
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

XXVIII Ciclo

A Model-driven Approach for the
Automatic Generation of
 System-Level Test Cases

Author:
Ugo GENTILE

Supervisor:
Prof. Valeria VITTORINI

Prof. Nicola MAZZOCCA

Prof. Stefano MARRONE

Coordinator:
Prof.Francesco GAROFALO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Electrical Engineering and Information Technology

March, 2016

This page is intentionally left blank

i

“A ‘passing’ test doesn’t mean ‘no problem.’ It means no problem *observed*. This time.
With these inputs. So far. On my machine. ”

M. Bolton

ii

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Abstract
Department of Electrical Engineering and Information Technology

Doctor of Philosophy

A Model-driven Approach for the Automatic Generation of System-Level
Test Cases

by Ugo GENTILE

Systems at the basis of the modern society, as the as the homeland security, the
environment protection, the public and private transportations, the healthcare
or the energy supply depend on the correct functioning of one or more embed-
ded systems. In several cases, such systems shall be considered critical, since
the consequences of their failures may result in economic losses, damages to the
environment or even injuries to human life. Possible disastrous consequences of
embedded critical systems, suggest that discover flaws during systems develop-
ment and avoid their propagation to the system execution, is a crucial task. In
fact, most of the failures found during the usage of embedded critical systems, is
due to errors introduced during early stages of the system development. Thus,
it is desiderable to start Verification and Validation (V&V) activities during early
stages of a system life cycle. However such V&V activities can account over the
50% of times and costs of a system life cycle and there is therefore the need to in-
troduce techniques able to reduce the accounted resources without losses in term
efficiency. Among the methodologies found in scientific and industrial literature
there is a large interest in the V&V automation.
In particular, automatic verification can be performed during different stages of a
system development life cycle and can assume different meanings. In this thesis,
the focus is on the automation of the test cases generation phase performed at
the System level starting from System Under Test (SUT) and test specifications.

iii

A recent research trend, related to this, is to support such process providing
a flexible tool chain allowing for effective Model Driven Engineering (MDE) ap-
proaches [82]. The adoption of a model-driven techniques requires the modelling
of the SUT to drive the generation process, by using suitable domain-specific
modelling languages and model transformations. Thus, a successful application
of the MDE principles is related to the choice of the high-level language for SUT
specification and the tools and techniques provided to support the V&V pro-
cesses.

According to this, the model-driven approach define in this thesis relies on
three key factors: (1) the definition of new domain-specific modelling languages
(DSMLs) for the SUT and the test specifications, (2) the adoption of model check-
ing techniques to realize the generation of the test cases and (3) the implemen-
tation of a concrete framework providing a complete tool chain supporting the
automation process.

This work is partially involved in an ARTEMIS European project CRYSTAL
(CRitical sYSTem engineering AcceLeration) [23]. CRYSTAL is strongly industry-
oriented and aims at achieving technical innovation by a user-driven approach
based on the idea to apply engineering methods to industrially relevant Use
Cases from the automotive, aerospace, rail and health-care sectors. The DSML
that will be presented in this thesis, emerged as an attempt to address the mod-
elling requirements and the design practices of the industrial partners of the
project, within a rigorous and well-founded formal specification and verification
approach.

In fact, the main requirement that a modelling language suitable for the in-
dustry should have is to be small and as simple as possible [43]. Thus, the mod-
elling language should provide an adequate set of primitive constructs to allow
for a natural modelling of the system of interest. Furthermore, the larger the gap
between the design specification and the actual implementation is, the less useful
the results of the design analysis would be. The test case generation is supported
by model checking techniques; the SUT and test models are in fact translated in
specifications expressed by the language adopted by a model checker. The the-
sis discusses all the issues addressed in the mapping process and provides their
implementations by means of model transformations. A class of test specifica-
tions is addressed to exemplify the generation process over a common class of
reachability requirements. The model-driven approach discussed in the thesis is
applied in the contest of the railway control systems, and in particular on some
of the key functionalities of the Radio Block Center, the main component of the

iv

ERTMS/ETCS standards for the interoperability of the railway control systems
in the European Community.

The thesis is organized as follows. The first chapter introduces embedded
critical systems and outlines the main research trends related to their V&V pro-
cess. The Chapter 2 outlines the state of the art in testing automation with a
particular focus on model-driven approaches for automatic test generation. The
same Chapter 2 provides also the necessary technical background supporting to
understand the development process of the supporting framework. The Chapter
3 describes the context of the CRYSTAL project and the proposed model-driven
approach partially involved in its activities. The Chapter 4 describes the domain-
specific modelling languages defined for the modelling of the SUT specifications
and of the test generation outcomes. Moreover the guidelines defined for mod-
elling test specifications are discussed. The Chapter 5 focuses on the mapping
process that enable the translation of the high-level language for the modelling of
the SUT specification to the language adopted by the chosen model checker. The
implementation of the overall framework is addressed in Chapter 6. Here model
transformations realizing the defined mappings and the architecture of the Test
Case Generator (TCG) framework are described and discussed. The Chapter 7
shows the results of the application of the approach in the context of the railway
control systems and in particular to the Radio Block Centre system, a key com-
ponent in the ERTMS/ETCS standard. Chapter 8 end the thesis, giving some
conclusive remarks.

This thesis includes materials from some research papers, reported in the bib-
liography, which are already published in peer-reviewed conferences and jour-
nals.

Acknowledgements

The research activities leading to these thesis results have partially supported
by the following projects:

• The research project CRYSTAL (Critical System Engineering Acceleration),
funded from the ARTEMIS Joint Undertaking under grant agreement n.
332830.

• The research project KNOWLEDGE - Nuovi paradigmi e tecnologie per la col-
lective knowledge, POR CAMPANIA FSE 2007-2013, 06 DD 414-13/11/09,
CUP B25B09000020007 Asse IV Asse V.

Keywords: Model-driven, Automatic generation of test cases, Model Check-
ing, Domain-specific modelling language, Model transformations,Railway Sys-
tems

v

Contents

Abstract ii

List of Figures viii

List of Tables x

List of Abbreviations xi

1 V&V processes in Embedded Critical Systems 1
1.1 Classifying embedded critical systems 2
1.2 The meaning of V&V . 4
1.3 V&V of embedded safety-critical system in industrial practice . . . 6

1.3.1 Reference standards for embedded safety-critical systems . 7
1.3.2 Aerospace domain . 9
1.3.3 Automotive domain . 9
1.3.4 Railway domain . 9
1.3.5 The V-model lifecycle . 10

1.4 Research trends . 12
1.4.1 Testing automation . 12
1.4.2 Formal methods . 12
1.4.3 Recent European projects addressing testing automation . . 14

1.5 Thesis contribution . 15

2 State of the art in automatic test case generation 16
2.1 The process of automation . 17
2.2 Approaches to the automatic test case generation 19

2.2.1 White-box generation approaches 19
2.2.2 Black-box generation . 21
2.2.3 Gray-box generation . 22

2.3 Model-based test cases generation . 23
2.3.1 Automatic generation through Model Checking 26
2.3.2 Model-based vs Model-driven generation 27

2.4 Model-driven approaches enabling test case generation 28
2.4.1 Model driven generation overview 29

2.5 Technical background . 31
2.5.1 Domain-specific modelling languages 31
2.5.2 Meta-modelling process . 33
2.5.3 Model Transformations . 38
2.5.4 Transformation technologies . 39

vi

3 An interoperable framework for testing automation 44
3.1 CRYSTAL project . 44

3.1.1 CRYSTAL V&V process . 45
3.1.2 Rail Model . 48
3.1.3 IOP Test Writer . 49
3.1.4 Log Analyzer . 50

3.2 Model-driven methodology for the automatic test generation 50
3.2.1 The proposed framework for test generation 53

4 DSMLs enabling test case generation 55
4.1 DSTM: Dynamic STate Machines . 56

4.1.1 Domain and Modelling Requirements 57
4.1.2 DSTM metamodel . 60
4.1.3 Formal syntax . 67
4.1.4 Formal semantics . 76

4.2 TESQEL: Test SeQuEnce Language . 79
4.2.1 The TESQEL metamodel . 80

4.3 Test Specification Patterns . 81

5 From DSTM to Promela 86
5.1 Mapping process: an overview . 87
5.2 Syntactical mapping . 90
5.3 Data-flow mapping . 91

5.3.1 Data types . 91
5.3.2 Channels . 92
5.3.3 Variables . 93
5.3.4 Triggers, Conditions and Actions 94

5.4 Dynamic instantiation and termination of machines 94
5.4.1 Flattening process . 95
5.4.2 Termination and preemption . 97

5.5 DSTM Step semantics . 102
5.6 Test specifications mappings . 104

6 Development of the test cases generation framework 105
6.1 Test cases generation workflow . 105
6.2 DSTM Editor . 109
6.3 DSTM Verifier . 110
6.4 Model Merge . 116
6.5 DSTM2Promela . 117

6.5.1 D2PFrontend . 117
6.5.2 D2PCrosscompiler . 120
6.5.3 Promela metamodel . 121
6.5.4 D2PBackend . 124
6.5.5 Engine generation . 131

6.6 Promela2Spin: generate the Spin code 134
6.7 Spin Manager: generation of test cases 139

vii

7 Automatic generation of test cases in the railway domain 142
7.1 ERTMS/ETCS standard . 142

7.1.1 ERTMS/ETCS Safety Integrity Level 143
7.1.2 The Radio Block Centre . 144

7.2 The Communication procedure . 147
7.2.1 Data declarations for the Communication Procedure 148
7.2.2 M_CommunicationEstablishment 149
7.2.3 M_ManageTrain . 154
7.2.4 The M_MovAuth machine . 156
7.2.5 M_SessionEstablishment . 159

7.3 Communication Procedure step semantics 161
7.4 Test cases generation . 166

8 Conclusions 176

A DSTM models of the Radio Block Centre system 178
A.1 The DSTM specification . 178

A.1.1 Data declarations . 178
A.1.2 DSTM Machines . 179

Acknowledgements 184

Bibliography 185

viii

List of Figures

1.1 V&V process accounted costs . 4
1.2 The V-lifecycle . 11

2.1 The ATLM process ([29]) . 17
2.2 MBT taxonomy for Embedded Systems [94] 25
2.3 Testing with Model Checking process 27
2.4 Model Driven Testing approach [25] . 29
2.5 Example of UML Profile . 35
2.6 Example of an Ecore metamodel . 35
2.7 Transformation technologies . 39
2.8 ATL transformation schema (from http://help.eclipse.org) 41

3.1 ASTS CRYSTAL approach . 46
3.2 Methodology for automatic test generation 51
3.3 High-level architecture of Test Case Generation framework 54

4.1 Languages and patterns defined for the test case generation process 56
4.2 DSTM metamodel. 61
4.3 Example 1 . 65
4.4 Example 2 . 66
4.5 Example 3 . 66
4.6 Example 4 . 67
4.7 The TESQEL Metamodel . 81
4.8 Car braking systems . 84
4.9 A next pattern for car braking requirement 84
4.10 The use of AND pattern for a car braking requirement 85

5.1 Mapping between DSTM machine (a) and Promela process (b) . . . 91
5.2 Flattening process on simple boxes . 96
5.3 Flattening of asynchronous fork . 97
5.4 Flattening for synchronous fork . 98
5.5 Flattening of join with only boxes . 99
5.6 Flattening of join with current machine node and boxes 99
5.7 Flattening of preemption in case 1 . 100
5.8 Flattening of preemption in case 2 . 101
5.9 Flattening of preemption in case 3 . 101
5.10 Flattening of preemption in case 4 . 102
5.11 Message generation for an external channel 103
5.12 Mapping of a cover pattern . 104

http://help.eclipse.org)

ix

6.1 Workflow of the TCG framework . 106
6.2 Component-level view of tcg framework 108
6.3 Architecture of DSTMEditor . 109
6.4 DSTMVerifier package diagram . 115
6.5 ModelMerger package diagram . 116
6.6 CrossCompiler package diagram . 121
6.7 Promela metamodel . 123
6.8 Generation of temp variables from an external channel 133
6.9 Spin Manager steps and artefacts . 140

7.1 ERTMS/ETCS - Level 2 . 146
7.2 M_CommunicationEstablishment . 150
7.3 Flattened M_CommunicationEstablishment machine 151
7.4 M_ManageTrain machine . 155
7.5 Flattened M_ManageTrain machine . 157
7.6 M_MovAuth machine . 158
7.7 Flattened M_MovAuth machine . 159
7.8 M_SessionEstablishment machine . 161
7.9 Generation times of the test cases of the Communication Procedure 175

x

List of Tables

2.1 Meta modelling solutions . 34

4.1 List of Test Specification Patterns . 83

5.1 Mappings between DSTM features and Promela 90
5.2 Mapping of types . 92
5.3 Mapping of channels . 93
5.4 Mapping of channels . 93
5.5 Translating the transitions decorations to Promela 94

xi

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
ATL Atlas Transformation Language
BNF Backus-Naur Form
CAD Computer-Aided Design
CFG Control Flow Graph
CHM Cummunicating Hierarchical state Machine
CP Communication Procedure
CRYSTAL CRitical SYSTem Engineering AcceLeration
CST Concrete Syntax Tree
CTC Centralized Traffic Control
CTL Control Tree Logic
DSML Domain Specific Modelling Language
DSTM Dynamic STate Machine
EBNF Extended Backus-Naur Form
EMF Eclipse Modelling Framework
ERTMS European Rail Traffic Management System
ETCS European Train Control System
ETL Epsilon Transformation Language
EU European Union
FSM Finite State Machine
GMF Graphical Modelling Framework
GSM-R Global System for Mobile Communications – Railway
GUI Graphical User Interface
ICT Information and Communication Technology
IEC International Electrotechnical Commission
IOS InterOperable Specification
ISO International Organization for Standardization
LTL Linear Temporal Logic
M2M Model-to-Model
M2T Model-to-Text
MA Movement Authority
MARTE Modeling and Analysis of Real-Time and Embedded systems)
MB Model Based
MBSE Model Based System Engineering
MBT Model Based Testing
MD Model Driven
MDD Model Driven Development
MDE Model Driven Engineering
MDT Model Driven Testing

xii

MOFM2T MOF Model to Text Transformation Language
OCL Object Constraint Language
OSLC Open Services for Lifecycle Collaboration
PIM Platform Independent Model
PIT Platform Independent Test
PSM Platform Specific Model
PST Platform Specific Test
PROMELA Process/Protocol Meta Language
QVT Query/View/Transformation
RAMS Reliability, Availability, Maintainability, and Safety
RBC Radio Block System
RCP Rich Client Platform
REST Representational State Transfer
RIS Railway Infrastructure System
RSM Recursive State Machine
RTP Reference Technology Platform
SIL Safety Integrity Level
TCG Test Case Generator
TESQEL TESt SeQuence Language
TSI Technical Specification for Interoperability
TSP Test Specification Pattern
TTCN-3 Testing and Test Control Notation version 3
UES Unconditional Emergency Stop
UML Unified Modelling Language
UNISIG UNion Industry of Signalling
UTP UML Testing Profile
V&V Verification and Validation
WS Web Service
XMI XML Metadata Interchange
XML eXtensible Markup Language

xiii

To my mother and my father,

to my sister,

to my love Eleonora

1

Chapter 1

V&V processes in Embedded Critical
Systems

The technical and technological growth of Information and Communication Tech-
nology (ICT) has been resulted in a capillary diffusion of computer-based sys-
tems. A computer-based systems is a system in which some (or even all) parts
depend on the correct functioning of computers.

Computer-based systems play an important role within the modern society.
There are in fact some essential services as the homeland security, the envi-
ronment protection, public and private transportations, communications, pub-
lic health and energy supply depending on the appropriate functioning of such
systems.

Nowadays, there is the trend to combine hardware and computer-based sys-
tems and allow them to interact with the surrounding environment through sen-
sors and actuators, in order to perform a specific task. Such approach is widely
adopted within some critical contexts as the transportation (e.g. automotive,
aerospace and railway), the healthcare, the energetic (e.g. smart grids, nuclear
plants) and the economic (e.g. transactional systems of banks). Such kind of
systems, are identified as embedded critical system and are at the basis of a large
amount of research interest, both from the academician and the industrial con-
texts. According to [63] embedded systems can be defined as information pro-
cessing systems embedded into a larger product; when an embedded systems
is involved in critical contexts as the ones above mentioned, the become critical
embedded systems.

Critical embedded systems are therefore systems in which a failure may result
in economic losses, damages to the environment of even injuries to human life
[86].

Dealing with such critical systems, means that the most important property
to guarantee is the dependability. The definition of dependability was proposed

Chapter 1. V&V processes in Embedded Critical Systems 2

by [60] as a general concept able to encompass other relevant non-functional at-
tributes as availability, reliability, safety and security. However dependability is
not only an umbrella concept that contains several non-functional properties but
it has long held other means, that include also concepts related to the functional
requirements of systems. In fact dependability is often perceived as the degree of
trust that users have with the respect to the considered system. There are several
reasons supporting this meaning of dependability:

• Systems that are not dependable, are perceived by users as unreliable, un-
safe and insecure and are often rejected with an obvious loss of time and
money;

• Non-dependable systems may cause a loss of information that are often
more important that the systems itself;

• Failures to system dependability, in general, affect a large amount of users
and may cause damages to other business application.

These reasons allow to understand that, guaranteeing dependability is not
a merely process of assure non-functional properties. In fact, and in particular
for critical systems, the assurance of the dependability, can be achieved by tak-
ing in to account both functional and non-functional requirements. Next section,
will exploit characteristics of embedded critical systems, by classify them, from
the point of view of their mission and from the perspective of the failure conse-
quences.

1.1 Classifying embedded critical systems

The expression Critical system is a general concept that gives an idea of the prob-
lems that may rise during system life cycle. However is worth to have a classi-
fication able to better collocate the system under development in a precise cate-
gory, in order to drive the effort to be spent in design and development and un-
derstand the aim of the development itself. Academic and industrial literature is
rich of taxonomies related to this and each of them focus on a specific aspect of
critical systems. Following taxonomies, allow to understand why is important to
consider functional requirements when addressing critical computer-based sys-
tems development.

In order to introduce the above mentioned taxonomies, the concept of failure
should be clarified. A Failure is the result of system errors that derives from
faults in the system. More precisely, it has to be distinguished between:

Chapter 1. V&V processes in Embedded Critical Systems 3

• failure: an event that occurs at some point in time when the system does not
deliver a service as expected by its users;

• error: an erroneous system state that can lead to system behaviour that is
unexpected by system users.;

• fault: a characteristic of a software system that can lead to a system error.
For example, failure to initialise a variable could lead to that variable hav-
ing the wrong value when it is used.

Strictly related to the failure consequences, critical systems can be classified
in:

• Business-critical systems, in which a failure implies economic losses. Exam-
ples of business-critical systems are the transactional ones adopted by a
Bank or by an airline reservation system;

• Mission-critical systems in which a failure may damage some goal-directed
activities. An example of a mission-critical system is a power grid.

• Safety-critical systems in which a failure may result in injury, loss of life or
serious environmental damages. An example of a safety-critical system is
a railway or aircraft control system.

The taxonomy above helps in understand requirements that a critical system
should be able to satisfy. However, several systems may fall in more then one
category. For example, a railway control system is a mission-critical system, due
to the goal of the provided service, is a safety-critical system, because a failure, can
expose the system to intentional attacks, that can injury human life, and finally is
business-critical since each disruption of the service, can result in a loss of money
for the provider of the service. Nevertheless, is clear that the development will
be guided by the adopted perspective. In fact, when dealing with a mission-
critical systems, might be more relevant to take into account non-functional re-
quirements (e.g the availability for a transactional bank system). At the contrary,
in a safety-critical systems, functional properties are more important to address.
In fact, in case a failure occurs on a railway control system, is worth that the train
stops its run until recovery procedures restore the same control system. Accord-
ing to such perspective, embedded critical systems can be classified in:

• Fail-Safe Systems(FSS): systems that lead them self to a safe state, when un-
der failure. Several medical system fall in this category. They in fact avoid
that a failure to the system may harm the patient.

Chapter 1. V&V processes in Embedded Critical Systems 4

• Fail-Operational Systems(FOS): systems that are able to perform their mis-
sion, even in case of failure of their control system. An example is the
auto-pilot of an aircraft, that, in case of failure, does not compromise the
steering of the vehicle.

Disastrous consequences of failures in embedded safety-critical systems, sug-
gest that, discover flaws during system development and avoid their propaga-
tion to the system execution phase, is a crucial task. Thus, V&V activities are
relevant phases of the a system life cycle and should be executed as soon as
possible since most of the failures discovered in embedded critical systems, are
introduced during early stage of the development. Furthermore, it has been es-
timated that the V&V process accounts over the 50% of the total development
time and costs.

FIGURE 1.1: V&V process accounted costs

Thus, the critical context suggests to adopt well-tried methods and techniques
for the V&V process even if it has been proven that several approaches for non-
critical systems, as formal methods, have been successful adopted in the devel-
opment of such systems, since they are able to reduce and optimize the resources
involved in the systems development. Definitively, despite the well-know sen-
tence of Dijkstra in 1969 that states that Testing can show the presence, not the ab-
sence of bugs, V&V activities are the best way to address the safety of a critical
embedded system. Next sections provide a deep overview of the V&V process,
specially with the respect to the practices commonly adopted within industrial
contexts.

1.2 The meaning of V&V

The concepts of verification and validation are usually considered together, even
if relevant differences occur between them. In particular, the main difference

Chapter 1. V&V processes in Embedded Critical Systems 5

is related to the aim which drives these two phases. Boehm [13] proposes two
questions that also nowadays clarify perfectly the difference between verification
and validation:

• verification answers to the question "Are we building the product right?",
that means that verification deals with the proof that a system conforms to
its requirements;

• validation, instead, deals with the question "Are we building the right prod-
uct?", that means that is finalized to discover if the system works correctly
with the respect to its specifications (or in other words with users expecta-
tions).

With the respect to the existing and consolidated approaches found in litera-
ture, is possible to divide V&V activities in two macro-category: the static-based
and the dynamic-based. Static-based approaches focus on inspections and re-
views of artefacts produced during the system development and their premise is
that the system under test is not put into use. Static-based approaches allow to
discover flaws in system design and in general defects even when the considered
system is not completed. Furthermore costs accounted for static-approaches are
very low.

The main limitation of static-based approaches is that they are not able to dis-
cover defects that may arise during runtime interactions of systems components,
as timing issues, performances problems or even bad management of memory
space. To do this, there is the need to use dynamic-based approaches and in
particular testing. Dynamic-based approaches, in fact, are able to proof that a
system behaves as expected, or that it respects its functional requirements that is
very important for embedded safety-critical system, since the discussed conse-
quences of unexpected behaviours.

Testing is in fact one of the most relevant tasks of V&V activities and can be
performed during different stages of system life cycle. According to this, it is
possible to distinguish between:

1. Development testing, whose objective is to discover defects, during the sys-
tem development;

2. Release testing, in which a separated team performs system testing before
the release to the users;

3. User testing, in which the system is put into use, often for a selected and
limited set of user-type.

Chapter 1. V&V processes in Embedded Critical Systems 6

Development testing is very important, according to the recommendations
provided by international standards as the ISO/IEC 61508 described in Section
1.3.1. In fact, with development testing is possible to discover system defects
during early stages of development, or in other words, before the system starts
to interact with human life and environment. Development testing, can be con-
ducted with different levels of granularity. In fact, it can be performed as:

• Unit testing, where single module, object or class is tested. Unit testing,
normally, is performed in order to test single functionalities provided by
the system;

• Component testing, during which, units are composed in order to test their
integration and components interfaces;

• System testing, where some or all of the components in a system are inte-
grated. Thus, the system is tested as a whole. Goals of system testing are
usually the testing of component interactions and compliance with specifi-
cations.

1.3 V&V of embedded safety-critical system in in-

dustrial practice

Identify system hazards as early as possible and try to reduce them to an accept-
able level, is the best way to follow in order to address safety issues. However,
well-tried techniques, adopted during a system life cycle, are not able to cope
with the complexity of nowadays systems and technologies. The inadequacy re-
flects on the fact that the adoption of these methods do not guarantee the proper
level of safety of system under development that is instead necessary even for
embedded safety-critical system. The safety issue has been addressed and dis-
cussed for a long and created the branch of system safety engineering. System
safety engineering deals with the identification of systems hazards, the deter-
mination of their causes, the development of proper countermeasures and, once
applied, the verification of the strategies effectiveness. With the respect to in-
dustrial development, a common practice is to adequate the system life cycle to
a accepted reference standard, in order to achieve an high level of quality, that
increase the system trustiness. Standards can be defined as common languages
that not only engineers but also industries, companies, and countries can use to
try to ensure a good, high-quality product [8]. The adoption of standards in em-
bedded safety-critical system is necessary in order to control the behaviour of the

Chapter 1. V&V processes in Embedded Critical Systems 7

system during its whole life cycle and to estimate in time, and with minor costs
and times possible, architectural choices, functional and non-functional proper-
ties and consequences of possible failures.

1.3.1 Reference standards for embedded safety-critical systems

According to the above mentioned scenarios, there are several national govern-
ments, public and private agencies, industries and international standardization
organizations which collected and promulgated directives to follow in order to
improve the safety of embedded critical-systems. The International Electrotech-
nical Commission (IEC) and the International Organization for Standardization
(ISO) are two of the most productive international entities in the production of
such standards. The IEC, in particular, promulgates the IEC/EN 61508 that is one
of the most important and diffused standards, at the basis of several directives
for embedded critical systems as the ISO/FDIS 26262 for the automotive domain,
the IEC/EN CENELEC 50126 focused on railway control systems, the IEC 61513
for computer-based system in nuclear plants.

In order to better understand the relevance of these standards, the meaning
of safety to be addressed, has to be clarified. In fact the term safety may assume
different meanings: for example, addressing safety in electrical contexts means
that is introduced a proper mechanism able to reduce the risk of electrocutions
during the usage of electrical devices. In the case of this dissertation, the safety
addressed is the Functional Safety. Functional safety is a concept that can be ap-
plied to a wide amount of industrial domains. It in fact provides the assurance
that the safety-related systems will offer the necessary risk reduction required
to achieve safety for the considered equipments. This concept was introduced
by IEC/EN 61508 as a consequence of the increasing diffusion of the electrical,
electronic or programmable electronic systems also within critical contexts.

A more formal definition, is the one presented in the ISO/IEC 61508 [53].
Given the following definitions:

• Equipment under control (EUC): equipment, machinery, apparatus or plant
used for manufacturing, process, transportation, medical or other activi-
ties.

• EUC control system: system which responds to input signals from the pro-
cess and/or from an operator and generates output signals causing the
EUC to operate in the desired manner.

Chapter 1. V&V processes in Embedded Critical Systems 8

• EUC risk: risk arising from the EUC or its interaction with the EUC control
system, i.e. the risk associated with functional safety.

• Electrical/electronic/programmable electronic system (E/E/PE): as for PES.

• Programmable electronic system (PES): system for control, protection or
monitoring based on one or more programmable electronic devices, includ-
ing all elements of the system such as power supplies, sensors and other in-
put devices, data highways and other communication paths, and actuators
and other output devices.

The functional safety is the part of the overall safety relating to the EUC and
the EUC control system which depends on the correct functioning of the E/E/PE
safety-related systems, to other technology safety-related systems and to external
risk reduction facilities.

Furthermore the ISO/IEC 61508 defines another relevant concept that is the
SIL (Safety Integrity Level) which represents the integrity level of safety func-
tions of a system as measurement of safety required/obtained by itself (a defi-
nition applicable to all kind of industries for both hardware and software com-
ponents). It is important to underline that the SIL is related to a single safety
function and not to the entire system or to its individual components: within a
given system a lot of safety features will exist, each of them related to a particular
hazard. To each of them an appropriate SIL should be associated. The whole set
of components of each security system must respect the related SIL class. The
IEC/EN 61508 does not define the SIL to achieve for the specific application do-
main but it lists all the operations that must be carried out, i.e. a risk analysis of
the specific system and an assessment of acceptable risk as a combination of the
probability and the hazard level. This standard covers the complete safety life
cycle decomposed into 16 phases addressing analysis, realisation and operation
of a safety critical system. The main concepts defined by this standard rely on
the fact that safety must be considered from the beginning of the life cycle, that
not-tolerable risks must be reduced and that zero risk can never be reached.

With the respect to this, one the crucial task of the development cycle de-
manded by the IEC/EN 61508 for safety critical systems is the elicitation of re-
quirements whose purpose is the reduction of the risk. Such requirements are
called Safety Requirements. Safety requirements, as the other requirements, can
be specified at a high level and should be validated during early stages of sys-
tem development. Safety related concepts are interpreted in specific application
domains and can be covered by different standards. Next sections provide a brief
overview of these standards, in particular related to transportation domains.

Chapter 1. V&V processes in Embedded Critical Systems 9

1.3.2 Aerospace domain

The avionics domain is rich of standards that regulated not only the system de-
velopment itself but in particular embedded systems involved in the control and
management of the aircraft. A first relevant standard is for sure the DO-178B
- "Software Considerations in Airborne Systems and Equipment Certification"
[35]. This standard, in particular, addresses safety issues related to safety-critical
software that interacts or even is at the basis of some airborne systems. With
the respect to the IEC 61508, it defines five levels of software criticality (from A
that is the catastrophic to E that is the no effect level) in order to define the ac-
cepted failure rate for the related components. At the contrary of the DO-178B
that addresses software systems, the DO-254 - "Design assurance Guidance for
Airborne Electronic" [35], deals with complex electronic hardware, involved in
the functioning of airborne system, such as Field Programmable Gate Arrays
(FPGA) and other special purpose devices.

1.3.3 Automotive domain

Within the automotive domain, a relevant standard is the ISO 26262 [54] that
inherits recommendations from the IEC 61508 and apply its principles to auto-
motive processes. This standard provides some relevant characteristics: first a
safety life cycle, that takes into account the system under development from its
conception to the decommissioning. Second, according to the SIL concept, it de-
fines an Automotive Safety Integrity Level (ASIL) that permits to identify the risk
class, of each item driving the development, in order to reduce the overall risk.
Furthermore, it provides the requirements for verification and validation of sys-
tem under development, to ensure an acceptable level of safety.

1.3.4 Railway domain

In the railway context, one of the major standards that must be considered, is
the CENELEC 50126 (and the subsequent CENELEC 50128 and 50129)- "Railway
Applications - The Specification and Demonstration of Dependability, Reliabil-
ity, Maintainability and Safety (RAMS)" [16]. These standards apply the princi-
ples of the IEC 61508, by encouraging the interoperability among the European
rail industry. The concept of interoperability means that, rail equipments devel-
oped according to the CENELEC standards, should be applied to any member
state, within the European railway context. CENELEC standards recommend
that possible failures and hazards have to be identified during the overall life

Chapter 1. V&V processes in Embedded Critical Systems 10

cycle, properly corrected or mitigated, by considering their occurrence rate and
effort to spend, and finally the risk has to be evaluated. More in detail, the CEN-
ELEC 50126 describes the processes and methods that are used to specify the
most essential and important aspects for operability and safety in the railway
domain; the EN50128 and the EN 50129 give a set of requirements which have
to be satisfied during the safety-critical software (the former) / hardware (the
latter) development, deployment and maintenance phases.

The above discussed standards, show three essential elements: (i) a reference
safety life cycle, (ii) a way to identify the proper risk level, in order to drive the
development and (iii) the need to start verification and validation activities, with
a certified process, at early stages of the system development With the respect to
this, a life cycle explicitly suggested is the ‘V’ lifecycle (or ’V’-model) where the
design is implemented during the descendent activities and V&V are performed
during the ascending ones. The same standards also define the list and the mini-
mal contents of the documents and deliverables that have to be produced during
the life cycle of an embedded safety-critical system: in particular it is clear that
the entire set of requirements, test cases and reports have to be traced in appro-
priate documents. It also imposes the clarification of the traceability between
requirements and test reports in order to demonstrate how each requirement has
been satisfied by outcomes of test cases.

1.3.5 The V-model lifecycle

Most of the failure during the usage of a safety-critical system start from er-
rors introduces during early stages of system development. According to this,
is worth to start the V&V process of system at early stage of its development.
A model widely-adopted in literature is the one named V-model. The V-model
life cycle was proposed as an extension of the well-know and used water fall
model, for the development of software-based systems. Stages of this develop-
ment model, are depicted in Figure 1.2 and detailed below:

The typical structure based on a “V” organizes development phases into lev-
els of complexity with the most complex item on top and least complex item on
bottom. This places the design next to verification in the sense that the accep-
tance activities are intrinsically linked to those of development.

There are several phases in the life cycle, starting from the conception to the
decommissioning of a system, specifying inputs, requirements, deliverables and
verification techniques of each phase. For sake of brevity, these phases can be
grouped into four macro-activities, which are:

Chapter 1. V&V processes in Embedded Critical Systems 11

FIGURE 1.2: The V-lifecycle

• Definition: the objective of this phase shall be to develop a level of under-
standing of the system sufficient to enable all subsequent life cycle tasks to
be satisfactorily performed. In this phase are defined: the mission profile,
the boundaries, the application conditions influencing the characteristics of
the system. At last, also in this phase, the overall requirements for the sys-
tem are defined as well as the overall demonstration and acceptance criteria
for the system.

• Design: during this phase, requirements are apportioned to all subsystems
and specific acceptance criteria are defined at subsystem level; subsystems
conforming requirements are hence created and their compliance with tar-
get is demonstrated through the usage of proper formal models (combina-
torial as Reliability Block Diagrams, Fault Trees and also state-based mod-
els).

• Testing: after the realization of the subsystems, the objectives of this phase
are to validate that the total combination of sub-systems, components and
external risk reduction measures comply with the requirements for the sys-
tem; in this phase specific characteristic are collected in order to assess com-
pliance with provided requirements of the complete system, and hence ac-
cept the system for entry into service.

• Operation: the objective of this phase shall be to operate (within specified
limits), maintain and support the total combination of subsystems, com-
ponents and external risk reduction measures such that compliance with
system requirements is maintained; the performance of the system shall be
monitored in order to maintain confidence in the system.

Chapter 1. V&V processes in Embedded Critical Systems 12

1.4 Research trends

In this section some relevant research trends, within the context of the V&V of
embedded safety-critical systems, are discussed, in order to better clarify the con-
tribution of the thesis.

1.4.1 Testing automation

According to the industrial needs, described in Section 1.3 and with the aim to
reduce time and costs, there is a diffuse trend that moves towards Testing Automa-
tion. The term Testing Automation in another general term which can be applied
to different phases of testing activities, as the generation or the execution of test
cases. According to the objectives of the present dissertation, test automation
refers to the automatic generation of test cases. A deep discussion about testing
automation and automatic generation of test case, will be provided in Chapter 2.
A widely adopted approach for automatic test cases generation the Model-based
testing (MBT). MBT is a testing paradigm that relies on models of a system un-
der test and/or its environment to derive test cases for the system model [93].
A complete discussion on model-based testing process, will be provided in the
Section 2.3. MBT, is often identified as a black-box testing technique, due to the
fact that a model, is an abstract representation of the system behaviour. In fact,
one of the main issue when dealing with MBT is the formalism to adopt for the
representation of the SUT. Dias Neto et al. [27] state that in order to cope with
a rigorous process and increase the quality of the software under development,
there is the need to use a formal model. In fact, according to the concept that,
within critical system is worth to identify issues at early stage of development,
there is the need to have specification as much possible consistent with the con-
crete system expectations [70]. In this sense, formal methods are able to provide
the necessary rigorous process for the realization of a formal and reliable system
specification.

1.4.2 Formal methods

Formal methods are mathematical-based languages, techniques and tools for the
specification and the verification of complex systems [clarke]. They can be in-
volved in several stages of a system development. However, with the respect
to the V&V activities, a strong research trend is to adopt formal methods, for the
modelling of system specification in order to start as soon as possible verification
activities.

Chapter 1. V&V processes in Embedded Critical Systems 13

Formal methods have the capability of combine low level informations with
system behaviour, in order to minimize the number of errors and even in order
to identify possible failures during early stages of development. Industry are
interested in adoption of formal methods for two main reasons:

• first they are recommended by several widely adopted international stan-
dards (e.g. the CENELEC 50128);

• they increase the trustiness in the system, that allow for a better marketing
of the system itself.

However there are some disadvantages that limit the adoption of such meth-
ods. First formal methods are based on rigorous and mathematical-based lan-
guages, that require high-specialized skills and that means greater costs for the
industry. Second formal specifications are quite distant from user ones and often
is difficult to monitor the system development.

Formal methods, are extremely advised because they allow for the descrip-
tion of both the system and of its properties, with a rigorous mathematical lan-
guage, that allows for their verification. A number of formal methods and tech-
niques have been developed by the scientific community in the past decades
and applied to the development of critical systems, including railway applica-
tions [11]. In this context model checking techniques stand out. Model checking
is an automated technique that, given a finite-state model of a system and a for-
mal property, systematically checks whether this property holds for (a given state
in) that model.

Heimdahl [49] shows the potentialities of Model Checkers, in the testing au-
tomation of aircraft guidance systems. Despite the potentialities, there are some
limitations in the adoption of model checking techniques:

• Model checking, as stated, is based on a rigorous mathematical formalism,
and often it needs a high-qualified staff to deal with such formalism. Such
implies new costs to sustain;

• there is a gap between system specification, made with a model, that leads
to a diffidence against model-based techniques included model checking.

In order to simplify the adoption of formal methods, Finite State Machines (FSMs)
are widely used in modelling systems where control handling aspects are pre-
dominant. Statecharts [47] extend FSMs with hierarchy, concurrency and com-
munication among concurrent components. Hierarchy is achieved by injecting
FSMs into states of other FSMs. Concurrency is achieved by composing FSMs

Chapter 1. V&V processes in Embedded Critical Systems 14

in parallel and by letting them run synchronously. The second limitation is usu-
ally addressed by migrating from the more general context of the Model-based
testing, to another paradigm, strictly related to the previous one, that is Model-
driven testing (MDT). In a model-driven testing, the model became the key arte-
fact that drives the whole system life cycle. Applied to the testing process, it
means that, the model of the system and test, drive the specification, the gen-
eration and the execution of test cases. Characteristics of model-driven will be
deepened address in the next chapter.

1.4.3 Recent European projects addressing testing automation

European community has been conducted several cooperative projects aiming
at the improvement and the industrialization of embedded safety-critical sys-
tems. The main objective of such projects is to integrate large enterprises, sup-
pliers, and vendors coming from different critical domains and enable them to
cooperate in order to improve and innovate research in the embedded critical
system field. CESAR project [17], for example, aims to boost cost efficiency of
embedded systems development, safety and certification processes by bringing
significant innovations in systems engineering disciplines like requirements en-
gineering, component-based development and by introducing a reference tech-
nology platform. SafeCer [81] aims to increase efficiency and reuse in develop-
ment and certification of safety-relevant embedded systems by providing pro-
cess and technologies which enable composable qualification and certification of
systems/subsystems. OPENCOSS [76] was a FP7 project aiming to produce the
first European-wide open safety certification platform to reduce time and costs
for (re)certification of safety-critical embedded systems, in particular for the rail-
way, avionics and automotive markets. DECOS [26] focused on the development
of an architecture-based design methodology and the associated COTS hardware
and software components, with certified development tools and advanced hy-
brid control technologies, allowing Europe’s leading position in highly devel-
oped control systems in the avionics (Airbus) and automotive industries and
in the area of dependability of software-intensive systems. Within the context of
embedded safety critical system, V&V activities are one of the most addressed is-
sues. MBAT [64], for example focuses on integration of formal techniques within
testing activities in order to improve the efficiency of testing and the effective-
ness of formal methods analysis. The PRESTO project [78] aims at improving
test-based embedded systems development and validation, while considering
the constraints of industrial development processes. The above list of projects,

Chapter 1. V&V processes in Embedded Critical Systems 15

that is not intended to be exhaustive, set up the basis for the CRYSTAL (Critical
System Engineering Acceleration) project, a Joint Untertaking ARTEMIS project
whose aim is to enable sustainable paths to speed up the maturation, integration,
and cross-sectoral re-usability of technological and methodological bricks of the
factories for safety-critical embedded systems engineering in the areas of trans-
portations (aerospace, automotive, and rail) and healthcare providing a critical
mass of European technology providers. Within the CRYSTAL project, V&V is a
relevant process. CRYSTAL in fact, in order to reduce costs related to V&V ac-
tivities, encourages the integration between the different steps of the same V&V
process. The CRYSTAL project, will be deep described in the Chapter 3.

1.5 Thesis contribution

According to the industrial needs and to the recommendations of international
standards, there is the need to automate some stages of the life cycle of embed-
ded safety-critical systems. The original contribution of this thesis is in the def-
inition of a model-driven framework, able to enable the automatic generation
of proper formal models, starting from an high-level specification of a system
behaviour. In particular, formal models described in this work are involved in
the context of the V&V activities of a embedded safety-critical system life cycle
and in particular in the automatic generation of test cases. To realize such frame-
work, model-driven principles have been exploited. More in detail, in order to
capture the needs of the application domain, and enable the automatic gener-
ation of test case, proper domain specific modelling languages (DSMLs) have
been defined. In particular topics related to the definition of formal syntax and
semantics of DSMLs have been address. Another relevant activity described in
this thesis is in the definition of a structured methodology to address mapping
issues related to the translation from the high-level languages defined and the
languages adopted to describe the generated formal models. A concrete frame-
work, based on model transformations realizing the defined mapping, has been
realized during the thesis work. The validation of the developed framework
has been performed by applying it within the context of the mass-transit trans-
portation and in particular within the railway domain. Even if the focus is on
automatic generation of test cases, the proposed Model-Driven methodology is
useful also for the complete design (based on centralized information), hence it
is possible to extend it for automatic verification of several non-functional prop-
erties of embedded critical systems as the survivability and the vulnerability.

16

Chapter 2

State of the art in automatic test case
generation

The testing activities affect up to the 50% of the total costs and time of a criti-
cal system development cycle. Thus, in order to reduce this effort, academician
and industrial interests have been focused on the concept of testing automation.
Literature is rich of definitions addressing the this concept:

"The management and performance of test activities, to include the development and
execution of test script so as to verify test requirement, using an automated test tool "

(Dustin et al.[29])

"A system that includes technologies that support automatic generation and/or
execution of tests for unit, integration, functional, performance, and load testing"

(Huzinga et al.[51])

Testing automation means that tests are run and checked without manual intervention
(...) you make use of a test automation framework to write and run

Sommerville [86]

This chapter is focused on well-know techniques and research trends adopted
for testing automation and in particular for the automatic generation of test case.
The chapter will provide the needed background to understand research activi-
ties at the basis of the present thesis. First a brief overview of the a general testing
automation process is provided in order to understand which are its the key fac-
tors. Then, with the respect of the state of the art, Model-based techniques for
automation of test cases generation are discussed.

Chapter 2. State of the art in automatic test case generation 17

2.1 The process of automation

As emerging from previous definitions, the process of testing automation, is
composed by several stages taking into account different aspects of a testing
process. Despite the absence of reference standards, several methodologies have
been proposed in the year as an attempt to provide a systematic schema to per-
form testing automation. Among such proposed methodologies, one of the most
famous it the Automated Test Lifecycle Methdology (ATLM) proposed by [29]. The
ATLM, depicted in Figure 2.1, shows that, the automation process is anything
but easy, due to the presence of several stages to address:

FIGURE 2.1: The ATLM process ([29])

1. Decision to automate: the first step might seem obvious but in some cases it
may not be necessary to introduce testing automation. This step, in fact,
should help the team to outlines the potential benefits of automation and
the effort to spent in an automated test development; There are several
possible reasons that motivate the introduction of testing automation:

• Manual testing is a laborious task, that can lead to human errors;

• Automation allows to better verify that the SUT meets its require-
ments;

Chapter 2. State of the art in automatic test case generation 18

• Automation reduces the presence of defects and failures of the devel-
oped system;

2. Test tool acquisition: during this step, the software team, can decide to ac-
quire an existing automation tool suite, or develop it from scratch. The
outcomes of the step varying on the basis of the choice. In the first case,
a set of criteria to drive the choice have to be defined, and the tool suite
vendor has to be contacted. In the second case, this step can be assimilated
to the design phase of a software development cycle.

3. Introduction of Automated testing: this phase is focused on the process that
allows to integrate the automation strategy within the considered software
system. This phase can be divided in two sub-steps:

• Test Process Analysis, which ensures that the overall test strategy is in
place and adapted to the considered system under development;

• Test Tool Consideration, that focuses on the benefits that can be achieved
from the introduction of the tool suite for automation, during the sys-
tem development.

4. Test planning, design and development: this and the next one are the most
important steps as they include the identification of the test procedures,
defines the tests cases and allows for their generation. The test plan iden-
tifies among others test items, the features to be tested, the testing tasks,
the test environment, the test design techniques and a preliminary testing
schedule. Then, according to the plan, test cases are designed in terms of
the steps that have to be followed in order to verify a given system fea-
ture. Finally the test development allows to obtain test script that can be
executed on the system.

5. Execution and management. In this step, the previously obtained scripts are
executed on the system and the results are collected, in order to perform
the assessment.

6. Test assessment: this step has a twofold objective: first it allows to evaluate
the automated testing process, in order to exploit eventual weakness and
improve them at an early stage of development. The second, is the result
analysis to find out the defects distribution of the considered system.

Chapter 2. State of the art in automatic test case generation 19

The first three steps of such general methodology are more comparable to
management process that has to carry out the advantages of an automation pro-
cess and the needed effort to introduce it within an existing development pro-
cess. Instead the process that lead to the effective automation of testing, is com-
posed by three defined phases:

1. Test Generation, in which high-level description of test cases is generated
from test specification. The outcomes of this step are usually not exe-
cutable;

2. Test Development, that allows to translate the generated test cases in codes
or scripts written in machine-readable language and therefore executable;

3. Test Execution, in which, scripts are executed on the SUT;

4. Test Reporting, in which outcomes from tests executions are analysed and
compared with predicted outcomes.

With the respect to the context of the testing automation, this work is focused
on the Test Generation step. Next sections provide the state of the art related to
approaches for automatic test case generation from an high-level specification of
the SUT.

2.2 Approaches to the automatic test case generation

There exist several approaches able to automatically derive test case from high-
level specification of system functional requirements. Such approaches can be
classified with the respect on the basis of the adopted perspective. Below the
classification of test cases generation approaches, is performed from the point of
view of the knowledge about the SUT.

2.2.1 White-box generation approaches

In general, white-box testing, refers to a testing methodology focusing on the
internal structure of the SUT. With the respect to the topic of the test case gener-
ation, most of the approaches based on white-box techniques relies on the con-
struction of the Control Flow Graph (CFG) of the SUT. The CFG is a directed
graph G={V, E, s, e} in which:

• V is the set of Nodes. Each node, represents a single statement.

Chapter 2. State of the art in automatic test case generation 20

• E, is the set of Edges. An edge allows to connect nodes and represent an
execution flow between two statement.

• s, is the entry point of the considered system.

• e, is the end point of the considered system.

The objective of the automation with a white-box technique is to find, in an au-
tomatic way, an admissible path on the CFG that represent a possible execution
of a test case. Several white-box test generation techniques exist in literature:

• Random Testing: this approach allows for the generation of random test
data in order to give as input to the SUT. Random testing is normally used
during integration or unit testing due to its wide-range structural coverage.
Furthermore it introduces several advantages:

– is inexpensive, because it requires only a random inputs generator that
is well supported by existing software libraries;

– is useful to perform stress testing on the SUT;

– it allows to calculate software reliability, from random test results.

Random testing however does not assure for the full code coverage and
requires human resources able to analyse results of testing.

• Path-Oriented Methods : these methods allow for the generation of test
data, using paths on the CFG. The analysis could be statical or dynamical.
In the first case, generation is made without program execution. One of the
well-know techniques in this context is the symbolic execution that consists
in the execution of a program using symbolic values for variable instead
of their actual values. Statical methods allows to obtain inequalities that
describe the conditions necessary to cross the path. However general for-
mulation of a path-oriented testing is NP-Hard and its necessary to intro-
duce linear constraints and linear programming techniques. In contrast to
the statical approach, the dynamical one performs the analysis during the
run-time of the program under test. Program execution flow is monitored
during the run-time and, if case of any deviations from the expected flow,
some heuristic or meta-heuristic techniques (as the simulated annealing) or
the backtracking are used to identify the problem [65]. The obvious limita-
tion of these approaches is that the generation of a single test suite might
be achieved after many iterations.

Chapter 2. State of the art in automatic test case generation 21

• Goal-Oriented: in contrast to the path-oriented, goal-oriented approaches
are able to generate test suite even in case of non-complete paths. There are
some relevant techniques based on a goal-oriented approach: chaining, in
which a path is obtained by following sequences of events, representing
nodes that must be visited in order to reach testing objectives. Another
technique is the assertion-based. An assertion represents a pre or post-
condition that must be satisfied during program execution. The objective
of testing, in this case, is to find a path that satisfies the identified asser-
tions. Assertions and nodes that must be visited imply that the test oracle
is embedded in the code.

• Genetic Algorithms: such algorithms consist in search heuristics based on
a mechanism similar to the natural process of evolution ([89]). Genetic al-
gorithms, starting from a random population of solutions (called chromo-
somes), perform a recombination process and gene mutation operations in
order to evolve the population of solutions and find sets of optimal solu-
tions. Genetic algorithms are more involved in the automatic optimization
of the test cases generated with other approaches.

2.2.2 Black-box generation

Black box-testing (also called input-output testing) is based on a “zero-knowledge”
that considers a complex system as an opaque box. Test a SUT with a black-box
approach means that the expected and the actual output of the systems given
a generic input are equals. According to black-box philosophy, test cases are
generated by taking into account system specifications without considering the
internal structure of the system. There are several black-box techniques, widely
used in software engineering, whose automation is the object of several scien-
tific works. Some of them, are focused on the test case generation exploiting the
equivalence partitioning techniques or boundary value analysis [79]. The equiv-
alence partitioning is a well-know black-box technique in which the objective
is to reduce the total number of test cases necessary, by partitioning the input
conditions into a finite number of equivalence classes. Instead a boundary value
analysis, the generation is based on boundary conditions which are the values at,
immediately above or below the boundary or "edges" of each equivalence classes
[95].

The main advantage of a black-box test generation is that is easy to imple-
ment; however its difficult to balance the test effectiveness and the test efficiency.
Effectiveness is difficult to predict and depends on a thorough and extensive

Chapter 2. State of the art in automatic test case generation 22

(thus costly and time consuming) test specification and execution process. In
particular for critical systems, given the high number of variables involved, the
required simulations (or test-runs) are prohibitive; thus the process is necessarily
either infeasible or incomplete, with possible risks on system safety. Furthermore
it can be proven that exhaustive black-box testing is impossible to achieve with
no information about system implementation [71]. With the respect to test ad-
equacy, it can only be assessed by means of empirical techniques, e.g. when
errors/test curve flattens out [52]. Another important limitation is that black-
box testing approaches are based on a system specification, which is usually
expressed in natural language and thus needs to be corrected, integrated and
refined several times during system life cycle. Therefore, its completeness and
coherence are not guaranteed, especially for complex systems.

2.2.3 Gray-box generation

To overcome the limitations of black-box strategies and achieve an high degree
of completeness and coherence, gray-box approaches have been introduced, spe-
cially for embedded critical systems. Gray-box testing approaches support func-
tional testing in allowing test engineers to fine tune the test-set with the aim of
an effective coverage of functionalities with the minimum effort in time. The
result is a significant reduction in test-set complexity while maintaining or im-
proving test-effectiveness. Several gray box testing approaches are present in the
scientific literature focusing at different testing levels (i.e. the kind of software
artefacts under test: unit, integration, system or user/acceptance testing). While
the knowledge of white-box testing is clear (for software intensive systems it is
the source code), it is not clear what the form/nature of knowledge at the ba-
sis of gray-box testing approaches. A lot of heterogeneous approaches exist in
scientific literature: [7] starts from a formalized specification of the system or
of its components; [24] is able to generate test cases for software, starting from
contract-based specification techniques and for example [77] exploits the Finite
State Machines representing the SUT.

This thesis is focused on system level testing, and in particular on how gray-
box test case generation can improve the quality of generated test cases still re-
maining a feasible solution. Furthermore, system testing is concerned with test-
ing the behaviour of an entire system because unit and integration testing are
often conducted by means of invasive methods. The rationale for system-level
testing is the necessity to have a level of testing where all the components inter-
act in the same way in which they would interact during the operational phase

Chapter 2. State of the art in automatic test case generation 23

of the software/system.
For these reasons, system level testing has been traditionally accomplished

by means of black-box testing. As previously stated, this approach expresses
its limitations in case of safety-critical systems. First limiting to the observa-
tion of the interfaces can prevent the testing engineer to observe the possible
passage through some hazardous states. Second, as stated in Section 1.3.1 inter-
national safety and quality standards prescribe methodologies and techniques
for system level testing with a limited or full knowledge of the system. Fur-
thermore complex systems, can have internal emergent dynamics that must be
known and controlled during the testing phase and system testing is the first
moment when these dynamics start to appear. Such problem is worsening in
case of critical systems where emergent behaviours can bring the system into
unexpected hazardous states: thus black-box testing is considered as not suffi-
cient to eliminate all the possible system hazards and motivate the adoption of
gray-box approaches. In order to perform gray box (system-level) testing and
having “limited knowledge” about the SUT, a model of the internal system be-
haviour is needed. Indeed, gray box testing approaches are quite always model
based-testing approaches, too. Many approaches that exploit models for gray-
box testing are present in the scientific literature, for example in [61] where UML
activity diagrams are used to generate test cases, [77] where FMS are used to un-
derstand about the internal behaviour of the system or the work in [28] where the
starting point of the generation is represented by a set of architectural models of
the system specified with the AADL language. In the context of the gray-box ap-
proaches, next section exploits model-based ones for test case generation and in
particular poses the focus on approaches based on the modelling of the internal
structure of the system.

2.3 Model-based test cases generation

The model-based generation of test cases, is often included in the category of the
Model-based Testing (MBT). MBT is a testing approach based on the construc-
tion of a model both of the SUT and of its external environment, derived from
requirements specifications. It is usually considered a form of black-box testing,
because tests are generated from an high-representation of the system. How-
ever, as discussed in the previous section, when information about the internal
structure of the system are provided, it is usually identify as a form of gray-box
testing. Academic and industrial literature is rich of surveys focusing on the
MBT; for this reason, several taxonomies have been proposed in order to clarify

Chapter 2. State of the art in automatic test case generation 24

its meaning. The expression "Model-based" applied to generation of test cases,
can be applied in different forms. According to this [93], identifies the following
meanings:

• Generation of test input data from informations about the domains of the
input values (domain model). This reduces hand-made work but does not
provide any information to know whether a test has passed or failed;

• Generation of test cases from an environment model. A model represents
the environment of SUT. This approach does not provide information on
testing outcome, too;

• Generation of tests cases from a behavioural model. A model describes the
expected behaviour of the SUT. This approach needs oracle information to
compare outcomes;

• Generation of test scripts from abstract representation of tests. Models
describe test cases. From them proper transformations generate machine-
readable tests.

The [93] taxonomy, was extended by [94] in order to address the embedded criti-
cal systems related to critical sectors as the railway, the healthcare or the avionic.
A summary of [94] taxonomy is depicted in Figure 2.2

[94] taxonomy is very helpful, because not only surveys main approaches
found in literature, but also underlines the key factors of a MBT process. In fact,
there are some relevant factors, identified by [94] with the respect to the model-
based generation of test cases:

• the selection criteria, that drives the generation of test cases. Among the
criteria collected by [94] the approach described in this work is focused on
requirement coverage, that means that we are interested to trace, on the
model, SUT requirements and verify that generated test cases cover them;

• the choice of the technology to perform the model based generation. There
are several manual and automatic approach. Among them, the one ex-
ploited in this work, is the one based on Model Checking.

• the result of generation, that allows to classify the approaches on the basis
of the nature of the generation results. In fact, generation results, can be, in
turn, model, or executable test scripts/code.

Chapter 2. State of the art in automatic test case generation 25

FIGURE 2.2: MBT taxonomy for Embedded Systems [94]

Chapter 2. State of the art in automatic test case generation 26

2.3.1 Automatic generation through Model Checking

A well-know technique to automatically generate test cases is the adoption of
model checking techniques.

Model checking is a formal technique, used to analyse a finite-state represen-
tation of a system for property violations. The core of the technique is the model
checker which is able to analyse all reachable states of a system model, in order
to verify a property. There are two main reasons that lead to the adoption of
model checking for testing generation automation ([40]):

1. The model checker can be used as a oracle for test outcomes evaluation;

2. If a violation is detected, the model checker produces a counterexample, that
is a sequence of analysed states whose crossing lead to the violation.

Several approaches that apply model checking techniques to testing automation
have been surveyed in the years ([27, 36]). Black et al [12] combine mutation
analysis with model checking in order to automatically generate complete test
suites from formal specifications by defining new specification mutation oper-
ators Cimatti et al.[Cimatti:2013] describe a formal approach for the validation
of functional requirements of hybrid systems. In their work, for instance, coun-
terexamples generation is adopted to verify, in a formal way, the consistency of
requirements, during early stages of system development.

The idea emerging from the surveyed works is that a test can be modelled as a
property that the system must satisfy. In fact, to verify a given property P, is nec-
essary to to translate it in a Linear Temporary Logic (LTL) or in a Computational
Tree Logic (CTL) and to give it to a model checker. However, with the respect
to the generation of test cases, the negation of P is given in input to the model
checker that, in order to demonstrate the violation, produces a counterexample
which is a trace of steps that represents a single test case of a test suite (Figure
2.3).

As the same surveys state, there are some open issues with the respect to
the automatic generation with a model checker. In particular the problem of the
state explosion when dealing with complex and large models, that may produce
a state-space which makes intractable the specification by a model checkers soft-
ware. The second relevant problem is related to how to force the model checker
to generate a complete test suite, since it usually return only one counterexample
for each found violation.

Chapter 2. State of the art in automatic test case generation 27

FIGURE 2.3: Testing with Model Checking process

2.3.2 Model-based vs Model-driven generation

Despite Model based (MB) and model driven (MD) use models as primary arte-
fact in system development and encourage both the adoption of a domain-specific
modelling language, sometimes there is a confusion in understanding the differ-
ences between these two concepts. Several differences exist that definitely sep-
arate MB and MD. First the concept of MB was introduced in the 1970 as an
attempt to overcome the concept of computer-aided design (CAD) and to sup-
port the system development process during its whole life cycle. Model driven,
instead, was introduced later, to use abstract representation of a system to con-
cretely generate system code from it. From this point of view, MD can be con-
sidered as a subset of MB. Moreover, there is an important difference also in the
objectives of these two paradigms. Models produced with a MB approach not
necessarily are used to produce concrete system artefacts. In fact, models in MB
approach are used to discover, at early stage of development and before the im-
plementation, lacks in requirements specification or in system design. Models in
a MD approaches instead, thanks to the support of model transformations, are
usually used as inputs to produce new models, that allows to analyse the system
from different point views or to obtain concrete realizations of the same system
(as for example system code). A relevant example is the the research trend that
encourages the adoption of formal methods in industrial settings . In fact, with
the introduction of MD, is possible to model the SUT specification with a simple

Chapter 2. State of the art in automatic test case generation 28

and user-friendly formalism and deriving a complex formal model, in automatic
way without any effort spent by the modeller.

2.4 Model-driven approaches enabling test case gen-

eration

According to the previous section, Model-Driven Engineering (MDE) is a soft-
ware development methodology in which the central concept which drives the
entire system development is that everything is a model. In fact, model-driven,
was introduced to address the increasing complexity of systems and platforms
with a abstraction process able to express domain concepts in a light-weight way
and to develop, from such abstract representation, the system. A first introduc-
tion of the model driven concepts can be traced back to the white paper of [85]
in which is presented the Model-Driven Architecture (MDA). The MDA is an
OMG initiative that proposes to define a set of non-proprietary standards that
will specify interoperable technologies with which to realize model-driven de-
velopment with automated transformations. Not all of these technologies will
directly concern the transformations involved in MDA. MDA does not necessar-
ily rely on the UML, but, as a specialized kind of MDD (Model Driven Devel-
opment), MDA necessarily involves the use of model(s) in development, which
entails that at least one modelling language must be used. Any modelling lan-
guage used in MDA must be described in terms of the MOF language, to enable
the metadata to be understood in a standard manner, which is a precondition for
any ability to perform automated transformations.

Model-driven engineering go over the classical general purpose program-
ming languages by introducing the possibility to adopt a specific language for
the considered domain. The presence of a Domain-specific modelling language,
allows knowledge and complexity of the considered domain with a specific for-
malization of the application structure, of the behaviour and of the system re-
quirements. Model-driven allows to migrate from a development process of kind
"construct-by-correction" that is based on verification of the late-time properties
of a system, to "correct-by-construction", that means the effort of verification is
concentrated in the initial stages of the system life cycle.

Moreover, the ability to define high-level languages closer to the user (for ab-
straction and ease of use) as well as the ability to generate automatically models
from the first, allows the usage of formal methods in a "transparent" way and can
facilitate their adoption also within sceptical contexts as the industrial ones.

Chapter 2. State of the art in automatic test case generation 29

2.4.1 Model driven generation overview

Model-driven testing (MDT) is the application of model-driven principles to test-
ing activities. The result of this combination is well-described by [25], that iden-
tify three different levels of software artefacts: the first is the one which specifies
the system from the functional point of view, without any reference to the con-
crete platform, on which test will be executed. Such level is the one of the Plat-
form Independent Tests (PIT). Using model transformations, the PIT is refined
in a more concrete model called Platform Dependent Test (PDT) from which is
possible to generate concrete artefacts, representing the executable test scripts.

FIGURE 2.4: Model Driven Testing approach [25]

According to MDT process described in Figure 2.4, also from the point of
view of the model transformations is possible to distinguish between two levels:

• Vertical transformations that are defined inside the test design process,
from the PIT. This kind of transformation allows to obtain the PST and to
generate test code for a specific technology platform.

• Horizontal transformations that are defined across the system and the test
design steps. This is a very innovative point because horizontal transfor-
mations allow performing testing activities early in software development
cycle. The first transformation step builds an abstract description of the
test suite from an abstract description of the system, without its platform
specific model. The transformation between PSM and PST has the same

Chapter 2. State of the art in automatic test case generation 30

rational; it allows producing a concrete test suite before the system code is
available.

To perform automatic generation of test cases with a model-driven approach,
introduce two relevant advantages:

1. first, testing activities may start early in the development process, because
a platform independent model can be easily linked with the platform inde-
pendent test;

2. testing activities are better supported by tools and languages during the
whole development cycle.

Several model based approaches are based on techniques borrowed from
MDT. Even if they are often considered as “model driven testing”, they just use
one or more MDT features, such as DSMLs, UML profiling or model transfor-
mations. In this work we distinguish between the MDT process above described
and such approaches to which we refer as “model driven testing techniques”
since they are a sub-set of MBT. Some relevant works show the advantages of
model-driven testing techniques within software development. One of the most
common ways to establish MDE principles in software development is the use
of UML diagrams and its extensions (UML Profiles). UML (Unified Modelling
Language) is the most widely adopted general purpose modelling language in
software engineering, that provides facilities for the visual design of a system.
Javed et al. [55] propose an approach that, starting from UML sequence dia-
grams, allows to obtain test suite by using a model transformation. Crichton
[22] uses UML and applies several transformations in order to generate test case.
Mingsong et al.[68] presents an approach starting from UML activity diagrams
: in this approach they randomly generate abundant test cases from a SUT writ-
ten in Java code. Then, they run the program with the generated test cases and
obtain the corresponding program execution traces. By comparing these traces
with the given activity diagram and according to the specific coverage criteria,
they obtain a reduced test case set which meets the coverage criteria. Whilst on
the UML language, also UML Profiles, are widely used within the context of the
model-driven. An UML Profile is an UML extension mechanism that allows to
define custom stereotypes, tagged values, and constraints A relevant example of
this mechanism is the UML Testing Profile (UTP) [9]. UTP introduces concepts
like test components or test control which are used to realize the test behaviour
of the system. Other approaches are able to generate an high level representation
of a test suite (and then executable test code) starting from an UTP model of a

Chapter 2. State of the art in automatic test case generation 31

SUT. UML is often associated to OCL constraints in order to generate automati-
cally executable test cases. An example of this approach can be found in [14] in
which the authors use a subset of UML diagrams constrained with OCL to gen-
erate test cases. The use of OCL constraints is necessary to prevent ambiguous
behaviours. This point is very important in model driven approaches because
it is necessary to have a clear understanding of syntax and semantics of source
and target models in order to be able to perform model transformations [84].
Another language often used to introduce model driven techniques is the Test-
ing and Test Control Notation version 3 (TTCN-3) which is a strongly typed test
scripting language used to automatically determine whether a system fulfils its
requirements. An example of TTCN-3 applications in testing can be found in [92]
in which MDE principles are used for testing in ICT domains. The application of
model driven to the test case generation process is not limited the UML context.
There are in fact other relevant application both coming from the academic and
industrial literature. [39] present a test case generation approach based on sym-
bolic execution to obtain data inputs and enumerate event sequences that can
lead to maximize code coverage of a GUI application In [48] an example of the
application of MDT to web-based distributed services architecture is described
and [45] shows an application of model driven testing within the automotive
domain. This work describes an application related to the safety control of air
bag systems. Despite these and other examples, the application of MDT is far to
being considered an assessed practice in industrial settings.

2.5 Technical background

A test generation process based on model driven techniques often means that
are involved DSMLs and model transformations. This section provides a back-
ground on such techniques, surveying the principal technologies enabling the
definition of a DSML and the realization of a model transformation.

2.5.1 Domain-specific modelling languages

According to model-driven principles above discusses, a DSML is useful to de-
scribe the internal behaviour of the SUT and the tests specifications. In order to
define a modelling language, two aspects should be addressed: the syntax, that
represents the way with which is possible to express modelling concepts and the
semantics, that is the meaning of such modelling concepts. With the respect to
the syntax, a further differentiation can be made; in fact is possible to distinguish

Chapter 2. State of the art in automatic test case generation 32

between the abstract syntax, that only specifies domain concepts and the con-
crete syntax that provides the notation to express abstract concepts. There exist
several approaches to follow, in order to define a DSML. Selic in his work [83],
summarizes such approaches in:

• Definition by refining an existing general modelling language (e.g. the
UML Profile mechanism);

• Definition by specializing some general constructs of another modelling
language;

• Definition by the development of a new modelling language. Such ap-
proach is often named from scratch.

The design choice between above approaches, should be made with the re-
spect to the domain that has to be modelled. In fact, the introduction of a DSML
is usually made to simplify the modelling process. The problem with general-
purpose languages is that often some specific concepts can be expressed in very
inefficient and inexpressive way. Thus, having a language that primitively pro-
vides such concepts allow to simplify the overall modelling process. This means
also that, all unneeded concepts should be avoided in the definition of a new
DSML. This concept is very important because, with the respect to first two ap-
proaches (extension and specialization) often there is the need to restrict the ex-
pressiveness of the extended/specialized language. Furthermore, the concrete
syntax should be as much as possible near to the background of the domain
users, that will adopt the considered DSML. With the respect to this, in some con-
texts, there is the need to define a DSML from scratch. However, also in this case
there are some limitations: first the effort in the development, due to the fact that
both the syntax and semantics should be defined from scratch. Moreover is has to
be considered that all the tooling infrastructure should be provided, and usually
developed from scratch. On the other hand, the definition from scratch allows
for compact and easy specific modelling language, able to provides primitives to
express directly specific modelling issues and that is able to avoid ambiguous be-
haviours. Except for the first two approaches, to define a language from scratch,
there are some steps to be accomplished. In particular a meta-modelling process
able to describe domain specific concepts and their relationships is needed. Also
meta models need languages describing them; usually, within the model-driven
context, metamodels allow to define the abstract syntax of a DSML, generally in
form of class diagram. Then the abstract syntax is mapped to a concrete syntax
i.e. the DSML constructs provided to the modeller (syntactic mapping). Hence,

Chapter 2. State of the art in automatic test case generation 33

the choice of the meta-modeling language is of great importance, as this choice
has consequences on the entire process of test generation. Below a discussion
of the main meta-modelling languages and on how they can determine different
ways to implement and support the generation process is provided.

2.5.2 Meta-modelling process

The choice of the meta-modelling language should be conducted on the basis
of the objectives for which a DSML is introduced. In fact, meta-modelling lan-
guages can be classified in:

• Editing-oriented, when the aim of the meta-modelling language is final-
ized to the realization of user-friendly environment for the editing of the
models;

• Analysis-oriented, when the objective is the static analysis of the model
during its construction;

• Simulation-oriented, when the objective of developed DSML is to execute
the models and/or to perform simulations.

On the above classification, and to the best of the knowledge derived for the
surveyed literature, the found meta-modelling languages have been grouped in
four categories:

• Meta Object Facility (MOF) based: MOF is a OMG standard and is the basis
of MDA (Model Driven Architecture);

• Eclipse Modelling Framework (EMF) based: this solution exploits the po-
tentialities of Eclipse. It can also be conjugated with the usage of UML;

• Grammar-based: the meta-model is defined by using grammars like BNF
or EBNF;

• All other approaches: several approaches belong to this category, both re-
lying on open source and commercial solutions. As example, MetaEdit+
[67] is a commercial suite that enables the generation of full code directly
from models and allows for defining a new domain specific language from
scratch.

Table 2.1 provides summarizes the different possibilities and their consequences
on Editing, Analysis and Simulation. Here below, they are described in more de-
tails.

Chapter 2. State of the art in automatic test case generation 34

TABLE 2.1: Meta modelling solutions

MOF-based EMF-based Grammar Based Other approaches

Meta-modelling languages

- UML Profiles
- Ecore

- GMF

- BNF

- EBNF

- MetaEdit

- Atom3

- MetaGME

Ed
it

in
g - Reuse of UML Concepts

- Large set of supporting

tools and IDEs

- Very user-friendly

- Graphical IDEs provide

palette with the meta

modelling concepts

- High readability due to

the informal nature of the

BNF

- Wide support of tools

- Can be customized

for a large set of

applications

- Often proprietary

technologies and IDEs

are not very

user-friendly

- Most of them are

not open source

A
na

ly
si

s - Analysis realized

through transformations

or OCL constraints

- Analysis realized

through java code
- Very easy to parse

- Analyses are often

allowed during

compiling time

Si
m

ul
at

io
n - Some IDEs allow for

the simulation of UML

models

- There exist many

facilites for simulation

of realized models

- Simulation is

difficult to perform

- Several engines

for simulation

MOF - Meta Object Facility Meta Object Facility (MOF) is a standard produced
by OMG which is place at the top layer of Model Driven Architecture. MDA is
a consolidate approach in which models and modelling techniques are the main
artefacts of software development cycle. The MDA architecture consists of four
layers:

• M3, the meta-meta-model layer, which provides a model of the modelling
language;

• M2, the meta-model layer, which describes the concepts used by the mod-
elling language to construct the model within M1 layer;

• M1, the model layer, in which there are the models of the element of the
system. Layer M1 provides the generalization of concepts in M0 layer;

• M0, the system layer.

MOF provides a language to describe modelling language hence it is defined
at the M3 layer. MOF enables to define a new language both from-scratch and by
extending/specializing an existing language. In fact, it provides the mechanism
of the UML Profiles which allow for extending UML models for specific domains.
Such extension could be made by using

• Stereotypes, used to extend UML concepts, so providing constructs to build
the models. Graphically the application of a Stereotype is identified by the

Chapter 2. State of the art in automatic test case generation 35

FIGURE 2.5: Example
of UML Profile

FIGURE 2.6: Exam-
ple of an Ecore meta-

model

label «Stereotype» before its name on a UML element; it is also possible to
define icons which are showed after the stereotype application;

• Constraints, associated to stereotypes, which are used to impose restrictions
to the stereotype. OMG has defined a language named OCL to express a
constraint. Any rule associated to the stereotype can be expressed by using
a constraint;

• Tagged values, which are meta-attributes associated to stereotypes or meta-
class. Each tagged value has a name and a type associated to a specific
stereotype.

Several UML Profiles can be found in literature; some of them are defined or
standardized by OMG itself. Examples of UML profiles from OMG are MARTE
(Modeling and Analysis of Real-Time and Embedded systems) [74] and UTP [9].
UTP provides extensions to UML in order to support the design, visualization,
specification, analysis, construction, and documentation of the artefacts involved
in testing activities. A simple example of an UML Profile is depicted in Figure 2.5;
in this example the stereotype figure is added to UML metamodel by extending
the class metaclass. The properties of the figure, i.e. colour and geometry, are
described by using homonym tagged values.

This example shows some relevant advantages of the UML Profiles. Firstly
they allow to introduce specific concepts of an application domain at metamodel
level (UML in fact does not have the concept of “figure”); secondly they allow to
add expressive power at modelling language. UML profiles also provide addi-
tional information that can be used for M2M or M2T transformation [37].

UML is widespread used during all software engineering processes; it is im-
plemented by a large amount of tools and software development environments.

Chapter 2. State of the art in automatic test case generation 36

Finally the interoperability is guaranteed by the XMI format, defined by the
OMG group, that allow the interchange of the same models between different
tools.

EMF - Eclipse Modelling Framework Eclipse Modelling Framework (EMF) is
a stable framework which provides facilities for building toolsets and Java appli-
cations based on model manipulation. EMF allows for creating a model and gen-
erating code from it with the same level of usability of an UML model. As stated
in previous Subsection, a model is an abstract representation of an object. A
model can be described using several languages. EMF introduces a new concept
which is the passage between different high-level representations. More specif-
ically, as depicted in Figure 5, EMF unifies three relevant technologies: UML,
XML and JAVA. As an example, EMF allows to transform a XML schema into
a UML class diagram or directly in executable Java code [90]. The EMF is sup-
ported by the Ecore format, that is a simple format guaranteeing interoperability
between tools. The Ecore format is also an open format, easy to understand and
manipulate, also in textual way.

Hence EMF integrates both modelling and programming principles. There
are several advantages behind EMF-based solutions:

• it is easy to provide a clear representation of what the system it is supposed
to do;

• Code generated from the model is high readable;

• EMF adopts the Ecore format to provide interoperability and information
interchange;

• EMF allows for queries on the structure of the model;

• There exist several plugins to generate editors supporting defined languages.

EMF consists of three main parts:

1. EMF.Core that includes a meta model in Ecore format for describing mod-
els. Ecore is well supported by large set of Application Programming In-
terfaces (APIs) for manipulating EMF objects;

2. EMF.edit, that includes generic classes for building editors for EMF models.
This framework allows to display EMF model in a standard Eclipse view
and provides to manipulate models properties, classes etc.

Chapter 2. State of the art in automatic test case generation 37

3. EMF.codegen, which provides the code generation facilities. EMF.codegen
is based on the Java Development Tooling to build EMF editor. With EMF.codegen
is possible to generate:

• Classes from model, including factory methods and packages;

• Adapters that allow editing and display of generated classes;

• Editor, which allows to customize the model. The editor is show in
eclipse-like view.

The development workflow of EMF is very simple: first a model is created
and defined using the Ecore format. Second, when the model is defined, it
is possible to automatically generate java code from it, thanks to the plugins
provided the same framework.

Ecore includes few and essential concepts such those included in the Essential
MOF: some of the basic types included in it are EClass, EAttribute, and ERefer-
ence which have the same meaning of the Class, Property and Reference of the
Essential MOF. As an example, considering the same objects of the UML Pro-
file described in Figure 2.5, it is possible to have the Ecore diagram described
in Figure 2.6. The main difference between the two formalism is that the UML
profile adds the “figure” concept to UML while the Ecore metamodel reports a
new modelling language created from scratch: the usage of this domain model
does not allow to use other concepts than the one of “figure”. Here the concept
of stereotype is replaced by the Eclass concept while tagged values are replaced
by the EAttributes. Constraints can be inserted within Ecore diagram by using
natural language or structured languages as OCL.

Grammar-based approaches A grammar is a mathematical based system to
define a language, as well as a way for giving the sentences in the language a
useful structure. They are usually adopted to define a textual-based syntax of
a language. The main advantage in the adoption of grammar-based approach
is that operations as the parsing and the translation are often made simpler by
the structure imparted to the sentences of the language by the same grammar.
Grammars are probably the most important class of generators of languages. A
particular type of grammar, widely adopted for the definition of concrete syn-
tax of domain-specific modelling language is the context-free grammar (CFG) A
context-free grammar is defined as a grammar in which every production rule is
in the form A → α, where A is a grammar variable and α represents a sequence
of variables and terminals. The CFG is composed by a set of recursive re-writing

Chapter 2. State of the art in automatic test case generation 38

rules (or productions) used to generate patterns of strings. The adoption of CFG
is limited in the extent to which they can express all of the requirements of a
language. Informally, the reason is that the memory of such language is limited.
The grammar cannot remember the presence of a construct over an arbitrarily
long input; this is necessary for a language in which, for example, a name must
be declared before it may be referenced. More powerful grammars that can ex-
press this constraint, however, cannot be parsed efficiently. Thus, it is a common
strategy to create a relaxed parser for a CFG which accepts a superset of the de-
sired language constructs A widely adopted CFG, in the definition of the syntax
of a DSML is the Backus–Naur Forms (BNF) or some its variants as the Extended
Backus–Naur Form (EBNF)

2.5.3 Model Transformations

Model transformations are a key concept of model-driven principles They al-
low for obtaining a model from another in an automatic way. The OMG’s MDE
standards specify the need for moving from platform-independent models to
platform-specific models, raising the level of abstraction during the modelling
phase, and then reducing it for a specific platform, during the development
stages. Model transformations may be useful, for example, to generate a for-
mal model starting from a UML model. Model transformations can be grouped
into two categories:

• Model-to-Model (M2M) transformations aiming at transforming source mod-
els into other models, also expressed in different formalisms. The main mo-
tivation of their need in the context of this work is that the obtained formal
model is used to exploit model checking techniques to generate test cases.
A M2M transformations allow to translate a source in a target model by
defining proper sets of rules between these two. An example of language
used to write M2M and M2T transformation is the ATLAS Transformation
Language (ATL) defined in the ATLAS Model Management Architecture
(AMMA) platform [56]. A deep description of such language is provided
in below paragraphs.

• Model-to-Text (M2T) transformations: M2Ts are able to generate text di-
rectly from a model (conforms to a specific meta-model). M2Ts have a
paramount importance in model driven software development processes
since automatic code generation represent a final but a necessary step in

Chapter 2. State of the art in automatic test case generation 39

many of such processes. In a wider perspective, M2Ts can be used to gen-
erate text, reports, configuration files or to instantiate abstract models ac-
cording to a specific concrete syntax. This last case can be used when a for-
mal model, expressed for example by means of an Ecore based language,
must be translated into a specific data format understandable by existing
solvers. M2Ts can be divided into two categories according to the consti-
tuting principles:

– Visitor-Based Approaches: the source model is explored and, during
the exploration, text is serialized into an output channel (a file). An
example is constituted by ATL query [56];

– Template-Based Approaches: the text is organized into templates where
“hot-spots” (points that are subject to change according to model struc-
ture or values) are calculated by query on the model itself. A widespread
example of this technology is constituted by Acceleo [3].

There exist only few solutions enabling model transformations. To the best
of our knowledge the technologies surveyed within the context of the present
work are summarized in Figure 2.7. With the respect to the figure an arc between
a metamodelling solution and a transformation language, means that a model
transformation from/to the specified metamodelling language may be imple-
mented by the destination of the considered arc.

FIGURE 2.7: Transformation technologies

2.5.4 Transformation technologies

This section summarizes the surveyed technologies found in literature.

Chapter 2. State of the art in automatic test case generation 40

Java Java is one of the most important programming languages based on object
orient paradigm. Java may be also used to implement transformations between
source and target languages. Despite the power of Java, specific transformation
languages are preferred because they provide a range of useful features which
facilitate writing, understood and execution of the transformation.

ATL ATL stands for Atlas Transformation Language, created by the ATLAS
INRIA & LINA research group. It is the answer to the OMG MOF and to QVT.
It is a model transformation language specified both as a meta-model and as
a textual concrete syntax. It is a hybrid language since it is possible to define
declarative and imperative statements. Most of the rules written by using ATL
are declarative, which means that mappings can be expressed simply. Despite
the declarative way is preferred, imperative constructs are provided in order to
manage situations too complex to be dealt by means of also declarative rules.
An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements
of the target models. The structure of an ATL program is composed by four
parts: Header, Import, Rules and Helpers. The header contains the transfor-
mation name and the declaration of both source and target model. The import
section is used to import definition specified by other ATL modules. This can be
done by using the keyword “uses” followed by the library name. Rules section
is the core of ATL file because it contains the transformation rules. Each rule
defines source patterns, the element type of the source model to be transformed,
and the target pattern, used to generate a portion of the target model. ATL sup-
ports the definition of helpers: a helper is used to declare functions and global
variables used by the transformation rules. Helper functions are written by using
the OCL language.

In the pattern depicted in Figure 2.8, a source model Ma is transformed into
a target model Mb, according to the rules defined in the transformation Mt. The
transformation can be seen as model since it is software. Source and target mod-
els, as well as the transformation definition are conforming to their respective
meta-models: MMa, MMb and MMt. All meta-models in this example are con-
forming to MOF meta-meta-model (obviously this relationship is not strictly nec-
essary; other meta-meta-models are of course usable). This schema is general
enough to be adopted by all other transformation languages. ATL, as mentioned
before, is a mixed language which contains declarative and imperative parts,
nevertheless, the ATL philosophy encourages the use of the declarative style in

Chapter 2. State of the art in automatic test case generation 41

FIGURE 2.8: ATL transformation schema (from http://help.
eclipse.org)

specifying transformations. However, sometimes it is difficult to provide a solu-
tion completely declarative in a transformation problem. In this case it is possible
to use characteristics of the imperative language. ATL transformations are uni-
directional, source models are read-only and the transformations produce write-
only destination models. The implementation of a bidirectional transformation
makes it necessary to realize a pair of transformations, one for each direction. An
ATL rule, can be composed by several sections containing declarative or impera-
tive statements. Among these sections, the most important are the source pattern,
representing the element of the source model from which generate the target one,
the target pattern, that specifies the way in which the target element is constructed
and the do pattern, that allows to put the imperative code, when necessary. On
the basis of the contained patterns several kind of rules can be distinguished; in
particular the widely used are the matched rules, the called rules and the lazy
rules. A matched rule specifies the way target model elements can be generated
from source model. They are triggered every time the elements specified in the
source pattern are matched in the source model. Matched rules, can be composed
by both of the above mentioned patterns. The called rules, are instead rule that
can contain only target and do patterns. In fact, they are similar to the methods
of a general purpose language: a called rule allows to explicitly generate target
model elements from imperative code inserted in a do pattern. Finally lazy rules
are matched rules whose to pattern is called from another ATL rule.

http://help.eclipse.org)
http://help.eclipse.org)

Chapter 2. State of the art in automatic test case generation 42

QVT QVT stands for Query/View/Transformation and it is a language for
model transformation reated and standardized by OMG. Due to OMG deriva-
tion, QVT includes both MOF 2.0 and OCL 2.0 specifications. As ATL previously
described, this language is hybrid (declarative and imperative). With QVT are
provided three different transformation languages:

• QVT-Core which is a declarative language designed to be simple and to be
used on QVT Relations target model. Due to the not fully specified nature
of QVT-Core, QVT-Relational is more expressive.

• QVT –Operational which is imperative transformation defined for writing
unidirectional transformations;

• QVT – Relations, which provide declarative transformations. The trans-
formation written by using QVT-Relational can be both unidirectional and
bidirectional.

Compared to ATL QVT languages do not permit M2T transformations, since
each model must conform to MOF 2.0 metamodel. M2T transformations are be-
ing standardised separately by OMG in MOFM2T standard [75].

ETL ETL stands for Eclipse Transformation Languages and provides M2M trans-
formation language features to Epsilon. ETL allows standard operations of a
transformation language but also other advanced features like manipulation,
navigation and query of both source and target model. ETL is a hybrid language
that implements a mechanism composed by declarative definition of rules but
also inherits the imperative features to handle complex transformation which
can’t be addressed with a declarative language. ETL is similar to ATL because
it is organized in modules (named EtlModule). A module contains a number
of transformation rules. Each rule has a unique name and has specified both
source and target model. A transformation rule can extend other transformation
rules with different mechanisms (called lazy, primary or abstract). EtlTransfor-
mation defines a block statement in which is collocated the logic for populating
the property values of the target model elements. ETL allows defining pre e post
statements that can be executed before or after the transformation rule [58].

Text-based transformations The expression “text-based transformation” de-
notes a transformation which transforms an input document written according
a text-format in an output document written according a different format. An

Chapter 2. State of the art in automatic test case generation 43

example of text-based transformation language is XML transformation language
which allows transforming an XML document in another XML document or in
HTML document. Examples of XML transformation language are XSLT, which is
a W3C recommendation or XQuery which is a standard de facto used by Oracle,
Microsoft etc.

Acceleo Despite Acceleo is not properly a technology for model-to-model trans-
formation, it has become a leading technology for generation of text from a
model conformant both to Ecore based language and both to annotated UML.It is
based on the template-based paradigm in which the user creates text templates in
which some parts can be dynamically defined on the base of some model query.
Since its launch, Acceleo has become a widespread solution in model driven en-
gineering processes [3].

44

Chapter 3

An interoperable framework for
testing automation

Verification of functional requirements of safety-critical control systems requires
an high effort, in order address recommendations of international standards. Ac-
cording to the discussion in Chapter 1, to support verification processes, by auto-
mated solutions, is a key factor for achieving lower effort and costs and reducing
time to market.

This chapter describes the methodology defined and followed for to the de-
velopment of the automatic test case generation approach. In particular, such
methodology can be collocated in a wider verification process related to the sys-
tem level testing of railway control systems. The general verification process has
been defined in order to address the needs of the ARTEMIS CRYSTAL project,
which tackles the challenge to define Interoperability Specifications (IOSs) for
the development of an European standard supporting the entire life cycle of
safety-critical control systems. According to this, the chapter presents also an
overview of the CRYSTAL project clarifying how thesis purposes are partially
involved in the verification process defined by the CRYSTAL project. Moreover
the high-level architecture of the test case generation framework resulting from
the methodology is provided and discussed.

3.1 CRYSTAL project

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engineer-
ing AcceLeration) aims at realizing a Reference Technology Platform (RTP), based
on common Interoperability Specifications (IOS), able to support the design, the
development and the deployment of interoperable safety-critical control sys-
tems. The development of a standard RTP can have a significant impact in the

Chapter 3. An interoperable framework for testing automation 45

European competitiveness, since it may increase the efficiency in critical con-
trol systems development by encouraging the emergence of new market appli-
cations. CRYSTAL activities exploit domain-specific insights, into embedded
safety-critical control system design and safety process, to investigate and es-
tablish cross-domain synergies. CRYSTAL is, in fact, strongly industry-oriented
and provides ready-to-use integrated tool chains having a mature technology-
readiness-level (TRL)1. Technical innovations can be achieved by adopting a user-
driven approach based on the application of engineering methods to industrial
relevant Use Cases. According to this, in a first step, user stories are collected
and described as work flows. Then these user stories are refined in a set of con-
crete use cases, applying to them significant improvements. For each concrete
use case a set of tools and methods, named technology brick is derived. A technol-
ogy brick is in fact in charge of integrate the related use case in the overall RTP.
The RTP is based on a generic model-based tool integration platform, composed
by a set of interoperable tools, methods and processes, designed to improve the
development of safety-critical embedded control systems. The technology bricks
shall be designed according to the IOS, implemented using the RTP and finally
validated in their domains. The application domains considered within CRYS-
TAL are the automotive, the aerospace, the rail and the healt-care. In addition
CRYSTAL aims at enhancing the maturity of existing concepts achieved in previ-
ous European and national projects (as CESAR and MBAT, described in Section
1.4.3) with innovative techniques, methods and tools developed in other research
projects, in order to bring them to a level of maturity that is compatible with an
industrial pre-deployment stage. The approach defined in the thesis is related to
the railway domain, and specifically, addresses the need expressed by Ansaldo
STS (ASTS), an international transportation leader in the field of signalling and
integrated transport systems for passenger traffic (Railway/Mass Transit) and
freight operation. The industry needs expressed by the ASTS’s Use Case are ori-
ented to improve the quality and the efficiency of existing V&V processes, in
particular by reducing the effort to be spent for the definition of system level tests.

3.1.1 CRYSTAL V&V process

User needs expressed by ASTS within the CRYSTAL project are oriented to the
automation of the system level testing activities, and to the realisation of a tool
chain providing full support to interoperable testing. This section describes the

1Readiness Levels (TRL) are a type of system measurements used to assess the maturity level
of a particular technology.

Chapter 3. An interoperable framework for testing automation 46

complete work flow V&V process defined by the CRYSTAL activities of the con-
sidered Use Case as well as the components of the tool chain and their relation-
ships.

The approach complies with the ASTS Use Case requirements and allows to
improve the ASTS current testing process, starting from the definition of the sys-
tem specification to the generation of test reports [10]. In detail, it enables semi-
automatic generation of test cases from a set of test specifications, relying on
a Model-Driven methodology. The generated test cases are then automatically
transformed into executable test scripts, which can be executed on the real sys-
tem or on simulation environments. Test logs are then analysed and test reports
are automatically generated.

Figure 3.1 describes the overall approach of defined within the project con-
text. Lets note that the execution of the script on the real system is out of the
scope of such project activities.

FIGURE 3.1: ASTS CRYSTAL approach

The depicted approach introduces three main advantages:

• Automatic generation of test cases from test specification: in the current process,
adopted by ASTS, test cases are manually generated by domain experts
which are able to control the high complexity of these systems. This activity
is heavy and error prone, in addition the training of new testers is very
expensive as they must have a great experience, that could be acquired
only working on several different projects.

• Generation of test script in IOP notation: due to the heterogeneity of simu-
lation environments, system level testing requires an interoperable testing
environment where different simulators can exchange information. The

Chapter 3. An interoperable framework for testing automation 47

generation of test scripts in IOP notation, under development by UNISIG
(Union Industry of Signaling), allows for the execution of interoperable
tests in a multi-suppliers environment.

• Tool supporting analysis of test logs: the decision about the outcomes of test
cases is currently performed by inspecting big log files; the adoption of a
tool which is able to parse generated logs, reduces the efforts of navigating
them and generating reports.

The first activity of the testing process is the realization of a system speci-
fication, performed manually by V&V engineers by using a proper modelling
language and a graphical modelling environment. The specification of the sys-
tem is given by a high-level description of the system behaviour and by the set
of functional requirements the system shall satisfy. By the same environment,
the test specifications are defined in order to describe the essential features that
a test case must accomplish (e.g., the sequence of transitions that the test case
shall stress). Test cases are generated from the system and test specifications in
semi-automatic way.

According to the proposed work flow, test cases can be analysed and, if they
are rejected by engineers, some updates on the source specifications can be per-
formed. Test cases are then transformed into executable test scripts, through a
transformation in the IOP notation. This language supports the creation of inter-
operable and multi-supplier testing environments.

Test scripts are executed and proper test logs are generated. The execution
of test cases has not been considered in the CRYSTAL project, since each railway
operator is interested in using proprietary testing environment. However test
logs can be parsed in order to detect possible inconsistencies between planned
test case and test execution. These inconsistencies can be due to wrong specifica-
tion (and it is necessary the feedback to the source model), otherwise they trace
bugs in the developed system. Finally test reports can be generated.

Each component of the framework interacts with the RTP, which is a generic
platform for the integration of model-based tools. It is composed by a set of
interoperable tools, methods and processes designed to increase the quality of
development processes of safety critical embedded systems. This integration
platform will host tools coming from different stakeholders (vendors, industrial
& academic partners, etc.) that realise Bricks within the project. Therefore there
is the need for a common non-proprietary standard to realise this interoperabil-
ity functionality within the RTP. The CRYSTAL IOS would accomplish this task
by adopting the Open Services for Lifecycle Collaboration (OSLC), a framework

Chapter 3. An interoperable framework for testing automation 48

that moves to the integration of data, workflows and processes among product
lifecycles. OSLC is divided in several workgroups each of which addressing
specific integration scenarios. The set of scenarios and specifications are named
OSLC Domains. The presence of different domains introduces the necessity to
manage the coherence among them. This need is satisfied by a set of standard
rules and patterns, contained in the OSLC Core Specification, and all the domain
groups must adopt these rules for the specifications. The union of a OSLC Core
Specification and a OSLC Domain constitutes a OSLC protocol that is used in
order to add interoperability to a specific tool chain, as in CRYSTAL. Some work
packages in CRYSTAL are devoted to the study of existing standards and to the
proposition of proper technological solutions in order to integrate the Technol-
ogy Bricks with the RTP/IOS. Three main technological bricks interacting over
the RTP have been during the activities of the CRYSTAL project; they are: Rail
Model, IOP Test Writer and Log Analyzer. Next subsections briefly describe such
bricks.

3.1.2 Rail Model

The Rail Model brick, is the core of the approach, because is in charge of perform-
ing automatic test case generation. Such brick, is the composition of a graphical
user interface (GUI) and an engine for the automatic generation of test cases. It
in fact, provides the following functionalities:

• Creation and editing of formal state-based models from specifications of
system behaviour by using a user-friendly graphical editor. This function-
ality is based on the definition of a DSML for the modelling of such kind of
system. The language definition is deep addressed in Chapter 4.

• Definition of a proper set of Test Specification Patterns providing general
reusable models for recurrent classes of requirements. The same environ-
ment in fact allows for the modelling of test specifications in order to de-
scribe essential features that a test case must accomplish (e.g., the sequence
of transitions that the test case shall stress). Test cases are therefore gener-
ated from the system and test specifications in semi-automatic way.

• Generation of test sequences. The engine that realize the generation step, is
called Test Case Generator (TCG) an relies on the results presented in this
thesis. The TCG exploits model-driven principles, previously described, by

Chapter 3. An interoperable framework for testing automation 49

combining the advantages of defining proper DSMLs and model transfor-
mations to automatically derive formal models from the high-level specifi-
cation of the system and used them to exploit model checking techniques,
chosen as a test case generation strategy (Section 2.3.1).

3.1.3 IOP Test Writer

The Rail Model brick allows to generate the sequence of the steps specifying a
test case. These traces need to be translated into an concrete notation in order to
be executed on simulated environments. Since railway-based infrastructures are
composed by different subsystems that can be supplied by different technology
providers, the testing and simulation environments reflect this heterogeneity be-
ing a federation of different simulators developed by different teams. One of the
requirements for a an interoperable testing environment is that each component
must speak a common “testing” language. The IOP Notation is developed by
the UNISIG. Properly interpreted by vendor-specific adapters, IOP can support
the creation of integrated testing environments. The aim of the IOP notation is
not limited to simulated environments as it can be used to give commands and
interpreting the states of real systems. Test steps, written in this general com-
mon language, shall be properly understood by different system implementing
proper adaptors. The usage of this standard language reduces the risk of mis-
understanding/incoherence and enables the execution of interoperability tests
in laboratory. Obviously, since each testing environment is built in its own lan-
guage, all the companies/suppliers have to develop several adaptors for the in-
teroperable testing environment.

Within the CRYSTAL project, IOP Test Writer can significantly increase the
level of interoperability of industrial vendors products. According to this, the
brick of the IOP Test Writer tool consists of two modules according to software
engineering best practices: the TestWriter and the Load/Store Manager. Each mod-
ule performs some specific tasks and shows a set of interfaces used to interact
with the other module. More specifically:

• the Load/Store manager module provides the interfaces to interact with the
external modules (for example the RailModel) and with the other technolo-
gies within the Crystal IOS. Load/Store manager module loads the test se-
quences produced by the Rail Model Brick and stores their results in the
system: such interaction is accomplished by means of IOS/RTP;

Chapter 3. An interoperable framework for testing automation 50

• the IOP Writer module provides the transformation of the test cases ex-
pressed in a Ecore language to a test cases expressed in IOP notation by
means of a Model-to-Text (M2T) transformation.

3.1.4 Log Analyzer

The Log Analyzer brick supports the V&V engineer to state if the execution of a
specific test passes or fails. Hence, the Log Analyzer has two different sources:
(1) a test case as generated by the Rail Model brick, (2) the logs created by the
execution of a test case (after its translation into the IOP notation) on the specific
testing environment. According to such inputs, the Log Analyzer may find if
logs and the test case match. Such operation would be pointed out to the V&V
engineer who is able to decide if the test passes, fails for an error in the system
model or fails for a misinterpretation of the requirements.

The Log Analyzer has a modular architecture according to software engineer-
ing best practices:

• the Load manager module which provides the interfaces to interact with
the external modules and with the other technologies within the Crystal
IOS. The Load manager loads the test sequences produced by the Rail Model
Brick: such interaction is accomplished by means of IOS/RTP;

• the Parsing and Analysis module that is used to parse the logs of the test
executions. Moreover, each log is analyzed according to the inputs and
then the fail/pass decision is taken for the single log.

• the Report module focusing on building up summary information about the
entire testing campaign and in generating supporting tables for traceability,
coverage, etc.;

• the Export module that has the role to export the report of a testing cam-
paign and the related execution logs. The target report will be conform to
widespread document formats (e.g. pdf files or spreadsheets).

3.2 Model-driven methodology for the automatic test

generation

Within the context of the CRYSTAL project, the work described in the thesis is
focused on the definition of a methodology for the automatic generation of test
cases. According to this, the methodology relies on model-driven principles and

Chapter 3. An interoperable framework for testing automation 51

exploits model checking techniques, in order to generate test cases automatically
from the SUT specifications. The activities composing the model-driven method-
ology are summarized in Figure 3.2 and are below discussed.

Domain analysis

Definition of DSMLs for
SUT specification

Definition of guidelines for
test specifications

Selecting the model
checking technique

Definition of the generation process

Mapping test cases on the
SUT specifications

Identifying the semantics gaps

Mapping process
definition

Development of
mappings

Mapping process is
not required

Domain concepts are covered

Modelling requirements are addressed
by the mapping process

A semantic gap exist

NO

YES

NO

YES

YES

NO

FIGURE 3.2: Methodology for automatic test generation

Domain analysis The first step is the analysis of the domain of interest. The
domain analysis is necessary to identify the requirements that a domain-specific
language should address, in order to describe the SUT. The domain analysis en-
ables three concurrent activities: (1) the definition of proper language to model

Chapter 3. An interoperable framework for testing automation 52

the SUT, (2) the definition of guidelines to model the specifications of tests and
(3) the choice of the model checking technique to adopt.

Definition of modelling languages and guidelines In order to fulfil recom-
mendations of international standards applicable in railway domain and accord-
ing to industrial needs, a state-based formalism for modelling the SUT specifica-
tion, named DSTM, has been defined.

According to this, during thesis activities, a language extending Hierarchical
State Machines [5], named Dynamic STate Machine (DSTM), has been defined.
Its peculiarity mainly resides in the semantics of fork-and-join which allows dy-
namic (bounded) instantiation of machines (processes) and parallel execution of
machines inside a box. Each state machine may be parametric over a finite set
of dynamically evaluated parameters; in addition the same machine may be dy-
namically instantiated many times without explicitly replicating its entire struc-
ture. DSTM allows for the description of the system structure in terms of its
states, possible inputs and obtained actions. In this way, the system behaviour
can be completely specified for every input in every state. Such activity can be
concluded only if all requirements identified during the domain analysis have
been addressed. The complete list of the domain requirements and the defini-
tion process of the language is addressed in Chapter 4.

DSTM also allows to model the requirements and add proper information on
the behavioural models for implementing requirements traceability. In fact mod-
elling activities are not only related to the modelling of the SUT since also test
specifications shall be considered. Thus, a set of guidelines to support modellers
in their definition has been defined. Guidelines can allow for a better under-
standing of the same test specifications and can enable to reuse all the experience
maturated in the field of the software testing. According to this, the guidelines
have been resulted in a set of Test Specification Patterns (TSPs) whose definition
is addressed in the Chapter 4.

Selecting Model Checking strategy According to the Section 2.2, a wide adopted
strategy for the automatic generation of test cases, is the one based on model
checking techniques. In fact, generation can be enable by modelling a require-
ment as a property of the system. The negation of such property, allows the
model checker to generate a counterexample, if the property is verified on the
system. Such counterexample represents the sequence of steps composing a test
case. In order to reuse an existing model checker and to avoid the development
of a custom one, there is the need to find the model checking language that best

Chapter 3. An interoperable framework for testing automation 53

fits characteristics of the defined DSML. The choice of an existing model checker
however, could lead to a possible semantic gap between the specification formal-
ism and the concepts provided by the model checking language adopted by it.
In case of semantic gap, a nested process is the overall methodology, must be fol-
lowed in order to resolve such semantic gap. The mapping process is a relevant
macro-activity that can be further divided in:

• Analysis phase, in which, target language (i.e. the one used by the chosen
Model Checker) is analysed in order to identify all the semantic gaps, e.g.
features of the high-level language that cannot be natively addressed by
corresponding target features;

• Mapping process that is in charge of fill the gaps, by mapping abstract con-
cepts of the source language in the corresponding of the target language.
This mapping process is addressed in Chapter 5.

• Development process which is realized by model transformations, a key
feature of model-driven approaches. The realization of the overall frame-
work, named Test Case Generator (TCG) is addressed in Chapter 6

Generation process and integration of results On the basis of the mapping
process and of the selected model checking technique, a generation process is
defined. During this step, existing tools (i.e. the Model Checker) and methods
are reused to generate the test cases. The process does not terminate with the
generation: in fact, results shall be integrated in the overall V&V process, in
order to perform further activities (e.g. coverage measurements, support to test
execution, log analysis and reporting).

3.2.1 The proposed framework for test generation

The above discussed methodology, shows the process that allows to the defini-
tion of a test case generation strategy based on model-driven principles. Accord-
ing to such methodology, an high-level architecture, showing principal elements
of the automatic test case generator here described, is discussed. In particular
the input of the methodology is the SUT specification, that can be modelled by
means of proper domain-specific languages, defined according to the domain
analysis. A formal model derived from the high-level SUT specification is pro-
duced and is given as in input to the Model Checker for the test cases generation.
The formal model is obtained by means of model transformations, according to
the model-driven nature of the approach. Then a model checker is exploited for

Chapter 3. An interoperable framework for testing automation 54

the generation of the test cases. The outcomes (i.e. the test cases) can be then inte-
grated in the overall V&V process. This step is realized by modelling them with a
proper domain specific language. Such language should provide the same level
of abstraction of the language used to model the SUT, in order to allow mod-
ellers to map the test cases on the SUT specification. The resulting high-level
architecture of the framework is depicted in Figure 3.1.

Data
Definition

Test
Specification

Model

DSML

Formal Model Model
transformation

Conforms to
Conforms to

Test Specification
Patterns

Uses

System model
Patterns

Uses

Model
Checker

Counterexample
(test case)

System
Model

Conforms to
DSML

Model
transformation

Model
transformation

System
specifications

Automatic
generation

of test cases

TC execution

Reports

Test
specifications

Test Cases Test scripts

Test
Logs

System
Implementation

Test case rejected
Uncorrect

specifications

Uncorrect
specifications

Test case
accepted

FIGURE 3.3: High-level architecture of Test Case Generation frame-
work

The architecture in Figure 3.3, shows also how the methodology discussed
in this work is integrated in the overall process of the CRYSTAL project. It in
fact covers only the activities related to the test generation process. Next chap-
ters discuss each aspect of the proposed framework. In particular, the Chapter 4
addresses the definition of domain-specific modelling languages and the guide-
lines recommended for the modelling of the test specifications. Chapter 5 dis-
cusses the conceptual gaps between the source language and the language of the
chosen model checker. The Chapter 6 then shows the development of the frame-
work and finally the Chapter 7 describes the application of the approach a real
word systems related to the railway control systems.

55

Chapter 4

Domain-Specific Modelling
Languages enabling test case
generation

As discussed in Chapter 1, the adoption of a state-based formalism is highly
recommended by international standards and industrial needs. International
standards, as the CENELEC [16], explicitly recommend the usage of state-based
formalisms, based on a sequential computation, to abstract the dynamic of a
state-transition control system. Despite the great number of works addressing
the usage of state machine and their extensions, the railway industry expressed
the need for a concise formal modelling notation, able to easily capture some
characteristic features of the specific domain, to be used in model-driven test au-
tomation environments. In particular, the railway domain in which the present
work is collocated, keeps out the possibility of using several UML diagrams and
prefers an ad-hoc formal language, developed from scratch, with the objective to
be as simple as possible and as rich as needed for modelling the behaviour and
the requirements of a railway control system for system testing purposes. State-
based formalisms, in fact, are able to define the control structure of a system in
terms of its states, possible inputs, and obtained actions in order to guarantee
that the control system behaviour is completely specified for every input in ev-
ery state. Thought their usage is not widely-accepted in industrial settings, Finite
State Machines (FSMs) are widely used in modelling systems where control han-
dling aspects are predominant. FSMs capture how the system moves from one
state to another as resulting from the reception of an input in a given state. In
order to enable a model-driven generation of test cases, new DSMLs have been
defined (Figure 4.1). This work is part of a wider research activity aiming at the
development of an interoperable testing environment for railway control system
[10]. In this context the test generation methodology discussed, is focused on
the definition of an automatic test generation strategy. With the respect to this,

Chapter 4. DSMLs enabling test case generation 56

state-based modelling languages have been defined, aiming at describing:

• The behaviour of an embedded critical control systems (Section 4.1)

• The generated test sequences or, in other words, the sequence of steps to
be performed on a real system which prove the conformance between the
system behaviour and its requirements (Section 4.2).

• Moreover, since the test generation process needs both the system model
and the test specification, a set of guidelines to model such specifications
has been also defined. These guidelines, named Test Specification Patterns,
are deeply described in Section 4.2.

FIGURE 4.1: Languages and patterns defined for the test case gen-
eration process

4.1 DSTM: Dynamic STate Machines

Within industrial settings, modelling languages need to be as simple as possible
and as rich as needed [43]. To achieve this, a modelling language should provide
a set of primitive constructs to allow for a natural modelling of the considered
system leading to an high-level of simplicity, without neglecting the avoidance

Chapter 4. DSMLs enabling test case generation 57

of ambiguities during the control system specification. However there is a un-
avoidable gap between the design specification and the actual implementation,
which results less useful the result of the design analysis. Thus, the complexity
of real industrial systems, entails the need for a formal specification framework
supported by a rigorous semantics. In this way, is possible to realize the sys-
tems design according to recommendations of international standards and well-
accepted formal analysis processes.

The first modelling language described in this chapter addresses the needs
expressed by a railway industry within the context of the project CRYSTAL. The
modelling language, named Dynamic STate Machine (DSTM) is a state-based
formalism, supported by a formal syntax and a well-defined semantics.

DSTMs are an extension of Hierarchical State Machines, originally proposed
by Alur et al. in [5]. The key features provided by the DSTM language can be
summarized in: a novel semantics for fork and join constructs that allows for the
dynamic instantiation of machines, the introduction of preemptive termination
and the possibility of passing parameters to machines, at activation time. Next
subsections, describe the modelling requirement whose satisfaction drove the
development of the language. Then the formal syntax and some hints of the
well-defined semantics are provided.

4.1.1 Domain and Modelling Requirements

The analysis of the application domain raised some relevant needs to satisfy, in
order to address the modelling of a railway control system. First the demand
for a state-based language, with a formal syntax and semantics. The modelling
language, in fact, has to provide a high level of expressiveness and be easy to
understand and use in an industrial setting.

It must provide primitives to express directly specific modelling issues, avoid-
ing counter-intuitive behaviours. In brief, the language must provide primitives
in order to model concurrent threads, dynamic instantiation and recursive ex-
ecution of processes, parameters passing, preemptive termination, messages re-
ception and sending. In addition it must allows for the definition of enumeration
types (in order to represent different message classes and their content) and the
evaluation of a single field of an enumeration variable. Logical operators must
be provided too, in order to express conditions. At the same time the language
must be small, also considering the usage of the models in the context of the test
case generation process (i.e., their transformation towards a model checker).

Chapter 4. DSMLs enabling test case generation 58

In this context, UML2 [UMLv2] represents one of the most adopted solutions.
In fact, UML2 provides State Machines which admit parallel execution through
the usage of composite states and regions. Using UML State Machine, the fork
(and join) is used in order to split (and merge) an incoming transition into two
or more transitions terminating on orthogonal target vertexes (i.e., vertexes in
different regions of a composite state). Recursive activation and dynamic in-
stantiation is not admitted. However UML2 has been discarded since dynamic
instantiation is only possible by combined usage of sequence, class and state ma-
chine diagrams, similarly other characteristics such as preemptive termination or
passing parameters to machines would be very hard to implement without using
several diagrams. Other solution have been reviewed: the Communicating Hier-
archical Machines (CHMs), a variant of Statecharts, introduced for succinctness
reasons. The idea behind CHMs, is to have a collection of finite state machines
(modules) having nodes and boxes. A transition entering a box represents a call
to one or more instances of another module. In a Statechart there is no notion
of module and instance. If multiple instances of the same module are required
by the specification, each instance has to be explicitly defined. On the other way
the introduction of modules allows to define Recursive State Machines (RSMs)
where a module can recursively call itself [alur]. Lets note that Recursive State
Machines are not in the category of Finite State Machines. In [LMP03] CHMs
has been extended introducing Dynamic Hierarchical Machines (DHMs) which
allow the dynamic activation of machines: any DHM M1 can send to a concur-
rent DHM M2 a third DHM M3, which starts running either in parallel with M1

and M2, or inside M2, depending on contextual information. According to the
above literature review, with the respect to the key issue of the dynamic instantia-
tion of machines, a new language has been defined. Such new language extends
the well-know formalism of the Hierarchical State Machines (HSMs) introduced
by Harel [47] and formalized by Alur [4].

A HSM H is a tuple K = ⟨K1, ...,Kn⟩ of modules, where each module Ki has
the followings elements

• Ni that is the set of Nodes;

• Bi that is the set of Boxes;

• Eni is a subset of Ni of entering nodes;

• Exi is a subset of Ni of exiting nodes;

Chapter 4. DSMLs enabling test case generation 59

• Yi ∶ Bx i → {1,. . . , n}⋆ assigns to every box a sequence (list) of machine in-
dexes;

• An edge relation Ei consisting of pairs (s; d) where the source s can be either
a node or a return of Ki , and the destination d is either a node or a call of
Ki.

The definition describes the main syntactical elements of an HSM. However,
in order to satisfy the requirement, raised from the domain analysis, we extended
HSMs by adding:

• Instantiation and modularity: a process may spread and handle multiple
threads of execution that run concurrently. Both the cases of blocking and
non-blocking call have to be modelled, as well as dynamic instantiation
of more instances of the same execution thread. In addition, it should be
possible to use divide-and-conquer approaches in modelling the system be-
haviour by defining proper sub-models and encapsulating them into ma-
chines.

• Preemptive termination: a number of different situations may occur and
error handling is a vital part of the control process. Preemptive transitions,
which lead to the immediate abortion of machines. Preemption (i.e., the
possibility for a running machine to interrupt the execution of another ma-
chine) should be modelled.

• Parameters passing: communication between running machines and their
caller is necessary and it is performed by message passing (through bounded
channels) and global variables. Nevertheless, in some cases it is necessary
that the calling machine provides a different value of a parameter to con-
current execution threads.

• Triggers and Conditions: reception of messages and timers expiration1 may
enable state transitions if guard conditions evaluate to true.

• Broadcast communication: it allows to model situations in which different
machines have to be triggered by the same event.

• Types and Variables: simple types (boolean, integer), string and enumer-
ation are needed. Types of messages can be modelled as enumerations of
integers.

1Timers are not explicitly addressed in this work. For testing purposes the expiration of a
timer is modelled by the reception of a special message.

Chapter 4. DSMLs enabling test case generation 60

Next section describes main features of DSTM by discussing its metamodel
and some running example.

4.1.2 DSTM metamodel

The DSTM metamodel, depicted in Figure 4.2, has been realized with an Ecore
diagram, according to the technology adopted to generate the model editor and
the graphical interface [73]. The metamodel combines the both control flow ele-
ments (left-hand side) and types and data types specification (right-hand side).

The core of the depicted metamodel is the Dynamic StaTe Machine (DSTM),
which represents the whole specification model. A DSTM is composed of dif-
ferent Machines, Types, Channels and Variables. Channels and Variables allow for
the machines communication. Channels are further divided in Internal and Exter-
nal channels; the formers allow for asynchronous communication via a bounded
size buffer the latters are used for broadcast communication from/to the envi-
ronment (a message has a lifetime of only one step and can be sensed the next
step after its generation). Channels scope is global, in fact they are declared at
the same level of the machines. Local Channels are not allowed by the language.
At the same way, DSTM provides Global Variables that are instantaneously up-
dated as consequence of a transition firing and the other concurrently executing
machines can sense the updated values instantaneously (i.e., in the same step).
Global Variables can be viewed as a shared memory among the machines.

According to the state-based nature of DSTM, each Machine is composed by

• Vertex: a vertex is each element of the model. Machine must have at least
two vertexes. Vertexes are abstract concepts, since different kinds can be
used in a machine. According to this, DSTM provides several kinds of
Vertexes:

– node: nodes of a machine;

– exiting node: exit (or final) nodes of a machine (a machine may spec-
ify more than one exit node in order to model different termination
conditions);

– entering node: entry nodes of a machine (a machine may specify more
than one entry node in order to model different entering conditions);

– initial node: default entry node of a machine (exactly one for each
machine);

Chapter 4. DSMLs enabling test case generation 61

FIGURE 4.2: DSTM metamodel.

– fork: splits an incoming control flow into more outgoing flows; it al-
lows for instantiating one or more processes either synchronously or

Chapter 4. DSMLs enabling test case generation 62

asynchronously with the currently executing process;

– join: merges outgoing control flows from concurrently executing pro-
cesses; it synchronizes the termination of concurrently executing pro-
cesses or allows to force the termination when a process is able to per-
form a preemptive termination;

– box: it is associated to one or more machines. A transition entering a
box models the invocation of the machine(s) associated with the box,
and a transition leaving a box corresponds to a return from that ma-
chine.

Each kind of vertex is realized by a related class in the metamodel; specifi-
cally the classes Fork, Join, Entering Node and Initial Node are inherited from
the abstract class PseudoNode, which encompasses the different kinds of
transient vertexes in the machine. Entering and exiting nodes define the
interface of a machine, in particular the first (pseudo) node of a process is
either the initial node or an entering node (when explicitly expressed in
the higher level box instantiating the machine); on the contrary, the last
state of a machine is an exiting node (which can also be used as returning
condition). The association between Box and Machine indicates the set of
machines, which are concurrently instantiated when entering the Box.

• Parameter: to address the need for the machine parametrization, a machine
can own a Parameter. Parameters can be used in the decoration of transitions
as parametric names for channels or variables, they are actualized when the
machine is instantiated.

• Transition: a transition represent a connection between two vertexes. In fact
the related classes Vertex and Transition are connected by two association
indicating both the source and the target vertex of a considered transition.
The class Transition is characterized by the following attributes: trigger, con-
dition and actions specify the decoration of the transition; is_preemptive de-
fines if a transition, entering a join pseudonode, is preemptive or not, and
par_instantiation is used to specify the substitution for the parameters, when
a machine is called and instantiated. Two associations from the Transition
class allow to specify a Entering Node (resp. a Exiting Node) for the transi-
tions, which enters (resp. exits from) Boxes. Moreover, as the Vertex class,
Transition provides the attribute requirements that allows for the annotation
of system requirement on the model. Requirements are treated as strings,

Chapter 4. DSMLs enabling test case generation 63

since the above attribute records only identifiers of requirements. Con-
straints are defined on Transition, not represented in Figure. 4.2 for read-
ability purpose, in order to allow only the following kinds of Transitions as
follows:

– implicit transition: a transition from an entering pseudo-node to one
node of a machine (only one of such transitions is allowed from the
same entering node); the specification of trigger and condition is not
allowed;

– internal transition: a transition between two nodes of the same ma-
chine;

– internal entering fork: a transition from a node to a fork pseudonode
of a machine;

– internal asynchronous fork: an asynchronous transition from a fork
pseudonode to a node of a machine; the specification of trigger and
condition is not allowed;

– internal entering join: an internal transition from a node to a join
pseudo-node of a machine; the specification of actions is not allowed;

– internal exiting join: a transition from a join pseudonode to a node of
a machine; the specification of trigger and condition is not allowed;

– return by default: a transition exiting from a box; the specification
of trigger and condition is not allowed and, if it enters into a join
pseudonode, actions are not allowed either;

– return by exiting: a transition exiting from a box, which specifies
a specific exiting node of the instantiated machine; the specification
of trigger and condition is not allowed and, if it enters into a join
pseudonode, actions are also not allowed;

– return by interrupt: a transition exiting from a box via an interrupt
trigger event; the specification of the trigger is required, while the
specification of condition is not allowed and, if it enters into a join
pseudonode, actions are not allowed either;

– call by default: a transition entering into a box (instantiation via the
initial node); if the source is a fork or a join pseudonode then the spec-
ification of trigger and condition is not allowed;

– call by entering: a transition entering into a box, which specifies a spe-
cific entering node of the instantiated machine; if the source is a fork

Chapter 4. DSMLs enabling test case generation 64

or a join pseudonode then the specification of trigger and condition is
not allowed.

Note that instantiation of parameters is allowed only for call by default and
call by entering transitions, namely the only kinds of transitions instantiat-
ing machines. Furthermore, in case of call by entering transitions, the en-
tered boxes can instantiate only one machine, while in case of call by default
transitions the entered boxes can instantiate multiple machines.

With the respect to the data-flow, DSTM allows for the definition of own
datatypes. The Type class, inheriting from the NamedElement is composed by
tSimpleType and tMultiType. A tSimpleType can be further divided into basic types
(tBasic) or a compound types (tCompound). Basic types are tIntegers (the usual in-
teger numbers), tChannels, (channel names) and enumeration types tEnums. A
compound type (tCompound) is a structured type composed of tBasic types (i.e., a
record of basic types). Notice that the same basic type may occur more than once
in the compound type. tMultiType can be composed by different simple types.
Global Variables can only be typed as basic types. According to the metamodel
(4.2), Channel can be either a cInternal or a cExternal type. With the respect to
a channels, is possible to distinguish between its type, which is the basic type
tChannel, and the type of messages conveyed by the channel. Messages con-
veyed by a channel (see the association between Channel and Type) can have any
instance of tBasic, tCompound or tmulti-type as type. Note that all the containment
relations are bidirectional: a contained element has a pointer to its container; in
this way, for example, each Vertex and each Transition has visibility of the con-
tainer Machine.

The aim of DSTM is the modelling of the internal behaviour of embedded
critical control systems. Below some running examples, representing abstract
machines, are provided, in order to show the expressive power of the language.

In Figure 4.3 a machine M0 is represented. M0 has the set of nodes (depicted
as round boxes) {a0, b0, c0, d0,

e0, f0}, a box bx01 (depicted as a rectangle), an initial node (depicted as a filled
bullet), an entering node en01 (depicted as a circle) and a set of exiting nodes
{ex01, ex02, ex03} (depicted as crossed circles). Transition t01 has trigger τ01,
condition γ01 (between square brackets) and action α01. The transition from the
initial node to node a0 is an implicit transition; the transition t01 is internal, the
transition t03 is a call by default transition (it leads to a box); the transition t04 is
a call by entering transition (it leads to an entering node of bx01); the transition
t05 is a return by default transition (without trigger); the transition t06 is a return

Chapter 4. DSMLs enabling test case generation 65

FIGURE 4.3: Example 1

by exiting transition (leading from an exit node of bx01); the transition t07 is a
return by interrupt transition (with trigger). The firing of t03 or t04 instantiates
the machine M1 depicted in Figure 4.4. The machine M1 is proposed to exem-
plify fork and join transitions. In particular, the transition t11 is an internal fork
transition (leading to a horizontal bar representing the fork pseudonode); the
transition t12 is an asynchronous fork (it leads to a node); the transition t13 and
t14 are both call by default transitions; the transition t16 is an internal entering
join (taking from a node to a join pseudonode, represented as an horizontal bar);
the transitions t17 and t18 are return by default transitions joining with transition
t16; transition t17 leads to a crossed circle overlapping the join bar qualifying the
transition t17 as a preemptive transition.

In Figures 4.5, a machine M4 is shown, which exemplifies the (dynamic) in-
stantiation of a parametric machine M5, associated with the box bx41. The in-
ternal entering fork transition t40 is triggered when a message is received along
channel c. When the transition fires, the received message on c is stored in the
variable x and counter cont is incremented by 1. The call by default transition
t42 instantiates the parametric machine M5, associated with parameter Par1. At
call time, parameter Par1 is substituted with the current value of x (i.e., a name
of a channel) previously received on channel c.

Transition t41 is an internal asynchronous fork transition (its target is a node),
which, combined with t40, determines a loop containing a fork, which is not fol-
lowed by a join. This pattern of transitions, which is usually not allowed in
standard state transition diagrams, allows to dynamically generate a (potentially
unbounded) number of instances of the parametric machine M5, whose param-
eters are assigned to values by possibly different parameter instantiations. In the

Chapter 4. DSMLs enabling test case generation 66

FIGURE 4.4: Example 2

example of Figure 4.5, each call to box bx41 executed by transition t42 may sub-
stitute a different value to Par1, depending on the current value of variable x,
which is assigned by transition t40 on entering the fork node.

MachineM5, depicted in Figure 4.6, can perform some local activities sending
a value along the channel name associated to Par1 at instantiation time, or can
instantiate machines M6 and M7 in order to complete its activities. In this case,
at instantiation time, Machine M5 assigns the current value of Par1 to Par2 of
machine M6, and to Par3 of machine M7.

FIGURE 4.5: Example 3

Chapter 4. DSMLs enabling test case generation 67

FIGURE 4.6: Example 4

4.1.3 Formal syntax

As discussed in the chapter introduction, a modelling language for embedded
critical control system, needs to be supported by a formal syntax and a well-
defined semantics, in order to avoid ambiguousness during the system mod-
elling activities. This subsection, provides the formal syntax, defined for DSTM,
both for the control and the data flow part of the language.

As stated in Subsection 4.1.2, DSTM provides simple and multi types. Simple
types, are the composition of:

• Basic types: the set of basic type, BT = {Int,BT1, . . . ,BTk,Chn}, provides a
type Int for the integers, a type Chn for channels names, and a set of user
defined enumeration types BT1, . . . ,BTk. The domain D(Int) of integers
is Z, the domain D(Chn) is a set of channel names C = {c1, . . . , ch}, and
the domain D(BTi) of enumeration type BTi is a set of labels {li1, . . . , lisi}.
The union of the domains of the basic type is denoted as D(BT). For each
basic type a default value is provided in the corresponding domain. For
this purpose the language introduce a function default ∶ BT→ D(BT).

• Compound types: A compound type CT = (BTj1 ,⋯,BTjk) is defined as a
tuple of basic types BTji , for i ∈ [1, . . . , k]. Each element of the domain
D(CT) of CT is a tuple of the form ⟨d1, . . . , dk⟩, where dz ∈ D(BTjz) for
z ∈ [1, . . . , k]. In other words, the domain D(CT) is the set of tuples of
elements of the basic types composing it.

Multi-types, instead, are the composition, by means of a union operator, of
simple types. A multi-type MT = {STj1 ,⋯, STjz} groups together a set of simple

Chapter 4. DSMLs enabling test case generation 68

types, thus allowing the domain of the resulting type for elements belonging to
the domain of any of the simple types STji , with z ∈ [1, . . . , k]. Hence, the domain
of MT corresponds to the union of the domains of the composing types. The set
of all type is denoted as T.

The communication among the machines, is allowed by Global Variables and
Channels. Each channel name c is associated with a concrete channel ĉ. The set
of concrete channels is denoted by Ĉ. Channels allow for asynchronous com-
munication both with the environment and among internal components via a
bounded buffer. Therefore, there is a function bd ∶ C → N assigning the bound
of the buffer associated with any channel name. Each concrete channel has an
associated type, either a simple type or a multi-type. Formally, type ∶ Ĉ → T. The
type of a concrete channel is actually the type of the message conveyed by the
concrete channel. The domain of the contents of a concrete channel ĉ ∈ Ĉ (i.e.
th contents of the bounded length buffer associated with the channel) is the set
of sequences of length at most bd(c) of elements of its associated type, namely
D(ĉ) = (D(type(ĉ)))≤bd(c). In order to keep track of the type of the corresponding
concrete channel, the type Chn of the channels names can be further decorated
with the type of the named channel. Given a channel ĉ of type T , we denote with
Chn[T] the decorated type of the name c of ĉ. We denote with BT+ the set of
decorated basic type, containing type Int, the enumeration types BTi and all the
decorated types for channel names of the form Chn[T], for T ∈ T.

As stated above, Channels, can be further divided in internal and external.
channels. Internal channels are used for communication among internal compo-
nents and the set of their names is CI ⊆ C. External channels are used to interact
with the environment and the set of their names is CE ⊆ C.

The set of internal and external channels are mutually disjoint and form a par-
tition of C (C = CI ∪CE) In addition, the bound of external channels is restricted
to 1, i.e., bd(c) = 1, for every c ∈ CE .

With the respect to the variable, let X be the set of (global) variables and P

a set of parameters. A typing function type ∶ X ∪ P → BT+ assigns a decorated
basic type to each variable and parameter: variables and parameters of com-
pound types are not allowed. For each variable parameter x (parameter p), the
domain of x (p), in symbols D(x) (D(p)), coincides with the domain D(type(x))
(D(type(p))) of its type.

In the following we introduce the syntax of triggers, guards and actions. Pre-
liminary, we define the notion of terms, a notion which occurs both in definition
of guards and actions. Terms are freely constructed over variables, parameters,
domains of basic types (i.e., basic types literals) and a set Op1 of unary operators

Chapter 4. DSMLs enabling test case generation 69

(e.g., ++, −−, ...) and a set Op2 of binary operators (like, e.g., +, −, ∗, /, ...).
More formally, the set of terms over the parameters in P , in symbols TrmP ,

is defined as follows

trm ∶∶= x ∣ p ∣ Ti ∶∶ l ∣ Chn ∶∶ c ∣ d ∣ len(c) ∣ �1 trm ∣ trm �2 trm

where x ∈ X , p ∈ P , l ∈ D(Ti), c ∈ D(Chn), d ∈ D(Int), �1 ∈ Op1 and �2 ∈ Op2.
Notice that an enumerative literal is prefixed by its type, and a channel name is
prefixed by type Chn. The term len(c) denotes the actual length of the buffer
associated with channel c.

In order to have admissible term constructions using unary and binary opera-
tors (which, for simplicity, are assumed to have only integer operands), each term
has a type. Terms with undefined type are not admissible. The type Type(trm)
of a term trm is defined as follows:

• Type(x) = type(x) and Type(p) = type(p);

• Type(Ti ∶∶ l) = Ti, Type(Chn ∶∶ c) =Chn, Type(d) = Type(len(c)) = Int;

• Type(trm1 �2 trm2) = Type(�1 trm1) = Int, if trm1 and trm2 are of type Int,
undefined otherwise.

A term is well-typed if its type is defined. In the following an assumption stating
that all terms under consideration are well-typed is made.

The definition of action as a sequence (possible empty) of atomic actions
is provided. An atomic action can take one of the following forms: assign-
ment of a term to a variable; the sending of a tuple of values over a channel
(γ ! ⟨trm1, . . . , trmkγ ⟩); reading (and removing) a tuple of values from a channel
and storing them into variables (γ ? ⟨η1, . . . , ηkγ ⟩); reading a tuple of values from a
channel and storing them into variables without altering the content of the chan-
nel (γ [?] ⟨η1, . . . , ηkγ ⟩). Each element of the tuple ⟨η1, . . . , ηkγ ⟩ is either a variable,
to which the corresponding element within the message is assigned, or the don’t-
care symbol _ to skip the corresponding element within the message. The set AP

of atomic actions over the set of parameters P is, therefore, defined as follows:

act ∶∶= x ∶= trm ∣ γ ! ⟨trm1, . . . , trmkγ ⟩ ∣ γ ? ⟨η1, . . . , ηkγ ⟩ ∣ γ [?] ⟨η1, . . . , ηkγ ⟩

where x ∈X , type(x) = Type(trm), γ ∈ P ∪C, type(γ) =Chn, ηi ∈X ∪{_} and if γ ∈
C, then type(γ̂) = (Type(trm1), . . . ,Type(trmkc)). Notice that, since parameters
can be assigned to a channel name only at runtime no static type-checking can

Chapter 4. DSMLs enabling test case generation 70

be defined for these cases. In addition, parameters cannot be assigned a value by
an action.

An action is a sequence of atomic actions, with ε denoting the empty se-
quence.

α ∶∶= ε ∣ a;α with a ∈ act.

Now is possible to defined the set of triggers. A trigger over P is a boolean
expression freely constructed from a set of events (an event is essentially the
availability of a message on a channel) by means of standard connectives using
parameters in the set P . The definition is as follows:

ξ ∶∶= τ ∣ γ? ∣ γ?T ∣ ξ ∧ ξ ∣ ξ ∨ ξ ∣ ¬ξ with γ ∈ C ∪ P

where τ is the silent trigger (no event is required for triggering), while a trigger
of the form γ? (resp., γ?T) signals the presence of a message (resp, a message
of type T) in channel γ. An event of the form γ? is sensed when a message is
conveyed in channel γ, while the event γ?T allows to sense whether a message
of a specific type is present in the channel, in particular when the type of the
channel is a multi-type.

Lets consider now the syntax of guards. A guard over a set of parameters
P is a boolean expression freely constructed from a set of atomic guards by
means of Boolean connectives. Lets consider a concrete channel ĉ of (simple)
type (BT1, . . . ,BTk), atomic guards of the form c[?⊺] and c[?�] check whether the
(buffer of) channel ĉ is full or empty, respectively. Moreover, if trm1, . . . , trmk ∈
Trm ∪ {_} are terms, an atomic guard of the form c[?⟨trm1, . . . , trmk⟩] checks
the content of the message contained in the head of (the buffer of) the channel,
namely, for all i ∈ [1, . . . , k], either trmi = _ (the i-th component of the structured
message is ignored) or the i-th component of the message at the head of chan-
nel ĉ is equal to the value of term trmi, which must be of type BTi. In addition,
an atomic guard can compare the values of two terms with respect to standard
equality and ordering relations (if ordering relations are considered, terms are of
integer type).

The formal syntax of guards is as follows:

φ ∶∶= True ∣ γ[?⊺] ∣ γ[?�] ∣ γ[?⟨trm1, . . . trmkc⟩] ∣ trm ⊙ trm ∣ φ ∧ φ ∣ φ ∨ φ ∣ ¬φ

where γ ∈ C ∪ P and ⊙ ∈ {≥,≤,=}.
Let ΞP , ΦP andAP be the syntactic categories of triggers, conditions and actions,

Chapter 4. DSMLs enabling test case generation 71

respectively, over the set P of parameters. An element of ΞP (resp. ΦP , AP) is a
trigger (resp. condition, action) expression.

Finally, the syntactic category of parameter substitutions has to be introduced.
A parameter substitution function over P̄ ⊆ P , `P̄ ∶ P ⇀ TrmP̄ , is a partial function
whose domain is the set of parameters P and the range is the set of a terms over
P̄ . For instance, the parameter substitution function associated with transition
t51 in Figure 4.6 assigns the (parametric) term Par1 to both parameters Par2 and
Par3. In this case, the domain P of the parameter substitution function contains
both Par2 and Par3, while the range is the set of terms TrmP̄ , where Par1 ⊆ P̄ .
Let ΥP̄ denote the set of possible parameter substitutions over P̄ .

The definition given above, allow to formally define the notion of Dynamic
State Machine:

Definition 1 (Dynamic State Machine). A DSTMD is a tuple ⟨M1, . . . ,Mn,X,C,P ⟩,
where:

• X (resp. P and C) is a (finite) set of variables (resp. parameters and channels);

• M1 is the initial machine over X , C (no parameters are allows in the initial
machine);

• Mi, with i ∈ {2, ..., n}, is a machine over X , C and P of the form

⟨Pi,Ni,En i,df i,Ex i,Bx i, Yi,Fk i,Jn i,Λi⟩ , where:

– Pi ⊆ P is the local set of parameters of machine i;

– Ni is a (finite) set of nodes and Ex i ⊆ Ni is a set of exiting nodes;

– En i is a (finite) set of entering nodes;

– df i ∈ En i is the initial node (default);

– Bx i is a (finite) set of boxes;

– Yi ∶ Bx i → {1,. . . , n}⋆ assigns to every box a sequence (list) of machine in-
dexes;

– Fk i is a (finite) set of fork (pseudo) nodes;

– Jn i is a (finite) set of join (pseudo) nodes;

– Λi = ⟨Ti,Srci,Deci,Trgi, Insti⟩ is the structure defining the set of transitions
of Mi, where:

* Ti is a (finite) set of transition labels;

Chapter 4. DSMLs enabling test case generation 72

* Srci ∶ Ti → Source i associates a source to each transition label, where
Source i = (Ni∖Ex i)∪En i∪Bx i∪(Bx i×Ex(D))∪Fk i∪(Fk i×{↓})∪Jn i

and Ex(D) = ⋃1≤j≤nEx j ;

* Deci ∶ Ti → ΞPi×ΦPi×APi associates each transition with its decoration,
namely the trigger, condition and action of Λi;

* Trgi ∶ Ti → Target i assigns a target to each transition, where Target i =
Ni ∪ Bx i ∪ (Bx i × En(D)) ∪ Fk i ∪ Jn i ∪ (Jn i × {�}) and En(D) =
⋃1≤j≤nEnj ;

* Insti ∶ Ti ⇀ (ΥPi)∗ is a partial function assigning a sequence of parame-
ter substitutions over Pi to a transition.

Notice that all the elements of a machine instantiate a corresponding class in
the class diagram of Figure 4.2. In particular, Ni (resp., Ex i, En i, Bx i, Fki , Jni ,
Ti) contains instances of the class Node (resp., ExitingNode, EnteringNode, Box,
Fork, Join and Transition) associated with the instance Mi of the class Machine.
Moreover, the pairing of Fk i with symbol ↓ (resp. Jn i with symbol �) is used to
qualify a entering fork as asynchronous (resp. an exiting join as preemptive).

As an example, lets consider the DSTM D = ⟨M4,M5,M6,M7,X,C,P ⟩ in Fig-
ure 4.5 with X = {x, cont}, C = {c, c1, c2} and P = {Par1, Par2, Par3} (where
c1 and c2 are two possible channel names, which are supposed to be sent over
channel c and assigned to variable x by transition t40).

M4 = ⟨P4,N4,En4,df 4,Ex 4,Bx 4, Y4,Fk 4,Jn4,Λ4⟩ , where:

• P4 = {Par1};N4 = {S1}; Ex 4 = ∅; En4 = {df 4}; Bx 4 = {bx41}; Y4 = {(bx41,5)};
Fk 4 = {fk}; Jn4 = {jn};

• Λ4 = ⟨T4,Src4,Dec4,Trg4, Inst4⟩ is:

– T4 = {td, t40, t41, t42, t43, t44, t45};

– Src4 = {(td,df 4), (t40, S1), (t41, fk), (t42, fk), (t43, S1), (t44, jn), (t45, bx41)};

– Dec4 = {(td, (τ, T rue, cont ∶= 0)), (t40, (c?, cont < n, c[?]⟨x⟩)),
(t41, (τ, T rue, ε)), (t42, (τ, T rue, ε)),
(t43, (τ, T rue, ε)), (t44, (τ, T rue, cont ∶= -cont)), (t45, (τ, T rue, ε))};

– Trg4 = {(td, S1), (t40, fk), ((t41, ↓), S1), (t42, bx1), (t43, jn), (t44, S1), (t45, jn)};

– Inst4 ∶= {(t42,{(Par1, x)})}.

The definition of M5 can be given analogously, while M6 and M7 are left unspec-
ified and not reported in the example.

Chapter 4. DSMLs enabling test case generation 73

As shown in the metamodel, transitions allowed in a DSTM belong to pre-
defined typologies, based on the types of their sources, targets and decorations.
Specific typologies do not allow for triggers, actions or conditions in their dec-
oration. To this end, a machine Mi has well-formed transitions if each transition
t ∈ Ti complies to one of the following forms (all the constraints described in the
metamodel apply):

implicit transition: a transition from an entering pseudonode to a node:

• the source Srci(t) ∈ En i, the target Trgi(t) ∈ Ni;

• the decoration Deci(t) = ⟨τ,True, α⟩, with α ∈ APi ;

• Inst(t) = ε (no parameter instantiation is allowed)

internal transition: a transition between two nodes of a machine:

• Srci(t) ∈ Ni and Trgi(t) ∈ Ni;

• Inst(t) = ε;

internal entering fork: a transition from a node to a fork pseudonode of a ma-
chine:

• Srci(t) ∈ Ni and Trgi(t) ∈ Fk i;

• Inst(t) = ε;

internal asynchronous fork: an asynchronous transition from a fork pseudon-
ode to a node of a machine

• Srci(t) ∈ (Fk i × {↓}), Trgi(t) ∈ Ni;

• Deci(t) = (τ,True, α), with α ∈ APi ;

• Inst(t) = ε;

internal entering join: an internal transition from a node to a join pseudonode
of a machine:

• Srci(t) ∈ Ni, Trgi(t) ∈ Jn i ∪ (Jn i × {�});

• Deci(t) = (ξ, φ, ε), with ξ ∈ Ξ and φ ∈ ΦPi ;

• Inst(t) = ε;

internal exiting join: a transition from a join pseudonode to a node of a ma-
chine:

• Srci(t) ∈ Jn i, Trgi(t) ∈ Ni;

Chapter 4. DSMLs enabling test case generation 74

• Deci(t) = (τ,True, α), with α ∈ APi ;

• Inst(t) = ε;

return by default: a transition exiting from a box:

• Srci(t) ∈ Bx i and Deci(t) = (τ,True, α), with α ∈ APi ;

• if Trgi(t) ∈ (Jn i ∪ (Jn i × {�})), then Deci(t) = (τ,True, ε);

• Inst(t) = ε;

return by exiting: a transition exiting from a box, which specifies a specific exit-
ing node of the instantiated machine:

• Srci(t) is of the form (bx , ex), where bx ∈ Bx i and ex ∈ Ex j with j =
Yi(bx);

• Deci(t) = (τ,True, α), with α ∈ APi ;

• if Trgi(t) ∈ (Jn i ∪ (Jn i × {�})), then Deci(t) = (τ,True, ε);

• Inst(t) = ε;

return by interrupt: a transition exiting from a box via an interrupt trigger event:

• Srci(t) ∈ Bx i and Deci(t) = (ξ,True, α), with ξ ∈ ΞPi ∖ {τ}, and α ∈ APi ;

• if Trgi(t) ∈ (Jn i × {�}), then Deci(t) = (ξ,True, ε);

• Inst(t) = ε;

call by default: a transition entering into a box (instantiation via the initial node):

• Trgi(t) ∈ Bx i;

• if Srci(t) ∈ Fk i, then Yi(Trgi(t)) = j for some j ∈ {1, ..., n} Deci(t) =
(τ,True, α), with α ∈ APi ;

• if Srci(t) ∈ Jn i, then Deci(t) = (τ,True, α), with α ∈ APi ;

• if Yi(Trgi(t)) = j1⋯js, then Inst(t) = `1⋯`s for some parameter substi-
tutions `1, . . . , `s ∈ ΥPi and, for all i ∈ [1, . . . , s], `i is defined on all the
parameters in Pji ;

call by entering: a transition entering into a box, which specifies a specific en-
tering node of the instantiated machine:

• Trgi(t) is of the form (bx , en), where bx ∈ Bx i and en ∈ Enj with j =
Yi(bx);

• if Srci(t) ∈ Fk i ∪ Jn i, then Deci(t) = (τ,True, α), with α ∈ APi ;

Chapter 4. DSMLs enabling test case generation 75

• Inst(t) = ` for some ` ∈ ΥPi defined on all the parameters in Pj .

Note that every transition entering into a join pseudonode cannot perform ac-
tions (the decoration allows only the empty action). Actions associated with a
join transition are allowed only for the transition exiting from the corresponding
join pseudonode.

Finally, some restrictions in the use of fork and join transitions are intro-
duced, in order to guarantee that at each time instant there is at most one node
in which the control of a machine can be located. The following well formed-
ness constraints enforce a correspondence between join pseudonodes and fork
pseudonodes, requiring the synchronization of all the processes activated by the
corresponding fork transition. The correspondence from join to fork is total (i.e.,
every join has a corresponding fork) but neither onto nor injective. Indeed, a
fork may have no corresponding join (synchronization is not mandatory) or may
have more than one corresponding join (multiple synchronization forms). More
precisely, a machine Mi is well-formed if all its transitions are well formed and the
following constraints are satisfied:

1. If a box bx ∈ Bx i is the target of either a call by entering or a call by default
transition having as source a fork pseudonode, then

• there is no other transition entering in bx;

• each transition exiting from bxi (return by default, return by exiting or
return by interrupt) has a join pseudonode as target.

2. Each join pseudonode jn ∈ Jn i there is a single corresponding fork pseudon-
ode fk ∈ Fk i and

• if there is an asynchronous fork transition exiting from fk , then there
is an internal join transition entering into jn;

• if a box bx ∈ Bx i is the target of a call transition (call by entering or call
by default) exiting from fk , then either there is no exiting transition
from bx or there is at least a return transitions (return by default, return
by exiting or return by interrupt) from bx to jn.

The first constraint ensures that a box called by a fork transition cannot be
called in any other way and can only have exiting transitions leading to a join.
The second constraint enforces the correspondence mentioned above between a
join pseudonode and some fork pseudonode. It also requires that a machine M
performing an asynchronous fork, which gives the control back to the M , must

Chapter 4. DSMLs enabling test case generation 76

participate to all the possible join in correspondence with that fork, so as to en-
sure that a single control state of M results from the join. Moreover, a box bx

called by a fork either participates with an exit transition in all the join corre-
sponding to that fork, or it never exists.

For eample, the machine in Figure 4.5 is well formed. The transitions are
all well-formed and, in addition, the fork and join pseudonodes are in corre-
spondence: the asynchronous fork transition t41 corresponds to the internal join
transition t43 and and the entering by default transition t42 is in correspondence
with the exiting by default transition t44.

4.1.4 Formal semantics

To define the formal semantics of a DSML, several approaches can be followed.
According to aim of define a framework for the automatic generation of language-
based artefact, two main approaches are adopted in literature (BRYANT). The
first is the translation semantics in which the abstract syntax of the considered
DSML is mapped in the concrete syntax of the target language with a well-
defined semantics. This method, despite allows to reuse the experience of a well-
know and used existing language, implies two main problems: first the different
level of abstraction of the source and target language, and second its difficult
to drawback the outcomes of the target language to the level of the source lan-
guage. The second approach is to insert the semantics inside the abstract syn-
tax of the DSTM. Two relevant examples are Kermeta and several UML-based
DSMLs. Kermeta [57], in fact, allows to define operation on the concepts of
the metamodel. The generation is than supported by tool related to the Eclipse
Framework. With the respect to UML, instead, there are some attempts to insert
semantics, most of them relying on the introduction of constraints written using
Object Constraint Language (OCL) [18]. This work focuses on the first approach.
In fact, in order to automatically generate test cases model checking capabilities
to generate counterexamples have been exploited. This means that a language
equipped with a well-defined semantics is introduced. However, in order to
address the issues related to such approaches, a formal semantics, supporting
the defined domain-specific language, has been defined. The formal semantics,
in fact, allow to constraint possible behaviours of DSTM machines, in order to
avoid ambiguous ones.
Thus, the evolution of DSTM is described by means of Labelled Transition Sys-
tems (LTS). An LTS is a 4-tuple L = ⟨S,Σ,∆, S0⟩, where:

• S is a non-empty set of states;

Chapter 4. DSMLs enabling test case generation 77

• Σ is a non-empty alphabet of labels;

• ∆ is a transition relation, i.e., a subset of S ×Σ × S;

• S0 ⊆ S is a set of initial states.

With reference to a DSTM D (see Definition 1), s ∈ S represents the current
state of D including: (a) the current control locations, (b) the values of variables,
(c) the content of channels, (d) the set of events produced by actions. Thus, the
LTS in each step is always organized with a root node that represent the current
node of the main machine, intermediate nodes which can be: (i) the name of
a box, (ii) the name of a machine instantiated by the box addressed in its parent
node, or (iii) the name of a vertex which represents the current node of a currently
executing machine, addressed in its parent node. According to this organization,
the leafs of the LTS can be the nodes of the currently executing machines.

The formal definition of the semantics is not the main focus of this thesis
work. However, its definition is at the basis of the mapping process described
in the Chapter 5. This section provide the necessary background to support the
discussion of the above mentioned chapter and to better state the constraints
defined for DSTM.

According to this, there are some relevant aspects, of the DSTM formal se-
mantics, that can be summarized as follows:

DSTM Machine evolution The evolution context of a DSTM machine is a se-
quence of steps. A step is a maximal set of transitions which are triggered by the
current set of available events, with some constraints:

• a node or a box cannot be entered and exited simultaneously in the same
step (this is instead possible for pseudo nodes);

• events generated by the firing of a transition cannot trigger other transi-
tions in the same step but only in the next one.

Parametric instantiation DSTM allows for dynamic instantiation of paramet-
ric machines. This means that parameters are instantiated at execution time,
when call transition are performed. Thus, parameters, do not hold values dur-
ing the execution, but serve only as place holders for the actual values that are
dynamically substituted when a call operation is performed. To allow such be-
haviour a substitution function, associated with the corresponding call transi-
tion has been defined. As a consequence, in order to define the semantics of a
DSTM, the concept of ground machine has been introduced. A ground machine is

Chapter 4. DSMLs enabling test case generation 78

a machine where terms occurring in actions, triggers and guards do not contain
parameters. Ground machines are obtained from parametric ones by applying
the appropriate parameter substitutions.

Message exchange with the environment As stated above, the events gener-
ated by the firing of a transition cannot trigger other transitions in the same step
but only in the next one. This means that the messages generated during a step
and sent over an external channel cannot trigger other transitions in the same
step. This means that sequential firings of transitions are not allowed within a
step and only transitions affecting concurrent processes can be performed within
the same step.

Transition semantics A specific semantics for the transitions has been defined.
In particular, there are some transitions whose source and/or destination are
pseudonodes. When such transitions fire, the machine lead itself in a non-stable
state. Thus, in order to avoid the ambiguousness, there is the need to specify
system behaviour with the respect to these cases. The transition of the language,
that could lead to a non-stable state are:

• transitions exiting from an entering node;

• transitions exiting from the initial node;

• transitions entering in a fork or join.

In particular, the set of transitions crossing a fork can be seen as an hyper
transition taking from a source and leading to many targets simultaneously, and,
analogously, the set of transitions crossing a join can be seen as an hyper transi-
tion taking from many sources simultaneously and leading to a target. To man-
age such transitions the concept of Compound transition has been introduced. A
Compound transition(CT) is a pair of two sets of transitions: incoming transitions
and outgoing transitions; it is used to represent the evolution of the machine in the
cases above discussed. According to compound transition, three different cases
exist:

• Simple case: when a transition is between two nodes (or boxes), in the
related CT both the incoming transition and the outgoing transition sets
are made uniquely by the considered transition. The trigger, condition and
actions of the CT are give by those of the considered transition.

Chapter 4. DSMLs enabling test case generation 79

• Fork case: the transition entering a fork and the corresponding transitions
outgoing the same fork are grouped in the CT as follows: the incoming
transitions set coincides with the transition entering the fork while the out-
going transitions set is give by the set of the transitions exiting the fork.
In this the CT is executed as follows: when the transition belonging to the
incoming transition set is executable (trigger and condition are evaluated
true) it is taken and possible actions are hence executed; the outgoing set,
instead, is executed immediately after the previous one as well as the re-
lated actions, that are however executed in interleaving (that means with
non-determinism in the execution order).

• Join case: the transitions entering a join and the corresponding transition
exiting, are grouped in the CT as follows: the incoming transitions set coin-
cides with the transitions entering the join while the outgoing set coincides
with the transition exiting the considered join. The incoming transitions set
is executable when all the triggers and the condition of the transitions in it,
are evaluated true. When it happens, these transition are taken and the cor-
responding actions are executed in interleaving. After that, the transition
belonging to the outgoing set is taken and the related actions are executed.

Lets note that the outgoing transitions set is always executable since the transi-
tions composing it cannot have trigger and condition (constrained by the syntax).
In the simple case, actions are removed in the incoming transitions set and put in
the outgoing one, while, with the respect to the outgoing set trigger and condi-
tion are removed. In addition lets note that when more than one transition enter
a fork (respectively exit a join) different CTs are obtained, each one correspond-
ing to a single of these transitions.

4.2 TESQEL: Test SeQuEnce Language

The generation process described in this work aims at producing a set of test
sequences, describing the test specification given as input. These outcomes can
be, in turn, modelled using a state-based modelling language (Figure 4.1). In fact
test sequences can be viewed as an ordered list of state changes, named firings,
which can be grouped in a compound firings related to the semantic evolution
of the DSTM model. Next subsection describes the metamodel of the TESQEL
language.

Chapter 4. DSMLs enabling test case generation 80

4.2.1 The TESQEL metamodel

The TESQEL metamodel, depicted in Figure 4.7, is created using the Ecore lan-
guage. The main concept of the metamodel, is the TestSequence which corre-
sponds to a given test specification. A TestSequence is characterized by name,
refers to a set of initial vertexes of the DSTM model, a list of initial condition,
each of them stating the values of a set of system variables before the start of
the model analysis/execution and the related specification. Each TestSequence is
composed of a list of Compound Firings, representing a single atomic passage of
the DSTM model evolution: it is a sequence of single Firings.

The concept of Firing is related to the one of transition execution. A fire con-
sists in a passage from two vertexes belonging both to the same Box. Each firing,
in fact, has three traceability references to DSTM structural elements: the current
DSTM Vertexes, the DSTM transitions, crossed in the firing and the next DSTM
Vertexes. As the CompoundFirings, Firings own an attribute Order that is used to
trace the progressive number of the fired items. This attribute is also in charge to
support the graphical realization of the considered test sequence.

A can be further divided in several phases, each of them describing a specific
aspect of the firing itself. Moreover, a Phase, owns a order attribute, that allows
to trace the progressive number of the phases in the phases list of a Firing; Phases
are abstract concepts, that can be specialized in the following kinds:

• Trigger: representing the arrival of a message on a channel; while the chan-
nel name is specified in the mandatory field channelName, two cases are
considered: if message is null, it means that the trigger fires when any mes-
sage arrive on the channel; otherwise, a specific message type is waited.

• Condition: representing a condition that a variable fulfils which can belong
to the following cases:

– isFull: the condition is true when the channel specified in the Lvalue
field is full;

– isEmpty: the condition is true when the channel specified in the Lvalue
field is empty;

– variable: the condition is true when the variable Lvalue has the value
shown in Rvalue;

– message: the condition is true when a message arriving on the channel
Lvalue has the value specified in Rvalue.

• Action: representing the execution of a statement occurring during the pas-
sage through a transition; it belongs to the following cases:

Chapter 4. DSMLs enabling test case generation 81

– send: a message whose value is specified in Lvalue is send on the chan-
nel whose name is in Lvalue;

– assignment: the value of the variable Lvalue is set to Rvalue;

– read: the action reads the value of the first message present on the
Lvalue channel (consuming the message itself);

– check: the action reads the value of the first message present on the
Lvalue channel (without consuming the message itself).

With the respect to the Action, CompoundFiring can be composed by sev-
eral IOmessages in order to differentiate internal messages from the messages
exchanged with the environment.

The CFOrder (FOrder) class has been added to the metamodel, in order to
relate consecutive compound Firings (Firing) by means of an arc. This, allow the
graphically realization of a model instance of of a test sequence, modelled with
TESQEL

FIGURE 4.7: The TESQEL Metamodel

4.3 Test Specification Patterns

The scientific literature related to model driven techniques, mainly addresses the
definition of languages and methodologies for model development and test case
generation algorithms. Only few works, instead, address methods for define test
specifications, in order to reduce the complexity of the modelling activities. Ac-
cording to this, the concept Test Specification Pattern (TSP) has been introduced

Chapter 4. DSMLs enabling test case generation 82

[41]. TSPs are a way to gather the previous and consolidated experiences in test-
ing and provide a set of guidelines for test specification. In order to define a set
of TSPs two main source have been considered: (1) requirement specifications
of critical system (and in particular, since the work is partially involved in the
CRYSTAL project 3, ERTMS/ETCS specifications are considered) and (2) scien-
tific literature (e.g., [30, 1]). With the respect to this second, the TSPs are inspired
to the works of Dwyer at al. [30]. Dwyer at al., in fact, define a set of patterns
to reuse property specifications for finite state verification where properties are
specified with temporal logics. TSPs, instead, are expressed by state-based mod-
els and translated into Promela never claims in order to enabling the automatic
test generation. Despite the words assonance, the concept of TSP deeply differs
from “test pattern” or design pattern in software testing: testing patterns, in fact,
are used to define testing strategies; the work in [87] defines a set of testing pat-
terns from classical design patterns in order to find “recurring” errors. There ex-
ist also other works extending the Dwyer’s property specification patterns; [44]
extends Dwyer patterns to probabilistic properties, Tsai et al [1463211] define
Validation Patterns for the verification of embedded systems and Mondragon et
al. ([69]) apply specification patterns for run-time monitoring of the system be-
haviour. With respect to the above mentioned specification patterns, TSPs are
oriented to a testing-based form of verification. This feature is the main semantic
difference between TSPs and the specification patterns in [30].

The set of TSP described below does not want to be exhaustive since they are
part of a work in progress.

TSPs have been divided into two categories and are listed in Table 4.1: (1)
Control Patterns address properties related to the evolution of the system. Related
concerns are parallelism, sequence and/or loops; (2) Data Patterns refer to the
management of data within the property to verify (e.g., set and evaluation of
variables inside the test specification). In the following a model element can be
both a transition or a state. Indeed, the meaning for covering a model element
indicates respectively the passage through a transition and the reaching of a state.

In order to show the process that allows to define test specifications using
TSPs, a simplified version of a car braking system is provided in Figure 4.8.

The car braking system has two Boolean inputs which represent the decision
to accelerate or brake. Upon acceleration, the car starts to move, with either slow
or fast velocity. Upon braking the car immediately stops. Among all TSPs, one
of the most important is the Cover pattern. The Cover pattern is adopted to verify
that a given step, that could be a transition or a state, is crossed within a test
sequence. With the respect to the considered system, Figure 4.9 represent test

Chapter 4. DSMLs enabling test case generation 83

TABLE 4.1: List of Test Specification Patterns

Name Pattern
Control Patterns

Sequence Specifies an ordered sequence of steps related to the test
specification. The test sequence generated according by
this pattern must shows the the sequence of steps in the
specified order.

Cover Specifies that a model element is covered at least once
within a specific point of the test specification.

NotCover Specifies that a model element is not reached before the
fulfillment of the following step of the test specification
(within a specified Sequence).

Next Specifies that two model elements are reached in a close
succession.

And Checks that two or more sub-steps are accomplished re-
gardless of their order.

DetChoice Allows for choosing between two alternative sub-steps
with respect to a condition.

Memory Considers some alternative steps that, according to which
step is fulfilled, address the future steps of the test speci-
fication to fulfill.

Loop Specifies that a model element is reached for a defined
number of times.

Any Allows for verifying that at least one of the model el-
ements specified within this pattern is reached at least
once.

Data Patterns
Test Checks the value of a variable (of the model of the sys-

tems or of the test specification) to address a choice in the
specification future behaviour.

Set Assigns the value of an internal variable of test specifica-
tion.

Assert Allows to wait until a variable assumes a specified value.

specification of the requirement “When brakes are pressed a car must stop”.
Such specification requires that the test specification should if the brakes are

pressed within the "FAST" state, the consecutive state reached is the "STOP" state.
This requirement suggest the adoption of a Next pattern. The Next pattern indi-
cates that considered steps must be cover consecutively. According to this, three
covers are used: the first cover for "FAST" state, the second to cover the transi-
tion "T8" and the third to cover the state "STOP". Indeed, if the requirement is
“During its movements car can accelerate or stop", the test specification can be
made by means of AND pattern In fact, the requirement states that if the system
is in a "SLOW" state (basic movement of the car) it can reach the "FAST" state
or the "STOP" is any order. The AND pattern, representing such requirement is

Chapter 4. DSMLs enabling test case generation 84

FIGURE 4.8: Car braking systems

FIGURE 4.9: A next pattern for car braking requirement

depicted in Figure 4.10
In this work, the only TSP adopted is the Cover pattern. In fact, according to

the needs of CRYSTAL project, in which this thesis work is partially involved,
the only elements on which requirements can be tagged are the states and the
transitions. Thus, since no order is specified, TSP can be modelled using only
Cover patterns. Next chapter addresses the mapping process on which the testing
strategy, described by the present work, relies. Among the mappings also ones
related to the gap between the high level representation provided by TSPs and
the concrete concepts of Promela, are discussed.

Chapter 4. DSMLs enabling test case generation 85

FIGURE 4.10: The use of AND pattern for a car braking requirement

86

Chapter 5

From DSTM to Promela

In the previous chapter the formal definition of DSTM has been addressed. DSTM
extends Hierarchical State Machine by introducing a novel semantic for fork and
join, in order to allow for dynamic instantiation, preemptive termination and
the possibility to pass parameters to machines at activation time. This chapter
is focused on the mapping process, between the DSTM language and the target
model checking language, chosen according to objective of automatically gen-
erate test cases. The mapping process is conceived to be as general as possible,
even some hypotheses, specific for the chosen model checking language, are in-
troduced. With the respect to this last, the chosen model checking language is
Promela (Process or Protocol Meta Language) introduced with the Spin Model
Checker by Holtzmann [Holzmann1997].

The Spin Model Checker supports many of the control and data flow con-
structs specified by the DSTM language, as buffered message passing, communi-
cation via shared memory and dynamic instantiation of processes. These features
make Spin a logical choice to tackle the problem at hand. In addition, Spin is a
well known on-the-fly model checker, able to handle efficiently problems of large
size supporting the high level specification of system models with the Promela
language. Despite some similarities exist between the two languages, a non-
straightforward mapping process has been defined during the definition of the
approach. Clark [20] defines the concept of mapping as relationships or transfor-
mations between models or programs written in the same or different languages.
This is a key point of model driven techniques, since mapping processes are of-
ten at the basis of the model transformations. Address a mapping process related
to the specification of a SUT can lead to several issues: (1) the the different level
of abstraction between the source and the target language [15], which can lead to
a semantic gap and (2) and the level of abstraction of the outcomes of the trans-
formation process, which should be defined according to knowledge of the SUT
specification modeller. This can allow the modeller to easy analyse the outcomes
with the respect to the specified system. According to this, several approaches

Chapter 5. From DSTM to Promela 87

exist to perform a mapping process. Among them, this work focused on a unidi-
rectional mapping [20] process which means that no dependencies are considered
between the source and the target models. Thus, every time a change is made on
the source language, the mapping process has to be executed again. The sections
of this chapter address each aspects of the mapping process between features of
DSTM and the constructs provided by Promela.

5.1 Mapping process: an overview

In order to better understand the overall mapping process, this section summa-
rizes the principal modelling issues which have been addressed in the translation
of DSTM machines in Promela.

Machine structure As already stated in Section 4.1.1, DSTM extends the Hier-
archical State Machine formalism introduced by Harel [47]. This means that the
structure of the machine modelled with DSTM is strongly hierarchical. A DSTM
machine, in fact, consists of sets nodes, pseudonodes, boxes and transitions for
which there is the need to find corresponding concepts in Promela. According
to this, a first fundamental step has been to find the way to map a generic HSM-
based structure into Promela. With the respect to this, Promela provides the
concept of Process, that is the basic constructs to execute model behaviours. A
process, in fact, allows the syntactical structure of a DSTM machine, even if this
is not a straightforward process. The syntactical mapping that allows to trans-
late the machine structure of the DSTM in the process structure of Promela is
discussed of the Section 5.2. Next paragraph discuss how DSTM addresses the
mechanism of instantiation, already provided by HSMs.

Dynamic Instantiation The original formulation of HSMs already provide the
concept of machine instantiation. However, according to the work of Alur [6], the
kind of instantiation provided static. In fact, the instantiation process, consists
in a systematic substitution of the boxes, with the entire model corresponding to
them. The main consequence of such process is that it can lead to a state-space
explosion even for medium-complex system. Moreover, approaches found in lit-
erature, related to HSMs instantiation, provide that the caller machine is always
suspended in order to wait the callee machine termination. DSTM overcomes
this mechanism by introducing an innovative approach of the dynamic instan-
tiation of modelled machines. Furthermore, DSTM provides also the recursive
instantiation and parallel execution of machines, giving to fork and join a novel

Chapter 5. From DSTM to Promela 88

semantics. Hence this formalism is substantially different from Hierarchical Ma-
chine (which not permit recursion) and also from other HSMs extensions as Re-
cursive Machines (which not permit parallelism) and Communicating Machines
(which not permit recursion and dynamic instantiation). Concepts of fork, join
and boxes introduce a hierarchical structure inside the models. At the contrary
Promela, as the largely part of model checkers languages, relies on the concept of
Kripke structure, that is a way to represent reactive systems for model checkers.

Let AP be a set of atomic propositions [21]. A Kripke structure M over AP is
a four tuple M = ⟨S,S0,R,L⟩ where:

1. S is a finite set of states;

2. S0 ⊆ S is the set of initial states;

3. R ⊆ SxS is a total transition relation, that means that for every state s ∈ S
there is a state s′ ∈ S such that is defined R(s, s′);

4. L ∶ S → 2AP is a function that assigns a label to propositions that are true in
the state S.

The definition of Kripke structure clearly shows the assonance between HSM-
based formalism and model checking language but also underlines that there
is crucial difference in the hierarchical structure. As discussed above, several
approaches can be used to flatten a hierarchical model:

• Replacing each box with the related machine. This approach, however
could lead to an high state explosion: in fact, when multiple entry or ex-
iting points are defined, there is the risk to repeat the same machine several
times

• Removing hierarchical structures with some simple nodes and/or transi-
tions, with a special semantics. These approaches could lead to concur-
rency problems, due to the fact that they are conceived to execute simulta-
neously more machines.

The approach followed in this thesis is the second one, and its deep addressed in
Section 5.4.

Termination and preemption Another feature of the proposed specification
formalism is the possibility to terminate the machines, using some nodes with
a specific semantics (i.e. exiting nodes). Moreover, with the respect to HSMs in

Chapter 5. From DSTM to Promela 89

which the caller machine suspends its execution when a new machine in instan-
tiated, in DSTM there is the possibility to concurrently execute both the caller
and the callee machines. This introduces a synchronization problem since the
caller must know the termination state of its callee. Furthermore, DSTM provides
the possibility of preemptive join, which means that when a machine terminates
with preemption, ask for the termination of one of the instantiated machines
even if they are not complete their execution. Promela does not provide any
primitive to terminate processes. Thus, in mapping process, the need to realized
the termination mechanism of DSTM in Promela has been addressed.

Machine communication DSTM provide a novel communication mechanism
with the respect to the HSMs. These last, in fact, allow for broadcast commu-
nication by means of events, put in the actions of a transition decoration that is
sensed by all the other machines. Nevertheless, two different kind of commu-
nication mechanisms have been addressed: a broadcast internal communication
between DSTM machines and a communication between machines and the envi-
ronment. The communication mechanisms can be realized also thanks to the in-
troduction of a type system able to model complex data structures. In fact, within
the type system, shared variables, internal and external channels and data types
have been defined. According to this, shared variables and internal and exter-
nal channels are involved in the communication mechanisms. The choice is not
casual: in fact Promela provides a similar mechanism for the communication of
processes. Mappings related to communication mechanisms based on type sys-
tem are described in Section 5.3.

The step semantic In order to obtain a suitable Promela specification, there is
the need to correctly implement the step semantics of DSTM and its policy for
the firing of transitions. The transitions firing is constrained by the enabledness
condition, defined in Chapter 4 for compound transitions. This condition re-
quires that for a transition of an active machine to fire, none of its ancestors in
the control tree must be currently enabled to interrupt the execution of the that
machine (either by an interrupt transition or by a preemptive join). This condi-
tion will be guaranteed by imposing an execution priority among the machines,
which is compliant with the hierarchical activation of machines. Moreover the
step semantics prevents sequential firing of transitions within the same execution
step. Since in the flat model compound transitions have been removed, there is

Chapter 5. From DSTM to Promela 90

the need to guarantee that at most one enabled transition can fire for each ac-
tive process. The mapping process addressing the step semantics is described in
Section 5.5.

Table 5.1 summarizes the overall mapping process between DSTM and Promela.
In particular on the left-side of the table are listed the features of DSTM while
in the right-side Promela concepts which allow to address the modelling issues
above discussed. Next sections, provide a deep analysis of the mapping process,
with particular focus on the solution proposed.

PROMELA

DSTM Process
Iterative
statement

Selection
statement Data types Variables Global channels

Machine X X
Nodes X

Transition X X
PseudoNodes

Machine
Structure

Boxes
Dynamic

Instantiation X

Termination
and Preemption X X

Data Type X
Channels XSystem

Type Variables X
Environment communication X X XStep

Semantics Machine instantiation X X X X

TABLE 5.1: Mappings between DSTM features and Promela

5.2 Syntactical mapping

As previously discussed, DSTM Machines can be easily mapped in Promela pro-
cesses. In particular, the internal behaviour of a machine can be represented by
using iterative constructs allowed within a Promela process. This choice is not
straightforward, since the semantics provided by an iterative construct internal
to a process is quite different from the corresponding concept in a general pur-
pose languages [88]. In fact the iterative construct in Promela does not reach the
exit state when none of the condition guards can be true but simply blocks its
execution, waiting for the truth of a guard. In this way, processes (and therefore
machines) can remain executable. Figure 5.1 represents the syntactical mapping
between the DSTM machine depicted in the left-side and the Promela process in
the right-side.

Chapter 5. From DSTM to Promela 91

FIGURE 5.1: Mapping between DSTM machine (a) and Promela
process (b)

5.3 Data-flow mapping

In order to address communications of DSTM Machines and some specific fea-
tures as the termination, To address the communication mechanisms and also
the machine termination a complex type system has been introduced in DSTM.
In particular three main elements are here considered: (1) Data Types, (2) Chan-
nels and (3) Variables. Below mappings related to each of them are discussed.

5.3.1 Data types

With the respect to the Data Types, it has to be considered that Promela provides
seven different predefined simple data types: bit, bool, pid, byte, short, int and un-
signed. With the respect to the composite type, instead, Promela provides the con-
cept of typedef which allows for user-defined data types. Also DSTM provides
simple and multi types and the mapping process is different in the two cases. In
fact, for simple types the mapping process is quite straightforward since it is a
one-by-one mapping: each tInteger is mapped in a int, each tChannel, in a global
channel and each tEnum, in an mtype which is a declaration for the introduction
of symbolic names for constant values. Table 5.2 summarize mappings between
Data Types.

The process to map channels and variables, and in particular the multi type
ones, is very different and is treated in the following subsections.

Chapter 5. From DSTM to Promela 92

TABLE 5.2: Mapping of types

DSTM Promela equivalent
Data Types

tInteger int
tEnum mtype = {literals0, literals1, ..., literalsn};
tChannel mtype = {channel_names0, ..., channel_namesm};

5.3.2 Channels

Channels represent the way with which DSTM machines can communicate. The
problem in mapping channels with corresponding Promela is that DSTM intro-
duces two fundamental characteristics which are not present in Promela:

1. first, DSTM distinguishes between internal and external channels; the for-
mer are used for internal DSTM machine communication while the latter
are used for the exchange of messages with the environment. At the con-
trary, Promela, provides only one kind of channel, that is the Global Channel.

2. DSTM provides the concept of "channels of channels", which can be ex-
pressed in the form Chn[T] (Section 4.1.3), where T is used to trace the type
of the contained channels;

3. furthermore, DSTM channels can be of simple and multi type. The first
ones are simple to translate in Promela, while for the second the process is
more complex.

In order to address the mapping issues discussed above, Promela channels,
are generated according to the below process:

• Internal Channels of simple types, are mapped in a Promela global chan-
nel which has the same bound specified within the internal channel of the
DSTM model. The type of the channel, instead, correspond to the type of
messages conveyed in the channel.

• At the same way, external channels of simple types are mapped in Promela
global channels, with the type corresponding to the message type, but the
bound fixed to one;

• multi type channel, instead, does not have an corresponding concept in
Promela. For such reason, they are modelled by creating one Promela chan-
nel for each simple type contained within the multi type of the considered
channel. The set of Promela channels associated with a multi-type channel
are properly managed, so as to ensure that at each moment at most one of
them contains a message.

Chapter 5. From DSTM to Promela 93

• finally, the Chn[T] are translated in a Promela global channel, containing as
many chan type, as the subtypes contained in T.

Thus, Table 5.3 reports an example of mappings related to DSTM channels.

TABLE 5.3: Mapping of channels

DSTM Promela equivalent
Simple type channels

Chn external c of Int chan c = [2] of {int};
Chn internal c[bound] of Int chan c = [bound] of {int};
Chn external c of enum chan c = [2] of {mtype};
Chn internal c[bound] of enum chan c = [bound] of {mtype};
Chn external c of compound chan c = [2] of {...};
Chn internal c[bound] of compound chan c = [bound] of {...};

Multi type channels
Mtype MT1 { ST1,ST2,ST3 }

Chn external c of MT1 chan c_ST1 = [2] of {...};
chan c_ST2 = [2] of {...};
chan c_ST3 = [2] of {...};

Chn internal c [bound] of MT1; chan c_ST1 = [bound] of {...};
chan c_ST2 = [bound] of {...};
chan c_ST3 = [bound] of {...};

Chn external c of Chn[MT1] chan c = [2] of {chan, chan, chan};
Chn external c of Chn[MT1] chan c = [2] of {chan, chan, chan};

5.3.3 Variables

DSTM global variable, are translated into the corresponding concept of Promela
variable. As for the type the process is quite straightforward. In fact, type and
name of a DSTM variable, are mapped in a Promela variable, in a C-like style.
The only exception is the multi type variable which does not have a correspond-
ing concept in Promela. As in the case of the channels, many simple type variable
as the number of subtypes contained in the considered multi type variable, are
generated. Table 5.4 shows some examples of such mappings.

TABLE 5.4: Mapping of channels

DSTM Promela equivalent
Simple type variables

Int v int v;
Enum v mtype v;
Chn v chan v;

Multi type variable
Mtype MT1 { ST1,ST2,ST3 }

Chn[MT1] v chan v_ST1;
chan v_ST2;
chan v_ST3;

Chapter 5. From DSTM to Promela 94

5.3.4 Triggers, Conditions and Actions

Data types, channels and variables allow to define the decoration on the DSTM
transitions. As in the HSMs, a decoration can be composed by trigger, conditions
and actions and are treated as strings, whose meanings is given by the modeller
with the respect to him context. In DSTM triggers, conditions and actions have
a formal syntax and semantics, despite, at the modelling level, can be treated
as simple strings. Treat decorations as simple strings allows to not increase the
complexity of the DSTM metamodel and enables to model complex expressions
(as the nested ones) by means of text. Thus, triggers, conditions and actions
must be mapped in corresponding Promela concepts, according to the meaning
demanded by the formal syntax and the semantics. In particular, triggers and
conditions can be specified only as receptions on a channel (external and inter-
nal). Thus, the mapping process must be performed according to the mapping
defined for them treating separately the simple and the multi type cases. Also
the actions provide send on a channel, but in addition they allow to specify vari-
ables assignment. In this case the mapping is quite straightforward, since both
the left and the right operands are mapped in the corresponding Promela ele-
ments. Table 5.5 reports a summary of all possible mappings related to triggers,
conditions and actions.

TABLE 5.5: Translating the transitions decorations to Promela

DSTM
Simple Type Multi type

C?[,...,_], if C is internal C_T1?[1,_, ...,_]∣∣...C_TN?[1,_, ...,_], if C is internal
C?

C?[1,_, ...,] if C is external C_T1?[1,_, ...,] ∣∣...C_TN?[1,_, ...,_] if C is external
C_T1?[1,_, ...,_]∣∣...C_TN?[1,_, ...,_], if C is internalTrigger

C?T Not allowed
C_T1?[1,_, ...,] ∣∣...C_TN?[1,_, ...,_] if C is external

C[? < . . . , x, ... >] if C is internal C_T1?[1, ...,Xt, ...]∣∣...C_Tn?[1, ...,Xp, ...]1 if C is internal
C[? < ...,Xt, .. >]

C[? < 1, . . . , x, ... >] if C is external C_T1?[1, ...,Xp, ...]∣∣...C_Tn?[1, ...,Xt, ...] if C is internal
empty(C) len(C) == 0 len(C_T1) == 0&&...&&len(C_Tn) == 0

Condition

full(C) len(C) = channel_bound len(C) = channel_bound&&..&&len(C) = channel_bound
V=x V p =Xp Not allowed

Action
C! < x, y, ..., z > C!x, y, ..., z

C_Tj!x, y, ..., z where C_Tj is a channel compliant
with the type Tj

5.4 Dynamic instantiation and termination of machines

The introduction of hierarchy mainly means that DSTM provides macro-nodes
containing other nodes. Hierarchy enables concept of reuse of modelling com-
ponents and allows for more compact models. HSMs, have been extended in
several ways in literature, in order to allow the dynamic instantiation of ma-
chines. For example UML State Machines admit parallel execution through the

1Xp is the corresponding promela element

Chapter 5. From DSTM to Promela 95

usage of composite states and regions. In this formalism, the fork (and join)
is used in order to split (and merge) an incoming transition into two or more
transitions terminating on orthogonal target vertexes (i.e., vertexes in different
regions of a composite state). Recursive activation and dynamic instantiation
is not admitted. Communicating Hierarchical Machines (CHMs) are a variant
of Statecharts introduced for succinctness reasons. They introduced the idea to
have a collection of finite state machines (modules) having nodes and boxes. A
transition entering a box represents a call to one or more instances of another
module. In a Statechart there is no notion of module and instance. If multiple
instances of the same module are required by the specification, each instance has
to be explicitly defined. On the other way the introduction of modules allows
to define Recursive State Machines (RSMs) where a module can recursively call
itself [alur]. Notice that, in the case of Recursive State Machines, we are not any-
more in the category of Finite State Machines. In [59] CHMs has been extended
introducing Dynamic Hierarchical Machines (DHMs) which allow the dynamic
activation of machines: any DHM M1 can send to a concurrent DHM M2 a third
DHM M3, which starts running either in parallel with M1 and M2, or inside M2,
depending on contextual information. In DSTM dynamic instantiation of ma-
chines has been realized through the hierarchical structure and the semantics of
fork and join. However, as discussed in Section 5.1 in order to map a hierarchi-
cal state-based formalism in a Kripke-based one, there is the need to remove the
hierarchy through a flattening process.

5.4.1 Flattening process

The flattening process is a relevant step in the mapping process since it shall al-
low to remove the hierarchical structure maintaining the same modelled seman-
tics. DSTM provides three different ways to enable the dynamic instantiation:

• the use of simple box, activated by a transition entering in it which does
not have a fork as a source node (Figure 5.2(a));

• the use of boxes, activated by a asynchronous transition whose source node
is a fork;

• the use of boxes, activated by a non-asynchronous transition, whose source
node is a fork.

It is evident that fork and boxes must be removed in order to flatten the ma-
chines. Below solutions to preserve the semantics of the models, when the hier-
archical structure is removed, are discussed.

Chapter 5. From DSTM to Promela 96

Case of the simple box In this case the dynamic instantiation is realized by
using a transition entering in a box which does not have a fork as a source node
(Figure 5.2). According to the DSTM metamodel, boxes are vertexes of model,
with the capability to activate other machines, passing them related parameters.
The target language, Promela, provides a run operator which takes as arguments
for the related process, the list of parameters for its activation. With the respect
to this mechanism, simple boxes can be removed by performing following steps:

• Each box is substituted by a simple Node with the same name;

• The transitions entering in the considered box, are substituted by a transi-
tion with the same name, that inherits the same decorations of the source
transitions with the exception of the actions, to the which, two special ac-
tions are added: (1) a action that call the run operator, passing it the name
of the machine to activate and (2) the initialization of the related parameters
list.

Figure 5.2(b) shows the result of the flattening process on simple boxes.

FIGURE 5.2: Flattening process on simple boxes

Case of asynchronous fork In this case the current machine (caller) continues
to execute concurrently to the new activated machine (callee). In order to flatten
the model, considered fork and boxes are removed and substituted with internal
transitions. In particular, according to the Figure 5.3(a) the internal entering fork
transition (T1), the call by default transition(T3) and the two internal asynchronous
fork transitions are substituted by a single transition (T1T2T3T4) with the source
in the T1 source and the destination in the node subsequent the termination of

Chapter 5. From DSTM to Promela 97

the considered box (in this case is the same, N). The decoration of such transition
inherits trigger and condition from the internal entering fork while the actions are
obtained with a process similar to the simple boxes case. In particular in case of
multiple boxes activated by the fork, the actions on the call by default transitions
are executed in interleaving that means with a non-deterministic order. Figure
5.3(b) shows the result of the flattening process described.

FIGURE 5.3: Flattening of asynchronous fork

Case of synchronous fork With the respect to this case caller machine, sus-
pends its execution in order to wait for the termination of activated boxes. In
this case, the entire block, containing the fork, the join and the boxes, is substi-
tuted with a new node, (called wait node), which models the state of the sus-
pended machine. Transitions to and from the wait node, are substituted with the
procedures described in the case of the asynchronous fork, in fact the internal en-
tering fork T4 and the call by default transitions T5 and T6 are substituted with the
compound transition T4T5T6. The two boxes instead, are substituted by the wait
node waitBx2Bx3 Figure 5.4(b) describes the result of mapping process for such
case.

5.4.2 Termination and preemption

The flattening process above described does not completely resolve the problem
of the flattening. In fact, according to the well-formedness constraints discussed
in Section 4.1.3, each fork is associated with one or more join and furthermore

Chapter 5. From DSTM to Promela 98

FIGURE 5.4: Flattening for synchronous fork

each box can be associated by zero or more exiting nodes representing the way
with which machines can terminate. Thus, the problem of termination should be
properly managed since the presence of the dynamic instantiation. Also for the
termination issue, Promela does not provide any concept of exiting node neither
provides constructs to terminate processes. To guarantee in the mapping pro-
cess the termination Promela global channels are exploited. In fact, for each box
containing n exiting nodes, n+1 Promela channels are generated and passed as
parameters in the run operator. The first n channels are related to the n exiting
nodes and are used by the instantiated machines to communicate their termina-
tion to the caller machine. The n+1-th internal channel instead, is used by the
caller to communicate to its instantiated machines which is terminated. Figures
5.5 and 5.6 represent two different cases of join. In the first case (Figure 5.5) two
boxes Bx1 and Bx2 are connected to a join pseudonode by the exiting nodes ex11
and ex21. In order to flatten the block represented by the two return by exiting
transition T1 and T2, the internal exiting join T3 and the join itself, the transition
T1T2T3 is generated. Such transition owns a condition that wait for a termina-
tion message from both the internal channels associated with the exiting nodes
of the boxes. With the respect to the actions, instead, a termination message must
be send on the internal channel related to the machine termination.

The second case (Figure 5.6), instead, shows a case in which on the same join
are connected a node of the current machine (N1) and two boxes. In this case
the block is substituted with an internal transition which condition inherits the
condition of the internal entering join transition and, as the previous case, the

Chapter 5. From DSTM to Promela 99

FIGURE 5.5: Flattening of join with only boxes

termination condition of each termination channels of each machines.

FIGURE 5.6: Flattening of join with current machine node and boxes

The flattening process is different in case of preemption. DSTM, in fact, en-
ables a machine which exit by a preemptive transition to ask for the termination
of an instance of each box related to the considered join. In general, in presence of
preemptive join, each entering join transition can trigger the termination of all the
other parallel machines, regardless of their current state. In this case a distinct
internal transition for each preemptive entering join is generated. Each transition
inherits the same trigger of the original entering join transition while guards and
actions are treated as in the non-premptive case.

With the respect to the preemption several cases are possible which are treated
in different ways:

• Case 1: Preemptive transitions with source in a box. When join collects the

Chapter 5. From DSTM to Promela 100

exiting state of boxes with a preemptive transition, according to the gen-
eral approach described above, the flattening process substitutes the whole
block of boxes, internal entering join transitions and internal exiting join tran-
sitions with as many transitions as the preemptive ones. In particular, with
the respect to the Figure 5.7(a) there are two boxes with a preemptive transi-
tions (T1 and T2) and another box with no preemption. The only transition
with a trigger is T1. In this case, the substitution is made by means of two
transitions: T1_T4 which inherits the trigger of the T1 transition and the ac-
tion of T4 with the addition of termination messages on the channel of the
other boxes and T2_T4 which has no trigger but the waits condition of the
termination of machine M2. Figure 5.7(b) depicts the result of the flattening
process.

FIGURE 5.7: Flattening of preemption in case 1

• Case 2: Asynchronous case with no preemption. In this case on the join
insist preemptive transitions with source in boxes and a transition with
source in a node of the current machine decorated with triggers and con-
ditions. In this case, each preemptive transition, must consider the trigger
and the condition since they are related to the execution flow of the current
machine. Thus, according to the previous case, the join-block is flattened
by adding two transitions: T1_T2_T5 that derives from T2 transition, and
inherits trigger and condition from T1 and T1_T4_T5 that inherits from the
preemptive transition T4 considering also the trigger of T1. Figure 5.8(b)
summarizes the flattening process.

• Case 3: asynchronous case with preemption on current machine. With the

Chapter 5. From DSTM to Promela 101

FIGURE 5.8: Flattening of preemption in case 2

respect to the previous, this case has the only preemption on the transi-
tion which source a node is a node of the current machine. Since the only
preemption is related to the execution flow of the current machine, the join-
block is substituted by a transition that inherits trigger and condition of the
preemptive entering join transition and add in the actions the termination
messages for the machines connected to the same join (Figure 5.9(b)).

FIGURE 5.9: Flattening of preemption in case 3

• Case 4: asynchronous case with preemption on both current and instan-
tiated machine. This is the complete case, in which both the current ex-
ecution flow and the flows related to the instantiated machine end in the
same join with preemptive transitions. Despite the general approach pro-
vides a transition for each preemption, in this case, the execution flow of
the current machine is priority with the respect to the other flows. Thus,
the join block is substituted with a transition that inherits trigger and con-
dition from the entering join transition related to the current machine and
has as actions the terminations of the other instantiated machines. Figure
5.10 exemplifies the flatten model of the above discussed case.

Chapter 5. From DSTM to Promela 102

FIGURE 5.10: Flattening of preemption in case 4

5.5 DSTM Step semantics

According to the Subsection 4.1.4 the evolution of a DSTM machine is possible
under the satisfaction of two constraints: (1) nodes or boxes cannot be entered
and exited simultaneously in the same step and (2) the events generated by the
firing of a transition cannot trigger other transitions in the same step (the enabled-
ness constraint). This means that if a transition of a machine is enabled in a given
step, any of its ancestor machines cannot be enable to fire a transition. To do
this, it is necessary to impose a priority among machines executions. Moreover,
since the removal of the hierarchical structure delete the compound transitions,
to guarantee the enabledness constraint is necessary to guarantee that at most
one enabled transition can fire for each active process.

To achieve such objective, the mechanism adopted is the one often used by
scheduling algorithms of distributed system [42] that is the Token mechanism. In
fact, the Promela process derived from the machine, can fire a transition only if
owns a token. When a process owns a token is scheduled, it consumes its token
and:

• if none of its transitions is enabled, the process generates and sends a token
for each of its children;

• otherwise, an enabled transition is selected and executed.

The token propagation is started by a special process which gives the token
for first to the initial machine. In this way is possible to avoid the sequential
firing of transitions within the same step. Thus, the step semantics, evolves in
two steps:

Chapter 5. From DSTM to Promela 103

1. the step execution in which the token is passed to a machine in order to en-
able it to execute. The token does not completely resolve the multiple tran-
sitions activation problems. In fact a machine can provides more the one
enabled transition. In this case non-deterministically one of them can be
chosen to fire.

2. the next step initialization in which the token is recovered and passed to the
initial machine in order to perform another step.

This mechanism is restarted every time no machine can fire a transition. This
usually happens when each machine belonging to the system model has con-
sumed its own token, meaning that the current step semantics execution is com-
pleted.

The same process that is in charge of manage the token mechanism is used
to model the environment. The environment is conditioned by the messages ex-
changed on the external channels. In fact, according to the language semantics,
the subsequent evolution of the machines is driven by a suitable message han-
dling mechanism. In fact, each external channel, has a buffer that stores two
messages as depicted in Figure 5.11. The first position C is used to store the mes-
sage available in the current step, whereas the position N is used to store the
message to be delivered in the next step (if any). During the execution of the
current step, the processes modelling the SUT can read mes- sages contained in
positions C of any channels, without removing them. If a new message is pro-
duced by the SUT, it is stored in positions N of the corresponding channel, thus
making the messages generated available for the next step.

FIGURE 5.11: Message generation for an external channel

The environment, as the DSTM machine, has a behaviour that can be easily
described with a state-based formalism. Thus, the obvious choice to map it in
Promela is by means of Promela process [72]. Next chapter will deeply address
all the characteristics of such special process, that is in charge of "start" the move-
ment of the machines, and that we named Engine.

Chapter 5. From DSTM to Promela 104

5.6 Test specifications mappings

The automatic generation of test cases, is enabled also by the modelling of test
specifications. Ever the test specifications are not expressed with the DSTM lan-
guage, they must be translated in corresponding concept of the Promela lan-
guage. In particular, the role of the test specifications is that they are used to
exploit the counterexamples generation capability of model checkers. Moreover,
according to the discussion in Section 4.3, within the defined set of TSPs only a
simple class of them is addressed in this thesis in order to enable the test cases
generation process. More specifically, the TSPs considered in this work, focus
on the coverage of transitions or nodes, according to the needs of domain needs,
discussed in 4. A requirement annotated on a transition or a node, can be con-
sidered with a cover pattern. This allows to generate a test case consisting in
a sequence of steps to perform to reach the considered node/transition. With
the respect to Promela, the test specification modelled with the cover pattern is
mapped in a never claim. The aim of a never claim is to represent a behaviour that
should never happen; in fact is defined as a series of propositions on the system
state that must be true in the specified sequence in order to match the expected
behaviour [88]. The test specification translated in a Promela never claim, models
a linear time temporal logic formula, and specifically the crossing of a specified
model element which should never happen.

FIGURE 5.12: Mapping of a cover pattern

Figure 5.12 reports a never claim to verify that the transition variable of the
M0 machine reported in Figure 5.1(a) is never equal to t2; the model checker
verifies if the property is true, and in case it is violated (as expected), provides a
counterexample which represents an execution sequence covering transition t2,
that is a trace that eventually makes the transition fire.

105

Chapter 6

Development of the test cases
generation framework

The high-level architecture of the test case generation framework has been dis-
cussed in Section 3.2.1; this chapter if focused on the development phase of the
framework named Test Case Generator (TCG). The TCG has been realized with a
client/server architecture, in which the client-side provides the facilities to sup-
port modelling activities (e.g. a graphical editor) and the server-side is instead in
charge of providing the functionalities related to the test case generation: verifi-
cation of the model correctness, merging of the control and data flow, generation
and post processing of the test cases.

6.1 Test cases generation workflow

The work flow of the TCG framework is reported in Figure 6.1. Each swimline of
the depicted UML Activity Diagram, represents the related actor/component in
charge of perform the activities inside described. In fact, in order to achieve the
objective of test case generation, the following activities must be accomplished:

• SUT and tests specification: this step is composed by three concurrent ac-
tivities. In fact, in order to obtain a complete specification of the SUT, both
control and data flow of DSTM machines must be modelled. The speci-
fication is realized by modellers on the client-side, by using the graphical
and textual facilities provided by the TCG framework. At the same time,
modellers have to define the test specifications, according to the guidelines
provided by the TSPs. The results of the modelling activities are three arte-
facts: the specification of the control flow of the SUT, its data declarations
and the test specifications.

Chapter 6. Development of the test cases generation framework 106

M
od

el
le

r
D

S
T

M
 V

er
ifi

er Model verification

M
od

el
 M

er
ge

r

Control flow
modelling

Control and data
flow merging

D
2P

F
ro

nt
en

d

Compete model
flattening

C
ro

ss
C

om
pi

le
r

Transitons decorations
cross compiling

D
2P

B
ac

ke
nd

Promela abstract
syntax translation

Promela code
generation

T
S

P
2N

ev
er

C
la

im
s

S
pi

nM
an

ag
er

Test Case Generation

Test cases matching on
SUT specification

P
os

tP
ro

ce
ss

or

Test cases post
processing

Transition decoration
translation to Promela never

claims

Data flow
modelling

Test specifications
definition

Are all test
specifications covered?

Does the verification
succeed?

YES

NO

NO

YES

FIGURE 6.1: Workflow of the TCG framework

Chapter 6. Development of the test cases generation framework 107

• Model verification: the correctness of the SUT specification (both of the
control and data flow) according to the formal syntax and to the well-
formedness constraints, must be verified in order to continue the gener-
ation process. If the model verification discovers flaws in the specification,
problems are reported to the modeller that has to correct the specification.

• Model merging, that is performed by a ModelMerger component. The Mod-
elMerger,in case of positive model verification, allows to merge in a unique
DSTM model the control and data flows of a DSTM model, provided in
two separated files. This merged model is necessary for the next phases of
translation to Promela.

• Flattening process: according to the mapping process, the complete DSTM
model must be flatten, in order to remove the hierarchical structure. This
is made through a M2M transformation, realized by a specific component
named D2PFrontend

• Translation to Promela: the flat DSTM model is transformed in a Promela
model. This is made by two subsequent steps: a M2M transformation to
translate the abstract syntax of DSTM in the abstract syntax of Promela and
a M2T transformation, to generate the Promela code for the Model Checker.

• Translation of the test specifications: this is a key point concurrent to the
previous since the test specifications must be translated in never claims
to enable the model checker to generate counterexamples representing the
specification of the test cases.

• Test cases generation: the generation is made by a Spin Manager compo-
nent that merge the Promela code, related to the DSTM model and to the
never claims. Than the Spin Model Checker is called and the verification of
never claims is performed, to generate test cases.

• Post processing: the last activities is the post processing of the Spin Model
Checker output, that allows to add some informations, in order to their
specifications in TESQEL. Using the test cases modelled with TESQEL, mod-
ellers can trace them on the SUT specification.

The workflow above described has been realized with the architecture showed
in Figure 6.2. The TCG framework has been defined with a service-oriented ar-
chitecture. The TCG, in fact, communicates over a REST [34] protocol in order to
provide all the functionalities as web services and make it highly interoperable

Chapter 6. Development of the test cases generation framework 108

Application Server

<<component>>
DSTMVerifier

<<component>>
TCG

<<component>>
Model Merge

<<component>>
TSP2NeverClaim

<<component>>
DSTM2Promela

<<component>>
D2PBackend

<<component>>
D2PCrossCompiler

<<component>>
D2PFrontend

<<component>>
Promela2Spin

<<component>>
SpinManager

<<component>>
PostProcessor

Client

<<component>>
DSTMEditor

<<component>>
DSTMVerifierProxy

<<component>>
ModelMergeProxy

<<component>>
TCGProxy

Flatten Transform

Execute Transform

VerfiyModelAndData
MergeModel

Compile

MergeModel Generate
VerifyModelAndData

Generate

<<REST>>

FIGURE 6.2: Component-level view of tcg framework

and integrable in a wider V&V process. The TCG has been organized in three
services:

1. DSTM Verifier service, that allows to verify the correctness of the edited
models, according to the formal syntax in Section 4.1.3 and the well-formedness
constraints described in 4;

2. Model Merger service, since model control and data flow are edited in dif-
ferent files. The control flow, in fact, can be edited in a graphical form while
the data flow, only by means of text. Thus, in order to insert our framework
in a wider interoperable platform, we decide to explicitly release such ser-
vice, in order to give the possibility to merge the two parts of a model that
can be used for analyses different from the generation of test cases;

Chapter 6. Development of the test cases generation framework 109

3. TCG service, that is the core of the approach since it is in charge of generate
the test cases from the high-level model of the system. The TCG, in fact, re-
alizes the transformation chain defined in the model-driven approach and
orchestrate the other components in order to allow for the integration of
the test cases within the overall V&V process.

Next sections discuss the architecture in Figure 6.2 showing the development
process of each component.

6.2 DSTM Editor

As showed in Figure 6.2, the main component of the client-side of the TCG ar-
chitecture, is a graphical editor, supporting the specification of the SUT. The
DSTMEditor addresses the need for an user-friendly modelling environment able
to simplify modelling activities. The graphical editor has been realized by ex-
ploiting functionalities provided by the Eclipse Modelling Framework (EMF)
and the Graphical Modelling Framework of Eclipse (GMF) (see Section 2.5.2 for
further details on such technologies). EMF and GMF provide several facilities
and plugins to build tools, editors or in general Rich Client Platform (RCP). A
detailed package diagram of the DSTMEditor is depicted in Figure 6.3. In such
diagram, the yellow coloured packages are the exploited external libraries.

EMF GMF

DSTM Editor

DSTM Package DSTM.Edit DSTM.Editor DSTM.Diagram

Epsilon Java Swing

<<uses>>

<<uses>><<uses>>

<<uses>>
<<uses>><<uses>>

FIGURE 6.3: Architecture of DSTMEditor

The DSTMEditor is composed by four sub-packages:

• DSTM package is the object-oriented representation of the DSTM metamodel.
In fact, according to the description of the EMF provided in Section 2.5.2,

Chapter 6. Development of the test cases generation framework 110

each concept of the DSTM metamodel is a specialization of concepts pro-
vided by the ecore meta metamodel. According to this, the DSTM package
is a key component for the overall TCG, since provides the necessary java
code to manage DSTM models.

• DSTM.edit, that is a supporting package that includes generic reusable classes
for building editors for EMF models.

• DSTM.editor, that allows to display the EMF models using standard desk-
top viewer (e.g. JFace) or property sheets

• DSTM.diagram, which is in charge of realize the graphical part of the con-
sidered EMF model editor. This package is based on the facilities provided
by the Eugenia plugin, which is a graphical frontend for the Graphical
Modelling Editor of Eclipse. In fact, since the GMF plugin is not very
user-friendly, other plugins exist to create and customize graphical edi-
tor. One of them is Eugenia provided by Epsilon framework [31]. The Eu-
genia plugin allows to obtain graphical elements from the meta-concepts
provided by the considered metamodel in a semi-automatic way, simply
by annotating metamodel elements. As showed in the architecture, the
DSTM.Diagram package uses also the facilities provided by the Java Swing
libraries [91] since custom graphical interfaces have been developed, in or-
der to support modellers in the initialization of attributes of models ele-
ments.

According to the service-oriented architecture of the framework, the DSTMEd-
itor interacts with some proxies, implements the same interfaces of the related
components in the application server. In particular, according to the services de-
scribed in the previous section, three proxies have been developed for the DST-
MVerifier, the ModelMerger and the TCG. Such proxies communicate over a REST
protocol and are in charge of perform the marshalling and the unmarshalling
of the requests/responses between clients and server (i.e. models, data declara-
tions, test specifications and resulting test sequences).

6.3 DSTM Verifier

A complete DSTM model, is composed by data declarations and a definition of
the control flow. Both of them, must be compliant to the syntax and the semantics
of DSTM, specified in Chapter 4 In order to address constraints demanded by the
syntax and semantics of the language, different approaches can be followed. For

Chapter 6. Development of the test cases generation framework 111

example, the metamodel can be enriched with additional constraints, by exploit-
ing facilities of the metamodelling environment or by using an ad-hoc language
for constraints (e.g. OCL). Another approach, instead, is to demand the verifi-
cation of such constraints to an external tool. The DSTMVerifier component, is
based on this second approach; in fact, in order to maintain modelling activities
as simple as possible, a specific tools has been developed with the responsibilities
of:

• verify the data flow of the model, i.e. the declarations related to custom
data types, variables and channels

• verify the decorations of transitions, i.e. their triggers, conditions and ac-
tions;

• verify the correctness of the model based on the well-formedness constraints
not defined at the metamodel level.

The first two objectives can be achieved by the definition of a syntax analysis
process. The syntax analysis, or parsing is the process that allows to verify if
sequences of symbols (or streams) are conform to a set of formal rules called
grammars. The syntax analysis process is composed by three phases:

• Lexical analysis: streams are examined and grouped on the basis of their
meanings. Such groups, called tokens are then matched with a set of rules
typically given as regular expressions. This phase produce sequences of
tokens.

• Syntactical analysis: the token streams are matched with another set of rules,
called grammars. Each rule in the grammar, is called production. A produc-
tion describes a valid tree-like structure in terms of tokens and, recursively,
in terms of other productions. This process is usually performed by a rou-
tine called syntactical analyser. The rules we consider, are expressed in form
of context-free grammars (Subsection 2.5.2). CFGs allow to perform an effi-
cient analysis of recursive tree-structured text, which means that each struc-
ture identified can be viewed as a tree node interconnected with each other
node to compose the syntax tree. Thus, the syntax tree can be represented
in different ways. Two of the most important are the Abstract Syntax Tree
(AST) and the Concrete Syntax Tree (CST). CSTs are a more concrete view
of the input token stream, since they represent in a tree-like form the input
as it is parsed during the syntax analysis. The AST instead is more abstract

Chapter 6. Development of the test cases generation framework 112

then the CST and allows to reproduce the structure of the input in a hierar-
chical data structure, useful for further analysis and transformations [62].
In the translation between different languages, ASTs are needed because of
the nature of languages. Languages are often ambiguous by nature. In or-
der to avoid this ambiguity, CFGs are useful but there are some aspects that
they cannot address, such as details which require a context to determine
their validity and behaviour.

• Semantic analysis since most languages (included the domain-specific ones)
cannot be specified completely using a CFG. In fact there is the need to ad-
ditional rules to define other constraints of the language. Thus, costraints,
can be given using natural language or specific languages for constraints.

The realization of the DSTMVerifier, have been performed by following the
below steps:

• Definition of the grammars related to data declarations, triggers, conditions
and actions of transitions. Grammars have been expressed by using a BNF
notation (Subsection 2.5.2) and used to verify the lexical correctness of the
model structure.

• Generation, with a parser generator, called SableCC [80], of the packages
to check the consistency of the data flow of the DSTM models;

• Analysis of model constraints, trough a java-based software module, in
charge of make an exhaustive verification of such constraints on edited
models.

An example of BNF grammar, defined for the syntactical verification of trig-
gers on the transition decorations is reported in Listing 6.1.

LISTING 6.1: BNF grammar for Triggers
1 Helpers
2 eo l = 11 | 9 | 10 | 13 | 10 1 3 ;
3 sp = ’ ’ ;
4 d i g i t = [’ 0 ’ . . ’ 9 ’] ;
5 char = [[’ a ’ . . ’ z ’] + [’A ’ . . ’Z ’]] ;
6 echar = [[[’ a ’ . . ’ z ’] + [’A ’ . . ’Z ’]] + ’ _ ’] ;
7 plus = ’+ ’ ;
8 minus= ’− ’ ;
9 Tokens

10 i n t = ’ I n t ’ ;
11 bool = ’ Bool ’ ;
12 enum = ’Enum ’ ;
13 chn = ’Chn ’ ;
14 s t r u c t = ’ S t r u c t ’ ;
15 mtype= ’Mtype ’ ;

Chapter 6. Development of the test cases generation framework 113

16 of = ’ of ’ ;
17 t rue = ’ t rue ’ ;
18 f a l s e = ’ f a l s e ’ ;
19 f u l l = ’ f u l l ’ ;
20 empty= ’ empty ’ ;
21 spaces = eol + ;
22 space = sp +;
23 e x t e r n a l = ’ e x t e r n a l ’ ;
24 i n t e r n a l = ’ i n t e r n a l ’ ;
25 i d e n t i f i e r = char (d i g i t | echar) * ;
26 numbers = d i g i t * ;
27 semi = ’ ; ’ ;
28 comma = ’ , ’ ;
29 qmark = ’ ? ’ ;
30 colon= ’ : ’ ;
31 plus = ’+ ’ ;
32 minus = ’− ’ ;
33 s t a r = ’ * ’ ;
34 s l a s h = ’/ ’ ;
35 ass ign = ’ : = ’ ;
36 l t = ’< ’ ;
37 gt = ’> ’ ;
38 eq = ’== ’ ;
39 not= ’ ! ’ ;
40 amp_amp= ’&&’ ;
41 bar_bar= ’|| ’ ;
42 l t e q = ’<= ’ ;
43 gteq = ’>= ’ ;
44 plus_plus = ’++ ’ ;
45 minus_minus = ’−− ’ ;
46 l_par = ’ (’ ;
47 r_par = ’) ’ ;
48 l _ b k t = ’ [’ ;
49 r_bkt = ’] ’ ;
50 l _ b r c = ’ { ’ ;
51 r_brc = ’ } ’ ;
52
53 Ignored Tokens
54 space , spaces ;
55
56 Productions
57 t r i g g e r =
58 { unique } term ;
59
60 term =
61 { nested } l_par term r_par|
62 { unary } not term |
63 { simple } atomic |
64 { binary } l_par f i r s t binop second r_par ;
65
66 binop =
67 { andop } amp_amp |
68 { orop } bar_bar ;
69
70 f i r s t =
71 { l e f t } term ;
72
73 second=

Chapter 6. Development of the test cases generation framework 114

74 { r i g h t } term ;
75
76 atomic =
77 { message } var qmark |
78 { messagetype } var qmark simpletype ;
79
80 simpletype=
81 { b a s i c } b a s i c |
82 { compound } compound_name ;
83
84 compound_name=
85 { id } defined ;
86
87 b a s i c =
88 { i n t } i n t |
89 { bool } bool |
90 { ename } e_name|
91 { chant } chn l _ b k t defined r_bkt |
92 { chn } chn ;
93
94 e_name=
95 {enum} defined ;
96
97 var=
98 { simple } defined ;
99

100 defined =
101 { simple } i d e n t i f i e r ;

As stated before, each rule of the grammar is represented as a production in the
form A → α which states that the symbol on the left-hand side must be replaced
by one of the alternatives on the right-hand side. The package structure of the
generated parser, from the grammars, is represented in Figure 6.4.

According to the Figure 6.4, a package is created for each defined grammar
(data, trigger, condition, action and parameter). However since transition deco-
ration and parameters are related to data declarations, the Data package is com-
mon. Moreover, each package is further divided in the following subpackages:

• Lexer package, which contains the Lexer and LexerException classes, re-
spectively in charge of perform the lexical analysis and rise exceptions if
such analysis fails;

• Parser package, which contains Parser and ParserException classes with the
same aims of the previous;

• Node package containing all the classes to define the typed AST. As dis-
cussed, the AST consists in an intermediate representation of the model
that serves for further analysis or transformations.

Chapter 6. Development of the test cases generation framework 115

DataModel

lexer Node

Analysis Parser

Parameter

lexer Node

Analysis Parser

CrossCompiler.Trigger

lexer Node

Analysis Parser

CrossCompiler.Condition

lexer Node

Analysis Parser

CrossCompiler.Action

lexer Node

DSTM Package

<<uses>><<uses>><<uses>><<uses>>

<<uses>><<uses>>

Analysis Parser P

FIGURE 6.4: DSTMVerifier package diagram

• Analysis package containing the AST walkers. A tree-walkers is a class that
visit all the nodes of an AST in a predefined order. Walkers allow to cross
the AST in a depth-first traversal by calling proper in and out methods,
when nodes are entered and exited. The adoption of walkers makes the
parser easy to reuse and extend because the same tree-walkers can be used
as the parents of many different walker classes.

The above packages allow to perform a syntax analysis of transition decora-
tions and data. With the respect to the verification well-formedness constraints,
a dedicated package has been developed and named Model package. Model con-
straints are expressed by means of java code. As for example, a relevant con-
straint is that for each machine only one InitialNode must exist. Such constraint
can be expressed, by exploiting the primitives of the DSTMPackage. Listing 6.2
represents the uniqueness constraint.

LISTING 6.2: Uniqueness constraint of InitialNode
1 for (Machine machine : model . getMachines ()) {
2 i n t count = 0 ;
3 for (Vertex ver tex : machine . getVer texes ()) {
4 i f (ver tex . ge tClass () . getName () . compareTo (" DSTM4Rail . impl .

Ini t ia lNodeImpl ") ==0) {
5 count ++;
6 i f (count >1) {
7 V i o l a t i o n v = new ModelViolation ("UNQINIT" , " Machine " , (EObject)

machine) ;
8 t h i s . v i o l a t i o n s . add (v) ;

Chapter 6. Development of the test cases generation framework 116

9 r e t v a l = f a l s e ;
10 }
11 }
12 }
13 }

6.4 Model Merge

The DSTMEditor allows to model separately the model structure (e.g. the system
control flow) and the data declarations (e.g. the data flow). At the same way,
the DSTMVerifier verifies separately their correctness. However there is the need
to merge the two model parts in order to enable the model transformation pro-
cess. The component that is in charge of merging the control and the data flow
of the system model is the Model Merger. The structure of the Model Merger is
represented in Figure 6.5.

DSTM Package

DSTMVerifier

Data

ModelMerger

<<uses>>

<<uses>>

FIGURE 6.5: ModelMerger package diagram

The merging process consists of two phases:

• Data exploration, in which AST walkers of the Data package of the DST-
MVerifier are used in order to parse the data declarations, and create the
corresponding EObjects to be inserted in the DSTM model. Such EObjects
are inserted in proper data structures, at the basis of the next phase;

• Data insertion: exploiting data structures created in the previous phase, the
merged model is constructed by injecting EObjects created, in the model
part containing the control flow of the SUT specification.

Chapter 6. Development of the test cases generation framework 117

The verification of the control and data flow performed before the merging
process, guarantee the correctness of the generated merged model.

6.5 DSTM2Promela

The DSTM2Promela component is one of the key components to enable the au-
tomatic generation of test case. It is based on the mapping process discussed in
Chapter 5. According to such mapping process, the DSTM2Promela component
has been divided in the following sub-components:

• D2PFrontend that is in charge of perform the flattening process finalized to
removal of the hierarchical structure of the model. The outcome of such
component is still a DSTM model;

• D2PCrossCompiler that allows to translate the DSTM syntax on transitions
decorations to the Promela syntax;

• D2PBackend, that is in charge of translate the cross compiled DSTM model
in a Platform Specific Model (PSM) compliant with the Promela abstract
syntax, specified by means of a metamodel;

• D2PPromela2Spin, that allows for the code generation, from the PSM ex-
pressed using the Promela abstract syntax, executable by the Spin Model
checker.

Next subsections discuss the realization of the above components.

6.5.1 D2PFrontend

As stated before, the D2PFrontend is in charge of perform the flattening process
at the basis of the automatic generation approach that removes the hierarchical
structure. Conceptually, since the source and the target language of such process
is the same, this is a refinement of the PIM. In agreement with model driven
principles, described in Section 2.4, this refinement can be performed by means
of a model transformation. According to this, the D2PFrontend has been realized
as an ATL model-to-model transformation. The target DSTM model generated
by the flattening process owns the same data types, channels and variables of the
source, but is different from the point of view of the machine structure and with
the respect to fork, boxes, join and exiting nodes.

Chapter 6. Development of the test cases generation framework 118

Mapping of boxes According to the syntactical mapping of the previous chap-
ter, boxes can be isolated (simple boxes) or connected to a fork (synchronous or
asynchronous). In the first case, the mapping process demand that the box has to
be substituted by a Node with named constituted by the machine name to which
the box belongs and the same box name. The matched rule in charge of realize
such mapping is showed in Listing 6.3.

LISTING 6.3: simpleBox2Node rule
1 rule simpleBox2Node {
2 from
3 BoxFrom : DSTMRail ! Box (
4 not BoxFrom . exitsAFork () and
5 not BoxFrom . entersAJoin ()
6)
7 to
8 NodeTo : DSTMRail ! Node (
9 name <− BoxFrom . machine . name + thisModule . s epara tor () + BoxFrom . name ,

10 machine <− BoxFrom . machine
11)
12 }

The replacement of a box connected to a fork is more complex. In fact, it needs of
a matched rule, triggered by a transition entering in a box and with a source in
a fork, and has to be substituted with a single transition, with the same triggers
and conditions of the fork exiting transitions, but with the actions, related to the
instantiation of the machine of the considered box (e.g. the calls to run operator).
An example of matched rule to replace the fork, is reported in Listing 6.4.

LISTING 6.4: ForkCompoundTransition2Transition rule
1 rule ForkCompoundTransition2Transition {
2 from
3 Transit ionFrom : DSTMRail ! T r a n s i t i o n (
4 Transit ionFrom . d e s t i n a t i o n . oclIsKindOf (DSTMRail ! Fork)
5)
6 to
7 Transi t ionTo : DSTMRail ! T r a n s i t i o n (
8 name <− Transit ionFrom . machine . name + thisModule . s epara tor () + Transit ionFrom .

name ,
9 machine <− Transit ionFrom . machine ,

10 t r i g g e r <− thisModule . returnUndefinedIfEmpty (Transit ionFrom . t r i g g e r) ,
11 condi t ion <− thisModule . returnUndefinedIfEmpty (Transit ionFrom . condi t ion) ,
12 a c t i o n s <− Transit ionFrom . ac t ions ,
13 source <− Transi t ionTo . machine . getTransformedVertex (Transit ionFrom . source . name) ,
14 d e s t i n a t i o n <− Transi t ionTo . machine . getTransformedVertex (Transit ionFrom . machine .

t r a n s i t i o n s −> s e l e c t (t | t . source=Transit ionFrom . d e s t i n a t i o n) . f i r s t () .
d e s t i n a t i o n . name)

15)
16 do {
17 f o r (t r a n s in Transit ionFrom . machine . t r a n s i t i o n s −> s e l e c t (t | t . source=

Transit ionFrom . d e s t i n a t i o n)) {
18 Transi t ionTo . name <− Transi t ionTo . name . concat (thisModule . s epara tor () + t r a n s .

name) ;

Chapter 6. Development of the test cases generation framework 119

19 i f (t r a n s . d e s t i n a t i o n . oclIsTypeOf (DSTMRail ! Box)) {
20 Transi t ionTo . a c t i o n s <− Transi t ionTo . manageMachineRun (t r a n s . d e s t i n a t i o n .

i n s t a n t i a t i o n . f i r s t ()) ;
21 Transi t ionTo . a c t i o n s <− ’ #MyChildren [PidTemp]=1 ’ ;
22 Transi t ionTo . a c t i o n s <− ’ #HasToken [PidTemp]=1 ’ ;
23 }
24 }
25 }
26 }

Termination and preemption Also each join case is treated by the D2PFrontend.
In fact the join flattening is realized by a set of matched rules triggered by join
pseudo nodes in the hierarchical source model. Such matched rule generate
nodes and transitions according to the mapping process defined in Section 5.4.2.
As for example, Listing 6.5 reports the case of a non preemptive join, on which
insist both a node and several boxes. In the listing in fact, the rule is activated by
the first transition entering in a join. The generated target transition inherits trig-
ger and condition of the source transition; then a cycle on each source vertex of
the considered join is performed in order to add to the transition the termination
conditions and the termination actions.

LISTING 6.5: EnteringJoinTransition2Transition rule
1
2 rule E n t e r i n g J o i n T r a n s i t i o n 2 T r a n s i t i o n {
3 from
4 Transit ionFrom : DSTMRail ! T r a n s i t i o n (
5 Transit ionFrom . d e s t i n a t i o n . oclIsKindOf (DSTMRail ! J o i n)
6)
7 to
8 Transi t ionTo : DSTMRail ! T r a n s i t i o n (
9 name <− Transit ionFrom . machine . name + thisModule . s epara tor () + Transit ionFrom .

name ,
10 machine <− Transit ionFrom . machine ,
11 t r i g g e r <− thisModule . returnUndefinedIfEmpty (Transit ionFrom . t r i g g e r) ,
12 condi t ion <− thisModule . returnUndefinedIfEmpty (Transit ionFrom . condi t ion) ,
13 a c t i o n s <− Transit ionFrom . ac t ions ,
14 source <− Transi t ionTo . machine . getTransformedVertex (Transit ionFrom . source . name) ,
15 d e s t i n a t i o n <− Transi t ionTo . machine . getTransformedVertex (Transit ionFrom . machine .

t r a n s i t i o n s −> s e l e c t (t | t . source=Transit ionFrom . d e s t i n a t i o n) . f i r s t () .
d e s t i n a t i o n . name)

16)
17 do {
18 f o r (t r a n s in Transit ionFrom . machine . t r a n s i t i o n s −> s e l e c t (t | t . source=

Transit ionFrom . d e s t i n a t i o n)) {
19 Transi t ionTo . name <− Transi t ionTo . name . concat (thisModule . s epara tor () + t r a n s .

name) ;
20 i f (t r a n s . d e s t i n a t i o n . oclIsTypeOf (DSTMRail ! Box)) {
21 Transi t ionTo . condi t ion . concat (’&& chTerm ’ _ ’+machine . name+ ’ _ e x i t i n g ? [1])
22 Transi t ionTo . a c t i o n s <− ’ #chTerm_ ’ + t r a n s . d e s t i n a t i o n . name ’ + ’ _ ’ + t r a n s .

machine . name + ’ ! 1 ’ ;
23 }

Chapter 6. Development of the test cases generation framework 120

24
25 }
26 }
27 }

With the respect to the above rule, conditions and actions of the transitions
substituted to the join realize the termination mechanism by exploiting the com-
munication over internal channels as described in Chapter 5. Termination chan-
nels are named with the prefix ChTerm and with the name of the machine to
which belongs and the name of the exiting node to which is related. The D2PFrontend
add a further channel, named with the same prefix and the name of the machine
to which belongs. This further channel is used by the caller machine to allow the
instance to terminate. The matched rule in charge of realize such mechanism,
is triggered by each exiting node and its reported in Listing 6.6. The additional
ChTerm channel is indeed created by the rule that transform the source DSTM
machine in the target DSTM machine.

LISTING 6.6: ExitingNode2ExitingNode rule
1 rule ExitingNode2ExitingNode {
2 from
3 ExitingNodeFrom : DSTMRail ! ExitingNode
4 to
5 ExitingNodeTo : DSTMRail ! ExitingNode (
6 name <− ExitingNodeFrom . machine . name + thisModule . s epara tor () + ExitingNodeFrom .

name ,
7 machine <− ExitingNodeFrom . machine
8) ,
9 chTermParamTo : DSTMRail ! Parameter (

10 machine <− ExitingNodeTo . machine ,
11 name <− ’ chTerm ’ + thisModule . s epara tor () + ExitingNodeFrom . name ,
12 type <− ExitingNodeFrom . machine .DSTM. getChnBoolType ()
13)
14 }

6.5.2 D2PCrosscompiler

The flatten model own decorations on transitions expressed with the DSTM syn-
tax. In order to translate these last in the Promela syntax, a specific component
named CrossCompiler has been developed. The DSTMVerifier component is in
charge of verify the correctness of decorations on transitions, with the respect to
the constraints demanded by the formal syntax and realized by the grammars.
In fact, thanks to the generation of the ASTs, it allows to identify each token of
triggers, conditions and actions. The implementation of the ASTs is based on
the grammars defined for transition decorations. Thus, the CrossCompiler aims at
reusing such ASTs structures, in order to identify tokens of triggers, conditions

Chapter 6. Development of the test cases generation framework 121

and actions, and generate the corresponding syntactical Promela elements. The
CrossCompiler performs its tasks according to the mappings summarized in Table
5.5. The package diagram of the CrossCompiler is depicted in Figure 6.6.

DSTMVerifier

Trigger.analisys

CrossCompiler

Condition.analysis Action.analysis

CrossCompiler.ActionCrossCompiler.ConditionCrossCompiler.Trigger CrossCompiler.StackUtils

<<uses>><<uses>><<uses>>

FIGURE 6.6: CrossCompiler package diagram

The main package is the CrossCompiler that is in charge to start the recog-
nition of transitions decorations on the merged flatten model. Thus, in order
to reuse the ASTs structures generated from the grammars, the packages Cross-
Compiler.Trigger, CrossCompiler.Conditionand CrossCompiler.action reuse the corre-
sponding packages of the DSTMVerifier. The additional sub-package CrossCom-
piler.StackUtils contains facilities to support the recognition of simple operations
inside complex logical expressions on transitions decorations. The the model
resulting from the cross compiling process, is an hybrid model composed by
a syntactical structure expressed with the DSTM language, and decorations on
transitions expressed in a Promela syntax.

6.5.3 Promela metamodel

As the DSTM2DSTM transformation, the DSTM2Promela is realized by using
ATL. In order to enable the transformation, the source and the target metamodel
must be provided. The metamodel of the source language, DSTM, is described
in Section 4.1.2. Nevertheless, another relevant activity of work described in this
thesis has been the definition of the abstract syntax of the Promela language,
expressed by using an ecore diagram.

The problem of define a Promela metamodel is not a new topic. Nevertheless,
at the current state, any standard metamodel to which is possible to refer has
been defined. Indeed there are many attempts, specially in scientific literature,
focused on the definition of a proper Promela metamodel. McUmber et al [66],

Chapter 6. Development of the test cases generation framework 122

define a framework to translate UML models into Promela formal models, in or-
der to enable simulation and analysis through model checking. The definition of
Promela metamodel is not the focus of the work, even if it is used to support the
formal definition of the mapping rules. The metamodel in this case, is realized
by means of UML Class diagram. Another approach to define a Promela meta-
model, is the one proposed by Abdulhameed et al [2] in which the aim is to verify
SysML functional requirements using state machine diagrams. In this case, in or-
der to enable the model transformation process with the ATL framework, there is
the need to provide an ecore version of the Promela metamodel. The metamodel
proposed is very detailed and considers all the syntactical constructs provided
by the Promela language. On the same line, dos Santos et al. define an Ecore-
based Promela metamodel to enable mappings between an executable version of
UML, they propose, and Promela. Also in this case, the need for the metamodel
is due to adoption of ETL language for model transformations [58]. The meta-
models above discussed are very similar in their objectives. In fact, they aiming
at provide all possible concepts of the the Promela syntax, even if they are not all
used in the transformation process. The proposed Promela metamodel (Figure
6.7) here described, instead, relies on the attempt to have a metamodel as much
possible simple and general. This design choice allows to simplify the imple-
mentation of the abstract mappings defined in the previous chapter. Moreover,
be more general, will allow to easily modify the metamodel for further formal
languages in avoiding the complete re-engineering of the transformations below
described.

The main concept of the metamodel depicted in Figure 6.7, is the Model which
is an abstraction of a Promela module. It is characterized by the name and the
maximum number of processes which can be instantiated. Each Model can be
further composed by:

• Processes, characterized by a name, a boolean attribute to establish if is an
active process or not, and which is the main process. The concept of main
process does not exist in Promela. Nevertheless, such attribute has been
defined in order to maintain in the the target model the information related
to the main machine of the DSTM model;

• Enumerations, characterized by a name and a list of literals;

• Variables, that are further divided in Primitive and Channel. A Primitive
variable can have a initial value and a type chosen from the ones natively
provided by Promela. The complete list of the native type provided by
Promela is expressed by means of the the data type DefaultType. Channels

Chapter 6. Development of the test cases generation framework 123

Model
max_proc : EInt
name : EString
temp_num : EInt

Process
name : EString
isActive : EBoolean
isMain : EBoolean

Variable
name : EString

Enumeration
literals : EString
name : EString

Primitive
type : DefaultType
initialValue : EString

Channel
size : EInt
types : DefaultType
typeName : EString
external : EBoolean

Do

CaseUnless For

DefaultType
mtype
bit
byte
pid
int
chan

Array
size : EInt

If

CompositeStatement
description : EString
condition : EString

AbstractStatementSimpleStatement
description : EString

Parameter
name : EString
type : DefaultType

processes

0..*

enumerations

0..*

variables
0..*

procVariables

0..*

processStatements

0..*

unlessCase

1..1

subStatements

0..*

parameters
0..*

FIGURE 6.7: Promela metamodel

are, indeed, characterized by the size (emphi.e. the maximum number of
messages that can be exchanged in the channel), a set of types (i.e. the fields
that each message can contains). Moreover a typeName has been added, to
trace the DSTM type associated to the considered channel, and a boolean
attribute to know if the channel is external or not. This last is very im-
portant since, as discussed in Section 5.3.2, the Promela language, does
not make difference between external or internal channels. Variables of the
metamodel are further extended to consider Promela arrays that are sets of
primitive variables.

• Parameters representing the list of parameters that are passed to the run op-
erator, when a new process has to be activated. As the Variable, a Parameter
has a name and a type from the defaults provided by Promela.

The right-side part of the metamodel, describes the control structures of the
Promela language. Control structure are described by referring to the Composite

Chapter 6. Development of the test cases generation framework 124

design pattern [38]. The Composite design pattern, in fact, allows to address a tree-
like structure in which there is the need to distinguish between nodes and leafs.
In the specific case, an AbstractStatement can be a SimpleStatement (a leaf) or a
CompositeStatement (a node) characterized by the fact that is a composition of
other statements. The CompositeStatement is then specialized in order to represent
the control structures provided by Promela (Do, If, Case and For). Anyway, each
statement is characterized by a description while only the composite ones can
have a condition. Descriptions and conditions can be simple strings, since the
presence of the CrossCompiler that is in charge of translate the syntax from the
DSTM to the Promela language.

6.5.4 D2PBackend

The metamodel above discussed, allow to enable the transformation process real-
ized by the D2PBackend component. The D2PBackend, is in charge of realizing the
mapping between the flatten version of a DSTM model to an intermediate model,
representing the same model in the Promela abstract syntax. The D2PBackend is
based on a model transformation realized by means of ATL language. At the
contrary of the previous subsection describing the D2PFrontend, the source and
the target formalism in this case are different. Below, rules supporting this trans-
formation step are described.

Type System mappings The Type System, provided by DSTM, is composed by
tSimple and tMulti types. The former are further divided in tBasic and tCompound
types. With the respect to the mapping process, tBasic are mapped in the corre-
sponding DefaultType provided by the Promela metamodel. The only exception
is represented by the tEnum since the presence of the set of literals. In fact, the
enumerative type provided by DSTM is mapped in a set of Promela mtypes, used
to introduce symbolic names for constant values. The rule that allows to realize
such mapping is a matched rule (see Section 2.5.4) and is reported in Listing 6.7.

LISTING 6.7: tEnum2Mtype
1 rule tEnum2Enumerative {
2 from
3 tEnum : DSTMRail ! tEnum (
4 enum . tCompound . oclIsUndefined () and enum . tMultiType . ocl IsUndefined ()
5)
6 to
7 enumeration : PROMELA! Enumeration (
8 name <− enum . name ,
9 l i t e r a l s <− enum . l i t e r a l s

10)
11

Chapter 6. Development of the test cases generation framework 125

12 }

A different approach has been followed for tMultiType. In fact, tMultiType
is not explicitly transformed since Promela does not provide a corresponding
concept. Thus multi types are considered only with the respect to the transfor-
mations related to channel and to the Chn[T]. Such transformations are described
described below in this section.

Global variables DSTM global variables are key elements of the language data
flow. Global variable can be only of a simple type, with an exception on the
Chn[T] that can contain a multi type and must be carefully transformed. In gen-
eral transformation of global variables is quite straightforward since they are
mapped in Promela variable with the same name and the corresponding DSTM
simple type in Promela. Such correspondence is obtained by using a supporting
helper, defined with the same ATL language. In the Listing 6.8 the type match is
obtained by using an ATL helper, that returns the Promela type corresponding
to the type of the DSTM global variable.

LISTING 6.8: simpleGlobal2primitive rule
1 rule g l o b a l 2 p r i m i t i v e {
2 from
3 var : DSTMRail ! Var iab le (not var . type . name . conta ins (’Chn[’))
4 to
5 var_global : PROMELA! P r i m i t i v e (
6 name <− var . name
7 type <− thisModule . correspondingTypeOf (var . type . name)
8)
9 }

The transformation of simple variables of Chn[T] type is more complex if the
type T contained is of multi type. The mapping process for such kind of variables
in described in Section 5.3.3. They are of course of chan type but, in order to
realize such mapping a dedicated called rule is adopted. The main rule (e.g. the
DSTM2Promela rule) is in charge of recognize the eventual multi type inside the
Chn[T] and call such rule, as many times as the number of subtypes in T. The
called rule for Chn[t] variables is represented in Listing 6.9.

LISTING 6.9: primitiveChnVariable rule
1 rule primit iveChnVariable (name : Str ing , type : Str ing , model : PROMELA! Model) {
2 to
3 mult iVar_global : PROMELA! P r i m i t i v e (
4 name <− name+ ’ _ ’+type ,
5 type <− ’ chan ’
6
7)
8 do {

Chapter 6. Development of the test cases generation framework 126

9 model . v a r i a b l e s <−mult iVar_global ;
10 }
11 }

Channels The transformation of DSTM channels in Promela is another com-
plex task, for several reasons: (i) rule transforming external channels, are par-
tially involved in the generation of the process describing the Step semantics, (ii)
Promela does not make a difference between external or internal channels and
(iii) DSTM channels can be of simple and multi type. This paragraph in focused
only on the syntactical generation process of Promela channels. The step seman-
tics is treated separately, below in this section.

Promela channels of simple type (both internal and external) are generated
by using matched rules, composed by:

• a source pattern which indicates the source DSTM channel considered (i.e.
external or internal)

• a target pattern, that creates the corresponding Promela channel, by setting
the name, the bound, in the case of the internal channels, and the type of
the channel;

• a do pattern, that contains the necessary imperative code to construct the
set of messages types of the channel. According to this tBasic and tCom-
pound channel type are treated separately. In fact, the case of tBasic, the
channel contains only one message of a predefined Promela type. Oth-
erwise, for tCompound, an iteration must be performed in order add each
message type, contained in the compound. The rule in Listing 6.10 clari-
fies the transformation process. Since the generation is the same for both
external and internal channel, the listing shows the generation only for an
internal one.

LISTING 6.10: simpleInternalToPromelaChannel rule
1 rule simpleInternalToPromelaChannel {
2 from
3 intChan : DSTMRail ! c I n t e r n a l (
4 intChan . channelType . oclIsKindOf (DSTMRail ! tSimpleType) and not intChan . name .
5 conta ins (’ chTerm ’) and not intChan . name . conta ins (’ # ’)
6)
7 to
8 promelaIntChan : PROMELA! Channel (
9 name <− intChan . name ,

10 s i z e <− intChan . bound ,
11 typeName <− intChan . channelType . name
12)

Chapter 6. Development of the test cases generation framework 127

13 do {
14 −− case tBasic
15 i f (intChan . channelType . oclIsKindOf (DSTMRail ! t B a s i c)) {
16 i f (intChan . channelType . oclIsTypeOf (DSTMRail ! t I n t e g e r)) {
17 promelaIntChan . types <− ’ i n t ’ ;
18 } e l s e i f (intChan . channelType . oclIsTypeOf (DSTMRail ! tEnum) and not
19 (intChan . channelType . name = ’ Bool ’)) {
20
21 promelaIntChan . types <− ’ mtype ’ ;
22 } e l s e i f (intChan . channelType . oclIsTypeOf (DSTMRail ! tEnum) and intChan .
23 channelType . name = ’ Bool ’) {
24 promelaIntChan . types <− ’ b i t ’ ;
25 } e l s e i f (intChan . channelType . oclIsTypeOf (DSTMRail ! tChannel)) {
26 i f (intChan . channelType . name . conta ins (’Chn[’) and intChan . channelType . name .

conta ins (’] ’)) {
27 f o r (component in thisModule . getTypeFromName (intChan . channelType . name . t o S t r i n g

() . subs t r ing (5 , intChan . channelType . name . t o S t r i n g () . s i z e () −1)) .
composedBy) {

28 promelaIntChan . types <− ’ chan ’ ;
29 }
30 } e l s e {
31 promelaIntChan . types <− ’ chan ’ ;
32 }
33 }
34 −− case tCompound
35 } e l s e i f (intChan . channelType . oclIsKindOf (DSTMRail ! tCompound)) {
36 intChan . channelType . name ;
37 f o r (p in intChan . channelType . subtypes) {
38 i f (p . oclIsTypeOf (DSTMRail ! t I n t e g e r)) {
39 promelaIntChan . types <− ’ i n t ’ ;
40 } e l s e i f (p . oclIsTypeOf (DSTMRail ! tEnum) and not (p . name = ’ Bool ’)) {
41 promelaIntChan . types <− ’ mtype ’ ;
42 } e l s e i f (p . oclIsTypeOf (DSTMRail ! tEnum) and p . name = ’ Bool ’) {
43 promelaIntChan . types <− ’ b i t ’ ;
44 } e l s e i f (p . oclIsTypeOf (DSTMRail ! tChannel)) {
45 i f (p . name . conta ins (’Chn[’) and p . name . conta ins (’] ’)) {
46 f o r (component in thisModule . getTypeFromName (p . name . t o S t r i n g () . subs t r ing (5 , p

. name . t o S t r i n g () . s i z e () −1)) . composedBy) {
47 promelaIntChan . types <− ’ chan ’ ;
48 }
49 } e l s e {
50 promelaIntChan . types <− ’ chan ’ ;
51 }
52
53 }
54 }
55 }
56 }
57 }

There is only one difference in case of multi type channels. In fact, according
to the mapping process in Section 5.3.2, in order to generate single-type channels
from the multi type one, called rules are adopted, and activated by the main
rule. Such called rules miss the source pattern, but have the same target and do
patterns of the matched rule of the simple case.

Chapter 6. Development of the test cases generation framework 128

Processes Promela processes are key concepts in the transformation of DSTM
machines in Promela. A Process is composed by process variables, process pa-
rameters and statements. The set of process variables consists of two enumer-
ations containing the names of all the states and transitions belonging to the
corresponding DSTM machine and a list of parameters. Such parameters are
obtained by exploiting the do pattern of the rule, that activates a called rule for
each parameter of the Machine (Listing 6.13).

The set of statements, instead, allows to realize the external behaviour of
a process. In particular statements are grouped in two blocks: a Do repetition
that represents the main loop inside the process. The remaining behaviour of
the process, is generated by using the resolveTemp function, from the considered
rule. The resolveTemp function provided by ATL, allows to point from an ATL
rule to any target pattern of other matched rules, that can be generated from a
given source model element [56]. The second block is the Unless. The Unless
block allows to realize the mechanism of termination, described in Section 5.4.2,
consisting in the send of messages over the termination channels. Termination
channels are created by the D2PFrontend transformation and added by using a
proper called rule, activated by the do pattern of the machine2process rule. List-
ing 6.11 represents the machine2process rule described in this paragraph. Listing
6.12 shows the called rule to add the termination channels in the process and
finally Listing 6.13 shows the called rule to add parameter to the set of process
variables.

LISTING 6.11: machine2process rule
1 rule machine2process {
2 from
3 machine : DSTMRail ! Machine
4 to
5 process : PROMELA! Process (
6 name <− machine . name ,
7 processStatements <− mainDo ,
8 processStatements <− unlessDo , −− riabilitare l ’unless
9 procVar iab les <− s t a t e s

10
11) ,
12 state_enumerat ion : PROMELA! Enumeration (
13 name <− machine . name + ’ _ s t a t e s ’ ,
14 l i t e r a l s <− machine . v e r t e x e s −> c o l l e c t (p | p . name)
15) ,
16 t rans i t ion_enumerat ion : PROMELA! Enumeration (
17 name <− machine . name + ’ _ t r a n s i t i o n s ’ ,
18 l i t e r a l s <− machine . t r a n s i t i o n s −> c o l l e c t (p | p . name)
19) ,
20 s t a t e s : PROMELA! P r i m i t i v e (
21 name <− ’ s t a t e ’ ,
22 type <− ’ mtype ’ ,
23 i n i t i a l V a l u e <− ’ i n i t i a l ’

Chapter 6. Development of the test cases generation framework 129

24) ,
25
26 mainDo : PROMELA!Do (
27 subStatements <− machine . v e r t e x e s −> c o l l e c t (p | thisModule . resolveTemp (p , ’

loopCase ’)) ,
28) ,
29 unlessDo : PROMELA! Unless (
30 subStatements <− statementUnless
31) ,
32 statementUnless : PROMELA! SimpleStatement (
33 d e s c r i p t i o n <− ’ (chTerm ? [1] || dyingPid==parent) ; ’ ,
34 d e s c r i p t i o n <− ’ i f ’ ,
35 d e s c r i p t i o n <− ’ : : chTerm ? [1] −> chTerm ? 1 ; ’ ,
36 d e s c r i p t i o n <− ’ f i ; ’ ,
37 d e s c r i p t i o n <− ’ dyingPid = _pid ; ’ ,
38)
39 do {
40 f o r (param in machine . parameters) {
41 i f (param . type . oclIsTypeOf (DSTMRail ! tChannel)) {
42 thisModule . addParameter (param , ’ chan ’ , process) ;
43 } e l s e i f (param . type . oclIsTypeOf (DSTMRail ! t I n t e g e r)) {
44 thisModule . addParameter (param , ’ i n t ’ , process) ;
45 } e l s e i f (param . type . oclIsTypeOf (DSTMRail ! tEnum) and not (param . name = ’ Bool ’)) {
46 thisModule . addParameter (param , ’ mtype ’ , process) ;
47 } e l s e i f (param . type . oclIsTypeOf (DSTMRail ! tEnum) and (param . name = ’ Bool ’)) {
48 thisModule . addParameter (param , ’ b i t ’ , process) ;
49 }
50
51 }
52 i f (machine .DSTM. main . name . equalsIgnoreCase (machine . name))
53 process . isMain <− t rue ;
54
55 f o r (chTerm in machine .DSTM. channels −> s e l e c t (ch | ch . name . conta ins (machine .
56 name))) {
57 i f (chTerm . name . s p l i t (’ # ’) . a t (2) = machine . name) {
58 chTerm . name . s p l i t (’ # ’) . a t (1) . debug () ;
59 thisModule . addChTerm (chTerm , process) ;
60 }
61 }
62 }
63 }

LISTING 6.12: addChTerm rule
1 rule addChTerm (chan : DSTMRail ! c I n t e r n a l , proc : PROMELA! Process) {
2 to
3 chTerm : PROMELA! Channel (
4 name <− chan . name . s p l i t (’ # ’) . a t (1) ,
5 s i z e <− chan . bound ,
6 types <− ’ b i t ’
7)
8 do {
9 proc . procVariables <−chTerm ;

10 }
11 }

LISTING 6.13: The addParameter rule

Chapter 6. Development of the test cases generation framework 130

1 rule addParameter (inParam : DSTMRail ! Parameter , inType : Str ing , proc : PROMELA!
Process) {

2 to
3 promelaParam : PROMELA! Parameter (
4 name <− inParam . name ,
5 type <− inType
6)
7 do {
8 proc . parameters <−promelaParam ;
9 }

10 }

As stated before, to complete the behaviour of a Promela process, a resol-
veTemp function is called from the target pattern of the machine2process rule. The
rule activated by the resolveTemp is the vertex2case. Such rule is activated as many
time as the number of vertexes of the machine. The rule, set the condition of
the case, by considering the current vertex and the enabledeness condition (i.e.
the owning of the token). Vertexes of a machine, can have zero or more exit-
ing transitions; for each of them, a called rule, named transition2If is activated.
The transition2If called rule, is in charge of creating an If statement, inside the
Case, whose condition is the logic And, between trigger and condition of the cor-
responding transition, and whose other statements are its actions and the print
statements containing the TESQEL directives. Actions and TESQEL directives
are added by using the do pattern of the rule. Listing 6.14 shows the vertex2case
rule while the listing 6.15 shows the transition2If called rule.

LISTING 6.14: Vertex2Case rule
1 rule Vertex2Case {
2 from
3 ver tex : DSTMRail ! Vertex
4 to
5 loopCase : PROMELA! Case (
6 condi t ion <− ’ s t a t e == ’ + ver tex . name + ’ ’+ ’ && HasToken [_pid]==1 ’ ,
7 subStatements <− has_token
8) ,
9 has_token : PROMELA! SimpleStatement (

10 d e s c r i p t i o n <− ’ HasToken [_pid]=0 ’
11)
12 do {
13 f o r (p in ver tex . machine . t r a n s i t i o n s −> s e l e c t (t r | t r . source . name = ver tex . name)

) {
14 thisModule . t r a n s i t i o n T o I f (p , loopCase) ;
15 }
16 }
17 }

LISTING 6.15: transition2If rule
1 rule t r a n s i t i o n 2 I f (t r a n s : DSTMRail ! Trans i t ion , loopCase : PROMELA! Case) {
2

Chapter 6. Development of the test cases generation framework 131

3 to
4 t r a n s i t i o n T o i f : PROMELA! I f (
5 condi t ion <− t r a n s . t r i g g e r + ’&&’ + t r a n s . t r i g g e r
6)
7
8 do {
9 f o r (a c t i o n in t r a n s . a c t i o n s) {

10 t r a n s i t i o n T o i f . d e s c r i p t i o n <− a c t i o n . t o S t r i n g () ;
11 }
12 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ p r i n t f (" < current > ’+ t r a n s . source . name+ ’</current >\\

n ") ’ ;
13 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ p r i n t f (" < t r a n s i t i o n > ’+t r a n s . name+ ’</ t r a n s i t i o n >\\n

") ’ ;
14 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ p r i n t f (" < next > ’+ t r a n s . d e s t i n a t i o n . name+ ’</next >\\n

") ’ ;
15 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ p r i n t f (" </ f i r i n g >\\n ") ’ ;
16 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ s t a t e = ’ + t r a n s . d e s t i n a t i o n . name ;
17 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ L a s t T r a n s i t i o n = ’ + t r a n s . name ;
18 t r a n s i t i o n T o i f . d e s c r i p t i o n <− ’ NoFirings=0 ’ ;
19
20 −−insertion in the promela Case
21 loopCase . subStatements <− t r a n s i t i o n T o i f ;
22 }
23 }
24

6.5.5 Engine generation

The Step semantics of DSTM by generating a proper Promela process named En-
gine process. Main features of the step semantics are discussed in Section 5.5.
This paragraph describes how the step semantics is realized in Promela. As
stated in the Section 5.5, the state-based nature of the step semantics, lead us to
model it by a special Promela process, the Engine. As already discussed its main
responsibilities are: (1) instantiation of the main process, (2) non-deterministic
generation of messages on the external channels and (3) assignment of the to-
ken to the main machine, in order to start the step execution. The Engine is the
first process to be activated and is the only process required to be running in the
initial state. Then, it is activated whenever no statements is executable in any
process belonging to the system model, that means that the step execution is ter-
minated. The handling of the step execution termination can be catch thanks to
the presence of a timeout variable being true. The run of the main machine, is
realized by a call to the run operator provided by Promela on the main process,
that stores the pid of the process in a _pid variable (Listing 6.16, line 22-24). Then
the Engine can proceeds to initialize the channels.

The generation of the Engine process is realized by using a called rule, ac-
tivated by the target pattern of the main rule (the DSTM2Promela). A dedicated

Chapter 6. Development of the test cases generation framework 132

matched rule is not possible, since there is no an equivalent machine in the DSTM
model. Listing 6.16 shows the generation above discussed.

LISTING 6.16: Generation of the Engine process
1
2
3 engine : PROMELA! Process (
4 name <− ’ Engine ’ ,
5 i s A c t i v e <− true ,
6 procVar iab les <− DSTM. channels −> s e l e c t (ch | ch . name . conta ins (’ Engine ’)) −>

c o l l e c t (p | thisModule . resolveTemp (p , ’ chTermOut ’)) ,
7 procVar iab les <− pid_main ,
8 processStatements <− engineDo
9) ,

10 engineDo : PROMELA!Do (
11 subStatements <− timeout ,
12 subStatements <− DSTM. channels −> c o l l e c t (p | thisModule . resolveTemp (p , ’

extChanFullClause ’))
13) ,
14 timeout : PROMELA! Case (
15 condi t ion <− ’ t imeout ’ ,
16 subStatements <− generat ion
17) ,
18 generat ion : PROMELA! SimpleStatement (
19 d e s c r i p t i o n <− ’ goto generat ion ’
20) ,
21 pid_main : PROMELA! P r i m i t i v e (
22 name <− ’ PidMain ’ ,
23 type <− ’ pid ’ ,
24 i n i t i a l V a l u e <− ’ run ’ + DSTM. main . name + ’ (’ _pid ’ , thisModule . ge tParametersL is t (

DSTM. main . name)) ’
25)

In order to guarantee that the Engine is the first process to be executed, the
attribute isActive, provided in the Promela metamodel, is set to true. Moreover,
the timeout variable is generated (Listing 6.16, lines 14-17) and all the statements
to call the run operator and register the process pid. An ATL helper is used to
retrieve the list of parameters, that the run operator passes to the main process
when instantiate it.

After the run of the main process, the Engine is in charge of initialize the ex-
ternal channels. In order to perform such initialization, the Engine uses local
variables to non-deterministically generate new messages in them. These local
variables correspond to the fields of the compound types exchanged over those
channels. In particular a temp variable is created for each field contained in each
external channel. The Figure 6.8 clarifies the concept: the showed channel con-
tains a set of two types, type1 and type2. For each of them, a temporary variable
is created, in order to generate non-deterministically messages over it.

The generation of the temp variables is made with a called rule (Listing 6.18)
activated from the transformation rules of both simple and multi type channels.

Chapter 6. Development of the test cases generation framework 133

FIGURE 6.8: Generation of temp variables from an external channel

LISTING 6.17: Called rule for temporary variable generation
1 rule crea teEngineVar iab le (engine : PROMELA! Process , name : S t r i n g) {
2 to
3 var : PROMELA! P r i m i t i v e (
4 type <− ’ mtype ’ ,
5 name <− name
6)
7 do {
8 engine . procVariables <−var ;
9 }

10 }

Once temp variables are created, the Engine process starts an atomic block in
which it non-deterministically generates the message to be sent over the chan-
nels. The starting statement of this block is identified by the label generation. The
evolution of the Engine process is made by generating a Case in its main loop for
each external channel. The condition to be checked is if the channel is not full
(or that all sub channel are not contemporary full in case of multi type external
channels). Then, by using another called rule, named addEngineStatement, an If
statement is generated for each subtypes contained by the considered channel.
In case of multi type channels, the If statement must take into account all possi-
ble permutations of the values in the sub channels. Listing lst:engine4 shows the
code of the addEngineStatement and addIfLenSubstatement called rules.

LISTING 6.18: Do pattern of an external channel rule to generate

temporary variables
1 −−Do pattern
2 . . .
3 f o r (p in thisModule . getLiteralsFromChannelName (promelaExtChan)) {
4 thisModule . counter <− thisModule . counter + 1 ;
5 thisModule . c rea teEngineVar iab le (thisModule . getEngineHandler () , (’ temp_ ’ +

promelaExtChan . name + ’ _ ’ + thisModule . counter)) ;
6 thisModule . addEngineStatement (extChanLenClause , (’ temp_ ’ +promelaExtChan . name +

’ _ ’ + thisModule . counter) , thisModule . getLiteralsFromEnumName (p)) ;
7 }
8 . . .

LISTING 6.19: Called rule to generate Cases and If of the Engine

main loop

Chapter 6. Development of the test cases generation framework 134

1 rule addEngineStatement (c lause : PROMELA! I f , chan_name : Str ing , values : PROMELA!
Enumeration) {

2
3 to
4 mainIfOfChannelLen : PROMELA! I f (
5)
6 do {
7 f o r (p in values) {
8 thisModule . addIfLenSubstatement (mainIfOfChannelLen , chan_name , p) ;
9 }

10 c lause . subStatements <−mainIfOfChannelLen ;
11 }
12 }
13
14 rule addIfLenSubstatement (mainIf : PROMELA! I f , chan_name : Str ing , value : S t r i n g) {
15 to
16 subIfStatementEngine : PROMELA! I f (
17 condi t ion <− chan_name + ’= ’ + value
18)
19 do {
20 mainIf . subStatements <−subIfStatementEngine ;
21 }
22 }

The generation block ends by assigning the token to the main process. Then,
the Engine process enters the do construct, where it waits until the Promela
global variable timeout is evaluated to true. This happens when no statement
is executable in the active processes, hence when all the SUT processes have con-
sumed their token. In this case, Engine executes a jump to the generation label,
starting a new step.

6.6 Promela2Spin: generate the Spin code

The D2PBackend transformation, according to model-driven principles discussed
in Section 2.4.1, generates the Platform Specific Model in terms of abstract syntax
of Promela language. However, in order to enable Spin to execute the test case
generation, the concrete syntax (e.g. the Spin Model code) must be generated
from the abstract one. The generation of the concrete syntax is performed by a
M2T transformation starting from the PSM derived from the previous step. In
agreement with model driven principles, the complexity of the passage between
the PIM and the PSM, is embed in the M2M transformation. The M2T, indeed, is
in charge of replicate the same structure, imposed by the M2M transformation,
to the generated code. According to this, some Promela2Spin mappings are quite
straightforward. However, in order to show the models structure, two relevant
rules, are below described: the rule to generate a process, and the rule to generate
the Engine.

Chapter 6. Development of the test cases generation framework 135

Process generation According to the intermediate Promela model, a process
can contain local variables, a main loop consisting in a Do repetition and eventu-
ally a set of other statements not included in the main loop. The M2T rule, that
generates the spin code from the PSM model of a process, is reported in Listing
6.20.

LISTING 6.20: Acceleo rule to generate a Process code
1 [template publ ic generateProcess (proc : Process)]
2 [i f proc . i s A c t i v e] a c t i v e [/ i f] proctype [proc . name/] (pid parent ; mtype i n i t i a l ; [f o r

(par : Parameter | proc . parameters) separa tor (’ ; ’)] [par . type /] [par . name/][/ f o r
]) {

3 b i t MyChildren [’ [MAX_PROC] ’ /] ;
4 [f o r (c : Channel | proc . procVariables −> s e l e c t (p | p . oclIsTypeOf (Channel)))]
5 [generateChannel (c) /]
6 [/ f o r]
7 [f o r (v : P r i m i t i v e | proc . procVariables −> s e l e c t (p | p . oclIsTypeOf (P r i m i t i v e)))]
8 [g e n e r a t e P r i m i t i v e V a r i a b l e (v) /]
9 [/ f o r]

10 [i f not proc . name . equalsIgnoreCase (’ Engine ’)] [generateDo (do , proc) /][/ i f]
11 [i f proc . name . equalsIgnoreCase (’ Engine ’)] [generateEngineDo (do , proc) /][/ i f]
12 [f o r (i f S t m t : I f | proc . processStatements −> s e l e c t (p | p . oclIsTypeOf (I f)))]
13 [g e n e r a t e I f (i fS tmt , proc) /]
14 [/ f o r]
15 }
16 [/ template]

The first part of the rule in the listing, performs the necessary iterations, to
generate the code of process-local variables and channels. Then the statements
related to the internal behaviour of a process are performed. In particular, the
generateDo rule is called in case of a normal process, otherwise, is called the gen-
erateDoEngine. The generateDo template rule, is the core of the code generation,
since is in charge of iterate over the statements of a process and of add the neces-
sary elements that complete the code generation. Lines 1-14 of Listing 6.21 show
the template rule to generate a process loop.

LISTING 6.21: Acceleo rule to generate the internal code of a pro-

cess
1 [template publ ic generateDo (do : Do, proc : Process)]
2 do
3 [f o r (subStmt : SimpleStatement | do . subStatements−> s e l e c t (oclIsKindOf (

SimpleStatement)))]
4
5 [f o r (d e s c r i p t i o n : S t r i n g | subStmt . d e s c r i p t i o n)]
6 [d e s c r i p t i o n /] ;
7 [/ f o r]
8 [/ f o r]
9 [f o r (case : Case | do . subStatements−> s e l e c t (oclIsKindOf (Case)))]

10 [generateDoCases (case) /]
11
12 [/ f o r]

Chapter 6. Development of the test cases generation framework 136

13 od [i f not proc . name . equalsIgnoreCase (’ Engine ’)] [generateUnless (proc) /][/
i f]

14 [/ template]
15
16
17 [template publ ic generateDoCases (case : Case)]
18 : : ([case . condi t ion . t o S t r i n g () /]) −>
19 atomic {
20 [f o r (simpleStmt : SimpleStatement | case . subStatements−> s e l e c t (p | p .

oclIsTypeOf (SimpleStatement)))]
21 [f o r (d e s c r i p t i o n : S t r i n g | simpleStmt . d e s c r i p t i o n)]
22 [d e s c r i p t i o n /] ;
23 [/ f o r]
24 [/ f o r]
25 i f
26 [f o r (i f S t m t : I f | case . subStatements −> s e l e c t (p | p . oclIsTypeOf (I f)))]
27 [g e n e r a t e I f C o n s t r u c t (i f S t m t) /]
28 [/ f o r]
29 : : e l s e −>
30 f o r (i : 0 . . MAX_PROC−1) {
31 HasToken [’ [’ /] i [’] ’ /]=MyChildren [’ [’ /] i [’] ’ /] ;
32 }
33 f i ;
34 }
35 [/ template]
36
37
38 [template publ ic g e n e r a t e I f C o n s t r u c t (i f S t m t : I f)]
39 : : ([i f S t m t . condi t ion . t o S t r i n g () /]) −>
40 [f o r (d e s c r i p t i o n : S t r i n g | i f S t m t . d e s c r i p t i o n)]
41 [d e s c r i p t i o n /] ;
42 [/ f o r]
43 [/ template]

Since a main loop can contain both simple and composite statements, such
rule is composed by two parts: the writing of the simple statements (Listing 6.21,
lines 5-7) and a new iteration over all possible sub-statements (lines 9-12). Such
iteration call another template rule, named generateDoCases. The generateDoCases
rule is in charge of write, in the Spin syntax, the condition of each case and its
simple statements. Moreover, if the considered Case corresponds to a vertex with
more than one exiting transition, a new iteration is performed to generate the If
statements. Moreover to generate the code of If statement a template rule, called
generateIfConstruct (Listing 6.21, lines 38-43) is used. As stated before, M2T trans-
formation add some information not present in the PSM. As an example, the gen-
erateDoCases add the code necessary to exchange the token from a process to its
children processes when it terminates (Listing 6.23, lines 32-39). Thus, the M2T
transformation allows to describe the general structure of a process in which a
DSTM machine is mapped. Such structure is reported in Listing 6.23.

LISTING 6.22: general structure of the Promela code of a DSTM

machine

Chapter 6. Development of the test cases generation framework 137

1 proctype process (pid parent ; parameters l i s t) {
2 byte i ;
3 pid PidTemp ;
4 b i t MyChildren [MAX_PROC] ;
5 mtype s t a t e = i n i t i a l ;
6 do
7
8 //case1
9 : : (s t a t e && HasToken [_pid]==1) −>

10 atomic {
11 simple statements ;
12 //in case of composite s tatements
13 i f
14 : : (condi t ion) −>
15 Simple statements ;
16 i f
17 : : (condi t ion) −>
18 Simple statements ;
19 i f
20 : : (condi t ion) −>
21 Simple statements ;
22 : : e l s e −>
23 //token i s passed to ch i ldren processes
24 f o r (i : 0 . . MAX_PROC−1) {
25 HasToken [i]= MyChildren [i] ;
26 }
27 f i ;
28 }
29 . . .
30 //case N
31 . . .
32 od unless {
33 //statements to send messages of terminat ion of chTerm channels
34 (chTerm ? [1] || dyingPid==parent) ;
35 i f
36 : : chTerm ? [1] −> chTerm ? 1 ;
37 f i ;
38 dyingPid = _pid ;
39 }
40 }

Engine code generation A different structure is owned by the Engine process.
In fact, the Engine is in charge of initialize the external channels and produce
non-deterministically messages over them. In order to realize such structure, the
M2T transformation in Listing 6.23 is used.

LISTING 6.23: M2T rule to generate the engine
1 [template publ ic generateEngine (proc : Process)]
2 [i f proc . i s A c t i v e] a c t i v e [/ i f] proctype [proc . name /] () {
3 mtype temp ;
4 // l o c a l channel and v a r i a b l e s
5 [f o r (c : Channel | proc . procVariables −> s e l e c t (p | p . oclIsTypeOf (Channel))

)]
6 [generateChannel (c) /]

Chapter 6. Development of the test cases generation framework 138

7 [/ f o r]
8
9 [f o r (v : P r i m i t i v e | proc . procVariables −> s e l e c t (p | p . oclIsTypeOf (

P r i m i t i v e)))]
10 [i f not (v . name= ’ PidMain ’)] [g e n e r a t e P r i m i t i v e V a r i a b l e (v) /]
11 [e l s e]
12 [v . type /] [v . name /] ;
13 [v . name/]=[v . i n i t i a l V a l u e /]
14 [/ i f]
15 [/ f o r]
16
17 //generat ion of f i r s t messages
18 [f o r (c : Channel | proc . model . v a r i a b l e s −> s e l e c t (p | p . oclIsTypeOf (Channel

)))]
19 [i f (c . e x t e r n a l =true)]
20 [c . name /] ! 0 , [f o r (val : DefaultType | c . types) separa tor (’ , ’)] 0 [/ f o r]
21 [/ i f]
22 [/ f o r]
23
24
25 //generat ion block
26 generat ion :
27 atomic {
28
29 i f
30 [comment] : : chterm_ [f o r (pro : Process | proc . model . processes −> s e l e c t (p |

p . isMain))] [pro . name/][/ f o r] ? [’ [’ /] 1 [’] ’ /]) −> goto abort ; [/ comment
]

31
32 [f o r (i f S t m t : I f | proc . processStatements −> s e l e c t (p | p . oclIsTypeOf (I f

)))]
33 [generateEngineStatements (i fS tmt , proc) /]
34 [/ f o r]
35 : : (NoFirings ==1) −> goto abort ;
36 : : e l s e −> skip ;
37 f i ;
38 NoFirings =1;
39
40 //GIVE TOKEN TO THE MAIN PROCESS
41 HasToken [’ [’ /] PidMain [’] ’ /]=1 ;
42 p r i n t f (" <ENGINE: end execution >\n ") ;
43
44 }
45 //generate the main loop
46 [f o r (do : Do | proc . processStatements −> s e l e c t (p | p . oclIsTypeOf (Do)))]
47 [generateDoOfEngine (do , proc) /]
48 [/ f o r]
49 abort :
50 dyingPid=_pid ;
51 }
52 [/ template]

The initialization of the external channels, is made thanks to the presence of
the attribute external in the Promela metamodel. In fact, iterating over exter-
nal channels, all the statements to initialize them are generated. At the same
way, in order to perform the non-deterministic messages generation statements,

Chapter 6. Development of the test cases generation framework 139

an iteration is performed over the process statements, generated by the corre-
sponding M2M transformation (template rule generateEngineStatements at line
33). Lets note that, the generateEngineStatements rule, produces the code of non-
deterministic messages generation on the basis of the external channels of the
DSTM model.

6.7 Spin Manager: generation of test cases

Once the Promela model has been generated, the test cases are obtained by ex-
ploiting model checking. According to this three components are necessary: (1)
the TSP2NeverClaim, the (2) Spin Manager and the (3) Post Processor.

The Spin Manager is the component in charge of execute the Spin Model
checker in order to automatically generate test case from the SUT specification.
The Spin Manager takes as input the model expressed in Promela, generated by
the M2T transformation and the never claims, generated by the TSP2NeverClaim
component. This last, with the respect to the previous step, is realized by means
of Java. In fact, according to the Section 4.3, the only TSP taken into account
by the TCG framework, is the cover, and in particular the cover of requirements
tagged on transitions. Thus, the TSP2NeverClaim components, for each transi-
tions of the DSTM model, generates a never claim, according to the structure in
Listing 6.24.

LISTING 6.24: Structure of a never claim for transition covering
1 never n_i {
2 never_step :
3 i f
4 : : (L a s t T r a n s i t i o n ==transi t ion_name) −> goto end_never ;
5 : : e lse −> goto never_step ;
6 f i ;
7 end_never :
8 skip ;
9 }

Phases and artefacts involved in the execution of the Spin manager, are rep-
resented in Figure 6.9.

First the Spin Manager, merges the DSTM model and the generated nerver
claims in a unique merged Promela code file. Then, invokes the Spin Model
Checker facilities, in order to produce the test cases. According to this, the first
phase is the generation of the verifier, or in other words of a specific model
checker for the provided input model. The verifier, can be generated by invoking
the following command of the Spin Model Checker:

spin -a model_name.pml

Chapter 6. Development of the test cases generation framework 140

FIGURE 6.9: Spin Manager steps and artefacts

Such command performs a syntactical checking of the Promela code, and can
produce a list of errors, if some flaws are found. Otherwise the header and im-
plementation files describing the verifier in C language is generated. The header
file, contains declarations of global variables, of channels and of all the proctypes.
The implementation file, instead, contains the algorithms for the computation of
the labelled transition system and of the state-space of the model. Such files are
given as inputs to a gcc compiler [46] in order to produce an executable verifier.
The command used for the compiling phase is the following:

gcc -DMEMCNT=32 -DVECTORSZ=4112 -DSAFETY -DBITSTATE -o pan pan.c

Where gcc is the command to invoke the C/C++ compiler and the pan.c is the
implementation file in the C language, containing the verifier generated on the
basis of the provided model. The remaining options adopted in the command,
are compiling directives inserted in order to generate a optimized and more effi-
cient executable verifier [50]. More in detail, such options are:

• -DMEMCNT=32 indicates a limitation on the usage of memory. More specif-
ically it specifies that the maximum memory that the verification can use is
of 232. This option should be set in order to avoid the exceeding of memory.
In fact, not specify this option, can lead the verifier to saturate the physical
memory and using the virtual memory until a crash.

• DVECTORSZ=4112, represents an option to drive the compiler behaviour if
some errors are found during the compiling phase. In particular the DVEC-
TORSZ, represents the maximum size for the vector state (i.e. the vector

Chapter 6. Development of the test cases generation framework 141

used for the internal representation of model states). The default value is
set to 1024 byte, even if, when larger models exceed this size, the compiler
can ask for a recompiling with a different maximum size.

• DSAFETY belongs to the options for the performances enhancement of the
verifier. In particular the DSAFETY, optimize the code, when no cycle de-
tection is needed.

• DBITSTATE changes the default policy for the depth search algorithm adopted
by the generated verifier. In particular the default algorithm provides the
construction of a state space, in order to avoid to re-visit a state already
visited. Normally, in order to register states in such space, an hash table
is adopted. The bitstate algorithm acts on the memorization of the states.
In fact, instead of memorize the whole state representation in the arrays of
the hash table, each state is represented as number. Thus, when the hash
function computes the number, have only to know if the number is present
or not in the hash table, without register the entire state representation.

• -o, is a gcc option that specify the output file in which memorize the com-
piling process results.

The verifier is generated on the basis of the Promela model and is executed
to verify each never claims. Such process produces a set of traces, each of them
representing a test case, e.g. a sequence of steps to verify that the related transi-
tion is covered. The obtained test sequence contains the description of the steps,
made by means of TESQEL language (Section 4.2). However, a post processing
must be performed in order to refine such representation and obtain the final set
of test case, described with TESQUEL, that will be the starting point for other
testing phases, as the implementation in executable scripts and their execution
on the real system.

142

Chapter 7

Automatic generation of functional
test cases in the railway domain

This chapter discusses the application of the automatic test cases generation ap-
proach, described in the previous chapters. DSTM is used to provide the speci-
fication of a railway control systems, related to the CRYSTAL use case, in which
this work is partially involved. More specifically, the use case is related to the Ra-
dio Block Centre (RBC) which is a key component of the ERTMS/ETCS standard.
The application of the approach considers a complete scenario which refers to the
procedure performed by the RBC to manage the communication with the trains
on the tracks under its supervision. This procedure has been named Communica-
tion Procedure. Next sections provides an overview of the European Rail Traffic
Management System/European Train Control System (ERTMS/ETCS) standard
and a description of the RBC system. The automatic system-level test case gen-
eration of Communication Procedure is discussed.

7.1 ERTMS/ETCS standard

The ERTMS is an initiative of the European Union to enhance cross-border in-
teroperability and the procurement of signalling equipment by creating a single
Europe-wide standard for train control and command systems. In the 1989 the
European committee for transportations conceives a strategy for the develop-
ment of a common train control system standard, to be applied to the European
railway infrastructure. According to this, the first Interoperability Directive, was
issued by the European Commission in the 1993, reporting the decision to de-
fine a set of Technical Specifications for Interoperability (TSI). Two years after,
in the 1995, a plan, describing the first version of the ERTMS system, was re-
leased for the development of such systems. Only in the 1996, the EU decided
that ERTMS would become the standard for all railway high-speed lines. The

Chapter 7. Automatic generation of test cases in the railway domain 143

two EU Council Directive 96/48/EC [33] and 2001/16/EC [32] defined the inter-
operability of the trans-European high-speed rail systems and the conventional
rail systems specifications. As a response to the same directives the first specifi-
cation of the European Train Control System was defined as a part of the ERTMS
initiative. The ETCS is one of the main systems composing the ERTMS. It con-
sists in a signalling, control and train protection system designed to replace the
many incompatible safety systems adopted by European railways, especially on
high-speed lines. The ETCS allows a train equipped with it to travel without sig-
nal system boundaries within the ERTMS/ETCS fitted infrastructure network,
regardless of the country the train is travelling in, the legal nature of the infras-
tructure manager or the supplier providing the ERTMS/ETCS system. In 2004,
the ERA (European Railway Agency) was created and designated as the ERTMS
system authority, and thus is in charge of managing system specifications. The
ERA, with the regulation (EC) N° 881/2004 officially starts the development of
the ERTMS/ETCS system that is actually used within the European high-speed
railway network.

7.1.1 ERTMS/ETCS Safety Integrity Level

The ERTMS/ETCS provides the safe movement of trains and the optimal traf-
fic regulation of high-speed trains. Thus, the whole system shall be classified
as safety critical although complex system: it shall guarantee the safety of the
trains movement, preventing collisions in any case, also in situations of break-
downs and human errors. As discussed in Section 1.3, several international stan-
dards are applicable in this context, since the reliability, the safety evaluation and
the management are mandatory for these kind of systems. The basic standard
adopted for such kind of railway systems is the IEC/EN 61508 (Section 1.3.1)
which defines the SIL, as an indicator of the integrity level of safety functions
provided by the considered system. This definition is applicable to all kind of
industries for both hardware and software components. Lets note that the SIL
is related to a single safety function and not to the entire system or individual
components: within a given system a lot of safety features will exist, each of
them related to a particular hazard to which an appropriate SIL will be associ-
ated. The whole set of components of each security system must agree with the
specific SILs defined by the related standards.

With the respect to the railway application domain, other reference standards
must be taken into account. In particular three of them are nowadays adopted:
the EN 50126, EN 50128 and EN 50129 (Section 1.3.4) produced by CENELEC, the

Chapter 7. Automatic generation of test cases in the railway domain 144

European Committee for Electrotechnical Standardization, which is responsible
for standardization in the electrotechnical engineering field.

The three aforementioned CENELEC standards represent the backbone of the
RAMS (Reliability, Availability, Maintainability, and Safety) demonstration pro-
cess of a railway system: possible failures and hazards are identified during the
overall lifecycle and are properly corrected or mitigated considering their occur-
rence rate and the effort to spend; finally the risk is evaluated. In detail EN 50126
describes the processes and methods that are used to specify the most essential
and important aspects for operability and safety in the rail domain; the EN50128
and the EN 50129 give a set of requirements which have to be satisfied during
the safety-critical software (the former) / hardware (the latter) development, de-
ployment and maintenance phases. The lifecycle suggested for these systems is
the ‘V’ lifecycle (Section 1.3.5) where the design is implemented during the de-
scendent activities which correspond to the verification and validation activities
performed during the ascending branch.

According to the CENELEC standards, the ERTMS/ETCS implements func-
tions classified as SIL 4, which is the highest dependable level. This is a key fac-
tor in system verification and validation: in fact some techniques listed in stan-
dards are highly recommended for these systems. Among all, the adoption of
a structured methodology, based on formal methods and a modelling approach
are needed during the requirements specification as well as during design and
implementation.

A modelling methodology is required at system level to have a clear and com-
plete understand of the system behaviour. Furthermore the evaluation of some
coverage metrics is necessary: specific test cases which stress a predefined por-
tion of the system shall be defined in order to individuate which portions are
active and which ones are unreachable.

7.1.2 The Radio Block Centre

The ERTMS is based on two main components: the ETCS and the Global Sys-
tem for Mobile Communication - Railway (GSM-R). This second, is the track-
side communication Network used for exchange of information between the on-
board sub-system and trackside equipment. The ERTMS/ETC system has been
organized in four different functional levels, depending on system architecture.
Level 0, Level 1 and Level 2 are already implemented and used while Level 3

Chapter 7. Automatic generation of test cases in the railway domain 145

is currently under development. The definition of the ERTMS/ETCS levels, de-
pends on how the considered route is equipped and the way with which the in-
formation are exchanged between the system and the trains. The four functional
levels are:

• Level 0: the Level 0 regards ERTMS/ETCS-compliant locomotives or rolling
stock interact with line-side equipment that is non-ERTMS/ETCS compli-
ant. Technically this is not part of the ETCS, since the train driver shall
observe the physical signals encountered along the route, knowing the spe-
cific meaning of those signals on the railway;

• Level 1: this level consists of a cab signalling system that can be super-
imposed to the existing conventional signalling system leaving the fixed
signal system (national signalling and track-release system) in place. The
on-board equipment monitors and calculates the maximum speed and the
braking curve relying on the data received from the beacons at fixed points;

• Level 2: the Level 2 is a train protection system based on continuous com-
munication of variable data between the RBC and the trains via a radio
system (some additional information are received on board via fixed bea-
cons);

• Level 3: Level 3 implements a full radio-based train control and spacing
hence fixed block track equipment is no longer required. This technology
allows for detecting the current position of each train always in time, hence
it is possible to send continuously line-clear authorization to each train.

Level 2 and Level 3 are actually the two more cutting-edge solutions than
Level 1. In particular Level 2 is the most widespread choice, according to the cur-
rent deployment statistics 1. A reference architecture for Level 2 is represented in
Figure 7.1. It consists of three main subsystems: (1) the on-board system which is
the core of the control activities located on the train; (2) the line-side subsystem
which is responsible for providing geographical position information to the on-
board subsystem; (3) the trackside subsystem which is in charge of monitoring
the movement of the trains. Within the track side subsystem the most impor-
tant component is the Radio Block Centre (RBC). RBC is a computing system
whose aim is to guarantee a safe inter-train distance on the track area under its
supervision. As shown in Figure 7.1 RBC interacts with the on-board system by
managing a Communication Session using the EURORADIO protocol and the

1http://www.ertms.net

Chapter 7. Automatic generation of test cases in the railway domain 146

FIGURE 7.1: ERTMS/ETCS - Level 2

GSM-R network. A single RBC is in charge of concurrently and continuously
controlling a fixed maximum number of connections with trains, depending on
physical characteristics of the GSM-R network. The main objective of the train
control system is to timely transmit to each train its up-to-date Movement Au-
thority (MA) and the related speed profile. The MA contains information about
the distance the train may safely cover, depending on the status of the forward
track. RBC is also in charge of managing emergency situations if the commu-
nication with one or more trains is compromised. Specifically, when a train is
approaching the area supervised by a RBC, it sends a connection request. If the
request may be accepted, RBC tries to establish and manage the connection until
the train remains under its control. This is performed by dynamically instan-
tiating a thread of execution for each connection. Each of them manages the
communication with a specific train and performs a number of data checks and
actions based on the content of the messages that a train receives from the RBC.
Since a communication can be lost at any time, each thread handles several er-
rors and termination conditions. In particular, if a communication is definitely
lost, all pending processes which refer to the MA delivery are terminated and an
emergency procedure has started.

Chapter 7. Automatic generation of test cases in the railway domain 147

7.2 The Communication procedure

The communication procedure of the RBC is articulated in three ordered steps,
starting from the entering of a train on the track area controlled by the RBC, to
its leaving. The aforementioned steps are below described.

Step1: Communication Establishment When a train is going to establish a safe
connection with an RBC, it sends a request message. RBC may accept connection
requests only from a limited number of trains. This number depends on physical
features of the communication radio channel; over this value, RBC refuses new
connection requests, by sending to the train a proper answer message (refused).
Otherwise it sends to the train the acceptance notification (accepted). Hence, it is
necessary to model a process that accepts or refuses these requests by checking
the number of already accepted connections, and instantiates all the processes in
charge of managing the communication with the trains. After the acceptance of a
request, this process remains active and waits for other communication requests.

Step2: Session establishment Once a connection request is accepted, the com-
munication session between the related train and RBC can be established. If the
procedure succeeds RBC authorizes the train to start the mission (Start of Mis-
sion, SoM) or to perform the set of actions required to enter the high-speed area
from a not high-speed area. Ultimately, RBC sends the System Version message
to the train. The train answers with an Acknowledgement (Ack) and a Session
Established message. A specific value in the Session Established message (the
area field) is used by RBC to distinguish between a train that needs to start its
mission (L0 area) and a train that is coming from a non high-speed area (L1 area).
In fact, two different procedures shall be performed: the Start of Mission and the
Entry actions respectively. If a message different from the expected one is re-
ceived during this protocol, the session establishment procedure is aborted and
the communication with the train is closed.

Step 3: Management of train movement RBC periodically sends the Move-
ment Authority (MA) to each train and checks for the reception of commands
from the Centralized Traffic Control (CTC) where a human operator may raise
alarms which requires that the train has to brake: in this case an Unconditional
Emergency Stop (UES) message is sent to the train. On the other hand, when the
train successfully ends its trip, RBC performs the End of Mission (EoM) proce-
dure.

Chapter 7. Automatic generation of test cases in the railway domain 148

The entire Communication procedure of the RBC is composed by ten ma-
chines and by the related data declarations, described in the next section. Since
some of these machine are quite straightforward, only the four most complex
are here discussed. For each of the discussed machine both the DSTM specifica-
tion and the flat model are provided. The Promela formal model, automatically
obtained from the flat, is provided only for the M_CommunicationEstablishment
since the other machines are obtained with the same process, and present the
same structure. The complete DSTM specification related to both data flow and
control flow is reported in Appendix A. In the present chapter also the generated
Engine process is discussed and some test cases, obtained by the set of functional
requirements of the RBC Communication Procedure are showed.

7.2.1 Data declarations for the Communication Procedure

In order to model the specification of the Communication Procedure of the RBC,
several data declarations, modelling the data flow of the model, are necessary.
Such data declarations are below discussed.

A set of enumeration have been defined within data declarations:

• answer defining the possible values of RBC answer messages to a connec-
tion request (i.e., accepted and refused);

• version defining the possible values of the version field inside a System Ver-
sion message (e.g., V0, V1, V2);

• registration containing the possible values of the registration field inside a
Train Registration message (e.g., registered);

• area allowing to define the possible values of the area field inside a Session
Established message (e.g., L0, L1);

• msgId defining the possible values of the message identifiers specified in all
the messages (e.g., SessionEstablished, Ack).

The set of structured messages are modelled by several compound types:

• M_Request: {Chn, Chn} models the connection request message;

• M_Answer: {answer} models the answer message;

• M_SessionEstablished: {msgId, area, Int, Int} models the Session Established
message;

Chapter 7. Automatic generation of test cases in the railway domain 149

• M_Ack: {msgId} models the Ack message;

• M_TrainRegistration: {msgId, registration} models the Train Registration mes-
sage;

• M_SystemVersion: {msgId, version} models the System Version message;

• M_MovementAuthority: {msgId, Int} models the Movement Authority mes-
sage.

Compound types are grouped into two multi-types:

• MT_from: {M_SessionEstablished, M_Ack, M_TrainRegistration} models a set
of message types received from a train;

• MT_to: {M_SystemVersion, M_MovementAuthority} models a set of message
types sent to a train.

Three global variables are used in the model: V_cont typed as Int, V_chFrom
typed as Chn[MT_from] and V_chTo types as Chn[MT_to], their role is described
in the following.

Different channels exist, one of which (C_request) is used by RBC to receive
the connection requests from the trains. Each train conveys on C_request the
names of the two channels used to communicate with RBC; a further channel
is used by RBC to answer the train (C_answer) and communicate if its request
is accepted or refused. In addition, a pair of multi-type channels for each train
is defined: C_fromTrain_i (typed as MT_from) and C_toTrain_i (typed as MT_to);
they are used to receive and send messages to the i-th train, respectively. Data
declarations are partially generated by transformation rules related to the data
flow (e.g as for the simple types) and partially generated by the rules addressing
the control flow (e.g. as for the multi types).

7.2.2 M_CommunicationEstablishment

The most important machine specifying the behaviour of the Communication
Procedure is the M_CommunicationEstablishment that manages the establishment
of the safe connection between the RBC and the train board, according to the
Step1 of the procedure. As described at the beginning of the this section, a train
which is going to establish a safe connection with an RBC, sends a proper mes-
sage to it. RBC may accept or not, depending on the number of already activated
trains. A specific variable, has to trace the number of activated train.

Chapter 7. Automatic generation of test cases in the railway domain 150

DSTM model The DSTM specification of the M_CommunicationEstablishment
machine, can be modelled by referring to a specific model pattern, named Finite
Thread Pool. The Finite Thread Pool pattern consists of an idle state modelling the
system that waits for a request. On the arrival of a request, the considered ma-
chine, enters a box and starts a new instance of the worker machine. The worker
handles the received request, by assigning proper values to the parameters of
the new machine instance. Figure 7.2 shows the graphical representation of the
considered machine.

FIGURE 7.2: M_CommunicationEstablishment

According to Finite Thread Pool pattern, the M_CommunicationEstablishment
machine is composed by an idle state, modelling the wait for a request and the
check of the current number of activated trains, memorized in the V_cont vari-
able. In the specific case, the maximum number of trains which can be accepted
is 4. When a request arrives, if activated trains are less then 4,
the M_CommunicationEstablishment instantiates a M_ManageTrain machine by en-
tering the manageTrain box. Every time a request is accepted, the V_count variable
is incremented. The idle state is the source of the T03 transition that enters in the
fork and is triggered by the presence of a message on the channel C_request, and
guarded by the condition V_cont<=3. The actions annotated on this transition are
the send of the acceptance message over the channel C_answer, the increase of the
counter V_cont and the memorization of the names of the multi-type channels,
on which the communication with the train will continue (i.e. over the variables
V_chFrom and V_chTo). The M_ManageTrain termination is managed by the join
pseudonode, through the transition T06. The transition T08, exiting the join,
instead, decrements the counter V_cont. Finally, the transition T02, exiting the

Chapter 7. Automatic generation of test cases in the railway domain 151

node idle, is instead activated on the reception of a connection request, when the
counter has reached its maximum value. The action annotated on T02 transition
regards the sending of a proper refusal message over the channel C_answer.

Flatten model The DSTM specification has to be flatten in order to enable the
test case generation process. The machine resulting from the flattening process
is depicted in Figure 7.3.

FIGURE 7.3: Flattened M_CommunicationEstablishment machine

The flat machine presents two of the cases treated in Section 5.4: the asyn-
chronous fork and the simple join. The box manageTrain of the DSTM model is
removed and the entering and exiting fork transitions T03, T04 and T05 are re-
placed by the single transition T03_T04_T05. Such transition has the same source
of the T03 transition and the same destination of the asynchronous fork transi-
tion T04. Moreover the decoration of such transitions inherits trigger and condi-
tion from the T03 transition and the actions of all original transitions with the
additional actions related to the instantiation of the M_ManageTrain machine.
The idle node is renamed as idle_manageTrain in order to keep track of the re-
moved box. Since the idle node is both the source and the target node of this
transition, the new transition forms a self-loop on that node. With the respect
to the join, lets note that an exiting join transition can specify neither a trigger
nor a condition, but it may have an associated action. Since in this case the join
is non-preemptive, it is replaced by a single internal transition with no trigger
and a guard checking for the termination of all the machines associated with
the joined boxes. The action of the transition must include the action of exit-
ing join transition as well as the actions necessary to deal with the termination

Chapter 7. Automatic generation of test cases in the railway domain 152

of the joined boxes. According to this the transition T06_T07_T08 replaces the
non-preemptive join transitions T06, T07 and the exiting join transition T08. The
actions on this new transition include those specified on the exiting join transi-
tion T08. The guard is chTerm_manageTrain_M_ManageTrainexiting[? < 1 >],
checking for the reception of the exiting message from machine M_ManageTrain.
The action associated with transition T06_T07_T08 is the action of transition T08
(V_Cont:= ++V_Cont) followed by the consumption of the exiting message from
M_ManageTrain and the dispatch of the termination message to M_ManageTrain
along channel chTerm_manageTrain_M_ManageTrain.

Promela model In order to show a complete generation process the Promela
model related to the M_CommunicationEstablishment machine, is provided in List-
ing 7.1. Such Promela model is structured according to the schema, discussed in
Section 5.2.

LISTING 7.1: The DSTM model of the Communication Establish-

ment Machine
1 proctype MCommunicationEstablishment (pid parent ; mtype i n i t i a l ; chan

chTerm) {
2 byte i ;
3 pid PidTemp ;
4 b i t MyChildren [MAX_PROC] ;
5
6 chan chTerm_manageTrain_MManageTrain = [MAX_PROC] of { b i t } ;
7 chan chTerm_manageTrain_MManageTrain_exiting = [MAX_PROC] of { b i t } ;
8 mtype s t a t e = i n i t i a l ;
9 do

10 : : (s t a t e == MCommunicationEstablishment_init ial && HasToken [_pid]==1)
−>

11 atomic {
12 p r i n t f (" < current node [%d] = MCommunicationEstablishment_initial >\n " ,

_pid) ;
13 HasToken [_pid] = 0 ;
14 i f
15 : : (1) −>
16 Vcont =0;
17 p r i n t f (" < f i r i n g t r a n s i t i o n [%d] = MCommunicationEstablishment_T01>\n " ,

_pid) ;
18 s t a t e = MCommunicationEstablishment_idle_manageTrain ;
19 p r i n t f (" < next node[%d] = MCommunicationEstablishment_idle_manageTrain

>\n " , _pid) ;
20 L a s t T r a n s i t i o n =MCommunicationEstablishment_T01 ;
21 NoFirings =0;
22 : : e l s e −>
23 f o r (i : 0 . . MAX_PROC−1) {
24 HasToken [i]= MyChildren [i] ;
25 }
26 f i ;
27 }
28

Chapter 7. Automatic generation of test cases in the railway domain 153

29 : : (s t a t e == MCommunicationEstablishment_idle_manageTrain && HasToken [
_pid]==1) −>

30 atomic {
31 p r i n t f (" < current node [%d] =

MCommunicationEstablishment_idle_manageTrain >\n " , _pid) ;
32 HasToken [_pid] = 0 ;
33
34 i f
35 : : (Crequest ? [_ , _ , _ , _ , _]&&Vcont ==4) −>
36
37 Canswer ! 1 , refused ;
38 Crequest ?_ , _ , _ , _ , _ ;
39 p r i n t f (" < f i r i n g t r a n s i t i o n [%d] = MCommunicationEstablishment_T02>\n " ,

_pid) ;
40 s t a t e = MCommunicationEstablishment_idle_manageTrain ;
41 p r i n t f (" < next node[%d] = MCommunicationEstablishment_idle_manageTrain

>\n " , _pid) ;
42 L a s t T r a n s i t i o n =MCommunicationEstablishment_T02 ;
43 NoFirings =0;
44 : : (Crequest ? [_ , _ , _ , _ , _]&&Vcont <=3) −>
45 Crequest ? VchFrom_MSessionEstablished , VchFrom_MAck ,

VchFrom_MTrainRegistration , VchTo_MSystemVersion ,
VchTo_MMovementAuthority ;

46 Canswer ! 1 , accepted ;
47 Vcont ++;
48 PidTemp=run MManageTrain (_pid , MManageTrain_initial ,

VchFrom_MSessionEstablished , VchFrom_MAck ,
VchFrom_MTrainRegistration , VchTo_MSystemVersion ,
VchTo_MMovementAuthority , chTerm_manageTrain_MManageTrain ,
chTerm_manageTrain_MManageTrain_exiting) ;

49 MyChildren [PidTemp] = 1 ;
50 HasToken [PidTemp] = 1 ;
51 p r i n t f (" < f i r i n g t r a n s i t i o n [%d] =

MCommunicationEstablishment_T03_T04_T05 >\n " , _pid) ;
52 s t a t e = MCommunicationEstablishment_idle_manageTrain ;
53 p r i n t f (" < next node[%d] = MCommunicationEstablishment_idle_manageTrain

>\n " , _pid) ;
54 L a s t T r a n s i t i o n =MCommunicationEstablishment_T03_T04_T05 ;
55 NoFirings =0;
56 : : ((chTerm_manageTrain_MManageTrain_exiting ? [1])) −>
57 chTerm_manageTrain_MManageTrain ! 1 ;
58 chTerm_manageTrain_MManageTrain_exiting ? _ ;
59 Vcont−−;
60 p r i n t f (" < f i r i n g t r a n s i t i o n [%d] =

MCommunicationEstablishment_T06_T07_T08 >\n " , _pid) ;
61 s t a t e = MCommunicationEstablishment_idle_manageTrain ;
62 p r i n t f (" < next node[%d] = MCommunicationEstablishment_idle_manageTrain

>\n " , _pid) ;
63 L a s t T r a n s i t i o n =MCommunicationEstablishment_T06_T07_T08 ;
64 NoFirings =0;
65 : : e l s e −>
66 f o r (i : 0 . . MAX_PROC−1) {
67 HasToken [i]= MyChildren [i] ;
68 }
69 f i ;
70 }
71 od unless {
72 (chTerm ? [1] || dyingPid==parent) ;

Chapter 7. Automatic generation of test cases in the railway domain 154

73 i f
74 : : chTerm ? [1] −> chTerm ? 1 ;
75 f i ;
76 dyingPid = _pid ;
77 p r i n t f (" < Machine MCommunicationEstablishment[%d] terminated >\n " , _pid) ;
78 }
79 }

The process reported in the above listing is composed by two enumerations
types which introduce the symbolic names for nodes an transitions. A global
variable HasToken, typed as a bit array, is used to simulate the step semantics as
described is Section 5.5. Specifically, the i-th position of this array is set to 1 if
the process, whose _pid is equal to i, currently holds the token, meaning that
it can evolve. Lets note that this array is unique for the entire Promela model.
The body of the process consists in an iteration (a do-repetition construct) re-
peated until the termination message is received from the calling process over
the channel chTerm (exchanged as parameter). The termination message is then
propagated to all the children processes of the current process, if any. Each node
of the machine is translated into a guarded statement. The guard is satisfied if
the specified node is the current state of the process and the process holds the to-
ken. The atomic statement associated to the guard contains a sequence of state-
ments executed indivisibly. The first statement in the sequence consumes the
token (e.g., HasToken[_pid] = 0). Then a conditional statement (a selection con-
struct - if) contains one guarded statement for each transition exiting from that
node, where the guard correspond to the enabling condition of the transitions
(presence of the trigger and truth of the condition) and the associated statements
translate the actions (if any). Each action is translated into basic Promela state-
ments and operators, and executed when the associated guarded statement is se-
lected for the execution. If more than one guarded statement is executable, one of
them is non-deterministically selected. The else branch in the conditional state-
ment guarantees from one hand that the process is not blocked if no transition
can fire, from the other hand it executes a block of statements which propagates
the token to the children of the current process.

7.2.3 M_ManageTrain

The machine activated by the M_CommunicationEstablishment is the M_ManageTrain
that is in charge of modelling the acceptance of a train on the track area under
the supervision of the RBC.

Chapter 7. Automatic generation of test cases in the railway domain 155

The DSTM model The M_ManageTrain models the management of the com-
munication procedure with a specific train. The parameters taken into account
by this machine are the names of the multi-type channels on which the train and
the RBC will communicate. This machine enters the node idle and then instan-
tiates the machine M_SessionEstablishment, which models the session establish-
ment protocol, by entering the proper box. This last machine can terminate its
execution through different exiting nodes: exiting through entry means that the
machine M_Entry shall be subsequently instantiated, while som represents the
necessity to instantiate the machine M_StartOfMission (the models of these last
are provided in Appendix A). If the session establishment protocol is aborted (ex-
iting through aborted), this machine also terminates its execution. After both the
machines M_entry and the M_StartOfMission, the machine M_MovAuth is instan-
tiated in order to give periodically MA to the train. Note that, if the entry actions
have been performed, the machine M_MovAuth shall be instantiated through its
afterEntry entering node.

Figure 7.4 shows the graphical representation of the M_ManageTrain.

FIGURE 7.4: M_ManageTrain machine

Flatten model The M_ManageTrain machine presents several simple box cases
(Section 5.4.1). In fact, the boxes of the M_ManageTrain DSTM specification are
removed and replaced by nodes having the same names. Transitions entering
and exiting from the considered boxes are substituted with corresponding tran-
sitions entering and exiting from the new generated nodes. Such transitions in-
herit triggers, conditions and actions of the original ones, adding the actions re-
lated to the call and termination operations of the machines associated to the
removed boxes. According to the Figure 7.5 the transition T02 activates the

Chapter 7. Automatic generation of test cases in the railway domain 156

M_SessionEstablishment machine, hence its decoration is modified by adding the
action
pid = run(M_SessionEstablishment(parameter list).

The parameters list is obtained from the list of parameters of the original box.
Additional parameters are however needed to correctly model the termination of
the called machines: the ChTerm channels, related to each specified exiting node
of the M_SessionEstablishment machine, and the additional ChTerm channel, used
by the caller to signal its termination.

The transitions exiting from the boxes, are substituted with other transitions
exiting from the substituting nodes. There are two possible cases: (1) if the orig-
inal transition is a return by exiting, then the transition must be taken only if
the called machine has terminated. Therefore, the decoration of the replacing
transition, must also check that an exiting message has been sent by the callee
over the channel associated with the considered exiting node. Hence, the guard
chTerm_BoxName_MachineName_ExitingNodeName? < 1 > is added to the
guard of the original replaced transition. Indeed, if the transition is a return by
default then it can be taken as soon as the callee has reached any exiting node. In
this case, the guard of the transition is augmented with the disjunction of all the
guards of the form chTerm_BoxName_MachineName_ExitingNodeName? <
1 >, one for each exiting node. In either case, when the transition is taken, the
callee must terminate. In the Figure 7.5 such conditions are added to the T03
transition which checks for the reception of the notification message from the
M_SessionEstablishment over the channel associated to the entry exiting node.
Thus, two actions are added on the T03: the first models the transmission of
the termination message from the M_ManageTrain to the M_SessionEstablishment,
the latter is needed to consume the message on the same channel. The same
flattening process is adopted for the T06 transition.

7.2.4 The M_MovAuth machine

Machine M_MovAuth models the activities of Step 3 of the Communication Pro-
cedure. Below its DSTM specification and the related flat model are discussed.

DSTM model The M_MovAuth is modelled according to the Alarm Management
pattern in which a machine worker is executed in parallel to a machine alarm
that checks for the presence of alerts. In case any alarm is raised, the execution
of the worker is immediately stopped. According to this, as depicted in Figure
7.6, the fork instantiates two concurrent workers by entering in the centralManag
and periodicMA boxes. If the former ends its execution, the join on the left is

Chapter 7. Automatic generation of test cases in the railway domain 157

FIGURE 7.5: Flattened M_ManageTrain machine

Chapter 7. Automatic generation of test cases in the railway domain 158

taken and immediately the latter machine is interrupted (in fact the transition
T07 is preemptive). Indeed, if an alarm is raised, it forces the termination of the
M_PeriodicMA and activates an instance of the machine M_EmergencyManagement.
In case the train successfully ends the trip, the M_PeriodicMA machine termi-
nates, causing the termination of M_CentralControl machine. Moreover it causes
the activation of an instance of M_EndOfMission machine. This last machine
serves to successfully terminate the activities of the M_MovAuth machine. Fi-
nally the termination of the M_MovAuth causes, in turn, the termination of the
caller instance of machine M_ManageTrain.

FIGURE 7.6: M_MovAuth machine

Flatten model The M_MovAuth machine is interesting since it shows the re-
alization of a flattening process related to a machine containing synchronous
fork and preemptive join transitions. According to the mapping process of the
synchronous fork the currently executing process is suspended to wait for the
termination of the called machines. In this case, the entire block, containing
the fork, the join and the boxes, is substituted with a new node which models
the state of the suspended calling process. In addition, the transitions in the
block are replaced by a set of internal transitions to and from this wait node.
The flat version of the M_MovAuth is depicted in Figure 7.7. The two boxes
M_CentralControl and M_PeriodicMA are removed and replaced by the wait node

Chapter 7. Automatic generation of test cases in the railway domain 159

centralManag_periodicMA. Transitions T04, T05 and T06 are replaced by transi-
tion T04_T05_T06 whose actions perform the instantiation of the two machines
M_CentralControl and M_PeriodicMA by means of suitable run constructs, ac-
cording to what explained in the mapping process. Transitions T07, T09 and
T11 are replaced by the internal transition T07_T09_T11, while transitions T08,
T10 and T12 are replaced by transition T08_T10_T12. This example allows to
illustrate an instance of a preemptive join. In fact, the transition T07 (and re-
spectively T10) in Figure 7.6 is preemptive. The guard of transition T07_T09_T11
(and respectively T08_T10_T12) holds when the exiting message is received from
the machine M_CentralControl (and respectively, M_PeriodicMA) on channel
chTerm_centralManag_M_CentralControl_ues. The suspended caller wakes up
and sends the termination message to both machines M_CentralControl and
M_PeriodicMA, on the channels chTerm_centralManag_M_CentralControl and
chTerm_periodicMA_M_PeriodicMA, respectively.

FIGURE 7.7: Flattened M_MovAuth machine

7.2.5 M_SessionEstablishment

The M_SessionEstablishment machine allows for the modelling of the session es-
tablishment protocol. This is a key feature of the Communication Procedure
of the RBC, since is the machine the concretely instantiates the communication

Chapter 7. Automatic generation of test cases in the railway domain 160

channel between the RBC and a train. The M_SessionEstablishment does not pro-
vide a hierarchical structure. Thus, only the DSTM model is below discussed.

DSTM model The DSTM model of the M_SessionEstablishment is made accord-
ing to the Protocol Execution system pattern. This system pattern provides that
a machine waits for the reception of a correct sequence of messages from an
external entity. On the reception of a correct message, it can answer with a
proper message. If a message different from the expected one is received, the
protocol is aborted by exiting a proper exiting node. This pattern requires the
definition of n compound types (M1, . . . , Mn), each of them representing a pos-
sible message. According to this the M_SessionEstablishment machine has two
parametric channels: P_chFromMSE and P_chToMSE. These parametric channels
are instantiated by the transition T02 with the concrete channels names associ-
ated with the parameters P_chFromMMT and P_chToMMT. The called machine
M_SessionEstablishment sends the System Version message to the train over the
parametric output channel P_chToMSE. Then, it waits for an acknowledgement
message from the train on the parametric input channel P_chFromMSE (node
waitForAck).

According to the Protocol Execution pattern, the channel P_chFromMSE is a
multi-type channel of the MT_from that includes the type of the acknowledge-
ment message M_Ack. Therefore, in order to check the presence of an acknowl-
edgement message, the trigger used by transition T03 is PchFromMSE?M_Ack,
requiring that the multi-type channel currently contains a message of the spe-
cific type M_Ack. If the currently delivered message is not of type M_Ack the
protocol terminates reaching the abort exiting node (transition T02). After the
reception of the acknowledgement, the machine waits for the communication
of a session establishment message in the node waitForSessEstab. To check the
presence of the communication of session establishment message, transitions T05
and T06 use the trigger P_chFromMSE?M_SessionEstablished, requiring that
the corresponding multi-type channel currently containing a message of type
M_SessionEstablished. If the currently delivered message is not of type
M_SessionEstablished, the protocol terminates, reaching the abort exit node (tran-
sition T04). At this point, if the session establishment protocol terminates in the
abort exiting node, the instance of M_ManageTrain terminates its activity as well.
Termination of the session establishment protocol in the entry or som exit nodes,
leads to the activations of machines M_Entry and M_StartOfMission, respectively.
This allows for specifying the different procedures for trains coming from non
high-speed area and trains starting their mission, respectively. After termination

Chapter 7. Automatic generation of test cases in the railway domain 161

of the entry procedures, Step 2 of the the communication management is con-
cluded and machine M_MovAuth is instantiated to periodically send the MA to
the train. Lest note that, after the termination of the M_Entry procedure, the
M_MovAuth machine is activated in its entering node afterEntry, through the
transition T06. Otherwise the activation is made on its default node that allows
to record the area of the connection establishment.

FIGURE 7.8: M_SessionEstablishment machine

7.3 Communication Procedure step semantics

A relevant feature of DSTM is that it owns a strictly formalized step semantics.
The step semantics and the external environment are modelled by means of a
special Promela process named Engine. The Engine process initializes the exter-
nal channels, simulates the non-deterministic generation of messages over them
and controls the step semantics by assigning the token for the transitions firing.
Below the Engine process of the RBC Communication Procedure is described.

Channels initialization The exchange of messages between machines and the
environment is performed using external channels defined in the data declara-
tions. The external channels of the Communication Procedure are multi type.
This means that for each of them, the generation of the single-type sub channels
must be performed, for both the initialization process and the non-deterministic
messages generation. As for example the a generic ChFrom channel (i.e. a channel
managing messages coming from a train) is of MtFrom multi type. The MtFrom

Chapter 7. Automatic generation of test cases in the railway domain 162

multi type is composed by three sub-types related to the messages that can con-
vey in the channels of this type: (MSessionEstablished, MAck, MTrainRegistration).

Thus, for each subtype a simple-type external channel is generated. In the
specific case, considering the ChFrom channels, the simple type external chan-
nels generated are CfromTrain_MSessionEstablished, CfromTrain_MAck and Cfrom-
Train_MTrainRegistration. Furthermore, strictly related to this, local variables for
the non-deterministic generation are generated. Such local variables, named
temp variables, are generated according to the process described in Section 6.5.5.
Listing 7.2 shows the temp variables for the Communication Procedure and the
initialization of the external channels.

LISTING 7.2: The DSTM model of the Communication Establish-

ment Machine
1 a c t i v e proctype Engine () {
2 pid PidMain ;
3 //Temp Var iab les
4 mtype temp ;
5 mtype temp_Canswer_1 ;
6 mtype temp_CfromTrain1_MSessionEstablished_1 ;
7 mtype temp_CfromTrain1_MSessionEstablished_2 ;
8 i n t temp_CfromTrain1_MSessionEstablished_3 ;
9 i n t temp_CfromTrain1_MSessionEstablished_4 ;

10 mtype temp_CfromTrain1_MAck_1 ;
11 mtype temp_CfromTrain1_MTrainRegistration_1 ;
12 mtype temp_CfromTrain1_MTrainRegistration_2 ;
13 mtype temp_CtoTrain1_MSystemVersion_1 ;
14 mtype temp_CtoTrain1_MSystemVersion_2 ;
15 mtype temp_CtoTrain1_MMovementAuthority_1 ;
16
17 . . .
18
19 mtype temp_CfromTrain4_MSessionEstablished_1 ;
20 mtype temp_CfromTrain4_MSessionEstablished_2 ;
21 i n t temp_CfromTrain4_MSessionEstablished_3 ;
22 i n t temp_CfromTrain4_MSessionEstablished_4 ;
23 mtype temp_CfromTrain4_MAck_1 ;
24 mtype temp_CfromTrain4_MTrainRegistration_1 ;
25 mtype temp_CfromTrain4_MTrainRegistration_2 ;
26 mtype temp_CtoTrain4_MSystemVersion_1 ;
27 mtype temp_CtoTrain4_MSystemVersion_2 ;
28 mtype temp_CtoTrain4_MMovementAuthority_1 ;
29 i n t temp_CtoTrain4_MMovementAuthority_2 ;
30 chan chTerm_MMain = [MAX_PROC] of { b i t } ;
31 PidMain = run MMain(_pid , MMain_initial , chTerm_MMain) ;
32
33 //Generation of f i r s t messages
34 Canswer ! 0 , 0 ;
35 CfromTrain1_MSessionEstablished ! 0 , 0 , 0 , 0 , 0 ;
36 CfromTrain1_MAck ! 0 , 0 ;
37 CfromTrain1_MTrainRegistration ! 0 , 0 , 0 ;
38 CtoTrain1_MSystemVersion ! 0 , 0 , 0 ;
39 CtoTrain1_MMovementAuthority ! 0 , 0 , 0 ;
40

Chapter 7. Automatic generation of test cases in the railway domain 163

41 . . .
42
43 CfromTrain4_MSessionEstablished ! 0 , 0 , 0 , 0 , 0 ;
44 CfromTrain4_MAck ! 0 , 0 ;
45 CfromTrain4_MTrainRegistration ! 0 , 0 , 0 ;
46 CtoTrain4_MSystemVersion ! 0 , 0 , 0 ;
47 CtoTrain4_MMovementAuthority ! 0 , 0 , 0 ;

Non-deterministic generation The non-deterministic generation is in charge of
dispatching messages over the external channels. As reported in the Listing 7.3
in the generation block this task is performed by an iteration. First, the length of
each external channel is checked in order to verify that is not full. This condition
is checked by using the len() function natively provided by Promela (Listing 7.3,
line 11). If the considered channel is of multi type in the corresponding DSTM
model, the length check must be applied to each sub-channel (Listing 7.3, lines
30-31). In case the considered channel is full, the control is passed to the else
statement, that add the TESQUEL directives to signal, in the resulting test case,
such situation. Otherwise the non-deterministic generation, is performed, ac-
cording to the structure of the external channels: each channel has two positions,
one in which is memorized the current available value and one in which gener-
ated values of the current step are memorized for the next step execution. Listing
7.3 shows an excerpt of the non-deterministic generation of messages, related to
the Engine process for a single train. The structure in the Listing 7.3, is repeated
as many times as the number of trains that can be accepted by the considered
RBC.

LISTING 7.3: The DSTM model of the Communication Establish-

ment Machine
1 generat ion :
2 atomic {
3 i f
4 : : (NoFirings ==1) −> goto abort ;
5 : : e l s e −> skip ;
6 f i ;
7 NoFirings =1;
8 p r i n t f (" <ENGINE: message generat ion >\n ") ;
9 //MESSAGES ON Canswer

10 i f
11 : : (len (Canswer) ==1) −>
12 i f
13 : : (1) −>
14 i f
15 : : temp_Canswer_1=accepted ;
16 : : temp_Canswer_1=refused ;
17 f i ;
18 p r i n t f (" <ENGINE: Canswer − generated <%e>>\n " , temp_Canswer_1) ;
19 Canswer ! 1 , temp_Canswer_1 ;

Chapter 7. Automatic generation of test cases in the railway domain 164

20 : : (1) −>
21 p r i n t f (" <ENGINE: Canswer − generated EMPTY>\n ") ;
22 Canswer ! 0 , 0 ;
23 f i ;
24 : : e l s e −>
25 p r i n t f (" <ENGINE: Canswer − generated BY SYSTEM>\n ") ;
26 f i ;
27 Canswer?temp , temp_Canswer_1 ;
28
29 //MESSAGES ON CfromTrain1
30 i f
31 : : (len (CfromTrain1_MSessionEstablished) + len (CfromTrain1_MAck) + len (

CfromTrain1_MTrainRegistration) == 3) −>
32 i f
33 : : (1) −>
34 i f
35 : : temp_CfromTrain1_MSessionEstablished_1= S e s s i o n E s t a b l i s h e d ;
36 : : temp_CfromTrain1_MSessionEstablished_1=Ack ;
37 : : temp_CfromTrain1_MSessionEstablished_1= T r a i n R e g i s t r a t i o n ;
38 : : temp_CfromTrain1_MSessionEstablished_1=SystemVersion ;
39 : : temp_CfromTrain1_MSessionEstablished_1=MovementAuthority ;
40 f i ;
41 i f
42 : : temp_CfromTrain1_MSessionEstablished_2=L0 ;
43 : : temp_CfromTrain1_MSessionEstablished_2=L1 ;
44 f i ;
45 temp_CfromTrain1_MSessionEstablished_3 = 1
46 temp_CfromTrain1_MSessionEstablished_4 = 1
47 p r i n t f (" <ENGINE: CfromTrain1_MSessionEstablished − generated <%e,%e,%d

,%d>>\n " , temp_CfromTrain1_MSessionEstablished_1 ,
temp_CfromTrain1_MSessionEstablished_2 ,
temp_CfromTrain1_MSessionEstablished_3 ,
temp_CfromTrain1_MSessionEstablished_4) ;

48 CfromTrain1_MSessionEstablished ! 1 ,
temp_CfromTrain1_MSessionEstablished_1 ,
temp_CfromTrain1_MSessionEstablished_2 ,
temp_CfromTrain1_MSessionEstablished_3 ,
temp_CfromTrain1_MSessionEstablished_4 ;

49 CfromTrain1_MAck ! 0 , 0 ;
50 CfromTrain1_MTrainRegistration ! 0 , 0 , 0 ;
51 : : (1) −>
52 i f
53 : : temp_CfromTrain1_MAck_1=S e s s i o n E s t a b l i s h e d ;
54 : : temp_CfromTrain1_MAck_1=Ack ;
55 : : temp_CfromTrain1_MAck_1= T r a i n R e g i s t r a t i o n ;
56 : : temp_CfromTrain1_MAck_1=SystemVersion ;
57 : : temp_CfromTrain1_MAck_1=MovementAuthority ;
58 f i ;
59 p r i n t f (" <ENGINE: CfromTrain1_MAck − generated <%e>>\n " ,

temp_CfromTrain1_MAck_1) ;
60 CfromTrain1_MAck ! 1 , temp_CfromTrain1_MAck_1 ;
61 CfromTrain1_MSessionEstablished ! 0 , 0 , 0 , 0 , 0 ;
62 CfromTrain1_MTrainRegistration ! 0 , 0 , 0 ;
63 : : (1) −>
64 i f
65 : : temp_CfromTrain1_MTrainRegistration_1= S e s s i o n E s t a b l i s h e d ;
66 : : temp_CfromTrain1_MTrainRegistration_1=Ack ;
67 : : temp_CfromTrain1_MTrainRegistration_1= T r a i n R e g i s t r a t i o n ;

Chapter 7. Automatic generation of test cases in the railway domain 165

68 : : temp_CfromTrain1_MTrainRegistration_1=SystemVersion ;
69 : : temp_CfromTrain1_MTrainRegistration_1=MovementAuthority ;
70 f i ;
71 i f
72 : : temp_CfromTrain1_MTrainRegistration_2= r e g i s t e r e d ;
73 f i ;
74 p r i n t f (" <ENGINE: CfromTrain1_MTrainRegistration − generated <%e,%e>>\n

" , temp_CfromTrain1_MTrainRegistration_1 ,
temp_CfromTrain1_MTrainRegistration_2) ;

75 CfromTrain1_MTrainRegistration ! 1 , temp_CfromTrain1_MTrainRegistration_1
, temp_CfromTrain1_MTrainRegistration_2 ;

76 CfromTrain1_MSessionEstablished ! 0 , 0 , 0 , 0 , 0 ;
77 CfromTrain1_MAck ! 0 , 0 ;
78 : : (1) −>
79 p r i n t f (" <ENGINE: CfromTrain1 − generated EMPTY>\n ") ;
80 CfromTrain1_MSessionEstablished ! 0 , 0 , 0 , 0 , 0 ;
81 CfromTrain1_MAck ! 0 , 0 ;
82 CfromTrain1_MTrainRegistration ! 0 , 0 , 0 ;
83 f i ;
84 : : e l s e −>
85 p r i n t f (" <ENGINE: CfromTrain1 − generated BY SYSTEM>\n ") ;
86 f i ;
87 CfromTrain1_MSessionEstablished ?temp ,

temp_CfromTrain1_MSessionEstablished_1 ,
temp_CfromTrain1_MSessionEstablished_2 ,
temp_CfromTrain1_MSessionEstablished_3 ,
temp_CfromTrain1_MSessionEstablished_4 ;

88 CfromTrain1_MAck?temp , temp_CfromTrain1_MAck_1 ;
89 CfromTrain1_MTrainRegistration ?temp ,

temp_CfromTrain1_MTrainRegistration_1 ,
temp_CfromTrain1_MTrainRegistration_2 ;

90
91
92 //MESSAGES ON CtoTrain1
93 i f
94 : : (len (CtoTrain1_MSystemVersion) + len (CtoTrain1_MMovementAuthority) ==

2) −>
95 i f
96 : : (1) −>
97 i f
98 : : temp_CtoTrain1_MSystemVersion_1= S e s s i o n E s t a b l i s h e d ;
99 : : temp_CtoTrain1_MSystemVersion_1=Ack ;

100 : : temp_CtoTrain1_MSystemVersion_1= T r a i n R e g i s t r a t i o n ;
101 : : temp_CtoTrain1_MSystemVersion_1=SystemVersion ;
102 : : temp_CtoTrain1_MSystemVersion_1=MovementAuthority ;
103 f i ;
104 i f
105 : : temp_CtoTrain1_MSystemVersion_2=V0 ;
106 : : temp_CtoTrain1_MSystemVersion_2=V1 ;
107 : : temp_CtoTrain1_MSystemVersion_2=V2 ;
108 f i ;
109 p r i n t f (" <ENGINE: CtoTrain1_MSystemVersion − generated <%e,%e>>\n " ,

temp_CtoTrain1_MSystemVersion_1 , temp_CtoTrain1_MSystemVersion_2) ;
110 CtoTrain1_MSystemVersion ! 1 , temp_CtoTrain1_MSystemVersion_1 ,

temp_CtoTrain1_MSystemVersion_2 ;
111 CtoTrain1_MMovementAuthority ! 0 , 0 , 0 ;
112 : : (1) −>
113 i f

Chapter 7. Automatic generation of test cases in the railway domain 166

114 : : temp_CtoTrain1_MMovementAuthority_1= S e s s i o n E s t a b l i s h e d ;
115 : : temp_CtoTrain1_MMovementAuthority_1=Ack ;
116 : : temp_CtoTrain1_MMovementAuthority_1= T r a i n R e g i s t r a t i o n ;
117 : : temp_CtoTrain1_MMovementAuthority_1=SystemVersion ;
118 : : temp_CtoTrain1_MMovementAuthority_1=MovementAuthority ;
119 f i ;
120 temp_CtoTrain1_MMovementAuthority_2 = 10
121 p r i n t f (" <ENGINE: CtoTrain1_MMovementAuthority − generated <%e,%d>>\n " ,

temp_CtoTrain1_MMovementAuthority_1 ,
temp_CtoTrain1_MMovementAuthority_2) ;

122 CtoTrain1_MMovementAuthority ! 1 , temp_CtoTrain1_MMovementAuthority_1 ,
temp_CtoTrain1_MMovementAuthority_2 ;

123 CtoTrain1_MSystemVersion ! 0 , 0 , 0 ;
124 : : (1) −>
125 p r i n t f (" <ENGINE: CtoTrain1 − generated EMPTY>\n ") ;
126 CtoTrain1_MSystemVersion ! 0 , 0 , 0 ;
127 CtoTrain1_MMovementAuthority ! 0 , 0 , 0 ;
128 f i ;
129 : : e l s e −>
130 p r i n t f (" <ENGINE: CtoTrain1 − generated BY SYSTEM>\n ") ;
131 f i ;
132 CtoTrain1_MSystemVersion ?temp , temp_CtoTrain1_MSystemVersion_1 ,

temp_CtoTrain1_MSystemVersion_2 ;
133 CtoTrain1_MMovementAuthority ?temp , temp_CtoTrain1_MMovementAuthority_1 ,

temp_CtoTrain1_MMovementAuthority_2 ;
134

The generation block ends by assigning the token to the main process (Listing
7.4, line 2). Then, the Engine process enters the do construct, where it waits
until the Promela global variable timeout is evaluated true. This happens when
no statement can be executable in the active processes, hence when all the SUT
processes have consumed their token. In this case, Engine executes a jump to the
generation label and starts a new step.

LISTING 7.4: The DSTM model of the Communication Establish-

ment Machine
1 //GIVE TOKEN TO THE MAIN PROCESS
2 HasToken [PidMain] = 1 ;
3 }
4 do
5 : : t imeout −> goto generat ion ;
6 od ;
7 abort :
8 dyingPid=_pid ;
9 }

7.4 Test cases generation

Exploiting the Promela model described in the previous section and the Spin
Model Checker, test cases have been generated. The generation process has been

Chapter 7. Automatic generation of test cases in the railway domain 167

based on the coverage of the SUT transitions. This kind of test specification is
modelled by using the Cover pattern. According to a set of Cover patterns, the
TCG generates a set of never claims. Each never claim, owns a variable named
LastTransition that stores, for each instant of time, the name of the last transition
entered. The never claim defines a behaviour in which the LastTransition vari-
able does never assume the value of the element to cover. This property in fact,
should be evaluated as false by the Spin Model Checker which returns back the
required test case as a counterexample of the violated property. With the respect
to this, two test cases are below discussed. The test cases are chosen among those
obtained by the set of functional requirements of the Communication Procedure
of the RBC. Each test case is described with the TESQEL language, whose state-
ments are partially generated by outcomes of the model checker and then refined
by the Post Processor component, described in Chapter 6. Some remarks on the
executions time of the TCG framework are provided at the end of the section.

Req01 The Req01 states that when the SessionEstablished message is received
from a train, and the area field of the received message is L1, RBC shall perform
the Entry action. Such requirement, has been annotated on the T06 transition of
the machine M_SessionEstablishment, depicted in Figure 7.8. The never claim de-
scribing such cover is made according to the general structure showed in Listing
6.24 of the previous chapter. The test case, resulting from the property verifica-
tion made by Spin, is reported in Listing 7.5. Lets note that some steps of the test
cases report the firing of more that one source transitions, when an intermediate
pseudonode is crossed. As an example, the step1 of Table 5 reports the firing
of T03_T04_T05 of M_CommunicationEstablishment, since a fork pseudonode is
crossed in the that step.

LISTING 7.5: The DSTM model of the Communication Establish-

ment Machine
1 <?xml vers ion = " 1 . 0 " encoding =" ASCII "? >
2 < t e s q e l : TestSequence xmi : vers ion = " 2 . 0 " xmlns : xmi=" ht tp ://www. omg . org/XMI"

xmlns : t e s q e l =" t e s q e l " name=" never_19 " s p e c i f i c a t i o n =" never_19 ">
3 < i n i t i a l >MMain_init ial </ i n i t i a l >
4 <compoundFiring>
5 < f i r i n g >
6 <current >MMain_init ial </current >
7 <current >MMain_idle</current >
8 <current >MMain_T01</current >
9 </ f i r i n g >

10 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;
Sess ionEstab l i shed , L0 ,1 ,1 >"/ >

11 </compoundFiring>
12 <compoundFiring order ="1" >
13 < f i r i n g >

Chapter 7. Automatic generation of test cases in the railway domain 168

14 <current >MMain_idle</current >
15 <current >MMain_box</current >
16 <current >MMain_T02</current >
17 </ f i r i n g >
18 < f i r i n g order ="1" >
19 <current >MEnvConstra ints_ in i t ia l </current >
20 <current >MEnvConstraints_waitFor1Train </current >
21 <current >MEnvConstraints_T01 </current >
22 </ f i r i n g >
23 < f i r i n g order ="2" >
24 <current >MCommunicationEstablishment_initial </current >
25 <current >MCommunicationEstablishment_idle </current >
26 <current >MCommunicationEstablishment_manageTrain</current >
27 <current >MCommunicationEstablishment_T01</current >
28 </ f i r i n g >
29 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
30 < l i n k from="//@compoundFiring .1/ @f i r i ng . 0 " to ="//@compoundFiring .1/

@ f i r i n g .1"/ >
31 < l i n k from="//@compoundFiring .1/ @f i r i ng . 1 " to ="//@compoundFiring .1/

@ f i r i n g .2"/ >
32 </compoundFiring>
33 <compoundFiring order ="2" >
34 < f i r i n g >
35 <current >MEnvConstraints_waitFor1Train </current >
36 <current >MEnvConstraints_endOfRequests </current >
37 <current >MEnvConstraints_T02 </current >
38 </ f i r i n g >
39 < f i r i n g order ="1" >
40 <current >MCommunicationEstablishment_idle </current >
41 <current >MCommunicationEstablishment_manageTrain</current >
42 <current >MCommunicationEstablishment_idle </current >
43 <current >MCommunicationEstablishment_manageTrain</current >
44 <current >MCommunicationEstablishment_T03</current >
45 <current >MCommunicationEstablishment_T04</current >
46 <current >MCommunicationEstablishment_T05</current >
47 </ f i r i n g >
48 < f i r i n g order ="2" >
49 <current >MManageTrain_initial </current >
50 <current >MManageTrain_idle</current >
51 <current >MManageTrain_T01</current >
52 </ f i r i n g >
53 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
54 < l i n k from="//@compoundFiring .2/ @f i r i ng . 0 " to ="//@compoundFiring .2/

@ f i r i n g .1"/ >
55 < l i n k from="//@compoundFiring .2/ @f i r i ng . 1 " to ="//@compoundFiring .2/

@ f i r i n g .2"/ >
56 </compoundFiring>
57 <compoundFiring order ="3" >
58 < f i r i n g >
59 <current >MManageTrain_idle</current >
60 <current >MManageTrain_establishment </current >
61 <current >MManageTrain_T02</current >
62 </ f i r i n g >
63 < f i r i n g order ="1" >
64 <current >MSess ionEstab l i shment_ in i t i a l </current >
65 <current >MSessionEstablishment_waitForAck </current >

Chapter 7. Automatic generation of test cases in the railway domain 169

66 <current >MSessionEstablishment_T01 </current >
67 </ f i r i n g >
68 <IOmessage channel ="Canswer " d i r e c t i o n =" fromSystem"/>
69 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
70 < l i n k from="//@compoundFiring .3/ @f i r i ng . 0 " to ="//@compoundFiring .3/

@ f i r i n g .1"/ >
71 </compoundFiring>
72 <compoundFiring order ="4" >
73 < f i r i n g >
74 <current >MSessionEstablishment_waitForAck </current >
75 <current >MSessionEstablishment_waitForSessEstab </current >
76 <current >MSessionEstablishment_T03 </current >
77 </ f i r i n g >
78 <IOmessage channel =" CtoTrain1 " d i r e c t i o n =" fromSystem"/>
79 <IOmessage channel ="CfromTrain1_MAck " message="& l t ; Sess ionEstab l i shed

>"/>
80 </compoundFiring>
81 <compoundFiring order ="5" >
82 < f i r i n g >
83 <current >MSessionEstablishment_waitForSessEstab </current >
84 <current >MSessionEstablishment_som </current >
85 <current >MSessionEstablishment_T05 </current >
86 </ f i r i n g >
87 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
88 </compoundFiring>
89 <compoundFiring order ="6" >
90 < f i r i n g >
91 <current >MManageTrain_establishment </current >
92 <current >MManageTrain_som</current >
93 <current >MManageTrain_T04</current >
94 </ f i r i n g >
95 < f i r i n g order ="1" >
96 <current >MStar tOfMiss ion_ in i t i a l </current >
97 <current >MStartOfMission_working </current >
98 <current >MStartOfMission_T01 </current >
99 </ f i r i n g >

100 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;
Sess ionEstab l i shed , L0 ,1 ,1 >"/ >

101 < l i n k from="//@compoundFiring .6/ @f i r i ng . 0 " to ="//@compoundFiring .6/
@ f i r i n g .1"/ >

102 </compoundFiring>
103 <compoundFiring order ="7" >
104 < f i r i n g >
105 <current >MStartOfMission_working </current >
106 <current >MStartOfMission_exit ing </current >
107 <current >MStartOfMission_T02 </current >
108 </ f i r i n g >
109 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
110 </compoundFiring>
111 <compoundFiring order ="8" >
112 < f i r i n g >
113 <current >MManageTrain_som</current >
114 <current >MManageTrain_giveMA</current >
115 <current >MManageTrain_T05</current >
116 </ f i r i n g >

Chapter 7. Automatic generation of test cases in the railway domain 170

117 < f i r i n g order ="1" >
118 <current >MMovAuth_initial </current >
119 <current >MMovAuth_sendMovementAuthority</current >
120 <current >MMovAuth_T01</current >
121 </ f i r i n g >
122 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
123 < l i n k from="//@compoundFiring .8/ @f i r i ng . 0 " to ="//@compoundFiring .8/

@ f i r i n g .1"/ >
124 </compoundFiring>
125 <compoundFiring order ="9" >
126 < f i r i n g >
127 <current >MMovAuth_sendMovementAuthority</current >
128 <current >MMovAuth_centralManag</current >
129 <current >MMovAuth_periodicMA</current >
130 <current >MMovAuth_T04</current >
131 <current >MMovAuth_T05</current >
132 <current >MMovAuth_T06</current >
133 </ f i r i n g >
134 < f i r i n g order ="1" >
135 <current >MPeriodicMA_initial </current >
136 <current >MPeriodicMA_working</current >
137 <current >MPeriodicMA_T01</current >
138 </ f i r i n g >
139 < f i r i n g order ="2" >
140 <current >MCentra lContro l_ in i t i a l </current >
141 <current >MCentralControl_working </current >
142 <current >MCentralControl_T01 </current >
143 </ f i r i n g >
144 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
145 < l i n k from="//@compoundFiring .9/ @f i r i ng . 0 " to ="//@compoundFiring .9/

@ f i r i n g .1"/ >
146 < l i n k from="//@compoundFiring .9/ @f i r i ng . 1 " to ="//@compoundFiring .9/

@ f i r i n g .2"/ >
147 </compoundFiring>
148 <compoundFiring order ="10" >
149 < f i r i n g >
150 <current >MPeriodicMA_working</current >
151 <current >MPeriodicMA_eom</current >
152 <current >MPeriodicMA_T02</current >
153 </ f i r i n g >
154 < f i r i n g order ="1" >
155 <current >MCentralControl_working </current >
156 <current >MCentralControl_ues </current >
157 <current >MCentralControl_T03 </current >
158 </ f i r i n g >
159 <IOmessage channel =" CtoTrain1 " d i r e c t i o n =" fromSystem"/>
160 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
161 < l i n k from="//@compoundFiring .10/ @f i r i ng . 0 " to ="//@compoundFiring .10/

@ f i r i n g .1"/ >
162 </compoundFiring>
163 <compoundFiring order ="11" >
164 < f i r i n g >
165 <current >MMovAuth_centralManag</current >
166 <current >MMovAuth_periodicMA</current >
167 <current >MMovAuth_emergency</current >

Chapter 7. Automatic generation of test cases in the railway domain 171

168 <current >MMovAuth_T07</current >
169 <current >MMovAuth_T09</current >
170 <current >MMovAuth_T11</current >
171 </ f i r i n g >
172 < f i r i n g order ="1" >
173 <current >MEmergencyManagement_initial </current >
174 <current >MEmergencyManagement_working</current >
175 <current >MEmergencyManagement_T01</current >
176 </ f i r i n g >
177 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
178 < l i n k from="//@compoundFiring .11/ @f i r i ng . 0 " to ="//@compoundFiring .11/

@ f i r i n g .1"/ >
179 </compoundFiring>
180 <compoundFiring order ="12" >
181 < f i r i n g >
182 <current >MEmergencyManagement_working</current >
183 <current >MEmergencyManagement_exiting</current >
184 <current >MEmergencyManagement_T02</current >
185 </ f i r i n g >
186 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
187 </compoundFiring>
188 <compoundFiring order ="13" >
189 < f i r i n g >
190 <current >MMovAuth_emergency</current >
191 <current >MMovAuth_exiting</current >
192 <current >MMovAuth_T13</current >
193 </ f i r i n g >
194 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
195 </compoundFiring>
196 < l i n k from="//@compoundFiring . 0 " to ="//@compoundFiring .1"/ >
197 < l i n k from="//@compoundFiring . 1 " to ="//@compoundFiring .2"/ >
198 < l i n k from="//@compoundFiring . 2 " to ="//@compoundFiring .3"/ >
199 < l i n k from="//@compoundFiring . 3 " to ="//@compoundFiring .4"/ >
200 < l i n k from="//@compoundFiring . 4 " to ="//@compoundFiring .5"/ >
201 < l i n k from="//@compoundFiring . 5 " to ="//@compoundFiring .6"/ >
202 < l i n k from="//@compoundFiring . 6 " to ="//@compoundFiring .7"/ >
203 < l i n k from="//@compoundFiring . 7 " to ="//@compoundFiring .8"/ >
204 < l i n k from="//@compoundFiring . 8 " to ="//@compoundFiring .9"/ >
205 < l i n k from="//@compoundFiring . 9 " to ="//@compoundFiring .10"/ >
206 < l i n k from="//@compoundFiring . 1 0 " to ="//@compoundFiring .11"/ >
207 < l i n k from="//@compoundFiring . 1 1 " to ="//@compoundFiring .12"/ >
208 < l i n k from="//@compoundFiring . 1 2 " to ="//@compoundFiring .13"/ >
209 </ t e s q e l : TestSequence >
210

Req02 The Req02 demands that when End of Mission message (EoM) message
is received from a train, the RBC shall initiate the de-registration of the train by
performing the EoM procedure. The Req02 requirement is annotated on the T10
transition of the M_MovAuth machine, showed in Figure 7.6. The complete test
cases is showed in Listing 7.6.

Chapter 7. Automatic generation of test cases in the railway domain 172

LISTING 7.6: The DSTM model of the Communication Establish-

ment Machine
1 <?xml vers ion = " 1 . 0 " encoding =" ASCII "? >
2 < t e s q e l : TestSequence xmi : vers ion = " 2 . 0 " xmlns : xmi=" ht tp ://www. omg . org/XMI"

xmlns : t e s q e l =" t e s q e l " name=" never_25 " s p e c i f i c a t i o n =" never_25 ">
3 < i n i t i a l >MMain_init ial </ i n i t i a l >
4 <compoundFiring>
5 < f i r i n g >
6 <current >MMain_init ial </current >
7 <current >MMain_idle</current >
8 <current >MMain_T01</current >
9 </ f i r i n g >

10 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;
Sess ionEstab l i shed , L0 ,1 ,1 >"/ >

11 </compoundFiring>
12 <compoundFiring order ="1" >
13 < f i r i n g >
14 <current >MMain_idle</current >
15 <current >MMain_box</current >
16 <current >MMain_T02</current >
17 </ f i r i n g >
18 < f i r i n g order ="1" >
19 <current >MEnvConstra ints_ in i t ia l </current >
20 <current >MEnvConstraints_waitFor1Train </current >
21 <current >MEnvConstraints_T01 </current >
22 </ f i r i n g >
23 < f i r i n g order ="2" >
24 <current >MCommunicationEstablishment_initial </current >
25 <current >MCommunicationEstablishment_idle </current >
26 <current >MCommunicationEstablishment_manageTrain</current >
27 <current >MCommunicationEstablishment_T01</current >
28 </ f i r i n g >
29 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
30 < l i n k from="//@compoundFiring .1/ @f i r i ng . 0 " to ="//@compoundFiring .1/

@ f i r i n g .1"/ >
31 < l i n k from="//@compoundFiring .1/ @f i r i ng . 1 " to ="//@compoundFiring .1/

@ f i r i n g .2"/ >
32 </compoundFiring>
33 <compoundFiring order ="2" >
34 < f i r i n g >
35 <current >MEnvConstraints_waitFor1Train </current >
36 <current >MEnvConstraints_endOfRequests </current >
37 <current >MEnvConstraints_T02 </current >
38 </ f i r i n g >
39 < f i r i n g order ="1" >
40 <current >MCommunicationEstablishment_idle </current >
41 <current >MCommunicationEstablishment_manageTrain</current >
42 <current >MCommunicationEstablishment_idle </current >
43 <current >MCommunicationEstablishment_manageTrain</current >
44 <current >MCommunicationEstablishment_T03</current >
45 <current >MCommunicationEstablishment_T04</current >
46 <current >MCommunicationEstablishment_T05</current >
47 </ f i r i n g >
48 < f i r i n g order ="2" >
49 <current >MManageTrain_initial </current >
50 <current >MManageTrain_idle</current >

Chapter 7. Automatic generation of test cases in the railway domain 173

51 <current >MManageTrain_T01</current >
52 </ f i r i n g >
53 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
54 < l i n k from="//@compoundFiring .2/ @f i r i ng . 0 " to ="//@compoundFiring .2/

@ f i r i n g .1"/ >
55 < l i n k from="//@compoundFiring .2/ @f i r i ng . 1 " to ="//@compoundFiring .2/

@ f i r i n g .2"/ >
56 </compoundFiring>
57 <compoundFiring order ="3" >
58 < f i r i n g >
59 <current >MManageTrain_idle</current >
60 <current >MManageTrain_establishment </current >
61 <current >MManageTrain_T02</current >
62 </ f i r i n g >
63 < f i r i n g order ="1" >
64 <current >MSess ionEstab l i shment_ in i t i a l </current >
65 <current >MSessionEstablishment_waitForAck </current >
66 <current >MSessionEstablishment_T01 </current >
67 </ f i r i n g >
68 <IOmessage channel ="Canswer " d i r e c t i o n =" fromSystem"/>
69 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
70 < l i n k from="//@compoundFiring .3/ @f i r i ng . 0 " to ="//@compoundFiring .3/

@ f i r i n g .1"/ >
71 </compoundFiring>
72 <compoundFiring order ="4" >
73 < f i r i n g >
74 <current >MSessionEstablishment_waitForAck </current >
75 <current >MSessionEstablishment_waitForSessEstab </current >
76 <current >MSessionEstablishment_T03 </current >
77 </ f i r i n g >
78 <IOmessage channel =" CtoTrain1 " d i r e c t i o n =" fromSystem"/>
79 <IOmessage channel ="CfromTrain1_MAck " message="& l t ; Sess ionEstab l i shed

>"/>
80 </compoundFiring>
81 <compoundFiring order ="5" >
82 < f i r i n g >
83 <current >MSessionEstablishment_waitForSessEstab </current >
84 <current >MSessionEstablishment_som </current >
85 <current >MSessionEstablishment_T05 </current >
86 </ f i r i n g >
87 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
88 </compoundFiring>
89 <compoundFiring order ="6" >
90 < f i r i n g >
91 <current >MManageTrain_establishment </current >
92 <current >MManageTrain_som</current >
93 <current >MManageTrain_T04</current >
94 </ f i r i n g >
95 < f i r i n g order ="1" >
96 <current >MStar tOfMiss ion_ in i t i a l </current >
97 <current >MStartOfMission_working </current >
98 <current >MStartOfMission_T01 </current >
99 </ f i r i n g >

100 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;
Sess ionEstab l i shed , L0 ,1 ,1 >"/ >

Chapter 7. Automatic generation of test cases in the railway domain 174

101 < l i n k from="//@compoundFiring .6/ @f i r i ng . 0 " to ="//@compoundFiring .6/
@ f i r i n g .1"/ >

102 </compoundFiring>
103 <compoundFiring order ="7" >
104 < f i r i n g >
105 <current >MStartOfMission_working </current >
106 <current >MStartOfMission_exit ing </current >
107 <current >MStartOfMission_T02 </current >
108 </ f i r i n g >
109 <IOmessage channel =" CfromTrain1_MSessionEstablished " message="& l t ;

Sess ionEstab l i shed , L0 ,1 ,1 >"/ >
110 </compoundFiring>
111 < l i n k from="//@compoundFiring . 0 " to ="//@compoundFiring .1"/ >
112 < l i n k from="//@compoundFiring . 1 " to ="//@compoundFiring .2"/ >
113 < l i n k from="//@compoundFiring . 2 " to ="//@compoundFiring .3"/ >
114 < l i n k from="//@compoundFiring . 3 " to ="//@compoundFiring .4"/ >
115 < l i n k from="//@compoundFiring . 4 " to ="//@compoundFiring .5"/ >
116 < l i n k from="//@compoundFiring . 5 " to ="//@compoundFiring .6"/ >
117 < l i n k from="//@compoundFiring . 6 " to ="//@compoundFiring .7"/ >
118 </ t e s q e l : TestSequence >

Execution times A brief analysis of the execution times, deriving from the gen-
eration of the test cases of the Communication Procedure, has been performed. In
particular, execution times derive from the printing of timestamps taken from the
Linux system shell, on which the generation has been performed. More specifi-
cally the considered Linux system is equipped with an Intel Quad-core i7-2677M
CPU 1.80GHz with 4 GB of RAM. According to the Section 6.7, describing the
Spin compiling options, the only optimization considered is the DSAFETY op-
tion, that allows for the optimization of the memory.

The result depicted in Figure 7.9 demonstrates that test cases are generated
in a feasible time. The histogram in Figure reports on the x-axis the times in
milliseconds and on the y-axis the percentage of experiments whose execution
times are related to that time value. It can be seen that the most of the executions
keeps below four seconds, a groups of executions (about 18% are centred around
10 seconds) while a little percentage of the executions (less than 8%) are executed
over 12 seconds depending on state-space, generated by the Spin Model Checker
during the production of the counterexamples.

Chapter 7. Automatic generation of test cases in the railway domain 175

FIGURE 7.9: Generation times of the test cases of the Communica-
tion Procedure

176

Chapter 8

Conclusions

This thesis has been proposed a model-driven approach for the automated gener-
ation of test sequences for black-box system level testing. The approach is based
on model checking techniques enabled by a behavioural model of the system
under test and of the specifications of test, according to the system requirements.

According to the model-driven nature of the approach, and with the respect
to the domain need, a domain-specific modelling language, strongly formalized,
has been performed. The formalization is due to the critical nature of the treated
systems. Moreover, in order to integrate the approach in a wider V&V process,
the language has been defined as simple as possible and designed with the ob-
jective of achieve an high-level of usability. DSTM has been defined extend-
ing the well-know formalism of the Hierarchical State Machines, by introducing
new features as the dynamic instantiation, the preemptive termination of the ma-
chines and the explicit modelling of the step semantics of the language. More-
over the concept of Test Specification Pattern has been discussed as an effective
and efficient way to specify the desired property to test according to state- based
model of a critical system. TSPs may have a relevant role in the automated gener-
ation process since they can allow for make easier the process of the test specifi-
cation, re-using some predefined patterns, widely adopted in a given domain of
interest. The automatic generation has been performed by defining proper map-
pings between the high-level specifications and the constructs provided Promela,
the language of the chosen model checker. According to the model-driven princi-
ples on which the overall thesis relies, the realization of such mappings has been
performed trough the definition of Model-to-Model and Model-to-Text transfor-
mations. This is a key point of the defined approach, since model-driven tech-
niques promise a relevant reduction of inconsistencies that can occur between
the artefacts created with a manual development process. This make the ap-
proach more attractive to be adopted by the industrial settings. The approach
has been applied to a real railway safety-critical system, in order to exemplify
the expressiveness of the proposed specification language and the potentialities

Chapter 8. Conclusions 177

of the entire framework in test generation. The application in the railway context
shows that the test generation approach provides a promising potentialities both
from the perspectives of the scalability and the performances.

Future research efforts, will be focused on the definition of proper optimiza-
tions for the target formal model and on the extension of the proposed language
in order to introduce concepts necessary to cover a wider range of embedded
safety critical systems. With the respect for the optimization process, at the cur-
rent state there is the need to define some heuristics to reduce the complexity of
the Promela model used for the generation of the test cases. The heuristic op-
timization is needed in order to avoid the state explosion of the model checker
when high-complex system are consider. In this context, a relevant activity ac-
tually under design, is the translation of the proposed high-level language for
systems specicification in the alternative model checker environment, NuSMV
[19]. Such translation will allow to compare the performances obtained by ap-
plying different model checking techniques and tools. Finally investigations on
the application of the proposed approach in other domains will be performed.
This investigations are encouraged by the promising results deriving from its
application in other critical domains as the one of the Smart Energy Grids and
the one of the Water Distribution Networks.

178

Appendix A

DSTM models of the Radio Block
Centre system

A.1 The DSTM specification

This appendix provides the entire DSTM model related to the Communication
Procedure of the RBC. According to this, both the data declarations and the
model of the control flow are below provided.

A.1.1 Data declarations

The data declarations related to the Communication Procedure are reported in
Listing A.1.

LISTING A.1: Data declarations for the Communication Procedure
1 Enum answer { accepted , refused } ;
2 Enum vers ion { V0 , V1 , V2 } ;
3 Enum r e g i s t r a t i o n { r e g i s t e r e d } ;
4 Enum area { L0 , L1 } ;
5 Enum msgId { Sess ionEstab l i shed , Ack , T r a i n R e g i s t r a t i o n , SystemVersion , MovementAuthority } ;
6
7 S t r u c t MAnswer { answer } ;
8 S t r u c t MSessionEstabl ished { msgId , area , Int , I n t } ;
9 S t r u c t MAck { msgId } ;

10 S t r u c t MTrainRegistrat ion { msgId , r e g i s t r a t i o n } ;
11 S t r u c t MSystemVersion { msgId , vers ion } ;
12 S t r u c t MMovementAuthority { msgId , I n t } ;
13
14 Mtype MTfrom { MSessionEstablished , MAck, MTrainRegistrat ion } ;
15 Mtype MTto { MSystemVersion , MMovementAuthority } ;
16
17 S t r u c t MRequest {Chn [MTfrom] , Chn [MTto] } ;
18
19 I n t Vcont ;
20 Chn [MTfrom] VchFrom ;
21 Chn [MTto] VchTo ;
22
23 Chn i n t e r n a l Crequest [1] of MRequest ;
24 Chn e x t e r n a l Canswer of MAnswer ;
25 Chn e x t e r n a l CfromTrain1 of MTfrom ;
26 Chn e x t e r n a l CtoTrain1 of MTto ;
27 Chn e x t e r n a l CfromTrain2 of MTfrom ;
28 Chn e x t e r n a l CtoTrain2 of MTto ;
29 Chn e x t e r n a l CfromTrain3 of MTfrom ;
30 Chn e x t e r n a l CtoTrain3 of MTto ;
31 Chn e x t e r n a l CfromTrain4 of MTfrom ;
32 Chn e x t e r n a l CtoTrain4 of MTto ;

Appendix A. DSTM models of the Radio Block Centre system 179

33
34 Param PchFromMMT : Chn [MTfrom] of MManageTrain ;
35 Param PchToMMT: Chn [MTto] of MManageTrain ;
36 Param PchFromMSE : Chn [MTfrom] of MSessionEstablishment ;
37 Param PchToMSE : Chn [MTto] of MSessionEstablishment ;
38 Param PchFromMMA: Chn [MTfrom] of MMovAuth ;
39 Param PchToMMA: Chn [MTto] of MMovAuth ;
40 Param PchFromME : Chn [MTfrom] of MEntry ;
41 Param PchToME : Chn [MTto] of MEntry ;
42 Param PchFromMSOM: Chn [MTfrom] of MStartOfMission ;
43 Param PchToMSOM: Chn [MTto] of MStartOfMission ;
44 Param PchFromMCC : Chn [MTfrom] of MCentralControl ;
45 Param PchToMCC : Chn [MTto] of MCentralControl ;
46 Param PchFromMPMA: Chn [MTfrom] of MPeriodicMA ;
47 Param PchToMPMA: Chn [MTto] of MPeriodicMA ;
48 Param PchFromMEM : Chn [MTfrom] of MEmergencyManagement ;
49 Param PchToMEM: Chn [MTto] of MEmergencyManagement ;
50 Param PchFromMEOM: Chn [MTfrom] of MEndOfMission ;
51 Param PchToMEOM: Chn [MTto] of MEndOfMission ;

A.1.2 DSTM Machines

The Listing A.2 shows the complete DSTM model of the control flow of all the
ten machines composing the Communication Procedure.

LISTING A.2: The DSTM model of the Communication Procedure
1 <?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
2 <dstm4ra i l :DSTM xmi : vers ion = " 2 . 0 " xmlns : xmi=" ht tp ://www. omg . org/XMI" xmlns : x s i =" ht tp ://www. w3 . org

/2001/XMLSchema−i n s t a n c e " xmlns : ds tm4ra i l =" dstm4ra i l " name=" CommunicationEstablishment " main
="//@machines [name= ’MMain ’]" >

3 −−Main machine
4 <machines name="M_Main">
5 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
6 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name="box " i n s t a n t i a t i o n ="//@machines [name= ’

MCommunicationEstablishment ’] //@machines [name= ’ MEnvConstraints ’]"/ >
7 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" i d l e "/>
8 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’MMain ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’MMain ’]/ @vertexes [name= ’ i d l e ’]"/ >
9 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’MMain ’]/ @vertexes [name= ’ i d l e ’] " d e s t i n a t i o n

="//@machines [name= ’MMain ’]/ @vertexes [name= ’ box ’]"/ >
10 </machines>
11

12 −−M_CommunicationEstablishment machine
13 <machines name=" MCommunicationEstablishment">
14 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
15 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" i d l e "/>
16 <v e r t e x e s x s i : type =" dstm4ra i l : Fork " name=" fork "/>
17 <v e r t e x e s x s i : type =" dstm4ra i l : J o i n " name=" j o i n "/>
18 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" manageTrain " i n s t a n t i a t i o n ="//@machines [name= ’

MManageTrain ’]"/ >
19 < t r a n s i t i o n s name="T01 " condi t ion ="" source ="//@machines [name= ’ MCommunicationEstablishment ’]/

@vertexes [name= ’ i n i t i a l ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/
@vertexes [name= ’ i d l e ’]" >

20 <act ions >Vcont =0;</ act ions >
21 </ t r a n s i t i o n s >
22 < t r a n s i t i o n s name="T02 " t r i g g e r =" Crequest ? " condi t ion =" Vcont ==4" source ="//@machines [name= ’

MCommunicationEstablishment ’]/ @vertexes [name= ’ i d l e ’] " d e s t i n a t i o n ="//@machines [name= ’
MCommunicationEstablishment ’]/ @vertexes [name= ’ i d l e ’]" >

23 <act ions >Canswer!& l t ; answer : : refused >;</ act ions >
24 <act ions >Crequest?& l t ; _ , _>;</ act ions >
25 </ t r a n s i t i o n s >
26 < t r a n s i t i o n s name="T03 " t r i g g e r =" Crequest ? " condi t ion =" Vcont&l t ; = 3 " source ="//@machines [name= ’

MCommunicationEstablishment ’]/ @vertexes [name= ’ i d l e ’] " d e s t i n a t i o n ="//@machines [name= ’
MCommunicationEstablishment ’]/ @vertexes [name= ’ fork ’]" >

27 <act ions >Crequest?& l t ; VchFrom , VchTo>;</ act ions >
28 <act ions >Canswer!& l t ; answer : : accepted >;</ act ions >
29 <act ions >Vcont =(Vcont ++) ; </ act ions >
30 </ t r a n s i t i o n s >
31 < t r a n s i t i o n s name="T04 " source ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name=

’ fork ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name= ’
i d l e ’]"/ >

Appendix A. DSTM models of the Radio Block Centre system 180

32 < t r a n s i t i o n s name="T05 " source ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name=
’ fork ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name= ’
manageTrain ’]" >

33 < p a r _ i n s t a n t i a t i o n >PchFromMMT=VchFrom ;PchToMMT=VchTo; </ p a r _ i n s t a n t i a t i o n >
34 </ t r a n s i t i o n s >
35 < t r a n s i t i o n s name="T06 " source ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name=

’ i d l e ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name= ’
j o i n ’]"/ >

36 < t r a n s i t i o n s name="T07 " source ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name=
’ manageTrain ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [
name= ’ j o i n ’]"/ >

37 < t r a n s i t i o n s name="T08 " source ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name=
’ j o i n ’] " d e s t i n a t i o n ="//@machines [name= ’ MCommunicationEstablishment ’]/ @vertexes [name= ’
i d l e ’]" >

38 < a c t i o n s >Vcont =(Vcont−−);</actions>
39 </ t r a n s i t i o n s >
40 </machines>
41

42 −−M_ManageTrain machine
43 <machines name="MManageTrain">
44 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
45 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
46 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" i d l e "/>
47 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" es tabl i shment " i n s t a n t i a t i o n ="//@machines [name= ’

MSessionEstablishment ’]"/ >
48 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" entry " i n s t a n t i a t i o n ="//@machines [name= ’ MEntry ’]"/ >
49 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name="som" i n s t a n t i a t i o n ="//@machines [name= ’ MStartOfMission ’

]"/ >
50 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name="giveMA" i n s t a n t i a t i o n ="//@machines [name= ’MMovAuth ’]"/ >
51 < t r a n s i t i o n s name="T01 " t r i g g e r ="" condi t ion ="" source ="//@machines [name= ’ MManageTrain ’]/

@vertexes [name= ’ i n i t i a l ’] " d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’
i d l e ’]"/ >

52 < t r a n s i t i o n s name="T02 " condi t ion ="" source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’
i d l e ’] " d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ es tabl i shment ’]" >

53 < p a r _ i n s t a n t i a t i o n >PchFromMSE=PchFromMMT ; PchToMSE=PchToMMT; </ p a r _ i n s t a n t i a t i o n >
54 </ t r a n s i t i o n s >
55 < t r a n s i t i o n s name="T03 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ es tab l i shment ’

] " d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ entry ’] " exi t ing_node
="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ entry ’]" >

56 < p a r _ i n s t a n t i a t i o n >PchFromME=PchFromMMT ; PchToME=PchToMMT; </ p a r _ i n s t a n t i a t i o n >
57 </ t r a n s i t i o n s >
58 < t r a n s i t i o n s name="T04 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ es tab l i shment ’

] " d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’som ’] " exi t ing_node ="//
@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’som ’]" >

59 < p a r _ i n s t a n t i a t i o n >PchFromMSOM=PchFromMMT ;PchToMSOM=PchToMMT; </ p a r _ i n s t a n t i a t i o n >
60 </ t r a n s i t i o n s >
61 < t r a n s i t i o n s name="T05 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’som ’] "

d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’giveMA ’]" >
62 < p a r _ i n s t a n t i a t i o n >PchFromMMA=PchFromMMT ;PchToMMA=PchToMMT; </ p a r _ i n s t a n t i a t i o n >
63 </ t r a n s i t i o n s >
64 < t r a n s i t i o n s name="T06 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ entry ’] "

d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’giveMA ’] " entering_node ="//
@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ a f t e r E n t r y ’]" >

65 < p a r _ i n s t a n t i a t i o n >PchFromMMA=PchFromMMT ;PchToMMA=PchToMMT; </ p a r _ i n s t a n t i a t i o n >
66 </ t r a n s i t i o n s >
67 < t r a n s i t i o n s name="T07 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ es tab l i shment ’

] " d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ e x i t i n g ’] " exi t ing_node
="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ aborted ’]"/ >

68 < t r a n s i t i o n s name="T08 " source ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’giveMA ’] "
d e s t i n a t i o n ="//@machines [name= ’ MManageTrain ’]/ @vertexes [name= ’ e x i t i n g ’]" >

69 <requirements > I d e n t i f i e r =SRS_MMT_T08 ; T i t l e =Ending of Train management ; Modified=2015−09−25
1 2 : 1 5 : 0 4 ; Url=null </requirements >

70 </ t r a n s i t i o n s >
71 </machines>
72

73 −−M_SessionEstablishment machine
74 <machines name=" MSessionEstablishment ">
75 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
76 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" aborted "/>
77 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name="som"/>
78 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" entry "/>
79 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitForAck"/>
80 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitForSessEstab "/>
81 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’

i n i t i a l ’] " d e s t i n a t i o n ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’
waitForAck ’]" >

82 <act ions >PchToMSE!& l t ; msgId : : SystemVersion , vers ion : : V1>;</ act ions >
83 </ t r a n s i t i o n s >

Appendix A. DSTM models of the Radio Block Centre system 181

84 < t r a n s i t i o n s name="T02 " t r i g g e r = " ((PchFromMSE ?) && ; (! PchFromMSE?MAck)) " source ="//
@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ waitForAck ’] " d e s t i n a t i o n ="//
@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ aborted ’]"/ >

85 < t r a n s i t i o n s name="T03 " t r i g g e r ="PchFromMSE?MAck" source ="//@machines [name= ’
MSessionEstablishment ’]/ @vertexes [name= ’ waitForAck ’] " d e s t i n a t i o n ="//@machines [name= ’
MSessionEstablishment ’]/ @vertexes [name= ’ waitForSessEstab ’]"/ >

86 < t r a n s i t i o n s name="T04 " t r i g g e r = " ((PchFromMSE ?) && ; (! PchFromMSE? MSessionEstabl ished)) "
source ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ waitForSessEstab ’] "
d e s t i n a t i o n ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’ aborted ’]"/ >

87 < t r a n s i t i o n s name="T05 " t r i g g e r ="PchFromMSE? MSessionEstabl ished " condi t ion ="PchFromMSE[?& l t ; _ ,
area : : L0 , _ , _ >] " source ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’
waitForSessEstab ’] " d e s t i n a t i o n ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name
= ’som ’]"/ >

88 < t r a n s i t i o n s name="T06 " t r i g g e r ="PchFromMSE? MSessionEstabl ished " condi t ion ="PchFromMSE[?& l t ; _ ,
area : : L1 , _ , _ >] " source ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name= ’
waitForSessEstab ’] " d e s t i n a t i o n ="//@machines [name= ’ MSessionEstablishment ’]/ @vertexes [name
= ’ entry ’]" >

89 <requirements > I d e n t i f i e r =SRS_MSE_T06 ; T i t l e =Sess ion es tabl i shment ; Modified=2015−09−25
1 2 : 1 5 : 0 4 ; Url=null </requirements >

90 </ t r a n s i t i o n s >
91 </machines>
92

93 −−M_MovAuth machine
94 <machines name="MMovAuth">
95 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
96 <v e r t e x e s x s i : type =" dstm4ra i l : EnteringNode " name=" a f t e r E n t r y "/>
97 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
98 <v e r t e x e s x s i : type =" dstm4ra i l : Fork " name=" fork "/>
99 <v e r t e x e s x s i : type =" dstm4ra i l : J o i n " name=" j o i n 1 "/>

100 <v e r t e x e s x s i : type =" dstm4ra i l : J o i n " name=" j o i n 2 "/>
101 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" sendMovementAuthority"/>
102 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" r e g i s t e r T r a i n "/>
103 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" centralManag " i n s t a n t i a t i o n ="//@machines [name= ’

MCentralControl ’]"/ >
104 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" periodicMA " i n s t a n t i a t i o n ="//@machines [name= ’

MPeriodicMA ’]"/ >
105 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name=" emergency " i n s t a n t i a t i o n ="//@machines [name= ’

MEmergencyManagement ’]"/ >
106 <v e r t e x e s x s i : type =" dstm4ra i l : Box " name="eom" i n s t a n t i a t i o n ="//@machines [name= ’ MEndOfMission ’

]"/ >
107 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ sendMovementAuthority ’]"/ >
108 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ a f t e r E n t r y ’] "

d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ r e g i s t e r T r a i n ’]"/ >
109 < t r a n s i t i o n s name="T03 " t r i g g e r ="PchFromMMA? MTrainRegistrat ion " source ="//@machines [name= ’

MMovAuth ’]/ @vertexes [name= ’ r e g i s t e r T r a i n ’] " d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/
@vertexes [name= ’ sendMovementAuthority ’]"/ >

110 < t r a n s i t i o n s name="T04 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’
sendMovementAuthority ’] " d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ fork ’
]" >

111 <act ions >PchToMMA!& l t ; msgId : : MovementAuthority ,10 >; </ act ions >
112 </ t r a n s i t i o n s >
113 < t r a n s i t i o n s name="T05 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ fork ’] "

d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ centralManag ’]" >
114 < p a r _ i n s t a n t i a t i o n >PchFromMCC=PchFromMMA; PchToMCC=PchToMMA; </ p a r _ i n s t a n t i a t i o n >
115 </ t r a n s i t i o n s >
116 < t r a n s i t i o n s name="T06 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ fork ’] "

d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ periodicMA ’]" >
117 < p a r _ i n s t a n t i a t i o n >PchFromMPMA=PchFromMMA;PchToMPMA=PchToMMA; </ p a r _ i n s t a n t i a t i o n >
118 </ t r a n s i t i o n s >
119 < t r a n s i t i o n s name="T07 " is_preemptive =" t rue " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [

name= ’ centralManag ’] " d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 1 ’] "
exi t ing_node ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ ues ’]"/ >

120 < t r a n s i t i o n s name="T08 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ centralManag ’] "
d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 2 ’]"/ >

121 < t r a n s i t i o n s name="T09 " condi t ion ="" source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’
periodicMA ’] " d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 1 ’]"/ >

122 < t r a n s i t i o n s name="T10 " is_preemptive =" t rue " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [
name= ’ periodicMA ’] " d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 2 ’]"/ >

123 < t r a n s i t i o n s name="T11 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 1 ’] "
d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ emergency ’]" >

124 < p a r _ i n s t a n t i a t i o n >PchFromMEM=PchFromMMA;PchToMEM=PchToMMA; </ p a r _ i n s t a n t i a t i o n >
125 </ t r a n s i t i o n s >
126 < t r a n s i t i o n s name="T12 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ j o i n 2 ’] "

d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’eom ’]" >
127 < p a r _ i n s t a n t i a t i o n >PchFromMEOM=PchFromMMA;PchToMEOM=PchToMMA; </ p a r _ i n s t a n t i a t i o n >
128 </ t r a n s i t i o n s >

Appendix A. DSTM models of the Radio Block Centre system 182

129 < t r a n s i t i o n s name="T13 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ emergency ’] "
d e s t i n a t i o n ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >

130 < t r a n s i t i o n s name="T14 " source ="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’eom ’] " d e s t i n a t i o n
="//@machines [name= ’MMovAuth ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >

131 </machines>
132

133 −−M_Entry machine
134 <machines name="MEntry">
135 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
136 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
137 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
138 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MEntry ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MEntry ’]/ @vertexes [name= ’ working ’]"/ >
139 < t r a n s i t i o n s name="T02 " t r i g g e r ="" source ="//@machines [name= ’ MEntry ’]/ @vertexes [name= ’ working ’

] " d e s t i n a t i o n ="//@machines [name= ’ MEntry ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >
140 </machines>
141

142 −−M_StartOfMission machine
143 <machines name=" MStartOfMission ">
144 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
145 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
146 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
147 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MStartOfMission ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MStartOfMission ’]/ @vertexes [name= ’ working ’]"/ >
148 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’ MStartOfMission ’]/ @vertexes [name= ’ working ’] "

d e s t i n a t i o n ="//@machines [name= ’ MStartOfMission ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >
149 </machines>
150

151 −−M_CentralControl machine
152 <machines name=" MCentralControl ">
153 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
154 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
155 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" ues"/>
156 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
157 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ working ’]"/ >
158 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ working ’] "

d e s t i n a t i o n ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >
159 < t r a n s i t i o n s name="T03 " source ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ working ’] "

d e s t i n a t i o n ="//@machines [name= ’ MCentralControl ’]/ @vertexes [name= ’ ues ’]"/ >
160 </machines>
161

162 −−M_PeriodicMA machine
163 <machines name="MPeriodicMA">
164 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
165 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name="eom"/>
166 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
167 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MPeriodicMA ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MPeriodicMA ’]/ @vertexes [name= ’ working ’]"/ >
168 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’ MPeriodicMA ’]/ @vertexes [name= ’ working ’] "

d e s t i n a t i o n ="//@machines [name= ’ MPeriodicMA ’]/ @vertexes [name= ’eom ’]"/ >
169 </machines>
170

171 −−M_EmergencyManagement machine
172 <machines name="MEmergencyManagement">
173 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
174 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
175 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
176 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’MEmergencyManagement ’]/ @vertexes [name= ’

i n i t i a l ’] " d e s t i n a t i o n ="//@machines [name= ’MEmergencyManagement ’]/ @vertexes [name= ’ working ’
]"/ >

177 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’MEmergencyManagement ’]/ @vertexes [name= ’
working ’] " d e s t i n a t i o n ="//@machines [name= ’MEmergencyManagement ’]/ @vertexes [name= ’ e x i t i n g ’
]"/ >

178 </machines>
179

180 −−M_EndOfMission machine
181 <machines name="MEndOfMission">
182 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
183 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" e x i t i n g "/>
184 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" working"/>
185 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MEndOfMission ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MEndOfMission ’]/ @vertexes [name= ’ working ’]"/ >
186 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’ MEndOfMission ’]/ @vertexes [name= ’ working ’] "

d e s t i n a t i o n ="//@machines [name= ’ MEndOfMission ’]/ @vertexes [name= ’ e x i t i n g ’]"/ >
187 </machines>
188

Appendix A. DSTM models of the Radio Block Centre system 183

189 −−M_EnvConstrains machine
190 <machines name=" MEnvConstraints ">
191 <v e r t e x e s x s i : type =" dstm4ra i l : I n i t i a l N o d e " name=" i n i t i a l "/>
192 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitFor1Train "/>
193 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitFor2Train "/>
194 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitFor3Train "/>
195 <v e r t e x e s x s i : type =" dstm4ra i l : Node" name=" waitFor4Train "/>
196 <v e r t e x e s x s i : type =" dstm4ra i l : ExitingNode " name=" endOfRequests "/>
197 < t r a n s i t i o n s name="T01 " source ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’ i n i t i a l ’] "

d e s t i n a t i o n ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’ waitFor1Train ’]"/ >
198 < t r a n s i t i o n s name="T02 " source ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’

waitFor1Train ’] " d e s t i n a t i o n ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’
waitFor2Train ’]" >

199 <act ions >Crequest !& l t ; CfromTrain1 , CtoTrain1 >;</ act ions >
200 </ t r a n s i t i o n s >
201 < t r a n s i t i o n s name="T03 " source ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’

waitFor2Train ’] " d e s t i n a t i o n ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’
waitFor3Train ’]" >

202 <act ions >Crequest !& l t ; CfromTrain2 , CtoTrain2 >;</ act ions >
203 </ t r a n s i t i o n s >
204 < t r a n s i t i o n s name="T04 " condi t ion ="" source ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name

= ’ waitFor3Train ’] " d e s t i n a t i o n ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’
waitFor4Train ’]" >

205 <act ions >Crequest !& l t ; CfromTrain3 , CtoTrain3 >;</ act ions >
206 </ t r a n s i t i o n s >
207 < t r a n s i t i o n s name="T05 " source ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’

waitFor4Train ’] " d e s t i n a t i o n ="//@machines [name= ’ MEnvConstraints ’]/ @vertexes [name= ’
endOfRequests ’]" >

208 <act ions >Crequest !& l t ; CfromTrain4 , CtoTrain4 >;</ act ions >
209 </ t r a n s i t i o n s >
210 </machines>
211 </dstm4ra i l :DSTM>

184

Acknowledgements
In every life experience, there are some people that you feel you want to thank

for making part of your journey more pleasant. According to this, the first thanks
is for Proff. Valeria Vittorini and Nicola Mazzocca, which give me the possibility
to join their research group supervising me in every moment of this experience.
Thanks to Stefano, that has always found the time for give me and advice or sim-
ply for make me a laugh.
A big thanks is for Roberto, a great friend and a "super" tutor, that helps me dur-
ing the whole phd and in particular in the editing of the thesis.
During these years I met wonderful persons, as Alessandra and Carmen that
welcome me warmly since the beginning.
Thanks also to the guys of the SECLAB research group with which I shared a lot
of funny moments.
I cannot forget to thank my best friends, Giuliana and Antonio for every beer
shared in joy and Nadia for every nice evening.
Last but not least thanks to my mother and my father, who have always sup-
ported me in my choices, teaching me the ways to make them consciously.
Thanks to my sister for discussions but also for the affection.
Thanks to my ever love Eleonora, who has always been by my side even when
she was kilometres away.
Finally thanks to all people that are not mentioned above but that with every
small acts contributed to make unbelievable this chapter of my life.
This is not the end of an experience but the begin of a new history waiting to be
discovered.

Ugo Gentile

185

Bibliography

[1] W.M.P. Van der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Bar-
ros. “Workflow patterns”. In: Distributed and Parallel Databases 14.1 (2003),
pp. 5–51.

[2] A. Abdulhameed, A. Hammad, H. Mountassir, and B. Tatibouet. “An ap-
proach to verify SysML functional requirements using Promela/SPIN”. In:
Programming and Systems (ISPS), 2015 12th International Symposium on. IEEE
Computer Society, 2015, pp. 1–9.

[3] Acceleo. http://www.eclipse.org/acceleo. [Online; accessed 25-02-
2016]. 2013.

[4] R. Alur. “Formal analysis of hierarchical state machines”. In: Verification:
Theory and Practice. Springer, 2003, pp. 42–66.

[5] R. Alur, S. Kannan, and M. Yannakakis. “Communicating Hierarchical State
Machines”. In: Automata, Languages and Programming. Vol. 1644. Springer
Berlin Heidelberg, 1999, pp. 169–178.

[6] R. Alur and M. Yannakakis. “Model checking of hierarchical state ma-
chines”. In: ACM SIGSOFT Software Engineering Notes. Vol. 23. 6. ACM.
1998, pp. 175–188.

[7] S. Baharom and Z. Shukur. “Module documentation based testing using
grey-box approach”. In: Information Technology, 2008. ITSim 2008. Interna-
tional Symposium on. Vol. 2. IEEE. 2008, pp. 1–6.

[8] N. J. Bahr. System safety engineering and risk assessment: a practical approach.
CRC Press, 2014.

[9] P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker, and C. Williams. Model-
driven testing: Using the UML testing profile. Springer Science & Business
Media, 2007.

[10] G. Barberio, B. Di Martino, N. Mazzocca, L. Velardi, A. Amato, R. De Guglielmo,
U. Gentile, S. Marrone, R. Nardone, A. Peron, and V. Vittorini. “An in-
teroperable testing environment for ERTMS/ETCS control systems”. In:
Computer Safety, Reliability, and Security. Springer International Publishing,
2014, pp. 147–156.

http://www.eclipse.org/acceleo

BIBLIOGRAPHY 186

[11] D. Bjørner. “New results and trends in formal techniques and tools for the
development of software for transportation systems: a review”. In: Proceed-
ings of the 4th Symposium on Formal Methods for Railway Operation and Control
Systems (FORMS03), LHarmattan Hongrie, Budapest (2003).

[12] P. E. Black, V. Okun, and Y. Yesha. “Mutation operators for specifications”.
In: Automated Software Engineering, The Fifteenth IEEE International Confer-
ence on. IEEE. 2000, pp. 81–88.

[13] B. Boehm. Software risk management. Springer, 1989.

[14] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Ut-
ting. “A subset of precise UML for model-based testing”. In: Proceedings of
the 3rd international workshop on Advances in model-based testing. ACM. 2007,
pp. 95–104.

[15] B. R Bryant, J. Gray, M. Mernik, P. J Clarke, R. B France, and G. Karsai.
“Challenges and directions in formalizing the semantics of modeling lan-
guages”. In: Computer Science and Information Systems 8.2 (2011), pp. 225–
253.

[16] CENELEC. CENELEC, EN 50126: Railway applications - Demonstration of
Reliability, Availability, Maintainability and Safety (RAMS) - Part 1: Generic
RAMS process. 2012.

[17] CESAR. http://www.cesarproject.eu/. [Online; accessed 25-02-
2016]. 2009.

[18] K. Chen, J. Sztipanovits, and S. Neema. “Toward a Semantic Anchoring
Infrastructure for Domain-specific Modeling Languages”. In: Proceedings
of the 5th ACM International Conference on Embedded Software. ACM, 2005,
pp. 35–43.

[19] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. “NuSMV: a new sym-
bolic model checker”. In: International Journal on Software Tools for Technol-
ogy Transfer 2.4 (2000), pp. 410–425.

[20] T. Clark, P. Sammut, and J. Willans. “Applied metamodelling: a foundation
for language driven development.” In: (2008).

[21] E. M Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[22] C. Crichton, A. Cavarra, and J. Davies. “Using UML for automatic test gen-
eration”. In: Proc. of the Intern. Conf. On Automated Software Engineering,
ASE. 2001.

http://www.cesarproject.eu/

BIBLIOGRAPHY 187

[23] CRYSTAL. http://www.cystal-artemis.eu/. [Online; accessed 25-
03-2016]. 2013.

[24] F. Dadeau and F. Peureux. “Grey-Box Testing and Verification of Java/JML”.
In: Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. 2011, pp. 298–303.

[25] Z. R. Dai. “Model-driven testing with UML 2.0”. In: Computer Science at
Kent (2004), p. 179.

[26] DECOS. http://www.ercim.eu/publication/Ercim_News/enw52/
donhoffer.html. [Online; accessed 25-02-2016]. 2004.

[27] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. “A Sur-
vey on Model-based Testing Approaches: A Systematic Review”. In: Pro-
ceedings of the 1st ACM International Workshop on Empirical Assessment of
Software Engineering Languages and Technologies 2007. ACM, 2007, pp. 31–
36.

[28] Y. Dong, G. Wang, and H. B. Zhao. “A Model-based Testing for AADL
Model of Embedded Software”. In: Quality Software, 2009. QSIC’09. 9th In-
ternational Conference on. IEEE. 2009, pp. 185–190.

[29] E. Dustin, J. Rashka, and J. Paul. Automated software testing: introduction,
management, and performance. Addison-Wesley Professional, 1999.

[30] M.B. Dwyer, G-S. Avrunin, and J.C. Corbett. “Patterns in Property Speci-
fications for Finite-state Verification”. In: Proc. of the ICSE ’99. ACM, 1999,
pp. 411–420.

[31] Epsilon Book. 2015. URL: http://www.eclipse.org/epsilon/doc/
book/.

[32] EU Council Directive 2001/16/EC - Interoperability of the trans-European con-
ventional rail system. 2001. URL: http://eur-lex.europa.eu/legal-
content/IT/TXT/?uri=uriserv:l24015.

[33] EU Council Directive 96/48/EC - Interoperability of the trans-European high-
speed rail system. 1996. URL: http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:31996L0048:en:HTML.

[34] R. T. Fielding. “Architectural styles and the design of network-based soft-
ware architectures”. PhD thesis. University of California, Irvine, 2000.

[35] K. Fowler. Mission-critical and safety-critical systems handbook: Design and de-
velopment for embedded applications. Newnes, 2009.

http://www.cystal-artemis.eu/
http://www.ercim.eu/publication/Ercim_News/enw52/donhoffer.html
http://www.ercim.eu/publication/Ercim_News/enw52/donhoffer.html
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://eur-lex.europa.eu/legal-content/IT/TXT/?uri=uriserv:l24015
http://eur-lex.europa.eu/legal-content/IT/TXT/?uri=uriserv:l24015
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0048:en:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0048:en:HTML

BIBLIOGRAPHY 188

[36] G. Fraser, F. Wotawa, and P. E. Ammann. “Testing with model checkers: a
survey”. In: Software Testing, Verification and Reliability 19.3 (2009), pp. 215–
261.

[37] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. “An introduc-
tion to UML profiles”. In: UML and Model Engineering 2 (2004).

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley, 1995.

[39] S. R Ganov, C. Killmar, S. Khurshid, and D. E Perry. “Test generation for
graphical user interfaces based on symbolic execution”. In: Proceedings of
the 3rd international workshop on Automation of software test. ACM. 2008,
pp. 33–40.

[40] A. Gargantini and C. Heitmeyer. “Using model checking to generate tests
from requirements specifications”. In: Software Engineering—ESEC/FSE’99.
Springer. 1999, pp. 146–162.

[41] U. Gentile, S. Marrone, G. Mele, R. Nardone, and A. Peron. “Formal Meth-
ods for Industrial Critical Systems: 19th International Conference, FMICS
2014, Florence, Italy, September 11-12, 2014. Proceedings”. In: Springer In-
ternational Publishing, 2014. Chap. Test Specification Patterns for Auto-
matic Generation of Test Sequences, pp. 170–184.

[42] S. Ghosh. Distributed systems: an algorithmic approach. CRC press, 2014.

[43] M. Glinz. “Statecharts For Requirements Specification - As Simple As Pos-
sible, As Rich As Needed”. In: Proceedings of the ICSE 2002 International
Workshop on Scenarios and State Machines: Models, Algorithms and Tools. Or-
lando, Florida, USA, 2002.

[44] L. Grunske. “Specification Patterns for Probabilistic Quality Properties”.
In: Proceeding of ICSE’08. ACM, 2008, pp. 31–40.

[45] N. Guelfi and B. Ries. “SESAME: A Model-Driven Test Selection Process
for Safety-Critical Embedded Systems”. In: ERCIM News 75 (2008).

[46] W. von Hagen. The Definitive Guide to GCC, Second Edition (Definitive Guide).
Berkely, CA, USA: Apress, 2006.

[47] D. Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Sci-
ence of Computer Programming 8.3 (June 1987), pp. 231–274.

[48] R. Heckel and M. Lohmann. “Towards model-driven testing”. In: Electronic
Notes in Theoretical Computer Science 82.6 (2003), pp. 33–43.

BIBLIOGRAPHY 189

[49] M. P. E. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao. “For-
mal Approaches to Software Testing: Third International Workshop on For-
mal Approaches to Testing of Software, FATES 2003, Montreal, Quebec,
Canada, October 6th, 2003.” In: Springer Berlin Heidelberg, 2004. Chap. Auto-
generating Test Sequences Using Model Checkers: A Case Study, pp. 42–
59.

[50] G. Holzmann. Spin Model Checker, the: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

[51] D. Huizinga and A. Kolawa. Automated defect prevention: best practices in
software management. John Wiley & Sons, 2007.

[52] “IEEE Standard for Software Verification and Validation Plans”. In: IEEE
Std 1012-1986 (1986).

[53] ISO. ISO/IEC 61508: Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems. 2012.

[54] ISO 26262-1:2011 Road vehicles – Functional safety. 2011. URL: http://www.
iso.org/iso/catalogue_detail?csnumber=43464.

[55] A. Z. Javed, P. A Strooper, and GN Watson. “Automated generation of
test cases using model-driven architecture”. In: Automation of Software Test,
2007. AST’07. Second International Workshop on. IEEE. 2007, pp. 3–3.

[56] F. Jouault and I. Kurtev. “Transforming Models with ATL”. In: vol. 3844.
LNCS. Springer Berlin Heidelberg, 2006, pp. 128–138.

[57] Kermeta. 2008. URL: http://www.kermeta.org/.

[58] D. S Kolovos, R. F Paige, and F. AC Polack. “The epsilon transformation
language”. In: Theory and practice of model transformations. Springer, 2008,
pp. 46–60.

[59] R. Lanotte, A. Maggiolo-Schettini, A. Peron, and S. Tini. “Dynamic Hier-
archical Machines”. In: Fundamenta Informaticae 54.2-3 (2002). ISSN: 0169-
2968.

[60] J.C. Laprie. Dependability: Basic Concepts and Terminology, Dependable Com-
puting and Fault-Tolerance. Springer-Verlag, 1992.

[61] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guo.
“Generating test cases from UML activity diagram based on Gray-box method”.
In: Software Engineering Conference, 2004. 11th Asia-Pacific. 2004, pp. 284–
291.

http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.kermeta.org/

BIBLIOGRAPHY 190

[62] K. Louden. Programming languages: principles and practices. Cengage Learn-
ing, 2011.

[63] P. Marwedel. Embedded system design: Embedded systems foundations of cyber-
physical systems. Springer Science & Business Media, 2010.

[64] mbat. http://www.mbat-artemis.eu/home/. [Online; accessed 25-
02-2016]. 2014.

[65] P. McMinn. “Search-based software test data generation: A survey”. In:
Software Testing Verification and Reliability 14.2 (2004), pp. 105–156.

[66] W. E. McUmber and B. H. C. Cheng. “A General Framework for Formaliz-
ing UML with Formal Languages”. In: Proceedings of the 23rd International
Conference on Software Engineering. Toronto, Ontario, Canada: IEEE Com-
puter Society, 2001, pp. 433–442.

[67] MetaCase. MetaEdit+. 1995. URL: http://www.metacase.com/products.
html.

[68] C. Mingsong, Q. Xiaokang, and L. Xuandong. “Automatic test case gener-
ation for UML activity diagrams”. In: Proceedings of the 2006 international
workshop on Automation of software test. ACM. 2006, pp. 2–8.

[69] O. Mondragon, A.Q. Gates, S. Roach, H. Mendoza, and O. Sokolsky. “Gen-
erating Properties for Runtime Monitoring from Software Specification Pat-
terns”. In: International Journal of Software Engineering and Knowledge Engi-
neering 17.1 (2007), pp. 107–126.

[70] Jean-François Monin. Understanding formal methods. Springer Science & Busi-
ness Media, 2012.

[71] G. J. Myers and C. Sandler. The Art of Software Testing 3rd Edition. John
Wiley Sons, 2011.

[72] R. Nardone, U. Gentile, M. Benerecetti, A. Peron, V. Vittorini, S. Marrone,
and N. Mazzocca. “Modeling Railway Control Systems in Promela”. In:
Fourth International Workshop on Formal Techniques for Safety-Critical Systems
(FTSCS 2015) (), p. 181.

[73] R. Nardone, U. Gentile, A. Peron, M. Benerecetti, V. Vittorini, S. Marrone, R.
De Guglielmo, N. Mazzocca, and L. Velardi. “Dynamic state machines for
formalizing railway control system specifications”. In: Formal Techniques for
Safety-Critical Systems. Springer International Publishing, 2014, pp. 93–109.

[74] OMG. MARTE Profile. 2011. URL: http://www.omg.org/spec/MARTE/
1.1/.

http://www.mbat-artemis.eu/home/
http://www.metacase.com/products.html
http://www.metacase.com/products.html
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/

BIBLIOGRAPHY 191

[75] OMG. MOF Model To Text Transformation Language. 2008. URL: http://
www.omg.org/spec/MOFM2T/1.0/.

[76] OPENCOSS. http://www.opencoss-project.eu/. [Online; accessed
25-02-2016]. 2015.

[77] A. Petrenko, N. Yevtushenko, and R. Dssouli. “Testing strategies for com-
municating fsms”. In: Protocol Test Systems. Springer, 1995, pp. 193–208.

[78] PRESTO project. http://www.presto-embedded.eu/. [Online; ac-
cessed 25-02-2016]. 2011.

[79] S. C Reid. “An empirical analysis of equivalence partitioning, boundary
value analysis and random testing”. In: Software Metrics Symposium, 1997.
Proceedings., Fourth International. IEEE. 1997, pp. 64–73.

[80] SableCC. SableCC. 2009. URL: http://www.sablecc.org/.

[81] SafeCer. http://www.safecer.eu/. [Online; accessed 25-02-2016]. 2014.

[82] D. C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”.
In: Computer (2006), pp. 25–31.

[83] B. Selic. “A systematic approach to domain-specific language design using
UML”. In: Object and Component-Oriented Real-Time Distributed Computing,
2007. ISORC’07. 10th IEEE International Symposium on. IEEE. 2007, pp. 2–9.

[84] S. Sendall and W. Kozaczynski. “Model Transformation: The Heart and
Soul of Model-Driven Software Development”. In: IEEE Software 20.5 (2003),
pp. 42–45.

[85] R. Soley. “Model driven architecture”. In: OMG white paper 308 (2000), p. 5.

[86] I. Sommerville. Software Engineering. Addison-Wesley, 2011.

[87] N. Soundarajan, J. O. Hallstrom, G. Shu, and A. Delibas. “Patterns: from
system design to software testing”. In: Innovations in Systems and Software
Engineering 4.1 (2008), pp. 71–85.

[88] Spinroot. Spin Model Checker. 1999. URL: http://spinroot.com/spin/
whatispin.html.

[89] N. Srinivas and K. Deb. “Muiltiobjective optimization using nondominated
sorting in genetic algorithms”. In: Evolutionary computation 2.3 (1994), pp. 221–
248.

[90] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Mod-
eling Framework 2.0. 2nd. Addison-Wesley Professional, 2009.

http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.opencoss-project.eu/
http://www.presto-embedded.eu/
http://www.sablecc.org/
http://www.safecer.eu/
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html

BIBLIOGRAPHY 192

[91] The javax.swing package. 2015. URL: https://docs.oracle.com/javase/
7/docs/api/javax/swing/package-summary.html.

[92] H. Tómasson and H. Neukirchen. “Distributed Testing of Cloud Comput-
ing Applications Using the TTCN-3-based Jata Test Framework”. In: Pro-
ceedings of the Second Nordic Symposium on Cloud Computing & Internet
Technologies. 2013, pp. 22–29.

[93] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Mor-
gan Kaufmann, 2010.

[94] J. Zander, I. Schieferdecker, and P. J Mosterman. Model-based testing for em-
bedded systems. CRC press, 2011.

[95] Z. Zhang, T. Wu, and J. Zhang. “Boundary value analysis in automatic
white-box test generation”. In: Software Reliability Engineering (ISSRE), 2015
IEEE 26th International Symposium on. 2015, pp. 239–249.

https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	V&V processes in Embedded Critical Systems
	Classifying embedded critical systems
	The meaning of V&V
	V&V of embedded safety-critical system in industrial practice
	Reference standards for embedded safety-critical systems
	Aerospace domain
	Automotive domain
	Railway domain
	The V-model lifecycle

	Research trends
	Testing automation
	Formal methods
	Recent European projects addressing testing automation

	Thesis contribution

	State of the art in automatic test case generation
	The process of automation
	Approaches to the automatic test case generation
	White-box generation approaches
	Black-box generation
	Gray-box generation

	Model-based test cases generation
	Automatic generation through Model Checking
	Model-based vs Model-driven generation

	Model-driven approaches enabling test case generation
	Model driven generation overview

	Technical background
	Domain-specific modelling languages
	Meta-modelling process
	Model Transformations
	Transformation technologies

	An interoperable framework for testing automation
	CRYSTAL project
	CRYSTAL V&V process
	Rail Model
	IOP Test Writer
	Log Analyzer

	Model-driven methodology for the automatic test generation
	The proposed framework for test generation

	DSMLs enabling test case generation
	DSTM: Dynamic STate Machines
	Domain and Modelling Requirements
	DSTM metamodel
	Formal syntax
	Formal semantics

	TESQEL: Test SeQuEnce Language
	The TESQEL metamodel

	Test Specification Patterns

	From DSTM to Promela
	Mapping process: an overview
	Syntactical mapping
	Data-flow mapping
	Data types
	Channels
	Variables
	Triggers, Conditions and Actions

	Dynamic instantiation and termination of machines
	Flattening process
	Termination and preemption

	DSTM Step semantics
	Test specifications mappings

	Development of the test cases generation framework
	Test cases generation workflow
	DSTM Editor
	DSTM Verifier
	Model Merge
	DSTM2Promela
	D2PFrontend
	D2PCrosscompiler
	Promela metamodel
	D2PBackend
	Engine generation

	Promela2Spin: generate the Spin code
	Spin Manager: generation of test cases

	Automatic generation of test cases in the railway domain
	ERTMS/ETCS standard
	ERTMS/ETCS Safety Integrity Level
	The Radio Block Centre

	The Communication procedure
	Data declarations for the Communication Procedure
	M_CommunicationEstablishment
	M_ManageTrain
	The M_MovAuth machine
	M_SessionEstablishment

	Communication Procedure step semantics
	Test cases generation

	Conclusions
	DSTM models of the Radio Block Centre system
	The DSTM specification
	Data declarations
	DSTM Machines

	Acknowledgements
	Bibliography

