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Abstract

The mammalian retina is an intricate network of cells communicating and

cooperating to convey light stimuli to the visual cortex of the brain. More-

over, it is the most accessible part of the Central Nervous System and hence

a valuable model to study the CNS.

A hierarchical scheme of transcription factors (TF) that determine each

cells’ identity is regularly expressed following a precise timeline, since the

early stages of development of the embryo. The interplay of those TF con-

trols univocal flows of transcription and genetic programs which direct cells’

identities, maintain their specific expression patterns and guarantee the sur-

vival of each cell type.

Despite the large interest of the scientific community on retina, and the

large variety of databases collecting gene expression profiles from multiple

species, very few Next Generation Sequencing experiments on this tissue

were collected in public available data. We generated a co-expression net-

work using porcine whole retina RNA-seq data produced in our laboratory

to characterize the retina specific Gene Regulatory Networks, which are dis-

rupted in retinal diseases.

Our inferred network shows good performance and reliability of the pre-

dicted connections. We characterised retina-specific processes by comparing

our dataset with a RNA-seq study on 10 porcine tissues. Furthermore, we
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characterized the genome-wide functional effects of a synthetic transcription

factor composed of a DNA-binding domain targeted to a 20 bp of Rhodopsin

(RHO) cis-regulatory sequence, which induced RHO specific transcriptional

silencing upon adeno-associated viral (AAV) vector delivery.

Finally, we assessed the rod-specific repression of RHO after FACS-sorting

photoreceptors interfered with our construct, and confirmed this results on

single cells by qPCR.
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Chapter 1

The Visual System

The visual system is the part of the central nervous system which gives organ-

isms the ability to process visual detail, as well as enabling the formation of

several non-image photo response functions [1]. The visual system in animals

allows individuals to assimilate information from their surroundings.

In the case of mammals (including humans), the visual system consists

of:

- The eye, especially the retina

- The optic nerve

- The optic chiasma

- The optic tract

- The lateral geniculate body

- The optic radiation

- The visual cortex

- The visual association cortex.
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The act of seeing starts when the cornea and then the lens of the eye

focuses an image of its surroundings onto a light-sensitive membrane in the

back of the eye, called the retina. This photo-sensitive tissue serve as a trans-

ducer for the conversion of patterns of light into neuronal signals, that travels

through the optic nerve to reach the visual cortex, where the perception is

built [2].

1.1 Retina

Light entering the eye is refracted by the cornea and the lens, which act

together to project an inverted image onto the retina.

Figure 1.1: The images are inverted when projected on the retina.

Light striking the retina initiates a cascade of chemical and electrical

events that ultimately trigger nerve impulses. These are sent to various

visual centres of the brain through the fibres of the optic nerve.

The vertebrate retina has ten distinct layers. From closest to farthest

from the vitreous body:
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1. Inner limiting membrane – basement membrane elaborated by Müller

cells

2. Nerve fibre layer – axons of the ganglion cell nuclei

3. Ganglion cell layer – contains nuclei of ganglion cells, the axons of

which become the optic nerve fibres for messages and some displaced

amacrine cells

4. Inner plexiform layer – contains the synapse between the bipolar

cell axons and the dendrites of the ganglion and amacrine cells.

5. Inner nuclear layer – contains the nuclei and surrounding cell bodies

(perikarya) of the amacrine cells, bipolar cells and horizontal cells

6. Outer plexiform layer – projections of rods and cones ending in the

rod spherule and cone pedicle, respectively. These make synapses with

dendrites of bipolar cells.[1] In the macular region, this is known as the

Fiber layer of Henle.

7. Outer nuclear layer – cell bodies of rods and cones

8. External limiting membrane – layer that separates the inner seg-

ment portions of the photoreceptors from their cell nucleus

9. Layer of rods and cones – layer of rod cells and cone cells

10. Retinal pigment epithelium - single layer of cuboidal cells. This is

closest to the choroid.

In adult humans, the entire retina is approximately 72% of a sphere about 22

mm in diameter, and is no more than 0.5 mm thick. The optic nerve carries

the ganglion cell axons to the brain and the blood vessels that open into the

retina. The ganglion cells lie innermost in the retina while the photoreceptive
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cells lie outermost. Because of this counter-intuitive arrangement, light must

first pass through and around the ganglion cells and through the thickness

of the retina, before reaching the rods and cones.

1.1.1 Cell types of the mammalian retina

The retina is composed of a repertoire of more that 60 cells types, organized

as a miniaturized processor to perform parallel computation of the visual

scene. [3, 4] All cells in the retina are derived from the multipotent retinal

progenitor cells (RPCs) and can be subdivided in six main classes of cells

[5, 6].

The photoreceptors transduce light into an electrical signal. The electrical

stimulus is transferred through the synaptic terminals of rods and cones onto

bipolar and horizontal cells. Horizontal cells, of which there are between

one and three types in mammalian retinae, provide lateral interactions in

the outer plexiform layer. One type of rod bipolar cell and at least nine

types of cone bipolar cells transfer the light signals into the inner plexiform

layer, onto the dendrites of amacrine and ganglion cells. Amacrine cells are

inhibitory interneurons, and there are as many as 50 morphological types,

while ganglion cell dendrites collect the signals of bipolar and amacrine cells

and their axons eventually transmit these signals to the visual centres of the

brain [7].
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Figure 1.2: Mammalian Retina is structured in stacked interconnected layers,

with different cell types. From [8].

Photoreceptors

Figure 1.3: Photoreceptors. Modified from [3].

A photoreceptor is the neuronal cell type responsible for light detection

in retina. Photoreceptors convert light (visible electromagnetic radiation)
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into chemical signals that can stimulate biological processes. There are two

major types of photoreceptor cells in mammalian eyes: Rods and Cones.

Those cells cooperate to provide information used by the visual system to

form a representation of the visual world.[9] A third photoreceptor class of

cells was discovered during the 1990s : the photosensitive ganglion cells.

These cells do not contribute to sight directly, but are thought to support

circadian rhythms and pupillary reflex.[10]

Both rods and cones are characterized by remarkable degree of intra-

cellular compartmentalization, as they are constituted by highly specialized

portions: an outer segment, an inner segment, and a synaptic terminal. The

outer segment is located toward the outer surface of the retina and is pri-

marily involved in phototransduction. This segment consists of a stack of

membranous discs formed by an infolding of the plasma membrane. Those

discs contain light-absorbing photo-pigments. In rods, these discs are free

floating because they pinch off from the plasma membrane, while in the

cones the discs remain attached to the plasma membrane.

The outer segments are constantly being renewed.[11]. The prompt and

efficient clearance by receptor-mediated phagocytosis of photoreceptor outer

segment fragments (POS) shed daily by photoreceptors in a diurnal rhythm

is coordinated by Retina Pigmented Epitelium (RPE) cells and is essential

both for long-term viability and functionality of photoreceptors.[12]

The inner segment of each photoreceptor contains the cell’s nucleus and

organelles such as mitochondria and Golgi bodies, it is connected to the

outer segment by a stalk or cilium that contains microtubules. The synaptic

terminal makes synaptic contact with the other cells.

Despite their commmon role in photontransduction, rod and cone pho-

toreceptor show some remarkable difference in their structure and function.

Rods have a long, cylindrical, outer segment with many discs, while cones

have a short, tapering outer segment with relatively few discs.
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Rods are extremely sensitive, as a single photon reaching their photo-

sensitive pigment can trigger its signaling cascade. Thus, rods are mainly

responsible for dim-light vision.

Cones require significantly brighter light (i.e., a larger numbers of photons)

in order to produce a signal. In humans, there are three different types of

cone cell, distinguished by their pattern of response to different wavelengths

of light. Color experience is calculated from these three distinct signals. The

human retina consists of about 120 million rod cells and 6 million cone cells.

The number and ratio of rods to cones varies among species, dependent on

whether an animal is primarily diurnal or nocturnal.

The distribution of the rods and cones in the retina is not uniform: around

the periphery of the retina, rods are far more numerous, whereas in the centre,

at the fovea, cones are. The number of photoreceptors connected to a single

ganglion cell is also far greater in the peripheral retina.

Figure 1.4: a) Rod and Cone Photoreceptors, b) Ion channels regulating the

current flow within both cells. From [2]
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Bipolar cells

Figure 1.5: Bipolar cells. Modified from [3].

All of the signals coming from the photoreceptor are transmitted to bipo-

lar cells, whose body is located in the inner nuclear layer of the retina to-

gether with horizontal cells, müller cells and amacrine cells. Bipolar cells

send a single dendrite in the direction of the photoreceptor, and, contacting

every other neuron type in the retina, they provide the link between the

primary sensory neurons and the highly specialized circuit that communi-

cates to the brain, which is represented by about 20 different types of retinal

ganglion cells (RGCs). Types of bipolar cells differentially collect and shape

photoreceptor signals for further processing in the inner retina, thereby car-

rying out the first elementary operations of the visual system [13]. There are

more than ten types of bipolar cells in the mammalian retina, divided into

ON and OFF, which either synapses with one photoreceptor or split their

dendrite into branches that synapse with more cells. The subsection of the

Inner Plexiform Layer in which they project their synapses allows to fur-

ther divide the cells in clusters whitjh distinct specificity for photoreceptors

and mechanisms of signal transcduction [13, 14]. Cone bipolar cells are born

throughout the period of bipolar cell genesis, and rod bipolar cells are born

only in the later part of this period [7].
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Horizontal cells

Figure 1.6: Horizontal cells. Modified from [3].

The horizontal cells are inhibitory interneurons positioned within the INL

[15]. The expression of the neural bHLH transcription factors neurogenic

differentiation 1 (NeuroD1) and mouse atonal homolog 3 (Neurod4) in em-

bryonic RPCs coincides with the birth of amacrine cells and horizontal cells.

Committed horizontal cells migrate to the appropriate retinal stratum in

their early developmental stages, but they reach their final morphology and

place only in late retinal development, with paths still unclear [16]. All rods

and cones receive feedback from horizontal cells, but these cells are a numer-

ically small proportion of the retinal interneurons, generally less than 5% of

cells of the INL, among the rarest cells in the retina [7, 17]. The rod feedback

system is isolated from the one of the cone, because the ranges of brightness

covered by rods and cones are enormously different. Horizontal cells adjust

the system’s response to the overall level of illumination by subtracting the

illumination that hit a large region of the retina from the actual signal that

reaches the innter retina (basically, they adjust the contrast of adjacent region

of dark and light of the image perceived). This process reduce redundancy

in the signal transmitted, since the mean luminance across a large region of

retina is shared by many cones and contains little information [3].
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Müller cells

Figure 1.7: Müller cells. From Cajal, 1892.

Müller glia are the only cell type to span all retinal layers and have pro-

cesses that contact neighbouring neurons and form part of the outer and

inner limiting membranes. They function as barriers and conduits regulat-

ing the homeostasis of a wide range of molecules between different retinal

cells and compartments.

They also support the structure of the layers and feed neurons by releasing

trophic factors, recycling neurotransmitters and controlling ionic balance in

the extracellular space. In addition, Müller glia control physiological pro-

cesses of cones: they phagocytose cone outer segments, contribute to outer

segment assembly and participate in a cone-specific visual cycle that helps to

recycle the retinal chromophore for photodetection. Furthermore, those cells

contribute directly to photoreceptor stimulation by acting as optic fibers and

guiding light to those cells [18].

Müller glia respond to retinal injury and disease by changing their mor-

phology, abundance, biochemistry, an injury response referred to as reactive

gliosis. The triggers for proliferative gliosis are not well understood. Both

proliferative and non-proliferative responses to injury are accompanied by

changes in gene expression and are often associated with Müller glial cell

17



hypertrophy [19, 20]. Those dramatic changes need to be restricted in time

and space, since prolongued gliosis can interfere with retinal pathways and

thus induce degeneration [8].

Although their proliferative behaviour, müller cells do not function as retinal

progenitors in vivo [21, 22], but in human cell culture, Müller glia have been

observed to generate both neurons and glia and, more importantly, photore-

ceptors and retinal ganglion cells that have some reparative potential when

transplanted into a damaged rodent retina [23, 24].

Amacrine cells

Figure 1.8: Amacrine cells. Modified from [3].

Described by Golgi and Cajal in the first decades of the nineteenth cen-

tury, Amacrine cells are the most diverse group of neurons in the retina:

there are at least 33 different subtypes of amacrine cells based just on their

dendrite morphology, stratification, and the type of neurotransmitter that

they release [25, 26]. Amacrine cells are interneurons interacting at the sec-

ond synaptic level of the photoreceptor-bipolar-ganglion cell chain. Those

cells provide a feedback synapse onto the bipolar cells and also form nu-

merous synapses throughout the IPL with retinal ganlion cells and other

amacrine cells. Those cells contribute to most of the synapses in the inner

plexiform layer, thus mediating to vertical communication within the retinal

layers. Most of the amacrine cells release inhibitory neurotransmitters, such
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as GABA and glycine, but an exception is represented by starburst amacrine

cells, one of the most famous, which release acetylcholine [27]. Although the

reason of acetylcholine release are still unknown, it is thought that through

this transmitter, together with dopamine release, amacrine cells can carry

out paracrine functions [25].

Through their intricate network of connections and release of neurotrans-

mitters, they contribute to the detection of directional motion, modulate

light adaption and circadian rhythm [25], and control high sensitivity in sco-

topic vision through connections with rod bipolar cells, suggesting a role in

converging rod signals from huge areas of retina and in amplifying them at

very low light intensities [28].

Retinal Ganglion Cells

Figure 1.9: Retinal Ganglion Cells. Modified from [3].

Ganglion cells are the final output neurons of the vertebrate retina. They

collect all of the preprocessed inputs of the vertical pathway of the retinal cell

types and convey all the electrical stimuluses to the brain. There are at least

18 different morphological types of ganglion cell in the human retina, which

vary significantly in terms of their size, connections, and responses to visual

stimulation but they all share the defining property of having a long axon

that extends into the optic nerve. A small percentage of retinal ganglion

cells contribute little or nothing to vision, but are themselves photosensitive
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[29, 30]. There are about 0.7 to 1.5 million retinal ganglion cells in the human

retina, which communicate with the rough 96 million photoreceptors with

a ratio of 1:100. However, these numbers vary greatly among individuals

and as a function of retinal location: in the fovea, a single ganglion cell

can communicate with as few as five photoreceptors, while in the extreme

periphery it will receive information from many thousands of photoreceptors

[31].

Thus, the density of their receptive fields imposes a fundamental limit on

the spatial resolution of human vision. This density varies across the retina,

declining rapidly with distance from the fovea.

In most mammals, the axons of retinal ganglion cells are not myelinated

where they pass through the retina, since light could be interfered in its path

to the photoreceptors by myelinated axons, a phenomenon observed indeed

in some eye diseases [32].

1.1.2 How light gets converted into electrical impulses

Most of what is known about the molecular events of phototransduction has

been gleaned from experiments in rods.

The photosensitive pigment of rods cells is rhodopsin, a heptahelical

transmembrane receptor expressed on rods’ outer segment membrane. On

the other hand, cone cells contain cone opsins, M-(Medium wave), L-(Long

wave) and S-(Short wave) opsins, after their different exciting wavelength.

Rods’ and cones’ opsins belong to the G-protein Coupled Receptors Pro-

tein family (GPCRs), and both are covalently bound to a chromophore, the

11-cis-retinal, a derivate of Vitamin A [33]. Each outer segment disc contains

many thousands of visual pigment molecules (the opsin conjugated with the

chromophore).

Upon absorption of a photon, the 11-cis-retinal undergoes photoisomerization
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to all-trans-retinylidene, inducing a change in Rhodopsin from its inactive to

its active conformation. The active form, known as meta-Rhodopsin II, then

recruits and binds intracellular G proteins, the trasducins, which in turn ac-

tivate the phosphodiesterase (PDE).

The phosphodiesterase hydrolyzes cGMP, reducing its concentration in the

outer segment and leading to the closure of sodium channels in the outer seg-

ment membrane. Rods differ from other sensory cells in that light leads to

hyperpolarization rather than depolarization. The hyperpolarization of the

outer segment leads to the closure of the calcium voltage depending chan-

nels, thus decreases or terminates the dark glutamate release at the synaptic

terminal. Hence the rod photoresponse is essentially a transient suppression

of the circulating current. The signal is further processed by other neurons

in the retina before being transmitted in electrical impulses to the visual

cortex. Soon after, opsin and the chromophore recombine to regenerate fresh

rhodopsin [34, 35].

Figure 1.10: Rod outer segment and Rhodopsin.
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Rhodopsin

The total amount of rhodopsin per eye is roughly 650 pmoles (3.96 × 1014

Rhodopsin molecules), about 8 × 104 Rhodopsin molecules per disk [36, 35].

Hence, is not surprising that this is the most highly expressed gene in the

retina. The balance of a wild-type Rhodopsin protein is essential for proper

functioning and survival of photoreceptors and, intuitively, the entire retina

[37] [38]. The morphology of the protein, which is of elliptic, cylindrical

shape, is due to arrangement of its seven transmembrane helices, which vary

in length from 20 to 33 residues [39]. The N-terminal region is located in-

tradiscally (extracellularly) and it’s the “plug” of the chromophore [40], while

the C-terminal region is cytoplasmic [35, 36]. The aminoacidic sequence of

the protein consists of 348 residues, [41, 42] where the most prevalent amino

acids are Phe (8.9%), Val (8.9), Ala (8.3), and Leu (8.0), suggesting a major

hydrophobic character for this protein.

Figure 1.11: Rhodopsin aminoacidic sequence, from[41]

It has been observed by atomic force microscopy and transmission elec-

tron microscopy under various conditions that Rhodopsin is able to form
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rows of dimers containing densely organized higher-order structure [35]. The

dimerization of Rhodopsin can explain the autosomal dominant character of

rhodopsin mutants, which will be discussed in the next chapter.

Upon activation, one of the fastest photochemical reactions known in bi-

ology, rhodopsin undergoes multiple reactions and intermediates that culmi-

nate in the formation of the G protein–activating state, termed metarhodopsin

II, or Meta II. Being the first component of the visual cascade, Rhodopsin is

a substantial hub of the phototransduction [43].
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Chapter 2

Vision Impairment and therapy

The World Health Organization classifies as Visual Impairment the decreased

ability of a person to see, to a degree that causes problems not fixable by

usual means, such as glasses. The term blindness is used for a severe visual

impairment, which causes vision loss [44]. Most of the causes of the Vi-

sion impairment are cataracts, glaucoma, age- related macular degeneration,

diabetic retinopathy, or Mendelian disorders.

Mendelian disorders are a group of genetically diverse conditions affecting

all age groups and ethnic background. These retinopathies affect approxi-

mately one in 2000 individuals worldwide, whit an early age of onset, se-

vere and topographic pattern of visual loss, involvement of a specific type of

photoreceptor, ophthalmoscopic findings. Over 150 loci for inherited retinal

degeneration have been identified, and many of the associated genes have

been cloned [45].

Retinal disorders are also phenotypically heterogeneous, such that a single

mutation may be associated with different phenotypes within a family or

between families, and different mutations within the same gene can cause

substantially different retinal disorders.
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Inherited photoreceptor degenerations (IPDs) can be distinguished by

different characteristics: the mode of inheritance, pattern of visual loss, and

by the mutant gene involved in the disorder [46]. In the majority of IPDs

both the cones and rods die, but the degree to which each cell type is affected

differs among the various disorders.

For example, retinitis pigmentosa (RP) is characterized by the initial loss of

rods, leading to night blindness and loss of peripheral vision, followed by the

loss of cones, leading to a loss of central vision and blindness.

2.1 Retinitis Pigmentosa

Retinitis pigmentosa (RP), is classically characterized by impaired rod func-

tion, a progressive degeneration of the retina beginning in the midperiphery,

and a characteristic retinal deposit, the “bone spicule” pigmentary deposit

[47].

The degeneration at the beginning spares the central retina, which mediates

high-acuity vision, until late in the disease. Eventually, most RP patients

lose both rod and cone function. In a minority of patients with RP or RP-like

diseases, cone dysfunction occurs early in the disease, a condition referred to

as cone-rod dystrophy [48].

The worldwide prevalence of retinitis pigmentosa is about 1 in 4000 for a

total of more than 1 million affected individuals [49]. RP can have X-linked

(XLRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) modes

of inheritance, each form showing both locus and allelic heterogeneity; most

cases of RP are monogenic [50].

In humans with RP and in mouse models of RP, photoreceptor cell death

occurs by apoptosis [51, 52, 53] as determined by analysis of DNA frag-

mentation and by the absence of an inflammatory response (thus, the term

“retinitis” is misleading). Interestingly, in human RP retinas there is patchy
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loss of both rod and cone photoreceptors, and in mosaic mouse models of RP,

diseased or dying photoreceptor cells induce cell death in adjacent genetically

normal photoreceptor cells [54, 55, 56]. The deleterious effect of proximity to

defective and/or dying cells is presumably responsible for the eventual loss

of cones in those RP patients who carry rod-specific gene defects [57].

2.1.1 Diagnosis

Many patients fall into a classic pattern of difficulties with dark adaptation

and night blindness in adolescence and loss of mid-peripheral visual field in

young adulthood. Clinically, RP patients are diagnosed based on three main

abnormalities:

- Atrophy and pigmentary changes or the retina and RPE: Early in the

disease, the pigmented posterior pole of the eye, the fundus, develops

a granular appearance, due to pigment granules that accumulate in

perivascular clusters, known as “bone spicula”[58];

- Abnormal electroretinogram (ERG): this technique provides an objec-

tive measure of retinal function. In the procedure, the retina is dark

adapted and then stimulated with a brief flash of light. The summed

electrical response of the retina is recorded extraocularly with a contact

lens electrode. Typically, patients with RP have reduced rod and cone

response and delay in their timing;

- Attenuation of the retinal vasculature and changes to the optic nerve

head.

2.1.2 Genetic causes

Retinitis pigmentosa is usually confined to the eye, however, some 20–30% of

patients have associated non-ocular disease, and such cases fall within more
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than 30 different syndromes. Usher’s syndrome, in which retinitis pigmen-

tosa is associated with hearing impairment, is the most frequent syndromic

form, accounting for about 20–40% of individuals with recessive disease (or

10–20% of all cases). Another major form of syndromic retinitis pigmentosa

is Bardet-Biedl syndrome, in which the retinal degeneration is associated

with obesity, cognitive impairment, polydactily, hypogenitalism, and renal

disease [59, 60].

Mutations in genes preferentially expressed in photoreceptors are the most

common cause of RP followed by RPE-specific genes. In rare cases RP is

caused by mutations in genes expressed in other retinal cell types or outside

the eye. Some of the genes identified among the ones responsible of RP are

listed in Table 1.

Some encode for phototransduction cascade, thus the resulting mutated

proteins interfere with photoreceptor physiology. Subsequent death of rod

photoreceptors is probably an outcome of the deranged physiology associated

with the defective or absent gene product. For example, without functional

rod cGMP phosphodiesterase, arising with recessive defects in PDE6α or

PDE6β, cGMP concentrations in rod photoreceptor outer segment rise and

this in turn opes cGMP-gated channels in hte plasma membrane. Thus, it

seems that rod’s death is caused by the rush of cations resulting from this

un-regulated channels [61].

2.1.3 Mutations in Rhodopsin

Rhodopsin was the first protein found to be mutated in RP. In the autosomal

dominant form, approximately 30% of families have mutations in that gene.

Over 100 mutations have been found in the RHO gene associated with RP

thus far, almost all leading to the production of aberrant protein, with one or
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few amino acids mutated or deleted. Those mutations affect all three domains

of Rhodopsin, namely intradiscal, transmembrane, and cytoplasmatic. The

resulting mutants are subdivided into 2 categories[62, 63]:

- Class I mutants (15%), with mutations predominantly found in the first

transmembrane domain and near the carboxyl terminus of the protein.

Those rhodopsin mutants either accumulate in the cell body or in ex-

tracellular vesicles. The abnormal function results in faster activation

kinetics, which could play a role in RP by altering the stoichiomet-

ric balance of the different proteins involved in the phototransduction

biochemical reactions;

- Class II mutants (85%), in which is found interference with the folding

and/or stability of the protein, that tend to accumulate in the rough

endoplasmic reticulum. These mutations are found mainly in the trans-

membrane and extracellular domains.

Mutations involving the C-terminus of the RHO gene usually lead to a more

severe prognosis because of the functions of the C-terminus of Rhodopsin in

cellular transport. Indeed, Codon 347 at the C-terminus is a mutational hot

spot, with five disease-causing sequence variations identified at this locus and

more severe phenotype associated [64].

2.2 Gene Therapy

Gene therapy aims at delivering corrective genetic material to a cell, tissue or

target organ in order to prevent or cure a disease. In diseases where the gene

defect is known, the wild-type gene could be introduced with a viral vector

so that the functional gene product would restore function and/or prevent

cell death.
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The feasibility of this strategy has some constraint: I) the causative gene

has to be known; II) the therapeutic gene has to be cloned into a viral vector;

III) the vector safety its ability to transduce the appropriate cells; IV) the

underlying diseased tissue having the potential for restoration of function

with gene replacement.

The retina represents an ideal target for gene therapy approaches because

it is easy to access and manipulate, it is an immunologically privileged tissue,

so the immune response against the transgene and the vector is limited;

the eye is enclosed in the blood-retinal-barrier of the RPE so this helps

avoiding any spread of vectors into other tissues; non invasive technique exist

to monitor the treatment (ERG; Optical Coherence Tomography, OCT).

Treatments being explored fo RP included Vitamin A therapy [65] and

diltiazem [66], which help to delay the progression of visual loss or the loss of

photoreceptors. As specific genes have been identified, there is great interest

for using gene therapy to treat RP. Currently, adenovirus, adeno-associated

virus, and lentivirus have been used to successfully deliver corrective genes to

animal models of RP. Such strategies can be divided in two distinct groups:

gene replacement or gene silencing strategies.

Gene replacement

Loss of function mutations are the eligible target for gene replacement [67,

50]. Dominance resulting from inadequate expression level of a gene is a rare

condition known as haploinsufficiency. The supply of the missing protein

can restore the normal function of the cell. This approach, for example,

has been applied to a form of Leber Congenital Amaurosis (LCA), MERTK-

associated ARRP [68], and in the Usher Syndrome [69]. These techniques

have experimentally been shown to delay and even reverse the course of RP

with associated improvement of photoreceptor function in various animal
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models. ERG response recovery, as well as retinal structural improvement,

has been documented in an animal model after gene replacement therapy at

an early stage of the disease [70, 71, 50].

Gene silencing

Strategies to treat alterations that lead to gain of function mutations fall

in this category. Treatments included mutation-independent approach in

which ribozymes, or more recently siRNAs, were designed to target regions

of mRNA that are not affected by mutation, so that both wild-type and

mutant RNA produced by the disease gene are degraded. [72, 73].

Instead of inhibiting gene expression by degrading mutant mRNAs, a

promising alternative is the modulation of gene expression at the transcrip-

tional level by using artificial transcription factors.

Transcriptional regulation of endogenous genes and the precise control of

transgene expression are major challenges in gene therapy. Fusion proteins

that consist of engineered DNA-binding domains and catalytic effector do-

mains hold great promise for targeted gene regulation under the control of

specific cell constitutive promoters.

Artificial Transcription Factors require an effector domain that controls

the frequency of transcription initiation at endogenous target genes. These

effector domains can be transcriptional activators or repressors, but can also

be a chromatin remodeler or epigenetic regulator. Three systems are available

for mediating site-specific DNA recognition of artificial TFs: those based on

zinc fingers, TALEs, and on the CRISPR/Cas9 technology.

- ZFPs are the most frequently used class of transcription factor and

account for about 3% of genes in the human genome [74].

The classical Cys2His2 consists of a sequence of about 30 amino acids

containing two histidines, two cysteines and three hydrophobic residues,

30



all at conserved positions. It forms a small, independently folded do-

main stabilized by Zn2+, which can be used in a modular tandem

fashion to achieve sequence-specific recognition of DNA.

Each ZF domain interacts with a triplet of consecutive bases on one

strand of the DNA through one amino acid residue just before its alpha

helix, and two amino acids within its alpha helix. A fourth contact is

made with a base on the opposite strand. Changes in the amino acid

composition of the alpha helix change the DNA binding specificity [75].

Control of gene expression, with selected combinations of zinc-finger

motifs, were already shown to be effective in silencing of target genes.

These experiments showed that zinc-finger DNA-binding domains can

be engineered de novo to target given promoter DNA sequences, and,

by fusing them to an effector domain, to regulate their activity [74].

- Engineered transcription activator-like effectors (TALEs) can also be

used for targeted gene expression. TALEs are originally produced by

the bacterial pathogen Xanthomonas and are injected into plant cells,

where they bind to the regulatory regions of specific plant genes, acti-

vating their transcription [76].

The core DNA binding domains of TALEs consist of repeats of modules

of 34 amino acids that each bind to 1 bp of DNA. However, the recog-

nition of DNA by TALE domains was shown to still be more complex

than that simple formula [77].

- The most recently discovered DNA binding domains were found in

the CRISPR/Cas9 system (Clustered Regularly Interspaced Short

Palindromic Repeats), which is a defense system employed by a range

of bacterial species aimed at the degradation of viral DNA [78]. In

this system, specific guide RNAs direct the Cas9 endonuclease protein
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to their target DNA sequence, leading to subsequent cleavage of that

sequence.

The guide RNAs base pair with complementary DNA sequences at their

5’ end, and interact with Cas9 through their 3’ end [79]. The length of

the homology-searching RNA sequence is usually about 20 bases, but

shorter sequences have recently been reported to have less off-target

effects [80].

The CRISPR/Cas9 system has made an extremely rapid entry into

biotechnology, predominantly for making site-specific double strand

breaks and thereby targeted mutations within a genome, analogous

to zinc finger nuclease and TALEN technology. Derivatives of the Cas9

protein lacking nuclease activity (dCas9) can also be made amend-

able for generating artificial TFs. Induction of gene expression was

achieved via dCas9 fusions to the powerful transcriptional activator

VP64 [81, 82]. Specific repression was observed by targeting just a

dCas9 protein to potentially regulatory target sites [83].
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Figure 2.1: Artificial transcription Factors based on TALE or ZF structure.

Adapted from [84]

Figure 2.2: Artificial transcription Factors based on CRISPR/Cas9 structure.

The target site of the artificial TFs is usually a region in the promoter of

the gene of interest. The eukaryotic core promoter is defined as the region

that can be bound by the general transcription factors required for RNA

polymerase II-dependent transcription initiation at the transcription start

site, and it is the most obvious target sequence to design artificial TFs.

In Prof. E.M. Surace’s lab, Mussolino et al. [85] showed that an artificial
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transcription factor, a Zinc Finger protein with a KRAB regulatory domain,

was able to bind Rhodopsin promoter and repress its expression in a mouse

model of adRP, with improvements in ERG of those mice. In the present work

we investigate whether engineered DNA binding proteins without canonic

effector domain possess transcriptional repression properties, and assess their

functional interference with a genome-wide approach.
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Inheritance Gene Location Function

ADRP CRX 19q13.32 photoreceptor cell transcription factor
ADRP FSCN2 17q25 morphologic structures of photoreceptor cells
ADRP HPRP3 1q21.2 no clear functional role
ADRP IMPDH1 7q32.1 regulate the cell growth
ADRP NRL 14q11.2 photoreceptor cell transcription factor

ADRP/ARRP PDC 1q25-32.1 visual transduction cascade
ADRP PRPF8 17p13.3 No clear functional role
ADRP PRPF31 19q13.42 pre-mRNA slicing
ADRP RDS 6p21.2 photoreceptor structure

ADRP/ARRP RHO 3q22.1 visual transduction cascade
ADRP ROM1 11q12.3 photoreceptor structure
ADRP RP1 8q12.1 transcription factor
ADRP RP9 7p14.3 no clear functional role
ADRP RP17 17q22 pre-mRNA slicing
ARRP ABCA4 1p22.1 catabolic function in the retina
ARRP CNGA1 4p12 visual transduction cascade
ARRP CNGB1 16q13 visual transduction cascade
ARRP CRB1 1q31.3 transcription factor
ARRP LRAT 4q32.1 retinoid metabolism
ARRP MERTK 2q13 disc shedding
ARRP NR2E3 15q23 ligand-dependant transcription factor
ARRP PDE6A 5q33.1 visual transduction cascade
ARRP PDE6B 4p16.3 visual transduction cascade
ARRP RGR 10q23.1 retinoid metabolism
ARRP RLBP1 15q26.1 retinoid metabolism
ARRP RPE65 1q31.2 retinoid metabolism
ARRP SAG 2q37.1 visual transduction cascade
ARRP TULP1 6p21.31 photoreceptor cell transcription factor
ARRP USH2A 1q41 retinal development
ARRP RP22 16p12.1p12.1 mapped gene not cloned
ARRP RP25 6cen-q15 mapped gene not cloned
ARRP CERKL 2q31-q33 ceramide metabolism
ARRP RP28 2p16-p11 mapped gene not cloned
ARRP RP29 4q32-q34 mapped gene not cloned
XLRP RP2 Xp11.23 protein folding
XLRP RPGR Xp11.4 protein transport
XLRP RP6 Xp21.3-21.2 mapped gene not cloned
XLRP RP23 Xp22 mapped gene not cloned
XLRP RP24 Xq26-27 mapped gene not cloned

Table 2.1: List of genes involved in RP. Modified from [49]35



Exon Codon change Exon Codon change Exon Codon change

1 T4K 2 Y136X 3 M216R
1 N15S 2 V137M 3 M216K
1 T17M 2 C140S 3 F220C
1 P23L 2 A164V 3 C222R
1 P23H 2 A164E 4 4162del3bp
1 Q28H 2 C167R 4 4188del3bp
1 L40R 2 C167W 4 P267L
1 M44T 2 P171E 4 P267R
1 F45L 2 P171S 4 S270R
1 L46R 2 P171L 4 T289P
1 G51R 2 P171Q 4 K296E
1 G51V 2 E150K 4 K296M
1 G51A 2 G174S 4 S297R
1 P53R 3 Y178N 4 Q312X
1 T58R 3 Y178C 4 E249X
1 Q64X 3 P180A 4 G284S
1 496del12bp 3 E181K 5 5168del9bp
1 V87D 3 G182S 5 L328P
1 G89D 3 Q184P 5 5225del17bp
1 G90D 3 S186P 5 998ins4bp
1 G106R 3 S186W 5 5255del24bp
1 G106W 3 C187Y 5 5256delC
1 G109R 3 G188R 5 5258del8bp
1 C110Y 3 G188E 5 T342M
1 C110F 3 D190N 5 Q344X
1 G114D 3 D190Y 5 V345L
1 G114V 3 D190G 5 V345M
2 L125R 3 T193M 5 A346P
2 S127F 3 M207R 5 P347T
2 L131P 3 V209M 5 P347A
2 R135G 3 H211R 5 P347S
2 R135W 3 H211P 5 P347Q
2 R135L 3 P215T 5 P347L
2 R135P 5 P347R

Table 2.2: Most frequent Rhodopsin mutations. Modified from [49]
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Chapter 3

Next Generation Sequencing

methods for Gene Expression

Profiling

Gene expression profiling is the description of the pattern of the genes ac-

tively transcribed under specific circumstances, in entire tissues or cells, to

give a global picture of the ongoing processes in a context of interest. Tech-

niques used to measure that include “direct” methods like DNA microarrays

and sequence based techniques like serial analysis of gene expression (SAGE),

which measure the relative activity of previously identified target genes. tech-

nologies and offered a limited ability to fully catalog and quantify the diverse

RNA molecules that are expressed from genomes over wide ranges of levels

[86]. Next generation sequencing (NGS) methods completely revolutionized

the gene expression profiling, allowing simultaneous characterization of thou-

sands of sequences, with or without a specific target.
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3.1 RNA-Sequencing

The power of sequencing RNA lies in the fact that the twin aspects of dis-

covery and quantification can be combined in a single high-throughput se-

quencing assay called RNA-sequencing (RNA-seq). Several advantages ren-

der RNA-seq preferable over microarray techiques:

- RNA-Seq is not limited to detecting transcripts that correspond to

existing genomic sequence.

- It does not have an upper limit for quantification, which correlates with

the number of sequences obtained.

- It has a large dynamic range of expression levels over which transcripts

can be detected;

- It is highly accurate for quantifying expression levels, as determined us-

ing quantitative PCR (qPCR) [87] and spike-in RNA controls of known

concentration [88, 89].

- RNA-seq data are highly replicable, comparable, and in some ways

superior, compared to existing array-based approaches [90].

Many variations of RNA-seq protocols and analyses have been published,

making it challenging to appreciate all of the steps necessary to conduct an

RNA-seq study properly [91].

There is no optimal pipeline for the variety of different applications and

analysis scenarios in which RNA-seq can be used. Hence, a RNA-seq ex-

periment accurately designed depending on the organism being studied and

the research goals is arguably the most important step for the success of the

analysis.
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Figure 3.1: A roadmap for RNA-seq computational analyses, from[91].

Current RNA-seq methods rely on cDNA synthesis from a population of

RNA (total or fractionated, such as poly(A)+). The cDNA fragments have

adaptors attached to one or both ends necessary for sequencing. This col-

lection of cDNA (referred to as library) is then amplified and sequenced in

high-throughput manner producing millions of short sequence reads typically

30-400 bp long, that correspond to individual cDNA fragments. Following

sequencing, the resulting reads are either aligned to a reference genome or

transcriptome, or assembled de novo without the genomic sequence. That

produces a genome-scale transcription map consisting of both the transcrip-

tional structure and/or level of expression for each gene [92].
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RNA extraction and library preparation

The protocol for RNA-extraction and library preparation depends on the

underlying biological question. Typically the total RNA is enriched for mes-

senger RNA (mRNA). This can be done by either directly selecting mRNA or

by selectively removing ribosomal RNA (rRNA) ; Poly(A) selection requires

a relatively high proportion of good quality mRNA, which normally yields a

high fraction of reads falling onto known exons [92].

Another important determinant of the quality of the sequencing is the

size of the cDNA fragments obtained in this phase: a good fragmentation of

the starting RNA is crucial for proper sequencing and subsequent analyses,

since larger fragments improve the mappability and de novo transcript iden-

tification. Furthermore, single-end (SE) or paired-end (PE) sequencing can

be used, the best solution depending on the analysis’ needs.

Other techniques which aim at characterizing different RNA populations

or aspects of the transcriptome employ specific protocols, for example small

RNA profiling (sRNA-seq [93], miRNA-seq [94]), mapping of transcription

start sites using CAGE-sequencing [95], strand specific RNA-seq [96], and

others [86].

Although few steps are required in the preparation of a RNA-Seq sample,

it does involve several manipulation stages during the production of cDNA

libraries, which can complicate its use in profiling all types of transcript.

Sequencing depth

Another important factor is the sequencing depth or library size, which is

the number of sequenced reads for a given sample. More transcripts will

be detected and their quantification will be more precise as the sample is

sequenced to a deeper level. Again, there’s no unique solution for all types of

analyses which can be performed: a higher depth can be required to capture
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poorly characterized isoforms, while some authors will argue that as few as 5

million mappable reads are sufficient to detect medium to highly expressed

genes in most eukaryotic transcriptomes [91]. Therefore, optimal library size

depends on the complexity of the targeted transcriptome.

Number of replicates

A crucial design factor is the number of samples required for the analysis.

That depends from both the technical variability of an RNA-seq procedure

and the biological variability of the system under study. Those considerations

are specifically relevant when designing an experiment to detect genes signif-

icantly differentially expressed between two conditions (i.e. treated samples

vs. controls). It is a good standard to use at least three replicates for bi-

ological conditions, but the higher the number of replicates, the better the

estimates of within-group variance, which could affect proper identification

of genes differentially expressed among different conditions under study [97].

In general, increasing the number of replicate samples significantly im-

proves detection of lowly expressed genes and statistical power over increased

sequencing depth [97, 98, 99].

3.2 Analysis of RNA-Seq Data

Quality

Multiple checks need to be performed in each step of the acquisition of RNA-

seq data (raw reads, alignment and quantification) in order to assess the

quality of the data.

Quality control on raw data include analysis of sequence quality, GC

content, duplication rate, over-represented k-mers, which are indicators of

sequencing quality and error-rate, PCR artifacts or contaminations.
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Figure 3.2: A typical RNA-seq experiment.

Those parameters have acceptable ranges within species and experiments,

but need to be homogeneous for samples of the same experiment. All of those

parameters can be checked using tools such as Picard [100], FASTQC [101].

As a general rule of sequencing, the quality of the reads decreases towards

the 3’ end. To improve mappability those bases are removed using tools such

as Trimmomatic [102] or TrimGalore! [103], which are useful also to trim

adaptor sequences from the reads.

Another important checkpoint is the percentage of reads mapping on the

reference transcriptome or genome. An high percentage of uniquely mapped

reads with low number of multi-mapping reads (those mapping to multiple

points of the reference) is an indicator of good quality. Uniformity of coverage
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is also a parameter to take into account, as non-uniformity could indicate low

quality of the starting material.

Finally, it is important to assess the reproducibility among replicates.

A high correlation level among technical replicates is desirable, however no

clear standard exists for biological samples, which should cluster together in

a Principal Component Analysis (PCA) [91].

Alignment

When a reference sequence is available, two alternatives are possible: map-

ping to the genome or to the transcriptome. Important parameters to con-

sider are the strandedness of the RNA-seq library, the number of mismatches

to accept and the length and type of reads. Mapping to a reference genome

allows for the identification of novel genes or transcripts, but it’s computa-

tionally more difficult and requires more time, while mapping to the tran-

scriptome is faster, but doesn’t allow discovery of new transcripts. Depending

on the type of analysis, many softwares are available: TopHat [104], STAR

[105], Bowtie [106] among the most famous. Those algorithms have each

one a distinguishing model and optimize memory requirements at their own

needs. For example, Bowtie owes its success to its memory-efficient data

structure borrowing a method from data-compression, the Burrows–Wheeler

transform [107], to index the reference genome, and it allows to scan reads

against a mammalian genome using around 2 GB of memory [106].

One of the challenges when searching for novel transcripts is that short

reads rarely span across splice junction, making it difficult to infer a full-

length transcript. TopHat, one of the most famous mappers, follows a two

step strategy in which unspliced reads are first mapped to locate exons, then

unmapped reads are split and aligned independently to identify exon junc-

tions [91, 104].
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When a reference genome is not available, RNA-seq reads can be assem-

bled de novo. The most famous methods (Trinity[108], SOAPdenovo-Trans

[109]) use a step wise approach to assemble contigs and merge them to con-

struct the sequence scaffold. Transcriptome assemblers must recover an un-

known number of RNA sequences, typically on the order of tens of thousands,

and usually require longer reads and high sequencing depth [91].

Transcript quantification

The most common application of RNA-seq analysis is to quantify gene or

transcript expression. Gene-level quantification approaches utilize a gene

transfer format (GTF) file containing the coordinates of the genome of in-

terest. The transcript expression is therefore function of the raw reads that

map on each transcript sequence.

Raw read counts, however, are not sufficient to compare expression level

among samples. Measures like RPKM (Reads per Kilobase of exon model

per million reads) FPKM (Fragments per Kilobase of exon model per million

mapped reads, PE analogous of RPKM) or TPM (Transcripts per million) are

within-sample normalization methods that account for the transcript length

and the library size-effect.

Correcting for gene length is not required when comparing changes in

expression in the same gene across multiple samples, but is necessary to

correctly assess gene expression accounting for the fact that longer transcripts

will obtain more reads in sequencing phase.

Algorithms that quantify expression from transcriptome mapping include

RSEM [110], Cufflinks [111] both using an expectation maximization ap-

proach to obtain the final count estimates for each transcript.

In particular, the RSEM approach consists of using a set of reference

transcript sequences, such as one produced by a de novo transcriptome as-

sembler. As it does not rely on the existence of a reference genome, it is
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particularly useful for de novo transcript quantification. In its default mode

as a first step, one can supply RSEM with a FASTA-formatted file of refer-

ence transcript sequences, or a GTF and the full genome sequence (in FASTA

format). The second step, for the calculation of transcript abundances, relies

on Bowtie [106] for read alignment.

However, RSEM can accept other user-provided aligners, whose BAM/SAM

output is then submitted to the -rsem-calculate-expression function as in the

default pipeline. After the alignment of reads, RSEM computes Maximum

Likelihood abundance estimates using the Expectation-Maximization (EM)

algorithm, and as result it gives in output the gene/isoform abundance esti-

mates and credibility intervals [110].

3.2.1 Differential Expression Analysis

The expression level of each RNA unit is measured by the number of se-

quenced fragments that map to a transcript, which is expected to correlate

directly with its abundance level. [97].

The primary goal of Differential Expression Analysis is therefore to quan-

titatively measure differences in the levels of transcripts between two or more

treatments or groups. Differential gene expression analysis of RNA-seq data

generally consists of three components: normalization of counts, parame-

ter estimation of the statistical model and testing for differential expres-

sion. Among the methods available, edgeR [112, 113] and DESeq/DESeq2

[114, 115] are the most widely used.

A common starting point for DEA methods is a count matrix N of n rows

(genes) x m columns (samples) where Nij is the number of reads assigned to

gene i in sequencing experiment j.
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Modeling of gene expression

An RNA-seq experiment consists of a random sampling of reads from a fixed

pool of genes. Thus a natural representation of read counts associated to each

gene can be the count-based Poisson and Negative Binomial distributions.

Initial methods for DE testing used Poisson distribution [90]. It is important

to notice that Poisson distribution models both mean and variance using

a unique parameter. However, in biology the variance of gene expression

across multiple biological replicates is larger than its mean expression values,

a problem known as over-dispersion [97].

Indeed, both DESeq, EdgeR models assume that the number of reads in

sample j that are assigned to gene i can be modeled by a negative binomial

(NB) distribution.

Kij ∼ NB(µij, φ) (3.1)

With mean µij and variance φ = σ2
ij. The relation between the variance

φ and mean µ is generally defined as φ = µ+ αµ2 where α is the dispersion

factor.

Estimation of this factor is one of the fundamental differences between

edgeR and DESeq. edgeR estimates α as a weighted combination of two

components: a gene-specific dispersion effect and a common dispersion effect

calculated from all genes. DESeq, on the other hand, breaks the variance

estimate into a combination of the Poisson estimate (that is the mean ex-

pression of the gene) and a second term that models the biological expression

variability [97].
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Normalization

Normalization procedures attempt to account for differences among sam-

ples such as depth between different sequencing runs or technical biases in

library production protocols, to facilitate accurate comparisons between sam-

ple groups. One crucial problem is that the proportional representation of

each gene is dependent on the expression levels of all other genes. Often a

small fraction of highly expressed genes account for large proportions of the

sequenced reads, skewing the counts distribution, thus removing power to

detect changes in expression of low expressed genes.

Both mean and variance in (3.1) rely on a size factor, sj, which represents

the coverage, or sampling depth, of library j. DESeq computes the scaling

factor for a given sample by computing the median of the ratio, for each gene,

of its read count over its geometric mean across all samples. The purpose

of the size factors sj is to render counts from different samples, which may

have been sequenced to different depths, comparable.

The trimmed means of M values (TMM) from Robinson and Oshlack

[25], which is implemented in edgeR, computes a scaling factor between two

experiments by using the weighted average of a subset of genes after exclud-

ing genes that exhibit high average read counts and genes that have large

differences in expression. When using more than several samples, the scaling

factor can be calculated by selecting one sample as a reference and calculating

the TMM factor for each non-reference sample [116].

Testing for differential expression

The differential expression analysis aims at testing whether there is a signif-

icant difference in expression of a (set of) gene(s) between two conditions.

This task can be effectively achieved only if the gene-wise dispersion param-

eter was accurately estimated.
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DESeq2 implements the assumptions of its predecessor method, DESeq, and

to model the dispersion it assumes that genes of similar average expression

strength have similar dispersion. This assumption is crucial to overcome the

limitation that in most high-throughput sequencing experiments the number

of samples is generally low, affecting the within-group variance estimates.

Indeed, noisy estimates of the variance would compromise the accuracy of

differential expression testing [114] [115]. EdgeR moderates the dispersion

estimate for each gene toward a common estimate across all genes, or toward

a local estimate from genes with similar expression strength, using a weighted

conditional likelihood.

For each gene, a Generalized Linear Model (GLM) [117] is fitted,

µij = sjqij (3.2)

log2 qij = xj.βi (3.3)

where the fitted mean µij is composed of a parameter, qij, which is pro-

portional to the true (unknown) number of fragments of RNA for sample j.

The coefficients βi give the log2 fold changes for gene i for each column of

the model matrix X.

Data transformation

For analyses on count data other than DEA - visualization or clustering –

it might be useful to work with transformed versions of the data, so that

they become homoskedastic. To this end, in DESeq2 two functions are im-

plemented, rlog and Variance-stabilizing transformation.

Both produce transformed data on the log2 scale which has been normal-

ized with respect to library size. The point of these two transformations is
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to remove the dependence of the variance on the mean, particularly the high

variance of the logarithm of count data when the mean is low. Both rlog

and VST use the experiment-wide trend of variance over mean, in order to

transform the data [118].

As suggested, the most obvious choice of transformation for count data is

the logarithm. Since count values for a gene can be zero in some conditions,

some advocate the use of pseudocounts, i. e. transformations of the form

y = log2(n+ n0) (3.4)

where n represents the count values and n0 is a positive constant.

Regularized log transformation

The function rlog, (regularized log), transforms the original count data to

the log2 scale by fitting a model with a term for each sample and a prior

distribution on the coefficients which is estimated from the data. This is

the same kind of shrinkage (referred in the paper as moderation) of log fold

changes used by the DESeq and nbinomWaldTest. The resulting data con-

tains elements defined as:

log2(qij) = βi0 + βij (3.5)

where qij is a parameter proportional to the expected true concentration

of fragments for gene i and sample j, βi0 is an intercept which does not

undergo shrinkage, and βij is the sample specific effect which is shrunk toward

zero based on the dispersion-mean trend over the entire dataset. The trend

typically captures high dispersions for low counts, and therefore these genes

exhibit higher shrinkage from the rlog.
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Variance stabilizing transformation

It’s the other function that the DESeq2 package provides alongside with the

rlog function to deal with count data transformation and break the mean-

variance dependence. Compared to rlog, varianceStabilizingTransformation

is more sensitive to size factors, which can be important to consider when

those vary widely within the dataset. This function calculates a variance

stabilizing transformation (VST) from the fitted dispersion-mean relation(s)

and then transforms the count data (normalized by division by the size fac-

tors or normalization factors), yielding a matrix of values which are now

approximately homoskedastic.

All the functions described here are implemented in stable packages in

R/Bioconductor [119].

3.3 Single Cell RNA-Seq

A recent development of RNA-Seq, single cell RNA-Seq is revolutionizing the

way in which we look at the expression profile of complex tissues. Generally,

profiling of gene expression can be achieved from bulk population of millions

of input cells, meaning that the resulting value for each gene is an average

of its expression level across the cells composing the specimen. For some

studies, bulk approaches can be insufficient [120].

To date, measurements of the expression of a gene at the single-cell level were

generated using low throughput approaches, such as RNA-FISH [121], single

cell qPCR [122, 123]. Dramatic changes in gene expression can occur within

the cells composing a tissue, like the brain [124], the retina [6], the thymus

[125], and pathological changes which originate from distinct cells, such as

infections, or cancer clonal cells can now be addressed with high throughput

methods [126].
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Single-cell RNA-seq requires the successful combination of two indepen-

dent techniques: the isolation of individual cells from culture, tissue or disso-

ciated cell suspensions, and, after the conversion of the extremely low amount

of cellular RNA into cDNA, parallel sequencing of cDNA libraries [127].

Figure 3.3: Single-cell RNA-seq pipeline, from cell isolation to analysis meth-

ods.

The most common way to isolate cells is the Fluorescence Activated Cell

Sorting, in which the cells of interest are marked using a fluorescent an-

tibody against a specific epitope expressed on the cells of interest, or are

transfected/transduced with a fluorescent construct. Once sorted, the cells

can be lysed and subsequently the RNA is retrotranscribed and amplified in
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cDNA libraries, which are then sequenced.

Another common strategy exploits microfluidic devices, which let it pos-

sible to perform all the steps from cell culture, single-cell isolation to the

biochemical steps of cDNA synthesis and detection, thus can easily be au-

tomated. Since eukaryotic cells contain many diverse RNA and the ideal

strategy would be to exclude tRNA and rRNA, most methods strategies

aim at selectively reverse transcribing poly(A)+ RNAs. Many protocols are

available, they differ with respect to the strategy used to amplify cDNA

that is obtained by oligo(dT)- or/and random-primed reverse transcription

[128, 129, 130, 131, 132, 133].

One of the most used protocols is the Smart-seq2, an improvement of

the original Smart-Seq [134, 135]. In this protocol, single cells are lysed in a

buffer that contains free dNTPS and tailed oligo(dT) oligonucleotides with

a universal 5’ anchor sequence. During the reverse transcription phase, 2 to

5 untemplated nucleotides are added to the 3’end of the cDNAs. Then, a

template-switching oligo (TSO) is added and after the first strand reaction,

the cDNA is amplified. Tagmentation is then used to construct the libraries

from the total amplified cDNA. This protocol can work with low amounts of

starting RNA (∼ 50pg) [136].

Additionally, although some protocols fragment and then sequence the

amplified cDNA fragments, it is also possible to sequence reads derived solely

from the 3’ or 5’ end of the amplified transcript. In this case, unique molec-

ular identifiers (UMIs) [137] can be used to barcode individual molecules

[123]. As long as the complexity of the library of molecules is maintained, the

library can be amplified, normalized or otherwise processed without loss of

information about the original molecule count because the number of UMIs

is a function of the number of molecules in the starting sample. Upon deep

sequencing, each UMI will be observed multiple times, and the number of
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original DNA molecules can be determined simply by counting each UMI

[137].

The most obvious experimental design questions related to scRNA-seq

experiments are the number of cells that need to be sequenced and the depth

to which each individual cell should be sequenced. As in bulk RNA-Seq,

both of these questions depend on the biological problem of interest, as well

as on technical and financial constraints. As a general rule, generating data

from hundreds to thousands of cells may be necessary to identify and char-

acterize subpopulations of cells (especially if rare) or to study the kinetics of

transcription [123].

Given the widespread use of bulk RNA-seq, many tools for data analysis

and statistical modeling already exist and have been borrowed for scRNA-

seq. However there is plenty of room to develop new analytical strategies to

specifically process scRNA-seq data.

Some specific aspects of scRNA-seq data have been already considered in

some recent work: for example in scRNA-seq data one has to account for

the random noise inherent to such data, and for several hidden factors that

might result in gene expression heterogeneity. An approach to detect and

account for confounding factors in single-cell RNA-seq studies is represented

by the scLVM method [138], which estimates and correct the data for the

source of confounding variation, such as cell-cycle.

To account for technical variation within the data, it is preferable to add

to the samples external control sequences (ERCC) [88, 139, 140]. Those

“spike-ins”, added at a known concentration, can be used to quantify the

degree of technical variability across cells and to examine the relationship

between technical variation and gene expression molecules. Additionally, by

calculating the ratio between the numbers of reads mapped to the spike-in
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sequences and to the genes from the organism of interest, the relative amount

of mRNA contained in each cell can be estimated. Some procedure exists to

perform normalization using those external sequences [141].

In conjunction with spike-ins (which are themselves barcoded before am-

plification), the use of UMI protocols can improve the normalization proce-

dures and the detection of technical biases affecting the experiments [142].

Figure 3.4: A flowchart of analytical steps in Single-cell and bulk RNA-seq

pipeline, from [123]

Nonetheless, some specific aspects of scRNA-seq remain to be fully ad-

dressed and will drive next years’ developments in that field:

- Normalization of scRNA-seq data must properly account for differences

in the total amount of RNA transcribed within a cell and among cells;
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- Methods for modeling confounding variables and/or using regression-

based analysis to remove them will be required if the biologically rele-

vant signal in scRNA-seq data sets has to be robustly uncovered;

- Accurately modeling technical variability is crucial because without

a basic understanding of the underlying noise inherent to scRNA-seq

data, downstream interpretation can be misleading or compromised

[123].

55



Chapter 4

Algorithms for Network

reconstruction

An inferred gene network is a collection of gene-gene connections captured

from expression data. A gene network stores information regarding the re-

lationship among the transcripts and it’s helpful to decipher the behaviour

of a cell such as the topological organization of its nodes (genes) and the

strength of their relationship. A community of genes within a network iden-

tifies a group of genes highly connected among them and sparsely connected

with genes outside the group. These communities can be used to detect the

functional modules in the cell, that is, groups of genes cooperate to accom-

plish specific functions.

The reconstruction of a Gene Regulatory Network based on experimen-

tal data is also called reverse engineering or network inference. Discovering

structures and dynamics of GRNs based on large scale data represents a ma-

jor challenge in systems biology, as the problem itself is of a combinatorial

nature (find the right combination of regulators) and available data are often

few and inaccurate. Multiple sources of data and network inference methods

as well as evaluation metrics for network inference are available.
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Even if the model architectures rely on different mathematical structures,

all models converge in the representation of a gene regulatory networks as

a set of interacting nodes. Nodes are molecular entities such as genes and

proteins, or functional modules, whereas edges correspond to regulatory in-

teractions and other relations between those nodes. Due to limitations in the

amount and quality of available data and the corresponding computational

efforts, network inference methods require simplifications such as lineariza-

tion, discretization or aggregation of compounds to modules. The usefulness

of a GRN inference method mainly depends on both the intended application

of identified networks and the data at hand [143].

Computationally inferred interactions therefore offer a useful resource for

examining experimental findings into a global context, by finding novel in-

teractions that have yet to be unveiled, unfolding links between pathways

under investigation or by identifying the conditions under which a regulator

of interest is active, and the state of its interactors [144].

Figure 4.1: A graph, where nodes are genes (or proteins) and an edge is an

irreducible relationship between two nodes.
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4.1 Associative Networks

Correlation-based methods [145, 146, 147] are the most straightforward way

to explore the gene co-expression network. The input data for constructing

a gene co-expression network is a m×n matrix of gene-wise expression mea-

surements of m genes for n samples (conditions).

In first step, the similarity score is calculated between each pair of rows in

expression matrix. The resulting, called similarity matrix S, has m × m

dimensions and stores the pairwise correlation coefficients between all the

genes. Then either a hard or soft threshold is applied to the similarity ma-

trix to determine the biological meaningfulness of the connections. Asso-

ciative networks are used to represent pairs of transcripts that coherently

change their expression levels across a set of different conditions. These co-

expression-based methods have been used in several studies and have shown

their usefulness in interpreting biological results and identifying important

gene modules.

The Pearson product moment correlation coefficient is a widely used mea-

sure of the linear correlation between two variables X and Y, giving a value

between -1 and +1 inclusive, where 1 is total positive correlation, 0 is no

correlation, and -1 is total negative correlation. It is the covariance of the

two variables divided by the product of their standard deviations:

ρX,Y =
σX,Y

σXσY
(4.1)

Another measure is the Spearman rank correlation coefficient, it is defined

as the Pearson correlation coefficient between the ranked variables. The

variables X and Y are converted into ranked scores, rgX, rgY :

ρrgX,rgY =
σrgX,rgY

σrgXσrgY
(4.2)
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Then, a pruning technique is employed on the correlation matrix to reduce

the number of false positive hits. One can choose a hard threshold, for

example a value of ρ or a significance level α, which is typically obtained

using the t-distribution:

t = ρ×
√

n− 2

(1 − ρ2)
(4.3)

and the standard error associated:

se =

√
1 − ρ2

n− 2
(4.4)

Two genes are considered linked if their observed correlation level exceeds

that corresponding to this significance level.

4.2 Mutual Information

A subcategory of network inference methods are those which infer regulatory

interactions between genes based on pairwise mutual information. Those

methods make no assumptions about the form of the dependence and in

particular they are able to discover also nonlinear relationships among vari-

ables. Therefore, those information theory-based methods could outperform

correlation based methods if the gene network contains many non-monotonic

dependencies. The mutual information (MI) of two random variables is a

measure of the mutual dependence between the two variables, it quantifies

the “amount of information” obtained about one random variable, through

the other random variable. Formally, the mutual information of two discrete

random variables X and Y can be defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p1(x)p2(y)
(4.5)

As a first step, these methods require the computation of the mutual

information matrix, a square matrix whose Mi,j element is given by the mu-

tual information between Xi and Xj, with Xi and Xj denoting the expression
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level of genes i and j respectively. Two popular ways of computing MI are:

discretizing variables with an equal frequency binning (so that marginal dis-

tributions are uniform) [148], and assuming normally distributed variables

[149, 150]. Different estimators of MI have been implemented, in the present

work we will use some of those implemented in R. A popular algorithm for re-

verse engineering of gene expression data is ARACNE, which assigns to each

pair of interacting nodes a weight equal to their mutual information. If any

triplet is found, the algorithm applies a Data Processing Inequality (DPI)

step to filter out the weakest edge [151]. Since this approach focuses only

on the reconstruction of pairwise interaction networks, a pair of mutually

independent genes will never be connected.

4.3 Network validation

Network validation consists of assessing the quality of an inferred model

with available knowledge. For quantitative validation of an inferred GRN,

it is necessary to employ a scoring methodology that evaluates the model

with respect to (a) information already used to generate the model (inter-

nal validation) and (b) information independent from the information used

to reconstruct the network (external validation) [150]. The assessment of

GRN inference algorithms requires benchmark data sets for which the un-

derlying network is known. Benchmarking involves counting the number of

links correctly predicted by the algorithm (true positives, TP), the number

of incorrectly predicted links (false positives, FP), the number of true links

missed in the inferred network (false negatives, FN) and the number of cor-

rectly identified non-links (true negatives, TN).

Performance of the algorithm can then be summarized by calculating the true

positive rate (TPR= TP/TP + FN) also known as recall, the false positive

rate (FPR=FP/FP +TN), and the positive predictive value
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Figure 4.2: DPI processing, from [151]. Although all six gene pairs will

likely have enriched mutual information, the DPI will infer the most likely

path of information flow. ARACNE will reconstruct the network exactly by

removing all false candidate interactions (dashed blue lines) and retaining all

true interactions (solid black lines).

(PPV=TP/TP+FP) also known as precision.

The performance can be summarized by: (i) the receiver operating char-

acteristic (ROC) curve, which plots the FPR (equivalent to the specificity)

versus the TPR for all thresholds; (ii) the precision-recall (PR) curve, which

plots the TPR against the PPV for all thresholds. A well known experimen-

tal dataset (gold standard) is the STRING database [152], which stores data

on Protein Protein interaction networks on multiple species retrieved from

literature and experimental data. For each connection a score from 400 to

900 (lower to higher confidence that the connection is significant) is provided.
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However, those gold standard sometimes are hardly available, or contain few

link information, especially on non-model species [150, 143].

4.4 Network inference with RNA-Seq data

Co-expression networks use the correlation (or related measures) of gene

expression profiles across multiple samples to ascertain common regulation

and thus common functions.

Co-expression network analysis with microarrays has been done since the

last decades, descending from the first co-expression analyses, there are stud-

ies which are highly targeted towards conditions of interest with networks

derived from relative small numbers of samples (dozens to the low hundreds)

and often focusing on broad network changes in some condition of interest

[153]. With increasing amounts of available data, meta-analysis across many

data sets became more common, with samples numbering in the many hun-

dreds or thousands.

However, the vast majority of these studies have neglected the grow-

ing availability of RNA-seq datasets, which provide several potential ad-

vantages over microarrays, as discussed in the previous chapter. The ap-

propriate way to assemble and assess RNA-seq data is still a topic of con-

siderable controversy. An RNA-seq dataset is basically a matrix of gene

expression levels expressed in counts, hence data need to be appropriately

normalised to minimize inter-libraries differences (depth, batch effect) and

intra-library differences (GC content, length of the genes). Then, a measure

of co-expression has to be selected, with methods borrowed from existing

co-expression analyses [49, 151] and further analysis on network data can be

performed, such as clustering, module detection, functional connectivity de-

tection [154, 155, 156, 157]. Typically, the quality of co-expression networks
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is measured using some variant of the Guilt-By-Association (GBA) princi-

ple, or testing the overlap of the network with protein–protein interaction

networks.

Figure 4.3: A typical pipeline for RNASeq co-expression network

It has been demonstrated in recent studies [158, 159] that basic ap-

proaches were among the highest performing, from measuring network con-

nectivity (Spearman correlation) to functional inference (neighbor voting).

RNA-seq offers unique virtues but is not a technical panacea. Co-expression

analyses still require many samples and a reliable quality reference network as

a control and comparative measure. Because of our reliance on pre-existing

knowledge (GO) or data (microarray) to provide reference knowledge, we

cannot readily assess where RNA-seq application is likely to perform better,

for example on novel or more diverse transcript assessment. Unsupervised

interpretation of RNA-seq data connectivity is unlikely to be robust to un-

derlying methodological choices without careful filtering, while methods that
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extract signals using training data (supervised or semi-supervised methods)

appear to safely recover known information [158].

In particular, networks inferred from VST-normalized data possess microarray-

like behavior with regards to correlation coefficient distribution and topologi-

cal network properties, perhaps owing to the heteroskedasticity of these types

of data [159, 114].
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Chapter 5

SusNet: a database for gene

co-expression in Porcine Retina

5.1 The Swine Model

Nowadays, at least 90% of genetically modified pigs are generated for biomed-

ical studies. Sequencing and annotation of the pig genome are important

milestones to accelerate the generation of transgenic models. Since physiol-

ogy, anatomy, pathology, genome organization, body weight, and life span

of pigs and minipigs are more similar to those of humans, the domesticated

pig represents an alternative biomedical model to rodents for specific human

diseases.

The swine model has been successfullly employed in a large series of stud-

ies, including: cardiovascular diseases, cancer, immunology, cystic fibrosis,

diabetes, neurodegenerative diseases, xenotransplantation and ophtalmology

[160].

Unlike laboratory rodents or dogs, swine is an appropriate choice as a

RP model, since it has morphological and functional similarities, including

similar medium- and short-wavelength cone photoreceptors and spatial dis-
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tribution of rod photoreceptors. The porcine and human eye share many

similarities, including a nontapetal fundus with a holangioticvascular pat-

tern and retinal layers of similar thickness. With the exception of the lack

of a fovea, the porcine retina shares some significant similarities within the

photoreceptor mosaic of humans and other primates [161]. Transgenic pigs

expressing P347L mutation in the RHO gene created by pronuclear microin-

jection showed similar progressive cone photoreceptor degeneration and loss

of function in cone-mediated vision as humans. Expression of the most com-

mon human P23H mutation in the Rhodopsin gene was developed in a minipig

model via Somatic cell nuclear transfer (SCNT) and resulted in successful

mirroring of the human phenotype of RP. Phenotyping of swine RP mod-

els showed photoreceptor loss, disorganized inner and outer segments, and

diminished electroretinography responses similar to the human counterpart,

suggesting that the transgenic pigs mirror macular degeneration and provide

an unique model for therapeutic interventions.

Given the advantages of using the porcine model over the rodent, feline

or canine for our purposes, we collected retinae from multiple animal studies

conducted in our laboratory and sequenced them by RNA-Seq.

5.2 RNAseq - Data analysis

RNASeq data were generated using Illumina protocols and run on an HiSeq

1500 sequencer (details in the Appendix). Sequence Reads were trimmed us-

ing Trim Galore! software (v.0.3.3), that trims low-quality ends and removes

adapter from reads, using a Default Phred score of 20. To obtain a precise

estimation of this yet uncharacterized tissue, the libraries were aligned on the

full transcriptome for Sus scrofa (Pig) as provided by ENSEMBL (SusScrofa

10.2.73). The GTF included the sequences for the 20 canonical chromosomes

plus 4563 scaffolds, and counted 30.567 transcripts plus the sequences for the

66



exogenes used in the animal studies. Alignment was performed with RSEM

(v.1.2.11) [110] with default parameters. The resulting expected counts (the

sum of the posterior probability of each read coming from a specific transcript

over all reads) were used for subsequent analysis.

5.3 Network Reconstruction

5.3.1 Dataset: sample selection

We collected 52 samples of pig retinae from different animal studies and

runs of RNA-seq. The initial dataset comprised: 11 wild-type retinae (Non-

injected, eGFP-injected, Non-transduced areas of treated eyes), 3 samples of

sorted Rod photoreceptors, and 38 samples from interference studies. The

initial matrix of expression data consisted of 52 samples and 25326 genes. We

selected high quality samples based on their concordance within the dataset

(Spearman/Pearson correlation score between samples), and Principal Com-

ponent Analysis.

We removed genes whose raw count estimates were less than 1 Count

Per Million, obtaining a final dataset of 52 samples per 16652 genes. To

render the libraries comparable despite the unavoidable differences in depth,

we normalised the samples using DESeq2 R-package, using a GLM with one

factor and 7 levels (one for each condition considered in the experimental

design).

The dataset homogeneity in terms of coverage and depth of sequencing

was assessed on raw counts, count estimates normalised by size factor as

in DESeq2 default pipeline, variancestabilizingtransformation transformed

data. No difference was observed among the three count measures, for further

analyses we used VST-normalised count data as suggested in previous data

[159].
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Figure 5.1: Correlation values among 52 samples. A clear cluster of homo-

geneous samples is present, with 5 samples excluded.

We removed from the original dataset the samples that showed clear dis-

tance and low correlation with the biggest cluster comprising 47 samples.

Among the removed samples, we found 2 samples which we knew had bad

quality after sequencing due to problems in loading phase. Interestingly, the

other 3 samples with a clear separation were Rod Photoreceptors sequenced

after sorting. This further confirms the uniqueness of photoreceptors’ tran-

scriptome if compared to whole retina expression profile. We further filtered

the dataset retaining again genes with showed at least 1 CPM in each exper-
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Figure 5.2: PCA of the 52 samples. Aggregation of homogeneous samples

on the left, 5 samples fall out of the cluster as previoulsy seen by correlation

coefficient.

imental group.

The final dataset was hence composed of 47 samples and 16385 genes.

5.3.2 Co-expression estimates

We estimated co-expression using Spearman, Pearson and Mutual Informa-

tion.

SCC and PCC - corr.test function To estimate the Pearson/Spearman

correlation coefficients (hereafter denoted as PCC and SCC) we used the

corr.test() from psych R package. The function takes in input the matrix of

gene expression, uses the cor() (stats R package) function to find the correla-
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Figure 5.3: Correlation coefficients between samples with the three gene

expression measures show no difference.

Figure 5.4: PCA of the 47 samples.
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Figure 5.5: Hetamap of the final dataset, all the samples show high level of

correlation.

tions, and then applies a t-test to the individual correlations. We computed

the PCC and SCC separately, together with corrected pvalues (Benjamini-

Hochberg [162]).

We obtained the correlation coefficients of 134 225 920 edges. The absolute

value of the correlation values span from 0.34 to 1 in both SCC and PCC. We

filtered out correlations whose FDR was higher that 0.05, retaining around

35 % of the correlations in both SCC/PCC.

We then imposed a threshold on the correlation value, retaining correlations

above 0.6 (PCC/SCC). This generated two dataset with 7 154 938 edges for

PCC and 6 466 521 edges for SCC. Those numbers are consistent with the

common procedure of retaining the highest ranking 5% connections.
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Figure 5.6: Normalised samples

MI: the Parmigene R package We estimated the Mutual Informa-

tion with the knnmi() function of the parmigene R package. This function

computes the mutual information between all pairs of rows of the gene expres-

sion matrix mat using entropy estimates from K-nearest neighbor distances.

We then applied the aracne() function on MI estimates. We also used an

empirical filtering strategy, imposing a threshold to retain the highest 5%

correlation, resulting in 6 711 296 connections with minimum MI 0.3.

5.3.3 Performance

For all the network inference methods described, we used the receiver oper-

ating characteristic (ROC) curves to study the sensitivity and specificity of

each algorithm to minimize the influence of any default thresholds or cutoff

values, and the area under the curve (AUC) was used to quantify the per-

formance of each method. As gold standard we used the STRING porcine

protein-protein interaction database with cumulative score .900. Our com-

parative set consisted of 2 519 968 edges and 10305 nodes
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SCC method performed better compared to PCC and MI estimates with

the empirical threshold, but their AUC values were just slightly different

one from another. However, and consistent with previous data [159], the

overlap between protein-protein intereaction network and coexpression net-

works was really low (AUC around 0.56). ARACNE multiplicative, additive

or CLR inferred networks had the worst performance (AUC= 0.52 or 0.5)

We reintroduced negative PC/SC correlations retaining the absolute value

of the correlation above 0.6, but we didn’t see any improvements of the per-

formances, suggesting that the positive correlations were driving most the

network inference performance. Hence we decided to use only positive cor-

relations.

To evaluate whether we were retaining known strong biological connec-

tions, we evaluated the connections among a set ribosomal genes, which are

usually strongly correlated. Ribosomal genes showed high level of corre-

lations, confirming the ability of the methods to capture most significant

correlations in the data.

We didn’t observe any substantial difference among the 3 inferred net-

works in network topology, degree distribution and overall performance,

hence we decided to use the SCC inferred network with 0.6 correlation thresh-

old, a strategy successfully used in previous works [158, 159].

5.3.4 Modularity

We used different methods to test the modularity of the inferred SCC net-

work: the igraph R package offers several algorithms, among these we tested

the fast.greedy which has a hierarchical approach and the spinglass.community

based on the statistical physics Pott model. We also tested the Affinity Prop-

agation clustering method [163] and a hierarchical clustering computing the

jaccard distance on the correlation matrix. The algorithms produced ap-
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Figure 5.7: Number of nodes compared to AUC and Correlation threshold

compared to AUC for SCC and PCC inferred networks. “abs”: absolute

value of correlation, “pos”: positive value of correlation.
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Figure 5.8: Density distributions of SCC (solid black line) and PCC (dotted

blue line) inferred correlations.

proximately the same number of clusters (around 300), with 3-5 the clusters

containing 90% of the connections. This result suggests that connected com-

ponent of the network was really strong and we discarded those clustering

methods because large clusters (≥ 1000 edges) were non informative in terms

of specific biological processes.

We then tried another approach using a master regulator analysis. We

searched within the genes of the network those which were known Transcrip-

tion Factors, using the GO term “transcription factor activity” we retrieved

784 genes. Among these we found the known retina specific TF Crx, Nrl

[164]. Then we retrieved the nodes connected to each of this TF (hereafter

called ‘regulons’).

To assess whether the newtork was capturing specific retinal processes and

in particular photoreceptorial ones, we selected the regulons which where ex-
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Figure 5.9: Degree distributions of SCC, PCC, MI inferred networks.

pressing a known rod photoreceptor marker, the Gnat1 gene.

With this strategy we found 7 regulons, all of them regulated by a TF

previously reported in literature to have retina specific function, except for

one gene, ENSSSCG00000009560, a predicted porcine gene whose human

ortholog, Tfdp1 wasn’t previously characterised in retina and in photorecep-

tors. We applied a hypergeometric function [165] to assess the GO functions

enriched within those 7 clusters, and we found enriched the categories “photo-

transduction”, “photoreceptor outer segment” confirming that the predicted

connections were specific.

Rhodopsin gene was found in the photoreceptorial regulon regulated by

Esrrb gene, a known transcriptional regulator of energy metabolism that

protects rod photoreceptors from dystrophy in retinal adult phases [166].
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Figure 5.10: Ribosomal genes’ expression levels show high concordance

within the dataset.

We cross-compared Esrrb regulon with genes downregulated in Esrrb KO

published in [167]. Interestingly, 23 genes were in common between our reg-

ulon (445) and those down-regluated in that work (425), with a significant

pvalue (0.0007, fisher exact test). To asses whether the inferred network

was sensitive to Rhodopsin connections, we extracted the genes connected to

Rhodopsin and applied the hypergeomtric function to this set, again found-

ing photoreceptorial processes among the most significant. Within this set

we found, among others, the Gnat1 gene, confirming previous data on the

coexpression of this two markers.
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Figure 5.11: Rhodopsin regulon: expression levels of the 65 genes connected

to Rhodopsin show high concordance within the dataset.

5.3.5 Precedently uncharacterised porcine ortholog of

TFDP1 is expressed in Rods

ENSSSCG00000009560 is an uncharacterised protein coding gene on forward

strand of Chromosome 11 (86495533 to 86510641) which in pig produces one

transcript and a 448 aminoacid long protein. It belongs to the E2F/DP fam-

ily, a family of Transcription Factors involved through the dimerization with

E2F proteins in the cell cycle regulation and synthesis of DNA in mammalian

cells. Porcine TFDP1 has 90% sequence homology with the human TFDP1,

a TF reported to bind DNA cooperatively with E2F family members through

the E2 recognition site, 5’-TTTC[CG]CGC-3’, found in the promoter region

of a number of genes whose products are involved in cell cycle regulation or in

DNA replication. The E2F1:DP complex appears to mediate both cell pro-

liferation and apoptosis. Its expression has been assessed in muscle, brain,

78



placenta, liver and kidney. Lower levels were detected in lung and pancreas,

but not in retina.

Figure 5.12: Alignment of ENSSSCG00000009560 and Tfdp1 shows high

conservation between the sequences.

We assessed swine TFPD1 expression in retinal samples and in particular

in sorted rods photoreceptors by RT-PCR. Among the most enriched func-

tions in the regulon we found photoreceptor-related processes and methyl-

transferase activity, a process that has been already reported for its ortholog,

in complexes with other histone regulating proteins. Interestingly and con-

firming its photoreceptorial expression, we found the term “Cajal body”,

which are spherical sub-organelles of 0.3-1.0 µm in diameter found in the

nucleus of proliferative cells like embryonic cells and tumor cells, or metabol-
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ically active cells like neurons [168] .
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Chapter 6

Retina Specific Processes

6.1 Network inference on 100 samples from

10 porcine tissues

To further test the strategy used, we downloaded the raw RNA-seq data of

10 porcine tissues from [169]. The data comprised 100 samples, with 10 tis-

sues sequenced: heart, spleen, liver, kidney, lung, musculus longissimusdorsi,

occipital cortex, hypothalamus, frontal cortex, and cerebellum. To obtain

the count estimates from the .bam files downloaded by Array Express, we

used a custom R script exploiting functions from different R/Bioconductor

packages for raw sequences manipulation (AnnotationDbi, Rsamtools, Ge-

nomicAlignments, BSgenome.Sscrofa.UCSC.susScr3, GenomicFeatures).

We then removed genes with less than 1 CPM on average, and proceeded to

the normalization of count data using DESeq2, with a GLM with 1 factor

and 10 levels (one for each tissue), we finally applied the VST transforma-

tion. To estimate the correlations, we used again the corr.test function with

BH correction. We then filtered the correlations retaining those greater or

equal to 0.60 with 5% FDR.
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Figure 6.1: VST- Normalised counts for the 100-samples dataset.

Figure 6.2: Density distribution of all the correlations (upper panel) and of

the Ribosomal genes (lower panel) from the 100-tissues inferred network

6.2 Modularity

We used the same strategy used for SusNet using the genes which had “tran-

scription factor activity” retrieved in SusNet, we obtained a total of 469

TFs. Coherently with our speculations, many of the Retina specific factors

weren’t expressed in this dataset. As expected, Rhodopsin expression was

undetectable.
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Four of the 7 “photoreceptor”-TF were present in this dataset, Mef2d, Sp2,

Fdz4 and Esrrb. Interestingly, the TF which had Rhodopsin in its regulon,

Esrrb, had only 2 connections in the 100-samples inferred network, confirm-

ing the specificity of the connections found in the retina dataset.

As expected no photoreceptorial processes were found by hypergeometric

enrichment in those modules.

We selected a Transcription Factor, Pax6, known to be a regulator of

brain development and involved in retinoblastoma via interaction with p53,

p21, p27. In this dataset, Pax6 module is composed of 1108 genes. Coher-

ently with reported data [170], Gene ontology analysis confirmed significant

enrichment of neuronal processes.
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6.3 Retina processes: Differential expression

analysis

We constructed a new dataset adding to the 100 samples our 47 retinal sam-

ples, and normalized them following DESeq2 pipeline. Count estimates were

further processed to obtain the differential expression pattern in Retina vs

Other tissues. We applied a GLM with 2 factors, one for the 11 tissues in

the cumulative dataset an the second with 2 levels for “retina” and “other”.

We were interested in retina-specific processes so we used a 2 level contrast

(the second factor in the design matrix). Notably, upon the most highly dif-

ferentially expressed genes we found Rhodopsin and genes belonging to mi-

tochondria, including genes crucial in respiratory chain. It has been already

demonstrated indeed that retina is an high energy-requiring tissue, hence

the total RNA of this tissue is enriched in mitochondrial genes [171]. Upon

the most down-regulated genes we found CYP genes, liver-specific, TNNC1,

muscle-specific, HPD, whose expression has been reported in pituitary gland.
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Figure 6.3: Top Differentially expressed genes in Retina compared to all the

other tissues
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Genes GO terms FDR

6 of 4 glutamate receptor activity 1e-05
4 of 4 protein localization to juxtaparanode region of

axon
1e-05

3 of 3 α-1,6-mannosylglycoprotein 6-beta-N-
acetylglucosaminyltransferase activity

1e-05

4 of 4 regulation of dendritic spine morphogenesis 1e-05
4 of 4 benzodiazepine receptor activity 1e-05
4 of 4 inhibitory extracellular ligand-gated ion chan-

nel activity
1e-05

332 of 2436 integral component of membrane 1e-05
412 of 3245 membrane 1e-05

30 of 76 axon 1e-05
31 of 82 synaptic transmission 1e-05
18 of 36 postsynaptic density 1e-05
41 of 154 cell adhesion 1e-05
140 of 915 plasma membrane 1e-05

9 of 11 regulation of synaptic transmission, gluta-
matergic

1e-05

12 of 19 synapse organization 1e-05
31 of 108 neuron projection 1e-05
34 of 127 ribosome 1e-05
22 of 64 nervous system development 1e-05
14 of 29 membrane depolarization during action poten-

tial
1e-05

35 of 139 structural constituent of ribosome 1e-05
25 of 83 neuronal cell body 1e-05
15 of 36 cytosolic small ribosomal subunit 1e-05
21 of 65 regulation of membrane potential 1e-05
10 of 18 small ribosomal subunit 1e-05
30 of 119 synapse 1e-05
8 of 12 GABA-A receptor complex 1e-05
8 of 12 GABA-A receptor activity 1e-05
9 of 15 AMPA glutamate receptor complex 1e-05

Table 6.1: Some of the significantly enriched processes Pax6 regulon
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Category GO terms FDR

2/2 positive regulation of rhodopsin gene expres-
sion

0

8/19 respiratory chain 0
7/34 photoreceptor outer segment 0
6/24 NADH dehydrogenase (ubiquinone) activity 0
3/4 respiratory chain complex IV 0
5/19 photoreceptor inner segment 0
6/40 mitochondrial respiratory chain complex I 0

11/194 mitochondrial inner membrane 0
6/45 mitochondrial membrane 0

26/1109 mitochondrion 0
3/8 ATP synthesis coupled electron transport 0
6/59 visual perception 1e-05
2/3 negative regulation of cholesterol efflux 1e-05
2/3 photoreceptor cell development 1e-05
5/43 retina development in camera-type eye 2e-05
4/25 ATP synthesis coupled proton transport 2e-05
3/12 phototransduction 3e-05
3/12 positive regulation of mRNA splicing, via

spliceosome
3e-05

2/4 opsin binding 3e-05
3/14 respiratory electron transport chain 5e-05
4/31 hydrogen ion transmembrane transporter ac-

tivity
6e-05

2/6 leucine zipper domain binding 0.00014
2/6 group III metabotropic glutamate receptor ac-

tivity
0.00014

5/64 proton transport 0.00017
2/7 protein-chromophore linkage 0.00021
2/7 photoreceptor activity 0.00021
2/7 sensory perception of light stimulus 0.00021
2/7 dopamine receptor signaling pathway 0.00021
2/7 proton-transporting ATP synthase complex,

coupling factor F(o)
0.00021

2/7 poly(U) RNA binding 0.00021
3/22 tricarboxylic acid cycle 0.00031
3/22 cytochrome-c oxidase activity 0.00031
2/8 striatum development 0.00032
2/8 ATP biosynthetic process 0.00032

Table 6.2: List of significantly enriched processes in up-regulated genes in
Retina vs other tissues 87



Chapter 7

Rhodopsin-targeted silencing

by DNA-binding

Transcription factors operate by the combined activity of their DNA-binding

domains (DBDs) and effector domains (EDs) enabling the coordination of

gene expression on a genomic scale. TF operate by recruiting co-activator or

co-repressor complexes [172, 173] resulting in either transcriptional activa-

tion or repression of specific genes. We investigated the hypothesis that en-

gineered DNA-binding proteins without canonical ED activity possess tran-

scriptional repression properties.

To interfere with Rhodopsin gain-of-function mutations we engineered a

DNA-binding protein that targets 20 base pairs (bp) of a RHO cis-regulatory

element and demonstrate Rho specific transcriptional silencing upon adeno-

associated viral (AAV) vector-mediated expression in photoreceptors.

7.1 AAV generation and delivery

We generated a DNA-binding protein targeted to a cis-regulatory element

(CRE) of the human proximal RHO promoter region by deconstructing a
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synthetic TF composed of a DBD (ZF6-DNA-binding protein, ZF6-DB) and

the ED (Kruppel-associated box, KRAB repressor domain, KRAB), which

we have shown to be effective in repressing specifically the human RHO trans-

gene carried in an adRP mouse model [85]. The deletion of the ED resulted

in a protein, ZF6-DB, targeting 20 bp of genomic CRE, here named ZF6-cis,

found at -84 bp to -65 bp from the transcription start site (TSS) of the human

RHO gene [174]. Genomic ZF6-cis is without apparent photoreceptor-specific

endogenous transcription factor-binding sites. To evaluate whether ZF6-DB

represses transcription of the RHO gene in a physiological genomic context,

we used the porcine retina [85], which shares 19 out of 20 DNA bp with the

human genomic ZF6-cis sequence. We generated a construct carrying the

sequence of the ZF6 protein under an ubiquitous promoter, and subretinal

delivery of a low AAV8 vector dose (1 × 1010 genome copies; gc) of ZF6-DB

(AAV8-CMV-ZF6-DB) resulted in a 45% decrease of porcine Rho transcript

levels at 15 days post-injection.

+ 129247378                              + 129247490  

BAT-1 NRE Ret-4

TATA-BOX

TBP

GGGATTAATATGATTATGAACACCCCCAATCTCCCAGATGCTGATTCAGCCAGGAGCTTAGGAGGGGGAGGTCACTTTATAAGGGTCTGGGGGGGTCAGAACCCAGAGTCATCG
+1

ZF6

Figure 7.1: Schematic representation of the chromosomal location of the

RHO locus and its proximal promoter elements indicating the transcription

start site (in green, +1) and the location of ZF6-DB binding site (in red,

ZF6-Cis) and ZF6-DB
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7.2 Rhodopsin downregulation is Rod-specific

Rhodopsin is expressed only in rods. To evaluate whether ZF6-DB was effec-

tively repressing its expression and the result was not due to the averaging

effect of the pooled retinal cells which doesn’t express Rhodopsin at all, we

performed FACS analysis on eGFP-labelled rod cells.

Rod cells were isolated from porcine retina that had received a subretinal in-

jection of an AAV vector encoding eGFP under the control of a rod-specific

promoter (human Guanine Nucleotide Binding Protein1, GNAT1 promoter

elements [175]; AAV8-GNAT1-eGFP; dose 1 × 1012 gc) with or without the

vector encoding ZF6-DB (5 × 1010 gc). Fifteen days after injection, the reti-

nae were disaggregated and FACS-sorted. Cells co-transduced with eGFP

and ZF6-DB vector showed virtually a ‘somatic knock-out’ of Rho expres-

sion with a 85% decrease of Rho transcript levels.

Figure 7.2: qReal Time PCR on sorted rods shows Rhodopsin downregulation

in rods ZF6-DB interfered compared to controls.
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Figure 7.3: qReal Time PCR of mRNA levels (2−DCT ) of adult porcine

retina injected subretinally with AAV8-CMV-ZF6-DB at a vector dose of

1×1012 gc compared with non-transduced area of the same eye 15 days after

vector delivery, resulted in robust transcriptional repression of the Rhodopsin

transcript and downregulation of Gnat1.

7.3 RNA-seq

To evaluate genome-wide transcriptional specificity, we analyzed the porcine

retinal transcriptome by RNA-Seq from retina harvested 15 days after sub-

retinal injection of the AAV8 vector encoding ZF6-DB. For comparison we

used the engineered TF with the ED, KRAB (AAV8-CMV-ZF6-KRAB).

The low vector doses delivered to the porcine retina (1 × 1010) resulted in

about twenty-fold lower expression levels of the ZF6-DB and ZF6-KRAB

transgenes compared to Crx and Nrl, two retina-specific TFs [164]. Interest-

ingly, despite the construct’s low expression levels, we observed robust Rho

transcriptional repression.

We analyzed the transcriptional perturbation in response to the AAV
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retinal gene transfer of ZF6-DB by determining the differentially expressed

genes (DEGs). To this end we evaluated two algorithms performance, edgeR

and DESeq2, obtaining overall concordance on the results. Interestingly,

DESeq2 showed a better control on the outlier genes, so we decided to proceed

with that pipeline for further analyses. The dataset was composed of 17

samples and 25.325 genes, divided in 3 experimental groups: 7 Controls, 4

ZF6-KRAB-treated, 6 ZF6-DB-treated.

We analyzed the data following the standard Differential Expression Anal-

ysis Pipeline with DESeq2 R/Bioconductor package (v.1.8.1) [115], filtering

and normalizing all libraries together. We filtered low tag counts retaining

those which had 1 CPM in at least 3 samples.

We fitted a unique Generalized Linear Model (GLM) with 1 factor and

3 levels (Control, ZF6-KRAB-treated, ZF6-DB-treated). Differentially ex-

pressed genes were obtained out of the 2 contrasts (each treatment compared

to the controls), an adjusted pvalue (FDR) of less than or equal to 0.1 was

considered significant. We observed the expected upregulation of the ex-

ogenous genes used for the treatment (ZF6-KRAB, ZF6-DB, eGFP) and for

further evaluations we didn’t take into account their differential expression.

Remarkably, in vivo the ZF6-DB protein generated about ten-fold less

transcriptional perturbation compared with the ZF6-KRAB protein (19 vs.

222 DEGs). Notably, this magnitude of perturbation is twenty five-fold lower

than that induced by the ablation of an endogenous rod-specific TF (NRL,

500 DEGs vs 19 DEGs, ZF6-DBD;[176]). Retinal-specific pathway analysis

of DEGs showed that ZF6-DB induced down-regulation is restricted to the

Rho biochemical interactor Gnat1 [177], and the up-regulation of 2 genes

associated with acute phase inflammatory response, alpha-2-macroglobulin

(A2m) and glial fibrillary acidic protein (Gfap). Interestingly the Gnat1 gene

was among the genes connected to Rhodopsin.
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Figure 7.4: Rhodopsin gene expression in size-factor normalised counts in

RNA-Seq data

Figure 7.5: ZF6-DB expression compared to Nrl and Crx in size-factor nor-

malised counts in RNA-Seq data

These results suggest that both ZF6-DB and the consequent Rho down-

regulation marginally interferes with photoreceptor specific pathways, apart

from Gnat1 repression, and that the up-regulation of the inflammatory re-

sponse genes may be due to the collapse of the retinal scaffold caused by Rho
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depletion.

The intersection of DEGs between ZF6-DB and ZF6-KRAB showed that

both drive similar perturbation in the expression of 16 genes, which repre-

sent 84% of the entire pool of ZF6-DB DEGs. Consistently, both ZF6-DB

and ZF6-KRAB generated similar functional effects, i.e. concordant up- or

down- differential expression of these 16 shared genes. These results suggest

that both ZF6-DB and ZF6-KRAB bind to similar genomic targets.
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Figure 7.6: Genes in common between ZF6-KRAB and ZF6-DB show high

functional concordance (PCC on log2 Fold Change levels)

Figure 7.7: Heatmap of genes associated to retinal patologies. Genes tagged

with an asterisk are significantly DE (FDR 10%).
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A manually curated list of Human Gene IDs including representative Reti-

nal Markes and a subset of Retina Disease Genes [45] was used to show the

interference power of the 2 TRs with the overall retinal regulatory circuitry.

The human IDs were used to retrieve their homolog Porcine genes, if present.

We observed no significant up- or down-regulation of genes involved in retinal

pathologies in the functional interference induced by ZF6-DB protein.

7.4 DEGs mapping on SusNet

To assess the interference of our TF on the retina Gene Regulatory Network,

we mapped the 19 genes differentially expressed in ZF6-DB on SusNet. We

intersected the 19 DEGs with the 784 regulons of the network and assessed

any significant enrichment by hypergeometric function. We found a signif-

icant enrichment on modules regulated by the known retinal transcription

factors Nrl and Crx. One of the most significant hits was the regulon of

CEBP, a transcription factor implicated in various aspects of cell survival,

apoptosis and inflammation. This gene is activated in the initial phases of

retinal degeneration, its role is thought to be key in the preservation of pho-

toreceptors inducing a delay of their phagocytosis from macrophages [178].

Interestingly, DE genes showed a significant intersection with the regulon of

swine Tfdp1 (ENSSSCG00000009560 ), confirming previous speculations.

Two genes differentially expressed out of 19 were found in Rhodopsin

regulon itself, Gnat1 and Lrrc8e (p value � 1×10−5), both downregulated by

the ZF6-DB interference, further confirming the significance of the predicted

connection.
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Intersection Regulon size Gene Name FDR

9 224 CEBPD 9,80E+02

9 107 BCL3 1,54E+00

7 76 TCF7 8,50E+01

5 1173 STAT3 0.0441

5 97 STK3 3,13E+07

4 100 EGR2 1,69E+09

4 876 NRL 0.0533

4 85 TEAD3 8,94E+07

4 225 ENSSSCG00000024816 0.0007

4 450 ELK3 0.010

4 272 IRF1 0.001

4 261 SOX9 0.001

3 326 ENSSSCG00000009560 0.0301

3 133 CLU 0.001

3 306 RIPK3 0.027

2 278 SHH 0.06

2 189 BCL6 0.0359

2 183 CRX 0.0346

2 22 JUN 0.0002

2 249 TP53 0.0522

2 147 TEAD4 0.0301

2 65 FZD4 0.004

1 47 LMO2 0.0356

1 12 ATF3 0.006

1 89 NDP 0.066

Table 7.1: TFs relevant for ZF6-DB interference, obtained from the intersec-

tion of DE genes with SuSnet regulons.
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Chapter 8

Single cell RNA-seq of Rod

Photoreceptors

We have carried out profiling of gene expression levels from bulk populations

of millions of retinal input cells by RNA-seq.

However, in this way gene expression levels are an average of the input cells,

and we could lose resolution on the specific dynamics occurring in photore-

ceptors. Any single functional rod with the proper balance of wild type

Rhodopsin is essential to maintain retinal functionality, hence to profile rod

cells and measure Rhodopsin expression avoiding any confounding averaging

effect, we are exploiting single cell RNA-seq.

We want to study the transcriptional and molecular changes induced when

interfering with Rhodopsin transcription in Mammalian Rod Photoreceptors;

in the same time, we want to profile wild type Photoreceptors’ Gene Expres-

sion, in order to asses potential cell-to-cell heterogeneity in this terminally

differentiated neuronal cells assumed identical. We have designed an arti-

ficial transcription factor targeted to a sequence on Rhodopsin prossimal

promoter and demonstrated that this ATF can bind and repress Rhodopsin
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Transcription. Thus, we want to study Photoreceptors’ transcriptome at

varying amounts of ATF and, consequently, of its target gene, Rhodopsin in

a dose-response context, at single cell resolution, to further clarify Rhodopsin

balance in Rods cells and its role in Retinal pathologies.

8.1 Experimental Strategy

To sort single photoreceptors with FACS (Fluorescence Activated Cell Sort-

ing), instead of using antibodies which couldn’t ensure the cell specific flu-

orescence at the desired resolution, we decided to generate an AAV vector

carrying the eGPF under the control of a rod-specific promoter, GNAT1

(AAV8-GNAT1-eGFP). To artificially interfere with Rhodopsin transcrip-

tion, we designed another construct with the sequence of the ATF together

with the fluorescent reporter eGFP, both under the control of a Rod specific

promoter (AAV8-GNAT1-ATF-2A-eGFP).

8.2 FACS sorting and qPCR

Retinae were explanted after 15 days of treatment. The injection of the two

constructs in pig retina (5×1010 AAV8-GNAT1-ATF-2A-eGFP and 1×1012

AAV8-GNAT1-eGFP) resulted in high level of transduction and high number

of egfp-positive cells.

We disaggregated retinae and sorted fluorescent rods in bulk and in 96

well plates containing the lysis buffer as suggested by SMART-seq2 protocol

[135]. We evaluated the expression of the ZF6-DB and the repression of

Rhodopsin transcription in treated cells in bulk by RT-PCR. Then we profiled

288 single photoreceptors by qPCR: after retrotranscription, cDNA libraries

coming from control and ZF6-DB-interfered single cells were used to evaluate

the expression of Actin, Rhodopsin, ZF6-DB and ERCC.
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Figure 8.1: Raw CT levels of Rhodopsin and Actin in the cells analysed dy

qPCR in three experiments evaluated. Red boxes show mean and standard

deviation.
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Figure 8.2: Rhodopsin normalized on Actin in the cells analysed dy qPCR

in the three experiments evaluated. Red boxes show mean and standard

deviation.

Despite the expected variability within the cells analyzed, which is well
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Figure 8.3: Raw CT levels of Rhodopsin, ZF6-DB and Actin in the cells

analysed dy qPCR.

known in single cell quantitative biology, we could assess Rhodopsin downreg-

ulation and the expression of ZF6 specific only treated cells. Those cells rep-

resent the purest model to analyze Rhodopsin balance in wild type Rod cells,

the specificity of the ZF6-DB for Rhodopsin, thus the cell-specific transcrip-

tional mechanisms activated in response to Rhodopsin-interference, hence we

are going to profile them by scRNA-seq.
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Figure 8.4: Downregulation of Rhodopsin in treated cells compared to con-

trols in three experiments evaluated.
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Chapter 9

Discussion

9.1 SusNet: a database for gene co-expression

in Porcine Retina

Co-expression network represent a valid tool for predicting gene function,

characterize co-expression patters of genes without common processes, and

discovery of novel protein-protein interactions and functions. Notably, retina

transcriptome is still poorly characterized by RNA-seq even in higher-order

species, leaving a gap in inferential analysis of Gene Regulatory Networks

specific to this tissue. To our knowledge, we produced the first retina-specific

porcine RNA-Seq dataset and co-expression network. Despite the fact that in

inferential network analysis better performance and predictions are achieved

with high number of samples, SusNet performance was good, coherent with

what reported in literature on RNA-seq co-expression network, and sup-

ported by experimental data.

It is important to remember that it is yet difficult to have a complete Gold

Standard containing all of the real interactions for a transcription factor or

gene-gene interaction of interest because of the partial knowledge inherent in
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biological data. More importantly still little is known about non-canonical

animal models such as the Pig, due to lack of experimental data.

SusNet was able to detect links among known retinal TFs and their reg-

ulon, and known Rhodopsin interactions such as that with Gnat1 and Esrrb

genes. Gnat1 encodes for the rod-specific transducin which stimulates the

coupling of Rhodopsin and cGMP-phoshodiesterase during visual impulses,

mutations in this gene result in vision impairment diseases. Esrrb is a Tran-

scription Factor expressed downstream Nrl required for long-term survival of

rods in adult mice [166]. Mutations in the human Esrrb gene are associated

with autosomal-recessive deafness.

Interestingly, SusNet predicted the photoreceptorial expression of a prece-

dently uncharacterized porcine protein, ENSSSCG00000009560, that we call

swine Tfdp1. All that is known about swine Tfdp1 protein is retrieved by its

highly conserved human ortholog, whose expression pattern excludes retina.

This protein is responsible of cell cycle regulation via dimerization with fac-

tors of the E2F family, which are negatively regulated by cell-cycle suppressor

Rb1 (retinoblastoma protein).

We found that swine Tfdp1 is consistently expressed in retina and in pho-

toreceptors in particular, where it interacts with Gnat1, Nrl and Crx. No-

tably, we found that swine Tfdp1 interacts with Wrap53, a gene producing a

transcript stabilizing p53 mRNA and a second transcript, Wrap53β, which

coordinates the formation and stabilization of Cajal bodies, a function that

we found significantly enriched in Tfdp1 regulon (see 6.2). This protein is

involved in numerous cell functions such as telomere elongation, DNA double

strand break repair and ribonucleoproteins biogenesis.
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9.2 Retina specific processes

We tested our network inference strategy on a set of porcine RNA-Seq sam-

ples to asses the sensitivity of the method and the specificity of the links

found.

We built a second co-expression network and evaluated the presence of

conserved links within that and SusNet. None of the regulons retina-specific

were found in this dataset, and no photoreceptorial processes were found

enriched indeed.

We randomly selected a TF, Pax6, which is a key factor in the devel-

opment of neural tissues, particularly the eye. Overexpression of Pax6 in

human retinoblastoma cells resulted in increased tumor cell proliferation in

vitro paralleled by a downregulation of the p53, p21, and p27 proteins and an

upregulation of the cdc2 protein [179]. In brain, Pax6 expression coordinates

the development of different areas already at embryonic stages, with stage

and region-specific pattern [170]. Confirming this data, we found significantly

enriched neuronal processes in Pax6 regulon.

Differential Expression Analysis between Retina and other tissues demon-

strated a high enrichment of genes involved in energy production, mitochon-

drial genes, components of mitochondria and photoreceptor activities. Retina

is an extremely specialized tissue whose energy requirement are massive,

moreover it has been demonstrated a direct effect of mitochondria dysregu-

lation induced by drugs can impair the glutamate production inducing selec-

tive death of photoreceptors, while previous studies found that depletion of

glutamate correlates with cell death in the retina [180, 181, 182].
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9.3 Rhodopsin-targeted silencing by

DNA-binding

In this study we demonstrated that photoreceptor delivery of an AAV8 vec-

tor containing an artificial zinc finger-based transcriptional repressor with-

out its effector domain (ZF6-DB) is capable of binding on a 20bp region on

Rhodopsin promoter, pivotal to its expression. From a therapeutic prospec-

tive, a relevant property of the orthogonal ZF6-DB interference is the high

rate of transcriptional silencing observed after in vivo gene transfer, which is

consistent with canonical TFs mode of action. DNA binding interference via

ZF6-DB in transduced retina generated 45% Rho transcriptional repression,

which reached 85% when rods were sorted, supporting its use for diseases

requiring correction of a large number of affected cells, such as adRP and

other Mendelian disorders due to gain-of-function mutations.

The transcriptional repression mechanism of ZF6-DB binding likely relies

on the interference occurring between TFs and local DNA sequence features

within the RHO proximal promoter region, which we showed here to be

necessary to control Rho expression at the genomic level. The absence of

an effector domain which is the classical co-factors recruiter and the lack of

known TFBSs in the 20-bp region of ZF6-DB binding suggest that the molec-

ular determinant of silencing may not be due to other repressor recruitment

or the simple displacement of key RHO TFs.

9.4 Single Cell RNA-seq of Rod Photorecep-

tors

Studies of genome and gene expression heterogeneity and plasticity aim at

resolving the relationship between DNA and phenotype, which in some cases
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has pathological outcome. Identifying the factors that drive cell-to-cell het-

erogeneity and the variability in the response to therapy can help uncover the

functional variations that drive specific biological outcome. For this, single

cell studies are paramount. Our strategy to mark specifically rods via AAV

expressing a fluorescent reporter under the control of the GNAT1 rod-specific

promoter was indeed successful and allowed us to obtain an high number of

cells to be profiled by scRNA-seq.

qPCR on those cells confirmed the presence of the ZF6-DB construct in

the interfered rods and showed the reduction of Rhodopsin expression in the

same cells.

scRNA-Seq of those cells will help us to unravel the cell-specific mecha-

nisms that in rods govern physiological response to light, and to characterize

this cells assumed identical, showing an unexpected complexity in their finely

regulated processes.

More importantly, this study will let us characterize the quantitative

aspects of Rhodopsin function and the mechanisms that are activated in

Rhodopsin-depleted rods, providing new insights in physiology and patho-

logical features of mammalian phototransduction.

9.5 Conclusions and Future Work

The retina is the region of the brain at the boundaries between the outside

world and our perception. This finely organized network of co-regulated cells

works like a processor for parallel computation of the stimuli that are con-

veyed to the brain to be elaborated as images. This extremely specialized

tissue has evolved to optimize the way in which we interpret the visual infor-

mation, with specific subset of cells deputed to light perception and others

which integrate the signals from multiple sources.

People with vision-threatening retinopathy are likely to experience enhanced
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social and emotional strain, with clear physical implications and worsening

of life quality. Research on those diseases has provided crucial insights on

the physiological mechanisms that are altered to contribute in generating tar-

geted treatments. Rarest retina diseases, such those originating by Mendelian

disorders, are currently in study for gene therapy approaches aimed at cor-

recting the mutated genes that are responsible of the phenotype.

To better understand the Gene Regulatory Networks of the mammalian

tetina we produced an exhaustive RNA-seq dataset from 47 porcine retinae

and generated a co-expression network with a simple still powerful approach.

Our strategy captured correctly known interactions and led us to understand

strong relationships among known players of phototransduction processes.

Moreover, we characterized a novel porcine protein whose involvement in

retina and photoreceptors was still unknown.

Network inference from RNA-Seq data is an important methodological

challenge. It appears that having more biological replicates instead of in-

creased depth per sample is crucial to correctly infer relationships among

genes. However, for tissue-targeted studies, such as ours on retina, it’s nec-

essary to construct dedicated datasets that can specifically capture tissue-

specific gene behaviors, as their performance evaluation is commonly carried

out relying on Gene Ontology as a reference. The creation of novel approaches

to properly normalize count data and estimate gene-gene correlations from

RNA-seq data will pose a future fundamental challenge for co-expression in-

vestigators.

We generated a therapy strategy, published on eLife [183], to treat an

autosomal dominant form of Retinitis Pigmentosa involving a mutation in

Rhodopsin gene. Our study support the use of a similar strategy for other

Mendelian disorders due to gain-of-function mutations.
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We demonstrated that an engineered non-canonical transcription factor

composed of a DNA binding domain alone is able to repress Rhodopsin ex-

pression. Our data suggest the presence of a complex architecture of reg-

ulatory interactions between the DNA and the proteins that interpret and

convey the genomic information. Understanding this code is key to correctly

interpret the biological problem and design therapies using factors to regu-

late gene expression with a targeted strategy.

Moreover, single cell approaches are opening important discussions to

quantitative biology and therapy, in this context, our scRNA-seq on ZF6-DB

interfered rods will help to re-interpret the way in which we design ther-

apeutical strategies aiming at rescuing selectively million of cells from the

degeneration.

In conclusion, we believe that the data produced in our work will provide

a useful resource for studies aimed at hijacking retina regulatory systems.
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Appendix A

Materials and Methods

A.1 Plasmid construction

The ZF6-DNA-binding domain (Nδ96 deletion mutant, ZF6-DB) was ampli-

fied by PCR from AAV2.1 CMV-ZF6-KRAB [85] using primers ZF6-DBfw

(TTGCGGCCGCATGATCGATC TGGAACCTGGCG) and ZF6-DBrv (AAGCTTTCAA-

GATGCATAGTCT). The PCR product was digested using NotI and HindIII

restriction enzymes and cloned in pAAV2.1. The hGNAT1 promoter was syn-

thetized by Eurofins MWG based on [175] adding the 5?UTR. The fragment

was cloned in pAAV2.1 using NheI and NotI restriction enzymes. The hu-

man Rhodopsin CDS was ampli- fied by PCR from human retina cDNA using

the hRHOfw (GCGGCCGCATGAATGGCACA- GAAGGCCC) e hRHOrv

(AAGCTTTTAGGCCGGGGCCACCTG) primers and the PCR fragment

was digested using NotI and HindIII restriction enzymes and cloned in pAAV2.1

plasmid under the con- trol of hGNAT1 promoter. For the generation of

DBR-R plasmid the Eurofins MWG synthetized the expression cassette RHOD-

ZF6-DB-bGHpolyA (bovine growth hormone polyA) that we cloned in pAAV2.1

hGNAT1-hRHO using NheI restriction enzyme.
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A.2 AAV vector preparations

AAV vectors were produced by the TIGEM AAV Vector Core, by triple

transfection of HEK293 cells followed by two rounds of CsCl2 purification

(Auricchio et al., 2001). For each viral preparation, physical titers [genome

copies (GC)/mL] were determined by averaging the titer achieved by dot- blot

analysis [184] and by PCR quantification using TaqMan (Applied Biosystems,

Carlsbad, CA, USA).

A.3 Vector administration and animal mod-

els

All procedures were performed in accordance with institutional guidelines for

animal research and all of the animal studies were approved by the authors.

P347S+/+ animals [85, 185] were bred in the animal facility of the Biotech-

nology Centre of the Cardarelli Hospital (Naples, Italy) with C57Bl/6 mice

(Charles Rivers Laboratories, Calco, Italy), to obtain the P347S+/- mice.

Pigs

Eleven-week-old Large White (LW) female piglets were utilized. Pigs were

fasted overnight leaving water ad libitum. The anesthetic and surgical proce-

dures for pigs were previously described [186]. AAV vectors were inoculated

sub-retinally in the avascular nasal area of the posterior pole between the two

main vascular arches, as performed in Mussolino et al. [186]. This retinal

region is crossed by a streak-like region that extends from the nasal to the

temporal edge parallel to the horizontal meridian, where cone density is high,

reaching 20,000 to 35,000 cone cells per mm2. Each viral vector was injected

in a total volume of 100 ml, resulting in the formation of a subretinal bleb
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with a typical ‘dome-shaped’ retinal detachment, with a size corresponding

to 5 optical discs.

A.4 Cloning and Purification of the proteins

DNA fragments encoding the sequence of the engineered transcription factors

and ZF6-KRAB, to be expressed as maltose-binding protein (MBP) fusion

were generated by PCR using the plasmids pAAV2.1 CMV-ZF6-KRAB and

pAAV2.1 CMV-ZF6-DB as a DNA template.

The following oligonucleotides were used as primers: primer 1, (GGAATTC-

CATATGGAATTCCCCATGGATGC) and primer 2, (CGGGATCCCTATC-

TAGAAGTCTTTTTACCGGTATG), for ZF6-KRAB primer 3, (GGAATTC-

CATA TGCTGGAACCTGGCGAAAAACCG) and primer 4,(CGGGATC-

CCTATCTAGAAGTCTTTTTACCGG TATG) for ZF6-DB. All the PCR

products were digested with the restriction enzymes NdeI and BamH1 and

cloned into NdeI BamH1-digested pMal C5G (New England Biolabs, Ipswich,

MA) bacterial expression vector. All the plasmids obtained were sequenced

to confirm that there were no mutations in the coding sequences. The fusion

proteins were expressed in the Escherichia coli BL21DE3 host strain. The

transformed cells were grown in rich medium plus 0.2% glucose (according

to protocol from New England Biolabs) at 37 ◦C until the absorbance at 600

nm was 0.6-0.8, at which time the medium was supplemented with 200 mM

ZnSO4, and protein expression was induced with 0.3 mM isopropyl 1-thio-

b-D-galactopyranoside and was allowed to proceed for 2 hr. The cells were

then harvested, resuspended in 1X PBS (pH 7.4), 1 mM phenylmethylsul-

fonyl fluoride, 1 mM leupep- tin, 1 mM aprotinin, and 10 mg/ml lysozyme,

sonicated, and centrifuged for 30 min at 27,500 relative centrifugal force.

The supernatant was then loaded on amylose resin (New England Biolabs)

accord- ing to the manufacturer?s protocol. To remove the MBP from the
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proteins, bound fusion proteins as cleaved in situ on the amylose resin with

Factor Xa (1 unit/20 mg of MBP fusion protein) in FXa buffer (20 mM Tris,

pH 8.0, 100 mM NaC1, 2 mM CaC12) for 24?48 hr at 4 ◦C and collected

in the same buffer after centrifugation at 500 relative centrifugal force for 5

min. The supernatant containing the protein without the MBP tag was then

recovered.

A.5 qReal-time PCR

RNAs from tissues were isolated using RNAeasy Mini Kit (Qiagen, Ger-

many), according to the manu- facturer protocol. cDNA was amplified from

1 mg isolated RNA using QuantiTect Reverse Transcrip- tion Kit (Qiagen),

as indicated in the manufacturer instructions.

The PCRs with cDNA were carried out in a total volume of 20 ml, using 10

ml LightCycler 480 SYBR Green I Master Mix (Roche, Switzerland) and 400

nM primers under the following conditions: pre-Incubation, 50◦C for 5 min,

cycling: 45 cycles of 95◦C for 10 s, 60◦C for 20 s and 72◦C for 20 s. Each

sample was analysed in duplicate in two-independent experiments.

Transcript levels of pig retinae were measured by quantitative Real Time

PCR using the LightCycler 480 (Roche) and the following primers: pRho-

forward (ATCAACTTCCTCACGCTCTAC) and pRho-reverse (ATGAAG-

AGGTCAGCCACTGCC), pGnat1-forward (TGTGGAAGGACTCGGGT-

ATC) and pGnat1-reverse (GTCTTGACACGTGAGCGTA), pArr3-forward

(TGACAACTGCGAGAAACAGG) and pArr3-reverse (CACAGGACACC-

ATCAGGTTG).

humanRho-forward (TCATGGTCCTAGGTGGCTTC), humanRho-reverse

(ggaagttgctcatgggctta) and eGFP-forward (ACGTAAACGGCCACAAGTTC)

and eGFP-reverse (AAGTCGTGCTGCTTCATGTG). All of the reactions

were standardized against porcine Actb using the following primers: Act-
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Forward (ACGGCATCGTCACCAACTG) and Act-reverse (CTGGGTCAT-

CTTCTCACGG).

A.6 FACS rods sorting

Co-injected porcine retina with AAV8-CMV-ZF6-DB (dose 5 × 1010 gc)and

AAV8-GNAT1-eGFP (dose 1 × 1012 gc) were disaggregated using Papain

Dissociation System (Worthington biochemical corpora- tion) following the

manufacturers protocol. Dissociated retinal cells were analysed using BD

FACS Aria at IGB (Institute of Genetic and Biophysic“A. Buzzati-Traverso”)

FACS Facility and sorted, dividing eGFP positive cells (rods) from eGFP

negative fraction.

A.7 RNA-Seq library preparation, sequenc-

ing and alignment

The 17 libraries were prepared using the TruSeq RNA v2 Kit (Illumina, San

Diego, CA) according to manufacturer’s protocol. Libraries were sequenced

on the Illumina HiSeq 1000 platform and in 100- nt paired-end format to

obtain approximately 30 million read pairs per sample. Sequence Reads

were trimmed using Trim Galore! software (v.0.3.3) [187], that trims low-

quality ends and removes adapter from reads, using a Default Phred score

of 20. The 17 libraries were aligned on the full transcriptome for Sus scrofa

(Pig) as provided by ENSEMBL (SusScrofa 10.2.73). The GTF included the

sequences for the 20 canonical chromosomes plus 4563 scaffolds, and counted

30.567 transcripts plus the sequences for the 3 exogenes used in the analysis

(the 2 TRs and eGFP). Alignment was performed with RSEM (v.1.2.11) with

default parameters. The resulting expected counts (the sum of the posterior
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probability of each read coming from a specific transcript over all reads) were

used for subsequent analysis.
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Appendix B

Codes
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packenv<-c("edgeR","DESeq2","NOISeq","gplots","ggplot2","sva","ROCR","ap.cluster")!
lapply(packenv,require, character.only=T)!!
#------!
#load data!
#------!!
load("~/Documents/suScrofaNetwork/CurionSuracePigNetwork/corPigs.Rdata")!
colnames(PigCounts)!
legenda_all<-read.table('~/Documents/RNAseq_curion2015/
RNAseq_all_projects.txt',header=T,sep="\t")!!
#------!
#create the design matrix for differential expression analysis!
#------!!
colData<-legenda_all[match(colnames(PigCounts),legenda_all
$sample),c("name","eye","original.treatment")]!
rownames(colData)<-colnames(PigCounts)!
countData<-round(countData[rowSums(cpm(countData)>1)>=1,])!
dim(countData)!
sample=colData$sample!
eye=colData$eye!
ddsPig<-DESeqDataSetFromMatrix(countData=countData,!
                               colData=colData,!
                               design= ~sample)!
ddsPig<-DESeq(ddsPig)!
dim(corPigs)!!
#------!
#Vst transform count data normalised by sizefactor and explore the results!
#------!!
vst<-varianceStabilizingTransformation(ddsPig)!
distVST<-dist(t(assay(vst)))!
mat<-as.matrix(distVST)!
rownames(mat)<-colnames(mat)<-with(colData(ddsPig),paste(rownames(colData), name, sep=" : "))!
hc<-hclust(distVST)!!
#------!
#heatmap of the original dataset!
#------!!
heatmap.2(mat,Rowv=as.dendrogram(hc),!
          trace='none',lwid = c(0.6,3),lhei=c(0.7,3),margins=c(8,8),!
          cexRow=0.5,cexCol=0.5)!!
colScale <- scale_colour_manual(name = "eye",values = rmcol)!!
#------!
#PCA of the original dataset !
#------!!
plotPCA(vst,intgroup=c("name", "eye"))!
data <- plotPCA(vst, intgroup=c("eye", "name","original.treatment"), returnData=TRUE)!
percentVar <- round(100 * attr(data, "percentVar"))!
pdf("PCA56vstNorm.pdf",15,10)!
ggplot(data, aes(PC1, PC2, color=original.treatment)) +geom_point(size=2) +!
  geom_text(aes(label=eye),hjust=1,vjust=0) +!
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +!
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  ylab(paste0("PC2: ",percentVar[2],"% variance")) +!
  guides(col= guide_legend(nrow=20)) +!
  scale_colour_brewer(palette="Set1")!!
#------!
#Now remove samples that don't correlate with the others!
#------!!
remove<-as.character(legenda_all[legenda_all$name%in
%c("pig_retina_11","CTRL_6","T*_ROD_1","C_ROD_1","T_ROD_2"),'sample'])!!
rPigCounts<-PigCounts[,-which(colnames(PigCounts)%in%remove)]!!
colData<-legenda_all[match(colnames(rPigCounts),legenda_all
$sample),c("name","eye","original.treatment")]!
rownames(colData)<-colnames(rPigCounts)!
countData<-rPigCounts!
countData<-round(countData[rowSums(cpm(countData)>1)>=1,])!!
sample=colData$sample!
eye=colData$eye!
ddsPig<-DESeqDataSetFromMatrix(countData=countData,!
                               colData=colData,!
                               design= ~sample)!
#------!
#final dataset heatmap and PCA!
#------!!
vst<-varianceStabilizingTransformation(ddsPig)!
distVST<-dist(t(assay(vst)))!
mat<-as.matrix(distVST)!
rownames(mat)<-colnames(mat)<-with(colData(ddsPig),paste(rownames(colData), name, sep=" : "))!
hc<-hclust(distVST)!
heatmap.2(mat,Rowv=as.dendrogram(hc),!
          trace='none',lwid = c(0.6,3),lhei=c(0.7,3),margins=c(8,8),!
          cexRow=0.5,cexCol=0.5)!!
data <- plotPCA(vst, intgroup=c("eye", "name","original.treatment"), returnData=TRUE)!
percentVar <- round(100 * attr(data, "percentVar"))!!!
ggplot(data, aes(PC1, PC2, color=original.treatment)) +geom_point(size=2) +!
  geom_text(aes(label=eye),hjust=1,vjust=0) +!
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +!
  ylab(paste0("PC2: ",percentVar[2],"% variance")) +!
  guides(col= guide_legend(nrow=20)) +!
  scale_colour_brewer(palette="Set1")!!!!
#------!
#package sva, to test whether any other source of variation is affecting data!
#------!!
dat <- counts(ddsPig, normalized=TRUE)!
idx <- rowMeans(dat) > 1!
dat <- dat[idx,]!
mod <- model.matrix(~ eye, colData(ddsPig))!!
mod0 <- model.matrix(~ 1, colData(ddsPig))!
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!
svseq <- svaseq(dat, mod, mod0, n.sv=2)!
svseq$sv!
par(mfrow=c(2,1),mar=c(3,5,3,1))!
stripchart(svseq$sv[,1] ~ ddsPig$eye,vertical=TRUE,main="SV1")!
abline(h=0)!
stripchart(svseq$sv[,2] ~ ddsPig$eye,vertical=TRUE,main="SV2")!
abline(h=0)!
#####!
ddssva <- ddsPig!
ddssva$SV1 <- svseq$sv[,1]!
ddssva$SV2 <- svseq$sv[,2]!
design(ddssva) <- ~ SV1 + SV2 + eye!
ddssva <- DESeq(ddssva)!!
vst_sva<-varianceStabilizingTransformation(ddssva)!
data <- plotPCA(vst_sva, intgroup=c("SV1","SV2","original.treatment"), returnData=TRUE)!
percentVar <- round(100 * attr(data, "percentVar"))!!
ggplot(data, aes(PC1, PC2, color=original.treatment)) +geom_point(size=2) +!
  geom_text(aes(label=eye),hjust=1,vjust=0) +!
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +!
  ylab(paste0("PC2: ",percentVar[2],"% variance")) +!
  guides(col= guide_legend(nrow=20)) +!
  scale_colour_brewer(palette="Set1")!!
#------!
#the variance is well explained by the single level factor that we already use in the design!
#------!!
boxplot(cbind(as.vector(cor(PigCounts[,colnames(RetinaVST)])),!
              as.vector(cor(RetinaVST)),!
              as.vector((cor(counts(ddsPig[,colnames(RetinaVST)], normalized=T)))))!
        ,outline=F,names=c("Raw counts","VST","Size-Factor"), col="grey", ylab= "Correlation")!!
#----!
#Mutual Information Estimation with parmigene R package!
#----!!
RetinaVST<-vst!
library(parmigene)!
MI.data<-knnmi.all(RetinaVST)!
mat<-MI.data!
mat[lower.tri(mat, diag = TRUE)] <- NA!
MI_retina<-na.omit(data.frame(as.table(mat)))!!
#-----!
#Gold standard: STRING!
#----!!
stringDB<-read.table("pig9823.protein.links.v10.txt",header=T, sep=" ")!
colnames(stringDB)<-c('protein1','protein2','score')!
proteinlevels<-strsplit(as.vector(stringDB$protein1),split="[.]")!
proteinlevels<-sapply(proteinlevels, "[[", 2)!
head(proteinlevels)!
stringDB$protein1<-proteinlevels!
proteinlevels<-strsplit(as.vector(stringDB$protein2),split="[.]")!
proteinlevels<-sapply(proteinlevels, "[[", 2)!
stringDB$protein2<-proteinlevels!
#STRING threshold: select edges with .9 combined score!
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stringDB.900<-as.numeric(stringDB$score>=900)!
stringDB.900<-data.frame(stringDB$protein1,stringDB$protein2,stringDB.900)!
colnames(stringDB.900)<-c('node1','node2','value')!!
ensGene<-union(as.character(stringDB.900$node1), as.character(stringDB.900$node2))!
ensembl<-useMart("ENSEMBL_MART_ENSEMBL",dataset="sscrofa_gene_ensembl", 
host="www.ensembl.org")!
attributes = listAttributes(ensembl)!
filters = listFilters(ensembl)!
filters="ensembl_peptide_id"!
mart=ensembl!
attributes=c("ensembl_gene_id","ensembl_peptide_id")#,#"hsapiens_homolog_ensembl_gene",  
"hsapiens_homolog_ensembl_peptide",!
        #"hsapiens_homolog_orthology_type")!
s<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
stringGeneId<-stringDB.900!
stringGeneId[['node1']] <- s[ match(stringGeneId[['node1']], s[['ensembl_peptide_id']] ) , 
'ensembl_gene_id']!
stringGeneId[['node2']] <- s[ match(stringGeneId[['node2']], s[['ensembl_peptide_id']] ) , 
'ensembl_gene_id']!
if(sum(stringGeneId$node1=="")>0 | sum(stringGeneId$node2=="")>0) {!
  stringGeneId<-stringGeneId[-which(stringGeneId$node1==""),]!
  stringGeneId<-stringGeneId[-which(stringGeneId$node2==""),]!!
}else{!
  stringGeneId<-na.omit(stringGeneId)!
}!!
ids=length(union(stringGeneId$node1,stringGeneId$node2))!
StringBM<-matrix(0,nrow=ids,ncol=ids)!
rownames(StringBM)<-colnames(StringBM)<-union(stringGeneId$node1,stringGeneId$node2)!
StringBM[as.matrix(stringGeneId[,1:2])]<-stringGeneId$value!
length(rownames(StringBM))!
dim(StringBM)!!
auc<-c()!
thr<-seq(0.3,1.47, 0.01)!!
for(n in 1:length(thr)){!
print(n)!
GeneId<-MI_retina[MI_retina$Freq>=thr[n],]!
colnames(GeneId)<-c("node1","node2","value")!!
ids=length(union(GeneId$node1,GeneId$node2))!
CorrBM<-matrix(0,nrow=ids,ncol=ids)!
rownames(CorrBM)<-colnames(CorrBM)<-union(GeneId$node1,GeneId$node2)!
length(rownames(CorrBM))!
CorrBM[as.matrix(GeneId[,1:2])]<-GeneId$value!!
int<-intersect(rownames(CorrBM),rownames(StringBM))!
length(int)!
corr<-CorrBM[int,int]!
corr<-corr[upper.tri(corr)]!
actual<-StringBM[int,int]!
actual<-actual[upper.tri(actual)]!
pred<-prediction(corr,actual)!
auc<-c(auc,performance(pred,"auc")@y.values[[1]]!!
}!!
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df<-cbind(thr,auc)!!
#-----!
#estimate the Spearman\Pearson correlations!
#-----!!
corSpearman<-corr.test(t(RetinaVST),method="spearman",adjust="BH",alpha=.05,ci=FALSE)!
#corPearson<-corr.test(t(RetinaVST),method="pearson",adjust="BH",alpha=.05,ci=FALSE)!
#the process is the same for Pearson correlation, I will discuss only the Spearman data!!
mat<-corSpearman$r!
mat[lower.tri(mat, diag = TRUE)] <- NA!
SCC.corr<-na.omit(data.frame(as.table(mat)))!
mat<-corSpearman$p #correlation values!
mat[lower.tri(mat, diag = TRUE)] <- NA!
SCC.FDR<-na.omit(data.frame(as.table(mat)))!
SCC.corr<-SCC.corr[SCC.FDR$value<=0.05,]!!
#test on STRING gold standard!
stringDB<-read.table("pig9823.protein.links.v10.txt",header=T, sep=" ")!
colnames(stringDB)<-c('protein1','protein2','score')!
proteinlevels<-strsplit(as.vector(stringDB$protein1),split="[.]")!
proteinlevels<-sapply(proteinlevels, "[[", 2)!
head(proteinlevels)!
stringDB$protein1<-proteinlevels!
proteinlevels<-strsplit(as.vector(stringDB$protein2),split="[.]")!
proteinlevels<-sapply(proteinlevels, "[[", 2)!
stringDB$protein2<-proteinlevels!!
#STRING threshold: select edges with .9 combined score!
stringDB.900<-as.numeric(stringDB$score>=900)!
stringDB.900<-data.frame(stringDB$protein1,stringDB$protein2,stringDB.900)!
colnames(stringDB.900)<-c('node1','node2','value')!!
ensGene<-union(as.character(stringDB.900$node1), as.character(stringDB.900$node2))!
length(ensGene)!
library(biomaRt)!
ensembl<-useMart("ENSEMBL_MART_ENSEMBL",dataset="sscrofa_gene_ensembl", 
host="www.ensembl.org")!
attributes = listAttributes(ensembl)!
filters = listFilters(ensembl)!
filters="ensembl_peptide_id"!
mart=ensembl!
attributes=c("ensembl_gene_id","ensembl_peptide_id")#,#"hsapiens_homolog_ensembl_gene",  
"hsapiens_homolog_ensembl_peptide",!
! ! ! ! #"hsapiens_homolog_orthology_type")!
s<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!!
stringGeneId<-stringDB.900!
stringGeneId[['node1']] <- s[ match(stringGeneId[['node1']], s[['ensembl_peptide_id']] ) , 
'ensembl_gene_id']!
stringGeneId[['node2']] <- s[ match(stringGeneId[['node2']], s[['ensembl_peptide_id']] ) , 
'ensembl_gene_id']!
if(sum(stringGeneId$node1=="")>0 | sum(stringGeneId$node2=="")>0) {!
! stringGeneId<-stringGeneId[-which(stringGeneId$node1==""),]!
! stringGeneId<-stringGeneId[-which(stringGeneId$node2==""),]!!
}else{!
! stringGeneId<-na.omit(stringGeneId)!
}!
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!
ids=length(union(stringGeneId$node1,stringGeneId$node2))!
StringBM<-matrix(0,nrow=ids,ncol=ids)!
rownames(StringBM)<-colnames(StringBM)<-union(stringGeneId$node1,stringGeneId$node2)!
StringBM[as.matrix(stringGeneId[,1:2])]<-stringGeneId$value!
length(rownames(StringBM))!
dim(StringBM)!!
thr<-seq(0.5,0.8,0.1)!
auc<-c()!
for(n in 1:length(thr)){!
print(n)!!
GeneId<-SCC.corr[SCC.corr$value>=thr[n],]!
ids=length(union(GeneId$node1,GeneId$node2))!
CorrBM<-matrix(0,nrow=ids,ncol=ids)!
rownames(CorrBM)<-colnames(CorrBM)<-union(GeneId$node1,GeneId$node2)!
length(rownames(CorrBM))!
CorrBM[as.matrix(GeneId[,1:2])]<-GeneId$value!!
int<-intersect(rownames(CorrBM),rownames(StringBM))!
length(int)!
corr<-CorrBM[int,int]!
corr<-corr[upper.tri(corr)]!
actual<-StringBM[int,int]!
actual<-actual[upper.tri(actual)]!
auc<-c(auc,performance(pred,"auc")@y.values[[1]]!
}!!!!!!
#------!
#select the threshold!
#------!!
scc<-SCC.corr[SCC.corr$value>=.6,]!
g<-graph.data.frame(scc,directed=F)!
E(g)$weight<-scc$value!
ensGene=V(g)$name!!
#------!
#communities detection:!
#------!!
scc.comm<-fastgreedy.community(g)!
V(g)$size =1!
E(g)$count=1!!
comm.graph<-contract.vertices(g,scc.comm$membership,vertex.attr.comb=list(size="sum","ignore"))!
comm.graph<-simplify(comm.graph,remove.loops=TRUE,edge.attr.com=list(count="sum","ignore"))!!!
plot.igraph(comm.graph,!
layout=layout.fruchterman.reingold,!
vertex.size=x.vec+5,!
vertex.label.cex=.5,!
edge.arrow.size=.5,!
edge.color="black",!
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edge.width=1.5)!
dev.off()!!
dg<-decompose.graph(g,method="weak")!
sping.comm<-spinglass.community(dg[[1]])!!
#------!
#ap.cluster!
#------!!
mat<-corPigSpearman$r!
ap.results<-apcluster(mat,includeSim=T,details=TRUE)!
datalist<-list()!
for(n in 1:length(ap.results)){!
  datalist[n]<-ap.results[n]!
}!
datalist<-lapply(datalist,names)!!
#Second level APCluster!
dx<-mat!
APRes_1<-ap.results!
  dx_L2<-
matrix(data=max(dx),nrow=length(APRes_1@exemplars),ncol=length(APRes_1@exemplars))!
  diag(dx_L2)<-0!
  for(kk in 1:(length(APRes_1@exemplars)-1)){!
    for(ll in (kk+1):length(APRes_1@exemplars))!
      dx_L2[kk,ll]=dx_L2[ll,kk]=mean(dx[APRes_1@clusters[[kk]],APRes_1@clusters[[ll]]])!
  }!
  APRes_2<-apcluster(-as.matrix(dx_L2),maxits=5000,seed=1)#Cluster items based on negative 
distances!!!
  APRes_3<-apcluster(as.matrix(dx_L2),maxits=5000,seed=1)#Cluster items based on positive 
distances!!
sum(unlist(lapply(APRes_1@clusters[APRes_2@clusters[[1]]], length)))!
#sapply(gonames,"[[")!!
#------!
#discard the clustering methods, use Transcription Factors- Master Regulator Analysis 
#instead!
#find the transcription factors!
#------!!
ensembl<-useMart("ENSEMBL_MART_ENSEMBL",dataset="sscrofa_gene_ensembl", 
host="www.ensembl.org")!
attributes = listAttributes(ensembl)!
filters = listFilters(ensembl)!
filters="ensembl_gene_id"!
mart=ensembl!
attributes=c("ensembl_gene_id","external_gene_name","name_1006")!
ensGene=V(g)$name!
s<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!!!
tfCheck<-unique(s[grep("transcription factor activity",s$name_1006),"ensembl_gene_id"])!
ltarget<-list()!
for(n in 1:length(tfCheck)){!
ltarget[[n]]<-attributes(neighbors(g,v=tfCheck[n]))$names!
print(n)!
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}!
names(ltarget)<-tfCheck!!
#------!
#find the "photoreceptorial regulons" by searching gnat1 : "ENSSSCG00000024609"!
#------!!
test<-which(!is.na(sapply(lapply(ltarget,function(x) grep("ENSSSCG00000024609" ,x)),"[",1)))!
ensGene<-tfCheck[test]!
attributes=c("ensembl_gene_id","external_gene_name")!
rho_regulators<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart) #(they are 
indeed!)!!
#------!
#rhodopsin regulon!
#------!!
Reg.RHO<-attributes(neighbors(g,v="ENSSSCG00000011590"))$names!
attributes=c("ensembl_gene_id","name_1006")!
regulon.GO<-list()!
for(n in 1:length(test)){!
  print(n)!
ensGene<-ltarget[[test[n]]]!
regulon.GO[[n]]<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
}!
#prepare data for hypergeometric test!
#from "phyper" - Hypergeometric {stats}!
#phyper(x, m, n, k, lower.tail = FALSE, log.p = FALSE)!!
#x: vector of quantiles representing the number of white balls drawn without replacement !
#from an urn which contains both black and white balls. --GENES IN THE REGULON BELONGING 
TO "GO:TERM A"!
#m: the number of white balls in the urn. --no of GENES IN THE REGULON!
#n: the number of black balls in the urn. --no of GENES IN UNIVERSE minus GENES IN THE 
REGULON!
#k: the number of balls drawn from the urn. --no of GENES IN THE UNIVERSE BELONGING TO 
"GO:TERM A"!!
attributes=c("ensembl_gene_id","external_gene_name","name_1006")!
ensGene=V(g)$name!
universe<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!!
#------!
#functions of the "rhodopsin regulon"!
#------!!
goRHO<-getBM(attributes=attributes,filters=filters,values=Reg.RHO,mart=mart)!
terms<-unique(goRHO$name_1006)!
  log10p<-NULL!
  catlength<-NULL!
  Go_Universe<-c()!
  for (i in 1:length(terms)){!
    print(i)!
    x=length(unique(goRHO[goRHO$name_1006==terms[i],"ensembl_gene_id"]))!
    m=length(unique(goRHO$ensembl_gene_id))!
    n=length(unique(universe_all$ensembl_gene_id))-length(unique(goRHO$ensembl_gene_id))!
    k=length(unique(universe_all[universe_all$name_1006==terms[[i]],"ensembl_gene_id"]))!
      log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
      catlength<-c(catlength,x)!
      Go_Universe<-c(Go_Universe,k)!
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  }!
  rho<-data.frame(catlength,terms,Go_Universe,log10p,BH_corrected= p.adjust(log10p, "BH"))!
}!!
#------!
#functions of the photoreceptorial regulons!
#------!!
colnames(universe)<-c('gene','go_term')!
Enrichment<-list()!
for(t in 1:length(regulon.GO)){!
  print(paste("regulon.GO: ",t))!
  terms<-unique(regulon.GO[[t]]$name_1006)!
  log10p<-NULL!
  catlength<-NULL!
  Go_Universe<-c()!
  for (i in 1:length(terms)){!
    !
    x=length(unique(regulon.GO[[t]][regulon.GO[[t]]$name_1006==terms[[i]],"ensembl_gene_id"]))!
    m=length(unique(regulon.GO[[t]]$ensembl_gene_id))!
    n=length(unique(universe$gene))-length(unique(regulon.GO[[t]]$ensembl_gene_id))!
    k=length(unique(universe[universe$go_term==terms[[i]],"gene"]))!
      log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
      catlength<-c(catlength,x)!
      Go_Universe<-c(Go_Universe,k)!
  }!
  Enrichment[[t]]<-data.frame(catlength,terms,Go_Universe,log10p,BH_corrected= p.adjust(log10p, 
"BH"))!!
#------!
#Load data from Botta et al. 2016 !
#Map Differentially expressed genes on Regulons:!
#------!!
load("results_botta_etall.Rdata")!
log10p<-c()!
catlength<-c()!
Go_Universe<-c()!
for (i in 1:length(ltarget)){!
    print(i)!
    x=sum(ltarget[[i]]%in%rownames(r1))!
    m=19!
    n=14982-m!
    k=length(ltarget[[i]])!
      log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
      catlength<-c(catlength,x)!
      Go_Universe<-c(Go_Universe,k)!
  }!!
attributes=c("ensembl_gene_id","external_gene_name")!
nms<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
nams<-nms[match(names(ltarget),nms$ensembl_gene_id),]!!
mapDegsDBD<-data.frame(catlength,"Regulon size"=sapply(lapply(ltarget,length),"["),!
  names(ltarget),nams,FDR=p.adjust(log10p,"BH"))!
mapDegsDBD<-mapDegsDBD[order(mapDegsDBD$catlength,decreasing=T),]!
head(mapDegsDBD)!
subset(mapDegsDBD,mapDegsDBD$names.ltarget.%in%names(ltarget[test]))!!!
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!
#------!
#Generate count data from raw RNASeq data from Farajzadeh et al. 2013!
#------!!
library(AnnotationDbi)!
library(Rsamtools)!
library(GenomicAlignments)!
library(BSgenome.Sscrofa.UCSC.susScr3)!
library(GenomicFeatures)!
library(parallel)!
library(rtracklayer)!!!!
#--------------!
#Directory (locate BAM files)!
#--------------!!
setwd("/Users/curion/Documents/suScrofaNetwork/")!
bamfiles<-list.files(pattern=".bam")!!!!
#------!
#scanBamParam= explore bam file!
#------!!
scanBamHeader(bamfiles[1])!
param<-ScanBamParam(tag="NH")!
nhs <- scanBam(bamfiles[[1]], param=param)[[1]]$tag$NH!!
param <- ScanBamParam(what="cigar")!!
cigars <- scanBam(bamfiles[[1]], param=param)[[1]]$cigar!
cigar.matrix <- cigarOpTable(cigars)!
intron.size <- cigar.matrix[,"N"]!
intron.size[intron.size>0]!
plot(density(intron.size[intron.size>0]))!!
param<-ScanBamParam(what="mapq")!
nameread<-scanBam(bamfiles[[1]],param=param)[[1]]!!
#----!
#Create the Annotation variable!
#histogram(log10(intron.size[intron.size>0]),xlab="intron size (log10 bp)")!
#----!!
supportedUCSCtables()!
#homos<-makeTranscriptDbFromUCSC(genome="hg19",tablename="ensGene")!
#annot<-exons(homos,columns=cols)!!
SusScr3.tx <- makeTranscriptDbFromUCSC(genome="susScr3",!
tablename="ensGene")!
save(SusScr3.tx,file="SusScr3.rda")!
cols<-c("tx_name","tx_id","gene_id")!
geneAnot<-genes(SusScr3.tx,columns=cols)!
eAnnot <- exons(SusScr3.tx)!
gAnnot <- genes(SusScr3.tx)!
tAnnot <- transcripts(SusScr3.tx)!
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colnames(elementMetadata(gAnnot))!!
GRList<-transcriptsBy(SusScr3.tx, by="gene")!!
seqlevels(tAnnot)<-!
  c(c(1:18),"X","Y",seqlevels(gAnnot)[21:length(seqlevels(gAnnot))])!!!!!!
#---------!
#function to import BAM files in R !
#---------!
gAlns <- mclapply(bamFileList,function(bamFile){!
  open(bamFile)!
  gAln <- GAlignments()!
  while(length(chunk <- readGAlignmentsFromBam(bamFile))){!
  gAln <- c(gAln,chunk)!
  }!
  close(bamFile)!
  return(gAln)!
  })!!
bamFileList <- BamFileList(bamfiles)!!!
#---!
#Prelude: change seqLevels in "Chrx" In the annotation DB!!!!
#---!!
gAlns<-mclapply(bamfiles[1:3],readGAlignmentPairsFromBam)!
chrnames<-levels(seqnames(gAlns[[1]]))!!
names<-sapply(chrnames,function(x) paste("chr",x,sep=""))!
names(names)=NULL!
length(gAlns)!
for(n in 1:length(gAlns)){!
  levels(seqnames(gAlns[[n]]))<-names!
}!!
seqlevels(gAnnot)<-!
  c(c(1:18),"X","Y",seqlevels(gAnnot)[21:length(seqlevels(gAnnot))])!!
#---!
#create a count table from Bam files!
#---!!!
#testgAlns <- mclapply(bamFileList,function(bamFile){!
#open(bamFile)!
#gAln <- GAlignments()!
#while(length(chunk <- readGAlignmentsFromBam(bamFile))){!
#gAln <- c(gAln,chunk)!
#}!
#close(bamFile)!
#return(gAln)!
#})!!
count.list <- mclapply(bamFileList,function(bamFile){!
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  open(bamFile)!
  counts <- vector(mode="integer",length=length(gAnnot))!
  while(length(chunk <- readGAlignmentsFromBam(bamFile))){!
  counts <- counts + assays(summarizeOverlaps(gAnnot,chunk,mode="Union"))$counts!
  }!
  close(bamFile)!
  return(counts)!
  })!!
count.table <- do.call("cbind",count.list)!
head(count.table)!!
colnames(count.table)<-names(count.list)!
rownames(count.table)<-tAnnot$tx_name!
save(transcripts.count.table,count.table, file="100samplesTranscript_GeneCounts.Rdata")!!!
#---!
#Prelude: filter out genes with low counts values!
#---!!!
countCPM<-cpm(count.table)!
v<-apply(countCPM,1,mean)!
countCPM<-count.table[which(v>1),]!!
#---!
#Normalization: Deseq2's VST!
#---!!!
countData=countCPM!
colData=data.frame(samples=factor(colnames(count.table)),group=group)!
dds <- DESeqDataSetFromMatrix( countData = countData,!
                               colData = colData,!
                               design = ~ group)!!
dds<-estimateSizeFactors(dds)!
dds<-estimateDispersions(dds)!
dds<-nbinomWaldTest(dds)!!
dds <- varianceStabilizingTransformation(dds, blind=TRUE)!
gene_vstMat <- assay(dds)!
colnames(gene_vstMat)<-colnames(countData)!!
#---!
#The same Network inference Analysis is done on 100 tissues!
#---!!
myData<-gene_vstMat!!
corPig100SCC<-corr.test(t(myData),method="spearman", adjust="BH",alpha=.05,ci=FALSE)!!
mat<-cor100Spearman$r!
mat[lower.tri(mat, diag = TRUE)] <- NA!
SCC.corr<-na.omit(data.frame(as.table(mat)))!
mat<-cor100Spearman$p!
mat[lower.tri(mat, diag = TRUE)] <- NA!
SCC.Pval<-na.omit(data.frame(as.table(mat)))!
SCC.corr<-SCC.corr[SCC.Pval$Freq<=0.05,]!

Inferring Gene Regulatory Networks!
of the Mammalian Retina                                   Page �  12



SCC100.06<-SCC.cor[SCC.corr$Freq)>=0.6,]!!
g<-graph.data.frame(SCC100.06)!
#---!
#take transcritiption factors form data on retina to use exactly the same!
#---!!
tf100<-tfCheck[tfCheck%in%union(SCC100.06$node1,SCC100.06$node2)]!!
ltarget100<-list()!
for(n in 1:length(tf100)){!
ltarget100[[n]]<-attributes(neighbors(g,v=tf100[n]))$names!
print(n)!
}!
names(ltarget100)<-tf100!
lapply(ltarget100,length)!
rho_regulators[rho_regulators$ensembl_gene_id%in%tf100,]!!
#---!
##Go analysis on regulons!
#---!!
library(biomaRt)!
ensembl<-useMart("ENSEMBL_MART_ENSEMBL",dataset="sscrofa_gene_ensembl", 
host="www.ensembl.org")!
attributes = listAttributes(ensembl)!
filters = listFilters(ensembl)!
filters="ensembl_gene_id"!
mart=ensembl!
attributes=c("ensembl_gene_id","external_gene_name","name_1006")!
ensGene=V(g)$name!!
universe<-
getBM(attributes=attributes,filters=filters,values=union(unique(unlist(ltarget)),tf100),mart=mart)!
colnames(universe)<-c('gene','name','go_term')!!
ltarget100<-ltarget100[-which(lapply(ltarget100,length)==0)]!!!
regulon.GO<-list()!
for(n in 1:length(ltarget100)){!
  print(n)!
ensGene<-ltarget100[[n]]!
regulon.GO[[n]]<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
}!!!
Enrichment<-list()!
for(t in 1:length(regulon.GO)){!
  print(paste("regulon.GO: ",t))!
  terms<-unique(regulon.GO[[t]]$name_1006)!
  log10p<-NULL!
  catlength<-NULL!
  Go_Universe<-c()!
  for (i in 1:length(terms)){!
    !
    x=length(unique(regulon.GO[[t]][regulon.GO[[t]]$name_1006==terms[[i]],"ensembl_gene_id"]))!
    m=length(unique(regulon.GO[[t]]$ensembl_gene_id))!
    n=length(unique(universe$gene))-length(unique(regulon.GO[[t]]$ensembl_gene_id))!
    k=length(unique(universe[universe$go_term==terms[[i]],"gene"]))!
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      log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
      catlength<-c(catlength,x)!
      Go_Universe<-c(Go_Universe,k)!
  }!
  Enrichment[[t]]<-data.frame(catlength,terms,Go_Universe,log10p,BH_corrected= p.adjust(log10p, 
"BH"))!
}!
names(Enrichment)<-tf100!!
#------!
#Retina Specific Processes: Differential Expression Analysis!
#------!!
colData<-rbind(colnames(countCPM),colnames(RetinaVST))!
rownames(colData)<-rbind(colnames(countCPM),colnames(RetinaVST))!
colData$tissue<-factor(c(rep("Ret",47),sapply(strsplit(colnames(countCPM,"-"),"[[",1))))!
colData$binary<-factor(c(rep("retina",47),rep("other",100)))!
int<-intersect(rownames(PigCount),rownnames(count.table))!
countData<-cbind(PigCount[int,],count.table[int,])!!
dds_binaryRet<-DESeqDataSetFromMatrix(countData = round(countData),!
      colData = colData,!
      design = ~ binary)!!!
dds_binaryRet<-DESeq(dds_binaryRet)!!
res<-results(dds)dds_binaryRet!
res<-na.omit(res)!!
#----!
#explore DE genes, downregulated in Retina vs all!
#----!!
x<-subset(res, padj<.00001 & (log2FoldChange)<(-10))!!
rownames(x)!
attributes=c("ensembl_gene_id","name_1006")!
ensGene<-rownames(x)!
down_group<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
colnames(down_group)<-c('gene','go_term')!!
terms<-unique(down_group$go_term)!
log10p<-NULL!
catlength<-NULL!
Go_Universe<-c()!
for (i in 1:length(terms)){!
  print(i)!
  x=length(unique(down_group[down_group$go_term==terms[i],"gene"]))!
  #x=length(unique(regulon.GO[[t]][regulon.GO[[t]]$name_1006==terms[[i]],"ensembl_gene_id"]))!
  m=length(unique(down_group$gene))!
  n=length(unique(universe$gene))-length(unique(down_group$gene))!
  k=length(unique(universe[universe$go_term==terms[[i]],"gene"]))!
  log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
  catlength<-c(catlength,x)!
  Go_Universe<-c(Go_Universe,k)!
}!
down_enrichment<-data.frame(catlength,terms,Go_Universe,log10p,BH_corrected= p.adjust(log10p, 
"BH"))!
down_enrichment<-down_enrichment[order(down_enrichment$BH_corrected,decreasing=F),]!
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!
  !
#-------!
#upregulated genes!
#------!!
x<-subset(res, padj<.00001 & (log2FoldChange)>(10))!!
rownames(x)!
attributes=c("ensembl_gene_id","name_1006")!
ensGene<-rownames(x)!
up_group<-getBM(attributes=attributes,filters=filters,values=ensGene,mart=mart)!
colnames(up_group)<-c('gene','go_term')!!
terms<-unique(up_group$go_term)!
log10p<-NULL!
catlength<-NULL!
Go_Universe<-c()!
for (i in 1:length(terms)){!
  print(i)!
  x=length(unique(up_group[up_group$go_term==terms[i],"gene"]))!
  #x=length(unique(regulon.GO[[t]][regulon.GO[[t]]$name_1006==terms[[i]],"ensembl_gene_id"]))!
  m=length(unique(up_group$gene))!
  n=length(unique(universe$gene))-length(unique(up_group$gene))!
  k=length(unique(universe[universe$go_term==terms[[i]],"gene"]))!
  log10p<-c(log10p,phyper(x,m,n,k,lower.tail=F))!
  catlength<-c(catlength,x)!
  Go_Universe<-c(Go_Universe,k)!
}!
up_enrichment<-data.frame(catlength,terms,Go_Universe,log10p,BH_corrected= p.adjust(log10p, 
"BH"))!
up_enrichment<-up_enrichment[order(up_enrichment$BH_corrected,decreasing=F),]!!
#---!
#volcano plot!
#---!!
with(res, plot(log2FoldChange, -log10(pvalue), pch=20, main="Volcano plot", xlim=c(-23,20), 
ylim=c(-4,330)))!
# Add colored points: orange if padj<thr & log2FC>thr2)!
with(subset(res, padj<.000001 & abs(log2FoldChange)>10), points(log2FoldChange, -log10(pvalue), 
pch=20, col="orange"))!!
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