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Noncommunicable chronic diseases (NCDs) are not passed from person to person, they are of long 

duration and generally slow progression. The four main types of NCDs are cardiovascular diseases 

(CVD),including heart attacks and stroke, some type of cancers, chronic respiratory diseases and 

type 2 diabetes. NCDs kill 38 million people each year with the first four groups of diseases 

accounting for 82% of all NCD deaths (WHO, 2014). In fact, cardiovascular diseases account for 

most NCD deaths, or 17.5 million people annually, followed by cancers (8.2 million), respiratory 

diseases (4 million), and diabetes (1.5 million) (WHO, 2014).  

Obesity is strongly correlated with all of these four NCDs: obesity increases the likelihood of 

diabetes, hypertension, coronary, heart disease, stroke, certain cancers and obstructive sleep apnoea 

(WHO, 2014). Overweight and obesity, characterized by  body mass index (BMI) ≥25 kg/m2 and 

≥30 kg/m2, respectively, were estimated to account for 3.4 million deaths in 2010 (Lim, 2010). 

Obesity has been increasing in all countries. In 2014, 39% of adults aged 18 years and older (38% 

of men and 40% of women) were overweight. The worldwide prevalence of obesity nearly doubled 

between 1980 and 2014. In 2014, 11% of men and 15% of women worldwide were obese. Thus, 

more than half a billion adults worldwide are classed as obese. Age-standardized estimates on 

prevalence of obesity in males and females, aged 18 years and over are shown in Figure. 1.1 and 

Figure 1.2, respectively. The prevalence of overweight and obesity increases with the income level 

of countries. The prevalence of obesity in high-income and upper-middle-income countries is 

double than that of low- income countries. Even worse, the prevalence of childhood overweight is 

increasing worldwide too. It is estimated that the prevalence of overweight in children aged under 5 

years will rise to 11% worldwide by 2025 if current trends continue (UNICEF-WHO, 2014). 

Therefore, WHO included the reduction of obesity as one of the nine global target to reduce NCDs.  
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Fig. 1 Age-standardized prevalence of obesity in men aged 18 years and over (BMI ≥30 kg/m2; 

WHO, 2014). 

 

Fig. 2 Age-standardized prevalence of obesity in women aged 18 years and over (BMI ≥30 kg/m2; 

WHO, 2014). 

 

No government can ignore the rising burden of NCDs. In the absence of evidence-based actions, the 

human, social and economic costs of NCDs will continue to grow and overwhelm the capacity of 

countries to address them. To lessen the impact of NCDs on individuals and society, a 

comprehensive approach is needed that requires all sectors, including health, finance, foreign 
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affairs, education, agriculture, planning and others, to work together to reduce the risks associated 

with NCDs, as well as promote the interventions to prevent and control them. 

In this context, food industry plays a main role. In the nineties technological innovations and 

marketing techniques have modified dietary preferences led to major changes in the composition of 

diet. There was a shift towards high fat, refined carbohydrate and low-fibre diet (Popkin, 1998). On 

the contrary, nowadays, the countries policies to tackle obesity together with the greater trust in 

technology to produce functional foods stimulates the demand of healthier foods such as non-

refined grains products and foods for appetite control, weight control and weight loss  (Niva et al, 

2005). In particular, whole grains have received increased attention for their potential role in body 

weight control and reduction of CVD risk. Epidemiological evidence shows that higher whole grain 

intake, when compared with lower whole grain intake, is associated with lower BMI, body weight, 

and abdominal adiposity, smaller waist circumference and smaller weight gain over time. However, 

the evidence from randomized controlled studies is less consistent (Thielecke et al, 2014) 

Gut brain axis in appetite control 

Almost 30 years ago Blundell, Rogers and Hill (Blundell et al, 1987) proposed the concept of 

“Satiety Cascade” describing a framework to assess the mechanisms influencing satiation 

(processes that bring an eating episode to an end, or intra-meal satiety) and satiety (processes that 

inhibit further eating in the postprandial period until the next meal, or inter-meal satiety). The 

physiological systems underlying the control of satiation and satiety involve associations between 

peripheral physiology (stomach emptying and gastrointestinal peptides) and metabolism (glucose 

homeostasis and adiposity), which in turn are linked to various brain processes. All hormonal 

messengers released from enteroendocrine cells in the gut mucosa can inform the brain either 

through the circulation or via primary afferent neurons or both (Berthoud, 2008).  

Gastrointestinal peptides in appetite control 

The role of several peptides is well recognized in the regulation of the satiety cascade. 

Ghrelin is a 28-amino acid peptide elaborated and secreted mainly from the stomach and proximal 

small intestine. Ghrelin is the only known circulating orexigenic peptide, and is secreted pre-

prandially and suppressed by food intake (Kojima et al, 1999; Cummings et al, 2001). The ghrelin 

receptor can be found in the hypothalamus, heart, lung, pancreas, adipose tissue and intestine. 

Together with the fact that ghrelin stimulates hunger contractions, registered as phase III of the 
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migrating motor complex (Tack et al, 2006), this peptide stands out as a major regulator for the 

timing of food intake and eating frequency. 

Cholecystokinin (CCK) is produced in I-cells of the upper small intestine and exists in several 

different molecular forms (CCK-58, CCK-37, CCK-33, CCK-22 and CCK-8). They all are present 

in the circulation (Rehfeld et al, 2007). CCK acts on two related G-protein coupled receptors, the 

CCK-1 and CCK-2 receptors. The CCK-1 receptor mediates the delay in gastric emptying as seen 

after administration of CCK, and the CCK-2 receptor is present in the central nervous system 

(CNS). CCK is released into the circulation by lipids and protein. It is not clear if CCK mediates 

any effect of ingested carbohydrates. Gut sweet taste receptors (T1R2/T1R3) are present on I-cells 

only in small numbers, in contrast to a high presence on L-cells (that secrete GLP-1 and PYY). 

Inhibition of these gut sweet taste receptors results in reduced secretion of GLP-1 and PYY but not 

CCK (Rehfeld, 2011; Dockray, 2012), suggesting that CCK has a limited role in mediating effects 

of ingested carbohydrates. 

Glucagon-like peptide-1 (GLP-1) belongs to the glucagon peptide family. GLP-1 is released into the 

circulation after a meal in proportion to the amount of calories ingested (Ørskov et al, 1994). The 

release is bi-phasic and the first peak occurs before nutrients reach the distal gut. This peak is 

increased with the ingestion of carbohydrates, which is why it has been suggested that the first peak 

of release is due to absorption of carbohydrates in the proximal intestine, suggesting an indirect 

neural mechanism of GLP-1 release in addition to a direct action on the L-cells. The second peak is 

thought to be mediated by lipids in the intestinal lumen (Elliott et al, 1993; Edfalk et al,  2008; 

Smeets et al, 2008). Studies on the effect of protein on GLP-1 secretion have given inconsistent 

results. The half-life in the circulation is short (2 min) where the peptide is degraded by the enzyme 

dipeptidyl peptidase IV (DPP-IV). 

Peptide YY (PYY) is a member of the pancreatic polypeptide family, comprising pancreatic 

polypeptide (PP) and neuropeptide Y (NPY). PP, PYY and NPY bind to the Y receptor family. 

ProPYY is cleaved in the L-cells to PYY 1–36 and once released into the circulation PYY 1–36 is 

further cleaved to PYY 3–36by DPP-IV (Grandt et al, 1994). Plasma PYY concentrations are 

elevated already 15 min after a meal, and remain elevated for several hours (Adrian et al, 1985). As 

the half-life of PYY is about 8 min, this speaks in favour of a continued release over prolonged 

periods of time after food intake. As seen with GLP-1, plasma PYY concentrations are elevated in 

proportion to the caloric load. PYY release is mediated by both direct nutrient stimulation of the L-

cells and indirect duodenal mechanisms. Duodenal lipids contribute to the early phase of PYY 
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release and are most probably mediated by hormonal and neuronal mechanisms. The administration 

of CCK increases plasma PYY concentrations (Moran et al, 2011). 

Role of adipokines in body weight regulation  

Adipokines include classic pro-inflammatory proteins such as TNF-a and IL-6, both secreted by 

adipocytes, but synthesized also by immune cells infiltrating WAT such as macrophages 

(Hotamisligil et al, 1993; Lower et al, 2003; Harden et al, 2006). These pro-inflammatory 

adipokines appear to significantly contribute to the so-called low grade inflammation of obese 

subjects, a condition associated with increased risk of cancer, type 2 diabetes, cardiovascular 

complications, autoimmune, and inflammatory diseases (Trayhurn et al, 2006). Other adipokines 

have an essential roles in the control of glucose and lipid metabolism.  

Leptin, the product of the ob gene, is a 16-kDa secreted protein mainly produced by adipocytes 

(Zhang et al; 1994). The secretion of leptin is proportional to the amount of adipose tissue, and its 

plasma concentrations are markedly increased in obesity (Considine et al; 1996). Leptin plays a key 

role in the control of body weight through central and peripheral mechanisms (Gautron et al; 2011). 

On binding its receptors (OB-R) in the hypothalamic neurons containing POMC and CART, leptin 

induces a decrease in food intake and, a consequent reduction in adiposity and body weight (Harvey 

et al; 2003). Furthermore, leptin increases energy expenditure through the activation of sympathetic 

nerve activity and the turnover of norepinephrine in BAT (Scarpace et al, 1997). Moreover, leptin 

appears to play a crucial role in brown adipogenesis, since leptin-deficient ob/ob mice show a 

‘white-like’ appearance of BAT (large unilocular lipid droplets instead of the characteristic small 

multilocular lipid droplets in brown adipocytes) (Becerril et al, 2010). In addition to its central 

function as a satiety factor, many peripheral effects of leptin on glucose, lipid and protein 

metabolism have been described (Frühbeck 2006). Leptin improves insulin sensitivity by 

stimulating insulin induced glucose uptake through GLUT4 in skeletal muscle (Sáinz et al; 2012). 

Moreover, leptin stimulates FFA oxidation via the activation of the α 2 catalytic subunit of AMPK 

in skeletal muscle (Unger; 2004). Leptin also stimulates muscle protein synthesis reducing the 

expression of the ubiquitin-ligases MAFbx and MuRF1 (Sáinz et al; 2009). 

Adiponectin, also known as Acrp30, AdipoQ, amp-1 or GBP28, is a 30-kDa hormone produced by 

adipocytes, with insulin-sensitizing, anti-inflammatory and anti-atherogenic properties (Ouchi et al; 

1999). Adiponectin exists in various forms in plasma such as trimer, hexamer, and high molecular 

weight (HMW), as well as a proteolytically cleaved form, globular adiponectin. Adiponectin 

improves insulin sensitivity by increasing glucose uptake in the muscle, decreasing hepatic 
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gluconeogenesis as well as increasing fatty acid oxidation, leading to a reduction in lipid content in 

liver and skeletal muscle (Kadowaki et al; 2006). In spite of the beneficial effects of adiponectin on 

insulin sensitivity, there is a paradoxical decrease of adiponectin concentrations in obesity and type 

2 diabetes. These low circulating concentrations of adiponectin are associated with higher 

percentage of body fat, hyperinsulinaemia and hyperglycaemia (Weyer et al; 2001). Obesity and 

type 2 diabetes are associated not only with hypoadiponectinaemia, but also with an impairment of 

adiponectin-induced AMPK signalling in liver and skeletal muscle, leading to an increased lipid 

deposition in these insulin-sensitive tissues (Mullen et al; 2009) 

Brain in appetite control 

The central regulation of energy homeostasis is located in the hypothalamus, which integrates the 

humoral and neural signals involved in the control of food intake. The arcuate nucleus (ARC) in the 

ventral hypothalamus participates in the control of food intake through the secretion of 

neuropeptides implicated in central nervous system-dependent anabolic and catabolic pathways 

(Gao et al; 2013). There are two subtypes of neurons in the ARC regulating the eating behaviour: (i) 

neurons containing the orexigenic peptides NPY and agouti-related peptide (AgRP); (ii) neurons 

containing anorexigenic peptides such as proopiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART) and, to a lesser extent, neurotensin. These hypothalamic 

circuits are regulated by energy status and several circulating hormones. In these nutrient-sensing 

neurons, nutrients act as signalling molecules to engage a complex set of neurochemical and 

neurophysiological responses, thereby regulating energy intake, the release of stored nutrients, and 

nutrient utilization in most tissues, thus compensating for increased energy availability (Gao et al; 

2013). Numerous peripheral signals, which can be classified as short- and long-term signals, control 

the feeding behaviour and body weight. Short-term signals (i.e. nutrients, neural signals and 

hormones) influence the size of a single meal and either initiate or terminate a meal. These signals 

are generated by the liver, pancreas, skeletal muscle or gastrointestinal tract as either afferent 

sensory relays (vagal, splanchnic or spinal) or nutrients or hormones that reach the central nervous 

system through the blood–brain barrier. Long-term signals (adiposity) provide information to the 

brain about the energy stores and induce adaptive responses to maintain energy homeostasis. The 

short- and long-term signals need to operate in concert to integrate energy intake and energy 

expenditure to ensure that energy balance is maintained. Also cognitive, hedonic and emotional 

neural processes play important roles in energy intake and expenditure and the resulting energy 

balance. Eating behavior is not limited to the act of eating, but consists of preparatory, 

consummatory, and post-consummatory phases. Hedonic evaluation and reward processing is 
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carried out in each of these three phases of eating behavior and critically determines their outcome 

(Berthoud et al, 2011). Food reward process can be divided in three main sub-factors: “liking” 

(hedonic impact), “wanting” (incentive motivation), and “learning” (associations and predictions; 

Berridge et al, 2009). All occur together, but the three psychological components have separable 

brain systems that permit dissociation among them in some conditions (Berthoud et al, 2011). 

Endocannabinoids in gut-brain communication 

Endocannabinoids (ECs) are a family of biologically active lipids that bind to and activate G 

protein-coupled CB1- and CB2-cannabinoid receptors (DiPatrizio et al, 2011). Endogenous ligands 

to CB1 such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have been shown to play a 

major role in the regulation of energy balance and body composition affecting both the sensing of 

energy deficiency/abundance and gastric load (homoeostatic mechanisms), and the salience as well 

as the incentive/motivational value of food (hedonic aspects; Di Marzo et al, 2009). The 

hypothalamus is the key brain structure involved in energy homeostasis by integrating the action of 

central orexigenic and anorexigenic neuropeptides with that of peripheral signals coming from the 

sympathetic system and peripheral organs deputed to sensing the status of energy stores. Although 

hypothalamic CB1 expression is among the lowest in the brain, activation of the receptors shows 

high efficiency and leads to profound effects on the crosstalk between the hypothalamic nuclei and 

peripheral organs. Compelling evidence shows that ECs act as “gatekeepers” of the hypothalamic–

pituitary–adrenal axis (HPA) constraining the activity of the latter under stressful conditions by 

lowering glucocorticoid levels (Di Marzo et al, 2009). The CB1 receptors are present in the 

mesolimbic system and, in particular, in the nucleus accumbens shell (NAcS) and ventral tegmental 

area (VTA), wherein they play a role in the circuits involved in motivation and reward animals. 

Exposure to foods with high salience and incentive properties stimulate an EC tone to induce 

dopamine release in this limbic area. This latter event, in turn, might lead to both increased 

motivation to consume palatable foods and heightened rewarding effects after the consumption of 

such foods. Regarding the gut control of food intake by ECs, AEA and 2-AG showed orexigenic 

properties in rodents as they dose-dependently increased food intake by peripheral administration. 

In contrast, oral or intraperitoneal administration of the endocannabinoid related N-

acylethanolamine, oleyl ethanolamide (OEA), as well as its duodenal increase, determined a 

decrease of food intake in mice and rats (Piomelli, 2013).  In humans Joosten and co-workers found 

that fasting and non-fasting plasma ECs concentrations were positively associated with both serum 

total free fatty acids and their specific fatty acid precursors. Moreover, it was demonstrated that the 
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oleic acid content of a meal increase the post-prandial response of circulating OEA and to reduce 

energy intake at subsequent meals (Mennella et al 2015). 

Macronutrients and satiety 

The impact of individual macronutrients on satiety is typically measured in experimental studies 

using a preload design. Participants consume preloads differing in energy density (the caloric 

content of a given weight of food) or in the amount of carbohydrate, protein, or fat, and their energy 

intakes at the same meal are observed. A food that is reported to have high satiety tends to produce 

a longer intermeal period (a period of time between eating episodes during which an individual does 

not experience hunger). Alternatively, foods that are reported to have lower satiety tend to produce 

a shorter intermeal period. Satiety and satiation are distinct but interrelated factors that influence 

both the type and amount of food consumed. Foods, and more specifically macronutrients, with the 

same caloric content exert different effects on satiation and satiety independently from their caloric 

value. In other words, not all calories are treated equally by the body. In Stubbs and colleagues’ 

review of the energy density of foods (calories/g), they noted that under normal circumstances in 

which fat contributes disproportionately to energy density, protein, carbohydrate, and fat exert 

hierarchical effects on satiety in the order of proteins > carbohydrates > fats (Stubbs et al, 2000). 

However, one study suggests that this effect is mediated almost exclusively by energy density 

(Raben et al, 2003). Although most research has suggested that the macronutrient protein has the 

most potent action on satiety, there is less clear consensus regarding the relative satiety values of 

carbohydrates and fats. The relative satiety values of these macronutrients (carbohydrates and fats) 

tend to vary depending on whether the macronutrients are studied in isolation or in foods (Gerstein 

et al, 2004).  

Protein is an essential part of the diet necessary for body growth and maintenance, and can also 

serve as a fuel source. Proteins are broken down in the stomach during digestion by enzymes into 

smaller polypeptides to provide amino acids for the body, including the essential amino acids (those 

that cannot be biosynthesised by the body itself).  Proteins are more satiating than carbohydrates 

and fats in the short term, over 24 h and in the medium term (Veldhorst et al, 2008). The speed of 

absorption of dietary amino acids by the gut varies according to the type of ingested dietary protein, 

and since amino acids are potent modulators of protein synthesis, breakdown, and oxidation, 

different patterns of postprandial aminoacidemia might well result to influence satiety or satiation. 

Evidences support the conclusion that meals higher in proteins tend to increase satiety when 

compared to meals lower in proteins, at least in the short term. In long term studies conducted over 
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a few days, the higher post-absorptive satiety and thermogenesis are sustained irrespective of the 

protein source (Halton et al, 2004). There is no clear consensus that one type of proteins is more 

satiating than other. Overall, the weight of evidence suggests that higher protein intakes cause a 

decreased subsequent energy intake, although the results are not entirely consistent. It appears that 

the closer the methodology is to real life situations (real food vs liquid, sense of taste unaltered, free 

living vs whole body calorimeter), the more likely it is for protein to exert a significant decrease in 

subsequent energy intake.  Dietary proteins and amino acids, including glutamate, generate signals 

involved in the control of gastric and intestinal motility, pancreatic secretion, and food intake. 

Protein reduces gastric motility and stimulates pancreatic secretions. Protein-induced satiety 

coincides with a relatively high glucagon-like peptide-1 (GLP-1) release, stimulated by the 

carbohydrate content of the diet, peptide YY (PYY) release, while ghrelin does not seem to be 

especially affected, and little information is available on cholecystokinin (CCK). Energy 

expenditure and glucose are probably involved as metabolic signals in protein-induced satiety. 

Protein induced satiety appears to be of vital importance for weight loss and weight maintenance. 

With respect to PYY responses, Batterham et al. (2003) observed significantly higher plasma PYY 

responses to an high protein  meal in both lean and obese subjects. At the brain level, two afferent 

pathways are involved in protein and amino acid monitoring: the indirect neural (mainly vagus-

mediated) pathway and the direct humoral pathway. The neural pathways transfer pre-absorptive 

and visceral information through the vagus nerve innervating part of the orosensory zone (stomach, 

duodenum and liver). Localised in the brainstem, the nucleus of the solitary tract is the main 

projection site of the vagus nerve, and integrates sensory information of oropharyngeal, intestinal, 

and visceral origins. Ingestion of proteins also activates satiety pathways in the arcuate nucleus, 

which is characterised by an up-regulation of the melanocortin pathway (alpha-melanocyte-

stimulating, hormone-containing neurons) and a down-regulation of the neuropeptide Y pathway 

(Tomé  et al; 2009). 

Fat is an important macronutrient in a normal western diet; in the so-called Standard American 

Diet, fat intake is responsible for 35% of total caloric intake, mostly in the form of triacylglycerols 

(TAG). Apart from delivering calories, fat also delivers essential fatty acids (FA) and may increase 

palatability of food products. The release of gut peptides after fat infusion occurs in response to the 

sensing of fat by small intestinal receptors. Studies where the lipase inhibitor Orlistat was used 

demonstrated that inhibition of lipase activity abolishes the satiating effects of fat infusion into the 

small intestine (Feinle et al; 2003). This suggested that, hydrolysis of fat to FAs is necessary to 

induce satiety in the intestine and that the sensing of fat is the result of the interaction between a 

fatty acid and a small intestinal receptor. On gut epithelial cells, a wide range of receptors involved 
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in fatty acid sensing are expressed, which are mainly of the G-protein-coupled receptor-type. 

Furthermore, a number of these receptors have been found in the oral cavity.  In vivo experiments in 

mice showed that GPR120 is expressed by endocrine L-cells that produce glucagon-like peptide 1 

(GLP-1) and  peptide YY (PYY) in the large intestine (Hirasawa et al, 2005). In vitro studies in 

enteroendocrine cell lines (STC-1 cell line) suggest an important role of GPR120 in the secretion of 

both cholecystokinin (CCK) and GLP-1 (Hirasawa et al, 2005). Moreover, CD36, which is 

expressed on enterocytes and which is involved in the process of fat absorption in the small 

intestine, is essential in the production of oleoylethanolamine (OEA). This lipid messenger is 

produced from oleic acid in response to intestinal exposure to fat. Its mobilization from the mucosa 

leads to suppression of food intake via the activation of the peroxisome-proliferator-activated 

receptor-alpha (PPAR-alpha) (Schwartz et al, 2008). Ingestion of fat-containing foods induces the 

start of the cephalic phase of food digestion. Studies using the modified sham feeding (MSF) 

technique, in which food is chewed but not swallowed, have shown that this includes the 

stimulation of gastric lipase and insulin secretion, the stimulation of pancreatic polypeptide and the 

suppression of ghrelin, which is an appetite-stimulating peptide arising from the stomach (Little et 

al, 2011; Page et al, 2012). Oral sensing of fat is partly induced by texture and olfactory signals 

(Rolls, 2012). However,  a number of receptors on taste receptor cells (TRC) in the oral cavity have 

been recently identified that directly interact with FAs (Stewart et al, 2011). These include CD36 

(formerly known as fatty acid transporter,FAT) and a series of G-protein-coupled receptors (GPR), 

including GPR40,GPR41, GPR43 and GPR120. These receptors have a specificity for different FA 

chain lengths. The role of these receptors remains uncertain, but there is some evidence that they 

play an important role in determining fat taste and preference. In both animal and human studies, 

substantial inter-individual differences in the ability to detect FAs in the oral cavity have been 

reported and associated with marked differences in fat intake, which may have consequences for 

body weight regulation and obesity (Little et al, 2011). However, whether this is a cause for, or a 

consequence of, a preference for high-fat food remains to be established. 

The role of carbohydrates (CHOs) in weight loss has long been controversial and much of this 

debate continues and clearly the effect of CHOs on appetite and food intake is central to this debate. 

CHOs provide a large percentage of our daily energy and are consumed in a wide variety of forms. 

CHO can be divided into the available CHOs, which are digested and absorbed in the small 

intestine (SI), and the unavailable CHOs, which pass through the SI into the large bowel where  

they may provide a nutrient source for the resident microbiota producing by fermentation short 

chain fatty acids (SCFA). 
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Available CHOs typically comprise the mono- and disaccharide ‘simple sugars’ and the starch 

polysaccharides, whilst unavailable CHOs comprise resistant starch (RS), non-starch 

polysaccharide (NSP) ‘fibres’ and other more minor components. The available CHOs may in turn 

be slowly or rapidly digested and absorbed in the SI, resulting in different postprandial glycaemic 

responses and possibly different appetitive responses. ‘Slow’ CHOs lower glycaemia relative to 

rapidly digested ‘fast’ CHOs, and this effect on circulating glucose has been proposed to suppress 

appetite (Thomas et al, 2007) although it is a far from universal finding (Sands et al, 2009). The 

leading proponent of the ‘glycogenostatic’ theory of energy and body weight control was Professor 

J.P. Flatt, who hypothesised that depletion of the body’s relatively small glycogen storage pool 

through either prolonged exercise or dietary CHO restriction would stimulate hunger and drive EI 

as the body recognises and attempts to replenish the depleted stores (Flatt, 1996). Epidemiological 

studies show dietary fibre and whole grains to be associated with a lower risk of overweight or 

obesity (Williams et al, 2008) and early studies showed high fibre foods to enhance satiety 

(Gustafsson et al, 1994). Fibre can be defined as two main forms, soluble and insoluble. Soluble 

fibre absorbs water in the GI tract to become at different extent gelatinous, viscous substance and 

undergoes fermentation by bacteria in the large bowel to generate SCFAs. Many of the soluble 

fibres are also defined as ‘viscous’ as they induce thickening when mixed with liquids. These 

include the gums, pectins, aliginates and β-glucans. Soluble fibres may alter satiety by a number of 

mechanisms including lowering the ED of foods, since fibre is not absorbed in the SI and hence 

contributes less energy per gram than available CHOs. Viscous soluble fibres absorb large amounts 

of water from the GI tract and as a result increase in volume and may act as a ‘bulking’ agent within 

the gut. It has been proposed that these fibres may increase gastric distension (De Graaf et al, 2004) 

and possibly retard gastric emptying, both of which may alter appetitive responses. They may also 

prolong transit time within the SI, the absorption rate of nutrients, and in turn the release of 

appetite-suppressing GI peptides such as cholecystokinin (CCK) from the proximal and GLP-1 and 

PYY from the distal SI (Maljaars et al, 2008). Conversely, insoluble fibre acts as a bulking agent in 

the colon (Willis et al, 2010). Wholegrain foods have been suggested as an important constituent of 

the diet, due to their high fibre content, low ED and increased volume and particle size; however, 

outcomes are mixed for effects on weight loss. Some observational studies have shown an 

association with lower risk of weight gain (Bazzano et al, 2005), but whether satiety or food intake 

is altered is unknown. Wholegrain foods are those in which the starchy endosperm, germ and bran 

(intact, ground, cracked or flaked) are present in the product as they are in the original intact plant. 

Studies have shown that post-prandial hunger and fullness may be altered by some wholegrain 

products such as wholemeal wheat bread (Kristensen et al, 2010) and some barley foods (Schroeder 
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et al, 2009) but longer term studies have failed to find effects on EI or body weight (Tighe et al, 

2010). Growing and intriguing evidence that gut microbiota resident within the large bowel may 

differ between lean and obese individuals has led to the microbiome being proposed as an 

environmental factor responsible for both weight gain and altered energy metabolism of obesity 

(Turnbaugh et al, 2006). The microbiota, which includes viruses, archaea and some unicellular 

eukaryotes as well as bacteria, is present throughout the human body but in greatest numbers (~10-

12 microorganisms/mL) in the large bowel. Unavailable CHOs undergo fermentation by the host 

microbiota to generate SCFAs. These in turn have been termed ‘bacterial dietary metabolites’ and 

hypothesised to have biological activities which may regulate various host functions, including 

suppression of food intake (Harris et al, 2012). One proposed anorectic mechanism is the 

enhancement by SCFA of colonic ‘satiety’ peptide GLP-1 released from enteroendocrine L-cells of 

the large bowel (Freeland et al, 2010). Exogenous administration of GLP-1 analogues such as 

liraglutide (Astrup et al, 2009) clearly do suppress appetite and EI, although whether sufficiently 

high concentrations can be achieved through dietary manipulation such as increased prebiotic 

substrate is yet to be demonstrated (Mars et al, 2012). An increase in large bowel Bifidobacteria 

numbers in particular has been associated with enhanced intestinal health (Roberfroid et al, 2010), 

but whether this association can be extrapolated to obesity is not known. Human obesity has been 

associated with both a low and high abundance of bacteria from the phylum Bacteroidetes relative 

to Firmicutes, but other studies show no parallel relationship or find no difference between phyla at 

all (Turnbaugh et al, 2006; Jumpertz et al, 2011). The role that prebiotic CHOs, which stimulate the 

growth or activity of the gut bacteria, may have in this relationship is equally unclear. 
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Abstract 

Recent studies showed that whole grain (WG) consumption can reduce the sub-clinical 

inflammation status in healthy overweight/obese subjects. This effect is related to the bioavailability 

of bound polyphenolic compounds that, as a consequence of dietary fibre fermentation, are released 

from WG matrix and absorbed into the bloodstream. This study was conducted to clarify the role of 

gut-microbiota and the mechanisms behind WG polyphenols bioavailability. To this aim 4groups of 

Zucker Diabetic Fatty (ZDF) were fed for 11 weeks semi-purified diets made with either an isolated 

digestible control starch, a WG control flour with 6.9% resistant-starch (RS), an isolated RS-rich 

starch with 25% RS, or a WG corn flour with 25% RS. Phenolic compounds were extracted from 

serum and analysed by HPLC–tandem mass spectrometry (MS/MS). Data showed that both groups 

fed WG diet had higher polyphenols concentration in serum compared to the control and RS diet. 

Moreover, WG corn flour with 25% RS diet resulted in higher  serum polyphenols concentration 

compared to WG control flour with 6.9% RS. 

In conclusion, data demonstrated that bound phenolic acids from WG are bioavailable in an animal 

model of  obesity, insulin resistance and hyperglycemia, such as ZDF rats, and that the combination 

of RS and WG in the diet increase the bioavailability of WG polyphenols.  
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Introduction 

Resistant starch (RS) is a prebiotic dietary fiber.  According to the source and the process it’s 

possible to distinguish five different categories of RS: RS1, starch granules present in indigestible 

plant material (whole grain, WG) therefore inaccessible to amylolytic and digestive enzymes; RS2, 

native granular starch not digestible by enzymes due to its conformation or structure (such as in 

potato or in green bananas); RS3, retrograded amylose starch formed during cooling of gelatinized 

starch (cooked and cooled starchy foods); RS4, chemically modified starch (i.e. starches esterified 

or cross-bonded with chemicals to decrease their digestibility); RS5, amylose complex with lipids 

(1).  

In humans, the consumption of RS showed an improvement of insulin sensitivity in healthy  

individuals, in patients with metabolic syndrome and those with type 2 diabetes (T2D) (2-4).  

Series of beneficial properties on prevention and treatment of obesity-related diseases due to its 

prebiotic effect were also shown in animal models.  

Rodents fed with RS exhibited higher fermentation, reduced fat accumulation, enhanced insulin 

sensitivity, have a better control of glucose homeostasis and lipid metabolism. These effects seems 

to be mediated by gut microbiota production of SCFA which in turn stimulate the secretion of 

incretins GLP-1 and PYY by L-cells (5-7). 

Gut microbiota play a crucial role in modulate the healthy effects of RS: when the fermentation is 

inhibited RS failed to show its effects on glucose and fat metabolism (8).  

During the fermentation by gut microbiota also phenolic compounds (PC) bound to dietary fibres 

are released in the gastro-intestinal tract. In cereals, hydroxycinnamic acids are the most abundant 

PC bound to cell wall polysaccharides through ester bonds. The action of gut microbiota esterases 

release in a slow and continuous way the PC in the intestine where they can be adsorbed, pass to the 

bloodstream and exert they beneficial effect on the whole body (9). The PC concentration in cereals 

varies depending on cereal variety and milling procedure: in refined cereals deprived of the germ 

and bran the concentration is much lower than WG cereals (10). Therefore, it was hypothesized that 

the WG effect shown in epidemiological studies to lower the risk of chronic diseases, such as 

cardiovascular disease, diabetes, and cancer, and to help body weight control may be due to their 

high fiber and phytovchemicals content (11-13). However, the food source is a fundamental factor 

to determine the bioefficacy of the WG, because the chemical and physical structure of the food 

matrix strongly influence the bioaccessibility and final bioavailability of PC (14).  

Zucker Diabetic Fatty (ZDF) rat were derived from a mutation occurred in a colony of outbred 

Zucker rats. At six/seven weeks of age they start suffering of hyperinsulinemia, hyperglycaemia, 

insulin resistance and obesity beginning thus being a good animal model of T2D (15).  . 
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In the present study, we compared four diets with different source and amount of RS and WG to 

investigate if RS consumption may have any beneficial effect on the bioavailability of PC from WG 

in an animal model of T2D. A secondary aim was to assess if the ingestion of RS and WG had an 

effect on food intake and body weight.  

 

Materials and Methods 

Chemicals and reagents 

Water, acetonitrile and methanol were HPLC grade (Merck, Darmstadt, Germany). Formic acid was 

purchased from Fluka (Milano, Italy). Caffeic acid, ferulic acid (FA), chlorogenic acid, hippuric 

acid, vanillic acid, protocatechuic acid, coumaric acid, homovanillic acid standards were purchased 

from Sigma (Italy). 3-(4-hydroxyphenyl)propionic acid (HPP), 3-hydroxyphenylacetic acid (HPA), 

(3,4-dihydroxyphenyl)acetic acid (DHPA) were obtained from Aldrich (Italy). Oasis cartridge HLB 

1cc (30 mg): were from Waters (U.S.A). 

Rats and diets 

A total of 45 male Zucker Diabetic Fatty rats (Charles River Laboratories) were used. ZDF rats 

four-week old were maintained in quarantine for a period of one week and acclimated to powder 

control diet for 2 weeks. The ZDF rats, at 7 weeks of age, with an average body weight of 250.5 ± 

17.5 g,  

were randomly divided into 4 groups fed isocaloric diets (3.2 Kcal/g) containing:  AC (amioca 

control) (n=12), DWGC (Whole Grain) (n=11), HM260 (resistant starch) (n=11), HMWG (Whole 

Grain + resistant starch) (n=11).  

AC group diet was characterized by starch amioca that is a starch derived from waxy maize, rich in 

amylopectin (starch highly digestible). Group DWGC received a diet characterized by corn flour 

integral (whole grains). Corn flour with a high amylose starch (resistant starch) was characteristic of 

HM260 diet group. Group HMWG was given the corn flour high in amylose (resistant starch) and 

corn flour with whole meal enriched corn meal high in amylose (grains + resistant starch). 

Concentration of resistant starch in the different diets was: AC 0%, DWGC 6.9%, HM260 25%, 

WGRS 25%. The nutritional composition and the phenolic acid content (including total, free and 

bound to dietary fiber) of each specific diet are reported in table 1.  
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Table 1.  Nutritional composition and phenolic acid profile of the diets used in the study.  

Parameter Diets 

Macroutrients, g/kg AC DWGC HM260 HMWG 

Amioca 533.6 83.7 61.7 169.4 

HM260 0 0 619 0 

Whole Grain 0 0 0 576 

Dent Whole Grain  0 550 0 0 

Sucrose 100 100 100 100 

Caseine 136.6 93.7 135.1 84.6 

Cellulose 140 108 0 15.8 

Soybean oil 40 14.8 34.4 4.4 

Micronutrients, g/kg         

Mineral mix 35 3 35 35 

Viatmin mix 10 10 10 10 

Choline 3 3 3 3 

L-Cysteine 1.8 1.8 1.8 1.8 

Phenolic compounds, mg/kg         

Ferulic acid (total) 6.31 626.25 3.56 607.31 

Free 1.02 0.75 0.43 0.81 

Bound 5.29 625.50 3.14 606.50 

Diferulic acid (total) 12.32 763.24 4.78 821.20 

Free ─ ─ ─ ─ 

Bound 12.32 763.24 4.78 821.20 

Coumaric acid (total)  4.45 63.96 1.46 56.55 

Free 2.99 0.81 0.86 0.88 

Bound 1.46 63.15 0.60 55.68 

Vanillic acid (total) 3.20 7.71 1.16 9.58 

Free 3.20 2.06 1.16 3.10 

Bound ─ ─ ─ ─ 

Caffeic acid (total) 0.45 0.58 0.52 0.28 

Free 0.45 0.29 0.52 0.22 

Bound ─ 0.28 ─ 0.07 

Salycilic acid (total) 0.11 0.22 0.07 0.14 

Free 0.07 0.08 0.04 0.09 

Bound 0.04 0.14 0.03 0.04 

Total phenolics  26.84 1461.96 11.55 1495.05 

Free  7.73 4.00 3.01 5.09 

Bound  19.11 1457.96 8.54 1489.96 

 

The study lasted 11 weeks and during this period body weight and food intake were monitored 

twice per week weighing the ration for each rat at the entrance and exit of the cage, after being fed, 

considering the animal dejections. At the end of dietary treatment the rats were sacrificed in a state 

of non-fasting and serum separated by centrifugation was collected and frozen at −80 ◦C.  

Biochemical analysis  
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Phenolic compounds from serum were extracted and purified according to the method described by 

Guerrero et al. (16) slightly modified. Seven hundred fifty microliters of 0.2% acetic acid were 

added to 250 μL of serum to obtain a final volume of 1 mL. Samples were then centrifuged at 

16800 g for 5 min at 4°C. Oasis HLB 1 cc 30 mg cartridges were preconditioned using 1 mL of 

methanol and 1 mL of H2O. Samples were loaded onto the cartridges and at a flow rate of 

approximately 1 mL/min. The cartridges were washed with 1 mL of H2O and 1 mL of 0.2% acetic 

acid. Phenols were eluted with 1 mL of methanol 0.2% acetic acid. The eluate was dried under a 

stream of nitrogen, dissolved again in 100μL of MeOH/H2O (70:30, v/v) solution, centrifuged at 

16800 g for 5 min at 4°C and directly used for LC/MS/MS analysis. For each rat the extraction was 

performed in duplicate from two different aliquots. 

Phenols compounds were analyzed using liquid chromatography coupled to tandem mass 

spectrometry (LC-MS-MS). Chromatographic separation was performed using an HPLC apparatus 

equipped with two micro-pumps Series 200 (Perkin Elmer, Norwalk, CT, USA) and a Gemini 5u 

C18 110 Å, 150 x2 mm, column (Phenomenex, USA). The solvent system consisted of the 

following mobile phases: (A) water 0.1% formic acid, (B) acetonitrile 0.1% formic acid.  The 

gradient program was as follows: 10% B (1 min), 10–90% B (7 min), 90 % B (2 min), 90–10% B (2 

min), at a constant flow of 0.2 mL/min. Injection volume was 20 µL. MS/MS analyses of phenols 

were performed on an API 3000 triple quadruple mass spectrometer (Applied Biosystems, Canada) 

equipped with a TurboIonSpray source. The MS parameters declustering potential (DP), focus 

potential (FP) and collision energy (CE) were the same reported by Vitaglione et al. (17) (table 2). 

Analysis was performed in the negative ion mode in MRM (Multiple Reaction Monitoring). When 

analytical standards were not available, compounds were identified comparing molecular weight 

and fragmentation patterns with those reported in the literature, (17,18). 
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Table 2.  Analyzed compounds, mass spectrometry parameters, limits of detection and 

quantification, linearity range of calibration curves. 

Compound  [M-H]- 
Product ions 

[M-H]- 
CE DP  

LD 
ng/mL 

LQ 
ng/mL 

Linearity 
range ppb 

Chlorogenic acid 353 191 21 35 0.5 1 5-250  

Ferulic acid (FA) 193 134; 178 22; 17 40 0.5 1 10-1000   

Vanillic acid 167 152; 108 20; 26 45 2.5 5 10-250  

Protocatechuic acid 153 109 21 45 0.5 1 5-250  

Coumaric acid 163 119 23 40 2.5 5 5-500  

Caffeic acid 179 135 21 49 0.5 1 5-250  

Hippuric acid 178 134; 77 13; 20 35 2.5 5 5-250  

Dihydroferulic acid 
(DHFA) 

195 136 21 40 2.5 5   

Dihydrocaffeic acid; 181,1 137; 109 10; 18 30 25 100 100-2500  

DHPA 167 123 18 30 0.5 1 100-10000  

3-HPA 151 107; 77 13 35 3 5 100-10000  

HPP 165 121; 105.9; 76.7 10;20;10 25 25 100 100-10000  
5(3’,4’-
dihydroxyphenyl-ɣ-
valerolactone) DHPV 

207 163; 122 25; 25 35       

Hydroxybenzoic acid 137 93 25 50       

Ferulic acid glucuronide 369 193 30 40       

Ferulic acid sulfate 273 193 30 40       

Furuloylglycine 250 191; 206, 177 30 40       

 

Statistical analysis 

All values are reported as means ± SEMs. The means of the different groups in total PC and for 

each PC s were compared for the analysis of variance (ANOVA).  When the ANOVA analysis 

indicated a difference among the groups, a post-hoc Tukey's test was applied to identify any 

significative difference between two groups. 

Statistical analyses were performed by using Statistical Package for Social Sciences (version 21.0; 

SPSS, Inc., Chicago, IL, USA). 

 

Results 

Phenolic compounds 

PC retrieved in  serum samples were ferulic acid, dihydroferulic acid, coumaric acid, protocatechuic 

acid, hippuric acid, caffeic acid, chlorogenic acid, HPP, 3-HPA and DHPA. The groups fed WG 

had higher serum concentrations of total polyphenols compounds compared to the control and to the 

group fed resistant starch. Specifically, the highest concentration of total PC were found in the 

HMWG group (6453±549 nmol/L) with values more than 11 times higher than AC and HM260 and 
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2.4 times higher than DWGC (p<0.001). In the DWGC group the total PC were also significantly 

higher than AC and HM260 (p<0.01) (figure 1, panel A).  

In all of the treatments the most abundant phenol was the hippuric acid, but at a significant different 

concentration among groups being in the DWGC group higher than AC and HM260 (respectively 

1522±290nmol/L, 312±47nmol/L and 392±79nmol/L; p<0.001) and in the HMWG group higher vs 

all the other groups (2856±399nmol/L; p<0.001) (figure 1, panel B).  

In the HMWG group, the serum concentration of dihydroferulic acid (DHFA) was similar to that  of  

hippuric acid (2726±287nmol/L) and it was significantly higher compared to that found in AC, 

DWGC and HM260 rats (p<0.001). On the contrary DHFA in rats fed with DWGC and HM260 did 

not change compared to those fed with  AC (figure 1, panel C). 

A similar trend was observed for the ferulic acid  (FA). It ranged from 2.8±2nmol/L in the AC 

group up to 157±27nmol/L in the HMWG group which was significantly higher compared to the 

other groups (p<0.001).  No significant difference was observed among the other groups (figure 1, 

panel D). For both compounds DHFA and FA a high variability among rats was found in the 

DWGC group (serum concentration ranged from 0 to 258 nmol/L and from 0 to 66 nmol/L for 

DHFA and FA, respectively).  

In terms of abundance, another important PC found in serum was the hydroxyphenyl propionic acid 

(HPP). Treatments with WG resulted in a significantly higher HPP serum concentration: in fact, 

both DWGC and HMWG had higher values compared to AC and HM260 (respectively 

879±122nmol/L, 543±81nmol/L, 107±56nmol/L, 36±11nmol/L; p<0.001). In turn, DWGC had 

higher values than HMWG (p<0.05) (figure 1, panel E). 

The WG diets also significantly increased the cumaric acid serum concentration, since it was  

101±10 nmol/L and 82±8 nmol/L in HMWG and DWGC respectively vs 37±9 nmol/L and 

29±3nmol/L in AC and HM260 respectively (p<0.001) (figure 1, panel F).  

The treatments with high amount of RS (HM260 and HMWG) also resulted in higher serum 

concentration of 3-hydroxyphenilpropionic acid (3-HPA) vs AC and DWGC (p<0.05). However the 

serum concentration was very low for all the treatments (0.61±0.06; 0.63±0.07; 0.98±0.10; 

0.83±0.11; for AC; DWGC; HM260 and HMWG respectively). 

No differences were found regarding the others PC retrieved in serum among treatments. 
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Figure 1. Polyphenols serum concentration in ZDF rats following 11week of diet. Values are 

expressed as mean±SEM. Various letters indicate values significantly different (p<0.05) on the base 

of ANOVA and Tukey post-hoc test  
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Food intake and body weight 

Food intake was monitored twice a week and results were expressed as the average of food amount 

consumed per week (g/wk).  Despite the foods supplemented were isocaloric (3.2 kcal/g) animals 

fed DWGC, HM260 and HMWG ate more than control (p<0.05). Moreover, tukey's test revealed 

both treatments with 25% RS resulted in a significantly higher food intakes compared to DWGC 

(p<0.05) (figure 2).  

 

Figure 2. Food intake of each group of rats per week. Values are expressed as mean±SEM. 

Different letters on the bars indicated  significantdifferent values (p<0.05;  ANOVA and Tukey 

post-hoc test). 

 

Body weight did not differ among groups neither at the beginning of the experiment nor after 11 

weeks (figure 3). 

 
Figure 3. Initial and total weight gain of rats at the beginning and after the 11weeks of diet. Values 

are expressed as mean±SEM.  
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Discussions 

The present study was designed to assess the bioavailability of PC from WG with or without the 

addition of RS to the diet in an animal model of diabetes. The effect of the dietary treatments on 

body weight was also investigated. To this purposes an amylopectin corn starch (AC group), WG 

dent corn flour, with a moderate (7%) amount of RS (DWGC group), an isolated source of RS from 

corn starch, which only provided RS type 2 (HM260 group), and a WG high amylose corn flour, 

which provided both RS type 1 and 2 (HMWG group), were used. ZDF rats were chosen since they 

represent a model of T2D with high insulin resistance and hyperglycemia associated to obesity. 

Moreover, two previous studies found that ZDF rats have a low fermentation response when fed 

with a prebiotic oligofructose dietary fiber suggesting that they can also have altered 

gastrointestinal microbiota (19,20). WG cereals contain a high amount of total PC, but they are 

almost totally bound to dietary fiber (table2), therefore, to obtain a healthy effect from their release 

into the bloodstream the breakdown of fiber due to fermentation by gut microbiota plays a 

fundamental role(17). Our finding demonstrated that ZDF rats fed WG diet had higher serum 

concentration of total PC compared to a control diet and a high RS diet. On the best of our 

knowledge, this is the first time that the bioavailability of PC from WG cereals were investigated in 

a long term study in rats. Previous studies in rats investigated the short-term pharmacokinetic of PC 

from cereals. They showed that the supplementation of bran cereals causes a slower but longer, up 

to 24h, release of PC compared to the administration of pure PC (21,22). However, a single dose PC 

supplementation not always result in a greater protection against oxidation (21). Moreover, even 

middle-term dietary intervention with WG cereals failed to show beneficial effects on conventional 

oxidative stress markers probably due to the low antioxidant concentrations or to poor 

bioavailability of PC (23). Therefore, to obtain a significant increase in serum PC concentration that 

can result in a whole body health effect the length of the supplementation and the amount of the 

total PC must be considered. To this regard in a dietary treatment with WG cereals the 

characterization of the phenolic fractions should be always carried out.  

In humans, it was already demonstrated that the replacement of refined carbohydrates with WG 

cereals  ameliorate the inflammatory markers in healthy overweight subject with sub-optimal 

nutritional status in humans (24).  In a meta-analysis Aune and colleagues (25) found evidences of a 

nonlinear inverse association between WG consumption and type 2 diabetes, with most of the 

reduction observed when increasing the intake up to 2 servings per day. A combination of several 

mechanism probably modulate the healthy effect of WG on T2D. In fact, WG are an important 

source of cereal fiber, phytochemicals, vitamins and minerals. Of course the phytochemicals 

component can be responsible for the protection against oxidative stress. In fact, the consumption of 



32 
 

cereal varieties, particularly rich in PC, such as red or black rice, was reported to affect some 

oxidative stress biomarkers (26).. In addition, WG intake may reduce risk of T2D by reducing the 

serum concentration of proteins correlated to an inflammatory status such as plasminogen activator 

inhibitor type 1 and C-reactive protein, liver gamma-glutamyltransferase and aspartate 

aminotransferase (27-31), but increasing the serum concentration of anti-inflammatory cytokines 

such as adiponectin (28, 32). Therefore the increase in total PC serum concentration after the 

treatments with WG may explain the results found in previous studies where a role for the PC were 

hypothesized, but the PC serum concentration were not investigated. 

The most interesting result from our study was that the consumption of WG cereals high in RS 

increase the total PC serum concentration compared to WG cereals with a low percentage of RS. 

This effect may be ascribed to the prebiotic properties of the RS (33).  

In fact, RS is resistant to the gastric acidity, to the hydrolysis by mammalian enzymes and to the 

gastrointestinal absorption; it can  be fermented and be utilized by gut microbiota and  

selectively stimulate activity and the growth of a limited number of gut bacteria that contribute to 

host health and well being (34). It was demonstrated that mice fed with diets containing high 

amylose RS2 were colonized by higher levels of Bacteroidetes and Bifidobacterium, Akkermansia 

and Allobactum species (35). Another nutritional study exhibited that RS is able to induce a 10-fold 

increase of the gut bifidobacteria (36).  

Therefore, since the gut microbiota activity is essential to release the PC bonded to dietary fiber in 

WG cereals, it can be hypothesized that the gut microbiota enhanced in activity and growth by RS is 

able to make the PC from WG more bioavailable. This results in a synergetic effect between RS and 

WG and as a consequence in a higher serum concentration of PC compared to WG alone.  

The analysis of retrieved PC also indicated a higher activity of gut microbiota in groups fed high RS 

diet: it is noteworthy to underline that the 3-HPA serum concentration, a well know microbial 

metabolite (37), were higher in both treatments with RS. The synergetic effect between RS and WG 

is also confirmed by the DHFA which could be released by the food matrix, but in part also 

produced by the gut microbiota fermentation (38,39).  

 It was present in a comparable amount in DWGC and HMWG cereals, but was retrieved in a 

significantly higher concentration only in the group fed HMWG.    

A secondary aim of the present work was to assess if supplementation with RS results in a lower 

food intake and in a reduction of body weight. We found that food intake was higher in rats fed high 

RS amount and this didn’t not result in a significant  difference among groups in term of  total body 

weight. Several studies were conducted using different rodent models. They indicated that RS may 

affect body weight in a way dependent of the proportion of RS in fodder, of the baseline nutritional 
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status and of the animal access to fodder, being ad libitum access instead of fodder restriction more 

advantageous (40-43). In our study all these three parameters were settled in the best condition as 

indicated by previous studies. A role for GLP-1 and PYY was suggested to explain the mechanism 

of RS action on body weight. In fact, it was demonstrated that RS fermentation led to an increase in 

GLP-1 and PYY plasma levels (6,7; 44). However, ZDF rats have a mutation in the leptin receptor 

gene leading to production of a truncated protein. As a consequence Zucker rats required much 

higher doses of leptin than normal rats to produce a similar effect (45). Since leptin and GLP-1 were 

proved to act in concert to control the activity of feeding centres (46), it can be hypothesized that 

the leptin signalling is fundamental to promote a beneficial effect of RS on appetite and body 

weight.  

In conclusion results from this study demonstrated that PC from WG are bioavailable in ZDF and 

the addition of 25% RS to the diet increase the bioavailability. This resulted in higher PC serum 

concentration which can explain the WG capacity to ameliorate the inflammatory status in T2D. 

Further study should investigate the effect of a long term WG supplementation together with RS in 

diabetic humans.  
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Abstract 1 

Background: Epidemiology associates wholegrain (WG) consumption with several health 2 

benefits. Mounting evidence suggests that WG wheat polyphenols play a role in mechanisms 3 

underlying health benefits. 4 

Objectives: To assess circulating concentration, excretion and the physiological role of WG 5 

wheat polyphenols in subjects with suboptimal dietary and lifestyle behaviors. 6 

Design: A placebo-controlled parallel-group randomized trial with 80 healthy 7 

overweight/obese subjects with low intake of fruits and vegetables and sedentary lifestyle was 8 

performed. Participants replaced precise portions of refined wheat (RW) with fixed amount of 9 

selected WG wheat or RW products for 8 weeks. At baseline and every 4 weeks, blood, urine, 10 

feces, and anthropometric and body composition measures were collected. Profiles of 11 

phenolic acids in biological samples, plasma markers of metabolic disease and inflammation, 12 

and fecal microbiota composition were assessed. 13 

Results: WG consumption for 4-8 weeks determined a 4 fold increase of serum 14 

dihydroferulic acid (DHFA), and a 2-fold increase of fecal ferulic acid (FA) compared to RW 15 

consumption (no changes). Similarly, urinary FA at 8 weeks doubled the baseline 16 

concentration only in WG subjects. Concomitant reduction of plasma tumor necrosis factor-α 17 

(TNF-α) after 8 weeks and increased interleukin-10 only after 4 weeks with WG vs RW 18 

(p=0.04) were observed. No significant change of plasma metabolic disease markers over the 19 

study period but a trend towards lower plasma plasminogen activator inhibitor-1 with higher 20 

excretion of FA and DHFA in WG group was found. Fecal FA was associated with baseline 21 

low Bifidobacteriales and Bacteroidetes abundances whereas after WG consumption it 22 

correlated with increased Bacteroidetes and Firmicutes, but reduced Clostridium. TNF-α 23 

reduction correlated with increased Bacteroides and Lactobacillus. No effect of dietary 24 

interventions on anthropometry and body composition was found. 25 

Conclusions: WG wheat consumption significantly increased excreted FA and circulating 26 

DHFA. Bacterial communities influenced fecal FA and were modified by WG wheat 27 

consumption.  28 

  29 
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Introduction  30 

Epidemiological evidence indicates that wholegrain (WG) substantially lowers the risk of 31 

chronic diseases such as cardiovascular disease (CVD), diabetes, and cancer, and  plays a role 32 

in body weight management and digestive health. Dietary guidelines worldwide 33 

recommended to increase WG consumption by replacing refined grains (1, 2). 34 

Recently, some doubts on the epidemiological links between WG consumption and disease 35 

prevention arose (3) and intervention studies about subclinical inflammation and body weight 36 

showed discrepant findings (4, 5). However, convincing evidence to support beneficial effects 37 

of WG intake on vascular disease prevention were provided (6). 38 

There is still a knowledge gap on the mechanisms underpinning WG health benefits. It is 39 

known that WG physical structures help in reducing glucose and lipid absorption, dietary 40 

fiber can contribute to improve several gut functions, and many bran and germ 41 

phytochemicals may exert antioxidant and anti-inflammatory properties (7, 8). The 42 

bifidogenic effect of WG found in some studies suggested a role of the microbiota in 43 

triggering amelioration of gut and systemic inflammation, explaining some of the metabolic 44 

benefits attributed to WG consumption (9-15). The interplay between microbiota and the 45 

polyphenols bound to WG fibre might explain some of WG health benefits (16). WGs are a 46 

rich source of phenolic compounds, mainly hydroxycinnamic acids (17-20) being ferulic acid 47 

(FA) the most abundant. The FA concentration varies depending on cereal variety and milling 48 

procedure (21) and in WG wheat it is in the range of 4.5-1270 mg/kg (22). From the chemical 49 

point of view FA and 95% of the grain phenolic compounds are covalently bound to 50 

arabinoxylan chains of cell wall polysaccharides through ester bonds (23). WG fiber can 51 

deliver phenolic compounds into the lower gut and that the slow and continuous release of FA 52 

by the action of gut microbiota  metabolism may increase circulating FA and its metabolites 53 

thus providing an amelioration of subclinical inflammation and the long-term benefits 54 

associated to WG consumption (16). 55 

However, to the best of our knowledge no intervention study was performed to determine the 56 

bioavailability of WG polyphenols and to ascertain their role in prevention of chronic disease 57 

over long-term consumption. 58 

Here an 8-week double-arm randomized controlled trial in 80 healthy overweight/obese 59 

subjects sharing suboptimal dietary and lifestyle behaviors was performed by daily replacing 60 

exact amounts of specific refined wheat products with a WG wheat product (WG group) or 61 

selected refined wheat products (control group). The metabolic profiles of phenolic acids in 62 
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blood, urine and feces were obtained, and the concomitant change in fecal microbiota 63 

composition and obesity-related inflammation and chronic disease risk were determined.  64 

  65 
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Subjects and methods 66 

Food products 67 

A 100% WG wheat product was used in this study (“Shredded wheat”, Cereal Partners 68 

Worldwide, Switzerland). It was selected among several commercial products for its WG 69 

wheat content (100% WG) and for the amount of polyphenols bound to dietary fiber. Two 70 

refined wheat products were selected from the market to guarantee a nutritionally well 71 

balanced placebo for the whole grain product (“Magretti” crackers, Galbusera, Cosio 72 

Valtellino, Italy and “Mulino Bianco” toasted sliced breads, Barilla, Parma, Italy). 73 

Subjects 74 

Recruitment was performed at the Department of Agricultural and Food Science of 75 

University of Naples. Subjects were recruited into the study by public announcements on 76 

local newspaper, social networks, and among students and staff of the Department. The 77 

selection was carried out by interview on health status and dietary and behavioral lifestyle 78 

factors, collection of anthropometric data, and a 7-day food diary recall. Men and women 79 

aged > 18 years, with a 25 ≤BMI≤35 kg/m2, habitual diet characterized by absence of WG 80 

cereals and cereal bran containing products, probiotics, vitamins/minerals supplements or 81 

complementary and alternative medicines, intake of fruit and vegetables ≤ 3 servings/day 82 

(300 g/day), and low level of physical activity (Total physical activity < 500 MET-83 

minutes/week), were eligible to participate.  84 

Subjects having any type of disease (functional or metabolic disease including 85 

hyperlipidemia, diabetes and metabolic syndrome) or food allergy, dieting or who were under 86 

a controlled dietary regime over the previous three months, being under drug therapy of any 87 

type or who were using drugs over the previous three months, participating in other trials or 88 

who were pregnant or lactating, were excluded.  89 

Eligible subjects who agreed to participate entered into the study by signing a written 90 

informed consent.  91 
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Study Design 92 

It was an 8 weeks placebo controlled randomized trial with a double arm parallel design. 93 

Once enrolled by the study nutritionist and medical doctor, subjects were randomly assigned 94 

by the dietician to the WG or the control (CTR) group on the basis of a randomization 95 

sequence that was previously generated by the statistician with the use of a computer-96 

generated permuted blocks (n = 5) randomization scheme. 97 

The dietary intervention was tailored on each subject and consisted of isocaloric replacement 98 

of specific amount of some refined wheat products (mainly bread, pasta or sliced toasted 99 

bread) habitually consumed by subjects with the selected food products. WG subjects 100 

included for 8 weeks in their diet 70 g/day (3 biscuits/day) of WG product, while CTR 101 

subjects included 1 package (33g) of crackers and 3 sliced toasted bread (~27 g). In addition 102 

all subjects were instructed to consume with experimental foods the same amount of 103 

seasonings they usually ate (if any) with the replaced foods in order to maintain unchanged 104 

overall nutritional composition of their diets and to maintain unchanged the amount of 105 

consumed fruits and vegetables and the level of physical activity.  106 

The nutritional composition and the phenolic acid content (including total, free and bound to 107 

dietary fiber amount of each compound) of WG and refined wheat portions daily consumed 108 

by volunteers was reported in Table 1.  109 

  110 



44 
 

44 
 

TABLE 1: Nutritional composition and phenolic acid profile of a daily portion of 111 
wholegrain (WG) wheat (70 g) and refined wheat products (60 g, cumulative of two 112 
products) consumed in this study by WG and control subjects, respectively. 113 
 114 

 WG wheat product Refined wheat products 

Proteins (g) 7.8 6.5 

Carbohydrates (g)  45.8 45.7 

- sugars 0.6 1.2 

Fats (g) 1.7 2.2 

- saturated 0.3 0.3 

Dietary fiber (g) 8.0 2.2 

Energy (kcal, kJ) 229.5, 960.2 222.4, 930.5 

 

Phenolic compounds (mg) 
  

- Ferulic acid (total) 96.7 2.6 

free 0.3 2.6 

bound 96.4 --- 

- Sinapic acid (total) 26.5 --- 

free 0.2 --- 

bound 26.3 --- 

- Coumaric acid (total) 9.4 --- 

free traces --- 

bound 9.4 --- 

- Gallic acid (total) 1.9 --- 

free 0.1 --- 

bound 1.8 --- 

- Syringic acid (total) 1.8 traces 

free 0.3 traces 

bound 1.5 --- 

- Vanillic acid (total) 1.6 traces 

free 0.2 traces 

bound 1.4 --- 

- Salycilic acid (total) 0.5 --- 

free 0.1 --- 

bound 0.4 --- 

- Caffeic acid (total) 0.3 --- 

free traces --- 

bound 0.3 --- 

   

Total phenolics 138.7 2.6 

free 1.2 2.6 

bound 137.5 --- 

  115 
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Study protocol 116 

The study protocol was approved by Ethics Committee of University of Naples and it was 117 

illustrated in Figure 1.  118 

 119 

Figure 1: Schematic outline of the study protocol. WG, wholegrain; CTR, control; IPAQ, 120 
International Physical Activity Questionnaire 121 

 122 

Food products were supplied at baseline and after 4 weeks at the Department of Agricultural 123 

and Food Science of University of Naples. Compliance to the dietary treatments was assessed 124 

every 2 weeks by self-recorded 4-day (3 working days and 1 weekend day) food diaries and 125 

also every 4 weeks by weighing the uneaten foods returned by subjects; moreover, phone call 126 

interviews at 2 and 6 weeks were done by an expert dietician to monitor the compliance to the 127 

protocol and the physical activity level by International Physical Activity Questionnaire 128 

(IPAQ) (24). At baseline and every 4 weeks of treatment, fasting participants reached the 129 

laboratory to collect blood and urine samples, anthropometric and body composition data. 130 

During those occasions they also delivered a fecal sample (collected the day before and stored 131 

at -20°C until arrival) and food diaries filled at weeks 2-4 or 6-8. Biological samples were 132 

collected, treated and analyzed as required for the specific procedures by personnel who was 133 

blinded after assignment of interventions. 134 

Determination of phenolic compounds in serum, urine and feces 135 

Blood samples were collected in serum tubes for gel separation and  immediately centrifuged 136 

at 2600 g for 10 min at 4°C. Urine samples were immediately treated with 0.005% of 137 
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butylated hydroxytoluene (BHT). Feces were diluted in the ratio 1:10 (w/v) in PBS (10 mM) 138 

containing 0.005% of BHT, vortexed and centrifuged at 2600 g for 15 min at 4°C. Serum, 139 

urine and fecal supernatants were stored at -40°C prior to analysis. 140 

PC were extracted and analyzed by HPLC/MS/MS as recently described (25). Briefly 500 μL 141 

of serum and 1.5 mL of urine and fecal suspensions were extracted by ethyl acetate (1.5 mL x 142 

2 or x 3 times, respectively); supernatants were dried under nitrogen flow and dissolved in 50 143 

μL methanol–water (70:30); 30 μL were injected into HPLC/MS/MS. 144 

A HPLC system consisting of two micropumps by Perkin Elmer Series 200 (Shelton, 145 

Connecticut, USA), coupled with an API 3000 Triple Quadrupole mass spectrometer 146 

(Applied Biosystem Sciex, Framingham, Massachusetts, USA) was used and elution was 147 

achieved with a Phenomenex Luna 3µ C18(2) 100 A (50 x 2.00 mm) column, using 148 

water:acetonitrile:formic acid, 94.9:5:0.1 (by vol.), and acetonitrile:formic acid, 99.9:0.1 (v/v) 149 

as mobile phases, a  flow rate of 200 μL/min and a linear gradient. Phenolic acids were 150 

detected and quantified through electrospray ionisation MS/MS analysis (negative mode 151 

ionisation, multiple reaction monitoring mode tracking) using the MS parameters and specific 152 

calibration curves (for method details see 25).  153 

To normalize the excretion rate of urinary phenolic compounds 1 mL aliquots of urine were 154 

stored at -40° C and urinary creatinine concentration was measured by an automated system 155 

based on the buffered Jaffe reaction and analyzed by the COBAS Integra (Roche Diagnostic 156 

Ltd, Rotkreuz, Switzerland).  157 

Determination of markers of metabolic and inflammatory disease in plasma 158 

Metabolic disease intermediate markers were determined in duplicate in 12.5 μL of plasma by 159 

using Bio-Plex Pro™ human diabetes immunoassays multiplex kit (Bio-Rad, Hercules, 160 

California) and by using Luminex Technology (Bio-Plex; Bio-Rad, Hercules, California), 161 

according to the manufacturers’ instructions. Blood samples were collected into EDTA 162 

containing tubes and were immediately added with protease inhibitors, such as 163 

dipeptidylpeptidase IV (DPPIV) inhibitor (Millipore’s DPPIV inhibitor; St Charles, MO, 164 

USA) and phenylmethanesulfonyl fluoride (PMSF, Sigma, St. Louis, MO, USA). They were 165 

centrifuged at 2400 g per 10 min at 4 °C, and the supernatants were stored at -40 °C prior to 166 

analysis. 167 

The Bio-Plex Pro™ immunoassays kits allowed the simultaneous quantification of the 168 

following biomarkers: C-peptide, ghrelin, glucose-dependent insulinotropic peptide (GIP), 169 

glucagon-like peptide -1 (GLP-1), glucagon, insulin, leptin, plasminogen activator inhibitor-1 170 

(PAI-1), resistin, visfatin, adiponectin and adipsin, interleukin-6 (IL-6), interleukin-10 (IL-171 
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10), and tumor necrosis factor - α (TNF-α). The sensitivity levels of the assay (in pg/mL) 172 

correspond to the following: C-peptide, 14.3; ghrelin, 1.2; GIP (total), 0.8; GLP-1 (active), 173 

5.3; glucagon, 4.8; insulin, 1; leptin, 3.1; PAI-1, 2.2; resistin, 1.3; visfatin, 37.1.  174 

The interassay variation (%CV) was 4%, and the intra-assay variation (%CV) was 5%. 175 

Glycemia  176 

Glycemia was measured immediately before the blood draw by finger pricking and using a 177 

bedside glucometer (OneTouch Sure Step; Life Scan Inc., Milpitas, CA, USA). Accuracy of 178 

the glucometer was evaluated by the manufacturer using least-squares linear regression 179 

analysis and found to be 97% ‘‘clinically accurate’’ when compared with reference 180 

(YSI2700) results. 181 

Determination of plasma lipids 182 

Cholesterol and triglycerides were assayed on plasma and HDL by enzymatic colorimetric 183 

methods (ABX Diagnostics, Montpellier, France; Roche Molecular Biochemicals, Mannheim, 184 

Germany; Wako Chemicals GmbH, Neuss, Germany, respectively) on a Cobas Mira 185 

autoanalyzer (ABX Diagnostics, Montpellier, France). HDL were isolated from plasma by a 186 

precipitation method with a sodium phosphotungstate and magnesium chloride solution. 187 

Determination of the fecal microbiota by 16S rRNA gene sequencing and data analysis 188 

Microbial DNA extraction was carried out using the PowerSoil® DNA isolation kit (MoBIO 189 

Laboratories, Inc. Carlsbad, CA) using 250 mg of fecal samples collected at baseline and at 190 

the end of intervention (8 weeks). The V4 region of the 16S rRNA gene (515F-806R) was 191 

amplified using the Earth Microbiome Project barcoded primer set. PCR conditions and 192 

library preparation were as described previously (26, 27).  Sequencing was carried out using 193 

on the Illumina MiSeq platform (Argonne Core Sequencing Facility). 194 

Sequence data processing and analyses were performed with scripts from the Quantitative 195 

Insights into Microbial Ecology (QIIME) software package, version 1.5.0 (28), using default 196 

parameters. Raw sequence files were quality filtered and demultiplexed using the 197 

split_libraries_fastq.py script in QIIME, with default settings (28). 1,615,683 sequences 198 

remained after demultiplexing. The pick subsampled reference otus through otu table.py 199 

script was used to generate 97% Operational Taxonomic Unit (OTU) clusters (open reference 200 

OTU picking), an OTU table (singletons removed), a representative sequence file (based on 201 

cluster centroids), an alignment of the representative sequences, and a phylogenetic tree based 202 

on the alignment. Sequence alignments were carried out using PyNAST (28). The above OTU 203 

picking workflow has been renamed pick_open_reference_otus.py in the latest version of 204 
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QIIME (v 1.8.0). The February 4, 2011, release of Greengenes was used as the reference 205 

database for OTU picking (29). In the final OTU table, there were 22,019 non-singleton 206 

OTUs, and the number of sequences per sample varied from 3,743 to 55,750 (median = 207 

16,018; excluding 3 samples that failed to sequence properly). Therefore all samples were 208 

rarified to 3,740 sequences per sample prior to downstream analyses. Statistical tests were run 209 

using the otu_category_significance.py (ANOVA) and compare_categories.py (ADONIS, 210 

ANOSIM, and MRPP) scripts in QIIME as previously reported (27). Weighted and 211 

unweighted UniFrac (30) distance matrices were used for constructing Principal Coordinate 212 

Analysis (PCoA) plots. 213 

Determination of anthropometric measurements and body composition  214 

All measurements were performed by the same operator following standard procedures. 215 

Height of subjects was measured during the selection phase to the nearest 0.5 cm with a 216 

stadiometer (Seca Mod. 213, Germany). Weight was measured, after voiding, with subjects 217 

wearing light clothing to the nearest 0.1 kg on a digital scale (Seca Mod. 703, Germany). 218 

Waist circumference was measured on undressed subjects at the midpoint between the lower 219 

margin of the last palpable rib and the top of the iliac crest. Hip circumference was measured 220 

around the widest portion of the buttocks, with the tape parallel to the floor.  221 

Body composition was determined by conventional BIA with a single frequency 50 kHz 222 

bioelectrical impedance analyzer (BIA 101 RJL, Akern Bioresearch, Firenze, Italy) in the post 223 

absorptive state, at an ambient temperature of 22–24 °C, after voiding and after being in the 224 

supine position for 20 min. 225 

Body composition was calculated from bioelectrical measurements and anthropometric data 226 

by applying the software provided by the manufacturer using validated predictive equations 227 

for total body water (TBW), fat mass (FM), and free fat mass (FFM). 228 

Statistical analysis 229 

The sample size needed to detect an effect of WG treatment on primary outcome (FA 230 

bioavailability) and secondary outcome (metabolic and inflammatory markers) was defined 231 

on the basis of previous studies. From post-hoc analysis of data collected by (9) it was 232 

calculated that 25 participants in each treatment group would give sufficient power (alpha-233 

error 0.05; 80% power, and 2-sided testing) to detect a 50% change in plasma FA. In addition, 234 

considering an alpha-error of 0.05, a power of 0.80 and 2-sided testing, a sample size of 28 235 

participants was estimated to be adequate for detection of a 10% change in fasting total-236 

cholesterol using variation in accordance with (31-33) and for detection of a 30% change of 237 
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circulating IL-6 using variation in accordance with (12), respectively; 30 participants was 238 

estimated to be adequate for detection of a 15% change in fasting TNF-α using variation in 239 

accordance with (32) and (34). The participant number was increased to 40 per group 240 

considering possible drop-outs. 241 

All values were reported as means ± SEM. Kolmogorov-Smirnov and Shapiro test were used 242 

to evaluate the normality of distribution of all monitored variables and logarithmic 243 

transformation was applied to non-normally distributed data. Differences of variables between 244 

baseline and over times within and between interventions were tested by two-way analysis of 245 

variance (ANOVA) with repeated measures on one factor in combination with Tukey’s post-246 

hoc tests; p<0.05 was considered statistically significant. Pearson’s correlation coefficients 247 

were calculated to assess bivariate associations between data sets (p<0.05 was considered 248 

significant).  249 

Statistical analyses were performed using Statistical Package for Social Sciences (version 250 

16.0; SPSS, Inc., Chicago, IL, USA). The microbiota composition and the relative statistical 251 

associations were determined by using specific scripts from of the QIIME software (28) as 252 

above described.  253 
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Results 254 

Compliance to the treatment 255 

The study recruitment and follow-up started on January 2011and March 2011, respectively; 256 

while the study was completed on May 2013. No adverse events were identified in WG and 257 

CTR group over the study period. Twelve subjects (4 from WG and 8 from CTR group) 258 

dropped out of the study during the second and third week for personal reasons unrelated to 259 

the intervention. The reasons included the need of taking antibiotics for 3 subjects and 260 

particular personal and familial events that voluntary and involuntary constricted volunteers 261 

to change their dietary habits and behavior such as change/loss of job for 4 subjects, a 262 

mourning for 2 subjects, health conditions of parents/son for 3 subjects. Sixty-eight subjects 263 

(36 in WG group and 32 in CTR group) completed the study and were included in the 264 

analyses (Figure 2).  265 

266 
 Figure 2: Participant flow over the study period.  267 

  268 
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Their general characteristics were reported in Table 2. 269 

 270 

TABLE 2: General characteristics of participants at baseline 1. 271 

  WG (n=36) CTR (n=32) 

 mean± SEM Range mean± SEM Range 

Subjects (n) 36  32  

Gender (M/F) 11/25  12/20  

Age (y) 40±2 19-67 37±2 21-62 

BMI (kg/m2) 30.0±0.5 25.0-34.9 29.5±0.4 25.6-34.9 

Total-cholesterol (mg/dL) 176.8±5.6 116-195 179.7±4.8 112-190 

HDL-cholesterol (mg/dL) 49.5±2.4 24-79 48.9±1.9 32-74 

Triglycerides (mg/dL) 95.2±8.2 43-145 87.6±5.9 51-144 

Glycemia (mg/dL) 93.9±2.1 56-121 95.9±1.7 72-114 

Waist circumference (cm) 100.0±1.9 76-119 98.6±2.2 75-125 

Hip circumference (cm) 110.5±1.0 99-125 108.5±1.1 96-126 

Free Fat Mass (%) 63.2±1.2 54-75 61.3±2.8 28.3-73 

Fat Mass (%) 36.8±1.2 25-46 33.3±1.6 18.8-43 

Total PA (MET-min/week) 287.5±17.3 220-357 317.5±15.0 260-375 

     
1 WG, wholegrain group; CTR, control group; PA, physical activity. There are no statistical 272 
differences between the groups at baseline. 273 

 274 

The analysis of food diaries and the weight of foods returned by subjects over the study 275 

period showed a good compliance of subjects to the treatments (Supplemental Table 1). No 276 

significant difference between groups in energy intake and macronutrient composition of 277 

diets over time was found (Table 3).  278 

WG wheat consumption resulted in a significant increase in total dietary fiber in WG 279 

subjects at 4 and 8 weeks compared to baseline and compared to CTR subjects. Over the 280 

study period WG subjects consumed a mean of 61±1.5 g/day (~2.5 biscuits) of WG product 281 

(out of the assigned 70 g, 3 biscuits). This WG wheat provided an amount of ~7.1 g/day of 282 

cereal dietary fiber, which well matched the increased intake of total dietary fiber in this 283 

group. No differences in dietary fiber from any other source except WG or refined wheat 284 

products were found over the study period (Figure 3).  285 
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 286 

Figure 3: Daily intakes (g/day, mean±SEM) of dietary fiber (DF), total and from each dietary 287 

source, over the study period in WG (n=36) and CTR (n=32). From ANOVA and Tukey’s 288 

post hoc test: *, p<0.05 for the difference between a given wk and baseline values within 289 

treatments; #, p<0.05 for the difference between treatments at a given wk. 290 

 291 
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TABLE 3: Energy intake and macronutrient composition of individual diets over the study period 1. 292 

 293 

 WG (n=36) CTR (n=32) 

  0 wk 4 wk 8 wk 0 wk 4 wk 8 wk 

       

Energy (Kcal) 1600.4±95.4 1622.3±87.8 1553.7±78.7 1615.6±87.5 1570.7±69.4 1561.5±85.6 

       

Carbohydrates       

Total (g) 198.0±13.1 195.2±10.1 189.4±10.0 186.9±11.3 183.2±10.2 181.0±11.0 

Dietary fiber (g) 15.6±1.2 19.2*#±1.0 19.5*#±0.9 14.2±1.0 13.9±0.9 12.4±0.9 

% Energy 47.5±1.0 46.0±1.3 46.2±1.1 45.0±1.4 44.7±1.4 44.9±1.2 

Proteins       

g 66.3±3.9 71.0±3.7 70.2±3.2 69.5±5.0 69.4±3.6 69.1±4.2 

% Energy 16.8±0.4 17.8±0.5 18.5±0.5 17.0±0.6 17.9±0.7 17.7±0.5 

Fats       

Total (g) 60.0±3.7 62.7±4.4 58.4±3.7 65.3±4.1 61.1±3.4 61.9±4.1 

Saturated (g) 22.8±2.5 25.7±3.3 24.2±3.0 23.1±3.2 21.6±2.3 22.5±2.4 

Monounsaturated (g) 25.7±1.7 25.9±1.8 23.7±1.7 28.9±1.9 26.2±1.5 26.3±1.9 

Polyunsaturated (g) 12.3±1.6 10.2±1.1 9.7±1.2 12.5±1.8 10.7±1.1 9.8±1.1 

Total (% Energy) 34.0±0.9 34.4±0.9 33.5±0.8 36.2±1.2 35.1±1.1 35.8±1.2 

Alcohol       

g 4.7±1.8 5.0±1.4 4.7±1.7 4.1±1.2 5.2±1.8 3.7±1.5 

% Energy 1.7±0.6 1.8±0.5 1.8±0.6 1.8±0.6 2.3±0.9 1.6±0.7 
1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week. From ANOVA and Tukey’s post hoc test: *, p<0.05 for the 294 

difference between a given wk and baseline values within treatments; #, p<0.05 for the difference between treatments at a given wk. No 295 
significant differences between the groups at baseline were present. 296 

 297 
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Anthropometry, body composition, glycemia and plasma lipids 298 

No significant variations of anthropometric data, body composition, plasma lipids, and 299 

glycemia were found over the study period within and between groups (Supplemental Table 300 

2). 301 

Phenolic acids in serum, urine and feces 302 

Supplemental Table 3 reported concentrations of phenolic acids retrieved in biological 303 

samples monitored over the study period. As expected, a greater number of phenolic acid 304 

compounds were detected in urine and feces than in serum samples (13 and 14 vs 6, 305 

respectively). No significant difference was found among baseline concentrations of single 306 

and total phenolic acids in biological samples from WG and CTR subjects. As expected, no 307 

significant variation over the study period for any of monitored compounds was found in CTR 308 

subjects. On the contrary, WG consumption resulted in a significant 4.2 and 5 fold increase in 309 

serum dihydroferulic acid (DHFA) concentration, and a 1.3 and 0.8 fold increase in fecal FA 310 

concentration, after 4 and 8 weeks, respectively, and a 0.8 fold increase in FA urinary 311 

excretion after 8 weeks compared to baseline within and between groups (Figure 4).  312 
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 313 

Figure 4: Concentration of ferulic acid (FA) and dihydroferulic acid (DHFA) in serum (A), 314 
urine (B) and feces (C) over the study period in WG (n=36) and CTR (n=32). From ANOVA 315 

showing significant (p<0.05) treatment x time interaction and Tukey’s post hoc test on serum 316 
DHFA and urinary and fecal FA concentrations: *, p<0.05 for the difference between a given 317 
wk and baseline values within treatments; #, p<0.05 for the difference between treatments at a 318 
given wk. 319 
 320 

In WG group a trend  of increased urinary DHFA after 4 weeks (p=0.08) and 8 weeks 321 

(p=0.09) compared to baseline and also compared to CTR group (p=0.06) after 8 weeks was 322 

observed.  323 

In WG subjects (but not in CTR subjects) FA serum concentrations at 4 and 8 weeks 324 

significantly correlated with serum DHFA (Pearson’s; r=0.734, p<0.001, n=36 and r=0.684, 325 

p<0.001, n=36), whereas urinary FA correlated with fecal (r =0.331, p=0.004, n=36 and r 326 

=0.431, p=0.002, n=36) and urinary (r =0.231, p=0.002, n=36 and  r =0.411, p=0.001, n=36) 327 
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DHFA; interestingly, in subjects experiencing increased urinary FA also a positive variation 328 

of fecal FA was found (r =0.618, p=0.032, n=29) after 8 week intervention. 329 

Metabolic disease and inflammatory markers in plasma 330 

No difference at baseline and no variation over the study period were found for diabetes and 331 

obesity markers within and between groups (Supplemental Table 4). Plasma concentrations 332 

of inflammatory status markers (Table 4) were similar at baseline of both groups. However, 333 

significant modifications over the study period were found between groups and within WG 334 

group. In WG group, there was a significant reduction in inflammatory TNF-a after 8 weeks 335 

compared to baseline and compared to CTR group and a significant increase in anti-336 

inflammatory IL-10 after 4 weeks compared to baseline and to CTR, but not compared to 8 337 

week data in either group. Moreover, a trend of reduction in IL-6 at 8 weeks vs 4 weeks in the 338 

WG group compared to CTR was found (p = 0.06).  339 

The urinary excretion of FA and DHFA over WG treatment (after 4 and 8 weeks of 340 

intervention) tended to be negatively correlated with plasma PAI-1 concentrations (Pearson’s; 341 

r= -0.264, p=0.075, n=36 and r= -0.341, p=0.061, n=36 for FA; r= -0.271, p=0.071, n=36 and 342 

r= -0.302, p=0.059, n=36 for DHFA). 343 
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TABLE 4: Plasma concentration of inflammatory status markers over the study period 1.  344 

 345 

 WG (n=36) CTR (n=32) WG vs CTR, p4 

                      

pg/mL 0 wk 4 wk 8 wk 0 wk 4 wk 8 wk Δ4-0 Δ8-0 Δ8-4 

                

IL-6 57.5±7.5 69.5±11.2 46.9±4.0 65.5±11.4 56.3±7.5 60.2±7.2 --- --- --- 

IL-10 26.9±3.0 41.7±2.82 26.8±3.23 28.8±5.1 27.5±4.3 27.9±3.89 0.04 0.29 0.03 

TNF-α 341.9±25.5 370.1±30.5 243.0±26.02,3 321.9±52.1 314.9±50.3 329.8±50.6 0.15 0.04 0.20 

1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week; data were log transformed prior to analysis;  2 p<0.05 vs 346 
baseline, ANOVA and Tukey’s post hoc test; 3 p<0.05 vs 4 wk, ANOVA and Tukey’s post hoc test; 4 p values for the difference between WG 347 
and CTR groups with respect to the pairwise time point differences (Δ) – they were calculated when a significant treatment x time interaction 348 

was found;  no significant differences between the groups at baseline were present.  349 
 350 

 351 

 352 

 353 
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Microbiota composition: effect of dietary treatments and impact on circulating and excreted 354 

FA and inflammatory/metabolic markers 355 

Microbial community data was analysed by comparing OTUs composition between subjects, 356 

with treatment group, age and gender as independent variables. Data showed that fecal 357 

microbial community structure was significantly different between men and women (p<0.05), 358 

while no significant variation was found in relation to dietary treatments or age. Weighted and 359 

unweighted UniFrac phylogenetic metrics (measures of overall community composition) 360 

clearly showed that the microbial community structure of WG and CTR subjects was not 361 

significantly different; in fact, the different categories of individuals did not form discrete 362 

clusters in the PCoA plot suggesting the overall microbiota to be similar (Figure 5). 363 

 364 

Figure 5: Principal Coordinates Analysis of A weighted and B unweighted UniFrac distances 365 
for 16S rRNA gene sequence data from WG subjects before (orange dots) and after 8 weeks 366 

of intervention (green dots), CTR subjects before (red dots) and after 8 weeks of intervention 367 

(blue dots). 368 

 369 

In addition, no difference was observed between WG subjects at time zero and after the 370 

treatment (Figure 5). However, individual bacterial taxa showed significant variation in 371 

relative abundance in relation to diet and gender. Specifically, Prevotella sp. significantly 372 

increased from 1.8% to 3.5%, while other taxa were significantly reduced in WG subjects 373 

(p<0.05) i.e. Dialister sp. (from 2.5% to 0.6%), Bifidobacterium sp. (from 6.6% to 5.3%), 374 

Blautia sp. (from 9.7% to 6.7%) and Collinsella sp. (from 1.8% to 0.9%). 375 

Pearson’s correlations were used to evaluate the potential interplay between baseline 376 

microbiota composition and circulating FA as well as that between fecal FA and microbiota 377 

over WG treatment. Results showed that in WG subjects a lower baseline relative abundance 378 

of Bifidobacteriales (Actinobacteria) of 5.0% (r=-0.74; p=0.014; n=34) and Bacteroidetes of 379 

9.6% (r = -0.66; p=0.02; n=29) was associated with an increased release of FA in the gut and 380 
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urinary excretion, respectively. After the WG treatment, fecal FA was associated with an 381 

increase in the relative abundances of Bacteroidetes from 9.6% to 14.5% (r =0.76; p=0.01; 382 

n=34) and Firmicutes from 75.3% to 79.7% (r =0.64; p=0.04; n=34); while a reduction of 383 

Clostridium from 3.1% to 1.6 % (r = -0.72; p=0.02; n=34) was registered. 384 

No significant correlation was found between any OTU at baseline and specific variation of 385 

any metabolic or inflammatory marker in both treatment groups. Interestingly, the reduction 386 

of TNF-α after 8 weeks of WG consumption correlated with an increased abundance of fecal 387 

Bacteroides from 9.9% to 14.7% (r = -0.637, p=0.002, n=31) and Lactobacillus from 0.03% 388 

to 0.12% (r = -0.572, p=0.021, n=31). 389 

  390 
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Discussion  391 

In this study the phenolic profile of serum, urine and feces upon WG wheat consumption, 392 

their effect on metabolic and inflammatory parameters and the correlations with changes in 393 

the fecal microbiota were assessed. Overweight/obese subjects with suboptimal lifestyle 394 

factors (such as limited fruit and vegetable intake and low physical activity), were considered 395 

in this study as they were suitable subjects to verify: i) the distribution of WG polyphenols 396 

among the main biological fluids by reducing the interference of other major dietary sources 397 

of polyphenols (35); ii) the hypothesis that WG polyphenols might prevent the development 398 

of some pathophysiological pathways which are possibly unbalanced in these subjects 399 

(although they were still healthy) (16); iii) the interplay among circulating and excreted WG 400 

polyphenols, gut microbial community composition, and health benefits possibly induced by 401 

WG wheat consumption in a population at risk of developing chronic diseases (14,36-40).  402 

Biochemical data showed that among 15 phenolic acids monitored in serum, urine and feces, 403 

an 8-week consumption of WG resulted in a significant increase in urinary and fecal FA and 404 

serum DHFA concentrations. The observation that FA concentration can increase in the blood 405 

upon WG wheat consumption was conceptually in agreement with a previous study conducted 406 

in healthy normal weight subjects (9), while in a recent study in overweight healthy subjects a 407 

4 week-consumption of bread and cereals enriched with an aleurone fraction failed to increase 408 

serum FA (34). Interestingly, in the present study WG consumption significantly increased 409 

also serum DHFA concentration, which is positively correlated with serum FA; while 410 

excreted DHFA correlated with urinary FA. DHFA is a well-known microbial metabolite 411 

derived from FA and chlorogenic acid, absorbable through the colon and retrievable in serum 412 

and urine (14, 41-46). In this study, WG wheat represented the unique dietary source of FA 413 

(~97 mg/day) differentiating WG from CTR group therefore these findings indicated that FA 414 

can be absorbed from WG wheat, it is released in the gut and, it is mainly converted to DHFA 415 

by microbiota. 416 

Moreover, the study of gut microbial communities showed that FA was majorly retrieved in 417 

the blood and excreted in urines in subjects harbouring a low relative abundance of 418 

Bacteroidetes (phylum) and Bifidobacteriales (order) at the baseline. After 8 weeks these 419 

subjects experienced an increase of Bacteroidetes and total Firmicutes, although, within 420 

Firmicutes, a reduction of Clostridium  relative abundance took place. 421 

Previous in vitro studies showed that the release of FA in the colon might be associated with 422 

wheat bran polysaccharide fermentation and sustained by the action of bacterial extracellular 423 

xylanase and FA esterase (47,48). These enzymes are mainly synthetized by bacterial species 424 
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belonging to the genus Lactobacillus and Roseburia (Firmicutes), Bifidobacterium 425 

(Actinobacteria), Bacteroides and Prevotella (Bacteroidetes) in presence of arabinoxylans 426 

with esterified FA (49-53). Thus it can be hypothesized that in overweight/obese subjects who 427 

showed a low abundance of Bacteroidetes and Bifidobacteriales, Firmicutes were the main 428 

responsible for the fermentation of WG polysaccharides and the released FA once WG wheat 429 

was introduced in the diets. 430 

The contemporary observation of an increase in the relative abundance of Prevotella and a 431 

significant positive correlation between fecal FA and the abundance of the whole 432 

Bacteroidetes (although not Prevotella alone) in WG subjects, suggests that also Bacteroides 433 

have a role in intestinal release of WG FA. These findings were in agreement with Lappi and 434 

co-workers (13) who found a trend to reduced Bacteroides and Prevotella and increased 435 

Clostridium in Finnish subjects with metabolic syndrome replacing rye bread with white 436 

wheat bread for 12 weeks (13). However, those authors concluded that dietary fats explained 437 

Bacteroides changes better than WG, while in the present study fats did not affect WG-438 

microbiota interplay. 439 

All together these findings suggested that in this study the intestinal release of WG FA might 440 

be activated by Firmicutes and sustained over time with the contribution of Bacteroidetes. 441 

Moreover, the reduction of Clostridium in subjects experimenting higher FA release might be 442 

due to the competition with other species or to a direct antimicrobial effect of FA towards 443 

clostridia (54). 444 

Data on inflammatory markers showed a significant reduction of inflammatory TNF-α and a 445 

trend toward reduced IL-6 after 8 weeks as well as an increase of the anti-inflammatory IL-10 446 

after 4 weeks of WG consumption. Two previous intervention trials demonstrated the ability 447 

of WG consumption to ameliorate subclinical inflammation (12,32), while many others 448 

studies failed to find such a positive association (31,33,55,56). In the study by Katcher and 449 

co-workers (32) the reduction of inflammation followed the inclusion of WG in hypocaloric 450 

and healthy diets, and in the study by Martinez and co-workers (12) the nutritional 451 

composition of diets were not controlled. 452 

The strong point of the present study is that the amelioration of individual inflammatory status 453 

was found in the context of a controlled energy and nutritionally balanced replacement of 454 

refined wheat with WG wheat and coherently it was not accompanied by any modification of 455 

body weight. 456 

Moreover, the correlation between a reduced TNF-α and an increased abundance of 457 

Bacteroides (as observed in subjects with a higher bioaccessibility of FA) and Lactobacillus 458 



62 
 

62 
 

(known for releasing feruloyl-esterase activity in the gut as discussed above) provided a 459 

further potential link between the increase of serum FA and the amelioration of inflammation 460 

in our subjects. In addition, the trend towards an inverse correlation found between urinary 461 

FA and DHFA with PAI-1 concentration suggested a role for WG FA and its gut metabolite 462 

in triggering mechanisms that may result in a reduced risk of CVD, diabetes and others 463 

pathologies associated with obesity and low-grade inflammatory status (57, 58).  464 

PAI-1 is a well-known biomarker of cardiovascular risk, metabolic syndrome (59), non-465 

alcoholic fatty liver disease (60) and cancers (61). An inverse association between WG 466 

consumption and PAI-1 was found in a recent observational study (62), but previous 467 

intervention studies failed to find a significant effect of WG consumption on this parameter 468 

(31, 63). The trend found in this study might suggest that WG’s effects on metabolic diseases 469 

may be better observed in subjects having the ability of releasing and metabolizing the FA 470 

bound to dietary fiber; this may explain the conflicting evidence found thus far. According to 471 

this hypothesis, the benefits of WG wheat polyphenols are mediated by the metabolic activity 472 

of the gut microbiota, as already observed for soybean or ellagitannin rich foods, whose 473 

health benefits are linked to the ability of individual bacterial taxa to convert genistein into 474 

equol and ellagitannins/ellagic acid into urolithins, respectively (64, 65). On the other hand, it 475 

cannot be excluded that other bioactive components in WG such as resistant starch, betaine, 476 

and some minerals might have contributed together with FA (directly or through their 477 

microbiota metabolites, but in absence of a prebiotic effect) to ameliorate inflammation (7). 478 

In conclusion, in this study it was demonstrated for the first time that WG wheat FA is 479 

released and absorbed in the gut, it is likely metabolized by gut microbiota, and DHFA is the 480 

most abundant circulating metabolite in overweight/obese subjects. Even though WG wheat 481 

did not cause significant modification of microbial community composition or structure, there 482 

were significant relationships between FA release in the gut and relative abundance of 483 

Firmicutes at baseline and Bacteroidetes following WG consumption. The increased 484 

abundance of these bacteria together with Lactobacillus was associated with the ameliorated 485 

inflammatory status of subjects upon WG treatment, which may suggest that WG FA may 486 

play a role in reducing the risk of pathologies associated with subclinical inflammation. This 487 

was also supported by evidence that a greater excretion of FA and DHFA in urine, reflecting a 488 

better release, metabolism and absorption of the compounds, was associated with a trend 489 

towards lower PAI-1 plasma concentrations.  490 

Since no specific correction was made for multiple comparisons, possibly leading to some 491 

false positive findings, some results of the study should be cautiously taken into account and 492 
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further more detailed study may be warranted. The application of a completers analysis 493 

instead of an intention-to-treat analysis of data might be also seen as a study limitation. 494 

However, it was preferred because dropouts in both groups left the study for personal reasons 495 

within the first 3 weeks and no data were available after baseline and because the power of the 496 

study was unaffected by the exclusion from analysis of those few dropouts (66). 497 

In addition, in this study un-blinded participants might have led to possible biases in 498 

psychological response and compliance to the dietary interventions, whereas the blinded 499 

outcome assessors guaranteed unbiased interaction with participants and data collection. 500 

However, from the viewpoint of public health and optimal personalized nutrition it can be 501 

concluded that in subjects at high risk to develop chronic diseases (because of obesity and 502 

unhealthy lifestyle) the modification of dietary habits alone, through an isocaloric dietary 503 

replacement of refined wheat products with 70 g WG wheat, can boost a positive immune 504 

response possibly reducing the risk to develop obesity-related diseases over the long term. 505 
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SUPPLEMENTAL TABLE 1: Food intake for each dietary group 1 

 

 

  
        

         

 
WG (n=36) CTR (n=32) 

 

g/day 
0 wk 4 wk 8 wk 0 wk  4 wk  8 wk  

 

                                    
 

Fruits 111.6 ± 12.7 116.8 ± 17.8 133.8 ± 20.9 112.1 ± 15.6 108.5 ± 15.1 113.3 ± 13.3 

Vegetables 238.2 ± 24.5 252.5 ± 17.5 275.3 ± 21.4 247.9 ± 36.0 255.9 ± 21.0 223.7 ± 18.8 

Cereal products  191.2 ± 15.5 167.3 ± 10.4 161.0 ± 8.7 177.4 ± 11.3 156.6 ± 10.4 157.8 ± 12.6 

Wholegrain wheat 
 

0 
 

60.0* ± 1.7 62.0* ± 1.3 
 

0 
  

0 
  

0 
 

Animal products 95.3 ± 9.3 100.8 ± 8.6 98.5 ± 8.1 109.0 ± 11.5 102.4 ± 8.9 99.5 ± 8.7 

Fishery products 37.7 ± 5.9 43.7 ± 6.2 42.8 ± 4.8 37.1 ± 7.3 42.3 ± 8.5 53.3 ± 9.1 

Dairy products 150.3 ± 19.9 154.0 ± 17.2 164.3 ± 19.8 141.4 ± 16.4 157.2 ± 18.1 163.0 ± 22.9 

Seasonings 19.0 ± 1.9 20.1 ± 2.0 16.9 ± 1.7 20.5 ± 1.9 18.8 ± 1.9 18.4 ± 2.4 

Snacks  76.7 ± 8.1 89.6 ± 8.4 84.8 ± 9.2 71.7 ± 8.3 83.9 ± 8.7 84.4 ± 9.3 

Beverages  135.3 ± 24.2 155.2 ± 27.1 128.1 ± 20.4 162.9 ± 26.9 152.5 ± 23.9 127.1 ± 23.8 
1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week. From ANOVA and Tukey’s post hoc test: *, p<0.05 for the 

difference between a given wk and baseline values within and between treatments.  
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SUPPLEMENTAL TABLE 2: Body weight, blood lipids, glycemia and anthropometry over the study period 1 

 

 
                  

 WG (n=36) CTR (n=32) 

 

0 wk 4 wk 8 wk 0 wk 4 wk 8 wk 

 
                  

Weight (kg) 82.0 ± 2.1 81.1 ± 2.1 81.0 ± 2.1 80.0 ± 2.3 79.5 ± 2.4 77.4 ± 1.9 

BMI (kg/m2) 30.0 ± 0.5 29.9 ± 0.5 29.8 ± 0.4 29.5 ± 0.4 29.4 ± 0.5 29.0 ± 0.4 

Tot-chol (mg/dL) 176.8 ± 5.6 172.4 ± 5.6 176.8 ± 7.0 179.7 ± 4.8 178.1 ± 5.4 182.2 ± 4.8 

HDL-chol (mg/dL) 49.5 ± 2.4 49.4 ± 2.0 48.5 ± 2.3 48.9 ± 1.9 48.1 ± 1.9 49.4 ± 2.0 

TG (mg/dL) 95.2 ± 8.2 95.4 ± 9.1 99.4 ± 9.9 87.6 ± 5.9 87.0 ± 6.7 87.8 ± 6.8 

Glycemia (mg/dL) 93.9 ± 2.1 93.7 ± 2.1 99.9 ± 2.2 95.9 ± 1.7 91.1 ± 1.6 94.3 ± 1.8 

Waist (cm) 100.0 ± 1.9 99.5 ± 2.0 98.9 ± 2.0 98.6 ± 2.2 99.8 ± 2.2 97.8 ± 2.4 

Hip (cm) 110.5 ± 1.0 109.9 ± 1.1 106.2 ± 3.2 108.5 ± 1.1 108.6 ± 1.2 108.2 ± 1.1 

FFM (%) 63.2 ± 1.2 62.4 ± 0.9 63.3 ± 1.0 66.7 ± 2.8 67.2 ± 3.4 67.5 ± 2.1 

FM (%) 36.8 ± 1.2 37.7 ± 0.9 36.7 ± 1.0 33.3 ± 1.6 32.8 ± 1.9 32.5 ± 2.1 
1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week; chol, cholesterol; TG, triglycerides; FFM, free fat mass; FM, 

fat mass. No significant difference between change values of any variable at baseline and at all week within and between treatments was found 

(ANOVA  and post hoc Tukey’s test).  
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SUPPLEMENTAL TABLE 3: Phenolic acid concentrations in biological samples collected over the study period 1.  

 
WG (n=36) CTR (n=32) 

WG vs CTR,  

p3 

 

0 wk 4 wk 8 wk 0 wk 4 wk 8 wk Δ4-0 Δ8-0 Δ8-4 

SERUM (nmol/L) 
               

   

CA 2.7 ± 0.8 2.9 ± 0.8 3.0 ± 0.9 6.2 ± 2.2 5.5 ± 1.4 3.7 ± 1.2    

FA n.d   0.3 ± 0.3 0.3 ± 0.3 0.3 ± 0.3 0.1 ± 0.1 n.d.      

DHFA 0.5 ± 0.2 2.6 ± 0.52 3.0 ± 0.62 0.6 ± 0.2 0.8 ± 0.3 0.9 ± 0.3 0.04 0.04 0.97 

HPVal 4.3 ± 1.0 4.5 ± 0.6 4.4 ± 0.8 4.3 ± 1.0 3.4 ± 0.8 4.6 ± 1.4    

HA 0.5 ± 0.2 3.1 ± 2.2 2.0 ± 0.9 0.3 ± 0.2 0.4 ± 0.2 8.9 ± 5.6    

HBA 32.2 ± 6.0 33.5 ± 4.9 36.9 ± 5.5 21.5 ± 5.0 26.0 ± 6.2 28.4 ± 7.0    

TOTAL 40.2 ± 8.2 46.9 ± 8.8 49.6 ± 8.4 33.1 ± 8.9 36.1 ± 9.1 46.4 ± 15.4    

 
                     

URINE (nmol/g creatinine) 
            

   

                      

CA 0.5 ± 0.2 0.9 ± 0.4 0.7 ± 0.2 0.6 ± 0.2 0.3 ± 0.1 0.6 ± 0.2    

FA 5.6 ± 1.3 6.9 ± 1.2 9.9 ± 1.72 7.1 ± 1.8 6.9 ± 0.9 7.1 ± 1.8 0.37 0.03 0.49 

DHFA 17.6 ± 3.2 22.1 ± 3.1 23.2 ± 3.7 14.8 ± 2.8 17.4 ± 3.8 14.8 ± 3.0    

VA 13.7 ± 2.0 17.0 ± 2.4 14.7 ± 3.2 17.2 ± 2.6 18.5 ± 2.7 17.7 ± 3.2    

di HPA 19.8 ± 3.0 22.7 ± 3.1 28.3 ± 4.5 24.5 ± 5.3 24.7 ± 5.7 33.3 ± 6.7    

HPA 8042.9 ± 874.5 9704.5 ± 934.7 8665.9 ± 1108.9 12692.9 ± 2828.3 9693.3 ± 1248.3 10150.4 ± 1536.7    

PCA 26.5 ± 5.4 36.1 ± 6.7 26.8 ± 4.7 29.1 ± 8.2 22.2 ± 4.8 20.2 ± 3.3    

HBA 3.2 ± 0.6 4.2 ± 0.9 5.4 ± 1.3 3.8 ± 1.0 3.3 ± 0.5 4.6 ± 1.3    

HPVal 0.4 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.5 ± 0.3    

CaA 2.4 ± 0.4 3.3 ± 1.2 2.0 ± 0.4 2.7 ± 0.7 3.1 ± 0.7 1.9 ± 0.5    

CuA 2.1 ± 0.3 2.0 ± 0.3 1.9 ± 0.3 2.2 ± 0.3 2.6 ± 0.3 2.6 ± 0.4    

HA 1463.9 ± 209.8 2294.9 ± 844.9 1321.7 ± 202.5 1191.5 ± 185.2 1411.7 ± 237.1 1631.4 ± 227.5    

HVA 589.7 ± 79.6 708.6 ± 99.8 668.5 ± 100.4 602.4 ± 74.6 633.3 ± 117.8 905.4 ± 269.5    

TOTAL 10188.3 ± 1177.3 12823.6 ± 1895.7 10746.2 ± 1428.2 14588.8 ± 3111.1 11837.5 ± 1623.0 12790.6 ± 2054.3    
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FECES (nmol/kg) 
                 

   

                      

CA 3.7 ± 0.9 17.8 ± 13.4 4.6 ± 1.1 9.7 ± 3.5 9.1 ± 5.0 9.7 ± 5.4    

FA 1460.1 ± 666.4 3389.3 ± 928.12 2989.5 ± 630.12 610.2 ± 217.9 787.0 ± 195.2 680.6 ± 134.3 0.02 0.04 0.40 

DHFA 587.6 ± 252.0 905.4 ± 340.3 1476.7 ± 550.4 643.7 ± 312.7 344.7 ± 136.2 575.9 ± 295.6    

VA 1181.8 ± 309.5 843.8 ± 114.5 2058.4 ± 958.5 1945.5 ± 966.1 1581.0 ± 689.6 1264.7 ± 412.0    

di HPA 228.4 ± 78.0 374.4 ± 147.0 590.3 ± 255.3 103.0 ± 46.6 212.4 ± 124.3 149.9 ± 103.7    

HPA 218.6 ± 56.6 159.7 ± 41.4 201.1 ± 40.0 254.2 ± 13.2 179.6 ± 73.1 186.8 ± 25.1    

HPP 3597.7 ± 1427.1 4215.0 ± 1199.8 4978.3 ± 1221.4 5609.4 ± 2484.6 7899.9 ± 3396.2 2152.0 ± 794.7    

PCA 104.3 ± 34.0 99.1 ± 20.0 138.0 ± 48.2 50.7 ± 21.5 95.7 ± 38.7 76.6 ± 26.9    

CuA 171.6 ± 47.0 203.3 ± 49.6 289.1 ± 70.1 82.2 ± 18.7 208.1 ± 65.9 275.2 ± 107.1    

HPVal 1.4 ± 1.2 0.3 ± 0.2 1.8 ± 1.0 19.2 ± 15.3 1.4 ± 1.2 0.0 ± 0.0    

CaA 212.0 ± 42.9 311.5 ± 67.3 263.1 ± 43.0 235.9 ± 142.0 220.5 ± 89.9 221.7 ± 67.4    

HA 81.4 ± 65.7 58.0 ± 35.4 121.7 ± 48.4 53.5 ± 28.3 89.5 ± 43.8 80.2 ± 40.6    

HVA 13049.2 ± 3784.5 22307.3 ± 7343.3 17681.6 ± 6905.3 7330.8 ± 2284.6 9221.4 ± 2623.3 10222.7 ± 4166.2    

HBA 102.7 ± 33.8 131.5 ± 32.6 109.9 ± 19.1 56.8 ± 8.3 41.7 ± 6.6 121.5 ± 75.1    

TOTAL 21009.5 ± 6799.5 33016.6 ± 10533.0 30603.9 ± 10791.9 17004.8 ± 6563.3 20892.0 ± 7489.0 16387.5 ± 6654.2    

1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week; 2 p<0.05 vs baseline, ANOVA and Tukey’s post hoc test; 3 p 

values for the difference between WG and CTR groups with respect to pairwise time point differences (Δ) – they were calculated when a significant 

treatment x time interaction was found; no significant differences between the groups at baseline were present. CA, chlorogenic acid; FA, ferulic 

acid; DHFA, dihydroferulic acid; HPVal, hydroxyl-phenyl-valerolactone; HA, hippuric acid; HBA, hydroxybenzoic acid; VA, vanillic acid; di 

HPA, di-hydroxy-phenyl-acetic acid; HPA, hydroxyphenyl acetic acid; PCA, protocatechuic acid; CaA, caffeic acid; CuA, cumaric acid; HVA, 

homovanillic acid; n.d., not detected. P values from ANOVA and Tukey’s post hoc test for variations at given weeks within and between groups; 

p<0.05 indicates significant differences.  
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SUPPLEMENTAL TABLE 4: Plasma concentration of metabolic disease markers over the study period 1.  

 

 WG (n=36) CTR (n=32) 

  
        

         pg/mL 0 wk 4 wk 8 wk 0 wk 4 wk 8 wk 

        
  

 
 

 

C-PEPTIDE 662.1 ±58.7 686.7±64.2 616.0±37.6 607.2±58.5 562.2±40.6 520.0±44.5 

GHRELIN 482.6±54.4 521.3±63.8 433.8±31.6 478.1±38.6 429.2±33.2 484.2±39.8 

GIP 116.6±41.7 88.3±19.9 87.4±13.7 80.5±8.7 69.9±9.8 86.7±13.9 

GLP-1 52.6±9.5 58.2±11.5 52.0±5.5 50.5±5.9 45.1±5.4 46.5±5.5 

GLUCAGON 321.8±24.7 343.2±36.4 307.4±13.0 311.5±16.9 294.9±20.5 304.4±15.8 

INSULIN 111.4±13.7 120.5±17.4 110.1±7.8 100.5±7.1 92.4±6.8 96.2±5.6 

LEPTIN 3327.1±355.5 3876.9±447.5 3258.2±332.7 3146.8±407.1 3461.9±579.9 3461.8±616.5 

PAI-1 2913.3±185.4 3326.8±148.1 2892.4±186.4 2964.7±212.4 2765.8±198.0 2690.5±209.3 

RESISTIN 1472.6±121.9 1369.5±102.7 1474.8±98.0 1551.3±166.9 1497.6±208.1 1426.1±171.7 

VISFATIN 1507.2±282.3 1667.6±392.5 1352.2±163.8 1387.8±183.1 1241.3±161.3 1307.1±160.8 
1 All values are means±SEM; WG, wholegrain group; CTR, control group; wk, week. No significant differences both within and between treatments 

at baseline and any time point were found.
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Abstract   1 
Human bioavailability of curcumin from breads enriched with 1 g/portion of free curcumin (FCB), 2 

encapsulated curcumin (ECB) or encapsulated curcumin plus other polyphenols (ECBB), was 3 

evaluated. Parental and metabolized curcuminoids and phenolic acids were quantified by 4 

HPLC/MS/MS in blood, urine and feces collected over 24h. The concentrations of serum 5 

curcuminoids were always below 4 nmol/L and those of glucuronides ten folds less. Encapsulation 6 

delayed and increased curcuminoid absorption compared to the free ingredient. Serum and urinary 7 

concentrations of ferulic and vanillic acid were between 2 and 1000 folds higher than those of 8 

curcuminoids: ECBB eliciting the highest amounts. Fecal curcuminoids were 6 folds more abundant 9 

after ECB than FCB while phenolic acids after ECBB quadruplicated those after ECB. 10 

Curcuminoid encapsulation increases bioavailability from enriched bread probably preventing their 11 

biotransformation: combined compounds slightly reducing this effect. Phenolic acids are the major 12 

metabolites of curcuminoids and may contribute to their biological properties. 13 

14 
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Introduction 1 

Curcumin is commonly used in food products, mainly as colouring agent. Several biological 2 

properties have been attributed to this compound mainly related to the ability to inhibit NF-kB 3 

activation [1]. Curcumin has been proposed as potential therapeutic agent against several non 4 

communicable chronic diseases having an inflammatory origin such as neurodegenerative diseases 5 

(Alzheimer’s and Parkinson’s disease, multiple sclerosis, epilepsy), CVD, diabetes, obesity, 6 

allergies and certain types of cancer [2] 7 

Although clinical studies in humans proved that curcumin is safe and well tolerated even at very 8 

high doses (8-12 g/die) its use as therapeutic agent is limited by its low bioavailability, poor 9 

absorption, rapid metabolism and systemic clearance [3,4]. 10 

Drug delivery systems such as nanoparticles, liposomes, microemulsions, and polymeric 11 

implantable devices are emerging as viable alternatives that can be used to deliver therapeutic 12 

concentrations of various chemopreventive agents such as curcumin, ellagic acid, green tea 13 

polyphenols, and resveratrol into the systemic circulation [5].  14 

Several absorption enhancers have also been used to improve curcumin bioavailability. Piperine 15 

enhanced the bioavailability both in preclinical studies and in studies on human volunteers [6]. This 16 

was attributed to the ability of piperine in reducing first-pass metabolism [6]. Animal studies also 17 

demonstrated that inclusion of curcumin into nanoparticles caused at least 9-fold increase in oral 18 

bioavailability when compared to curcumin administered alone or with piperine [7]. On the other 19 

hand interactions among bioactive compounds which may positively influence oral bioavailability 20 

of individual molecules are known for genistein towards epigallocatechingallate [8] as well as for 21 

several natural bioactive compounds (quercetin, hesperitin, curcumin, piperin and naringenin) with 22 

P-glycoprotein-inhibiting activity, towards some anticancer drugs [9, 10]. 23 

Encapsulation may confer new properties and potentials to bioactive compounds trough 24 

modification of physical and nutritional properties [5]. This may be of particular interest in the 25 

formulation of functional foods, where technological and nutritional aspects must be strictly 26 

considered [11]. In this respect, selecting suitable coating materials can increase water solubility of 27 

bioactive compounds and/or permit their controlled delivery into gastrointestinal tract [5]. 28 

In this framework, the aim of this study was to evaluate the bioavailability of curcumin from 29 

different types of bread containing curcumin in different form: free and microencapsulated in a 30 

cellulose derivative coating containing curcumin alone or in combination with a mixture of three 31 

bioactive compounds including piperine, quercetin and genistein. A cross-over, randomized, single 32 

blind study in healthy subjects was performed. Curcuminoid bioavailability over 24 hours following 33 

consumption of the breads was assessed by HPLC/MS/MS determining blood, urine and fecal 34 
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concentrations of curcuminoids, their metabolites (glucuronides, sulphated and reduced 1 

compounds) and several phenolic acids.  2 

 3 

Materials and methods 4 

Standards and reagents  5 

All chemicals and reagents were of analytical grade. Methanol, water, acetonitrile were from Merck 6 

(Darmstadt, Germany); ethyl acetate, glacial acetic acid and hydrochloric acid from Clean Consult 7 

International (Lodi, Italy); formic acid with (98% purity) was obtained by Sigma (St. Louis, MO). 8 

All analytical standards chlorogenic acid (95%), ferulic acid (99%), 4-hydroxyphenylacetic acid  9 

(HPA, 98%), 3-(4-hydroxyphenyl)propionic acid (HPP, 98%), vanillic acid (97%), and curcumin (≥ 10 

80%) were purchased from Sigma (St. Louis, MO). 11 

Curcumin ingredients and breads 12 

Three types of curcumin containing ingredients were used, namely free curcumin (FC), 13 

encapsulated curcumin (EC) and encapsulated curcumin plus three  bioactive compounds i.e. 14 

piperine, quercetin and genistein (EC+B).  15 

FC was a 95% pure curcuminoid extract from turmeric and was constituted by 79% curcumin, 19% 16 

desmethoxycurcumin and 2% bisdesmethoxycurcumin. EC and EC+B were obtained by fluidized 17 

bed spray coating, followed by bottom spray. Curcumin was encapsulated by double coating, 18 

whereas the inner coating material of microcapsules was constituted by cellulose derivative 19 

(Ethocel 100, Dow Chemicals) as a first layer, and hydrogenated vegetable oil (HVO) as an external 20 

layer. Ethocel 100 (88% Ethocel 100 and 12% liquid castor oil, as emulsifier) was dissolved in 80% 21 

acetone and 20% methanol to get a 4%w/w solution for coating and hydrogenated vegetable oil was 22 

melted by heating to 950C prior to coating. The particles of curcumin were placed at the bottom of 23 

the chamber and blown upward by hot air. The coating polymer solution (Ethocel 100) and HVO 24 

were sprayed upward in the same direction, one by one. In this way, curcumin particles pass though 25 

a simultaneous coating (drying) environment upward by reaching the top of the chamber, the 26 

partially coated particles move downward and undergo further drying until the desired coat 27 

thickness is reached. 28 

Finally EC and EC+B contained 72.7% and 66.5% of curcuminoids, respectively; in EC+B, 29 

piperine, quercetin and genistein, 1.0% of each were also present (Table 1).  30 

 31 

32 
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Table 1: Composition of the functional ingredients included in the different type of bread. 1 

 Core Coating 

 Curcuminoids Piperine Quercetin Genistein 

Cellulose 

derivative 

(Ethocell 

100) 

Castor 

Oil 
HVO 

FC 

(Free Curcumin) 
95% --- --- --- --- --- --- 

EC 

(Encapsulated Curcumin) 
72.68% --- --- --- 7.48% 1.02% 15% 

EC+B 

(Encapsulated Curcumin 

+ other polyphenols) 

66.5% 1.0% 1.0% 1.0% 6.84% 0.93% 13.73% 

 2 

All combined compounds were encapsulated one by one with single layer of polymer solution 3 

(Ethocel 100) by different amount of coatings (0 – 20% coat), mixed together in order to achieve 4 

controlled release mechanism. 5 

Each ingredient was included in a classical bread recipe and three types of bread containing 1g 6 

curcuminoids in a  100g portion were formulated. The bread with EC+B also contained 0.01g 7 

piperine, 0.01 g quercetin and 0.01 g genistein . Depending from the ingredient used the breads will 8 

be hereinafter indicated as: FC bread (FCB), EC bread (ECB) and EC+B bread (ECBB). They were 9 

produced in laboratory scale and curcumin bioavailability upon their consumption was studied. By 10 

consuming one portion of bread, subjects ingested: 0.8 g (2.1 mmol) curcumin, 0.2 g (473.4 µmol) 11 

desmethoxycurcumin and 0.08 g (259.7 nmol) bisdemethoxycurcumin (2.6 mmol of total 12 

curcuminoids). 13 

Subjects and treatment 14 

The protocol of the study was approved by the Ethics Committee of "Federico II" University of 15 

Naples (Approval Number: 37/10) 16 

Ten healthy subjects, age of 31±2 years, BMI of 23.5±1.2 kg/m2, were enrolled. Subjects with 17 

gastrointestinal pathologies and/or metabolic disease, those taking anti-inflammatory drugs, or 18 

under controlled diet in the previous six months were excluded from the study. Volunteers signed a 19 

written informed consent before starting the experimental protocol. 20 

Study design is schematized in Figure 1. Volunteers were asked to follow a polyphenol-free diet for 21 

three days before and over the experiment days. Thus they were recommended to exclude from their 22 

diet all polyphenol-rich foods and beverages such as fruits, vegetables, chocolate, tea, coffee, wine, 23 

beer, supplements, herbal extracts, and whole grains-based foods. Assumption of FANS and anti-24 

inflammatory drugs was also avoided during 1 week before the study. On the experiment day, at 25 
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08.00 h, 12 hours-fasted subjects reached the laboratory and were randomized to receive one of the 1 

three experimental breads, that was consumed within 15 minutes. Before consumption of bread and 2 

after 30 min, 1h, 2h, 4h, 6h, blood drawings was performed. Urine volume was measured over 24h 3 

and 10 mL samples were collected before and at 0-2h, 2-4h, 4-6h, 6-8h, 8-10h, 10-24h time 4 

intervals post-bread ingestion.  5 

After 6 h from breakfast ingestion, subjects left the research centre and consumed their lunch 6 

(always choosing among allowed foods). A further bread portion was consumed at dinner (within 7 

10.00 h pm). The day after the experiment 12 hours-fasted participants returned to the laboratory, 8 

they were submitted to a blood drawing (24h from the first bread consumption) and let the faecal 9 

sample collected on the experiment day. 10 

After a 1 week wash-out period during which subjects returned to consume their own habitual diet, 11 

participants were crossed-over to receive a new treatment with a different experimental bread. All 12 

subjects completed the study receiving all 3 treatments. 13 

 14 

15 
Figure 1: Study design. Each subject followed this time schedule for each type of curcumin-16 

enriched bread by a cross-over randomized design.  17 

 18 

Biological sample treatment 19 

Blood samples were collected in Vacutainer tube for gel separation, and immediately centrifuged at 20 

4000 rpm for 10 min at 4°C. Urine samples were immediately treated with 0.005% of BHT. Feces 21 

were diluted 1:10 (W/V) in PBS 10 mM, containing 0.005% of BHT, vortexed and centrifuged at 22 

4000 rpm for 15 minutes at 4°C. Serum, urine and fecal supernatants were stored at -40°C until the 23 

analysis. 24 
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Five-hundred microliter of serum and 1.5 mL of urine and fecal samples were extracted, by 3 mL 1 

and 4.5 mL of ethyl acetate respectively. The supernatants were dried under nitrogen flow and 2 

dissolved in 50 µL of methanol/water (70:30). Thirty microliters were used for HPLC/MS/MS 3 

analysis. Each sample was extracted in duplicated. 4 

HPLC/MS/MS analysis  5 

Chromatographic separation of curcumin and metabolites was performed with a HPLC system 6 

consisting of 2 micropumps by Perkin Elmer (USA) Series 200. Elution was achieved with a 7 

Phenomenex Luna 3 µ C18(2) 100 A (50x2.00mm) column and by using the following mobile 8 

phases: A = H2O/acetonitril/formic acid 94.9:5:0.1 (v/v/v), and B =  acetonitrile/formic  acid  9 

99.9:0.1;  (v/v); the flow rate was 200 µl/min. A linear gradient was applied as follows: 0–1min,4–10 

40% B; 1–3min,40–100% B; 3–5min,100%B; 6–10 min, 4% B. Analysis was performed using an 11 

API 3000 Triple Quadrupole mass spectrometer (Applied Biosystem Sciex). For identification and 12 

quantification of compounds, ionization in negative mode was used and a multiple reaction 13 

monitoring (MRM) analysis was employed tracking the transition indicative of parent and product 14 

ion specific for each compound. Previous direct infusion experiments were performed to optimize 15 

following parameters: capillary voltage, focusing potential, entrance potential, declustering 16 

potential, and collision energy. After performing infusion following parameters were fixed: dwell 17 

time, 100 ms; nebulizer gas, 10; curtain gas, 12; auxiliary gas temperature, 400 °C; auxiliary gas 18 

flow rate, 6,000 cm3/min; capillary voltage, −3,700 V; entrance potential, −10 V. Detailed 19 

transitions for parent molecules and product ions and MS parameters are listed in Table 2. 20 

 21 

22 
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Table 2: Protonated molecules and product ions of compounds analyzed by LC-MS/MS, and MS 1 

parameters 2 

Compound M-H Product ions DP FP CE CXP 

  1 2 3   1 2 3 1 2 

            

Curcumin 367.1 217.1 148.9  -46 -400 -16 -25  -10  

Desmethoxycurcumin 337 217   -38 -400 -17   -10  

Bisdesmethoxycurcumin 307 217   -46 -400 -49   -6  

Curcumin glucuronide 543.1 367   -60 -375 -30   -7  

Curcumin sulphate 447 367   -60 -375 -25   -7  

Tetrahydrocurcumin glucuronide 547 135   -60 -375 -25   -7  

Hesahydrocurcumin 373 179   -60 -375 -25   -7  

Hesahydrocurcumin glucuronide 549 373   -60 -375 -30   -7  

Vanillic acid 167 152 108 123 -45 -250 -22 -26  -9 -11 

Ferulic acid 192.8 133.9 177.9  -35 -250 -22 -17  -10  

Chlorogenic acid 353 191   -35 -250 -21   -8  

Hydroxyphenylvalerolactone 207 163 122  -35 -250 -29   -7  

3,4-dihydroxyphenylacetic acid  (diHPA) 167 123.1   -30 -250 -11   -7  

4-hydroxyphenylacetic acid  (HPA) 151 107 78.9  -35 -250 -16 -25  -7  

3-(4-hydroxyphenyl)propionic acid (HPP) 164.9 121 105.9 76.7 -25 -250 -10 -20 -10 -7  

 3 

4 
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Statistical analysis 1 

The number of subjects was based on power calculations derived from our previous study [12]. We 2 

calculated that, at α = 0.05 with a power of 80%, 8 subjects would allow us to detect a 20% 3 

difference in serum and urinary concentrations of parental compounds, glucuronides and phenolic 4 

acids. 5 

Statistical analysis was performed using the statistical package SPSS for Windows (version15). The 6 

results from HPLC/MS/MS analysis of curcumin and metabolites were analyzed and expressed as 7 

the absolute changes from the baseline to reduce possible effects of inter-subject fasting variability. 8 

The area under the curve (AUC) for each compound from baseline over 6h after first bread portion 9 

consumption in the case of serum samples and over  0-10 h and 10h-24h for urine samples were 10 

estimated using the linear trapezoidal rule. By the analysis of variance (ANOVA) for repeated 11 

measures the subjective time curves for all measured compounds were compared and tested for the 12 

effect of treatment and of time as factors. For all tests, following a significant main effect in the 13 

ANOVA, individual means were compared using the Bonferroni test (p < 0.05). Results were 14 

considered significant at p < 0.05. All values were reported as means ± SEM. 15 

16 
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Results 1 

Serum 2 

The serum mean concentration-time curves of total curcuminoids, curcuminoid conjugated 3 

compounds and phenolic acids over 24h following consumption of FCB, ECB and ECBB are 4 

reported in Figure 2. 5 

6 

7 

 8 

Figure 2: Serum concentration-time curves of total curcuminoids, curcuminoid glucuronides and 9 
phenolic acids following consumption of FCB, ECB and ECBB. *:p<0.05 vs baseline; #: 10 
p<0.05 vs FCB. 11 
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Modification of the amount and of the time course of curcuminoids absorption after consumption of 1 

ECB and ECBB compared to FCB were found. Following FCB, curcuminoids peaked at 30 min 2 

with a Cmax of 1.59 ± 0.28 nmol/L, while following ECB and ECBB tmax of 2h and 4h, with Cmax of 3 

3.36 ± 0.36 nmol/L and 2.13 ± 0.39 nmol/L, respectively, were recorded. Serum concentrations of 4 

curcuminoids over 6 hours after consumption of bread with encapsulated ingredients were always 5 

higher than after consumption of bread with the free ingredient. ECB consumption determined at 1h 6 

and 2h serum curcuminoid concentrations higher than ECBB (p<0.05 for ECB and ECBB vs FCB 7 

and for ECB vs ECBB). The consumption of the second portion of bread at 10 h guaranteed at 24h 8 

(after 14h) a serum concentration of curcuminoids higher than baseline. Following ECB that 9 

concentration was higher than after FCB (0.93 ± 0.22 nmol/L vs 0.48 ± 0.17 nmol/L, p<0.05). 10 

The curcumin conjugated metabolites found in serum, curcumin glucuronide and 11 

esahydroxycurcumin glucuronide, were at concentrations ten folds lower than parental 12 

curcuminoids. Interestingly, after consumption of encapsulated ingredients, the concentration peaks 13 

were anticipated compared to the free ingredient (30 min and 1h vs 2h). In accordance with 14 

curcuminoids also AUC0-6 of conjugated compounds were higher after ECBB or ECB than after the 15 

FCB (0.32 ± 0.20 nmol·h/L and 0.55  ± 0.39 nmol·h/L vs 0.15 ± 0.06 nmol·h/L , respectively). As 16 

expected no glucuronides were found in serum at 24 h. 17 

Following the consumption of all types of bread the phenolic acids retrieved in serum were ferulic 18 

and chlorogenic acid; while vanillic acid was found only after ECBB. Their appearance in serum 19 

was already at 30 min and all peaked between 30min – 2h; after FCB a double peak at 4h was 20 

recorded. Surprisingly, Cmax after ECBB was almost 3-fold and 10-fold higher than that after FCB 21 

and ECB, respectively (11.43 ± 2.13 nmol/L vs 4.06 ± 1.11 nmol/L and 1.27 ± 0.10 nmol/L, 22 

respectively; p<0.05). Measure of AUC0-6 of total phenolic compounds demonstrated that amount of 23 

phenolic acids in the bloodstream following ECBB consumption was almost double compared to 24 

that after FCB and even 7-fold higher than following ECB (23.3 ± 5.0 nmol·h/L vs 13.3 ± 2.5 25 

nmol·h/L and  3.3 ± 0.54 nmol·h/L, respectively). In all cases, ferulic acid was the most abundant 26 

phenolic acid retrieved in serum always contributing by ~ 75% of total. The repeated consumption 27 

of FCB and not that of the two encapsulated bread determined a 24h serum concentration of 28 

phenolic compounds significantly higher than baseline (1.0 ± 0.2 nmol/L). 29 

Urines 30 

Figure 3 reports urinary mean concentration-time curves of total curcuminoids, curcuminoid 31 

conjugated compounds and phenolic acids over 24h following consumption of FCB, ECB and 32 

ECBB. 33 

34 



85 
 

85 
 

1 

2 

 3 

Figure 3:  Urine concentration-time curves of total curcuminoids, curcuminoid glucuronides and 4 

phenolic acids following consumption of FCB, ECB and ECBB. *:p<0.05 vs baseline; 5 

#: p<0.05 vs FCB. 6 
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Urinary excretion of curcuminoids began 2h after consumption of all types of bread. Although 1 

AUC0-10 of urinary curcuminoids were not significantly different (0.98 ± 0.55 nmol·h/L, 1.10 ± 0.47 2 

nmol·h/L and 0.50 ± 0.27 nmol·h/L after FCB, ECB and ECBB, respectively) the excretion kinetics 3 

showed a different trend among treatments. Curcuminoid concentration peaked within 4h and was 4 

absent 10h after FCB and ECBB consumption while it reached a maximum concentration at 4h and 5 

maintained this plateau concentration up to 10 h after ECB. Concentrations higher than baseline 6 

were still found 14h after consumption of the second portion of each type of bread. 7 

Curcumin-glucuronides and esahydroxycurcumin-glucuronides were the conjugated compounds 8 

retrieved in urines (the same compounds found in serum). In the urines conjugated compounds and 9 

parental curcuminoids were present at the same concentration range. Similarly to parent 10 

compounds, glucuronides peaked at 4h after all types of bread, but they were excreted within 10h 11 

only after FCB and ECB. Over 10h from consumption of ECBB, glucuronides concentration was 12 

always significantly higher than those found after FCB and ECB (AUC0-10 being 1.24 ± 0.41 13 

nmol·h/L vs 0.45 ± 0.24 nmol·h/L and 0.58 ± 0.17 nmol·h/L, respectively, p<0.05). The 14 

consumption of the second portions of breads enriched with encapsulated ingredients determined an 15 

overnight excretion significantly higher than that found with FCB (AUC10-24 being 0.98 ± 0.02 16 

nmol·h/L after ECB and 2.45 ± 0.48 nmol·h/L after ECBB vs 0.41 ± 0.20 nmol·h/L for FCB).  17 

Phenolic acids found in urines after consumption of all types of bread were ferulic and vanillic acid, 18 

diHPA, HPP and HPA were also found after ECB and ECBB, respectively. The concentrations of 19 

phenolic acids were 1000 fold higher than the other urinary metabolites and 50-100 fold higher than 20 

serum phenolic acids. In accordance to serum data, ECB determined the lowest urinary excretions 21 

of phenolic acids: they appeared in urines 6h after consumption peaking at 10h with a Cmax of 125.6 22 

± 6.3 nmol/L. On the contrary, phenolic acid excretion after ECBB paralleled that after FCB: a first 23 

excretion peak within 4h after consumption of bread and another peak over the next 4 h, with Cmax 24 

ranging between 347.7 ± 79.6 nmol/L and 514.4 ± 16.0 nmol/L. AUC0-10 of phenolic acids 25 

following ECB (0.21 ± 0.059 µmol·h/L) was 10 folds lower than those measured upon consumption 26 

of FCB (2.1 ± 1.3 µmol·h/L) and ECBB (2.4± 1.0 µmol·h/L). Interestingly, individual phenolic 27 

acids differently contributed to total amount excreted upon each experimental condition. After FCB, 28 

vanillic acid was the most abundant phenolic acid being 73% of total phenolic acids while ferulic 29 

acid contributed by 16% and diHPA by 11%. Encapsulation deeply modified the pattern of phenolic 30 

acids retrieved eliciting a significant amount of HPP: after ECB consumption the percentages 31 

excretion of ferulic acid (24%) and diHPA (8%) were, respectively, slight higher and lower to those 32 

found after FCB while, the remaining part was almost equally represented by vanillic acid (38%) 33 

and HPP (30%). The presence of piperine, quercetin and genistein in the encapsulated material 34 
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further modified the pattern: in fact, after ECBB, compared to ECB, an increase of vanillic acid 1 

(56%) vs a reduction of ferulic acid (9.2%) and diHPA (0.6%) as well as the excretion of HPA 2 

(34%) instead of HPP were found. 3 

Feces 4 

Concentrations of monitored compounds in fecal samples collected the day after consumption of 5 

each type of bread is reported in Table 3. 6 

 7 

Table 3: Concentrations of curcuminoids, curcuminoid glucuronides and phenolic acids found in 8 

fecal samples collected the day after consumption of each type of bread. Data are means ± S.E. 9 

pmol/g. 10 

 FCB ECB ECBB 

       

Total curcuminoids 0.59 ±0.38 3.49 ±2.13 0.01 ±0.01 

Curcumin 0.29 ±0.18 0.83 ±0.46 --- 

Desmetoxycurcumin 0.30 ±0.19 2.65 ±1.67 0.01 ±0.01 

Bisdesmetoxycurcumin --- 0.01 ±0.01 --- 

Total glucuronides --- --- --- 

Curcumin-glucuronide  --- --- --- 

Esahydroxycurcumin-glucuronide  --- --- --- 

Total phenolic acids 0.73 ±0.47 0.49 ±0.32 2.04 ±1.27 

Chlorogenic acid  --- --- --- 

Ferulic acid --- 0.01 ±0.00 0.01 ±0.01 

Vanillic acid 0.69 ±0.45 --- 2.03 ±1.26 

di-HPA --- 0.02 ±0.01 --- 

HPA --- 0.46 ±0.30 --- 

HPP 0.03 ±0.02 --- --- 

 11 

 Data showed that ECB consumption increased about 6 folds the amount of curcuminoids in the 12 

feces respect to FCB. On the contrary following ECBB consumption traces amount of curcuminoids 13 

and the highest amount of phenolic acids were found. The latter being even 4 fold higher than after 14 

ECB. 15 

16 
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Discussion 1 

Previous bioavailability studies reported that following consumption of 2-12 g of curcumin 2 

administered in form of capsules as pharmaceutical preparations, serum Cmax was never below 136 3 

nmol/L in healthy subjects [4, 13, 14], while concentration around 10 nmol/L were found in patients 4 

ingesting 3.6 g/die of curcumin [15]. Our data showing curcuminoid serum concentrations always 5 

lower than 4 nmol/L, suggested that curcumin is less bioaccessible when it is included in bread 6 

probably due to a strong interaction of the compound with the processed food matrix. Encapsulation 7 

increased the bioavailability of curcuminoids from bread both upon consumption of a single and a 8 

double portion while co-encapsulation of curcuminoids with piperine, quercetin and genistein, 9 

slightly reduced this effect. In fact, over 10h from the first consumption of ECB and ECBB, total 10 

curcuminoids were, respectively, 7.3 and 4.6 folds higher than after FCB; ECB leading to a 63% 11 

higher serum amount of curcuminoids than ECBB (ECB>ECBB>>FCB) (Table 4).  12 

The in vivo formation of several phenolic acids following consumption of curcuminoids was 13 

demonstrated for the first time in this study. They might derive both by curcumin chemical 14 

instability and in vivo metabolism. Curcumin degradation is pH-dependent (faster at neutral-basic 15 

conditions), due to oxidative mechanisms and leading to formation of trans-6-(4'-hydroxy-3'-16 

methoxyphenyl)-2,4-dioxo-5-hexenal, vanillin, ferulic acid, and feruloyl methane [16-19]. In 17 

particular, it has been shown that when curcumin was incubated in 0.1 M phosphate buffer (pH 7.2, 18 

37°C) about 90% decomposed within 30 min while 20% decomposed within 1 h by incubation in 19 

cell culture or in human blood leading to increase of vanillin [17]. Thus it can be hypothesized that 20 

in the intestine, most part of curcumin may decompose at neutral pH before absorption and a minor 21 

part may be even degraded in intestinal mucosa and in the bloodstream. When curcuminoids are 22 

microencapsulated they are protected from intestinal degradation thus increasing their amount in 23 

blood in the original chemical form. On the other hand, concomitant presence in the intestine of 24 

curcuminoids and the three bioactive compounds as in ECBB, did not influence intestinal and 25 

hepatic glucuronidation of curcumin, but it promoted phenolic acid formation. This might be caused 26 

by the instauration of a competitive absorption between curcumin and the other compounds at level 27 

of intestinal mucosa leading to a delayed curcumin absorption and a consequent increased 28 

degradation rate in the intestinal lumen. This hypothesis is consistent with a recent study showing a 29 

faster and a more efficient absorption of piperine than curcumin in rats [20]. Moreover, recent 30 

studies highlight the influence of dietary piperine, quercetin and genistein on drug absorption by 31 

several mechanisms (i.e. modification of absorptive sites on mucosa or interaction with P-32 

glycoproteins) [21-23], other than modification of first pass metabolism [6, 10].33 
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Table 4: Amount (nmol) of total curcuminoids, curcuminoid glucuronides and phenolic acids found in serum, urines and feces following 1 

consumption of one portion of each type of bread or over 24 (following consumption of two portions of each type of bread).  2 

 3 

 Bioavailability upon single portion Bioavailability upon double portion 

 

total 

curcuminoids 

total 

glucuronides 

phenolic 

acids 
total 

% dose 

ingested 

total 

curcuminoids 

total 

glucuronides 

phenolic 

acids 
total 

% dose 

ingested 

 (nmol) (nmol) (nmol) (nmol)   (nmol) (nmol) (nmol) (nmol)   

FCB               

serum 5.00 0.45 39.85 

2512.66 0.10 

   

5419.56 0.10 urines 1.15 0.33 2465.88 1.45 0.64 5416.15 

feces       0.59   0.73 

sum 6.15 0.78 2505.73    2.04 0.64 5416.88    

ECB               

serum 36.34 0.97 9.95 
957.54 0.04 

   
1173.33 0.02 urines 1.65 0.75 907.88 2.45 1.28 1166.10 

feces       3.49   0.01 

sum 37.99 1.72 917.83    5.94 1.28 1166.11    

ECBB               

serum 23.00 1.65 103.40 

4648.20 

     

6211.64 0.12 urines 0.73 1.31 4518.11 0.18 2.18 2.83 6204.10 

feces         0.49   2.04 

sum 23.74 2.96 4621.51     2.67 2.83 6206.14     
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 Thus, in the case of ECBB, we hypothesize that phenolic acids deriving from curcumin and from 

co-ingested piperine, quercetin and genistein biotransformation [25], might be also absorbed more 

efficiently. 

On the other hand, the prevalence of ferulic acid in serum was clearly explainable from 

degradation of curcumin, while vanillic acid might form in liver by aldehyde oxidase-operated 

oxidation of vanillin [26]. The metabolism by gut microflora of not absorbed curcuminoids [18] 

and of compounds formed in the upper intestine and successive absorption of metabolites through 

the colon could explain the presence of phenolic acids in biological samples collected at 24h. The 

active role of intestinal microbiota on metabolism of curcuminoids was consistent with a recent 

study where a microbial enzyme isolated from human feces able to convert curcumin in 

dihydrocurcumin and tetrahydrocurcumin was isolated [27]. 

In conclusion, in this study the bioavailability and biotransformation of curcuminoids present in 

free and microencapsulated form in a processed food such as bread was elucidated. The 

concentration of curcuminoids in serum following consumption of the new types of bread was 

lower than that reported from supplements. Data demonstrated that ingesting encapsulated 

ingredients can protect curcumin by in vivo biotransformation thus increasing its circulating 

concentration compared to the free ingredient. On the other hand, co-ingestion of piperine, 

quercetin and genistein did not increase curcuminoid bioavailability in their original form but 

increased their biotransformation in phenolic acids. It was demonstrated for the first time that 

phenolic acids (mainly ferulic acid and vanillic acid) are the major metabolites following 

consumption of curcuminoids thus envisaging their potential contribution to the biological 

properties recognized to curcuminoids despite their generally low bioavailability. 
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Free Curcumin Bread (FCB); Encapsulated Curcumin Bread (ECB), Encapsulated Curcumin plus 

other polyphenols Bread (ECBB); 4-hydroxyphenylacetic acid  (HPA); 3,4-dihydroxyphenylacetic 

acid  (diHPA);  3-(4-hydroxyphenyl)propionic acid (HPP).  
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Chapter 5. Fat taste and appetite: a 
combined physiological and sensory 
approach 
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The present chapter is going to be submitted as a research article for publication.  
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Abstract 

During the cephalic phase of eating, sensory perception provides information about the 

food nutrients allowing digestive tract organs to prepare for its reception and digestion. In this 

phase, even before swallowing, food liking was demonstrated to modulate some 

endocannabinoids (ECs) and N-acylethanolamines (NAEs) in human plasma (Mennella et al., 

2015). This study aimed to evaluate whether salivary ECs and NAEs concentrations upon 

mastication were associated with sensory perception of fat taste, the food palatability, the 

appetite and reward scores in humans. To this purpose, a fat-enriched (FEP) and a free-fat 

control pudding (CP) were developed and used in a randomized cross over study. The 

experimental procedure was based on a modified sham-feeding protocol (MSF) combined with 

multiple-sip Temporal Dominance of Sensations (TDS) method. In particular, while 

masticating (without swallowing) for 3 minutes multiple sips of the pudding subjects selected 

the dominant sensations among a list of sensory attributes previously defined. Nineteen healthy 

volunteers participated in the study. Saliva samples, appetite and food liking scores were 

collected at baseline, immediately after the MSF of one pudding and every 5 min up to 20 

minutes after the MSF. A different modulation of ECs and NAEs during MSF of FEP as well as 

over the next 20 min compared to CP was found. Attribute “fatty taste” was rated as 

significantly different in FEP compared to the CP during MSF. Only the MSF of FEP increased 

individual fullness and satiety  and reduced hunger. In conclusion, in this study for the first 

time the combination of MSF and multiple-sip TDS to study the physiological and sensory 

mechanisms underlying appetite and food liking was used. Data indicated an association 

between dietary fats, individual sensory perceptions, appetite and salivary ECs and NAEs 

concentrations during cephalic phase of eating.  
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Introduction 

Dietary fat is an essential nutrient in human nutrition ensuring appropriate function of hormonal 

and immune system, thermal protection, functioning as a medium for fat-soluble vitamins and 

lastly being the most dense source of energy. Excessive energy intake causes body fat 

accumulation and obesity -related health issues (WHO, 2003, Willet et al 2012). Human 

orosensory perception, especially during cephalic phase of eating, has a plausible role in providing 

the information about the consumed nutrient type, thus sending signals to different sites of the 

body and allowing digestive tract organs to prepare for its reception and digestion upon the 

nutrient type, which results in different satiating effect (Mattes, 2005). Mechanisms behind fat 

perception and palatability may be interconnected with the reward system. Some 

endocannabinoids (ECs) and N-acylethanolamines (NAEs) were demonstrated to be modulated by 

food liking upon mastication (before swallowing) in humans (Mennella et al., 2015). The cephalic 

phase of the digestion can be studied in humans using a modified sham feeding protocol (MSF). In 

MSF experiments, the food is tasted and chewed, but ultimately expectorated. Therefore, all 

variations found in biochemical parameters during the protocol can be considered as a cephalic 

effect without any interference of food digestion (Teff et al. 2010). Plenty of research is focusing 

on the fat taste in order to assess its eligibility as a primary taste. Lack of knowledge still exist 

about physiological mechanisms behind the fat taste and its role in dietary choices and behavior. 

In this study a holistic approach considering both physiological response linked to appetite and 

reward system as well as the sensory description of the fat taste upon mastication will be 

considered. 

Subjects and methods 

Subject selection and enrolment 

Nineteen subjects were selected among students and employees of Department of Agricultural 

Sciences of Federico II University of Naples (Italy). Basing on the medical history interview, 

subjects were eligible if they did not suffer from any disease (hyperlipidaemia, gastro-intestinal 

disease, chronic infections, dental diseases, general and food allergies), were non-smokers, did not 

regularly consume alcohol, were not taking any medications, did not undertake a restrictive diet or 

experienced body weight variations over three months preceding the study. Eating behaviour was 

assessed for the Restraint, Disinhibition, and Hunger factors using a validated Italian translation of 

the Three Factor Eating Questionnaire (TFEQ) as described by Stunkard & Messick (1985) and 

for the preference and the consumption of high fat foods using the “Fat Preference questionnaire” 
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(Ledikwe et al, 2007). Descriptive characteristics of the participants are reported in Table 1. The 

study was conducted according to the guidelines laid down in the Declaration of Helsinki and all 

procedures involving human subjects approved by the Ethics Committee of University of Naples 

“Federico II”. Selected subjects participated in the study after reading and signing an informed 

consent document. 

 

Table 1. General characteristics of the subjects. Eating behaviour result from TFEQ (Restrain, 

Disinhibition and Hunger; Stunkar et al,1985) and Fat Preference Questionnaire (Taste, Freq 

and Diff; Ledikwe 2007).  Values are expressed as mean ± standard deviation (SD). 

  Male Female Total 

Number (n)  8 11 19 

Age, mean  (years)  23.1 21.7 22.4 

BMI, mean ±  SD  (kg/m2)  26.3±2.7 22.2±2.9 23.9±3.4 

Restraint (score)  8.9±4.6 11.7±4.1 10.5±4.4 

Disinhibition (score)  6.6±3 6.6±3.1 6.6±3 

Hunger (score)  5.4±2.3 4.8±3.7 5±3.1 

Taste (%)  56.3±16.7 67.6±17.5 62.8±17.6 

Freq  (%)  44.7±11.1 49.4±13.1 47.4±12.2 

Diff (%)  16.6±11.7 23.1±17.6 20.4±15.4 

Foods 

Two types of vanilla pudding differing only for the fat content were developed and used in this 

study. They were a fat-enriched pudding (FEP) containing high-oleic sunflower oil (2.6% w/w) 

and a control pudding (CP) that did not contain any added fat. The high-oleic sunflower oil was 

provided by Oleifici Mataluni (Montesarchio, Benevento, Italy). The nutritional composition of 

the two puddings is reported in Table 2. 

Table 2. Nutritional composition of the two foods used in the study. FEP (Fat-enriched pudding); 

CP (Control Pudding). Values are reported in g and as % of total energy coming from each 

product. 

  Energy density 
(kcal)/100g 

Protein Carbohydrates  Fats 

  g % E g % E g % E 

FEP 136.6 10.8 32% 12.0 35% 5.0 33% 

CP 115.9 11.1 38% 12.4 43% 2.5 19% 
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Study protocol 

The study had a single blind randomized cross-over design with repeated measures. Participants 

were divided into four groups and each group invited in four occasions to arrive in a fasting 

condition to the laboratory and were involved in a protocol including MSF and Temporal 

Dominance of Sensations (TDS). Each experiment was conducted during two days per week, 1 

day per each treatment, separated with a 2 day-wash-out period. Next replication was conducted 

after 1 week break. Before the experimental day, subjects were instructed to consume a 

standardised dinner on the evening before and to restrain from eating and drinking energy-

containing foods and beverages from 22:00h until the experiments and to clean their teeth no later 

than 1h before the study time. Before experiments, two training sessions were organised. During 

the first one the control pudding was presented to participant group and a list of most frequently 

used attributes was created and used later in the TDS procedure (which was explained to 

volunteers). The selected attributes were: sweetness, creaminess, vanilla, milk, fatty, white 

chocolate, compactness, watery, gelatinous. The second training included the liking evaluation of 

the two types of pudding through the use of visual analogue hedonic scale anchored from 1 to 9 

(Lim, 2011) and a TDS test training. This made volunteers more comfortable with the procedure 

and allowed us to correct/reject the volunteers unable to perform the study correctly. 

Modified Sham Feeding (MSF) and Temporal Dominance of Sensations (TDS) protocol 

On the experimental days, once the fasted subjects arrived to the sensory laboratory of the 

Department of Agricultural Sciences, they were generally asked about their actual health status 

and the session started only for subjects who did not report any health issue or psychological 

discomfort; otherwise the experiment session was postponed for the subject. Each participant was 

asked to seat in an assigned sensory booth equipped with a computer where the software FIZZ 

(Biosystemes, Couternon, France) designed for the TDS could run. Once the participant was given 

the pudding samples coded with 3-digits following a William’s Latin square design the 

experiment started. Firstly, participants completed the baseline Visual Analogue Scale 

questionnaire (VAS Q0) by rating their actual health status and appetite feelings (fullness, satiety, 

hunger and desire to eat the sample). Volunteers were asked to mark the point corresponding to 

their sensations on the 100 mm VAS scale anchored at 1-100 with answers depending on the 

nature of questions. After completing the baseline questionnaire (Q0), during the time of 2 

minutes subjects collected a saliva sample (baseline saliva, T0) and then continued the protocol 

with the MSF procedure. Subjects were asked to take a spoon (6-8 g) of the sample, to chew it for 

at least 20 seconds and then expectorate the sample into a plastic cup. They were instructed not to 
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swallow any food and to repeat this procedure with total number of 10 spoons and total time of 3 

minutes which is adequate for eliciting a cephalic phase response (Teff et al, 2010). During MSF 

procedure, volunteers were presented with a TDS questionnaire and during the mastication of the 

food they had to choose the most dominant attribute from the presented list including sweetness, 

creaminess, vanilla, milk, fatty, white chocolate, compactness, watery, gelatinous. To avoid list 

order bias, the order of the attributes was different for each assessor, following William’s Latin 

square design. A dominant attribute was defined as the sensation that caught attention at a given 

time, not necessarily being the most intense. During 20 second- lasting evaluation of each spoon 

(10 in total) they were able to change the dominance whenever their perception has changed, with 

no restrictions for the number of chosen attributes (Zorn et al, 2014). A specific TDS Multiple-sip 

evaluation incorporated in MSF procedure was created aiming at recording a dynamic sensory 

profile of each product while stimulating the cephalic phase responses. Joint MSF and TDS 

procedure ended with 2 minutes break which was followed by saliva sample collection that was 

repeated 4 times every 5 minutes (5, 10, 15 and 20 mins after MSF). Each saliva sample collection 

was preceded by appetite (fullness, satiety, and desire to eat) and food liking questionnaires using 

VAS. After the last time point (20 min after MSF) subjects were provided a second coded sample 

of food and only TDS procedure during mastication was repeated without saliva collection. The 

procedure was conducted under artificial light and water was provided to rinse the mouth between 

the samples and to ensure appropriate hydration before and after saliva collection. 

Saliva and samples treatment 

Saliva samples were collected in 50 mL tubes and immediately after collection they were 

centrifuged at 4000rpm for 5 minutes and the supernatant was aliquoted in 2 mL Eppendorf tubes 

and stored at - 40°C until the analyses. One milliliter aliquots from the chewed pudding samples 

were used for later endocannabinoid analysis. The remaining part from chewed puddings together 

with not-chewed left-over and reference puddings were freeze-dried and used for the recovery. It 

was measured basing on their dry-weight compared to the dry-weight of the reference puddings. 

Endocannabinoids (ECs) and N-acylethanolamines (NAEs) measurement by LC/MS/MS analysis 

All the ECs (2-AG, AEA, AEAd8) and NAEs (OEA, LEA and PEA) standards were purchased 

from Cayman (Cayman Chemical, Ann Arbor, MI). The extraction, purification and quantification 

of the ECs and NAEs in saliva were performed as described by Di Marzo (1999). Samples were 

centrifuged before the analysis (14000 rpm, for 10 minutes). Subsequently, samples containing 

internal standard were treated with acetone for the protein precipitation and lipid extraction was 
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done with chloroform: methanol (2:1 v/v/). The organic phase was then dried under nitrogen and 

the dried residue was re-suspended in 100μL of acetonitrile: water (1:1 v/v) and centrifuged 

(14000 rpm, 4 °C, 10 min). Supernatant was transferred into glass vials and tandem mass spectrum 

analysis was performed by API 3000 Triple Quadrupole instrument. The analysis was repeated in 

duplicate for each sample. The compounds amounts were calculate by isotope dilution using a 5-

point calibration curve and expressed as pmol/mL of saliva. 

Salivary lipase activity by spectrophotometric assay 

Salivary lipase activity at baseline was analysed according to the method described by Mennella et 

al., 2014. Briefly, 100 μL saliva sample was treated with 0.3 mM 5-5′-dithio-bis (2-nitrobenzoic 

acid) (DTNB) and 20 mM of phenylmethylsulfonyl fluoride (PMSF) followed by a 5 minutes 

incubation (37°C). Then, 20 mM of 2,3-Dimetylocapto-1-propanol-tributyrate (BALB) was added 

and samples were put for the 30 min incubation at 37°C. Preceded by centrifugation (14000 rpm, 4 

°C, 10 min) spectrophotometric assay was done measuring the sample absorbance at 412 nm 

wavelength. Using 4-point calibration curve, sample concentration was calculated basing on the 

absorbance of the sample colour and expressed in ug/ml. A mother solution of 1 U/mL was 

prepared dissolving the powder in Tris–HCl buffer (pH 8.5) and consecutive dilutions were 

carried out to obtain a curve ranging from 6.25 to 100 U/L. 

Statistical analysis 

Statistical analysis of biochemical data were performed using SPSS® software (IBM, version 21). 

Salivary ECs and NAEs were analysed and expressed as the absolute change from the baseline to 

reduce possible effects of the inter-subjects fasting variability. Using analysis of variance 

(ANOVA) for repeated measures, the subjective appetite sensations recorded before and after 

MSF of the two different puddings together with the ECs and NAEs response curves were 

compared and tested for the effect of treatment and time as factors. Influence of the sample type 

on the overall liking rates for different attributes was analysed and compared. The Pearson’s 

product moment correlation test was employed to analyse possible correlation among the 

variables. Results were considered as significant at p<0.05.  As regards the TDS data, the attribute 

regarded as dominant at every time was recorded for each assessor. For each spoon, dominance 

rate (%) for each attribute at a given time (every 1s) was determined as the percentage of 

judgments (assessors x replicates) for which the given attribute was selected as dominant. 

Dominance rates were plotted against time for each sample to obtain TDS curves describing each 

spoon. Chance (P0) and significance level (Ps) were calculated and represented on the TDS 
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curves. Chance level was calculated as the inverse of the total number of attributes (Labbe et al., 

2009), whereas significance level was calculated using a binomial test, as recommended by Pineau 

et al. (2009). Difference curves between fat-enriched and control sample were constructed by 

subtracting their TDS curves at each time for each spoon. Dominance rate differences were 

considered significant when they were significantly different from 0 according to a classical test of 

comparison of binomial proportions (Pineau et al., 2009). 

Results 

Fat content does not influence individualoverall liking 

Control and fat-enriched pudding liking evaluation during the training session revealed that 

presence of sunflower-oil in fat-enriched pudding significantly influenced appearance (p=0.036), 

colour (p=0.028), texture spoon (p=0.047) and aftertaste (p=0.032) attributes which appeared to be 

higher for the CP than for FEP. However, the score for the fatty taste attribute did not change 

between the puddings.  

Salivary ECs and NAEs upon MSF 

Figure 1 shows the time-concentration curves of salivary ECs and NAEs upon the cephalic phase 

of eating the CP and FEP. All ECs and NAEs peaked in saliva samples collected during 

mastication of the two puddings (3 min) compared to baseline saliva concentrations. Significant 

lower concentrations of all monitored compounds (being p=0.041 for AEA, p=0.032 for LEA, 

p=0.005 for OEA and p=0.006 for PEA) but 2-AG (p=0.25) during mastication of FEP than CP 

were also found. Significant differences between the two puddings for the elicited response of 

AEA (p<0.01 at 10, 15 and 20min), LEA (p<0.001 at 10 15 and 20 min), and PEA (p=0.037 and 

p= 0.008 at 15 and 20 min, respectively) over the 20 min following the MSF were also observed.  
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Figure 1. Salivary ECs and NAEs variation vs baseline (T0) time-concentration response. Dotted line indicates the 

MSF of control; smooth line refers to the fat-enriched pudding MSF. The data point at 3 (T3) min represents ECs and 

NAEs concentration in chewed food containing saliva collected during MSF. Values are means ± SEM. * p<0.05 for CP 

vs. FEP; # p<0.05 for T3 vs T0. 
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Appetite 

The influence of MSF protocol on appetitive responses is expressed as variations from baseline 

values (Figure 2). MSF of fat-enriched pudding (FEP), caused a rapid increase from baseline of 

fullness (panel A) and satiety (panel B) scores and a reduction of hunger (panel C) that was not 

found when subjects chewed control pudding. Nonetheless, no significant difference was found in 

this rapid change from baseline to 20 min. Desire to eat (panel D) scores were not affected by fat 

content of food stimulus. Liking (panel E) values for both types of food has been similar 

throughout the time of the study without any significant difference for CP being of 4.98 ± 0.13 and 

for FEP being 4.91 ± 0.16, p>0.05).   

 

Figure 2.  Visual Analogue Scale responses - variation from the baseline for Fullness (A) , Satiety (B), Hunger (C),  

Desire to eat (D) and Liking (E – scored only after MSF procedure) evaluated before each time point of saliva 

collection at the baseline and chewing FEP (black line) and CP  (grey line). Values are means ± SEM. 
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Dominant dynamics of fatty taste 

Dominance curves has been obtained comparing the % of dominance of each attribute against time 

during the TDS evaluation of each pudding (Figure 3). Fatty taste has been significantly dominant 

with the 18% of dominance surpassing the significance level (Ps =17.28) level already in the 2st 

spoon (fig. A). In comparison, second spoon of control pudding (fig. B) is characterised by 

significantly dominant sensation of watery attribute, elicited at the end of 40th second of the test. 

Another dominant sensation in fat-enriched sample was recorded at the beginning of the 94th (fig 

C – 5th spoon) second, during which creaminess was reported as significant (21%), followed by 

watery attribute (also 21%).Difference between dominance rates of two types of puddings has 

been plotted for each spoon (Figure 4, Panel A and B). Attribute listed as “fatty taste” has been 

rated as significantly different in fat-enriched pudding compared to the control pudding in almost 

all spoons (excluding the 8th), with the highest rate for 2nd, 9th and 10th spoon. First spoon of fat-

enriched pudding is characterised by slight white chocolate attribute dominance, occurring also in 

9th spoon. Difference in dominance of control pudding was more distinguish for the vanilla taste 

attribute. Compactness in FEP was markedly different in 6th (110 s) and 7th spoon (130s) during 

which also milk taste attribute was distinguished. Finally, fatty-taste attribute finishes the whole 

evaluation as the last most significant sensation at the time of 190 seconds. As for sensory 

attribute differentiation in CP, apart from small differences for sweetness and compactness at the 

end of the 3rd and 4th spoon respectively, notably different sensations in control pudding finish in 

the 5th spoon, with a significant occurrence of gelatinous attribute. 
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Figure 3. Curves of temporal dominance of 9 attributes lasting 20s each representing different spoons of 

each sample A) 2nd spoon of fat-enriched pudding B) 2nd spoon of control pudding C) 5th spoon of fat-

enriched pudding. Chance and significance level marked as vertical lines. 
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Figure 4. Difference between dominance rates of FEP (above X axis) and CP (below X axis) during 10 spoons of TDS evaluation. Panel A) represents 

results from the 1st to 5th spoon and Panel B) from the 6th to 10th spoon.
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Discussion 

Data from previous studies supported the hypothesis that cephalic-positive feedback mechanisms 

play a key role in the rewarding properties of fat-rich foods (Di Patrizio et al. 2011; Liang et al. 

2006; and Kelley et al. 2004). However, they do not address the real, on-time response of ECs and 

NAEs to fat orosensory stimulation and latter effects on the eating behaviour. In the present study 

the individual response to fat taste was evaluated using a combined sensory and physiological 

approach. This allowed us to examine possible interconnection of fat taste perception with the 

physiological response and appetite. Modified Sham-Feeding (MSF) protocol coupled with a 

Temporal Dominance of Sensations (TDS) procedure was applied. MSF method, requiring from 

subjects food mastication without swallowing, allowed to observe effects on appetite sensations 

specifically linked to the orosensory properties of fat-enriched or control pudding by blunting 

homeostatic negative feedbacks of food intake (Di Marzo et al, 2008). Incorporation of TDS in the 

physiological assessment allowed us to evaluate possible dominance of fatty taste and its potential 

links with the salivary response of ECs and NAEs during mastication. The main finding of the study 

was that during 3 min of pudding mastication the levels of ECs and NAEs in individual saliva 

increased, which has not been shown in the literature before. Monteleone et al. (2012) focused only 

on the post-ingestive reaction and documented elevated levels in plasma 2-AG in eight satiated 

healthy subjects after ad libitum food intake of palatable but no effect after non-palatable food. Di 

Patrizio et al. (2011) have oriented its investigation particularly on fat palatability. They showed 

that 30 minutes of sham-feeding with a lipid-based meal stimulated endocannabinoid mobilization 

in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid 

metabolism. However, this effect was not observed in other peripheral organs, including tongue 

tissue or neither assessed in non-invasive matrix as saliva. In the present study salivary ECs and 

NAEs increased in human saliva during 3 min of oral exposure to food with added dietary fat. 

Another interesting result of this study is that FEP elicited different responses of AEA, LEA, OEA 

and PEA compared to CP, independently of the pudding liking.  No previous studies are present in 

the literature to compare this data. Only recent study by Mennella et al. (2015) has demonstrated the 

effect of sham-feeding palatable sweet pudding has resulted in significantly higher plasma 2-AG 

and PP levels compared to bitter, not- palatable pudding. Present study has therefore commenced 

possible future determination of physiological responses for differentiation between two equally 

palatable products with various fat contents. In this study the fat content differences in the products 

and the different salivary response between FEP and CP did not influence individual appetite 

response. Smeets et al (2006) had also investigated effect of oral fat stimulation on appetite rating. 

It has been noted that apart from the consumed meal, also sham-feeding of high-fat meal 
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significantly increased feelings of satiety comparing to water. Cephalic and probably vagal 

stimulation could increase the level of metabolites and induce satiety. Moreover, in another study 

from Smeets (2009), similar protocol was also applied, using MSF technique and comparing it with 

consumption and water in the condition of respiration chamber. They found that MSF of a high-fat 

meal caused an increased energy expenditure, increased insulin levels and increased satiety and 

fullness ratings comparing to the water consumption. The different results we found  might be due 

to the different protocol used because in the present study subjects were in a fasting condition 

whereas in both studies from Smeets subjects after a high fat breakfast were involved in the MSF. 

Moreover, 19 participants took part in our study, the duration of MSF was 3 min and the fat content 

was of 2.6% while in the study by Smeets and colleagues (2009) there were 36 subjects, the MSF 

lasted 20 min and the fat-enriched meal provided 35% of fats from energy. Finally, present research 

has undertaken specific orosensory approach, without the analysis of metabolic hormones 

responses, known to impact appetite feeling. This information could be also plausible in confronting 

the findings of the present experiment. Specific TDS multi-sip technique (Pineau et al., 2009) 

adapted for MSF procedure gave an interesting insight into detailed, spoon by spoon, dominance of 

the fat-enriched and control pudding, revealing possible differences occurred during the time of 

mastication. Moreover, as TDS is focused on dominant attributes instead of quantifying attribute 

intensity, results from this methodology could better explain and more accurately identify the 

sensations that determine their hedonic perception (Cadena et al., 2014). The sensory approach for 

hedonic fatty taste perception has shown that it could be distinguished in the dynamic dominance 

evaluation, throughout time of the experiment.  Subjects continuously perceived a significant 

difference in dominance of fatty taste during chewing the fat–enriched pudding compared to the 

control one. This sensation had a peak at 30 sec, where fatty sensation difference in FEP comparing 

to CP has reached 15.2 % of difference. This distinction of fat in product has been also shown in a 

TDS study from Laguna et al (2013) where dominance rate was shown upon the sensation of 

complete consumption, with no separation of bites.  The study food were cookies, different in fat 

and fibre content (high-fat, low-fibre; low-fat, high-fibre).  Fat presence was shown to be detectable 

and important for dominance of hedonic attributes important for palatability as crispness, which 

appeared with high-fat biscuits and crunchiness with low-fat high-fibre ones. In parallel to 

physiological differentiation shown by significantly different ECs and NAEs response to stimulus 

differing in fat content, statistical analysis of differences in dominance has revealed an interesting 

sensory distinction. Fatty taste has been significantly different in dominance in FEP throughout the 

time of the study when compared to CP. Additionally, creaminess and white chocolate flavour 

could be significantly distinguished during FEP mastication, possibly associated with the sensory 
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characteristic of fat. In control pudding no sensations other than vanilla and gelatinous being 

dominant only in the first and 4th spoon were significantly different.  

Conclusions 

Mounting evidence indicates a primary role of dietary fat intake and its metabolism on several 

human health issues. However, a lack of knowledge still exists on the mechanism behind fat 

perceptions and on its role in dietary behaviour. Previous research focused on separate aspects of fat 

perception and physiological mechanisms underpinning its intake, thus missing a holistic overview 

of the issue. Our study has undertaken a two-dimensional approach, aimed at providing 

physiological and sensory data, which would aid in understanding the human’s orosensory response 

to this highly palatable nutrient. We could conclude that: 

 Fat presence causes a rapid increase of ECs and NAEs levels already during food mastication in 

the mouth;  

 Food with a higher fat content evokes a different physiological response than equally palatable 

control food. This could be a factor to consider in future studies on using physiological 

biomarkers in assessing the ability to detect of dietary fat in humans. 

 A tendency to increased satiety and fullness and reduced hunger was found by mastication of 

fat-enriched vs control product. 

 Fatty taste can be distinguished in dynamic sensory profile evaluation. Moreover it has an effect 

on products appearance, colour, consistency and aftertaste. 

With the use of its dynamic sensory profile and evaluation of physiological response it evokes, 

this study could contribute to the design of new healthy food with the lowest fat content but 

preservation of its palatability and increased satiating characteristics compared to the normal 

food. Further studies should be designed to evaluate the effect of individual nutritional status and 

eating behaviour on the physiological and sensory responses to dietary fat tasting. Further 

research in this area is warranted to fully clarify the role of dietary fat in eating behaviour and 

food choice and to develop new healthy and palatable foods. 
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Conclusions  

The role of the GI tract as the largest endocrine organ and its secretion of several gut hormones such 

as ghrelin, cholecystokinin (CCK), peptide YY(PYY), and glucagon like peptide-1 (GLP-1) plays a 

vital role in maintaining energy balance and body weight regulation. Nowadays, adipose tissue is 

also a well recognize  active endocrine organ secreting several bioactive molecules known as 

adipokines (Ouchi et al, 2011). This class of molecules comprise a large number of 

proinflammatory mediators, including tumor necrosis factor (TNF)-α, monocyte chemoattractant 

protein (MCP)-1, and interleukin (IL)-6, that promote disease progression.  

Gut hormones and adipokines interact each other in the control of body weight. In particular, 

visceral fat accumulation causes chronic low-grade inflammation, which contributes to the initiation 

and progression of metabolic disorders (More et al, 2011). Chronic low-grade inflammation, caused 

by high constant release of pro-inflammatory cytokines, disrupt the gut brain axis signalling control 

of appetite and body weight. It is characterised by raised concentrations of inflammatory markers in 

the absence of any overt symptoms and is recognized as a risk factor for a number of chronic 

diseases including cancer, cardiovascular, cerebrovascular and neurodegenerative (Bonaccio et al, 

2016). The absence of any definite symptoms make low-grade chronic inflammation underestimate 

for its incidence and dangerousness. Many studies suggest that low-grade inflammation is mitigated 

by health-promoting behaviours such as healthy eating patterns, physical activity, body weight 

maintenance and tobacco smoking cessation (Bonaccio et al, 2016).  

Another player in the gut-brain axis (GBA) communication is the gut-microbiota. The entero-

endocrine cells form a super-complex ecosystem with the gut microbiota establishing a permanent 

symbiotic relationship rather than a temporary form of parasitism (Petra 2015). The human intestine 

is the home for complex plethora of microbes ranging from 1013 to 1014 microbial cells (Lee 2014; 

Ghosh  2013). These gut flora have a wide metabolic activity associated with gut and can be truly 

termed as a virtual organ within an organ. In fact, it influences the secretion of gut hormones by 

enteroendocrine cells and is able to produce itself several neuropeptides (Oleskin et al, 2016). This 

relationship with our enteric cells contributes to basic physiological processes, including digestion, 

growth and self-defense. Recent evidence suggests that gut microbiota influence energy balance and 

weight (Murphy et al, 2010). Increased energy harvesting from diet, regulation of biologically 

active fatty acid tissue composition, chronic low-grade endotoxemia, and modulation of gut-derived 

peptide secretion are some of the proposed routes linking gut microbiota with obesity (Musso et al, 

2010).  
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In this scenario the experiments described in the present thesis investigated mechanisms involved in 

both gut and brain regulation of food intake. In the experiments described in the chapters 2 and 3 

we tested in animals and in humans the hypothesis that dietary whole grains fibers are able to 

control body weight through a mechanism involving appetite control and the reduction of 

inflammatory status. In chapter 4 we described a method to mimic the whole grain slow release of 

antioxidant compounds using encapsulation. Finally, in chapter 5 we tested the hypothesis that the 

fat taste can influence the cephalic phase of the digestion.
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Table 6.1 .  Overview of the experiments reported in the thesis. 
Chapter Objectives Methods Major findings 

2 

to investigate the effect of a 

diet enriched in WG and/or 

RS on plasma levels of  PC 

and TBW. 

Four groups of ZDF rats were fed with semi-purified diets 

made with either an isolated digestible control starch, a 

WG control flour with 6.9% RS, an isolated RS-rich starch 

with 25% RS, or a WG corn flour with 25% RS. Plasma PC 

levels and TBW were measured. 

WG consumption increased plasma PC levels. Combination of 

WG plus RS resulted in a higher bioavailability of PC 

compared to WG alone. No significant effect on TBW was 

found.  

3 

to assess circulating 

concentration, excretion, and 

the physiologic role of WG 

wheat polyphenols in subjects 

with suboptimal dietary and 

lifestyle behaviors. 

A placebo-controlled, parallel-group randomized trial with 

80 healthy overweight/obese subjects with low intake of 

fruits and vegetables and sedentary lifestyle was 

performed. Participants replaced precise portions of RW 

with a fixed amount of selected WG wheat or RW products 

for 8 wk. At baseline and every 4 wk, blood, urine, feces, 

and anthropometric and body composition measures were 

collected. Profiles of phenolic acids in biological samples, 

plasma markers of metabolic disease and inflammation, 

and fecal microbiota composition were assessed. 

WG consumption determined higher urinary and fecal FA  and 

plasmatic FA and DHFA  concentration compared to RW. 

Concomitant reduction of plasma TNF-α and increased 

interleukin (IL)-10 after WG compared with RW were 

observed. Fecal FA was associated with baseline low 

Bifidobacteriales and Bacteroidetes abundances, whereas after 

WG consumption, it correlated with increased Bacteroidetes 

and Firmicutes but reduced Clostridium.TNF-a reduction 

correlated with increased Bacteroides and Lactobacillus. No 

effect of dietary interventions on anthropometry and body 

composition was found. 

4 

Human bioavailability of 

curcumin from breads 

enriched with 1 g/portion of 

free curcumin, encapsulated 

curcumin, or encapsulated 

curcumin plus other 

polyphenols was evaluated. 

Ten healthy subjects were enrolled to perform a 

randomized controlled crossover study. Parental and 

metabolized curcuminoids and phenolic acids were 

quantified by HPLC/MS/MS in blood, urine, and feces 

collected over 24 h. 

Encapsulation delayed and increased curcuminoid absorption 

as compared to the free ingredient. Serum and urinary 

concentrations of ferulic and vanillic acid were between 2- and 

1000-fold higher than those of free curcuminoids. Fecal 

curcuminoids were 6-fold more abundant after encapsulated 

curcumin than free curcumin, while phenolic acids after 

encapsulated curcumin plus other polyphenols  quadruplicated 

those after free curcuminoids. Curcuminoid encapsulation 

increased their bioavailability from enriched bread, probably 

preventing their biotransformation. 

5 

to evaluate human 

physiological response and the 

sensory perception to fat taste, 

the associated palatability and 

the influence on individual 

appetite sensations. 

Fat-enriched and a control pudding were developed to be 

used in a randomized controlled crossover human study. 

The cephalic response to the fat stimuli of salivary 

endocannabinoids and N-acylethanolamines concentrations 

by MSF was measured. The sensory approach focused on 

the profile of sensory perceptions upon food mastication 

using TDS technique. 

Fat presence causes a rapid increase of ECs and NAEs levels 

already during food mastication in the mouth. AEA (but not 

LEA or PEA) response upon mastication of fat-enriched 

product tends to be higher in over-weight than normal-weight 

subjects. A tendency to increased satiety and fullness and 

reduced hunger was found by mastication of fat-enriched vs 

control product. 

List of abbreviation. WG: whole grains; RS: resistant starch; PC: phenolic compounds; TBW: total body weight; ZDF: zucker diabetic fatty; RW: refined wheat; FA: ferulic acid; DHFA: 

dihydroferulic acid; TNF-α: Tumor necrosis factor-α; MSF: modified sham feeding; TDS: Temporal Dominance of Sensations; EC: endocannabinoid; NAE: N-Acylethanolamine; AEA: 

arachidonoyl ethanolamide; LEA: linoleoyl ethanolamide; PEA palmitoyl ethanolamide.  
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As already described in the introduction of the present thesis, the role of GBA on the digestive 

function and appetite control was extensively studied. Since its complexity, it appears clear that a 

minimum disturbance of the GBA communication can lead to lose the control in the homeostatic 

and hedonic mechanisms that regulate energy balance and consequently to overweight and 

subsequently to obesity. GBA is now considered a bidirectional system that uses 4 major 

information carriers, closely interrelated with each other, for the communication: neural messages, 

endocrine messages carried by gut hormones, immune messages carried by cytokines and microbial 

factors that may directly reach the brain via the blood stream but can also interact with the other 3 

transmission pathways (Holzer 2014).  

From the studies described in the present thesis, it can be concluded that:  

1. The consumption of WG in substitution of refined cereals reduce subclinical inflammation 

and this effect is strengthen when WG are combined with prebiotic fibre. 

In fact, together the consumption of WG resistant starch is able to modulate two main 

components of the GBA, helping to restabilising an healthier physiological condition: 

cytokines and gut-microbiota. This effect is mediated by the slow release of bound phenolic 

compounds which are released from the fibre matrix during the gut microbiota fermentation. 

Therefore, the  addition of a prebiotic fibre able to stimulate the growth and the activity of 

the gut microbiota increase the release of phenols from WG cereals. 

 

2. Novel ingredients can be designed using encapsulation to obtain a slow release of  

antioxidant compounds and increase their bioavailability. In fact, a key lesson from the 

study of phenolic compounds from WG is that the kinetic of their absorption follows a slow 

but constant pattern: this guarantee a stable antioxidant protection in the bloodstream. In the 

present thesis, we used curcuminoids as a natural antioxidant -ingredient well-know for their 

healthy properties and  low-grade bioavailability. The same approach can be used for many 

others antioxidant compounds. 

 

3. Food consumption can modulate the endocannabinoids system which in turn influence  

eating behaviour.  

During the cephalic phase of the digestion, when food is chewed and even before 

swallowing, a variation of the ECs in saliva and plasma  already appear. This evidence  

suggest a main role of cephalic phase in the digestive processes related to meal initiation and 

meal termination.   
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Further long term studies should investigate if the reduction of low-grade chronic inflammation, 

which is associated with a disturbance of the GBA, can be also associated with an improvement of 

the sensitivity of the satiety signals that are lost in a subclinical inflammation condition.  This can 

help the individual body weight management over a long term period. Moreover, the role of 

endocannabinoids and related species in appetite control through their action in the GBA 

communication should be extensively investigated together with the food source and food matrix 

effects on the ECs system.  
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Summary 
 

The physiological systems underlying the appetite control involve associations between 

peripheral physiology and metabolism (glucose homeostasis and adiposity), which in turn are 

linked to various brain processes. All hormonal messengers released from enteroendocrine cells 

in the gut mucosa can inform the brain either through the circulation or via primary afferent 

neurons or both. Gut hormones and adipokines interact each other in the control of body weight. 

In particular, visceral fat accumulation causes chronic low-grade inflammation, which 

contributes to the initiation and progression of metabolic disorders. Chronic low-grade 

inflammation, caused by the constant higher release of pro-inflammatory adipokines from 

adipose tissue, disrupts the gut hormones signalling at central and peripheral levels in the 

control of appetite and body weight. 

In this scenario the experiments described in the present thesis investigated mechanisms 

involved in both gut and brain regulation of food intake. In the experiments described in the 

chapters 2 and 3 we tested in animals and in humans the hypothesis that dietary whole grains 

(WG) fibers are able to control body weight through a mechanism involving appetite control 

and the reduction of infiammatory status. In chapter 4 we described a method to mimic the WG 

slow release of antioxidant compounds using encapsulation. Finally, in chapter 5 we tested the 

hypothesis that the fat taste can influence the cephalic phase of the digestion.  

From the studies described in the present thesis, it can be concluded that:  

1. The consumption of WG in substitution of refined cereals reduce subclinical inflammation 

and this effect is strengthen when WG are combined with prebiotic fibre. In fact, together the 

consumption of WG resistant starch is able to modulate two main components of the GBA, 

helping to restabilising an healthier physiological condition: cytokines and gut-microbiota. This 

effect is mediated by the slow release of bound phenolic compounds which are released from 

the fibre matrix during the gut microbiota fermentation. Therefore, the  addition of a prebiotic 

fibre able to stimulate the growth and the activity of the gut microbiota increases the release of 

phenols from WG cereals. 

2. Novel ingredients can be designed using encapsulation to obtain a slow release of  

antioxidant compounds and increase their bioavailability. In fact, a key lesson from the study of 

phenolic compounds from WG is that the kinetic of their absorption follows a slow but constant 

pattern: this guarantees a stable antioxidant protection in the bloodstream. In the present thesis, 

we used curcuminoids as a natural antioxidant -ingredient well-know for their healthy properties 

and  low-grade bioavailability. The same approach can be used for many others antioxidant 

compounds. 

3. Food consumption can modulate the endocannabinoids system which in turn influence  

eating behaviour. During the cephalic phase of the digestion, when food is chewed and even 

before swallowing, a variation of the ECs in saliva and plasma  already appear. This evidence  

suggests a main role of cephalic phase in the digestive processes related to meal initiation and 

meal termination.   
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Sommario 
Il comportamento alimentare è modulato da mediatori chimici che, agendo sull’asse intestino-

cervello, attraverso meccanismi omeostatici e non omeostatici (sistema di ricompensa) regolano 

l’appetito nel breve termine e il peso corporeo nel lungo termine. I peptidi rilasciati dalle cellule 

enteroendocrine nell’intestino, comunicano con le aree del cervello deputate al controllo della fame 

e della sazietà sia attraverso il sistema circolatorio, sia attraverso il sistema nervoso. Gli ormoni 

gastrointestinali interagiscono con le adipochine nel controllo del peso corporeo. In particolare, 

l’accumulo di grasso viscerale causa infiammazione cronica che contribuisce alla generazione e 

all’avanzamento di disordini metabolici. L’infiammazione cronica, causata dal costante rilascio di 

citochine pro-infiammatorie dal tessuto adiposo, altera la comunicazione dell’asse intestino-cervello 

e pertanto danneggia la capacità dell’organismo di controllare il peso corporeo. 

In questo scenario, gli esperimenti descritti nella presente tesi hanno studiato i meccanismi dell’asse 

intestino cervello coinvolti nella regolazione degli introiti alimentari. I capitoli 2 e 3 sono stati 

riportati due studi in cui è stata testata, su animale e sull’uomo rispettivamente, l’ipotesi che cereali 

whole grains (WG) siano in grado di mediare il controllo del peso corporeo attraverso un 

meccanismo che coinvolge la riduzione dell’appetito e dello stato infiammatorio sub-clinico. Nel 

capitolo 4 è stato descritto un metodo che imita il lento, ma  costante rilascio degli antiossidanti da 

cereali whole grain (WG) realizzato utilizzando un sistema di micro-incapsulazione. Infine, nel 

capitolo 5 è stata testata l’ipotesi che il “gusto grasso”  influenzi la fase cefalica della digestione.  

 

In sintesi dagli studi descritti nella presente tesi può essere concluso che: 

1. Il consumo di cereali WG in sostituzione di cereali raffinati riduce l’infiammazione sub-

clinica e questo effetto è rafforzato quando i WG sono consumati in combinazione di una 

fibra prebiotica. Infatti, il consumo di amido resistente insieme con WG è in grado di 

modulare due componenti principali dell’asse intestino cervello:  le citochine e il microbiota 

intestinale. Questo effetto è mediato dal lento rilascio di composti  fenolici, che sono liberati 

dalla fibra durante la digestione del microbiota. Quindi, l’aggiunta di una fibra prebiotica, in 

grado di stimolare la crescita e l’attività del microbiota intestinale, aumenta il rilascio di 

acidi fenolici da cereali WG.  

2. Possono essere realizzati nuovi ingredienti funzionali mediante l’incapsulazione, per 

ottenere un lento rilascio di composti antiossidanti ed aumentare la loro biodisponibilità. La 

cinetica di assorbimento rappresenta il punto chiave del rilascio degli antiossidanti da WG: 

questa è caratterizzata da un flusso lento, ma costante che garantisce una protezione 

antiossidante stabile nel circolo sanguigno. Nella presente tesi, è stata utilizzata curcumina 

come esempio di composto antiossidante naturale, ben nota per le sue proprietà salutistiche e 

per la sua scarsa biodisponibilità. Lo stesso approccio potrebbe essere utilizzato per altri 

composti antiossidanti.  

3. Il consumo di alimenti modula il sistema degli endocannabinoidi (ECs) che a sua volta 

influenza il comportamento alimentare. Durante la fase cefalica della digestione ed in 

particolare durante la masticazione già vi è un aumento degli ECs salivari. Questa evidenza 

suggerisce un ruolo primario della fase cefalica nei meccanismi di fame e sazietà.  
 

 

 

 

 


