovered by extending

General Relativity and taking into account generic functions of the curvature invari-

ants. In particular, adopting the minimal extension of f(R) gravity, an effective field

theory with massive modes is straightforwardly recovered. This approach allows to

evade shortcomings like ghosts and discontinuities if a suitable choice of expansion

parameters is performed. Next, we stress one of the most important problem related

to Extended Theories of Gravity that is the lack of a definitive, unique theory able

to address the different shortcomings of General Relativity. In fact, several models

have been proposed in order to address the dark side problem in cosmology and these

models should be constrained also at ultraviolet scales in order to achieve a correct

fundamental interpretation. We proceed analyzing the possibility to constrain f(R)

theories at UV scales comparing quantum vacuum states in given cosmological back-

grounds. Specifically, we compare Bogolubov transformations associated to different

vacuum states for some f(R) models. The procedure consists in fixing the f(R) free

parameters by requiring that the Bogolubov coefficients can be correspondingly mini-

mized to be in agreement with both high redshift observations and quantum field theory

predictions. In such a way, the particle production is related to the value of the Hubble

parameter and then to the given f(R) model. The approach is developed in both metric

and Palatini formalism.

The second part of this thesis is devoted to the search for exact solutions for Ex-

tended Theories of Gravity that is very useful in order to control the physical meaning
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Foreword

of these theories. To this goal, useful tools are Noether and Hojman approaches. The

application of Hojman conservation theorem is presented in the framework of scalar-

tensor cosmologies allowing to fix the form of the coupling F (φ), of the potential V (φ)

and to find out exact solutions for related cosmological models. Afterwards, Noether

point symmetries are applied to metric-Palatini hybrid gravity in order to select the

f(R) functional form, to find analytical solutions for the field equations and for the

related Wheeler-DeWitt equation and finally to Gauss-Bonnet cosmological models,

where F is a generic function of the curvature scalar R and the Gauss-Bonnet topo-

logical invariant G, showing that the functional form of the F (R,G) function can be

determined by the presence of symmetries. Exact solutions for some specific cos-

mological models are found out. Finally, cosmological inflation is discussed in the

framework of F (R,G) gravity. In principle, this theory can exhaust all the curvature

budget related to curvature invariants without considering derivatives of R, Rµν , Rλ
σµν

etc. in the action. Cosmological dynamics is analysed resulting driven by two effective

scalar fields, specifically a R scalaron and a G scalaron, working respectively at early

and very early epochs of cosmic evolution. In this sense, a double inflationary scenario

naturally emerges.

I



Contents

1 Introduction 1

1.1 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The requirement for a self-consistent theory of gravity . . . . . . . . 4

1.3 The Einstein-Hilbert formulation of General Relativity . . . . . . . . 5

1.4 The Field Equations of General Relativity . . . . . . . . . . . . . . . 11

2 Extended Theories of Gravity 16

2.1 Successes and shortcomings of General Relativity . . . . . . . . . . 16

2.2 The Dark Side issue: Dark Energy and Dark Matter . . . . . . . . . . 17

2.3 The geometric view: Extended Theories of Gravity . . . . . . . . . . 17

2.3.1 Further gravitational degrees of freedom as auxiliary scalar fields 21

2.3.2 Addressing the Dark Side by Extended Gravity . . . . . . . . 21

2.4 The quantum gravity motivations . . . . . . . . . . . . . . . . . . . . 22

2.5 Effective field theory from Extended Gravity . . . . . . . . . . . . . . 25

3 Variational principles in Extended Theories of Gravity 34

3.1 The Metric and the Palatini approaches . . . . . . . . . . . . . . . . . 34

3.2 Scalar - Tensor Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Brans-Dicke-like gravity . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Scalar -Tensor theories: the general case . . . . . . . . . . . . 38

3.3 Higher-order gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Hybrid gravity . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Gauss-Bonnet Gravity . . . . . . . . . . . . . . . . . . . . . 44

II



CONTENTS

4 Conformal Transformations 46

4.1 The meaning of conformal transformations . . . . . . . . . . . . . . 46

4.2 The Jordan frame and the Einstein frame . . . . . . . . . . . . . . . . 47

4.3 Conformal Transformations applied to extended

gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Scalar-tensor gravity . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 f(R) gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Higher-order theories . . . . . . . . . . . . . . . . . . . . . . 53

5 Extended Gravity Cosmology 55

5.1 How to select reliable models . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Bogolubov transformations and vacuum states . . . . . . . . 56

5.2 Particle production in non-minimally coupled theories of gravity . . . 58

5.3 Matching Extended Theories of Gravity with PLANCK results . . . . 66

6 Searching for exact solutions 68

6.1 The Noether Symmetry Approach . . . . . . . . . . . . . . . . . . . 69

6.2 The Hojman Symmetry Approach . . . . . . . . . . . . . . . . . . . 74

6.3 Minimally coupled scalar-tensor gravity . . . . . . . . . . . . . . . . 75

6.4 Non-minimally coupled scalar-tensor gravity . . . . . . . . . . . . . 77

6.5 Hybrid gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Exact and invariant solutions . . . . . . . . . . . . . . . . . . 93

6.6 Gauss-Bonnet Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.1 Gauss-Bonnet cosmology . . . . . . . . . . . . . . . . . . . 103

6.6.2 Noether symmetries in Gauss-Bonnet cosmology . . . . . . . 105

6.6.3 Examples of exact cosmological solutions . . . . . . . . . . . 107

7 The cosmic history by Extended gravity 110

7.1 Cosmological inflation in Gauss-Bonnet Gravity . . . . . . . . . . . . 113

Conclusions and Perspectives 126

III



CONTENTS

A The Cauchy Problem in Relativistic Theories of Gravity 131

A.1 The Cauchy Problem in General Relativity . . . . . . . . . . . . . . . 131

A.2 The Cauchy Problem in f(R) gravity . . . . . . . . . . . . . . . . . . 133

A.2.1 The Cauchy problem for O’Hanlon gravity . . . . . . . . . . 135

Specific Bibliography 138

General Bibliography 139

IV



Chapter 1

Introduction

Gravity is the oldest and the most fascinating physical interaction that was inves-

tigated. Galileo Galilei (1564-1642) was the first who investigated terrestrial gravity

discovering that bodies fall at a rate independent of their mass. He obtained his result

with the introduction, at the end of 16th century, of an inclined plane to slow the fall,

a water clock to measure its duration, and a pendulum to avoid rolling friction. It was

in 1665 that Isaac Newton (1642-1727) related terrestrial gravity to celestial gravity.

At the end of the Principia, Newton described gravitation as a cause that operates on

the sun and planets “according to the quantity of solid matter which they contain and

propagates on all sides to immense distances, decreasing always as the inverse square

of the distances”. 1 Therefore he introduced the “inverse-square gravitational force

law”.

The two key ideas of Newton’s theory of gravity were that of an absolute space,

fixed, identical for all observers and not influenced by the mass and the idea that the

inertial and the gravitational mass coincide, Weak Equivalence Principle (WEP). De-

spite the success of Newtonian model of gravitation in the prediction of a variety of

phenomena, there were experimental and theoretical contradictions which undermined

its foundations. In 1855 Le Verrier observed a 35 seconds of arc per century excess

precession of Mercury’s orbit and later on, in 1882, Simon Newcomb measured this

precession more accurately to be 43 seconds of arc per century. This experimental fact

was not predicted by Newton’s theory.

1Isaac Newton, Philosophiae Naturalis Principia Mathematica , trans. by Andrew Motte, revised
and annotates by F. Cajori (University of California Press, 1966), p.546.
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Introduction

From a theoretical point of view, in 1893 Ernst Mach stated a principle that was

later called by Albert Einstein “Mach′s Principle”. This is the first constructive at-

tack to Newton’s idea of absolute space after the 18th century debate between Gottfried

Wilhelm von Leibniz and Samuel Clarke (Clarke was acting as Newton’s spokesman)

on the same subject, known as the Leibniz-Clarke Correspondence [6].

Mach’s idea was reformulated later on by Einstein who stated that inertia originates

from interaction between masses. So the acceleration of a mass is relative to distant

masses and not relative to absolute space. This is obviously in contradiction with

Newton’s ideas, according to which inertia was always relative to the absolute frame of

space. Later on, Dicke [7] gave a further interpretation of Mach’s Principle stating that

the gravitational constant should be a function of the mass distribution in the Universe.

This is different from Newton’s idea of the gravitational constant as being universal

and unchanging. Therefore Newton’s basic axioms have to be reconsidered.

In 1905, when Albert Einstein completed Special Relativity, Newtonian gravity

had to face a serious challenge. Special Relativity was introduced to explain a series

of phenomena related to non-gravitational physics and this new theory is not consis-

tent with Newtonian gravity. For example, the latter invokes notions of instantaneous

influence of one body on another, whereas Special Relativity states that the velocity of

an interaction cannot be greater than the speed of light.

Special Relativity incorporates Maxwell’s theory of electricity, magnetism and

light, therefore one might expect that the next logical step would have been to de-

velop a new theory of the other classical force, gravitation, which would generalize

Newton’s theory and make it compatible with Special Relativity. However, Einstein

chose a completely different path and instead developed General Relativity (GR), a

new theory of space-time structure and gravitation. The Equivalence Principle and

Mach’s principle provided the primary motivation for formulating a new theory.

In 1915, Einstein completed the theory of GR. Remarkably, the theory matched

perfectly the experimental result for the precession of Mercurys orbit, as well as other

experimental findings like the Lense-Thirring gravitomagnetic precession (1918) [8,

11] and the gravitational deflection of light by the Sun, as measured in 1919 during a

Solar eclipse by Arthur Eddington [12].
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Introduction

GR overthrew Newtonian gravity and continues to be up to now an extremely suc-

cessful and well-accepted theory for gravitational phenomena. It is important to notice

that GR reduces to Newtonian gravity in weak field limit of gravitational field strength

and velocities. Hence, GR is a generalization of Newton’s theory of gravity that main-

tain, although in a revisited form, some of its cornerstones, like the Equivalence Prin-

ciple, but abandon some of its axioms, like the notion of an absolute frame.

From a mathematical point of view, it has been possible to formulate GR in partic-

ular thanks to the fact that, in the previous decades, Gauss, Riemann, Ricci Curbastro,

Christoffel and Levi-Civita had formulated the so called absolute differential calculus,

that is independent of the intrinsic structure of the geometric manifold in which is ap-

plied. The major value of this mathematical approach is that all of its notion can be

applied to whatever manifold, such as curved space-time, and for whatever coordinates

transformations. The advantage is remarkable because space-time is not necessarily

flat.

1.1 The Equivalence Principle

The Equivalence Principle has played an important role in the development of grav-

itation theory. Newton regarded this principle as such a cornerstone of mechanics that

he devoted the opening paragraphs of the Principia to a detailed discussion of it. He

also reported there the results of pendulum experiments he performed to verify the

principle. According to Newton, the Equivalence Principle demanded that the ”mass”

of any body, namely that property of a body (inertia) that regulates its response to an

applied force, be equal to its “weight” that property that regulates its response to grav-

itation. Bondi (1957) coined the terms “inertial mass” mI and “passive gravitational

mass” mG, to refer to these quantities, so that Newton’s second law and the law of

gravitation take the forms

F = mIa, F = mGg, (1.1)

where g is the gravitational field. The Equivalence Principle can then be stated suc-

cinctly saying that for any body

mI = mG. (1.2)
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Introduction

An alternative statement of this principle is that all bodies fall in a gravitational field

with the same acceleration regardless of their mass or internal structure. Newton’s

equivalence principle is now generally referred to as the “Weak Equivalence Principle”

(WEP). It was Einstein who added the key element to WEP that revealed the path to

GR. If all bodies fall with the same acceleration in an external gravitational field, then

to an observer in a freely falling elevator in the same gravitational field, the bodies

should be unaccelerated (except for possible tidal effects due to inhomogeneities in

the gravitational field, which can be made as small as one pleases by working in a

sufficiently small elevator). Thus insofar as their mechanical motions are concerned,

the bodies will behave as if gravity were absent. Einstein went one step further. He

proposed that not only should mechanical laws behave in such an elevator as if gravity

were absent but so should all the laws of physics, including, for example, the laws of

electrodynamics. This new principle led Einstein to GR. It is now called the “Einstein

Equivalence Principle” (EEP).

The EEP then states: (i) WEP is valid, (ii) the outcome of any local nongravitational

test experiment is independent of the velocity of the (freely falling) apparatus, and (iii)

the outcome of any local nongravitational test experiment is independent of where

and when in the universe it is performed. EEP is the foundation for all gravitation

theories that describe gravity as a manifestation of curved spacetime, the so-called

metric theories of gravity.

1.2 The requirement for a self-consistent theory of grav-
ity

In considering relativistic theories of gravity it is necessary to impose some a pri-

ori conditions that have to be satisfied from the phenomenological point of view. First

of all, every relativistic theory must explain astronomical observations mapping the

orbits of planets and the potential well of self-gravitating structures such as galaxies

and clusters. In other words the theory must reproduce the Newtonian dynamics in

its weak-field, slow-motion limit. At the Post-Newtonian level, the theory must pass

the classical Solar System tests, which have by now become very precise. A second
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requirement is that the theory should reproduce correctly the observed galactic dynam-

ics taking into account the observed baryonic constituents (e.g. luminous components

as stars, sub-luminous components as planets, dust and gas), radiation and reproduce

the Newtonian potential which is, by assumption, extrapolated to galactic scales. Be-

sides, the theory must address the problem of the generation of large scale structures

(galaxy clusters, superclusters, voids, and filaments) and finally, the cosmological dy-

namics must be reproduced. This means predicting in a self-consistent way the Hubble

parameter H0, the deceleration parameter q0, the density parameters, etc. Astronom-

ical observations and experiments probe directly standard baryonic matter, radiation,

and indirectly the overall attraction of gravity acting at all scales and depending on

distance.

1.3 The Einstein-Hilbert formulation of General Rela-
tivity

GR is the simplest theory which try to satisfies the above requirements[19]. It

is based on the assumption that space and time have to be entangled into a single

space-time structure and its properties are described by a space-time metric (gµν), as in

Special Relativity. However, the space-time metric does not need to have the flat form

it has in Special Relativity. Indeed, the curvature, i.e. the deviation of the space-time

metric from flatness, accounts for the physical effects usually ascribed to a gravitational

field therefore we can see gravity as an aspect of space-time structure. Furthermore,

the curvature of space-time is related to the stress-energy tensor of the matter in space-

time via an equation postulated by Einstein. In this way the structure of space-time is

related to the matter content of space-time.

The idea that the space-time should be a curved manifold came from the earlier

ideas of Riemann who stated that the Universe should be a curved manifold and that

its curvature should be established on the basis of astronomical observations [13]. It is

important to underline that a requirement of GR is that, in the limit of no gravitational

forces, the space-time structure has to reproduce the Minkowski space- time. There-

fore, the equations of GR must reduce to the equation satisfied in Special Relativity in
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the case where the metric is flat.

There are three basic assumption on which GR is formulated

• The “Principle of Relativity” is the requirement that all observers are equally

valid for describing physics. In particular, inertial frames (which do not exist

globally) are not a priori preferred. This postulate addresses the main shortcom-

ing of Special Relativity, being based on preferred inertial frames and Lorentz

boosts between them.

• The “Principle of General Covariance”, that requires field equations to be the

same in all coordinate systems, which is equivalent to the geometric view of

physics, and states that all coordinate systems are in principle equivalent in the

description of physics.

• The “Principle of Equivalence”, that amounts to require acceleration effects to be

locally indistinguishable from gravitational effects (roughly speaking, the equiv-

alence between the inertial and the gravitational mass).

In addition to these three principles, one imposes that causality is preserved (“Prin-

ciple of Causality”, i.e. that each point of space-time should admit a universally valid

notion of past, present and future) which is the same for all physical observers.

Let us also recall that the older Newtonian theory of space-time and gravitation,

that Einstein wanted to reproduce at least in the limit of weak gravitational forces

(what is called today the “post-Newtonian approximation”), required space and time

to be absolute entities and required particles to move in a preferred inertial frame,

following curved trajectories, the curvature of which (i.e. the acceleration) had to be

determined as a function of the sources (i.e. the “forces”).

It was on these bases that Einstein was led to postulate that the gravitational forces

have to be described by the curvature of a metric tensor field gµν related to the line

element

ds2 = gµνdx
µdxν

of a four-dimensional space-time manifold, having the same signature of Minkowski

metric, e.g., the so-called “Lorentzian signature”, herewith assumed to be (−,+,+,+).
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As previously mentioned Einstein postulated that space-time is curved in itself and

that its curvature is locally determined by the distribution of the sources, e.g., being

space-time a continuum, by the four-dimensional generalization of what in Continuum

Mechanics is called the “matter stress-energy tensor”, e.g. a rank-two symmetric tensor

T
(m)
µν .

Once a metric gµν is given, its curvature is expressed by theRiemann (or curvature)

tensor

Rν
αβµ = Γναµ,β − Γνβµ,α + ΓσαβΓνσµ − ΓσµβΓνσα (1.3)

where the commas denote partial differentiation. Its contraction

Rαµ ≡ Rβ
αβµ (1.4)

is the Ricci tensor, while

R ≡ Rµ
µ = gµνRµν (1.5)

is the scalar (orRicci) curvature of gµν . Einstein initially contemplated the equations

for the dynamics of gravity

Rµν =
κ2

2
T (m)
µν (1.6)

where κ2 = 8πG (in units in which c = 1) contains the gravitational coupling constant

G. These equations turned out to be physically and mathematically inconsistent. As

pointed out by Hilbert [14], they do not derive from an action principle; there is no

action which reproduces them exactly through a variation1. Einstein’s reply was that he

knew that the equations were physically unsatisfactory, since they were incompatible

with the continuity equation deemed to be satisfied by any reasonable form of matter.

Assuming that the latter consists of a perfect fluid with stress-energy tensor

T (m)
µν = (P + ρ)uµuν + Pgµν (1.7)

where uµ is the four-velocity of the fluid particles and P and ρ are the pressure and

energy density of the fluid, respectively, the continuity equation requires T (m)
µν to be

covariantly constant, i.e., to satisfy the conservation law

∇µT (m)
µν = 0 (1.8)

1This is not entirely correct but this point is not essential.
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where ∇µ denotes the covariant derivative operator of the metric gµν . In fact, ∇µRµν

does not vanish, except in the special case R = 0. Einstein and Hilbert independently

concluded that the incorrect field equations (1.6) had to be replaced by the correct ones

Gµν = κ2T (m)
µν (1.9)

where

Gµν ≡ Rµν −
1

2
gµνR (1.10)

is now called the Einstein tensor of gµν . These equations can be derived by mini-

mizing an action and satisfy the conservation law (1.8) since the relation

∇µGµν = 0, (1.11)

holds as a contraction of the Bianchi identities that the curvature tensor of gµν has to

satisfy [20]. The Lagrangian that, when varied, produces the field equations (1.9) is

the sum of a “matter” Lagrangian density L(m), the variational derivative of which is

T (m)
µν = − 2√

−g
δ(
√
−gL(m))

δgµν
(1.12)

and of the gravitational (Hilbert− Einstein) Lagrangian

√
−gLHE =

√
−gR (1.13)

where g is the determinant of the metric gµν .

As it became clear a few years later, the choice of Hilbert and Einstein was com-

pletely arbitrary, but it was certainly the simplest one both from the mathematical and

the physical points of view. As it was later clarified by Levi-Civita in 1919, curva-

ture is not a “purely metric notion” but is also related to the linear connection defining

parallel transport and covariant differentiation [15]. In a sense, this is the precursor

idea of what in the sequel would be called a “gauge theoretical framework” [23], after

the pioneering work by Cartan in 1925 [16]. But at the time of Einstein, only metric

concepts were available to mathematicians and physicists and his solution was the only

viable.

It was later clarified that the three principles of relativity, equivalence and covari-

ance, together with causality, just require that the space-time structure has to be de-

termined by either one or both of two fields, a Lorentzian metric gµν and a linear
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connection Γαµν , assumed at the beginning to be torsionless for the sake of simplic-

ity. The metric gµν fixes the causal structure of space-time (the light cones) as well

as its metric relations measured by clocks and rods and the lengths of four-vectors;

the connection Γαµν determines the laws of free fall, the four-dimensional space-time

trajectories followed by locally inertial observers.

They have, of course, to satisfy a number of compatibility relations which amount

to require that photons follow null geodesics of Γαµν , so that Γαµν and gµν can be inde-

pendent, a priori, but constrained, a posteriori, by some physical restrictions. These,

however, do not necessarily impose that Γαµν has to be the Levi-Civita connection of

gµν [17].

This justifies, at least on a purely theoretical basis, the fact that one can envis-

age the so-called “alternative theories of gravitation”, that we prefer to call “Extended

Theories of Gravitation” (ETGs) since their starting points are exactly those consid-

ered by Einstein and Hilbert in the construction of GR. These are theories in which

gravitation is described by either a metric (purely metric theories), or by a linear con-

nection (purely affine theories), or by both fields (metric-affine theories, also known

as first order formalism theories). In these theories, the Lagrangian is a scalar density

of the curvature invariants constructed out of both gµν and Γαµν . The choice of Hilbert-

Einstein Lagrangian is by no means unique and it turns out that this Lagrangian is in

fact the only choice that produces an invariant that is linear in second derivatives of the

metric (or first derivatives of the connection). Unfortunately, this Lagrangian is rather

singular from the Hamiltonian point of view in the same way of Lagrangians linear in

canonical momenta are singular in Classical Mechanics (see e.g. [18]).

A number of attempts to generalize GR and unify it with electromagnetism along

these lines were followed by Einstein and many others, including Eddington, Weyl

and Schrödinger to mention a few. These attempts were eventually abandoned in the

1950s, mainly because of a number of difficulties related to the definitely more com-

plicated structure of a non-linear theory (where by “non-linear” we mean one based

on non-linear invariants of the curvature tensor), and also because of the discovery of

two new physical interactions, the strong and the weak nuclear forces that required

the more general framework of gauge theory [21]. Still, sporadic investigations of al-
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ternative theories continued after 1960. The search for a coherent quantum theory of

gravitation, or the belief that gravity has to be considered as a sort of low-energy limit

of string or other quantum theories [22] something that we will not discuss here has

more recently revived the idea that it is not mandatory to adhere to the simple pre-

scription of Einstein and Hilbert and to assume that classical gravity is governed by a

Lagrangian linear in the curvature. Further curvature invariants or non-linear functions

of them can also be contemplated, especially in view of the fact that their inclusion

is required in both the semiclassical expansion of a quantum Lagrangian and in the

low-energy limit of stringy actions. Moreover, it is clear from recent astrophysical

observations and from the current cosmological investigations that it is legitimate to

doubt the paradigmatic role played by the Einstein equations at Solar System, galac-

tic, extragalactic, and cosmological scales, unless one is willing to admit that the right

hand side of Eq. (1.9) contains some types of exotic energy, the dark matter (DM) and

dark energy (DE) components of our universe.

The idea discussed here is, in principle, much simpler. Instead of changing the

matter side of the Einstein equations (1.9) and introducing the missing matter-energy

content of the observed universe (up to 95% of its total energy content), while adding

mysterious and odd-behaving states of the matter fields, we contemplate the fact that it

is a priori simpler and more convenient to change the geometric/gravitational sector of

these equations by inserting non-linear corrections to the Lagrangian. This procedure

could be regarded as a mere matter of taste; however, there is no reason to discard this

approach a priori, and this possibility is intriguing and worth exploring. In principle,

the action belongs to a vast family of permissible actions and, from the purely phe-

nomenological point of view, this freedom allows it to be chosen on the basis of its

best-fit with the available observational data at all scales (solar, galactic, extragalac-

tic, and cosmological). The down side of this approach is that too many models fit

well the observations because of the relatively large number of free functions and pa-

rameters that they contain, and predictive power may be lost. However, it is hoped

that theoretical work will provide guidelines pointing to a preferred action and will

discriminate between huge classes of models which fit the data, of which already too

many are known. From the theoretical point of view, it makes perfect sense to give
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serious consideration to rather well-motivated non-linear theories of gravity based on

non-singular Lagrangians. Instead, the ΛCDM (abbreviation for Lambda-Cold Dark

Matter) model is accompanied by exotic matter completely different from the known

baryons, never detected in our laboratories, and segregated at astrophysical scales.

1.4 The Field Equations of General Relativity

Variational principles are used to formulate the equations of motion of particles

and fields in theoretical physics and GR is not an exception. Einstein derived the

field equations intuitively but our goal is to show how field equations can be derived

from a variational principle. Consider a four-dimensional space-time manifold M

endowed with a Lorentzian metric gµν and assume that the connection∇µ be the sym-

metric Levi-Civita connection, i.e ∇λgµν = 0; hence (M, g) is a pseudo-Riemannian

manifold. In order to obtain second order field equations (Einstein equations) the La-

grangian density is assumed to be a function of the metric and of its derivatives up to

second order. We find, in vacuum,

S =

∫
U

√
−g L d4x , (1.14)

where U is a compact region of the manifold M, L is the Lagrangian density and
√
−g d4x is defined as the invariant volume element. In fact, if we consider the trans-

formation

xα = xα(x̄µ) ,

where x̄µ are the local inertial coordinates (i.e. ḡαβ = diag(−1, 1, 1, 1)), we have

dxα = Jdx̄µ, J = det
(∂xα
∂x̄µ

)
,

where J is the Jacobian determinant of transformation, and

ḡαβ =
∂xµ

∂x̄α
∂xν

∂x̄β
gµν .

In the new coordinate system the invariant volume element is

√
−ḡd4x̄ =

√
−det

(∂xµ
∂x̄α

∂xν

∂x̄λ
gµν

)
d4x̄ = det

(
∂xµ

∂x̄α

)
√
−gd4x̄ =

11
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= det

(
∂xµ

∂x̄α

)
√
−gdet

(
∂x̄λ

∂xν

)
d4x =

√
−gd4x ,

from which we derive that
√
−ḡd4x̄ =

√
−gd4x . (1.15)

The field equations are obtained by requiring the action be stationary under arbi-

trary variations such that the metric and its first derivatives can be held fixed on the

boundary ∂U . Now we need to find the Lagrangian density. As usual, we require that

the relevant action should be a scalar. If we want to derive second order equations for

the gravitational field it is necessary that the Lagrangian density contains at most the

first derivatives of metric tensor. However it is impossible to construct a scalar quantity

with only gαβ and Γαβγ . Therefore we are induced to choose an expression, for the La-

grangian density L , that contain high order derivatives, running the risk of obtaining

field equations of order higher than the second. The natural choice is the Ricci scalar

curvature R in which there are the first and the second derivatives of the the metric

tensor. The variational principle is

δSHE =
1

16πG
δ

∫
U

√
−gRd4x = 0 . (1.16)

Recalling the relations

δg = ggµνδgµν = −ggµνδgµν ,

from which

δ
√
−g = −1

2

√
−ggµνδgµν . (1.17)

Using relation (1.17), (1.16) becomes

∫
U

[(δ
√
−g)R +

√
−gδgµνRµν +

√
−ggµνδRµν ]d

4x =

∫
U

√
−gδgµν [Rµν −

1

2
Rgµν ]d

4x+

∫
U

√
−ggµνδRµνd

4x = 0 . (1.18)

The second integral can be evaluated in the local inertial frame. In this frame the

following relations hold

Rµν(0) = Γαµν,α − Γαµα,ν ,

12
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δRµν(0) =
∂

∂xα
δΓαµν −

∂

∂xν
δΓαµα ,

gµν(0)δRµν(0) = gµν
∂

∂xα
δΓαµν − gµν

∂

∂xν
δΓαµα =

= gµν
∂

∂xρ
δΓρµν − gµρ

∂

∂xρ
δΓαµα =

=
∂

∂xρ
[gµνδΓρµν − gµρδΓαµα] .

Thus, we can write

gµν(0)δRµν(0) =
∂W ρ

∂xρ
, W ρ = gµνδΓρµν − gµρδΓαµα , (1.19)

and in general coordinates

gµνδRµν =
∂

∂xρ
[gµνδΓρµν − gµρδΓαµα] =

∂W ρ

∂xρ
. (1.20)

So, using Gauss theorem, the second integral in eq. (1.18) can be discarded since its

argument is a pure divergence. Then eq. (1.18) becomes∫
U

√
−gδgµν [Rµν −

1

2
Rgµν ]d

4x = 0 . (1.21)

From this equation, recalling the definition of the Einstein tensor Gµν , we obtain the

vacuum field equations of GR

Gµν = Rµν −
1

2
gµνR = 0 , (1.22)

as Euler-Lagrange equations of the Hilbert-Einstein action.

The Field Equations in presence of matter

Suppose now that exists matter described the action

SM =

∫
U

LM
√
−gd4x. (1.23)

Taking the variation of this action with respect to the metric gµν we obtain the stress-

energy tensor T µν defined by

δSM =
1

2

∫
U

T µνδgµν
√
−gd4x , (1.24)

13
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with

T (m)
µν = − 2√

−g
δ(
√
−gLM)

δgµν
. (1.25)

Since δgµν is symmetric, T (m)
µν is also taken to be so. For example, as we have seen, a

perfect fluid defined to be a continuous distribution of matter with stress-energy tensor

T
(m)
µν of the form

T (m)
µν = ρuµuν + P (gµν + uµuν) , (1.26)

where uµ is a unit timelike vector field representing the 4-velocity of the fluid. Ac-

cording to the above interpretation of T (m)
µν , the functions ρ and P are, respectively, the

mass-energy density and pressure of the fluid as measured in its rest frame. The fluid

is called “perfect” because of the absence of heat conduction terms and stress terms

corresponding to viscosity. This tensor satisfies the conservation law:

∇µT (m)
µν = 0 , (1.27)

where∇µ denotes the covariant derivative operator of the metric gµν .

Now the variational principle is

δ(SHE + SM) = 0 . (1.28)

From this we obtain the field equations in presence of matter

Gµν = Rµν −
1

2
gµνR = κ2T (m)

µν , (1.29)

where Gµν is the Einstein tensor of gµν and κ2 = 8πG is the coupling constant. The

field equations may be written in an equivalent form. In fact, taking the trace of equa-

tion (1.29), we find

R = −κ2T (m) ,

and thus,

Rµν = κ2

(
T (m)
µν −

1

2
gµνT

(m)

)
. (1.30)

This second representation of Einstein’s field equations is completely equivalent to

(1.29). However, it is useful in order to point out the feature of the stress-energy ten-

sor that is the same feature of Einstein tensor. As a final remark, we note that the
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Cauchy problem for GR is well-formulated and well-posed in vacuo and in the pres-

ence of “reasonable” forms of matter (perfect fluids,minimally coupled scalar fields,

etc.), see Appendix A.1 and references therein for more details. The consequence of

the well-posedness is that GR is a “stable” theory with a robust causal structure where

singularities can be classified [259, 260].
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Chapter 2

Extended Theories of Gravity

2.1 Successes and shortcomings of General Relativity

According to the presentation reported in the previous chapter, Einstein’s theory

of GR provides a comprehensive and coherent description of space, time, gravity, and

matter at a macroscopic level. It is formulated in such a way that space and time

are not the absolute entities of classical mechanics, but, rather, dynamical quantities

determined together with the distribution and motion of matter and energy. As a con-

sequence, Einstein’s approach gave rise to a new conception of the universe which,

for the first time in the history of physics, can be considered as a dynamical system

susceptible of precise mathematical modeling and physical measurement. Cosmology,

thus, left the realm of philosophy where it had been relegated until Einstein’s work and

was legitimately incorporated into that of science. Over the years, the possibility of

investigating the universe scientifically has led to the formulation of the Standard Big

Bang model of the universe [20] which matched the available cosmological observa-

tions until recently. However, in the last thirty years several shortcomings of Einstein’s

theory were found and scientists began wondering whether GR is the only fundamen-

tal theory capable of successfully explaining the gravitational interaction. This new

point of view comes mainly from the study of cosmology and quantum field theory. In

cosmology, the presence of the Big Bang singularity, together with the flatness, hori-

zon, and monopole problems [24] led to the realization that the standard cosmological

model based on GR and on the Standard Model of particle physics is inadequate to

describe the universe at extreme regimes. On the other hand, GR is a classical the-
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ory which cannot work as a fundamental theory when a full quantum description of

space-time and gravity is sought for.

2.2 The Dark Side issue: Dark Energy and Dark Mat-
ter

According to the recent observations, the number counts of clusters of galaxies,

measurements of type Ia supernovae[25, 26, 27], with the discovery of late-time cosmic

acceleration, and the cosmic microwave background (CMB) anisotropies, indicate that

of the energy density budget of the universe, 5% comprises ordinary matter (baryons,

radiation and neutrinos), while the rest, which does not interact electromagnetically,

consists of 27% DM and 68% DE [28]. DM is responsible for the gravitational clump-

ing of galaxies, galaxy clusters and large scale structures and the requirement of its

existence had been known for some years. DE is a label for the relativistic energy

density with negative pressure required to explain the inferred late-time accelerated

expansion of the universe. If GR is the correct theory of the gravitational action then

its application to cosmology should incorporate these observations. The implication of

this description is that we live in a at Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)

universe that is dominated by cold dark matter (CDM) and DE in the form of a positive

cosmological constant. This model of the universe is the best fit so far and it is based on

the hypothesis that the universe is homogenous on large scale. It is commonly referred

to as the ΛCDM (or concordance) model.

2.3 The geometric view: Extended Theories of Gravity

Phenomena recently appeared in fundamental physics, in astrophysics and cosmol-

ogy, and several issues related to quantum field theories in curved space-time [29]

suggest that gravity may not be described exactly by GR. In fact, if GR is the correct

theory for the gravitational action then its application to cosmology should incorporate

these observations.

For these reasons, and especially because of the lack of a definitive quantum the-

ory of gravity, various alternative gravitational theories were proposed which attempt
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to formulate at least a semiclassical scheme in which GR and its successes could be

incorporated.

The question naturally arises: what is the importance of considering alternative

theories of gravity to GR, as possible explanations to the observations if the ΛCDM

model agrees well with the observations. One of the main motivations for the search

for alternative theories of gravity arises from the obscure nature of DE candidates.

The alternative possibility is to conjecture that the apparent need for DE could simply

be because the application of Einstein’s equations at cosmological scales is ill-suited.

Some of the modified theories of gravity that provide a late time acceleration for the

universe without the need for the presence of any exotic fluids are Scalar-Tensor The-

ories, Dvali-Gabadadze-Porrati (DGP) braneworld model [30], TeVeS (Tensor-Vector-

Scalar) [31] and and Horava-Lifschitz gravity [32, 33, 34].

One of the most fruitful approaches resulted in the so-called Extended Theories

of Gravity (ETGs) which have, in some sense, become a paradigm in the study of

the gravitational interaction. ETGs are based on corrections and enlargements of Ein-

stein’s theory. Essentially, the paradigm consists of adding higher order curvature

invariants and minimally or non-minimally coupled scalar fields into the dynamics

emerging from some effective quantum gravity action [35]. Other reasons to modify

GR are provided by the attempt to fully incorporate Mach’s principle into the theory.

In fact, GR contains only some of Mach’s ideas and admits solutions that are explicitly

anti-Machian, such as the Gödel universe [36] and exact pp-waves [37]. Moreover,

every scheme unifying the fundamental interactions, such as superstring, supergravity,

or Grand-Unified Theories (GUTs) produces effective actions in which non-minimal

couplings to the geometry or higher order terms in the curvature invariants are neces-

sarily present. Such contributions are due to first or higher loop corrections in the high

curvature regime approaching the full (and still speculative) quantum gravity regime

[35]. This scheme was adopted in the quantization of matter fields on curved space-

times and the result was that the interactions between quantum scalar fields and the

background geometry, or the gravitational self-interactions, yield corrections to the

Hilbert-Einstein Lagrangian [38]. Furthermore, it has been realized that these correc-

tive terms are unavoidable in the effective quantum gravity actions [39]. Clearly, all
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these approaches do not constitute a full quantum gravity theory, but are necessary as

temporary working schemes toward it.

One such theoretical proposal that has recently attracted a considerable amount of

attention is fourth order gravity that can accelerate at late times without the presence

of DE [40, 41, 42, 43]. In particular, dynamical systems analysis shows that for FLRW

models, there exist classes of fourth order theories which admit a transient decelerated

expansion phase that is important for structure growth, followed by one with an ac-

celerated expansion rate [44]. These cosmic evolutions therefore mimic the standard

ΛCDM cosmic history. Another feature of these fourth order theories is that they are

also able to account for the rotation curves of spiral galaxies without the need for DM

[45].

To sum up, higher order invariants of the curvature tensor such as R2, RµνR
µν ,

RµναβR
µναβ , R2R, R2KR or non-minimally coupled terms between matter (espe-

cially scalar) fields and geometry such as φR have to be added to the effective gravi-

tational Lagrangian as soon as quantum corrections are introduced. For instance, such

terms occur in the low-energy limit of the Lagrangian of string theories or in Kaluza-

Klein theories when extra spatial dimensions are compactified. On the other hand,

from the conceptual point of view, there is no a priori reason to restrict the gravita-

tional Lagrangian to be a linear function of the Ricci scalar R, minimally coupled with

matter. Furthermore, the idea that there are no “exact” laws of physics has been con-

templated seriously: in such a case, the effective Lagrangians of physical interactions

would be average quantities arising from stochastic behaviour at a more microscopic

level. This feature would mean that local gauge invariances and the related conser-

vation laws are well approximated only in the low-energy limit and the fundamental

constants of physics can vary [46]. In addition to being motivated by fundamental

physics, ETGs have been the subject of great interest in cosmology because they nat-

urally exhibit an inflationary behaviour capable of overcoming the shortcomings of

the Standard Big Bang model based on GR. The related inflationary scenarios seem

realistic and capable of matching the current observations of the cosmic microwave

background (CMB). It has been shown that, by means of conformal transformations,

the higher order and non-minimally coupled terms always correspond to Einstein grav-
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ity plus one (or more) scalar field(s) minimally coupled to the curvature [47, 48, 49].

More precisely, higher order terms always appear as second order contributions to the

field equations when they are replaced by equivalent scalar fields (see chapter 4). For

example, the term R2 in the Lagrangian yields fourth order equations of motion, R2R

gives sixth order equations, R22R yields eighth order equations, and so on. By means

of a conformal transformation, any second order derivative term corresponds to a scalar

field: 1 for example, fourth order gravity is equivalent to Einstein gravity plus a single

scalar field; sixth order gravity to GR plus two scalar fields and so on [48]. For ex-

ample, it is possible to show that f(R) gravity is equivalent not only to a scalar-tensor

theory but also to Einstein theory coupled to an ideal fluid [50]. This property is useful

if multiple inflationary events are desired because an early stage could produce large

scale structures with very long wavelengths which later grow into the clusters of galax-

ies observed today, while a later stage could select smaller scale structures observed as

galaxies today. The philosophy is that each inflationary era is related to the dynamics

of a scalar field. Finally, these extended schemes could naturally solve the graceful

exit problem, avoiding the shortcomings of previous inflationary models [51].

From the mathematical point of view, the problem of formally reducing more gen-

eral theories to the Einstein form has been discussed extensively. Through a Legen-

dre transformation on the metric, higher order theories with Lagrangians satisfying

minimal regularity conditions assume the form of GR with (possibly multiple) scalar

field(s) sourcing the gravitational field. The formal equivalence between models with

variable gravitational coupling and Einstein gravity via conformal transformations has

also been known for a long time [54, 55]. This has given rise to a debate on whether

the mathematical equivalence between different conformal representations of the the-

ory (called Jordan and Einstein conformal frames) is also a physical equivalence ([56]

and references therein).
1The dynamics of all these scalars are usually determined by second order Klein-Gordon-like equa-

tions.
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2.3.1 Further gravitational degrees of freedom as auxiliary scalar
fields

In ETGs, the Einstein field equations are modified in two ways: the geometry can

be coupled non-minimally to some scalar field, and/or derivatives of the metric higher

than second order appear. In the former case, we generically deal with scalar tensor

theories of gravity. A variety of metric theories of gravity have been devised which

postulate the presence of a dynamical scalar gravitational field φ in addition to the

metric. These theories provide a late time acceleration for the universe without the

need for the presence of any exotic fluids. Indeed, it has been generally assumed that

a scalar field is responsible for the inflationary scenario which in its various versions

explains the horizon problem and the spatial flatness observed in the present stage of

the cosmological evolution. But the existence of a scalar field has also been postulated,

in some models, as a candidate for cold DM or, elsewhere, to incorporate Mach’s

principle into the theory of gravitation as the Brans-Dicke theory does [52, 53].

2.3.2 Addressing the Dark Side by Extended Gravity

The idea to relax the hypothesis that gravitational Lagrangian has to be a linear

function of the Ricci curvature scalar R, as in the Hilbert-Einstein formulation, is one

of the most fruitful and economic compared to the attempts which try to solve cosmo-

logical problems by adding new and, mostly, unjustified ingredients in order to give

a self-consistent picture of the dynamics. One of the problems is that the DE scale

appears to be smaller and smaller with respect to the energy scale of any known inter-

actions. The unnatural smallness of DE density constitutes the cosmological constant

problem. In this sense, infrared-modified gravity models could be phenomenologically

relevant as a possible alternative to DM and DE whose effects at large scales could be

originated by geometry, specifically by the further degrees of freedom emerging in al-

ternative theories of gravity [57]. In a qualitative way, we can see that starting from

the Hilbert-Einstein Lagrangian it is necessary to add a term in the action in order to

address the dark side issue
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S =
1

2κ2

∫
d4x
√
−gR + Sm + SDS −→ Gµν = κ2

(
T (m)
µν + T (DS)

µν

)
.

Conversely, extensions of GR provide naturally a cosmological component with nega-

tive pressure that in this way is originated from the geometry of the Universe

S =
1

2κ2

∫
d4x
√
−gf(R,RµνR

µν , ...) + Sm −→ Gµν = κ2
(
T (m)
µν + T (curv)

µν

)
.

Thus, enlarging the geometric sector can be useful in view of the dark side since the

further gravitational degrees of freedom have, in principle, a role in addressing DE and

DM.

2.4 The quantum gravity motivations

One of the main challenges of modern physics is to construct a theory able to de-

scribe the fundamental interactions of nature as different aspects of the same theoretical

construct. This purpose has led to the formulation of several unification schemes which

attempt to describe gravity by putting it on the same level as the other interactions. All

these schemes try to describe the fundamental fields in terms of the conceptual appara-

tus of quantum mechanics. This is based on the association of the states of a physical

system with vectors in a Hilbert space H where the physical fields are represented by

linear operators defined on domains of H . Up to now, any attempt to incorporate

gravity in this scheme has either failed or been unsatisfactory. Conceptually, the main

problem is that the gravitational field describes at the same time the gravitational de-

grees of freedom and the background space-time in which these degrees of freedom

live. Due to the difficulties of building a complete theory unifying interactions and

particles, during the last thirty years the two fundamental theories of modern physics,

GR and quantum mechanics, have been critically reanalyzed. From one side, it is as-

sumed that the matter fields (bosons and fermions) come out from superstructures (e.g.,

Higgs bosons or superstrings) that, undergoing certain phase transitions, have gener-

ated the known particles. On the other hand, it is assumed that the geometry (e.g., the

Ricci tensor or the Ricci scalar) interacts directly with quantum matter fields which

22



Extended Theories of Gravity

back-react on it. Clearly, this interaction modifies the standard gravitational theory,

that is, the Lagrangian of gravity plus the effective fields is modified with respect to

the Hilbert-Einstein one, and this fact leads to the ETGs. Anyway, the condition that

must be satisfied in order for such theories to be physically acceptable is that GR is

recovered in the low-energy limit. Despite remarkable conceptual progress has been

made following the introduction of generalized gravitational theories, at the same time

the mathematical difficulties have increased. The corrections introduced into the La-

grangian augment the (intrinsic) non-linearity of the Einstein equations, making them

more difficult to study because differential equations of higher order than second are

often obtained and because it is impossible to separate the geometric from the matter

degrees of freedom without using symmetries.

The need for a quantum theory of gravity was recognized at the end of the 1950s,

when for the first time physicist tried to treat all interactions at a fundamental level and

describe them in terms of quantum field theory. Naturally, the first attempt to quantize

gravity was through the canonical approach and the covariant approach, successfully

applied to electromagnetism.

Concerning the application of these methods to GR, many difficulties arise because

Einstein’s theory cannot be formulated in terms of a quantum field theory on a fixed

Minkowski background. More specifically, in GR the geometry of the background

space-time cannot be given a priori because space-time is the dynamical variable it-

self. In order to introduce the notions of causality, time, and evolution, it is necessary

to first solve the equations of motion and build the space-time. As an example, to

know if a particular initial condition will give rise to a black hole, it is necessary to

fully evolve it by solving the Einstein equations. Then, taking into account the causal

structure of the solution obtained, the asymptotic metric at future null infinity has to be

studied to evaluate whether it is related, in the causal past, with that initial condition.

This problem becomes intractable at the quantum level. According to the uncertainty

principle, in non-relativistic quantum mechanics particles do not move along well-

defined trajectories and only the probability amplitude ψ(x, t) that a measurement at

time t detects a particle around the spatial point x can be calculated. In the same way,

in quantum gravity, the evolution of an initial state does not provide a specific space-
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time. Therefore, the question arises as to how it is possible to introduce basic concepts

such as causality, time, elements of the scattering matrix, or black holes in the absence

of a space-time.

The canonical and covariant approaches provide different answers to these ques-

tions. The first approach is based on the Hamiltonian formulation of GR and aims at

using the canonical quantization procedure. The canonical commutation relations are

the same that lead to the uncertainty relations; in fact, the commutation of certain oper-

ators on a spatial three-manifold of constant time is imposed, and this three-manifold is

fixed to preserve the notion of causality. In the limit of asymptotically flat space-time,

the motion generated by the Hamiltonian must be interpreted as temporal evolution (in

other words, when the background becomes the Minkowski space-time, the Hamilto-

nian operator assumes again its role as the generator of translations). The canonical

approach preserves the geometric features of GR without the need to introduce pertur-

bative methods [58, 59].

The main difficulties arising from this approach are that the quantum equations in-

volve products of operators defined at the same space-time point and, in addition, they

imply the construction of distributions whose physical meaning is unclear. However,

the main problem is the absence of a Hilbert space of states and, as consequence, a

probabilistic interpretation of the quantities calculated is missing. The covariant quan-

tization approach is closer to the known physics of particles and fields in the sense

that it has been possible to extend the perturbative methods of Quantum Electrody-

namics (QED) to gravitation. This has allowed the analysis of the mutual interaction

between gravitons and of the matter-graviton interactions. The formulation of Feyn-

man rules for gravitons and the demonstration that the theory might be unitary at every

order of the expansion was achieved by De Witt. Further progress was achieved with

Yang-Mills theories, which describe the strong, weak, and electromagnetic interac-

tions of quarks and leptons by means of symmetries. Such theories are renormalizable

because it is possible to give the fermions a mass through the mechanism of sponta-

neous symmetry breaking. Therefore, it is natural to attempt to consider gravitation

as a Yang-Mills theory in the covariant perturbation approach and check whether it

is renormalizable. However, gravity does not fit into this scheme; it turns out to be
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non-renormalizable when one considers the graviton-graviton interactions (two-loops

diagrams) and graviton-matter interactions (one-loop diagrams). The covariant method

allows one to construct a theory of gravity which is renormalizable at one-loop in the

perturbative series [38]. As a consequence of the non-renormalizability of gravity at

different orders, its validity is restricted only to the low-energy domain, i.e., to large

scales, while it fails at high energy and small scales. This entails that the full unknown

theory of gravity has to be invoked near or at the Planck era and that, sufficiently far

from the Planck scale, GR and its first loop corrections describe the gravitational inter-

actions. In this context it makes sense to add higher order terms to the Hilbert-Einstein

action.

Furthermore, the assumption that GR is the theory of gravitational interaction gives

rise to spin-2 massless bosons, i.e. the massless gravitons, when the quantization in

the linear approximation of Minkowskian limit is considered. A reasonable question

to ask is whether gravitons could be massive in some alternative theory of gravity

where GR is only limiting or a particular case [66, 67]. Even if the concept of massive

gravitons poses some controversial issues that greatly complicate the formulation of

self-consistent theories, such as the presence of ghost, instabilities, discontinuity and

strong coupling effects at low energy scales [61, 62, 64, 65], massive graviton solutions

cannot be simply ruled out if one wants to face coherently the problem of gravitational

interaction in the ultraviolet limit [63, 74, 75, 83]. Furthermore, the problem of massive

gravitons emerges and has to be consistently considered also at infrared limit [80, 79]

when the large amount of alternative theories of gravity, developed in order to match

the problem of cosmic acceleration in view of DE, is taken into account [29, 77, 57,

78, 76].

2.5 Effective field theory from Extended Gravity

The challenging problem of reconciling gravity and quantum field theories could

be addressed through the study of Effective Field Theories (EFT), that allow to analyze

different energy regimes separately (see e.g. [85, 86]). In general, since the effective

Lagrangians is non-renormalizable, due to an infinite number of counterterms, one re-
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tains only a few of them in a phenomenological approach where only leading terms are

necessary. This means that the determination of the effective degrees of freedom is a

crucial point for any effective theory and this fact is even more important in connec-

tion with gravity. Technically, a way to build up an effective Lagrangian is to identify

some expansion parameters and classify terms in the Lagrangian according to such

parameters. Without knowing the underlying fundamental theory, the coefficients of

the expansion are necessarily unknown, and their values have to be determined, in

principle, by experiments.

The study of gravitons has a key role in order to face the problem of reconciling

gravity and fundamental interactions. The long standing problem of graviton mass [60,

61, 62, 63, 64, 65, 66] has recently excited a renewed interest both at fundamental and

cosmological level. From one side, massive gravitational states could be the signature

of some effective theory quantization. From the other side, massive gravitons could

be the natural candidates for DM capable of structuring self-gravitating astrophysical

systems [68, 69].

There have been several experimental searches for massive gravitons, resulting in

upper limits for the mass which differ by several orders of magnitude. For example, a

limit on the graviton mass (∼ 8 × 104 eV) has been achieved by measuring the decay

of two photons [81]. Besides, assuming that clusters of galaxies are bound by more-

or-less standard gravity, it is possible to obtain an upper limit of 2×10−29h0 eV, where

h0 is the Hubble constant in units of 100 km s−1 Mpc−1 [82]. Also gravitational waves

sector has a prominent role in this discussion. In fact, gravitational waves coming

from GR are described by the transverse-traceless gauge, which is a spin-2 tensor

under rotations with massless modes. Beside of these standard results, it is possible

to construct consistent models where Lorentz invariance is broken and the masses of

scalar, vector and tensor perturbations are different from zero. A direct limit on the

mass of graviton can be obtained from gravitational waves by binary stellar systems

and from the inspiral rate inferred from the timing of binary pulsars. This bound is

about 7.6 × 10−20 eV for the binary pulsar PSR B1913+16 [83]. The same limit can

be also obtained by studying binary systems in f(R)-gravity [84]. An estimate of the

graviton mass upper limit of about 7× 10−32 eV, is obtained by considering the effect
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of gravitons on the power spectrum of weak lensing, with assumptions about DE and

other parameters [72]. The recent discovery of gravitational waves from coalescing

Black Holes allowed to set the upper limit of 1.2×10−22 eV on the graviton mass [73].

This fact opens new perspectives in the research of massive gravity.

In [1], we take into account an effective theory of gravity that follows naturally

from ETGs (see e.g. [29]). The action can be expanded in powers of the Ricci curvature

scalar R satisfying a massive Klein Gordon field equation. In particular, by linearizing

f(R) gravity, the Lagrangian describes a massive scalar field where a mass scale m

emerges naturally. The theory does not predict the value of this mass, but it does

predict its connection with parameters of the ETG Lagrangian. It is possible to identify

correlations between the coefficients of the effective Lagrangioan, which may, in turn,

induce correlations among observables at different scales. A first result is that the

assumption of an effective Lagrangian derived from f(R) gravity allows to escape

the problem of scalar ghosts in massive theories, as pointed out in [61]. In the limit

wherem� Λ (being Λ the cosmological constant), we achieve a physically acceptable

scalar field satisfying a homogeneous Klein Gordon equation and then one achieves an

effective field Lagrangian bypassing some of the problems raised in [61] where GR,

i.e. f(R) = R, was considered.

The perturbative approach

We consider a 4-dimensional action in vacuum for a generic function f(R) of the

Ricci scalar [29, 77, 57, 78] that we will treat in detail later (see Chapter 3)

S =

∫
d4x
√
−gf(R) , (2.1)

where the Ricci scalar is defined as R = gµνRµν , and g is the determinant of the

metric. At this stage, our only assumption is that f(R) is an analytic function, i.e.

Taylor expandable, in term of the Ricci scalar, namely

f(R) =
∑
n

fn(R0)

n!
(R−R0)n = f0 + f

′

0R +
1

2
f ′′0R

2 + ... . (2.2)

The flat-Minkowski background is recovered as soon as R = R0 = 0 and f0 = 0. The

notations f ′(R) =
df(R)

dR
and f ′′(R) =

d2f(R)

dR2
indicate the derivative with respect to
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the Ricci scalar R. We have defined f0 = f(R)|R=R0 , f ′0 = f ′(R)|R=R0 and so on. At

the second order of approximation in term of R, the above action (2.1) becomes

S =

∫
d4x
√
−g
[
f0 + f ′0R +

1

2
f ′′0R

2

]
. (2.3)

This can be seen as an EFT Lagrangian, naturally emerging in the context of ETG.

In a bottom-up approach, from the point of view of unconstrained EFT, there is no

rationale, like symmetries or renormalizability, for choosing the gravitational action

proportional to R like in GR, except indications that the curvature R is rather small.

Furthermore, there are infinite terms allowed by general coordinate invariance, such as

RµνR
µν , where Rµν is the Ricci tensor, RµνλσR

µνλσ, where Rµνλσ is the Riemann ten-

sor, derivatives ofR, and so on. Where one has to truncate the expansion is somehow a

matter of choice, and the coefficients are completely unknown from a theoretical point

of view. Instead, the terms in the action (2.3) follow from the underlying ETG, which

can also give indications on the coefficients and the order of the series. Here we are

choosing the simplest possibility considering an analytical f(R) theory of gravity.

After the variation of the action (2.3) with respect to the metric, we obtain the

following field equations

−f0

2
gµν + f ′0Gµν − f ′′0

[
∇µ∇νR− gµν2R +R

(
1

4
Rgµν −Rµν

)]
= 0 , (2.4)

where

Gµν = Rµν −
1

2
gµνR, (2.5)

is the Einstein tensor and 2 = ∇σ∇σ is the d’Alembert operator with ∇σ indicating

covariant derivatives. It is worth noting that rewriting the ETG Lagrangian in the form

L =
√
−g
[
f0

f ′0
+R +

1

2

f
′′
0

f
′
0

R2

]
f ′0, (2.6)

the cosmological constant term can be identified as
f0

f
′
0

= −2Λ. We are working in

Planck units, hence we assume that the Lagrangian in action (2.6) is multiplied by
1

2κ2
= 1

16πGN
, where GN is the Newton constant. From now on, we will work in in

“modified” Planck units, that is we will assume a multiplicative factor 1/16πG̃, with

G̃ = GN/f
′
0, that reduces to the standard one as soon as f ′0 = 1. Immediately, we have

Λgµν +Gµν −
f ′′0
f ′0

[
∇µ∇νR− gµν2R +R

(
1

4
Rgµν −Rµν

)]
= 0 . (2.7)
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Taking the trace of the above field equations, we have

2R− f ′0
3f ′′0

(R− 4Λ) = 0 . (2.8)

Clearly, setting f0 = 0, i.e. discarding the 0th term, is equivalent to set to zero the

cosmological constant. Thus, the trace equation takes the form

2R− f ′0
3f ′′0

R = 0 . (2.9)

Eqs. (2.8) and (2.9) are Klein-Gordon-like equations. Indeed, by assuming that the

ratio f ′0/f
′′
0 is negative, we can define an effective mass

m2 ≡ − f
′
0

3f
′′
0

, (2.10)

so that we have

2R +m2R = 0 , (2.11a)

2R +m2(R− 4Λ) = 0 . (2.11b)

It follows that the curvatureR can be considered formally analogous to a massive scalar

field [88]. We can neglect the non-homogeneous equation as soon as the condition

R� Λ, (2.12)

holds.

Now we want to study the linearized version of such a theory in order to interpret

it in the context of EFT. In order to linearize the field equations (2.4) at first order in

hµν , we have to expand around the flat space-time metric ηµν [89, 90, 91]. We have

gµν = ηµν + hµν , ⇒ ds2 = gµνdx
µdxν = (ηµν + hµν)dx

µdxν , (2.13)

with hµν small (O(h2) � 1). It is important to emphasize that the perturbation hµν is

a symmetric tensor. The Ricci scalar, at the first order in metric perturbation, reads

R = ∂σ∂τhστ −2h , (2.14)
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where h ≡ hµµ is the trace of hµν and 2 = ∂σ∂
σ that is reduced now to the standard

d’Alembert operator defined on the underlying Minkowski space-time where gravity

is assumed as a perturbation. Considering the harmonic gauge condition1

∂µhµν = 0, (2.15)

we obtain

R = −2h . (2.16)

In this approach, the fluctuation of the metric on the background represents the field

mediating the gravitational interaction. Now we want to identify its properties by

setting the corresponding field equations.

Considering the homogeneous Klein-Gordon Eq. (2.11a) and substituting the ex-

pression for R given by Eq. (2.16), we find

2(2h+m2h) = 0 . (2.17)

We can choose the trivial solution

2h+m2h = 0 , (2.18)

and find the condition

2h = −m2h , (2.19)

that is a sort of mass shell condition. We can also consider Eq. (2.11b) discussing the

role of cosmological constant. As it is well known, the general solution is the sum of

the field satisfying the associated homogeneous Eq. (2.11a) plus a particular solution

R′, that we can formally write as

R′(x) = 4Λm2

∫
G(x, x′)dx′. (2.20)

Here G(x, x′) is a non-local Green function satisfying the field equation

(2 +m2)G(x, x′) = δ(x, x′) . (2.21)

1Such a condition is also called Hilbert, or De Donder or Lorentz gauge. In general, the harmonic
gauge is defined in a curved background by the condition ∂ν (gµν

√
−g) = 0. Writing gµν = ηµν +hµν

and expanding to linear order, the harmonic gauge reduces to the standard Lorentz gauge.
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Only the scale m2 appears in Eqs. (2.19) and (2.21), while R′ is suppressed by Λ. We

can reasonably assume that R′ can be neglected with respect to the solutions of Eq.

(2.11a), as far as the approximation Λ� m2 holds.

Let us now rewrite the Lagrangian (2.6) in term of the perturbation. It is

L =
√
−g

[
f0

f ′0
+R +

f
′′
0

2f ′0
R2

]
=
√
−det (ηµν + hµν)

(
R− 2Λ− 1

6m2
R2

)
,

(2.22)

where we have explicitly indicated the determinant of the metric. Substituting R →

−2h, we find

L =
√
−det(ηµν + hµν)

[
−2Λ−2h− 1

6m2
(2h)2

]
, (2.23)

and using the condition (2.19) as a sort of Lagrange multiplier (see also [92]), it be-

comes

L =
√
−det(ηµν + hµν)

[
m2h− 2Λ− m2

6
h2

]
. (2.24)

Working out the square root up to the second order 2 in hµν , we find√
−det(ηµν + hµν) ' 1 +

1

2
h+

1

8
h2 − 1

4
hµνh

µν , (2.25)

and the Lagrangian becomes

L =

(
1 +

1

2
h+

1

8
h2 − 1

4
hµνh

µν

)(
−2Λ +m2h− m2

6
h2

)
= −2Λ + (m2 − Λ)h+

(
m2

3
− Λ

4

)
h2 +

1

2
Λ hµνh

µν +
m2

24
h3 − m2

48
h4

−m
2

4
h hµνh

µν +
m2

24
h2 hµνh

µν . (2.26)

By truncating up to the second order in h, we get

L = −2Λ + (m2 − Λ)h+

(
m2

3
− Λ

4

)
h2 +

1

2
Λ hµνh

µν . (2.27)

The above Lagrangian describes a spin-0 particle and a spin-2 particle. The term pro-

portional to h does not affect the calculation of perturbative observables, since it is

linear in the creation and destruction operators and it vanishes once inserted between

vacuum states.
2We expand

√
−det(ηµν + hµν) at the second order in hµν , in agreement with the order of expan-

sion of f(R) in R.
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The effective field Lagrangian and the role of massive modes

Eqs. (2.22) and (2.27) can be considered as effective Lagrangians written in differ-

ent variables. In [87], the EFT is used to select the low energy modes, that are those

of the GR, and contributions from quantum physics are analyzed. As in Eq. (2.22),

the gravitational action is chosen proportional to powers of the curvature R, but the

arbitrary motivation of this choice is the physical smallness of R. On the other hand,

the expansion in R comes out naturally from the ETG where the coefficients are fixed

from the effective Lagrangian.

Let us compare the effective Lagrangian from linearized f(R) gravity Eq. (2.27)

with a Lagrangian derived on purely phenomenologically ground. The free part of the

Lagrangian for a massless spin-2 field can be written as

L0 =
1

2
∂λ(hλµ + hµλ)∂

µh− 1

4
∂λ (hλµ + hµλ)∂ν(h

µν + hνµ) +

+
1

8
∂λ(hµν + hνµ)∂λ(hµν + hνµ)− 1

2
∂λh∂

λh . (2.28)

This form is derived on the basis of Lorentz invariance and gauge transformations as

hµν → hµν + ∂µξν + ∂νηµ, (2.29)

where ξν and ηµ are eight arbitrary functions. Generic mass terms can be added

Lm = −a1h
2 − a2hµνh

µν − a3hµνh
νµ , (2.30)

with a1, a2 and a3 being arbitrary coefficients. In our case, hνµ is symmetric, therefore

the second and the third term coincide, which is equivalent to set, for instance, a3 = 0.

The Lagrangian L0 +Lm describes an effective theory with two particles of 0-spin and

2-spin, as the Lagrangian in Eq. (2.27). It has been demonstrated that, when a2 6= a3,

the condition of null divergence of h is not generally respected by the scalar field,

resulting in negative energy, or indefinite metric, which are not physically acceptable

[61]. In order to recover null divergence, the coefficients and the masses of Eq. (2.30)

need to respect fixed relations among them.

It is not obvious to build sensible descriptions of the gravitational interaction with

this characteristic. A standard way is to use the Hilbert-Einstein action for the massless

32



Extended Theories of Gravity

gravitational field together with mass terms respecting the symmetries leading to the

correct Ward identities. In [61], it is observed that such mass terms do not respect the

relations necessary to a physically acceptable Lagrangian L0 +Lm, and we are forced

to conclude that this description of massive gravity is not satisfactory.

In our case, the effective Lagrangian (2.27) evades the condition a2 6= a3 assumed

in [61]. In fact, the Lagrangian contains, at leading order, only terms proportional

to powers of h, which correspond to a2 = a3 = 0. Additional contributions are

suppressed by Λ, in the limit Λ � m2, which is the same limit where dynamics of

the scalar is described by the physical Klein Gordon equation (2.19). In other words,

we can say that starting from an analytical f(R) gravity model, it is quite natural to

recover an EFT where massive modes emerge at scalar and tensor levels. These results

point out that massive modes have not to be excluded a priori in relativistic theories

of gravity. Such a feature could give rise to a new physic opening the doors to a self-

consistent interpretation of dark side of the universe in the framework of gravity.
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Chapter 3

Variational principles in Extended
Theories of Gravity

Let us now focus on specific gravitational theories that have received attention

lately. It is known that variational principles play a prominent role in theoretical

physics and any fundamental physical theory can be formulated in terms of an action

from which are derived the equations of motion by means of a variational principle.

Specification of the Lagrangian function is determined by mathematical and physical

requirements like gauge invariance, renormalizability, simplicity, and so forth. We be-

gin with the exploration of the theoretical aspects related to the formulation of different

approaches to variational principle in gravitational theories, then we will concentrate

on some specific theories showing their Lagrangian functions, equations of motion and

the basic assumptions needed in order to obtain them.

3.1 The Metric and the Palatini approaches

The dynamics of gravitation is given by field equations which can be considered

in two different approaches: the metric and Palatini formalism [93]. The former ap-

proach relies on the usual variation of the action with respect to the metric tensor gµν

whereas the Palatini formalism deals with metric and (usually torsion-free) connection

Γλµν entering the definition of the Ricci tensor as two independent quantities and the

variation is taken with respect to both. In the case of GR, the two approaches are equiv-

alent (they provide the same field equations) as a consequence of the fact that the field

equations for the connection Γλµν give the Levi-Civita connection of the metric gµν .
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The situation is different in ETGs depending on functions of curvature invariants

or for gravity non-minimally coupled to a scalar field. In these cases, the Palatini and

the metric variational principle yield different field equations and different physical

predictions. As an example, in f(R) gravity, the metric formalism leads to a sys-

tem of fourth-order partial differential equations while the Palatini one gives second-

order equations. Note also that both formalisms are dynamically equivalent to different

classes of Brans-Dicke-like theories, which implies that they cannot be equivalent to

each other [94].

From the physical point of view, considering the metric gµν and the connection

Γλµν as independent fields amounts to decoupling the metric structure of space-time

and its geodesic structure with the connection Γλµν being distinct from the Levi- Civita

connection of gµν . The causal structure of space-time is defined by gµν , while the

space-time trajectories of particles are governed by Γλµν . In principle, this decoupling

enriches the geometric structure of space-time and generalizes the purely metric for-

malism. By means of the Palatini field equations, this dual structure of space-time is

naturally translated into a bimetric structure of the theory: instead of a metric and an

independent connection, the Palatini formalism can be seen as containing two inde-

pendent metrics gµν and hµν = f ′(R)gµν . In Palatini f(R) gravity the new metric hµν

determining the geodesics is related to the connection Γλµν by the fact that the latter

turns out to be the Levi-Civita connection of hµν . Let us now consider some particular

classes of ETGs.

3.2 Scalar - Tensor Gravity

Let concentrate on theories which include a scalar field as an extra field mediating

the gravitational interaction. From now on we adopt Planck units.

3.2.1 Brans-Dicke-like gravity

The Brans-Dicke-like theory of gravity is the prototype of scalar-tensor theories

which include a scalar field, non-minimally coupled to the gravity. The action is given
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by

SBD =
1

16π

∫
d4x
√
−g

[
φR− ω

φ
gµν∇µφ∇νφ− V (φ)

]
+ S(m) (3.1)

where g is the determinant of the metric and

S(m) =

∫
d4x
√
−gL(m) (3.2)

is the action of ordinary matter and ω is the dimensionless Brans-Dicke parameter. The

factor φ in the denominator of the kinetic term of φ in the action is purely conventional

and has the only purpose of making ω dimensionless. Matter does not couple directly to

φ, i.e., the Lagrangian densityL(m) is independent of φ (“minimal coupling” of matter).

However, φ couples directly to the Ricci scalar. The gravitational field is described by

both the metric tensor gµν and the Brans- Dicke scalar φwhich, together with the matter

variables, constitute the degrees of freedom of the theory. As usual for scalar fields,

the potential V (φ) generalizes the cosmological constant and may reduce to a constant,

or to a mass term. The original motivation for introducing Brans-Dicke theory was

the implementation of Mach’s principle. This is achieved in Brans-Dicke-like theory

by making the effective gravitational coupling strength Geff ≈ φ−1 depending on

the space-time position and being governed by distant matter sources. As already

remarked, modern interest in Brans-Dicke and scalar-tensor theories is motivated by

the fact that they are obtained as low-energy limits of string theories. By varying the

action (3.1) with respect to gµν and using the well known properties

δ(
√
−g) = −1

2

√
−ggµνδgµν

δ(
√
−gR) =

√
−g

(
Rµν −

1

2
gµνR

)
δgµν ≡

√
−gGµνδg

µν

yield the field equations

Gµν =
8π

φ
T (m)
µν +

ω

φ2

(
∇µφ∇νφ−

1

2
gµν∇αφ∇αφ

)
+ (3.3)

+
1

φ
(∇µ∇νφ− gµν2φ)− V

2φ
gµν (3.4)

where

T (m)
µν ≡ −

2√
−g

δ

δgµν
(
√
−gL(m)) (3.5)
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is the energy-momentum tensor of ordinary matter. By varying the action with respect

to φ, one obtains
2ω

φ
2φ+R− ω

φ2
∇αφ∇αφ−

dV

dφ
= 0 (3.6)

Taking now the trace of Eq. (3.3)

R =
−8πT (m)

φ
+
ω

φ2
∇αφ∇αφ+

32φ

φ
+

2V

φ
(3.7)

and using the resulting Eq. (7.1) to eliminate R from Eq. (3.6) leads to

2φ =
1

2ω + 3

(
8πT (m) + φ

dV

dφ
− 2V

)
. (3.8)

According to this equation, the scalar φ is sourced by non-conformal matter (i.e., by

matter with trace T (m) 6= 0), however the scalar does not couple directly to L(m):

the Brans-Dicke scalar φ reacts on ordinary matter only indirectly through the metric

tensor gµν , as dictated by Eq. (3.3). The term proportional to φdV/dφ − 2V on the

right hand side of Eq. (3.8) vanishes if the potential has the form V (φ) = m2φ2/2

familiar from the Klein-Gordon equation and from particle physics. The action (3.1)

and the field equation (3.3) suggest that the field φ be identified with the inverse of the

effective gravitational coupling

Geff (φ) =
1

φ
(3.9)

a function of the space-time location. In order to guarantee a positive gravitational cou-

pling, only the range of values φ > 0 corresponding to attractive gravity is considered.

The dimensionless Brans-Dicke parameter ω is a free parameter of the theory: a value

of ω of order unity would be natural in principle (and it does appear in the low-energy

limit of the bosonic string theory). However, values of ω of this order of magnitude are

excluded by Solar System experiments, for a massless or light field φ (i.e., one that has

a range larger than the size of the Solar System). The larger the value of ω, the closer

Brans-Dicke gravity is to GR [20]. Brans-Dicke theory with a free or light scalar field

is viable in the limit of large ω, but the large value of this parameter required to satisfy

the experimental bounds is certainly fine-tuned and makes Brans-Dicke theory unap-

pealing. However, this fine-tuning becomes unnecessary if at the scalar field is given a

sufficiently large mass and, therefore, a short range. This means that a self-interaction
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potential V (φ) has to be considered in discussing the limits on ω and this fact is an

adjustment of the original Brans-Dicke theory [52].

3.2.2 Scalar -Tensor theories: the general case

In four dimensions, the general form for the action of a scalar-tensor theory involv-

ing gravity coupled in a non-standard way with a scalar field is

S =

∫
d4x
√
−g
[
F (φ)R +

1

2
gµν∇µφ∇νφ− V (φ)

]
, (3.10)

where R is the Ricci scalar, V (φ) and F (φ) are generic functions describing, respec-

tively, the potential for the field φ and the coupling of φ with gravity.

The variation with respect to gµν gives the second-order field equations

F (φ)Gµν = F (φ)

[
Rµν −

1

2
Rµν

]
= −1

2
T φµν − gµν2F (φ) + F (φ);µν , (3.11)

which are the generalized Einstein equations; here 2 is the d’Alembert operator for the

metric g, Gµν is the Einstein tensor and T φµν is the energy-momentum tensor relative

to the scalar field φ. Here and below, semicolon denotes metric covariant derivatives

with respect to g. The energy-momentum has the form

T φµν = φ;µφ;ν −
1

2
gµνφ;αφ

;α + gµνV (φ), (3.12)

The variation with respect to φ provides the Klein-Gordon equation, i.e. the field

equation for the scalar field

2φ−RFφ(φ) + Vφ(φ) = 0, (3.13)

where Fφ = dF (φ)/dφ, Vφ = dV (φ)/dφ. This last equation is equivalent to the

Bianchi contracted identity [103].

• Minimal coupling

The theory of gravity minimally coupled to a scalar field is obtained by imposing

F (φ) = constant in (3.10) and is described by the action

SMC =

∫
d4x
√
−g
[
−1

2
R +

1

2
gµν∇µφ∇νφ− V (φ)

]
. (3.14)
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The resulting field equations are

Gµν = φ;µφ;ν −
1

2
gµνφ;αφ

;α + gµνV (φ), (3.15)

that is

Gµν = T φµν . (3.16)

The field equation for the scalar field is

2φ+ Vφ(φ) = 0. (3.17)

3.3 Higher-order gravity

ETGs exhibit two main features: first, the geometry can couple non-minimally to

some scalar field; second, derivatives of the metric components of order higher than

second may appear. In the first case, as we said previously, we have scalar-tensor

theories of gravity, and in the second case we have higher order theories. Combina-

tions of non-minimally coupled and higher order terms can also emerge in effective

Lagrangians, producing mixed higher-order-scalar-tensor gravity.

The general class of higher-order-scalar-tensor theories in four dimensions is given

by the action

S =

∫
d4x
√
−g
[(
F (R,2R,22R, . . .2kR, φ)− ε

2
gµν∇µφ∇νφ

)
+ Lm

]
, (3.18)

where F is an unspecified function of curvature invariants and of a scalar field φ (recall

that we are adopting Planck units). The term Lm is the minimally coupled ordinary

matter contribution and ε is a constant which specifies the theory. Actually its values

can be ε = ±1, 0, fixing the nature and the dynamics of the scalar field which can be

a standard scalar field, a phantom field or a field without dynamics. By varying the

action with respect to gµν we obtain the field equations:
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Gµν =
1

P

[
T µν +

1

2
gµν (F − PR) +

(
gµλgνσ − gµνgλσ

)
∇λ∇σP

]
+

+
1

2

[
k∑
i=1

k∑
j=1

(
gµλgνσ + gµνgλσ

)
∇σ

(
2j−i)∇λ

(
2i−j ∂F

∂2iR

)]

− gµνgλσ
[
∇λ

(
∇σ(2j−1R)2i−j ∂F

∂2iR

)] (3.19)

where Gµν is the Einstein tensor and

P ≡
n∑
j=0

2j

(
∂F

∂2iR

)
. (3.20)

The differential equations (3.19) are of order (2k + 4). The stress-energy tensor is

due to the kinetic part of the scalar field φ and to the ordinary matter:

Tµν = T (m)
µν +

ε

2

[
∇µφ∇νφ−

1

2
∇αφ∇αφ

]
. (3.21)

The possible contribution of a potential V (φ) is contained in the definition of F . From

now on, we indicate by a capital F a Lagrangian density containing also the contri-

bution of a potential V (φ) and by F (φ), f(R), or f(R,2R) a function of such fields

without potential. It is worth noticing that the Cauchy problem for these theories could

be extremely difficult to formulate and its well-formulation and well-posedness strictly

depends on the source fluid considered. An example of this kind of problem is reported

in Appendix A.2 and references therein.

By varying with respect to the scalar field φ, we obtain the Klein-Gordon equation:

ε2φ = −∂F
∂φ

(3.22)

Several approaches can be used to deal with such equations. For example, as we

said, by a conformal transformation, it is possible to reduce an extended theory to a

multi scalar-tensor theory of gravity. From the action (3.18), by choosing

F = F (φ)− V (φ) ε = −1. (3.23)

we get the action (3.10), i.e. the action of scalar-tensor theories with non-minimal

coupling.
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f(R) gravity

We now examine one of the simplest modifications to GR that is f(R) gravity

achieved imposing F = f(R) and ε = 0 in the action (3.18). The salient feature of

these theories is that the field equations are of fourth order and that GR is recovered

as the special case f(R) = R. Due to their higher order, these field equations admit a

much richer variety of solutions than the Einstein equations. The 4-dimensional action

is

S =

∫
d4x
√
−g[f(R) + Lm], (3.24)

where f(R) is an arbitrary analytic1 function of the Ricci curvature scalar R and Lm

is a matter Lagrangian 1 that depends on gµν and matter fields. Varying with respect to

gµν we get the field equation equation

Gµν =
1

f ′(R)

{
1

2
gµν [f(R)−R f ′(R)] +∇µ∇νf

′(R)− gµν2f ′(R)

}
+

T
(m)
µν

f ′(R)
,

(3.25)

where f ′(R) = ∂f/∂R and T (m)
µν is the energy-momentum tensor of the matter fields

defined by the variational derivative of Lm in terms of gµν . The trace of Eq. (3.25)

gives

32f ′(R) + f ′(R)R− 2f(R) = T , (3.26)

where T = gµνT
(m)
µν and 2f ′(R) = (1/

√
−g)∂µ(

√
−ggµν∂νf ′(R)). Einstein gravity,

without the cosmological constant, corresponds to f(R) = R and f ′(R) = 1, so that

the term 2f ′(R)in Eq. (3.26) vanishes. In this case we have R = −T and hence the

Ricci scalar R is directly determined by the matter (the trace T ). In modified gravity

the term 2f ′(R) does not vanish in Eq. (3.26), which means that there is a propagat-

ing scalar degree of freedom, φ ≡ f ′(R). The trace equation (3.26) determines the

dynamics of the scalar field φ (dubbed “scalaron” [88]).

The field equation (3.25) can be written in the following form

Gµν = T (curv)
µν +

T
(m)
µν

f ′(R)
, (3.27)

1This assumption is not, strictly speaking, necessary and is sometimes relaxed in the literature
1Note that we do not take into account a direct coupling between the Ricci scalar and matter.
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where T (curv)
µν is regarded an effective stress-energy tensor constructed by the extra

curvature terms, which we call “curvature fluid” energy-momentum tensor sourcing

the effective Einstein equations. This is a geometrical source with vanishing four-

divergence. Although this interpretation is questionable in principle because the field

equations describe a theory different from GR, and one is forcing upon them the inter-

pretation as effective Einstein equations, this approach is quite useful in practice.

Let discuss f(R) theory in Palatini formalism [93] deriving field equations by treat-

ing gµν and Γαβγ as independent variables. For clarity, it is convenient to write action

(3.24) in the following form

S =

∫
d4x
√
−g[f(R) + Lm], (3.28)

where Rµν(Γ) is the Ricci tensor corresponding to the connections Γαβγ and R ≡

R(g,Γ) = gµνRµν(Γ). Note that Rµν(Γ) is in general different from the Ricci tensor

calculated in terms of metric connections Rµν(g). Varying (3.28) with respect to gµν ,

we obtain

f ′(R)Rµν(Γ)− 1

2
f(R)gµν = T (m)

µν . (3.29)

The trace of Eq. (3.29) is

f ′(R)R− 2f(R) = T (3.30)

where T = gµνT
(m)
µν . From (3.30) is clear that the Ricci scalar in Palatini formalism

R(T ) is algebraically related to T and it is different from the Ricci scalar of the metric

formalism R(g). We have the following condition

R = R +
3

2

1

(f ′(R))2
(∇µf

′(R))(∇µf ′(R)) +
3

f ′(R)
2f ′(R). (3.31)

where a prime represent a derivative in terms of R. Let consider the variation with

respect to the connection. As stated before, we are considering space-time without

torsion so the quantities δΓαβγ are symmetric with respect to the indices β and γ. Taking

into account this symmetry condition the variation of the action (3.28) with respect to

the connection leads to the following equations

∇σ(
√
−gf ′(R)gµν) = 0, σ 6= ν 6= µ. (3.32)
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In conclusion, the Palatini field equations are

f ′(R)Rµν(Γ)− 1

2
f(R)gµν = T (m)

µν (3.33)

∇σ(
√
−gf ′(R)gµν) = 0 (3.34)

Note that∇σ are the covariant derivatives with respect to the connection Γ. It is possi-

ble to identify
√
−gf ′(R)gµν =

√
−hhµν . (3.35)

Therefore a bi-metric structure naturally arises in this formulation. The functions Γ are

identified as the Levi-Civita connection for the metric hµν and can be expressed as

Γλµν = hλσ(∂µhνσ + ∂νhµσ − ∂σhµν). (3.36)

We can now straightforwardly deduce that when f(R) = R, the theory reduce to

GR. This means that until we use Hilbert- Einstein Lagrangian, geodetic structure and

metric structure must coincide, or in other words there no difference between Hilbert-

Einstein (metric) variational principle and Palatini (metric-affine) variational principle.

However, the difference appears for the f(R) models which include non-linear terms

in R. While the kinetic term 2f ′(R) is present in Eq. (3.26), such a term is absent in

Palatini f(R) gravity. This has the important consequence that the oscillatory mode,

which appears in the metric formalism, does not exist in the Palatini formalism.

3.3.1 Hybrid gravity

Hybrid metric-Palatini gravity or f(X) gravity is an approach to modified theories

of gravity where the action is taken as the standard Hilbert-Einstein (linear in Ricci

scalar R) plus a nonlinear term in the Palatini curvature scalar [104, 105].

Similarly as for the metric and Palatini formalism, f(X) gravity can be transformed

into scalar-tensor theory [104, 105, 106, 107] as we will show in the following (section

6.5). Using the respective dynamically equivalent scalar-tensor representation, it was

shown that the theory can pass the Solar System observational constraints even if the

scalar field is very light. This implies the existence of a long-range scalar field, which

is able to modify the cosmological and galactic dynamics, but leaves the Solar System
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unaffected. The absence of instabilities in perturbations was also verified and explicit

models, consistent with local tests, lead to the late-time cosmic speed-up.

Let us consider the action for the hybrid metric-Palatini gravity in the following

form [104, 105] :

S =

∫
d4x
√
−g[R + f(R)] + Sm, (3.37)

where R = R(g) is the metric curvature scalar and f(R(Γ̂)) is the function of the

Palatini curvature scalar (denoted by R) which is constructed through an independent

connection Γ̂. The variation of the above action with respect to the metric yields the

gravitational field equations

Gµν + f ′(R)Rµν −
1

2
f(R)gµν = Tµν , (3.38)

where Gµν is the Einstein tensor for the metric gµν (with Lorentzian signature), while

Rµν is a Ricci tensor constructed by the conformally related metric hµν = f ′(R)gµν ,

where the conformal factor is given by f ′(R) = df(R)/dR. The trace of Eq. (3.38)

is the hybrid structural equation, where one can algebraically express the Palatini cur-

vature R in terms of a quantity X assuming that f(R) has analytic solutions, that

is

f ′(R)R− 2f(R) = T +R ≡ X. (3.39)

The variable X measures the deviation from the GR trace equation R = −T , that is

GR is fully recovered for X = 0 [105].

3.3.2 Gauss-Bonnet Gravity

Recently, the possibility to include the Gauss-Bonnet topological invariant into the

Lagrangian have been considered. The action is given by general functions of the Ricci

scalarR and the Gauss-Bonnet topological invariant G, that is F (R,G). These theories

are stable and capable of describing the present acceleration of the universe as well as

the phantom behavior, the quintessence behavior and the transition from acceleration to

deceleration phases. In this sense, they are effective theories working also at infrared

scales. In principle, this kind of ETGs can reproduce models able to mimic the Λ-

CDM model, as well as other cosmological solutions and suitable perturbation schemes
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within different standard scenarios [108, 109, 110, 111, 112]. Also, the Parametrized

Post-Newtonian expansion of generalized Gauss-Bonnet models has been worked out

[113] as well as spherically symmetric solutions [114].

Let us start by writing the most general action for modified Gauss-Bonnet gravity

in 4-dimensions

S =

∫
d4x
√
−g [F (R,G) + Lm] . (3.40)

This Lagrangian is constructed by considering only the metric tensor and no extra

vector or spin degree of freedom is considered. The symbol G indicates the Gauss-

Bonnet invariant

G ≡ R2 − 4RαβR
αβ +RαβρσR

αβρσ , (3.41)

that is a combination of the Riemann tensor Rµνλσ, the Ricci tensor Rµν and the

Ricci scalar R = gµνRµν . It is important to stress that, in 4-dimension, any linear

combination of the Gauss- Bonnet invariant does not contribute to the effective La-

grangian. Furthermore, in 4-dimensions, we have only two non-zero Lovelock scalars

[112, 115, 116]. The variation of the action (3.40) with respect to the metric tensor gµν

provides the following gravitational field equations [113, 117]

Gµν =
1

FR

[
∇µ∇νFR − gµν2FR + 2R∇µ∇νFG − 2gµνR2FG

−4R λ
µ ∇λ∇νFG − 4R λ

ν ∇λ∇µFG + 4Rµν2FG + 4gµνR
αβ∇α∇βFG

+4Rµαβν∇α∇βFG −
1

2
gµν
(
RFR + GFG − F (R,G)

)]
+ T (m)

µν , (3.42)

where FR = ∂F/∂R, FG = ∂F/∂G, ∇ is for the covariant derivative and T (m)
µν =

−2√
−g

δ(
√
−gLm)
δgµν

the energy momentum tensor. Let us note that GR is immediately recov-

ered for F (R,G) = R.
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Conformal Transformations

The frame dependence of the gravity theories is an important object for study. On

classical level the theory may manifest different physical properties in different frames

that leads to the nontrivial problems related with the correct choice of the field vari-

ables. On the other hand, the study of different frames enables one to explore the

relation between the different physical theories and thus generate the new exact solu-

tions.

4.1 The meaning of conformal transformations

Conformal transformations are mathematical tools very useful in ETGs as well as

in GR [95, 96, 97]. Under a conformal transformation the space-time metric rescaled

gµν → g̃µν and when a scalar field is present in the theory, besides the metric rescaling

there is a non-linear redefinition of this field φ → φ̃. The new dynamical variables

(g̃µν , φ̃) are thus obtained. The redefinition of the scalar field is necessary in order to

write the kinetic energy density of this field in canonical form. The new set of variables

(g̃µν , φ̃) is called the Einstein conformal frame, while (gµν , φ) constitute the Jordan

frame. When a scalar degree of freedom φ is present in the theory, as in scalar-tensor

or f(R)-gravity, it generates the transformation to the Einstein frame in the sense that

the rescaling is completely determined by a function of φ. Infinitely many conformal

frames could be introduced in principle, giving rise to as many representations of the

theory. Let consider the space-time (M, gµν), withM a smooth manifold of dimen-

sion n ≥ 2 and gµν a Lorentzian or Riemannian metric onM. The point-dependent
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rescaling of the metric tensor

gµν → g̃µν = Ω2gµν (4.1)

where the conformal factor Ω(x) is a nowhere vanishing, regular function, that is

called a Weyl or conformal transformation. As a consequence this metric rescaling, the

lengths of space-like and time-like intervals and the norms of space-like and time-like

vectors are changed, while null vectors and null intervals of the metric gµν remain null

in the rescaled metric g̃µν . The light cones are left unchanged by the transformation

(4.1) and the space-times (M, gµν) and (M̃, g̃µν) exhibit the same causal structure; the

converse is also true. A vector that is time-like, space-like, or null with respect to the

metric gµν has the same character with respect to g̃µν , and vice versa.

4.2 The Jordan frame and the Einstein frame

After performing a conformal transformation we use the term ‘conformal frame’

to distinguish the new, rescaled metric from the original. Among the infinite possible

conformal frames there are two which are most commonly used and have specific

interpretations: the Jordan frame and the Einstein frame. The Jordan frame is the

one in which the energy-momentum tensor is covariantly conserved and in which test-

particles follow geodesics of the space-time metric. For example, the Brans-Dicke

theory [52] is most usually formulated in the Jordan frame. The Einstein frame is

the conformal frame in which the field equations of the theory take the form of the

Einstein equations (unlike the Jordan frame, the Einstein frame can only be defined

for some theories). In the Einstein frame the field equations are second order but the

energy-momentum tensor of the matter fields is not always covariantly conserved and

test-particles do not necessarily follow geodesics of the space-time metric. Therefore,

the Einstein frame is particularly useful for finding vacuum solutions, but less useful

for finding solutions with matter fields present.

The transformation properties of different geometrical quantities are useful. They

are

g̃µν = Ω−2gµν , g̃ = Ω2ng, (4.2)
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for the inverse metric and the metric determinant,

Γ̃αβγ = Γαβγ + Ω−1
(
δαβ∇γΩ + δαγ∇βΩ− gβγ∇αΩ

)
, (4.3)

for the Christoffel symbols,

R̃ δ
αβγ = R δ

αβγ + 2δδ[α∇β]∇γ(log Ω)− 2gδσgγ[α∇β]∇σ(log Ω)+

+ 2∇[α(log Ω)δδβ]∇γ(log Ω)− 2∇[α(log Ω)gβ]γg
δσ∇σ(log Ω)+

− 2gγ[αδ
δ
β]g

σρ∇σ(log Ω)∇ρ(log Ω),

(4.4)

for the Riemann tensor,

R̃αβ = Rαβ − (n− 2)∇α∇β(log Ω)− gαβgρσ∇σ∇ρ(log Ω)+

+ (n− 2)∇α(log Ω)∇β(log Ω)+

− (n− 2)gαβg
ρσ∇σ(log Ω)∇ρ(log Ω),

(4.5)

for the Ricci tensor, and

R̃ = g̃αβR̃αβ =

= Ω−2

[
R− 2(n− 1) 2(log Ω)− (n− 1)(n− 2)

gαβ∇αΩ∇βΩ

Ω2

]
,

(4.6)

for the Ricci scalar. In the case of n = 4 space-time dimensions, the transformation

property of the Ricci scalar can be written as

R̃ = Ω−2

[
R− 6 2Ω

Ω

]
=

= Ω−2

[
R− 12 2(

√
Ω)√

Ω
+

3gαβ∇αΩ∇βΩ

Ω2

]
.

(4.7)

The Weyl tensor C δ
αβγ with the last index contravariant, is conformally invariant,

C̃ δ
αβγ = C δ

αβγ , (4.8)

but the same tensor with indices raised or lowered with respect to C δ
αβγ is not. This

property explains the name conformal tensor used for C δ
αβγ . If the original metric gαβ

is Ricci-flat (i.e., Rαβ), the conformally transformed metric g̃αβ is not (see equation

(4.5)). In the conformally transformed world the conformal factor Ω plays the role of

an effective form of matter and this fact has consequences for the physical interpre-

tation of the theory. A vacuum metric in the Jordan frame is not such in the Einstein
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frame, and the interpretation of what is matter and what is gravity becomes frame-

dependent. Nevertheless, if the Weyl tensor vanishes in one frame, it also vanishes

in the conformally related frame. Conformally flat metrics are mapped into confor-

mally flat metrics, a property used in cosmology when mapping Friedman- Robertson-

Walker (FRW) universes (which are conformally flat) into each other. Since, in general,

tensorial quantities are not invariant under conformal transformations, neither are the

tensorial equations describing geometry and physics. An equation involving a tensor

field ψ is said to be conformally invariant if there exists a number w (the conformal

weight of ψ) such that, if ψ is a solution of a tensor equation with the metric gµν and

the associated geometrical quantities, then ψ̃ = Ωwψ is a solution of the correspond-

ing equation with the metric g̃µν and the associated geometry. Besides the geometric

quantities, it is necessary to consider the behaviour of common forms of matter un-

der conformal transformations. There is no need to say that most forms of matter or

fields are not conformally invariant: invariance under conformal transformations is a

very special property. Generally, the covariant conservation equation for a (symmetric)

stress-energy tensor T (m)
αβ representing ordinary matter,

∇βT
(m)
αβ = 0, (4.9)

is not conformally invariant. The conformally transformed T̃ (m)
αβ satisfies the equation

∇̃βT̃
(m)
αβ = −T̃ (m)∇̃α(log Ω). (4.10)

Obviously, the conservation equation (4.9) is conformally invariant only for a matter

component that has vanishing trace T (m) of the energy-momentum tensor. This feature

is associated with light-like behaviour; examples are the electromagnetic field and a

radiative fluid with equation of state P (m) = ρ(m)/3. Unless T (m) = 0, (4.10) describes

an exchange of energy and momentum between matter and the scalar field Ω, reflecting

the fact that matter and the geometric factor Ω are directly coupled in the Einstein

frame description. Since the geodesic equation ruling the motion of test particles in GR

can be derived from the conservation equation (4.9) (geodesic hypothesis), it follows

that time-like geodesics of the original metric gαβ are not geodesics of the rescaled

metric g̃αβ and vice versa. Particles in free fall in the world (M, gαβ) are subject to
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a force proportional to the gradient ∇̃αΩ in the rescaled world (M̃, g̃αβ) (this is often

identified as a fifth force acting on all massive particles and, then, it can be said that no

massive test particles exist in the Einstein frame). The stress-energy tensor definition

in terms of the matter action S(m) =
∫
d4x
√
−gL(m), yields

T̃
(m)
αβ = Ω−2T

(m)
αβ , (4.11)

T̃
(m) α
β = Ω−4T

(m) α
β , (4.12)

T̃ (m) αβ = Ω−6T (m) αβ, (4.13)

T̃ (m) = Ω−4T (m). (4.14)

From the last equation it is clear that the trace vanishes in the Einstein frame if and

only if it vanishes in the Jordan frame.

4.3 Conformal Transformations applied to extended
gravity

We will now use these transformations to show how the scalar-tensor and some

higher-order theories can be transformed from the Jordan frames to the Einstein frame.

4.3.1 Scalar-tensor gravity

As showed in section 3.2, in four dimensions, the action involving gravity coupled

in a non-standard way with a scalar field is

S =

∫
d4x
√
−g
[
F (φ)R +

1

2
gµν∇µφ∇νφ− V (φ)

]
, (4.15)

where R is the Ricci scalar, V (φ) and F (φ) are generic functions describing, respec-

tively, the potential for the field φ and the coupling of φ with gravity.

The conformal transformation on the metric gµν is

ḡµν = e2ωgµν , (4.16)

where e2ω is the conformal factor. Under this transformation, the Lagrangian density
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in (4.15) becomes

√
−g
(
FR + 1

1
gµνφ;µφ;ν − V

)
=
√
−ḡe−2ω

(
FR̄− 6F2ḡω+

−6Fω;αω
;α + 1

2
ḡµνφ;µφ;ν − e−2ωV

)
,

(4.17)

where R̄ and 2ḡ are the Ricci scalar and the d’Alembert operator relative to the metric

ḡ respectively. If we require that the theory in the metric ḡµν appear as a standard

Einstein theory, then the conformal factor has to be related to F [118], namely

e2ω = −2F. (4.18)

F must be negative to restore physical coupling. Using this condition, the Lagrangian

density (4.17) becomes

√
−g
(
FR +

1

2
gµνφ;µφ;ν − V

)
= =

√
−ḡ
(
−1

2
R̄ + 32ḡω +

3F 2
φ − F
4F 2

φ;αφ
;α − V

4F 2

)
.

(4.19)

With the introduction of a new scalar field φ̄ and of the potential V̄ , respectively, de-

fined by

φ̄;α =

√
3F 2

φ − F
2F 2

φ;α, V̄ (φ̄(φ)) =
V (φ)

4F 2(φ)
, (4.20)

we obtain

√
−g
(
FR +

1

2
gµνφ;µφ;ν − V

)
=
√
−ḡ
(
−1

2
R̄ +

1

2
φ̄;αφ̄

;α − V̄
)
, (4.21)

which is the usual Hilbert-Einstein Lagrangian density plus the standard Lagrangian

density relative to the scalar field φ̄. Accordingly, every non-minimally coupled scalar-

tensor theory, in absence of ordinary matter, i.e. perfect fluid, is conformally equivalent

to an Einstein theory, if the conformal transformation and the potential are suitably

defined by (4.18) and (4.20). The converse is also true: for a given F (φ), such that

3F 2
φ−F > 0, it is possible to transform a standard Einstein theory into a non-minimally

coupled scalar-tensor theory. This means that, in principle, if we are able to solve the

field equations in the framework of the Einstein theory in presence of a scalar field

with a given potential, we should be able to get the solutions for the scalar-tensor

theories, assigned by the coupling F (φ), via the conformal transformation (4.18) with
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the constraints given by Eqs.(4.20). This is precisely what we want to discuss in the

cosmological context in cases where the potentials as well as the couplings are relevant

from the point of view of the fundamental physics. In the situation under consideration,

the Einstein frame is the framework of the Einstein theory with the minimal coupling

and the Jordan frame is that of the non-minimally coupled theory [119].

4.3.2 f(R) gravity

In general, fourth-order theories of gravity are given by the action

S =

∫
d4x
√
−gf(R) , (4.22)

where f(R) is an analytic function of the Ricci curvature scalar R. This is the simplest

case of fourth-order gravity but we can construct such kind of theories also using the

invariants Rµν o Rα
γµν . Nevertheless, for cosmological considerations, theories like

(4.22) are sufficiently general [120]. Hilbert–Einstein action is recovered for f(R) =

R. By performing the variation with respect to gαβ , we obtain the following field

equations

f ′(R)Rαβ −
1

2
f(R)gαβ = f ′(R);µν (gαµgβν − gαβγµν) , (4.23)

which are fourth-order equations thanks to the term f ′(R);µν . The prime indicates the

derivative with respect toR. Putting in evidence the Einstein tensor, the field equations

become

Gαβ =
1

f ′(R)

{
1

2
gαβ [f(R)−Rf ′(R)] + f ′(R);αβ − gαβ2f ′(R)

}
, (4.24)

where the gravitational contributions in the stress-energy tensor can be interpreted, via

conformal transformations, as scalar field contributions and then as “matter” terms.

Performing the conformal transformation (4.16) , we obtain

Ḡαβ =
1

f ′(R)

{
1

2
gαβ [f(R)−Rf ′(R)] + f ′(R);αβ − gαβ2f ′(R)

}
+ (4.25)

+2

(
ω;αβ + gαβ2ω − ω;αβ +

1

2
gαβω;γω

;γ

)
.
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We can choose the conformal factor

ω =
1

2
ln |f ′(R)| , (4.26)

which has to be substituted into ((4.25)). Rescaling ω in such a way that

kφ = ω , (4.27)

and k =
√

1/6, we obtain the Lagrangian equivalence

√
−gf(R) =

√
−ḡ
(
−1

2
R̄ +

1

2
φ̄:αφ̄

;α − V̄
)
, (4.28)

and the Einstein equations in standard form

Ḡαβ = φ;αφ;β −
1

2
ḡαβφ;γφ

;γ + ḡαβV (φ) , (4.29)

with the potential

V (φ) =
e−4kφ

2

[
f(φ)−F

(
e2kφ

)
e2kφ

]
=

1

2

f(R)−Rf ′(R)

f ′(R)2
. (4.30)

F is the inverse function of f ′(φ) and f(φ) =
∫

exp(2kφ)dF . Nevertheless, the

problem is completely solved if f ′(φ) can be analytically inverted. To sum up, a fourth-

order theory is conformally equivalent to the standard second-order Einstein theory

plus a scalar field (see also[121, 122]).

4.3.3 Higher-order theories

Considering a theory higher than fourth order, we have Lagrangian densities of the

form [123, 124, 125],

L = L(R,2R, ...2kR) . (4.31)

Every 2 operator introduces two further terms of derivation into the field equations.

As an example, a theory like

L = R2R , (4.32)

is a sixth-order theory. The above approach can be pursued considering a conformal

factor of the form

ω =
1

2
ln

∣∣∣∣∂L∂R + 2
∂L
∂2R

∣∣∣∣ . (4.33)
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In general, increasing two orders of derivation in the field equations (i.e. every term

2R), corresponds to add a scalar field in the conformally transformed frame [123] and

then, a sixth-order theory can be reduced to an Einstein theory with two minimally cou-

pled scalar fields. Thus, a 2n-order theory can be, in principle, reduced to an Einstein

theory + (n − 1)-scalar fields. However, these considerations can be directly general-

ized to higher-order-scalar-tensor theories in any number of dimensions as shown in

[49].

It is worth noting that conformal transformations works at three levels: i) on the

Lagrangian of the given ETG-theory; ii) on the field equations; iii) on the solutions.

Conformal transformations correlate these levels but, at this point of the discussion,

there is no absolute criterion capable of stating what is the “physical” framework since

all the frames are equivalent from a mathematical point of view (see also [97] for a

detailed discussion).
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Chapter 5

Extended Gravity Cosmology

Observations of physical processes occurring in an expanding universe can be used

to constrain the underlying gravitational theory in a number of ways. These observa-

tions can range from galaxy surveys in the nearby Universe to the results of processes

occurring in the very early Universe. We will concentrate in this chapter on a proce-

dure that could give us the possibility to constrain ETGs with the help of processes

like primordial nucleosynthesis and microwave background formation. Both of these

processes occur early in the Universe’s history and the results of both are well observed

by astronomers and astrophysicists[5].

5.1 How to select reliable models

As pointed out before, several models of f(R) gravity have been proposed in or-

der to address the dark side problem in cosmology. However, these models should

be constrained also at ultraviolet scales in order to achieve some correct fundamental

interpretation. In [5], we analyze this possibility comparing quantum vacuum states

in given f(R) cosmological backgrounds. Specifically, we compare the Bogolubov

transformations associated to different vacuum states for some f(R) models. The pro-

cedure consists in fixing the f(R) free parameters by requiring that the Bogolubov

coefficients can be correspondingly minimized to be in agreement with both high red-

shift observations and quantum field theory predictions. In such a way, the particle

production is related to the value of the Hubble parameter and then to the given f(R)

model.
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Reliable classes of f(R) models should be constrained at fundamental level [135].

Specifically, bounds on f(R) models could be derived by taking into account different

vacuum states via Bogolubov transformations [136, 137, 138]. Indeed, in quantum

field theories, the Bogolubov coefficients drive the different choices of vacuum states.

So, requiring that different classes of f(R) functions change vacuum states according

to Bogolubov transformations is a basic requirement to guarantee the f(R) viability

at fundamental level. This procedure somehow fixes the f(R) free parameters and so

it is of some help in reconstructing the f(R) form by means of basic requirements of

quantum field theory [77, 139]. For this purpose, one has to confront with the prob-

lem of quantizing the space-time in a curved background and then to provide relations

between quantization and f(R) gravity at least at semiclassical level. Therefore, the

Bogolubov coefficients allow to pass from a vacuum state to another through a semi-

classical procedure where the rate of particle production is minimized. If the rate

is minimized, one can fix, indeed, the free parameters of a given f(R) model. We

assume that the rate is minimized to be consistent with cosmological high redshift ob-

servations, from one side, and with quantum field theory predictions, from the other

side. Moreover, one can relate the rate of particle production with the Hubble param-

eter and thus with the redshift z. In this way, it is possible to frame the Bogolubov

coefficients in terms of observable cosmological quantities as H0, the today observed

Hubble constant, or R0 ∼ ρ0, the value of the today curvature or density.

5.1.1 Bogolubov transformations and vacuum states

Let us start considering the derivation of the Bogolubov coefficients as semiclassi-

cal quantities in the context of quantum field theory. A strategy to derive the particle

production rate in curved space is to fix a background with a constant curvature i.e.

R = R0. This situation is usually named as the de-Sitter phase [38, 140]. From the

field Eqs. for f(R) gravity in presence of standard perfect fluid matter

f ′(R)Rµν −
1

2
f(R)gµν − [∇µ∇ν − gµν2] f ′(R) = Tµν , (5.1)

it is easy to derive an effective cosmological constant term Λeff =
f(R0)

2f ′(R0)
=
R0

4
,

which, in principle, depending on the value of R0, can give rise to an accelerating
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expansion phase [141]. The choice of R0 allows to simplify the calculations thanks to

the symmetries of de Sitter space-time. In order to constrain the form of f(R) function,

a possible method is to fix the range of free parameters by the transition to different

vacuum states. Such a procedure relies on the definition of the Bogolubov coefficients.

To define them, let us consider the quantization on a curved background.

Since we are considering extended theories of gravity, a model where a scalar field

φ is non-minimally coupled to geometry, i.e. ∝ Rφ can be assumed. The Klein-Gordon

equation is [
2−m2 + ξR(x)

]
φ = 0 , (5.2)

where m is the effective mass of the field, ξ is the coupling1.

The general solution can be expressed as a complete set of mode-solutions for the

field φ [38]

φ(x) =
∑
i

[aiui(x) + a†iu
∗
i (x)] , (5.3)

where it is possible to adopt a specific set of mode solutions ui(x), although it is always

possible to rewrite φ(x) for a different set ūj as

φ(x) =
∑
j

[ājūj(x) + ā†jū
∗
j(x)] . (5.4)

In other words, one can pass through different decompositions of φ, defining a corre-

sponding form of the vacuum solution that is, in general, āj|0〉 6= 0, in a curved space

background. Indeed, expressing the new modes, ūj in terms of the old ones ui, we

have

ui =
∑
j

(αjiūj − βjiū∗j) ,

ūj =
∑
i

(α∗jiui + β∗jiu
∗
i ) , (5.5)

where αji and βji are defined as αij = (ūi, uj), βij = −(ūi, u
∗
j) and satisfy the relations∑

k

(αikα
∗
jk − βikβ∗jk) = δij ,∑

k

(αikβjk − βikαjk) = 0 . (5.6)

1It is worth mentioning that any f(R) theory of gravity can be recast as a non-minimally coupled
theory through the identification φ→ f ′(R) and the coupling f ′(R)−1.
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In particular, if we consider the vacuum |0〉, then ai|0〉 = 0, ∀i but, in general, it is

ai|0̄〉 6= 0. Therefore, from the definition of the particle number given by Ni ≡ a†iai, it

results

〈0̄|Ni|0̄〉 =
∑
j

|βji|2. (5.7)

Accordingly, the physical meaning of such coefficients is associated to the rate of par-

ticle production. In fact, generic coefficients βji are associated to the particle number

count for given set of modes. Specifically, αji and βji are referred to as the Bogolubov

coefficients which identify the Bogolubov transformations and allow to pass from a

vacuum state to another one. Since the form of the f(R) function is not known a pri-

ori, by adopting the above semiclassical procedure and evaluating the different vacuum

states for some classes of f(R), we can minimize the rate of particle production. In

this way, we can constrain the free parameters of a given f(R) model and in particular,

we will see that Bogolubov coefficients strictly depend on the form of f(R).

5.2 Particle production in non-minimally coupled the-
ories of gravity

Non-minimally coupled scalar-tensor theories are the generic prototypes of ex-

tended theories of gravity. As we pointed out before, f(R) theories and any extended

theory can be recast as GR with some non-minimal couplings and further contribution

in the stress-energy momentum tensor (see [142] for the general procedure). The Bo-

golubov transformations can be discussed in the context of homogeneous and isotropic

cosmologies, to define the rate of particle production and then to constrain the func-

tional form of f(R) gravity.

The particle production rate is a mostly universal feature, in the sense that it has not

to depend on the particular gravitational background. Indeed, assuming a different

gravitational theory2 we expect that it is the same and can be consistently used to fix

the parameters of the theory itself. This property is extremely relevant since it allows

to consider the Bogolubov transformations for different gravitational backgrounds. We

limit to the case of f(R) gravity.

2For example, f(R,G), f(T ), and so forth.
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As we already said, the simplest choice to construct the Bogolubov transformations

is assuming a de Sitter phase with a constant curvature R0. A spatially flat FRW

conformal metric is [143]

ds2 =
1

H2η2

(
dη2 − dx2

1 − dx2
2 − dx2

3

)
, (5.8)

where we adopted the conformal time η = − 1

Ha(t)
, which varies in the interval−∞ <

η < 0. Introducing a scalar field φ(η, x) depending on η and x ≡ (x1, x2, x3), the cor-

responding Klein-Gordon equation Eq. (5.2), in terms of space-time modes is

(2−m2 + ξR)φ(η, x) = 0. (5.9)

This equation is formally equivalent to Eq. (5.2), although the functional dependence

on the variables η and x is explicit. Without choosing ξ a priori, the corresponding

class of solutions is

φ(η,x) = φk(η)ei(k·x), (5.10)

where the wave vector is decomposed as k ≡ (k1, k2, k2). By scaling φ(η, x) =
φ̃(η, x)

a
,

the Klein-Gordon differential equation for the FRW metric (5.8) becomes

φ̃′′k(η) + ω2(η, k, ξ)φ̃k(η) = 0 , (5.11)

where the prime stands for the derivative with respect to the conformal time η.

The above equation is analogue to the harmonic oscillator with ω depending on the

conformal time η. The ω parameter takes the form

ω(η) =

√
k2 + a2

[
m2 + 2f(ξ)H2

]
, (5.12)

where f(ξ) ≡ 6ξ − 1. For our purposes, the function f(ξ) can be conventionally

positive-definite assuming ξ > 1
6
. Furthermore, it is convenient to define an effective

mass Meff as
M2

eff

H2
≡ m2

H2
+ 2f(ξ) , (5.13)

where m is the state of mass of the scalar field and H ≡ ȧ

a
is the Hubble parameter.

Since ξ >
1

6
, Meff is always positive. The frequency dependence is

ω(η) =

√
k2 +

M2
eff

H2η2
. (5.14)
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which is always positive for ξ ≥ 1
6
. The functions ω(k) and ω(η) are plotted in Fig.

(5.1) for some cases of interest.
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Figure 5.1: Plots of the ω profiles in function of k and η respectively on the left and right. The left

plots show the ω(k) behaviors for four indicative ratios
M2

eff

H2η2 = 0.05, 1, 5, 10. The figures on the right,

on contrary, show the ω(η) behaviors in function of η, with indicative ratios
M2

eff

H2 = 0.05, 1, 5, 10 and
conventionally with k = 1.

The general solution φ̃k(η) for (5.11) reads

φ̃k(η) =
√
η
(
AkH

(1)
k,ν(η) +BkH

(2)
k,ν(η)

)
, (5.15)

where H(1)
k,ν and H(2)

k,ν are Hankel’s functions of first and second type respectively, with

the position [144, 145]

ν ≡

√
1

4
−
M2

eff

H2
. (5.16)

The corresponding asymptotic behavior is relevant to infer the particle production rate.

In the case η → 0−, we have

φ̃k(η)→
√
|η|
πν

{
sin(πν)Γ(1− ν)

(
kη

2

)ν
− Γ(1 + ν)

(
kη

2

)−ν}
, (5.17)

and the square modulus of βk is [146, 147]

|βk(η)|2 =
ωk
2
|φk(η)− i

ωk(η)
φ̇k(η)|2. (5.18)

We are interested in the case
Meff

H
� 1, which corresponds either to the situation

where the effective mass dominates over the Hubble rate or H is small at late times of
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the universe evolution. We find out

|βk(η)|2 ∼ H3

32πm3
|Γ
(

1− im
H

)
|2 exp(πm), (5.19)

where Γ is the Euler function.
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Figure 5.2: Plot of the Bogolubov coefficient |βk|2 varying in the range H = 0 . . . 5,
with m = 0.01; 1; 2 respectively for the black, blue and red lines.

In the case
Meff

H
� 1, we obtain that the Bogolubov coefficients are negligibly small

[148], that is

|βk(η)|2 � 1. (5.20)

Therefore, by assuming that
Meff

H
� 1, we can distinguish two different cases. The

first is H � m, with m→ 0. The second is un-physical, since it provides a diverging

Bogolubov coefficient βk [159]. Hence, by assuming the validity of the above results,

we are able to relate the f(R) gravity to Bogolubov coefficients constraining the free

parameters of the models. For this purpose, we assume to pass through different vac-

uum states. Clearly, different f(R) gravity models means different couplings ξ.
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Minimizing the rate of particle production in f (R) grav-
ity

Let us consider the physical case
m

H
� 1 in the context of f(R) gravity. We in-

vestigate such a case in the de Sitter phase with R = R0 and minimize the Bogolobuv

coefficients obtaining, correspondingly, the minimum of particle production rate.

Essentially, such a quantity has to be minimized for two reasons. The first concerns

cosmological observations at high energy regimes. As an example, taking into account

the cosmic microwave background, cosmological measurements could not be com-

patible with particle production rate, so the condition
m

H
� 1 is required in order to

guarantee that any theory of gravity works at high z. Furthermore, assuming to pass

from different vacuum states, it is important to test if cosmological models describe the

vacuum according to observations. In this context, minimizing Bogolubov coefficients

is a powerful tool in order to discriminate among different models (see also [160]).

In particular, our aim is to infer physical bounds on the free parameters of some

classes of f(R) models by Bogolubov transformations. We start by writingH from the

cosmological equations derived in the f(R) framework. In a FRW universe, in metric

and Palatini formalism respectively, we obtain

H2 =
1

3

[
ρcurv +

ρm
f ′(R)

]
, (5.21a)

H2 =
1

6f ′(R)

[
2ρ+Rf ′(R)− f(R)

G(R)

]
. (5.21b)

where ρm is the standard matter density. The effective curvature density term is [149]

ρcurv =
1

2

[
f(R)

f ′(R)
−R

]
− 3HṘ

[
f ′′(R)

f ′(R)

]
, (5.22)

and the function G(R) is given by

G(R) =

[
1− 3

2

f ′′(R)(Rf ′(R)− 2f(R))

f ′(R)(Rf ′′(R)− f ′(R))

]2

. (5.23)

As we pointed out before, f(R) gravity can be recast in term of a scalar-tensor theory

as soon as the identifications φ → f ′(R), for the field, and Geff → f ′(R)−1, for the

coupling, are adopted.

62



Extended Gravity Cosmology

Moreover, the particle production rate can be achieved at first order by a Taylor

expansion of the Bogolubov coefficient βk,

|βk|2 = eπm
[ H3

32πm3
+ γ2 H

32πm

]
, (5.24)

where we adopted the Γ(1− ix) function and its Taylor series in case x� 1, obtaining

Γ ∼ 1 + iγx. The constant γ is the Euler constant and reads γ ∼ 0.577.

As a first step, one can compare such Bogolubov coefficients with the Hubble rate

expressed as function of the redshift z. In this way, the form of βk becomes a func-

tion of the redshift as well. This has been reported in the left plot of Fig.5.3, whereas

in the right plot we draw the variation of βk as the redshift increases, i.e. its first

derivative with respect to the redshift z. The reported three models are: (i) the ΛCDM

model [151]; (ii) a cosmographic expansion where the deceleration parameter varia-

tion, namely the jerk parameter, is j(z) ≥ 1 [152]; (iii) the Chaplygin gas where DE

and DM are considered under the standard of a single fluid [153, 154, 155]. These

models can be considered as relevant paradigms for describing DE [150].
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Figure 5.3: Bogolubov coefficients (left figure) evaluated for the ΛCDM model (black line), the
cosmographic expansion (dashed line) and the Chaplygin gas (red line), with matter density ρ = 0.27,
and the Chaplyging gas coefficients: A = 0.9, β = 0.8, (see [153, 154, 155]) with the normalized
Hubble rate H0 = 0.68. Derivatives of βk(z) (right figure) have been reported for the same cases, i.e.
ΛCDM, cosmographic and Chaplygin gas.

In the case of constant curvature R = R0 related to a de-Sitter phase, we obtain

|βk|2 = eπm

[
1

3
3
2 32πm3

(
ρ0

f
′
0

− Λeff

)3/2

+
γ2

32
√

3πm

(
ρ0

f
′
0

− Λeff

)1/2
]
,(5.25)
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and

|βk|2 = eπm

 1

32πm3

(2ρ0 +R0 − 2Λeff )(R0 −
f
′
0

f
′′
0

)

R0 −
f
′
0

f
′′
0

− 3
2R0 + 6Λeff


3/2

(5.26)

+
γ2

32πm

(2ρ0 +R0 − 2Λeff )(R0 −
f
′
0

f
′′
0

)

R0 −
f
′
0

f
′′
0

− 3
2R0 + 6Λeff


1/2
 , (5.27)

respectively for metric and Palatini formalism. From now on f0 ≡ f(R = R0),

f ′0 ≡ f ′(R = R0), and f ′′0 ≡ f ′′(R = R0) and ρ0 is the value of standard matter-

energy density for R0. Since the form of f(R) is not known a priori, we need to

consider some cases of particular interest [140, 42] as

f1(R) = R1+δ + Λ , (5.28a)

f2(R) = R + εR2 . . . , (5.28b)

f3(R) = R +Rn + σR−m , (5.28c)

f4(R) = R− α(R)n

1 + β(R)n
. (5.28d)

Therefore, we need to fix the coefficients δ, ε, σ, n,m, α and β via Eq.(5.24). In order to

do this, we require the rate of particle production to be negligible or essentially as small

as possible [156]. Thus, the strategy to follow is to assume that the free parameters of

Eq.(5.28) minimize the Bogolubov coefficients. Using this procedure, we obtain the

results of Tabs. 5.1 and 5.2.

fn(R) n.par. minimiz.

f1M (R) 1 1 + δ ≤ 4ρ0
R1+δ

0

f2M (R) 1 ε ≤ 2ρ0
R2

0
− 1

2R0

f3M (R) 3 nRn0

[
1− m

n σR
−(m+n)
0

]
≤ 4ρ0 −R0

f4M (R) 3
(
R0 − nRn0α+ 2R1+n

0 β +R1+2n
0 β2

) (
1 +Rn0β

2
)−1 ≤ 4ρ0 −R0

Table 5.1: Table of minimizing conditions for the free parameters of f(R) models from Eq. (5.28)
in the metric formalism. Here the subscript M stands for metric. The above equalities correspond to
the case of vanishing Bogolubov coefficients, whereas the inequalities to more general cases where the
Bogolubov coefficients are not zero.
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fn(R) n.par. minimiz.

f1P (R) 1 ∀δ < 0,
∨

δ ≥ 1, δ 6= −1

f2P (R) 1 ε < 0

f3P (R) 3
(

1 + nRn−1
0 −mσR−(m+1)

0

)(
n(n− 1)Rn−2

0 +m(m+ 1)σR
−(m+2)
0

)−1
≤ R0

f4P (R) 3 R1−n
0 (1 +Rn0 β)

(
R0 +R1+2n

0 β2 +Rn0 (2βR0 − αn)
) (
nα(1− n+ (1 + n)Rn0 β)

)−1 ≤ R0

Table 5.2: Table of minimizing conditions for the free parameters of f(R) models from Eq. (5.28) in
the Palatini formalism. Here the subscript P stands for Palatini. Inequalities and equalities follow the
same considerations of Tab. 5.1. Here, we assumed that ρ0 + R0

4 > 0.

One can calibrate the constraints over the free parameters in Tabs. 5.1 and 5.2

using also late-time and CMBR cosmological constraints [152, 160]. In general, any

consistent choice of f(R) gravity leads to

f
′
(R) ≤ 4ρ0

R0

, (5.29)

in the metric formalism (where the equality requires vanishing Bogolubov coefficients)

and

R0 ≥ −4ρ0 , (5.30a)

f
′

0 6= R0f
′′

0 , (5.30b)

in the Palatini formalism. Again, the equalities lead to vanishing Bogolubov coeffi-

cients. Furthermore, Eq. (5.30a) represents a natural constraint on R0. If one wants

to pass through different vacuum states without a significant particle production rate,

these conditions have to be satisfied. In principle, once evaluated the above constraints,

it would be also possible to numerically constrain the derivatives of f(R) models. For

example, to guarantee that the gravitational constant does not significantly depart from

the Solar System limits, one needs that 4ρ0 ∼ R0. Hence, observations on ρ0 open the

possibility to constrain R0 and may be compared to cosmological constraints over R0

itself [157, 158]. Similarly, in the Palatini case, R0 is somehow comparable to −4ρ0.

Thus, a correct determination of the limits over R0 could also discriminate between

the metric and Palatini approaches.
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5.3 Matching Extended Theories of Gravity with PLANCK
results

As stated before, the issue of Modified Gravity and DE is far to be fully addressed

and different theoretical scenarios need to be carefully compared with data in order to

discriminate among them (in particular the case of ETGs). This effort is in its early

stages, given the variety of theories and parametrizations that have been suggested,

together with a lack of well tested numerical codes that allow to make detailed pre-

dictions to constrain the parameters. PLANCK Collaboration [160] investigated the

implications of cosmological data for models of DE and Modified Gravity, beyond the

standard cosmological scenario. When estimating the density of DE at early times, they

significantly improve present constraints and find that it has to be below≈ 2% (at 95%

confidence) of the critical density. They also consider the general parametrizations of

the DE or Modified Gravity perturbations that encompass both effective field theories

and the phenomenology of gravitational potentials in Modified Gravity models and fi-

nally, test a range of specific models, such as k-essence, f(R) theories and coupled DE.

Additional probes for the analysis coming from baryonic acoustic oscillations, type-Ia

supernovae and local measurements of the Hubble constant, are condidered. These are

important tools in order to test models and to break degeneracies that are still present

in the combination of PLANCK and background data sets.

In any case, constraints given in [160] are consistent with ΛCDM model and with

constraints on DE models (including minimally-coupled scalar field models or evolv-

ing equation of state models) and Modified Gravity models (including effective field

theory, phenomenological parametrizations, f(R) and coupled DE models) that are

significantly improved compared to the past analyses.

As a concrete example of universally coupled theories, f(R) models are consid-

ered. Results are compatible with ΛCDM. Such theories assume that some screening

mechanism is in place, in order to satisfy current bounds on baryonic physics at so-

lar system scales [161]. Such universal coupling could be improved considering the

remaining degrees of freedom related to curvature and then the most general theory

to be compared with data in this perspective (i.e. where all the curvature budget is
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considered) is f(R,G) gravity.
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Chapter 6

Searching for exact solutions

The problem of selecting viable models cannot be posed only at a phenomenolog-

ical level but should be considered also at the fundamental level. To this end, symme-

tries are extremely useful to fix self-consistent models.

Furthermore, any modification to GR invariably results in a set of field equations

that is considerably more complicated than Einstein’s field equations. In dealing with

this complexity there appear in the literature two different ways to proceed. The first is

to look for approximate solutions of a specific theory of interest. It is the approach that

is most frequently taken up when investigating theories that are motivated by a desire

to overcome the perceived shortcomings of the standard theory. The second approach

is to look for exact solutions of modifications of GR. The idea behind this approach

is to understand as well as possible the effect of modifying the standard theory. Once

this behaviour is well understood it can then be used as an approximation to more

complicated theories of specific interest, as well for considerations of that particular

modification. It is the second approach that will be taken into account in this chapter.

The program is to investigate the form of solutions for some alternative theories of

cosmological interest; these will be the scalar-tensor theories and fourth- order theories

as Hybrid Gravity and Gauss-Bonnet Gravity. Particular attention will be focussed on

highly symmetric situations. High symmetry space-times are the most readily solved

for and are often the ones of most physical interest. These solutions will then be used

to model physical processes that occur in the Universe. Comparing these models with

observation allows to constrain the theory, which limits the deviations from GR.
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6.1 The Noether Symmetry Approach

Noether symmetries are useful to reduce dynamical systems and find out exact

solutions. In cosmology, the so-called Noether Symmetry Approach revealed ex-

tremely useful to work out physically motivated models related to conservation laws

[53]. The Noether symmetry approach has been applied in cosmology by many au-

thors in various contexts, such as in scalar-tensor gravity [103], higher order gravity

[110, 200], and in teleparallel gravity [184]. For instance, new exact solutions for

cosmological models with a minimally coupled scalar field were first found by re-

quiring the existence of a Noether symmetry for a Lagrangian description on a two-

dimensional “configuration space” [176]. Furthermore, the evolution of two dimen-

sional minisuperspace cosmological models, at the classical and quantum levels, was

investigated and exact solutions achieved by using the Noether Symmetry Approach

considering, as phase space variables, the FRW scale factor and the scalar field [162].

Furthermore, the Noether Symmetry Approach can be applied to quantum cosmology

[53, 163], phantom quintessence cosmology [164], to spinor and scalar field models

[165]. Finally, the dynamics of homogeneous cosmologies with a scalar field source

with an arbitrary self-interaction potential was also explored in [166]. Bianchi uni-

verses and related Noether symmetries have been considered in [167].

In the higher gravity context, the application of the Noether theorem allows in prin-

ciple to select the functional form of f(R), f(G), f(R,G)...-gravity models compatible

with the symmetry and to find analytical solutions for the field equations, so it can be

seen as a physical criterion since the conserved quantities are a sort of Noether charges.

Therefore such a criterion might be to look for those solutions which have cosmolog-

ical Noether charge. Although this criterion somehow “breaks” Lorentz-invariance

because we need the FRW background to formulate it, however Lorentz-invariance is

evidently broken in our universe by the presence of the CBMR radiation which, by

itself, fixes a preferred reference frame.

Before proceeding further, we briefly review the basic definitions concerning Noether

symmetries [53, 171]. In general, Noether Theorem states that conserved quantities are

related to the existence of cyclic variables into dynamics [168, 169, 170].
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Let L(qi, q̇i) be a canonical, non-degenerate point-like Lagrangian where

∂L
∂λ

= 0 ; detHij
def
= det

∣∣∣∣∣∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣∣∣∣∣∣ 6= 0 , (6.1)

with Hij the Hessian matrix related to L. The dot indicates derivatives with respect

to the affine parameter λ which, in our case, corresponds to the cosmic time t. In

analytical mechanics, L is of the form

L = T (qi, q̇i)− V (qi) , (6.2)

where T and V are the “kinetic” and “potential energy” respectively. T is a positive

definite quadratic form in q̇j . The energy function associated with L is

EL ≡
∂L
∂q̇i

q̇i − L , (6.3)

which is the total energy T + V . In any case, EL is a constant of motion. Since our

cosmological problems have a finite number of degrees of freedom, we are going to

consider only point-transformations. Any invertible transformation of the “generalized

positions” Qi = Qi(qj) induces a transformation of the “generalized velocities” such

that

Q̇i(qj) =
∂Qi

∂qj
q̇j ; (6.4)

the matrix J = ||∂Qi/∂qj|| is the Jacobian of the transformation on the positions, and

it is assumed to be nonzero. The Jacobian J̃ of the induced transformation is easily

derived and J 6= 0 → J̃ 6= 0. In general, this condition is not satisfied in the whole

space but only in the neighbor of a point. It is a local transformation.

A point transformation Qi = Qi(qj) can depend on one (or more than one) pa-

rameter. We can assume that a point transformation depends on a parameter ε, i.e.

Qi = Qi(qj, ε), and that it gives rise to a one-parameter Lie group. For infinitesimal

values of ε, the transformation is then generated by a vector field: for instance, ∂/∂x

is a translation along the x axis, x(∂/∂y)−y(∂/∂x) is a rotation around the z axis and

so on. The induced transformation (6.4) is then represented by

X = αi(qj)
∂

∂qi
+

(
d

dλ
αi(qj)

)
∂

∂q̇i
. (6.5)
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X is called the “complete lift” of X [170]. A function F (q, q̇) is invariant under the

transformation X if

LXF
def
= αi(qj)

∂F

∂qi
+

(
d

dλ
αi(qj)

)
∂F

∂q̇i
= 0 , (6.6)

where LXF is the Lie derivative of F . Specifically, if LXL = 0, X is a symmetry for

the dynamics derived from L.

Let us consider now a Lagrangian L and its Euler-Lagrange equations

d

dλ

∂L
∂q̇j
− ∂L
∂qj

= 0 . (6.7)

Let us consider also the vector field (6.5). Contracting (6.7) with the αi’s gives

αj
(
d

dλ

∂L
∂q̇j
− ∂L
∂qj

)
= 0 . (6.8)

Being

αj
d

dλ

∂L
∂q̇j

=
d

dλ

(
αj
∂L
∂q̇j

)
−
(
dαj

dλ

)
∂L
∂q̇j

, (6.9)

from (6.8), we obtain
d

dλ

(
αi
∂L
∂q̇i

)
= LXL . (6.10)

The immediate consequence is the Noether Theorem which states:

If LXL = 0, then the function

Σ0 = αi
∂L
∂q̇i

, (6.11)

is a constant of motion.

Some comments are necessary at this point. Eq.(6.11) can be expressed indepen-

dently of coordinates as a contraction of X by a Cartan one-form

θL
def
=

∂L
∂q̇i

dqi . (6.12)

For a generic vector field Y = yi∂/∂xi, and one-form β = βidx
i, we have, by defini-

tion, iY β = yiβi. Thus Eq.(6.11) can be written as

iXθL = Σ0 . (6.13)

By a point-transformation, the vector field X becomes

X̃ = (iXdQ
k)

∂

∂Qk
+

(
d

dλ
(ixdQ

k)

)
∂

∂Q̇k
. (6.14)
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We see that X̃ ′ is still the lift of a vector field defined on the “space of positions.” If X

is a symmetry and we choose a point transformation such that

iXdQ
1 = 1 ; iXdQ

i = 0 i 6= 1 , (6.15)

we get

X̃ =
∂

∂Q1
;

∂L
∂Q1

= 0 . (6.16)

Thus Q1 is a cyclic coordinate and the dynamics results reduced [168, 169].

Furthermore, the change of coordinates given by (6.15) is not unique and then a

clever choice could be very important. In general, the solution of Eq.(6.15) is not

defined on the whole space. It is local in the sense explained above. Besides, it is

possible that more than one X is found, e.g. X1, X2. If they commute, i.e. [X1, X2] =

0, then it is possible to obtain two cyclic coordinates by solving the system

iX1dQ
1 = 1; iX2dQ

2 = 1; iX1dQ
i = 0; i 6= 1; iX2dQ

i = 0; i 6= 2 . (6.17)

The transformed fields will be ∂/∂Q1, ∂/∂Q2. The procedure can not be applied if

they do not commute since commutation relations are preserved by diffeomorphisms.

If the relationX3 = [X1, X2] holds, alsoX3 is a symmetry, being LX3L = LX1LX2L−

LX2LX1L = 0. If X3 is independent of X1, X2, we can go on until the vector fields

close the Lie algebra. The usual approach to this situation is to make a Legendre

transformation, going to the Hamiltonian formalism, and then derive the Lie algebra

of Poisson brackets.

Let us now assume that L is of the form (6.2). As X is of the form (6.5), LXL will

be a homogeneous polynomial of second degree in the velocities plus a inhomogeneous

term in the qi. Since such a polynomial has to be identically zero, each coefficient

must be independently zero. If n is the dimension of the configuration space, we

get {1 + n(n + 1)/2} partial differential equations. The system is overdetermined,

therefore, if any solution exists, it will be expressed in terms of integration constants

instead of boundary conditions. It is also obvious that an overall constant factor in

the Lie vector X is irrelevant. In other words, the Noether Symmetry Approach can

be used to select functions which assign the models and such functions (and then the

models) can be physically relevant.
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As an example, considering the specific case of f(R) cosmology, the situation is

the following. The configuration space is Q = {a,R} while the tangent space for the

related tangent bundle is T Q = {a, ȧ, R, Ṙ}. The Lagrangian is an application

L : T Q −→ < (6.18)

where < is the set of real numbers. The generator of symmetry is

X = α
∂

∂a
+ β

∂

∂R
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
. (6.19)

As stated above, a symmetry exists if the equation LXL = 0 has solutions. Then there

will be a constant of motion on shell, i.e. for the solutions of the Euler equations. This

means that a symmetry exists if at least one of the functions α or β in Eq.(6.19) is

different from zero.

• Noether symmetries for systems of second order ordinary differential equations

Let us now briefly review the basic definitions concerning Noether symmetries for

systems of second order ordinary differential equations (ODEs) of the form

q̈α = ωα
(
t, qβ, q̇β

)
. (6.20)

Let the system of ODEs (6.20) result from a first order Lagrangian L = L
(
t, qβ, q̇β

)
.

Then the vector field

X = ξ
(
t, qβ

)
∂t + ηα

(
t, qβ

)
∂α,

in the space {t, qi} is a generator of a Noether point symmetry for the ODEs system

(6.20), if the additional condition

X [1]L+ Ldξ
dt

=
dg

dt
, (6.21)

holds [172], where g = g
(
t, qβ

)
is the gauge function andX [1] is the first prolongation

of X , i.e.,

X [1] = X +

(
dηβ

dt
− q̇β dξ

dt

)
∂q̇β .

For every Noether point symmetry there exists a first integral (a Noether integral) of

the system of equations (6.20) given by

I = ξEH −
∂L
∂q̇α

ηα + g, (6.22)

where EH is the Hamiltonian of L.
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6.2 The Hojman Symmetry Approach

Besides Noether approach, other approaches, based on symmetries, can be adopted

in order to reduce dynamics and obtain exact solutions. For example, the Hojman

conservation theorem [173] can provide a further method to find exact solutions. As

we shall see below, the Hojman approach does not require, a priori, the need for La-

grangians and Hamiltonian functions. The symmetry vectors and the corresponding

conserved quantities can be obtained by using directly the equations of motion. The

interesting fact is that these two approaches may give rise to different conserved quan-

tities that, eventually, can coincide. For example, in the case of minimally coupled

scalar-tensor gravity models, the Noether symmetry exists only for exponential poten-

tial V (φ) [174], while the Hojman symmetry exists for a wide range of potentials[176].

In order to formulate the Hojman conservation theorem, let us consider a system

of second-order differential equations that, specifically, can represent the equations

of motion of a given dynamical system and that should not necessarily result from a

Lagrangian [173],

q̈i = F i(qj, q̇j, t), i, j = 1, ..., n . (6.23)

Dot is the derivative with respect to the time. A symmetry vector X i for Eqs. (6.23) is

defined according to the transformation

q′i = qi + εX i(qj, q̇j, t), (6.24)

that maps solutions qi of Eqs. (6.23) into solutions q′i of the same equations. Such a

vector has to satisfy the equations

d2X i

dt2
− ∂F i

∂qj
Xj − ∂F i

∂q̇j
dXj

dt
= 0, (6.25)

where
d

dt
=

∂

∂t
+ q̇i

∂

∂qi
+ F i ∂

∂q̇i
. (6.26)

The Hojman conservation theorem [173] states:

If the function F in Eqs. (6.23) satisfies the condition

∂F i

∂q̇i
= 0, (6.27)
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then

Q =
∂X i

∂qi
+

∂

∂q̇i

(
dX i

dt

)
, (6.28)

is a conserved quantity, that is
dQ

dt
= 0 . (6.29)

Furthermore, if F satisfies
∂F i

∂q̇i
= − d

dt
ln γ, (6.30)

where γ is a function of qi, then also

Q =
1

γ

∂(γX i)

∂qi
+

∂

∂q̇i

(
dX i

dt

)
. (6.31)

is a conserved quantity.

As previously discussed in [174], such a theorem can be suitably applied to dynamical

equations describing cosmological models. Specifically, any cosmological model can

be considered a minisuperspace Q ≡ {qj} whose dynamics is defined on the tangent

space T Q ≡ {qj, q̇j}. If the Hojman theorem is satisfied, conserved quantities re-

lated to couplings and potentials can be find out. This feature allows the reduction of

dynamics and the possibility to obtain exact solutions, as we will discuss below.

6.3 Minimally coupled scalar-tensor gravity

As showed in [174], Hojman theorem can be applied to dynamical systems de-

scribing cosmological models. In [174], starting from the point-like Lagrangian (6.48)

with equations of motion (6.49) and (6.50), introducing the variable x = ln a and by

combining equations (6.50) and (6.51), it is found the equation of motion

ẍ = −f(x)ẋ2, (6.32)

where

f(x) =
1

2
φ′(x)2. (6.33)

Assuming that a(t) and φ(t) are invertible functions of t, dynamics can be reduced to a

one dimensional motion. Eq. (6.51) can be considered as a constraint. From Eq.(6.32),

it is clear that F (x, ẋ) = −f(x)ẋ2, thus

γ(x) = γ0e
∫
f(x)dx, (6.34)
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where γ0 is an integration constant. Another relation is achieved by dividing Eqs.(6.51)

and (6.50). We have

V ′(φ)

V (φ)
=
f(x)φ′(x)− φ′′(x)− 3φ′(x)

3− 1
2
φ′(x)2

. (6.35)

Eq. (6.25) becomes(
f(x)

∂X

∂x
+ f ′(x)X +

∂2X

∂x2

)
+ ẋ2f(x)2∂

2X

∂ẋ2
−

ẋ

(
2f(x)

∂2X

∂x∂ẋ
+ f ′(x)

∂X

∂ẋ

)
= 0 ,

(6.36)

where we assumed that X does not depend explicitly on time. If X = X(ẋ), the only

solution for (6.36) is [174]

X(ẋ) = A0ẋ
n + A1ẋ, (6.37)

and then

f(x) = −
(

1

nx+ f0

)
. (6.38)

Considering the meaning of the above variables, the generic potential with respect to

ϕ = φ− φc is

V (ϕ) = λϕ
4
n − 8λ

3n2
ϕ

4
n
−2, (6.39)

where

λ = 3V0

(
n2

8

) 2
n

. (6.40)

The exact solutions a(t) and ϕ(t) for the potential (6.39) are

a(t̄) = e−
f0
n e−

1
n [(1− 1

n
)t̄]

n
n−1

,

ϕ(t̄) = ±
√

8

n

[
(1− 1

n
)t̄

] n
2(n−1)

,
(6.41)

where the parameter t̄ is defined as

t̄ = y0 − n|Q0|
1
n t, (6.42)

Q0 is the Hojman conserved quantity and t̄ can be seen as a sort conformal time ruled

by Q0. In the next section we will see how these results can be used in order to find

out solutions for non-minimally coupled scalar- tensor cosmologies ruled by the forms

of the potential V (φ) and of the coupling F (φ) [3].
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6.4 Non-minimally coupled scalar-tensor gravity

As seen in section 4.3.1, conformal transformations allow to transform a non-

minimally coupled scalar-tensor theory into a minimally one. We want to show this

also in the cosmological case and this will be very useful for our purposes.

Consider the spatially flat FRW space-time with a time-dependent scale factor a(t)

and

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). (6.43)

The Lagrangian density in (3.10) takes the form

LNMC = 6F (φ)aȧ2 + 6F ′(φ)a2ȧφ̇+
1

2
a3φ̇2 − a3V (φ), (6.44)

where the prime ′ denotes the derivative with respect to φ and the dot denotes the

derivative with respect to the time t. Eq. (6.44) is a point-like Lagrangian on the

configuration space (a, φ). The Euler-Lagrange equations relative to (6.44) are

2
ä

a
+

(
ȧ

a

)2

+
2F ′

F

(
ȧ

a

)
φ̇+

F ′

F
φ̈+

(
F ′′

F
− 1

4F

)
φ̇2 − V

2F
= 0, (6.45)

φ̈+ 3

(
ȧ

a

)
φ̇+ 6F ′

(
ȧ

a

)2

+ 6F ′
(
ä

a

)
+ V ′ = 0, (6.46)

which correspond respectively to the Einstein-Friedman equation and to the Klein-

Gordon equation for the FRW case. The energy function, corresponding to the Einstein

(0, 0) equation, is

6Faȧ2 + 6F ′a2ȧφ̇+
1

2
a3φ̇2 + a3V = 0. (6.47)

Besides, the Lagrangian of the action (3.14) is

LMC = −3aȧ2 +
a3

2
φ̇2 − a3V (φ), (6.48)

and the equations of motion are given by

ä =
a

3

[
V (φ)− φ̇2

]
(6.49)

φ̈+ 3

(
ȧ

a

)
φ̇+ V ′(φ) = 0 , (6.50)
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and the energy function is
ȧ2

a2
=

1

3

[
φ̇2

2
+ V (φ)

]
. (6.51)

The possibility to construct a conformal Lagrangian corresponding to a minimally

coupled scalar field can be achieved by introducing the following transformations [99]

ā =
√
−2F (φ)a, (6.52)

dφ̄
dt

=
√

3F ′(φ)2−F (φ)
2F (φ)2

dφ
dt
,

dt̄ =
√
−2F (φ)dt.

Under transformations (6.52), we obtain

1√
−2F

L =
1√
−2F

(6Faȧ2 + 6F ′a2ȧφ̇+
a3

2
φ̇2 − a3V (φ))

= −3ā ˙̄a2 +
1

2
ā3 ˙̄φ2 − ā3V̄ (φ̄) = LMC ,

(6.53)

where the dot over barred quantities means the derivative with respect to t̄ and

V̄ (φ̄(φ)) =
V (φ)

4F 2(φ)
. (6.54)

Hence, under transformations (6.52), the non-minimal coupled Lagrangian becomes

a conformally related minimal coupled Lagrangian. This means that for any non-

minimally coupled scalar field, we may associate a unique minimally coupled scalar

field in the conformally related space by deriving the correct relation between the cou-

pling and the potential as (6.54).

Such a property can be used as a solution generator in the sense that by achieving

solutions in the Einstein frame through the Hojman Theorem, as in [174], it is possible

to derive solutions in the Jordan frame and vice versa.

The quadratic coupling case

Let us start with the general case of a quadratic coupling of the form

F (φ) =
ξ

4
(k + φ)2, (6.55)

where k and ξ are arbitrary constants (with ξ < 0 in order to recover physical cases).

In this case equations (6.45) and (6.46) in the variable t̄ become

2ä

a
+
ȧ2

a2
+

6ȧ

a

φ̇

(k + φ)
+

2φ̈

(k + φ)
+

(4ξ − 1)φ̇2

ξ(k + φ)2
− 4V

ξ2(k + φ)4
= 0, (6.56)
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φ̈+ 3ξ
ä

a
(k + φ) + 3(1 + ξ)

ȧφ̇

a
+ 3ξ

ȧ2

a2
(k + φ) +

φ̇2

k + φ
− 2V ′

ξ(k + φ)2
= 0. (6.57)

Transformations (6.52) gives

ā =

√
−ξ

2
(k + φ)a,

φ̄ =

√
6ξ − 2

ξ
ln[k + φ] + c1,

dt̄ =

√
−ξ

2
(k + φ)dt.

Solutions (6.41) become

φ(t̄) = −k + φ0e

( √
8ξ

n
√
6ξ−2 [(1− 1

n
)t̄]

n
2(n−1)

)
, (6.58)

a(t̄) =

√
−2

ξ

e−
f0
n

φ0

e

(
− 1
n [(1− 1

n
)t̄]

n
n−1−

√
8ξ

n
√
6ξ−2 [(1− 1

n
)t̄]

n
2(n−1)

)
(6.59)

and the potential is

V (φ) =

(
n2(3ξ − 1)

4ξ

) 2
n

ξ2 (k + φ)4

{
3

4n2

[
ln

(
k + φ

φ0

)] 4
n

− ξ

n4(3ξ − 1)

[
ln

(
k + φ

φ0

)] 4
n
−2
}
. (6.60)

To have an idea of what is going on, let us plot the potential (6.60) in Fig. 6.1.

The cosmology of this model is most easily studied in the Einstein frame where the

gravity sector is standard taking advantage from the potential transformation (6.54).

For example, the inflationary dynamics is determined by the shape of the potential

V̄ (φ̄). It is worth noticing that φ̄ (and not φ) has a canonical kinetic term. Therefore

the slow-roll parameters, which control the first and second derivatives of the potential

respectively, are

εφ̄ =
1

2

(
V̄φ̄
V̄

)2

, ηφ̄ =
V̄φ̄φ̄
V̄
, (6.61)

where the subscript φ̄ means d/dφ̄. In the usual way, we can formally define the

first and second slow-roll parameters for the field φ that are related to the slow roll

parameters εφ̄ and ηφ̄ via [175]

εφ̄ =

(
dφ

dφ̄

)2

εφ, (6.62)

ηφ̄ =

(
dφ

dφ̄

)2

ηφ −
(
d2φ

dφ̄2

)√
εφ
2
. (6.63)
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Figure 6.1: Plot of the potential V (φ) for some specific values of the constants, k =
100, ξ = −10, φ0 = 150, n = 4/3.

The slow-roll approximation requires that the constraints

εφ̄ � 1, (6.64)∣∣ηφ̄∣∣ � 1, (6.65)

be satisfied. A plot of εφ̄ is reported in Fig.6.2 and a plot of
∣∣ηφ̄∣∣ in Fig.6.3. The

conditions εφ̄ � 1 and
∣∣ηφ̄∣∣� 1 are satisfied for 0 < φ < 50 that is the range of values

of the slow-roll phase as it can be expected from Fig.6.1 Therefore, for potential (6.60),

with k = 100, ξ = −10, φ0 = 150, n = 4/3, the conditions εφ̄ � 1 and
∣∣ηφ̄∣∣ � 1 are

satisfied for 0 < φ < 50 that is the range of values expected for the slow-roll phase as

it can be seen from Fig.6.1.

The conformally coupled case

We consider also the case of conformal coupling where

F (φ) = ξφ2, k = 0 , (6.66)

hence,

˙̄φ =

√
3F ′2 − F

2F 2
φ̇ =

√
12ξ − 1

2ξ

(
φ̇

φ

)
. (6.67)
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Figure 6.2: Plot of εφ̄ with k = 100, ξ = −10, φ0 = 150, n = 4/3. The straight line
corresponds to ε = 10−5.
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Figure 6.3: Plot of ε(φ) with k = 100, ξ = −10, φ0 = 150, n = 4/3. The straight line
corresponds to η = 10−9.

Integrating this relation we have

φ̄ =

√
12ξ − 1

2ξ
ln(φ) + C1 =

√
c ln(φ) + C1. (6.68)

Moreover we have

ā =
√
−2F (φ)a =

√
−2ξ φ a, (6.69)
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and

dt̄ =
√
−2F (φ)dt =

√
−2ξ φ dt. (6.70)

Now using solutions (6.41) for the minimally coupled case, we obtain the following

solutions for the non-minimal coupling case

φ(t̄) = φ0e

( √
8

n
√
c [(1−

1
n

)t̄]
n

2(n−1)

)
, (6.71)

a(t̄) =
e−

f0
n

√
−2ξφ0

e

(
− 1
n [(1− 1

n
)t̄]

n
n−1−

√
8

n
√
c [(1−

1
n

)t̄]
n

2(n−1)

)
. (6.72)

The potential takes the form

V (φ) = ξ2φ4

(
n2(12ξ − 1)

16ξ

) 2
n

[
12

n2

[
ln

(
φ

φ0

)] 4
n

− 64ξ

n4(12ξ − 1)

[
ln

(
φ

φ0

)] 4
n
−2
]
. (6.73)

In Fig. 6.4, we represent the potential for some specific values of the integration con-

stants. Clearly the above inflationary analysis works also in this case.

50 100 150 200 250 300

-1¥ 1011

-5¥ 1010

5¥ 1010

1¥ 1011 V(φ)

φ

Figure 6.4: The potential V (φ) with k = 0, ξ = −10, φ0 = 150, n = 4/3
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The string-like case

Finally, let us take into account the low energy limit of string Lagrangian, that is

L =
√
−ge−2ψ [−R + 4gµν∇µψ∇νψ −W (ψ)] , (6.74)

where ψ is the dilaton and W (ψ) is the potential which leads dynamics. Note that, due

to the coupling e−2ψ, modes associated with the dilaton and with the graviton are non-

minimally coupled. Lagrangian (6.74) can be immediately rewritten as a non-minimal

coupled Lagrangian (3.10) if we assume the transformation [53]

φ(ψ) = e−ψ, F (φ) = −1

8
e−2ψ, V (φ) = e−2ψW (ψ). (6.75)

This can be written as

φ = − lnψ, F (φ) = −1

8
φ2, V (φ) = φ2W (ψ(φ)). (6.76)

We are again in the above case with ξ = −1
8

and φ0 = 1. Starting from the exact

solutions (6.73), we have that the class of potentials W (ψ) which satisfy conditions

(6.75) are

W (ψ) = e−2ψ

(
5

4
n2

) 2
n
(

3

16n2
ψ

4
n − 1

20n4
ψ

4
n
−2

)
. (6.77)

and the exact solutions are

φ(t̄) = e

(
2

n
√
5
[(1− 1

n
)t̄]

n
2(n−1)

)
, (6.78)

a(t̄) = 2e−
f0
n e
−
(

1
n [(1− 1

n
)t̄]

n
n−1 + 2

n
√
5
[(1− 1

n
)t̄]

n
2(n−1)

)
. (6.79)

It is straightforward to see that also in this case, the above inflationary analysis easily

applies.

6.5 Hybrid gravity

In order to obtain exact solutions of the field equations and invariant solutions for

the hybrid gravity Wheeler-DeWitt Equation in a spatially flat FRW space-time we

consider point symmetries [2].
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Indeed, the infinitesimal generator of a point transformation, which leaves invari-

ant the field equations, is a Noether symmetry. This feature provides integrals of mo-

tions useful to reduce the related dynamical system and then get exact solutions. In

order to determine the Noether symmetries of the classical Lagrangian, we will ap-

ply the geometric procedure outlined in [178], where the Noether symmetries of the

Lagrangian are connected to the collineations of the second order tensor which is de-

fined by the kinematic part of the Lagrangian. Hence, the Noether symmetry is not

only a criterion for the integrability of the system but also a geometric criterion that

allows to select the free functions of the theory. This approach has been applied in

[179, 180, 181, 182, 183, 184]. Furthermore, in order to solve exactly the Wheeler-

DeWitt equation we will apply the theory of Lie invariants that allows to determine

the Lie point symmetries of the Wheeler-DeWitt equation. As shown in [185], the

Lie point symmetries for the Wheeler-DeWitt equation (or the Klein Gordon equation)

are connected to the conformal Lie algebra of the minisuperspace which defines the

Laplace operator.

As stated in 3.3.1, for the pure metric and Palatini case [29, 94], the action (3.37)

can be transformed into a scalar-tensor theory. We introduce an auxiliary field E such

that

S =

∫
d4x
√
−g[R + f(E) + f ′(E)(R− E)]. (6.80)

The field E is dynamically equivalent to the Palatini scalar R if f ′′(R) 6= 0. If the

quantities

φ ≡ f ′(E), V (φ) = Ef ′(E)− f(E), (6.81)

are defined, the action becomes

S =

∫
d4x
√
−g[R + φR− V (φ)]. (6.82)

Using relation (3.31) between R andR with f(R) = φR

R = R +
3

2φ2
∂µφ∂

µφ− 3

φ
2φ, (6.83)

(see [105] for details) one finally obtains the scalar-tensor form of the action

S =

∫
d4x
√
−g
[
(1 + φ)R +

3

2φ
∂µφ∂µφ− V (φ)

]
. (6.84)
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It is important to note that Eq. (6.81) is a Clairaut differential equation [177], that is,

Ef ′(E)− f(E) = V (f ′ (E)) . (6.85)

It admits a general linear solution

f (E) = cE − V (c) (6.86)

for arbitrary V (φ) and a singular solution followed from the equation

∂V (f ′ (E))

∂f ′
− E = 0. (6.87)

Let us consider the FRW spatially flat metric

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
. (6.88)

Therefore, from action (6.84) one obtains the pointlike Lagrangian

L = 6aȧ2(1 + φ) + 6a2ȧφ̇+
3

2φ
a3φ̇2 + a3V (φ), (6.89)

from which one can calculate the following field equations

ä+
1− φ

2a
ȧ2 − 1

2
ȧφ̇− a

3φ
φ̇2 − 1

12
a (3V − 2φV,φ) = 0, (6.90)

and

φ̈+
φ (φ+ 1)

a2
ȧ2 +

φ+ 3

a
ȧφ̇+

φ− 2

4φ
φ̇2

+
φ

6
(3V (φ)− 2 (φ+ 1)V,φ) = 0 . (6.91)

Note that Eq. (6.91) is the Klein-Gordon equation for the scalar field φ. The energy

condition is given by

6aȧ2(1 + φ) + 6a2ȧφ̇+
3

2φ
a3φ̇2 − a3V (φ) = 0. (6.92)

Equations (6.90) and (6.92) can be written in the form of modified Friedmann equa-

tions for the scale factor a(t)

3H2 = ρeff ,(
2Ḣ + 3H2

)
= −peff ,
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where H = ȧ/a is a Hubble parameter and ρeff and peff are the total effective energy

density and pressure, given by

ρeff =
2φV (φ)− 12Hφφ̇− 3φ̇2

6φ(1 + φ)
(6.93)

peff =
2φ2V,φ − 3φV (φ)− 6φ2H2 − 6Hφφ̇− 4φ̇2

6φ
, (6.94)

respectively.

Following the Noether approach explained in sec. 6.1, it is possible to see that the

vector field X for the Lagrangian (6.89) is

X = ξ (t, a, φ) ∂t + ηa (t, a, φ) ∂a + ηφ (t, a, φ) ∂φ, (6.95)

and the first prolongation is given by

X [1] = ξ∂t + ηa∂a + ηφ∂φ +
(
η̇a − ȧξ̇

)
∂ȧ +

(
η̇φ − φ̇ξ̇

)
∂φ̇. (6.96)

We will apply these considerations to different cases in hybrid gravity.

Searching for Noether Symmetries in Hybrid Gravity

Lagrangian (6.89) is in the standard form L = T − Veff , where T = 1
2
gµν ẋ

µẋν is

the kinetic energy, with a “kinetic” metric

ds2
(2) = 12a (1 + φ) da2 + 12a2dadφ+

3

φ
a3dφ2, (6.97)

and an effective potential

Veff = −a3V (φ) . (6.98)

In order to search for special forms of the potential V (φ), where the Lagrangian admits

Noether point symmetries, we will apply the geometric approach developed in [178].

Since the Lagrangian is time-independent, it admits the Noether symmetry ∂t with

the Hamiltonian as a conservation law, that is

EH = 6a (1 + φ) ȧ2 + 6a2ȧφ̇+
3

2φ
a3φ̇2 − a3V (φ) . (6.99)

Due to the constraint coming from Einstein field equation G0
0 = 0 then EH = 0 in

vacuum.
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Following the results of [178], in the case of a constant potential V (φ) = V0 the La-

grangian (6.89) admits an extra Noether symmetry. In this case the Noether symmetry

is given by

X1 =

√
φ

a
∂φ,

and the corresponding Noether integral has the form

I1 = 3
a√
φ

(
2φȧ+ aφ̇

)
.

Under the coordinate transformation

a = u
2
3 , φ = v2u−

4
3 ,

the Lagrangian becomes

L (u, v, u̇, v̇) =
8

3
u̇2 + 6u

2
3 v̇2 + V0u

2.

The field equations are given by

8

3
u̇2 + 6u

2
3 v̇2 − V0u

2 = 0, (6.100)

ü− 3

4
u−

1
3 v̇2 − 3

8
V0u = 0, (6.101)

v̈ +
2

3u
u̇v̇ = 0, (6.102)

respectively. The extra Noether integral in the {u, v} variables can be written as Ī1 =

u
2
3 v̇ (where Ī1/I1 = const) so one has v̇ = Ī1u

− 2
3 . The general solution of the above

system is ∫
du√

3
8
V0u2 − 9

4
Ī2

1u
− 2

3

=

∫
dt. (6.103)

Furthermore, for the Hubble function H = ȧ/a, we have

H2

H2
0

=
(
ΩΛ + Ωra

−4
)
, (6.104)

where

ΩΛ =
1

6

V0

H2
0

, and Ωr = − Ī2
1

H2
0

, (6.105)
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indicate the density parameters for the cosmological constant and radiation, respec-

tively. Observe that in order to have a physical solution, it has to be Ī1 ∈ C and

Re
(
Ī1

)
= 0.

The Hubble function (6.104) corresponds to the model with a cosmological con-

stant and a radiation fluid. However, if we introduce dust in our model, ρD = ρm0a
−3,

Eq. (6.100) becomes
8

3
u̇2 + 6u

2
3 v̇2 − V0u

2 = ρm0.

Therefore, the analytical solution takes the form∫
du√

3
8
V0u2 + 3

8
ρm0 − 9

4
Ī2

1u
− 2

3

=

∫
dt,

and the Hubble function is

H2

H2
0

=
(
ΩΛ + Ωma

−3 + Ωra
−4
)
,

where now Ωm =
ρm0

6H2
0

. Thus, the Hybrid Gravity introduces a further “radiation”

term.

Since the linear case is trivial, in the next section, we will perform a conformal

transformation for the Lagrangian (6.89) in order to apply the results of [179, 180].

We will consider two separate cases with respect to a lapse function N , one case in

which the lapse is a function of the scale factor, dτ = N (a) dt, and another case

where it is a function of the scalar field, i.e. dτ = N (φ) dt. For the latter case we

will show that Hybrid Gravity is conformally related to a Brans-Dicke-like scalar field

theory.

Conformal transformations and Noether Symmetries

The dynamical system described by the Lagrangian (6.89) is conformally invariant,

withEH = 0. Therefore, we can apply conformal transformations to Lagrangian (6.89)

in order to use the results in [179, 180, 185] and determine new solutions in conformal

frames. However, since the minisuperspace described by the metric (6.97) is two-

dimensional, it admits an infinite conformal algebra, so that, in order to simplify the

problem, we have to provide some ansantz. As a first one, we will consider conformal
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transformation of the form dτ = N (a) dt, so that the space-time metric (6.88) has the

form

ds2 = −N−2 (a (τ)) dτ 2 + a2 (τ)
(
dx2 + dy2 + dz2

)
. (6.106)

Then we will study the case of conformal transformations of the form dτ = N (φ) dt.

It is now important to stress that the transformations (6.81) and the relation between

the curvature scalars (6.83), that led to the action (6.84), are always in the Jordan frame

since the effective gravitational coupling is varying, being (1+φ), and the kinetic term

is non-canonical. As discussed above, they allow to distinguish between the Palatini

degrees of freedom, related to the scalar field φ, and the standard metric degrees of

freedom, related to GR. This is true also in the cosmological dynamical system given

by the pointlike Lagrangian (6.89). A conformal transformation, as the above one,

allows to carry the problem into the Einstein frame where a conformal kinetic metric

and a new Ricci curvature scalar can be defined. Noether symmetries for conformal

Lagrangians can be easily achieved and discussed in this frame as we will see below.

Moreover, the physical meaning of the degrees of freedom, related to Hybrid Gravity,

is evident in the Einstein frame where dynamics is led by an effective potential which

vanishes as soon as GR is restored.

The Lagrangian for the conformal FRW space-time has the form (6.106) is given

by

L (a, φ, a′, φ′) =
a3V (φ)

N (a)

+N (a)

[
6a (1 + φ) a′2 + 6a2a′φ′ +

3

2φ
a3φ′2

]
, (6.107)

where the prime denotes d/dτ (it should not be confused with the conformal time that

requires a special choice of the lapse function N(a)). The conformal kinetic metric

and the related Ricci scalar are given by

ds̄2
(2) = N (a)

(
12a (1 + φ) da2 + 12a2dadφ+

3

φ
a3dφ2

)
, (6.108)

and

R(2) = −
a2NN,aa − a2N2

,a −N2

12a3N3
,

respectively. Since the kinetic metric (6.108) is two-dimensional, the space is an Ein-

stein space. If the Ricci scalar is constant, the Einstein space has a constant curvature.
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In order to reduce the problem to the dynamics of Newtonian physics [180], we con-

sider R(2) = 0, so that

N (a) = a−1eN0a. (6.109)

Hence, by applying the geometric approach in [178], one gets that the Lagrangian

(6.107), with the solution (6.109), admits extra Noether symmetries. The first one is of

the form

X1 = −1

2
∂a +

φ+ V1

√
φ

a
∂φ, (6.110)

with the corresponding conservation law

IX1 = 6
(
V1

√
φ− 1

)
ȧ+ 3

a√
φ
V1φ̇, (6.111)

for the potential

V (φ) = V0

(√
φ+ V1

)4

. (6.112)

The second symmetry vector and corresponding conservation law are given by

X2 = 2τ∂τ + a
(√

φV1 + 1
)
∂a − 2V1

√
φ (φ+ 1) ∂φ, (6.113)

and

IX2 = 12a (1 + φ) ȧ+ 6a2

(
1− V1√

φ

)
φ̇, (6.114)

respectively, with the potential given by

V (φ) = V0 (1 + φ)2 exp

(
6

V1

arctan
√
φ

)
. (6.115)

We have chosen N0 = 0 for both cases. If N0 6= 0, one finds that Lagrangian (6.107)

admits extra Noether symmetries only in the case of the trivial potential V (φ) = 0.

The Noether Integrals (for both cases), the Hamiltonian EH and IX are indepen-

dent geometrical objects and the relation {EH , IX} = 0 holds. Hence, the dynamical

systems are Liouville integrable. Furthermore, the Clairaut Eq. (6.81) for the potential

(6.112) is given by

Ef ′(E)− f(E) = V0

(√
f ′ (E) + V1

)4

. (6.116)

Thus, Eq. (6.87) becomes

2V0√
f ′ (E)

(√
f ′ (E) + V1

)3

+ E = 0, (6.117)
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and hence, by setting y =
√
f ′ (E), one obtains the polynomial equations

(y + V1)3 − E

2V0

y = 0. (6.118)

A real solution of Eq. (6.118) is∫
df =

∫ (
EF (E) +

1

6V0F (E)
− V1

)2

dE, (6.119)

where

F 3 (E) = 6EV 2
0

(√
81V 2

1 −
6E

V0

− 9V1

)
. (6.120)

Let us simplify the equation. For instance, considering V1 = 0, the singular solu-

tion of the Clairaut equation yields

f (E) =
E2

4V0

. (6.121)

It should be noticed that if one substitutes the solution (6.121) into the hybrid master

equation (3.39) one finds that the variable X = 0, namely, the solution is the GR case.

We can proceed in the same way for the potential given by (6.115)

Ef ′(E)− f(E) = V0 [1 + f ′ (E)]
2 ×

× exp

(
6

V1

arctan
√
f ′ (E)

)
, (6.122)

so that the singular solution follows from the equation

[1 + f ′ (E)]

(
2 +

3

V1

√
f ′ (E)

)
×

× exp

(
6

V1

arctan
√
f ′ (E)

)
+ E = 0 . (6.123)

The physical meaning of potentials (6.112) and (6.115) has to be discussed in detail.

The term
√
φ seems a limitation on the range of validity of the whole theory. Neverthe-

less, a careful investigation shows that φ > 0 can be interpreted as a quintessence field

while φ < 0 is a phantom field. In terms of the previous variable f ′(E), quintessence-

phantom regimes are divided by GR, restored for φ = 0. In other words, the apparent

limitation due to the square root into the potential points out nothing else but a change

of regime into dynamics.
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Hybrid Gravity as a Brans-Dicke-like theory

We now apply the conformal transformation ḡij = N (φ)−2 gij in the FRW space-

time (6.88). Under this transformation, the action of Hybrid Gravity (6.84) becomes

S =

∫
d4x
√
−ḡ[(1 + φ)R̄ +

3

2φ
ḡijφ,iφ,j − V (φ)], (6.124)

where the conformal Ricci scalar is given by

R̄ = N−2R− 6N−3gijN;ij.

Substituting it into the action (6.124) one finds

S =

∫
d4x
√
−g[(1 + φ)N2R− 6(1 + φ)NgijN;ij

+
3

2φ
N2gijφ,iφ,j −N4V (φ)]. (6.125)

Taking into account the following lapse function

N (φ) =

√
F (φ)

1 + φ
, (6.126)

then

N;i =
1

2

√
1 + φ

F (φ)

(
F,φ

1 + φ
− F

(1 + φ)2

)
φ;i. (6.127)

Substituting the results into the various terms of Eq. (6.125), we get the following

relations ∫
d4x
√
−g
[
(1 + φ)N2R

]
=

∫
d4x [F (φ)R] , (6.128)

∫
d4x
√
−g 3

2φ
N2gijφ,iφ,j =∫

d4x
√
−g 3F (φ)

2 (1 + φ)φ
gijφ,iφ,j, (6.129)

and a lengthy, but straightforward calculation leads to∫
d4x
√
−g6(1 + φ)NgijN;ij =

−
∫
d4x
√
−g

[
3

2

F (φ)− (1 + φ)2 F 2
,φ

(1 + φ)F (φ)
gijφ;iφ;j

]
. (6.130)
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Using the above relations, the action (6.125) takes the form

S =

∫
d4x
√
−g

[
F (φ)R +

3

2

(
F (φ)− (1 + φ)2 F 2

,φ

(1 + φ)F (φ)

+
3F (φ)

2 (1 + φ)φ

)
gijφ,iφ,j −

F 2 (φ)

(1 + φ)2V (φ)

]
. (6.131)

Moreover, defining a new scalar field Φ (i.e. a coordinate transformation)

dΦ =

√√√√3

[
F (φ)− (1 + φ)2 F 2

,φ

(1 + φ)F (φ)
+

3F (φ)

2 (1 + φ)φ

]
dφ,

the action becomes

S =

∫
d4x
√
−g
[
F (Φ)R +

1

2
gijΦ,iΦ,j − V̄ (Φ)

]
, (6.132)

with

V̄ (Φ) =
F 2 (Φ)

(1 + Φ)2V (Φ). (6.133)

The classification of Noether symmetries for the Lagrangian in the action (6.132) has

been completely achieved in [180] and previously in [53]. When F (Φ) = F0Φ2 we

have a Brans-Dicke-like scalar field with a potential. Nevertheless, for F0 = −1/12 the

Brans-Dicke scalar field gives ω0 = −3/2 and the Lagrangian of the field equations

is singular [103]. In that case the theory is equivalent to the Palatini f (R) [94].

Moreover, when F (φ) = F0, i.e., N (φ) =
√
F0/(1 + φ), the action (6.132) describes

a minimally coupled scalar field and the results in [183] can be applied.

In order to obtain exact solutions, one can apply a conformal transformation of the

form ḡµν = N−2 (a, φ) gµν . It is important to stress that the Wheeler-DeWitt equation,

coming from the Hamiltonian of the theory, is conformally invariant and this means

that the solutions that we find remain invariant under conformal transformations. The

same feature holds for classical solutions. However, it is not always possible to write

exact solutions in a close form in any conformal frame.

6.5.1 Exact and invariant solutions

Let us now determine the exact solution of the field equations for the models with

potentials (6.112) and (6.115).

93



Searching for exact solutions

I. The case of potential V (φ) = V0

(√
φ+ V1

)4

Lagrangian, Hamiltonian, and field equations

We consider the following coordinate transformation

a = Cv + u, φ =

(
v

Cv + u
− V1

)2

, (6.134)

where C = V1/(1 + V 2
1 ). In this new coordinates, the Lagrangian (6.107) becomes

L (u, v, u′, v′) = 6
(
V 2

1 + 1
)
u′2 +

6

(V 2
1 + 1)

v′2 + V0v
4. (6.135)

Performing a second coordinate transformation

x =
√

12 (V 2
1 + 1)u, (6.136)

y =

√
12

(V 2
1 + 1)

v, (6.137)

the Lagrangian (6.135) is

L (x, y, x′, y′) =
1

2
x′2 +

1

2
y′2 + V̄0y

4, (6.138)

where V̄0 = V0
144

(V 2
1 + 1)

2. The Hamiltonian is given by

H̃ =
1

2
p′2x +

1

2
p′2y − V̄0y

4, (6.139)

where px, py are the momenta. The field equations are the Hamilton equations

x′ = px, y′ = py (6.140)

p′x = 0, p′y = 4V̄0y
3, (6.141)

and the Hamiltonian constraint is H̃ = 0. Moreover, the Hamilton-Jacobi equation for

the Hamiltonian (6.139) provides the following action

S = c1x+

∫ √
2V̄0y4 − c2

1 + S0, (6.142)

then the field equations reduces to

x′ = c1, y′ = ε
√

2V̄0y4 − c2
1. (6.143)
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Exact solutions for these equations are given by

x (τ) = x1τ + x2 (6.144)

and ∫
dy√

2V̄0y4 − c2
1

= ε (τ − τ0) , (6.145)

respectively, where ε = ±1. In the simplest case where V1 = 0, we have the solution

a (τ) = a0τ . From the condition dt = a (τ) dτ , we find τ =
√
t, that is a (t) = a0

√
t

which is the radiation solution.

In the case where c1 = 0 and V1 6= 0 from Eqs. (6.144) and (6.145), we have that

y (τ) = −ε 1√
2V0

1

(τ − τ0)
. (6.146)

Therefore, the scale factor assumes the following form

a (τ) = a0 (τ − τ0) + a1 − a2
1

τ − τ0

. (6.147)

From this result, we have

τ − τ0 =
1

2a0

(
a− a1 + ε

√
a2 − 2aa1 + a2

1 + 4a0a2

)
, (6.148)

and for the Hubble function1 H (τ) = a′/a2,

H (a) = a0a
−2 + 4a2

0a2

(
a3 − a1a

2

+εa2

√
(a− a1)2 + 4a0a2

)−2

. (6.149)

Thus, in order to have a real solution, the condition

(a− a1)2 + 4a0a2 ≥ 0, a ∈ R, (6.150)

must hold. This means that a0a2 ≥ 0. Hence, if a2 = 0, i.e., V1 = 0, we again obtain

the radiation solution.

However, when a0 = 0, from Eq. (6.147), we have that (τ − τ0) = a2/(a1 − a)

and for the Hubble function

H (a) = a−1
2

(
a1a

−1 − 1
)2
. (6.151)

1Recall that H = 1
a
da
dt = 1

a2
da
dτ
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Assuming at the present time (a = 1), we have that H2 (a = 1) = H0 and from

Eq. (6.151), we deduce a−1
2 = H0/ (|a1|+ 1)2. Finally, the Hubble function can be

written in the following form

H2 (a)

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + Ωfa

−1 + ΩΛ, (6.152)

where

Ωf =
|4a1|

(|a1|+ 1)4 , ΩΛ =
1

(|a1|+ 1)4 , (6.153)

Ωr =
|a1|4

(|a1|+ 1)4 , Ωm =
|4a1|3

(|a1|+ 1)4 , (6.154)

Ωk =
|6a1|2

(|a1|+ 1)4 , (6.155)

where the meaning of the symbols is straightforward. That means that each power

term of
√
φ of the power law potential (6.112), V (φ) = V0

(√
φ+ V1

)4
, introduces

a power term of the scale factor into the Hubble function. The corresponding fluids

are: radiation, dust, curvature-like fluid, a DE fluid with equation of state pf = −2
3
ρf

and a cosmological constant. We note that the curvature-like fluid follows from the

hybrid gravity and not from the geometry of the space-time, since we have considered

a spatially flat FRW space-time. Furthermore, for large redshifts z the Hubble function

(6.152) behaves like the radiation solution.

Moreover, from the conformal transformation dt = a (τ) dτ , we have that

τ − τ0 = exp
[
a1a

−1
2 τ0 − a−1

2 t−W (w (t))
]

= (X (t))−1 (6.156)

where w (t) = −a1a
−1
2 exp

[
a−1

2 (a1τ0 − t)
]

and W (t) is the Lambert W -function

[186] by which we can write the exact solution for the scale factor a (t). By substituting

Eq. (6.156) in Eq. (6.147), we find the scale factor expressed in terms of the proper

time t

a2 (t) = [a2X (t)− a1]2 . (6.157)

However, from the singularity constraint a (t→ 0) = 0, we find the constraint τ0 =

a−1
1 a2

[
ln
(
a−1

1 a2

)
− 1
]
.

In Figure 6.5 we compare the behavior of the scale factor (6.157) with that of the

standard ΛCDM-cosmology and the radiation solution. It can be observed that the
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Assuming at the present time ða ¼ 1Þ, we have that
H2ða ¼ 1Þ ¼ H0; hence, from Eq. (78), we deduce
a−12 ¼ H0=ðja1jþ 1Þ2. Finally, the Hubble function can
be written in the following form:

H2ðaÞ
H2

0

¼ Ωra−4 þΩma−3 þ Ωka−2 þΩfa−1 þ ΩΛ;

ð79Þ

where

Ωf ¼
j4a1j

ðja1jþ 1Þ4
; ΩΛ ¼ 1

ðja1jþ 1Þ4
; ð80Þ

Ωr ¼
ja1j4

ðja1jþ 1Þ4
; Ωm ¼ j4a1j3

ðja1jþ 1Þ4
; ð81Þ

Ωk ¼
j6a1j2

ðja1jþ 1Þ4
; ð82Þ

where the meaning of the symbols is straightforward. That
means that each power term of

ffiffiffiffi
ϕ

p
of the power-law

potential (39), VðϕÞ ¼ V0ð
ffiffiffiffi
ϕ

p
þ V1Þ4, introduces into the

Hubble function a power term of the scale factor. The
corresponding fluids are radiation, dust, curvaturelike fluid,
a dark energy fluid with equation of state pf ¼ − 2

3 ρf and a
cosmological constant. We would like to note that
the curvaturelike fluid follows from the hybrid gravity
and not from the geometry of the spacetime, since we have
considered a spatially flat FRW spacetime. Moreover, for
large redshifts z the Hubble function (79) behaves like the
radiation solution.
Furthermore, from the conformal transformation

dt ¼ aðτÞdτ, we have that

τ − τ0 ¼ exp ½a1a−12 τ0 − a−12 t −WðwðtÞÞ& ¼ ðXðtÞÞ−1

ð83Þ

where wðtÞ ¼ −a1a−12 exp ½a−12 ða1τ0 − tÞ& and WðtÞ is the
Lambert W-function [51] by which we can write the exact
solution for the scale factor aðtÞ. By replacing Eq. (83) in
Eq. (74), we find that the scale factor is expressed in terms
of the proper time t as follows:

a2ðtÞ ¼ ½a2XðtÞ − a1&2: ð84Þ

However, from the singularity constraint aðt → 0Þ ¼ 0, we
find the constraint τ0 ¼ a−11 a2½ln ða−11 a2Þ − 1&.
In Fig. 1 we compare the behavior of the scale factor (84)

with that of the standard ΛCDM cosmology and the
radiation solution. It can be observed that, in the early
Universe, the behavior of the scale factor (84) of the hybrid
gravity is similar to the radiation solution. As a final
remark, it is important to stress that the hybrid gravity
contribution has a twofold meaning: if ϕ > 0, it can be read

as quintessence, while ϕ < 0 means phantom field. In both
cases, it contributes to the bulk of dark energy in Eq. (79)
and disappears as soon as GR is recovered. On the other
hand, since GR is related to the value ϕ ¼ 0, it corresponds
to a sort of phantom-quintessence divide of the theory.

2. The WDW equation

From the Hamiltonian (66), we can define the WDW
equation (recall that the dimension of the minisuperspace is
2 and the minisuperspace is flat), which is given by

Ψ;xx þΨ;yy − 2V0y4Ψ ¼ 0; ð85Þ

where Ψ is the wave function of the Universe [52].
Following the results in [48], one finds that Eq. (85) admits
Lie point symmetries for the vector fields

XΨ ¼ c1∂x þ ðc2Ψþ bðx; yÞÞ∂Ψ; ð86Þ

Xb ¼ bðx; yÞ∂Ψ; ð87Þ

where bðx; yÞ is a function that satisfies the WDWEq. (85).
Therefore we can apply the zero-order invariants to
reduce Eq. (85).
From the Lie point symmetry XΨ, the invariant functions

are fy; Yeμxg, with μ ∈ C [50]; hence Eq. (85) reduces to
the following second-order ODE:

Y;yy þ ðμ2 − 2V̄0y4ÞY ¼ 0: ð88Þ

This equation is the one-dimensional time-dependent
oscillator and admits eight Lie point symmetries [53]
which are all type II hidden symmetries [54,55].
Therefore we have that

0 t0
0

1

t

a(
t)

Comparison of the Scale factors

Hybrid Gravity
Λ Cosmology
Radiation Solution

FIG. 1. Comparison of the scale factor (84) with that of ΛCDM
cosmology aΛðtÞ and the radiation solution arðtÞ ¼ a0r

ffiffi
t

p
where

t0 is the present time, aΛðt0Þ ¼ 1. For the solution (84) of the
hybrid gravity, we set ja1j > 1.

ANDRZEJ BOROWIEC et al. PHYSICAL REVIEW D 91, 023517 (2015)

023517-10

Figure 6.5: Comparison of the scale factor (6.157) with that of ΛCDM-
cosmology aΛ (t). and the radiation solution ar (t) = a0r

√
t where t0 is the present

time, aΛ (t0) = 1. For the solution (6.157) of the Hybrid Gravity, we set |a1| > 1.

behavior of the scale factor (6.157) of the Hybrid Gravity is similar to the radiation

solution in the early universe. Finally, it is important to stress that Hybrid Gravity

contribution has a twofold meaning. When the condition φ > 0 holds, it can be read

as quintessence, while the condition φ < 0 means phantom field. In both cases, it

contributes to the bulk of DE in Eq.(6.152) and disappears as soon as GR is recovered.

On the other hand, being GR related to the value φ = 0, it corresponds to a sort of

phantom-quintessence divide of the theory.

The Wheeler-DeWitt equation

We can define the Wheeler-DeWitt equation (recall that the dimension of the min-

isuperspace is two and the minisuperspace is flat) from the Hamiltonian (6.139)

Ψ,xx + Ψ,yy − 2V0y
4Ψ = 0 , (6.158)

where Ψ is the Wave Function of the Universe [187]. Following the results in [185],
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one finds that Eq. (6.158) admits Lie point symmetries for the vector fields

XΨ = c1∂x + (c2Ψ + b (x, y)) ∂Ψ, (6.159)

Xb = b (x, y) ∂Ψ, (6.160)

where b (x, y) is a function that satisfies the Wheeler-DeWitt equation (6.158). Hence,

we can apply the zero order invariants to reduce Eq. (6.158).

From the Lie point symmetry XΨ, the invariant functions are {y, Y eµx}, with µ ∈

C [172], therefore Eq. (6.158) reduces to the following second-order ODE

Y,yy +
(
µ2 − 2V̄0y

4
)
Y = 0. (6.161)

This equation is the one-dimensional time-dependent oscillator and it admits eight Lie

point symmetries [188] which are all Type II hidden symmetries [189, 190]. Thus, we

have that

Y (y) = y1e
w(y) + y2e

−w(y),

where

w (y) =

√
2

2

∫ √(
2V̄0y4 − µ2

)
dy. (6.162)

Finally, the invariant solution of the Wheeler-DeWitt equation (6.158) is given by

Ψ (x, y) =
∑
µ

[
y1e

µx+w(y) + y2e
µx−w(y)

]
. (6.163)

Following De Witt [187], this solution is the so-called Wave Function of the Uni-

verse. It is related to the probability that a universe, in particular our observed uni-

verse, emerges with some specific initial conditions. In the present case, according

to the definition and the sign of the variables, such a solution can assume exponential

or oscillatory behaviors, being µ ∈ C and x, y depending on φ that can be positive

or negative-defined. Thanks to the Hartle criterion, in the oscillatory case the wave

function results peaked on conserved momenta and observable universes (i.e. classi-

cal cosmological solutions) come out (see [191] for a detailed discussion). Clearly, a

singularity emerges for φ = 0. This means that GR regime is restored and Big Bang

singularity cannot be avoided.
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II. The case of the potential V (φ) = V0 (1 + φ)2 exp
(

6
V1

arctan
√
φ
)

Lagrangian, Hamiltonian, and field equations

Like before, we apply the following coordinate transformations for the considered

potential

a =
1√
12

eu√
tan2 (v − V1u) + 1

, (6.164)

φ = tan2 (v − V1u) . (6.165)

Lagrangian (6.107) becomes

L (r, θ, r′, θ′) =
1

2
e2u
[(

1 + V 2
1

)
u′2 − 2V1u

′v′ + v′2
]

+V̄0e
−2ue

6
V1
v
, (6.166)

where V̄0 = V0/144. The Hamiltonian of the system is

H̃ =
1

2
e−2u

[
p2
u + 2V1pupv +

(
1 + V 2

1

)
p2
v

]
− V̄0e

−2ue
6
V1
v
. (6.167)

The Hamilton equations are

u′ = e−2u (pu + V1pv) , (6.168)

v′ = e−2u
(
V1pu +

(
1 + V 2

1

)
pv
)
, (6.169)

p′v =
6V̄0

V1

e−2ue
6
V1
v
, (6.170)

p′u = e−2u
(
p2
u + 2V1pupv +

(
1 + V 2

1

)
p2
v

)
− 2V̄0e

−2ue
6
V1
v
, (6.171)

respectively, and the Hamiltonian constraint provides H̃ = 0. Moreover, from the

Hamilton-Jacobi equation for Eq. (6.167), we have the action

S (u, v) =
c1

1 + V 2
1

u− c1
V1

1 + V 2
1

v

+
V1

3 (1 + V 2
1 )

(
S1 (v)− c1 arctan

S1 (v)

c1

)
, (6.172)

where

S1 (v) = 2
(
1 + V 2

1

)
V0e

6
V1
v − c2

1. (6.173)
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Finally, the reduced dynamical system has the form

e2uu′ = c1
1− V 2

1

1 + V 2
1

+
V1

1 + V 2
1

S1 (v) , (6.174)

e2uv′ = S1 (v)− c1
V 3

1

1 + V 2
1

, (6.175)

which is a system of two nonlinear first order differential equations. Nevertheless, in

order to simplify the reduced system of Eqs. (6.174) and (6.175) and in order to write

the exact solution of the field equations, we apply a second conformal transforma-

tion ds = e2udτ, and the dynamical system becomes

du

ds
= C1 + C2 + C3e

6
V1
v
,

dv

ds
= C4e

6
V1
v

+ C5,

where the constants are C1..5 = C1..5 (V0, V1, c
2
1). The solution of the system can be

written as follows

u (s) = −V1C3

6C4

ln

{
C4

[
exp

(
6C5

V1

(s+ I0)− u1

)
− 1

]}
+ (C1 + C2) s+ u2, (6.176)

v (s) = −V1

6
ln

{
1

C5

[
1− exp

(
6C5

V1

(s+ I0)− u1

)]}
+C5 (s+ u1) . (6.177)

Observe that the second conformal transformation τ → s is of the form ds = N̄ (a, φ) dτ .

The Wheeler-DeWitt equation

Let us define the Wheeler-DeWitt equation from the Hamiltonian (6.167)

Ψ,uu + 2V1Ψ,uv +
(
1 + V 2

1

)
Ψ,vv − 4V̄0e

6
V1
v
Ψ = 0 . (6.178)

Following [185], we find that Eq. (6.178) admits the following vector fields as Lie

point symmetries

X1 = ∂u, XΨ = Ψ∂Ψ, Xb = b (u, v) ∂Ψ,
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X2 = e
− 3v
V1 [cos (VCu) cos (3v) + sin (VCu) sin (3v)] ∂u

+e
− 3v
V1

[
(V1 cos (3v)− sin (3v)) cos (VCu)

+ (cos (3v) + V1 sin (3v)) sin (VCu)
]
∂v, (6.179)

X3 = e
− 3v
V1 [cos (VCu) sin (3v) + sin (VCu) cos (3v)] ∂u

+e
− 3v
V1

[
(cos (3v) + V1 sin (3v)) cos (VCu)

+ (sin (3v)− V1 cos (3v)) sin (VC)
]
∂v, (6.180)

where VC = 3 (1 + V 2
1 ) /V1. Note that only the symmetry vector X1 = ∂u is the

generator of the Noether symmetry for the Lagrangian (6.166).

We apply the invariant symmetry vector X = X1 +µΨ∂Ψ, where the invariants are

{v, Y eµu}. Hence, Eq. (6.178) becomes(
1 + V 2

1

)
Y,vv + 2µV1Y,v +

(
µ2 − 4V̄0e

6
V1
v
)
Y = 0 . (6.181)

This equation describes a time-dependent damped oscillator. It is well known that there

exists a transformation (v, Y ) →
(
v̄, Ȳ

)
where it can be written in the form Ȳ,v̄v̄ = 0,

since it admits eight Lie point symmetries.

Therefore, the solution of Eq. (6.181) can be expressed in terms of Bessel functions

Y (v) = exp
(
−3N̄y

) [
c1JN̄

(
Vµe

3
V1
v
)

+ c2YN̄

(
Vµe

3
V1
v
)]

,

where

N̄ = − V1µ

3 (1 + V 2
1 )
, Vµ =

2

3

V1

√
V0√

1 + V 2
1

i .

In conclusion, the invariant solution of Eq. (6.178) is

Ψ (u, v) =
∑
µ

exp
(
µu− 3N̄v

) [
c1JN̄

(
Vµe

3
V1
v
)

+c2YN̄

(
Vµe

3
V1
v

)]
. (6.182)

We note that it is possible to apply the other Lie symmetries, e.g., X2, X3 or any

linear combination, in order to determine the invariant solution of the Wheeler-DeWitt

equation (6.178). The interpretation of the Wave Function of the Universe is simi-

lar to the previous one but the presence of the Bessel functions has to be analyzed
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for both asymptotic oscillatory and exponential regimes, depending on the sign of the

arguments. Like above, the sign of the scalar field φ, i.e. of the Hybrid Gravity contri-

bution, plays a main role in order to determine where and when the Hartle criterion is

applicable (see also [192]).

6.6 Gauss-Bonnet Gravity

Let focus on the application of Noether approach to f(R,G) gravity [193]. It is

to possible to select physically interesting forms of f(R,G) asking for the existence

of Noether symmetries and the existence of symmetries allows to select constants of

motion that reduce dynamics. Furthermore, reduced dynamics results exactly solvable

by a straightforward change of variables where a cyclic coordinate is present. As

showed in [193], the method allows from one side to solve exactly the dynamics and

from the other side, the Noether charge can always be related to some observable

quantity. The procedure is based on the fact that both R and G behave like effective

scalar fields as soon as suitable Lagrange multipliers are introduced into dynamics

[194]. This allows to define a suitable configuration space Q ≡ {a,R,G}, where a is

the FRW scale factor. Therefore, one can search for the invariance of a Lie vector field

X by the Lie derivative LX acting on the point-like Lagrangian L(ȧ, a, Ṙ, R, Ġ,G).

Field equations of F (R,G)-gravity

Let start by writing, as above, the most general action for modified Gauss-Bonnet

gravity (3.40) without the contribution of standard matter Lagrangian Lm that we will

reconsider below,

S =

∫
d4x
√
−gF (R,G) , (6.183)

where, as we said before, F (R,G) is a function of the Ricci scalar and Gauss-Bonnet

invariant defined in (3.41). The gravitational field equations without matter read [113]
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Gµν =
1

FR

[
∇µ∇νFR − gµν2FR + 2R∇µ∇νFG

−2gµνR2FG − 4R λ
µ ∇λ∇νFG − 4R λ

ν ∇λ∇µFG

+4Rµν2FG + 4gµνR
αβ∇α∇βFG + 4Rµαβν∇α∇βFG

−1

2
gµν
(
RFR + GFG − F (R,G)

)]
. (6.184)

6.6.1 Gauss-Bonnet cosmology

Cosmological equations can be obtained by deducing a point-like canonical La-

grangian L(a, ȧ, R, Ṙ,G, Ġ) from the action (6.183). The configuration space for the

canonical Lagrangian will be Q ≡ {a,R,G} and the tangent space on which L is de-

fined will be T Q ≡ {a, ȧ, R, Ṙ,G, Ġ}. The variables a(t), R(t) and G(t) are the scale

factor, the Ricci scalar and the Gauss-Bonnet invariant defined in the FRW metric,

respectively. The corresponding Euler-Lagrange equations will be

d

dt

∂L
∂ȧ

=
∂L
∂a

,
d

dt

∂L
∂Ṙ

=
∂L
∂R

,
d

dt

∂L
∂Ġ

=
∂L
∂G

, (6.185)

with the energy condition

EL =
∂L
∂ȧ
ȧ+

∂L
∂Ṙ

Ṙ +
∂L
∂Ġ
Ġ − L = 0 . (6.186)

Here the dot indicates the derivatives with respect to the cosmic time t.

The method of the Lagrange multipliers can be used to set R and G as constraints

for dynamics. Then, integrating by parts to eliminate higher than one time derivatives,

the Lagrangian L becomes canonical. Using the signature (+,−,−,−, ), we have

S =

∫
dt a3

{
F (R,G)− λ1

[
R + 6

(
ä

a
+
ȧ2

a2

)]
− λ2

[
G − 24

(
äȧ2

a3

)]}
.(6.187)

Here a spatially flat FRW space-time has been considered and the definitions of the

Ricci scalar and the Gauss-Bonnet invariant on this metric has been adopted, that is

R = −6

(
ä

a
+
ȧ2

a2

)
, G = 24

(
äȧ2

a3

)
. (6.188)

The Lagrange multipliers λ1,2 are obtained by varying the action with respect to R and

G, that is

λ1 =
∂F (R,G)

∂R
, λ2 =

∂F (R,G)

∂G
, (6.189)
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then the above action becomes

S =

∫
dt

{
a3F (R,G)− a3∂F (R,G)

∂R

[
R + 6

(
ä

a
+
ȧ2

a2

)]
−a3∂F (R,G)

∂G

[
G − 24

(
äȧ2

a3

)]}
. (6.190)

After an integration by parts, the point-like Lagrangian assumes the form

L = 6aȧ2∂F (R,G)

∂R
+ 6a2ȧ

d

dt

(
∂F (R,G)

∂R

)
− 8ȧ3 d

dt

(
∂F (R,G)

∂G

)
+a3

[
F (R,G)−R ∂F (R,G)

∂R
− G ∂F (R,G)

∂G

]
, (6.191)

that is a canonical function of the coupled fields a, R and G depending on the cosmic

time t. It is important to underline that the Lagrange multipliers have been properly

chosen by considering the definition of the Ricci curvature scalar R and the Gauss-

Bonnet invariant G. This allows to consider as canonical the constrained dynamics.

The Euler-Lagrange equations from Eqs. (6.185 - 6.186) are [193][(
ȧ

a

)2

+ 2
ä

a

]
∂F (R,G)

∂R
+
d2

dt2

(
∂F (R,G)

∂R

)
+ 2

ȧ

a

d

dt

(
∂F (R,G)

∂R

)

−8
ȧä

a2

d

dt

(
∂F (R,G)

∂G

)
− 4

(
ȧ

a

)2
d2

dt2

(
∂F (R,G)

∂G

)
− 1

2

[
F (R,G)

−R ∂F (R,G)

∂R
− G ∂F (R,G)

∂G

]
= 0 ,

(6.192)

[
R + 6

(
ä

a
+
ȧ2

a2

)]
∂2F (R,G)

∂R2
+

[
G − 24

(
äȧ2

a3

)]
∂2F (R,G)

∂R∂G
= 0 , (6.193)

[
R + 6

(
ä

a
+
ȧ2

a2

)]
∂2F (R,G)

∂R∂G
+

[
G − 24

(
äȧ2

a3

)]
∂2F (R,G)

∂G2
= 0 . (6.194)

It is worth noticing that the form of Eqs. (6.193) and (6.194) show a symmetry

in the variables R and G. Finally the energy condition (6.186), corresponding to the
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00-Einstein equation, is(
ȧ

a

)2
∂F (R,G)

∂R
+

(
ȧ

a

)
d

dt

(
∂F (R,G)

∂R

)
− 4

(
ȧ

a

)3
d

dt

(
∂F (R,G)

∂G

)

−1

6

[
F (R,G)−R ∂F (R,G)

∂R
− G ∂F (R,G)

∂G

]
= 0 .

(6.195)

For consistency, considering G, R and a as variables, then R and G coincides with the

definitions of the Ricci scalar and Gauss-Bonnet invariant in the FRW metric, respec-

tively, i.e. these are Euler’s constraints of the dynamics.

6.6.2 Noether symmetries in Gauss-Bonnet cosmology

Following [193] let see how solutions of the system (6.192-6.195) can be achieved

by asking for the existence of Noether symmetries.

As discussed in sec. 6.1 Noether symmetry for the Lagrangian (6.191) exists if

the condition LXL = 0 → XL = 0 holds. Here LX is the Lie derivative with

respect to the Noether vectorX .This condition is nothing else but the contraction of the

Noether vector X , defined on the tangent space T Q = {qi, q̇i} = {a, ȧ, R, Ṙ,G, Ġ}

of the Lagrangian L = L(qi, q̇i) = L(a, ȧ, R, Ṙ,G, Ġ). In our case, the generator of

symmetry is

X = α
∂

∂a
+ β

∂

∂R
+ γ

∂

∂G
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
+ γ̇

∂

∂Ġ
. (6.196)

The functions α, β, γ depend on the variables a,R,G and then

α̇ =
∂α

∂a
ȧ+

∂α

∂R
Ṙ +

∂α

∂G
Ġ , β̇ =

∂β

∂a
ȧ+

∂β

∂R
Ṙ +

∂β

∂G
Ġ ,

γ̇ =
∂γ

∂a
ȧ+

∂γ

∂R
Ṙ +

∂γ

∂G
Ġ . (6.197)

As mentioned above, a Noether symmetry exists if at least one of them is different

from zero. Their analytic forms corresponds to a set of partial differential equations

obtained by equating to zero the terms in ȧ2, Ṙ2, Ġ2, ȧṘ, ȧĠ, ṘĠ and so on. A sys-

tem of thirteen partial differential equations is found [193] considering the fact that

canonical Lagrangian is defined by the Lagrange multipliers
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α∂F (R,G)
∂R

+ βa∂
2F (R,G)
∂R2 + γa∂F (R,G)

∂R∂G + 2a
(
∂α
∂a

)
∂F (R,G)
∂R

+ a2
(
∂β
∂a

)
∂2F (R,G)
∂R2

+a2
(
∂γ
∂a

) ∂2F (R,G)
∂R∂G = 0

2α∂
2F (R,G)
∂R2 + βa∂

3F (R,G)
∂R3 + γa∂

3F (R,G)
∂R2∂G + a

(
∂α
∂a

) ∂2F (R,G)
∂R2 + 2

(
∂α
∂R

) ∂F (R,G)
∂R

+a
(
∂β
∂R

) ∂2F (R,G)
∂R2 + a

(
∂γ
∂R

) ∂2F (R,G)
∂R∂G = 0

β ∂3F (R,G)
∂G2∂R + γ ∂3F (R,G)

∂G3 + 3
(
∂α
∂a

) ∂2F (R,G)
∂G2 +

(
∂β
∂G

) ∂2F (R,G)
∂R∂G +

(
∂γ
∂a

) ∂2F (R,G)
∂G2 = 0

(
∂α
∂R

) ∂2F (R,G)
∂R2 = 0

(
∂α
∂R

) ∂2F (R,G)
∂G2 +

(
∂α
∂G

) ∂2F (R,G)
∂R∂G = 0

(
∂α
∂R

) ∂2F (R,G)
∂R∂G +

(
∂α
∂G

) ∂2F (R,G)
∂R2 = 0

2α∂
2F (R,G)
∂R∂G + βa∂

3F (R,G)
∂G∂R2 + γa∂

3F (R,G)
∂G2∂R + a

(
∂α
∂a

) ∂2F (R,G)
∂R∂G

+2
(
∂α
∂G

) ∂F (R,G)
∂R

+ a
(
∂β
∂G

) ∂2F (R,G)
∂R2 + a

(
∂γ
∂G

) ∂2F (R,G)
∂R∂G = 0

(
∂β
∂a

) ∂2F (R,G)
∂R∂G +

(
∂γ
∂a

) ∂2F (R,G)
∂G2 = 0

β ∂
3F (R,G)
∂G∂R2 + γ ∂

3F (R,G)
∂G2∂R +

(
∂β
∂R

) ∂2F (R,G)
∂R∂G +

(
∂γ
∂R

) ∂2F (R,G)
∂G2 + 3

(
∂α
∂a

) ∂2F (R,G)
∂R∂G = 0

(
∂α
∂G

) ∂2F (R,G)
∂G2 = 0

(
∂α
∂R

) ∂2F (R,G)
∂R∂G = 0

(
∂α
∂G

) ∂2F (R,G)
∂R∂G = 0

3α
[
F (R,G)−R ∂F (R,G)

∂R
− G ∂F (R,G)

∂G

]
− βa

[
R ∂2F (R,G)

∂R2 + G ∂2F (R,G)
∂G∂R

]
−γa

[
G ∂2F (R,G)

∂G2 +R ∂2F (R,G)
∂R∂G

]
= 0

(6.198)
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The system (6.198) is overdetermined and, if solvable, enables one to assign α, β, γ

and F (R,G). The analytic form of F (R,G) can be fixed by imposing, in the last

equation of system (6.198), the conditions



F (R,G)−R ∂F (R,G)
∂R

− G ∂F (R,G)
∂G = 0

R ∂2F (R,G)
∂R2 + G ∂2F (R,G)

∂G∂R = 0

G ∂2F (R,G)
∂G2 +R ∂2F (R,G)

∂R∂G = 0

(6.199)

where the second and third equations are symmetric. It is clear that this is nothing

else but an arbitrary choice since more general conditions are possible. In [193] the

following functional forms are chosen

F (R,G) = f(R) + f(G) , F (R,G) = f(R)f(G) , (6.200)

and the functional forms of F (R,G) compatible with the system (6.199) are

F (R,G) = F0R + F1G , F (R,G) = F0R
nG1−n . (6.201)

This allows to work out cosmological models compatible with the Noether symmetries

[193].

6.6.3 Examples of exact cosmological solutions

Let us consider some examples showed in [193], where the existence of the sym-

metry allows a suitable reduction of the dynamical system and a full control of the

problem based on first principles.

The case F (R,G) = F0R + F1G

Considering the functional form F (R,G) = F0R+F1G The first equation of system

(6.198) gives

α + 2a
dα

da
= 0 . (6.202)
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Except the last one, the others equations of the system (6.198) are identically zero. The

Noether symmetry is given by

α =
α0√
a
, β = 0, γ = 0 . (6.203)

This is nothing else but GR as it can be expected from the fact that any linear combi-

nation of the Gauss-Bonnet invariant does not contribute to the effective Lagrangian in

4 dimensions. Therefore, we have (
ȧ

a

)2

+ 2
ä

a
= 0 , (6.204)

R + 6

[(
ȧ

a

)2

+
ä

a

]
= 0 , (6.205)

G − 24

(
äȧ2

a3

)
= 0 , (6.206)(

ȧ

a

)2

= 0 , (6.207)

and hence the Minkowski space-time is recovered in vacuum while standard Friedman

solutions are recovered when standard perfect fluid matter is considered.

The case F (R,G) = F0R
nG1−n ,

We consider now a more interesting case where the Noether symmetry rules the

relation between R and G. Taking into account the simplest non-trivial case n =

2, the functional form of F (R,G) is F (R,G) = F0
R2

G
. Accordingly, the point-like

Lagrangian is

L =
4F0 ȧ

G

[
3 a ȧR + 3 a Ṙ− 3 a2 ĠR

G
+ 4 ȧ2 Ṙ

R

G
− 4 ȧ2 Ġ

(
R

G

)2
]
. (6.208)

To solve the system, the variable
R

G
= ζ has been chosen in [193] and then the La-

grangian (7.34) becomes

L = 12 a ȧ2F0ζ + 12a2ȧF0ζ̇ + 16ȧ3F0ζζ̇ . (6.209)
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The Euler-Lagrange equations are

6

[
ä

a
+

(
ȧ

a

)2
]

+ 24

(
äȧ2

a3

)
ζ = 0 , (6.210)[

2
ä

a
+

(
ȧ

a

)2
]
ζ + 2

ȧ

a
ζ̇ + ζ̈ + 8

(
ȧä

a2

)
ζζ̇ + 4

(
ȧ

a

)2

ζ̇2 (6.211)

+4

(
ȧ

a

)2

ζζ̈ = 0 . (6.212)

and the energy condition is(
ȧ

a

)2

+

(
ȧ

a

)(
ζ̇

ζ

)
+ 4

(
ȧ

a

)3

ζ̇ = 0 . (6.213)

Clearly, eq. (6.210) is immediately verified as soon as definitions (6.188) are replaced

and hence is a consistency condition. A class of power law solutions is found,

a(t) = a0t
s , ζ = ζ0t

2 , with s = 3 , (6.214)

with ζ0 = −5/72. Another solution has the form

a(t) = a0 exp(Λt) , ln

(
ζ

ζ0

)
+ 4Λ2 (ζ − ζ0) = −Λt , (6.215)

where Λ is a constant [193].

109



Chapter 7

The cosmic history by Extended
gravity

Inflationary cosmology has been developed to remedy serious problems and short-

comings in the Cosmological Standard Model at early stages of its evolution [88, 207,

208, 209, 210].

The general aim is to address problems like the initial singularity, the cosmologi-

cal horizon, the cosmic microwave background isotropy (and the related anisotropies

generated, in principle, with initial quantum fluctuations), the large scale structure for-

mation and evolution, the absence of magnetic monopoles and so on [159, 211, 212,

213, 214]. Then, inflationary theory allowed us to understand why our universe is

so large and flat, why it is homogeneous and isotropic, why its different parts started

their expansion simultaneously. According to this theory, the universe at the very early

stages of its evolution rapidly expanded (inflated) in a slowly changing vacuum-like

state, which is usually associated with a scalar field with a large energy density. How-

ever, the inflationary mechanism can be achieved in several different ways considering

not only a primordial scalar fields but also geometric corrections into the effective

gravitational action.

The main ingredient of all these scenarios is the claim that an inflationary phase

occurs at some stage in the early universe and that one or more sources, different

from standard ordinary matter, give rise to accelerated cosmic expansion. Such an

expansion can be a single or a multiple event often related to the formation of structure

at large and at very large scale. Generally, inflationary scenarios originated from some
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fundamental theory like quantum gravity, strings, M-theory or GUT models. Reversing

the argument, inflationary models and observables related to inflation can be used to

probe fundamental theories (see, for example the latest results of the PLANCK and

BICEP2 collaborations [204, 205, 215]).

In particular, quantum fluctuations of a given scalar field i.e. the inflaton, gives

a mechanism for the origin of large scale structure. In other words, inflation gives

rise to density perturbations that exhibit a scale invariant spectrum. Such a feature,

in principle, is directly observed by measuring the temperature anisotropies in cosmic

microwave background [205, 217, 218, 219, 220, 221]. A part the general features, the

possibilities to realize inflation are several. For example, in the old inflation, inflaton

is trapped in a false vacuum phase through a first order transition, while, in the new

inflation, expansion ends up with a second order phase transition after a slow rolling

phase [207, 208, 209]. According to the problems to address, there are several different

inflationary models, for example the power law inflation, the hybrid inflation, the oscil-

lating inflation, the trace- anomaly driven inflation, the k-inflation, the ghost-inflation,

the tachyon inflation and so on [222, 223, 224, 225, 226, 227, 228]. Furthermore, some

of these models have no potential minimum and the inflationary mechanism appears

different compared to the standard one. See for example the quintessential inflation

[229] or the tachyon inflation [230, 231, 232, 233, 234, 235].

A natural way to achieve inflation is considering higher-order curvature corrections

in the Hilbert-Einstein Lagrangian [29, 77, 236, 237, 57, 238, 239, 94, 240, 241, 242].

The first and well-known example of this approach is the Starobinsky model [88] where

inflation is essentially driven by R2 contributions, being R the Ricci curvature scalar.

After this preliminary model, other higher-order curvature terms have been taken into

account [243, 245, 244, 42, 246, 247, 248, 49]. The philosophy is that, in the early

higher-curvature regime, such further curvature invariants come out as renormalization

terms in quantum field theories in curved spacetime [38]. Furthermore, under confor-

mal transformations, the theory becomes minimally coupled in the Einstein frame. In

this frame, the conformal scalar field assumes the role of inflaton and leads the pri-

mordial acceleration [49]. However, more than one scalar field can be achieved by

conformal transformations disentangling the degrees of freedom present in the Jordan
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frame.

In order to explain both the early and the late-time acceleration in a geometrical

way [253], without invoking huge amount of dark energy or, sometime, ill-defined

scalar fields, several combinations of curvature invariants, like RµνR
µν , RµνσρR

µνσρ...

can be considered into the action [249, 250, 251, 252]. Among these attempt, a key

role can be played by the Gauss-Bonnet topological invariant G that naturally arises

in the process of quantum field theory regularization and renormalization in curved

space-time [38].

In particular, it contributes to the trace anomaly where higher-order curvature terms

are present [254]. In some sense, considering a theory where both R and G are non-

linearly present exhausts the budget of curvature degrees of freedom needed to extend

GR since the Ricci scalar and both the Ricci and the Riemann tensors are present in

the definition of G. From the inflation point of view, introducing G beside R gives

the opportunity to achieve a double inflationary scenario where the two acceleration

phases are led by G and R respectively. As we will see below, this happens as soon

as both R and G appear in non-linear combinations since linear R means just GR (and

then no inflation) and linear G identically vanishes in four dimensional gravitational

action, being an invariant. On the other hand, the combination of both terms seems

to improve the inflationary mechanism since one achieves a R-dominated phase and a

G-dominated phase. The second leads the Universe at very early stages of its evolution

because G is quadratic in curvature invariants and then it is dominant in stronger cur-

vature regimes. Specifically, using a non linear function of G, inserted into the f(R)

approach, that is a F (R,G) function, extends the Starobinsky model since the whole

curvature “interactions”, present in the early Universe, are taken into account. In view

of the recent results by the PLANCK [215] and BICEP2 [204] collaborations, the po-

tential advantages of this class of models, compared to the original Starobinsky one,

could be that curvature degrees of freedom (in particular the scalaron R) result better

constrained (see [205] for a detailed discussion). A first study in this sense is in the

paper by Ivanov and Toporensky [216], where cosmological dynamics of fourth order

gravity is studied in presence of Gauss-Bonnet term.

In [4] we discuss the possibility to obtain inflation considering a generic F (R,G)
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theory where, in principle, both R and G are non-linear in the action. All the recent

studies on models of this type [255, 256, 257, 193, 113, 203, 108, 109] put in evidence

the fact that the Gauss- Bonnet topological invariant can solve some shortcomings

of the original f(R) gravity and contributes, in non trivial way, to the accelerated

expansion.

7.1 Cosmological inflation in Gauss-Bonnet Gravity

Considering again the above Gauss-Bonnet Action (6.183) and field equations

(6.184), the trace equation has the form

3 [2FR + VR] +R [2FG +WG] = 0, (7.1)

where 2 is the d’Alembert operator in curved space-time and

FR ≡
∂F (R,G)

∂R
, FG ≡

∂F (R,G)

∂G
, (7.2)

are the partial derivatives with respect to R and G. It is possible to define two different

potentials that depend on the scalar curvature and the Gauss-Bonnet invariant that enter

the trace equation with their partial derivatives

VR =
∂V

∂R
=

1

3
[RFR − 2F (R,G)] , (7.3)

WG =
∂W

∂G
= 2
G
R
FG. (7.4)

It is important to underline that, from Eqs.(6.184)-(7.1), GR is recovered as soon as

F (R,G) = R. Moreover, when G is not considered, we are exactly in the f(R) gravity

context. Clearly, as in the case of the Starobinsky R scalaron, G plays the role of a

further scalar field whose dynamics is given by the Klein-Gordon-like Eq. (7.1). This

means that we can expect a natural double inflation where both geometric fields play a

role. As for the R scalaron, we can expect a mass for the G scalaron which determine

the “strength” of the G-dominated inflation.
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F (R,G) double inflation

Let focus on the general features of F (R,G) cosmology and inflation. Consider a

flat FRW metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) , (7.5)

where a(t) is the scale factor of the Universe. Inserting this metric into the action (1.14)

and, as explained in the previous chapter, applying the method of Lagrange multipli-

ers we obtain the point-like Lagrangian [193]. Hence, assuming suitable Lagrange

multipliers for R and G the point-like Lagrangian is

L = 6aȧ2FR + 6a2ȧḞR − 8ȧ3ḞG + a3 [F (R,G)−RFR − GFG] , (7.6)

which is a canonical function defined on the tangent space T Q ≡ {a, ȧ, R, Ṙ,G, Ġ}.

Specifically, the Lagrangian (7.6) has a canonical form thanks to the Lagrange multi-

pliers

R = 6
(

2H2 + Ḣ
)
, (7.7)

G = 24H2
(
H2 + Ḣ

)
, (7.8)

that are the field equations for the related dynamical system [193] (consider that now

the Lagrange multipliers have been defined for the metric with signature (−,+,+,+)).

Here H =
ȧ

a
is the Hubble parameter and the overdot denotes the derivative with re-

spect to the cosmic time t. The cosmological equations in term of H , are

Ḣ =
1

2FR + 8HḞG

[
HḞR − F̈R + 4H3ḞG − 4H2F̈G

]
,

(7.9)

H2 =
1

6 FR + 24HḞG

[
FRR− F (R,G)− 6HḞR + GFG

]
,

(7.10)

where Eq. (7.10) is the energy condition, that is the (0, 0) Einstein equation. The full

dynamical system of F (R,G) cosmology is given by Eqs. (7.7), (7.8), (7.9), (7.10).

In order to obtain inflation, the following conditions have to be satisfied∣∣∣∣∣ ḢH2

∣∣∣∣∣� 1 ,

∣∣∣∣∣ Ḧ

H Ḣ

∣∣∣∣∣� 1 . (7.11)
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It means, that the magnitude of the slow-roll parameters

ε = − Ḣ

H2
, η = − Ḧ

2 H Ḣ
, (7.12)

has to be small during inflation. Moreover, ε > 0 is necessary to have H < 0. The

acceleration is expressed as
ä

a
= Ḣ +H2 , (7.13)

and then the accelerated expansion ends only when the slow-roll parameter ε is of the

unit order.

In order to discuss a possible inflationary scenario, we choose the following La-

grangian [4]

F (R,G) = R + αR2 + βG2 , (7.14)

where α and β are constants with dimension of a length squared and a length to the

fourth power respectively. The linear term in R is included to produce the correct

weak-field limit. Clearly, we have considered a R2 model with a correction which

adds new degrees of freedom due to the presence of the Gauss- Bonnet term. In the

above Lagrangian, the term G2 is the first significant term in G since the linear one

gives no contribution1. It is well known that a theory like f(R) = R+ αR2 is capable

of producing an inflationary scenario [88] not excluded from the last PLANCK release

[160]. In [4] we concentrate on the question if such an inflationary scenario can be

improved considering the whole curvature budget that can be encompassed by adding

a non linear function of the Gauss-Bonnet invariant. As pointed out before, in such a

case we can have a R-driven inflation led by the R2 term and a G-driven inflation led

by G2 term. Nevertheless, this is nothing else but a toy model that should be improved

by realistic forms of the F (R,G) function.

To develop the above considerations, we consider the point-like Lagrangian (7.6).

From analytical mechanics it is well known that any Lagrangian can be decomposed

1Recall that in four dimensions, we have∫
d4x
√
−g G = 0. (7.15)

This means that only a function of the Gauss- Bonnet invariant makes this integral non-trivial. On the
other hand, in five or higher dimensions Eq.(7.15) is different from zero.
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as

L = K(qi, q̇j)− U(qi) , (7.16)

where K and U are the kinetic energy and potential energy respectively with qi ≡

{a,R,G} and q̇j ≡ {ȧ, Ṙ, Ġ}. For the Lagrangian density L of the point-like La-

grangian (7.6), related by L = a3L, we have

K(a, ȧ, R, Ṙ,G, Ġ) = 6

(
ȧ

a

)2

FR + 6

(
ȧ

a

)
ḞR − 8

(
ȧ

a

)3

ḞG ,

(7.17)

U(R,G) = − [F (R,G)−RFR − GFG] , (7.18)

and by assuming the specific model (7.14), we obtain

L =

kinetic energy︷ ︸︸ ︷
6

(
ȧ

a

)2

(2αR + 1) + 12α

(
ȧ

a

)
Ṙ− 16β

(
ȧ

a

)3

Ġ

−
[
βG2 + αR2

]︸ ︷︷ ︸
potential energy

, (7.19)

A qualitative shape of the potential U(R,G) is reported in Fig. 7.1 and a possible

slow-roll trajectory is shown.

Let us now stress the effective behaviour of the Lagrangian (7.14)

F (R) ' R + αR2 + βR4 . (7.20)

In other words, as we already pointed out in the previous chapter, the correction to the

R2 model due to the presence of topological G2 term can be seen as a sort of ∼ R4

correction. Nevertheless, it is important to emphasize that G2 and R4 have roughly

the same dynamical role only at background level for the homogeneous and isotropic

FRW metric. As soon as one takes into account anisotropies and inhomogeneities,

G2 and R4 assume different roles since extra diagonal components of the Ricci and

Riemann tensors cannot be discarded. In other words, considering the definition of

the Gauss-Bonnet invariant, Eq. (3.41), G ∼ R2 only in the FRW context. In more
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Figure 7.1: Plot of U(R,G) = αR2 + βG2. We note that the two fields can both
cooperate to the slow rolling phase. We assumed α and β of the order unit with negative
α and positive β. The choice of negative α is due to the stability conditions for the R2

model discussed in [195].

general situations this approximation no longer holds. This means that G2 and R4

can be observationally distinguished only evaluating anisotropies and inhomogeneities

resulting from perturbations where, as we already said, extra diagonal components of

the Ricci and Riemann tensors are not negligible.

Let us describe now the qualitative evolution of the model. In Fig. 7.2, the trends of

U(R,G) sections are reported according to the dominance of the terms in the potential.

The behaviour is different depending on the “strength” of R2 or G2 terms. In fact,

they give rise to a potential with two minima that can be separated by a barrier (see

Fig. 7.2 in the bottom). This represent a double inflationary scenario where G-scalar

dominates at early epochs, at moderate early epochs dominate R-scalar and finally the

model converges towards standard GR. Due to the fact that G runs as G ' R2, it is

dominant at very high curvature improving, in some sense, the Starobinsky inflation.

In the present simple toy-model, we considered G2 and this means, as pointed out
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Figure 7.2: Plots of sections of the potential U(R,G) = αR2 + βG2. In the top panel,
is reported the section of the potential when the R2 term is dominant. In the central
panel, the case where the term G2 is dominant. In bottom panel, there is the behavior
of U(R,G) = αR2 + βG2 ∼ αR2 + βR4 with respect to the Ricci scalar. It is evident
a symmetry breaking and a phase transition. The values of α and β are the same as in
Fig.1.

above, that G2 ∼ R4. From the energy condition, given by Eq. (7.10), we have

12αHḦ +H2 + 36αH2Ḣ + 288βH4Ḣ2 (7.21)

+192βH5Ḧ + 576βH6Ḣ − 96βH8 − 6αḢ2 = 0 ,

and from (7.9), we obtain
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576βH2Ḣ3 + 768βH3ḢḦ + βH4
(

1728Ḣ2 + 96
...
H
)

+288βH5Ḧ − 384βH6Ḣ2

+18αHḦ + 24αḢ2 + 6α
...
H + Ḣ = 0 .

(7.22)

Considering the slow-roll conditions Ḣ << H2 and Ḧ << HḢ , this implies that
Ḧ

H
<< Ḣ . From Eq.(7.21), one has

H2 + 6α
(

2HḦ + 6H2Ḣ − Ḣ2
)

+96βH4
(

3Ḣ2 + 2HḦ + 6H2Ḣ −H4
)

= 0 . (7.23)

In order to study the evolution of the model, we have to distinguish among the various

regimes. Let us suppose that

6α >> 96βH4 (7.24)

Then Eq. (7.23) takes the form

H2 + 6α
(

2HḦ + 6H2Ḣ − Ḣ2
)
∼= 0 (7.25)

and we obtain that

m2
R =

1

6α
(7.26)

and the solution for the scale factor is

a(t) ∼ exp

[
t√
6α

]
. (7.27)

This is nothing else but the well known R2 inflation where the sign and the value of α

determine the number of e-foldings [196].

On the other hand, we can consider the regime

96βH4 >> 6α , (7.28)

where

H2 + 96βH4
(

3Ḣ2 + 2HḦ + 6H2Ḣ −H4
)
∼= 0 . (7.29)
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Inflation is recovered for

H6 ∼ 1

96β
, (7.30)

and then it is

a(t) ∼ exp

[
t

6
√

96β

]
. (7.31)

From the above considerations, we can introduce a further mass term

m2
G =

1

2 3
√

12β
, (7.32)

due to the Gauss-Bonnet correction that leads another earlier inflationary behaviour. In

conclusion, it seems that considering the whole curvature budget in the effective action

(i.e. the further combinations of curvature invariants more than the linear R) means to

introduce two effective masses that lead the dynamics.

Let stress that the parameters α and β have to be consistent with the Solar System

constraints according to the chameleon mechanism. In the low energy regime, GR

has to be recovered and then the quadratic and quartic terms in R must be negligible.

Essentially, starting from very early epochs, one has first to recover the Starobinsky

model and then the Einstein regime. Furthermore, this means that the two-scalaron

regimes, leading the two early inflationary phases have to become negligible forR→ 0

in order to recover the standard Newtonian potential. Therefore, the analysis in [161,

197] leads to assuming the values of the parameters α and β of the order unit to achieve

the consistency with the chameleon mechanism and the Solar System experiments.

F (R,G) power-law inflation

In the framework ofF (R,G) gravity also power-law inflation can be easily achieved.

As pointed out in the previous chapter, using the Noether Symmetry Approach [53] in

the generic action (1.14) and choosing appropriate Lagrangian multipliers that make

the point-like Lagrangian canonical, models where conserved quantities emerge can be

selected (see also [198]-[202] for analogue cases). This means to impose LXL = 0

as we have already seen. A possible choice is to consider the class of Lagrangians

F (R,G) = F0R
nG1−n, (7.33)
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related to the presence of the Noether symmetries [193]. For n = 2, it is F (R,G) =

F0R
2G−1. and with this choice the point-like Lagrangian (7.6) becomes

L =
4F0 ȧ

G

[
3 a ȧR + 3 a Ṙ− 3 a2 Ġ

(
R

G

)
+4 ȧ2 Ṙ

(
R

G

)
− 4 ȧ2 Ġ

(
R

G

)2
]
. (7.34)

The same choice can be done into the cosmological Eqs. (7.9) and (7.10) that are

nothing else but the Euler- Lagrange equations of the Lagrangian (7.34) together with

the Lagrange multipliers (7.7) and (7.8). Power law solutions for these class of La-

grangians are easily found [193, 203]. For example, we have

a(t) = ts , with n = 2 and s = 3 . (7.35)

A further interesting solution is

a(t) = ts , with n =
3

4
and s =

1

2
. (7.36)

The general conditions between the exponents n and s are

n =
1 + s

2
and n =

1

1 + 2s(s− 1)
− 2s . (7.37)

When one of these conditions is satisfied, the constraints on R and G are satisfied. It

can be easily verified that solutions (7.35) and (7.36) are in one of these cases.

Let us now discuss inflation. For this purpose, we have to consider Eqs. (7.9) and

(7.10) that now ore of the form

Ḣ = −s(n− 1) [n(6s− 4)− 3s(s+ 1) + 4]

[s(s− 5) + 2n(2s− 1) + 2] t2
, (7.38)

H2 = − 2s2(s− 1)(n− 1)

[s(s− 5) + 2n(2s− 1) + 2] t2
. (7.39)

The slow roll conditions are

ε =
2s(1− n) + 2(s− 1)− s(s− 1)

2s(s− 1)
� 1 , (7.40)

η =
1√
2

√
s2(s− 1)(n− 1)

s(s− 5) + n(4n− 2) + 2
� 1 . (7.41)
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Considering the relation n =
(1 + s)

2
, we obtain the the slow roll conditions ε and η

are satisfied for s > 2.171. In conclusion, we can easily see that, for relatively large

s, slow-roll conditions are satisfied. In Figs. 7.3 and 7.4, qualitative pictures of the

parameter space regions where inflation is allowed are reported.
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Figure 7.3: Plot of ε(n, s). The allowed region for inflation is the green one, in that
region the value of ε is less than 1.

In addition, we can evaluate the anisotropies and the power spectrum coming from

inflation using the slow-roll parameters. The spectral index ns and the tensor-to-scalar

ratio r are respectively

ns = 1− 6ε+ 2η , r = 16ε , (7.42)

while the amplitude of the primordial power spectrum is

∆2
R =

κ2H2

8π2ε
. (7.43)

We obtain that the values ns ∼ 1.01 and r ∼ 0.10 are in good agreement with the

observational values of spectral index estimated by PLANCK data, i.e. ns = 0.9603±

0.0073 (68% CL) and r < 0.11 (95% CL) [160, 205]. These results are consistent also

with the values measured by the BICEP2 collaboration [204].
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Figure 7.4: Plot of η(n, s) parameters. The blue and green part in the figure are the
allowed solutions.

Finally, it is possible to estimate the grow factor for the class of models F (R,G) =

F0R
nG1−n. The equation which describes the evolution of the matter fluctuations in

the linear regime is

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0 , (7.44)

where ρm is the matter density and Geff is the effective Newton coupling which, in our

case, is

Geff =
GN

FR(R,G)
, (7.45)

where GN is the Newton gravitational constant. However, we are considering perfect

fluid matter that enters minimally coupled in action (1.14). We use Eq. (7.10) with

matter density contribution as follow

4πGρ(m) =
3H2

2
− 4πGρ(GB) , (7.46)

with

ρ(GB) =
RFR − F (R,G)− 6HḞR + GFG − 24H3ḞG

16πGN

.

(7.47)
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Inserting Eqs. (7.45) and (7.46) into Eq.(7.44), we obtain the equation

δ̈m + 2Hδ̇m +

+
RFR − F (R,G)− 6HḞR + GFG − 24H3ḞG

4FR
δm = 0 .

(7.48)

Now, considering relations (7.37), we have a(t) = a0t
s = a0t

2n−1 and consequently

H =
2n− 1

t
, therefore, Eq.(7.48) becomes

δ̈m +
2n− 1

t
δ̇m +

3(6n2 − 6n− 1)

2t2
δm = 0 . (7.49)

Eq.(7.49) is an Euler equation whose general solution is

δm(t) = t
1
2(−
√

3−8n2−4n+3)
(
c2t
√

3−8n2
+ c1

)
. (7.50)

Since a(z) = (1 + z)−1 we have that

H = H0a
− 1

2n−1 = H0

(
1

1 + z

) 1
2n−1

, (7.51)

where H0 is the Hubble constant that can be chosen as a prior in agreement with data.

The deceleration parameter q is

q = −1− d lnH

d lna
= −1 +

1

2n− 1
. (7.52)

In Fig. 7.5, the comparison between a F (R,G) model with the ΛCDM analogue is

reported.

By a rapid inspection of the figure, it is evident that there is no change in the evolu-

tion of the curve since, for any F (R,G) = F0R
nG1−n model the deceleration parame-

ter preserves sign, and therefore the universe always accelerates or always decelerates

depending on the value of n. Clearly, for n = 1, the solution is an Einstein-de Sitter

model as it has to be. On the other hand, the accelerated expansion of the universe

(q < 0) is recovered for n > 1, but, in this case, the universe accelerates forever with-

out the possibility of structure formation. In conclusion, it is important to underline

that more realistic models are necessary in order to fit the observations.
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Figure 7.5: The plot shows the comparison of the growth rate f+(z)σ8(z) for
F (R,G) = F0R

nG1−n (green line) compared to that of ΛCDM (red line). The solid
points are the observed one [206]. For F (R,G) we consider the value n = 2. The pa-
rameter F0 is assumed as a “prior” normalized at the ΛCDM value of the gravitational
constant. This means that, in our units, it can be assumed of order unit. See also [184]
for details.
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The goal of this thesis has been to develop, in the framework of extended theories

of gravity, methods to find out exact solutions for the field equations and to identify

possible approaches to constrain these theories. The approach has then been used

to identify new behaviours and to place observational constraints on deviations from

the standard theory. To this aim, a number of methods have been adopted in both

cosmological and weak-field frameworks. The focus of the analysis of cosmological

solutions has been on FRW universes. These universes are appealing for a number

of reasons. As well as having the same symmetries as our own observable Universe

(on the largest scales), their high degree of symmetry is particularly useful for finding

exact solutions to the field equations of the theory. In this way we have been able to

see explicitly what effect such modifications to GR would have on the evolution of the

Universe, as well as on the physical processes occurring within it.

First of all, we investigated the issue of the consistency of a field theory for mas-

sive gravitons that can be settled by extending the Einstein gravity through generic

functions of curvature invariants.

Starting from the minimal extension of the Hilbert-Einstein action, that means that

further degrees of freedom of gravitational field have to be taken into account, the pos-

sibility of massive gravitons naturally emerges. In particular, massive scalar modes

results from the linearization of f(R) gravity. The main result is that it is possible to

obtain massive terms which indeed emerge naturally if one breaks spontaneously the

diffeomorphism invariance of GR, and, in this case, for a certain range of parameters,

it is possible to evade ghosts and discontinuities. Furthermore, it is possible to identify

a natural mass scale m directly related to the expansion parameters of the theory. This

fact could avoid to fix by hand the graviton mass since it comes directly from the struc-
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ture of the theory. Upper limits (or mass ranges) could directly come by experimental

constraints Finally, in the limit m� Λ the theory results naturally regularized and the

massive scalar satisfies a physically acceptable Klein Gordon equation.

Then, starting from the fact that ETGs are good candidates to solve several short-

comings of modern astrophysics and cosmology we emphasize that a “final” alternative

theory solving all the issues has not been found yet and that the search for a procedure

able to constrain the huge amount of extended theories proposed is still open. To this

end, we investigated the role played by the particle production rate in the context of

the simplest modifications to GR, f(R) gravity. We considered both the metric and

Palatini approaches reproducing particle production in both cases.

Specifically, we derived the Bogolubov coefficients, which allow to pass from a

vacuum state to another. These coefficients can be related to the Hubble parameter

which strictly depends on the functional form of a given f(R) model. In this sense, the

particle production rate depends on the specific form of f(R) gravity. Hence, this is

a method to constrain the free parameters of a given model, invoking a semi-classical

scheme. Indeed, since the function f(R) is not defined a priori, it is necessary to de-

termine some theoretical conditions on f(R) parameters at some fundamental level.

Thus, we assumed to minimize the Bogolubov coefficients, i.e. the particle produc-

tion rate, allowing us to pass through different vacuum states, once postulated the

background. In particular, we considered a de Sitter phase R = R0 and derived the

Bogolubov transformations for some class of f(R) models taking advantage from the

fact that such models can be easily recast as scalar-tensor models. The Bogolubov co-

efficients have been evaluated for a homogeneous and isotropic universe, postulating

that the particle production rate is negligibly small. This fact provides conditions on

the form of f(R). As a result, constraints can be derived on free parameters of differ-

ent classes of f(R) functions. Such constraints can be combined with Solar System

constraints under suitable conditions. In particular, we demonstrated that cosmological

measurements of R0 would discriminate between metric or Palatini approaches.

Besides, without leaving the context of ETGs, the problem to find out exact solu-

tions has been faced. We investigated some approaches to find out exact solutions in

the framework of ETGs. Specifically, we considered the Noether symmetry approach
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and the Hojman symmetry approach. The first relies on the well-known Noether the-

orem while the second is based on the Hojman conservation theorem for a system

of second-order differential equations, where a Lagrangian formulation is not strictly

requested.

The Hojman Symmetry Approach can be a useful tool to find out exact solutions in

dynamical systems as soon as a suitable Hojman vector is identified. Considering con-

formal transformations, the method works well in both Einstein and Jordan frame with

the only shrewdness that conformal transformations have to be non-singular. We have

shown that physical solutions achieved in the Einstein frame by Hojman symmetry

can be easily transformed into the Jordan frame once a relation between the potential

and the coupling is found out. As examples, we derived potentials with a clear infla-

tionary meaning whose parameters can, in principle, be confronted with cosmological

observations.

Afterwards, we considered the application of point symmetries in the Hybrid Grav-

ity in order to select the f(R) function and to find analytical solutions of the field equa-

tions and of the Wheeler-DeWitt equation for Quantum Cosmology. We showed that,

in order to find nonlinear, integrable f(R) models, we have to apply conformal trans-

formations in the Lagrangian. Conformal transformations of the forms dτ = N(a)dt

and dτ = N(φ)dt allow us to achieve the results. In the second case, the Lagrangian

of the field equations is reduced to a Brans-Dicke-like theory with a general coupling

function; then the results from for scalar-tensor models can be applied. For the first

conformal transformation we find two cases of the f(R) function where the field

equations admit Noether symmetries. For each case, we transform the field equa-

tion by means of normal coordinates to simplify the dynamical system and write

exact solutions. Furthermore, we have written the Wheeler-DeWitt equation for the

two-dimensional minisuperspace. The Lie point symmetries for the Wheeler-DeWitt

equations can be determined and applied in order to find invariant solutions of the

Wheeler-DeWitt equations. However, it is possible to apply another more general

conformal transformation of the form dτ = N(a, φ)dt. If we do not consider mat-

ter, the field equations are always conformally invariant. Furthermore, the Wheeler-

DeWitt equation is also conformally invariant; hence the solutions that we obtained
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hold for any frame. It is interesting to stress that, in the case of the power-law potential

V (φ) = V0(
√
φ + V1)4 the Hubble function H2(z) is a fourth-order polynomial with

non vanishing coefficients. More specifically, every power-law term of
√
φ in the po-

tential produces a corresponding fluid in the model. Furthermore, the nature of such a

fluid can be quintessence or phantom field depending on the sign of φ. For φ = 0, GR

is restored. However, we recall that, in the case where V1 = 0, the solution of the scale

factor is the radiation solution as it has to be for conformally invariant solutions. Fi-

nally, we have to stress that the only power-law Hybrid Gravity which admits Noether

symmetries is f(R) ∝ R2. This result is different for f(R)-metric gravity and f(R)-

Palatini gravity where the power-law functions which admit Noether symmetries are

f(R) = Rn and f(R) = Rn.

Finally, as an example of the cosmological evolution ruled by ETGs we consider

f(R,G) cosmology. We have considered the possibility to obtain cosmological infla-

tion starting from a generic function F (R,G) of the Ricci curvature scalar R and the

GaussBonnet topological invariant G. Such a kind of theory, due to the algebraic re-

lation among the curvature invariants in G can exhaust the whole curvature budget of

effective gravitational theories where derivatives of curvature invariants are not present.

The main feature that emerges by this approach is the fact that two effective masses

have to be considered, one related to R and the other related to G. These masses define

two different scales that drive dynamics at early and very early epochs, giving rise to

a natural double inflationary scenario. We sketched the essential characteristics of this

picture considering exponential and power-law inflation.

More work is required to fully understand how these solutions should be interpreted

and what their physical effects could be. There are several directions in which future

research on these subjects can proceed. First, future work may focus on the generaliza-

tion of the method involving Bogolubov transformations for space-times with variable

curvature; also in those cases, one may check how to minimize the rate of particle

production in order to pass from a vacuum to another one. Furthermore, it would be

possible to evaluate Bogolubov coefficients in other modified gravity theories to seek

for constraints on free parameters.

Then, we may focus on the generalization of Noether and Hojman approaches to
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other alternative theories of gravity and on the detailed matching with data of the fea-

tures achieved in the framework of F (R,G) cosmology. Extracting reliable physical

effects from these models will be the arguments of future studies.
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Appendix A

The Cauchy Problem in Relativistic
Theories of Gravity

A.1 The Cauchy Problem in General Relativity

In this appendix we show that the initial value formulation of GR [265] is well-

formulated (and also well-posed as shown in [260]). Let us consider a system of Gaus-

sian normal coordinates [260]. In these coordinates, the time components of metric

tensor are g00 = −1 and g0i = 0 with the signature (−,+,+,+). These are particu-

larly useful to split the spatial hypersurface Σ3 from the orthogonal time-geodesics in a

given space-time M . Given a second rank symmetric tensorWµν , defined on the glob-

ally hyperbolic space-time manifold (M, gµν), it is possible to define the symmetric

tensor W ∗
µν as

W ∗
µν = Wµν −

1

2
Wgµν (A.1)

where W = W µνgµν is the trace of Wµν . Furthermore, if Σ4 is a space-time domain

in M where g00 6= 0 and Σ3 is the three-surface given by the equation x0 = 0, then the

following statements are equivalent

(a) Wµν = 0 in Σ4

(b) W ∗
ij = 0 and W4α = 0 in Σ4

(c) W ∗
ij = 0 and ∇νW

ν
µ = 0 in Σ4 with W0µ = 0 in Σ3
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where ∇ν denotes the covariant derivative with respect to the Levi-Civita connection

induced by gµν . Let us take into account now the Einstein equations in the form

Gµν = κ2T (m)
µν (A.2)

with the contracted Bianchi identities

∇νT (m)
µν = 0 (A.3)

where Gµν is the Einstein tensor. We can define the tensor

Wµν ≡ Gµν − κ2T (m)
µν (A.4)

The tensor W ∗
µν is

W ∗
µν = Rµν − κ2T ∗µν (A.5)

and the Einstein equations are

Wµν = 0 (A.6)

These are 10 equations for the 20 unknown functions gµν and T (m)
µν . Let us assign now

the 10 functions g0µ and T (m)
ij . The remaining 10 functions gij and T (m)

0µ are determined

by Eq. (A.6). These functions can be expressed in the equivalent form

Rij − κ2T ∗ij = 0, ∇νWµν = ∇νT (m)
µν = 0 (A.7)

with the condition

G0µ − κ2T
(m)
0µ = 0 (A.8)

on the hypersurface x0 = 0. Equation (A.7) can be rewritten as

gij,00 = 2R̄ij −
A

2
gij,0 + glmgil,0gjm,0 + 2κ2T ∗ij (A.9)

T
(m)
0ν,0 = −T 0(m)

ν,0 = T
i(m)
ν,i + ΓµµiT

i(m)
ν − ΓiµνT

µ(m)
i (A.10)

where R̄ij is the intrinsic Ricci tensor of the hypersurface x0 = 0 and Γρµν is the Levi-

Civita connection of the metric gµν , and

A ≡ gijgij,0 (A.11)
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In the same way, the constraint equation (A.8) becomes

A,i −Djgij,0 + 2κ2T
(m)
0i = 0 (A.12)

R̄− 1

4
A2 +

1

4
B + 2κ2T

(m)
00 = 0 (A.13)

where R̄ is the intrinsic Ricci scalar of the hypersurface x0 = 0, Di denotes the covari-

ant derivative operator on this hypersurface associated with the Levi-Civita connection

of the intrinsic metric gij|x0=0 and

B = gijglmgil,0gim,0 (A.14)

Let us assign now the set of Cauchy data on the hypersurface x0 = 0

gij gij,0 T
(m)
µ0 (A.15)

Such data have to satisfy the constraint equations (A.12) and (A.13). Equation (A.9)

and (A.10) explicitly gives the values of the quantities

gij,00 T
(m)
0µ,0 (A.16)

as functions of the Cauchy data. By differentiating Eqs. (A.9) and (A.10), it is straight-

forward to obtain the time derivatives of higher order as functions of the initial data.

This procedure allows one to locally reconstruct the solution of the field equations as

a power series of the time variable x0.

In other words this means that the initial three-surface Σ3 is then a Cauchy hyper-

surface for the globally hyperbolic space-time (M, gµν) and the initial value problem

is well-formulated in GR.

A.2 The Cauchy Problem in f (R) gravity

The generalities of the metric formulation of f(R) gravity are showed in sec. 3.3.

Here we show how f(R)-gravity can be re-interpreted as an O’Hanlon scalar-tensor

theory, by introducing a suitable scalar field ϕ which non-minimally couples with the

gravity sector [241, 277]. After we discuss the Cauchy problem showing that it is
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both well formulated and well posed [276]. Let us take into account an O’Hanlon

Lagrangian of the form [277]

S =

∫
√
g [ϕR− V (ϕ) + Lm] ds (A.17)

where V (ϕ) is the self-interaction potential. Field equations are derived by varying

(A.17) with respect to both gij and ϕ which now represents a new dynamical variable.

One obtains

Rij −
1

2
Rgij =

1

ϕ

[
Σij +∇i∇jϕ− gijgpq∇p∇qϕ−

1

2
V (ϕ)gij

]
(A.18a)

R− dV (ϕ)

dϕ
= 0 (A.18b)

We notice that, replacing (A.18b) into the trace of (A.18a), we obtain the scalar equa-

tion

gpq∇p∇qϕ =
1

3

[
ϕ
dV (ϕ)

dϕ
− 2V (ϕ) + Σ

]
(A.19)

System (A.18) is then equivalent to eqs. (A.18a) together with (A.19). Given the

function f(R) in (3.24), we shall suppose that its first derivative f ′(R) is invertible.

In such a circumstance, it is easily seen that metric f(R) theories of gravity can be

mapped onto O’Hanlon theories and vice-versa. Indeed, defined the scalar field

ϕ = f ′(R) (A.20a)

and the potential

V (ϕ) = f ′ [R(ϕ))R(ϕ)− f(R(ϕ)] (A.20b)

It is straightforward to verify that, under the above hypothesis f ′′(R) 6= 0, eq. (A.20a)

expresses the inverse relation of (A.18b), namely

R− dV (ϕ)

dϕ
= 0 ⇐⇒ ϕ = f ′(R) (A.21)

being the potential V (ϕ) defined by (A.20b). A direct comparison of eqs. (3.25)

with eqs. (A.18a) shows then that solutions of (3.25) together with (A.20a) are also

solutions of (A.18) and viceversa. As a final remark, we recall that in O’Hanlon theory

the standard conservation laws ∇iΣij = 0 hold. An explicit proof of the vanishing

of the covariant divergence of the energy-momentum tensor in modified theories of

gravity can be found in [278].
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A.2.1 The Cauchy problem for O’Hanlon gravity

Taking into account the above dynamical equivalence, the Cauchy problem for

f(R) gravity can be defined as the Cauchy problem for the corresponding O’Hanlon

theory. In this perspective, we discuss the Cauchy problem for the O’Hanlon gravity.

Let us show the well-posedness of the Cauchy problem for system (A.18a) and (A.19)

in vacuo. As we shall see, the same conclusions hold in presence of matter sources

satisfying the standard conservation laws ∇iΣij = 0. To this aim, we use generalized

harmonic coordinates, given by the conditions

F i
ϕ = F i −H i = 0 with F i = gpqΓipq, H i =

1

ϕ
∇iϕ (A.22)

The generalized harmonic gauge (A.22) is a particular case of the one introduced in

[279] to prove the well-posedness of the Cauchy problem for more general scalar-

tensor theories of gravity. As we shall see, the gauge (A.22) allows us to develop

a second order analysis very similar to the one used in GR [272]. We rewrite eqs.

(A.18a) in the form

Rij =
1

ϕ

[
Tij −

1

2
Tgij

]
(A.23)

where

Tij = ∇i∇jϕ− gijgpq∇p∇qϕ−
1

2
V (ϕ)gij (A.24)

plays the role of effective energy-momentum tensor. The Ricci tensor can be expressed

as [272]

Rij = Rϕ
ij +

1

2

[
gip∂j

(
F p
ϕ +Hp

)
+ gjp∂i

(
F p
ϕ +Hp

)]
(A.25)

with

Rϕ
ij = −1

2
gpq∂2

pqgij + Aij(g, ∂g) (A.26)

where only first order derivatives appear in the functions Aij . Assuming F i
ϕ = 0 and

taking the expression of H i into account, we obtain the following representation

Rij = −1

2
gpq∂2

pqgij +
1

ϕ
∂2
ijϕ+Bij(g, ϕ, ∂g, ∂ϕ) (A.27)

where the functions Bij depend on the metric g, the scalar field ϕ and their first or-

der derivatives. Analogously, using eq. (A.19) to replace all terms depending on the

135



The Cauchy Problem in Relativistic Theories of Gravity

divergence gpq∇p∇qϕ, the right hand side of (A.23) can be expressed as

1

ϕ

[
Tij −

1

2
Tgij

]
=

1

ϕ
∂2
ijϕ+ Cij(g, ϕ, ∂g, ∂ϕ) (A.28)

Again, in the functions Cij , only first order derivatives are involved. A direct compar-

ison of eqs. (A.27) with eqs. (A.28) shows that, in the considered gauge, eqs. (A.22)

assume the form

gpq∂2
pqgij = Dij(g, ϕ, ∂g, ∂ϕ) (A.29)

Eqs. (A.29), together with eq. (A.27), form a quasi-diagonal, quasi-linear second-

order system of partial differential equations, for which well known theorems by Leray

[272, 280, 260] hold. Given initial data on a space–like surface, the associated Cauchy

problem is then well-posed in suitable Sobolev spaces [272]. Of course, the initial data

have to satisfy the gauge conditions F i
ϕ = 0 as well as the Hamiltonian and momentum

constraints

G0i =
1

ϕ
T 0i i = 0, . . . , 3 (A.30)

on the initial space-like surface. In connection with this, we notice that, from eq.

(A.19), we can derive the expression of the second partial derivative ∂2
0ϕ and replace it

in the right hand side of (A.30), so obtaining constraints involving no higher than first

order partial derivatives with respect to the time variable x0. To conclude, we have to

prove that the gauge conditions F i
ϕ = 0 are preserved in a neighborhood of the initial

space-like surface. To this end, we first verify that the divergence of the Einstein-like

equations (A.18a) vanishes, namely

∇i (ϕGij − Tij) = 0 (A.31)

A straightforward calculation yields

∇i (ϕGij − Tij) =
(
∇iϕ

)
Rij −

1

2
ϕj

(
R− dV

dϕ

)
+ ϕ∇iGij

−
(
∇i∇i∇j −∇j∇i∇i

)
ϕ

(A.32)

By definition, the Einstein and Ricci tensors satisfy the identities ∇iGij = 0 and

(∇iϕ)Rij = (∇i∇i∇j −∇j∇i∇i)ϕ. On the other hand, R− dV

dϕ
= 0 is assured

by field equations (A.18b). Therefore, identities (A.31) follow. If now gij and ϕ are
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the solutions of reduced Einstein-like equations (A.29) and field equation (A.19), one

has

ϕGij − T ij = −ϕ
2

(
gip∂pF

j
ϕ + gjp∂pF

i
ϕ − gij∂pF p

ϕ

)
(A.33)

Identity (A.31) shows then that the functions F i
ϕ satisfy necessarily the linear homoge-

neous system of wave equations

gpq∂2
pqF

i
ϕ + Eiq

p ∂qF
p
ϕ = 0 (A.34)

whereEiq
p are known functions on the space-time. Since the constraints (A.30) amount

to the condition ∂0F
i
ϕ [272] on the initial space-like surface, a well known uniqueness

theorem for differential systems like (A.34) [272] assures that F i
ϕ = 0 in the region

where solutions of (A.29) and (A.19) exist.

As mentioned above, the well-posedness of the Cauchy problem can be proved

also in presence of coupling with standard matter sources, such as electromagnetic or

Yang-Mills fields, (charged) perfect fluid, (charged) dust, Klein-Gordon scalar fields.

When this is the case, eqs. (A.19) and (A.29) have to be coupled with the matter field

equations. Applying the same arguments developed for GR [272, 270, 271, 274], it is

easily seen that, in the generalized harmonic gauge (A.22), the matter field equations

together with eqs. (A.19) and (A.29) form a Leray hyperbolic and causal differential

system admitting a well-posed Cauchy problem. In addition to the well-known results

by Bruhat’s, the key point is that the field equations of matter field imply the standard

conservation laws ∇iΣij = 0. This fact allows to verify the validity of eqs. (A.31)

in presence of matter too. In conclusion, the Cauchy problem is well-formulated and

well-posed for f(R) gravity.
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Occhionero, H.-J. Schmidt, Class. Quantum Grav. 10, L43 (1993).

[126] J. Barrow, A. C. Ottewill, J. Phys. A: Math. Gen. 16, 2757 (1983).

[127] K. Stelle, Gen. Rel. Grav. 9, 353 (1978).

[128] S. Capozziello, V. F. Cardone, A. Troisi, Mon. Not. R. Ast. Soc. 375, 1423

(2007).
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