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ABSTRACT 

 

Background  

Mast cells are tissue-resident cells of the innate immunity implicated in the 

pathogenesis of many autoimmune diseases, including rheumatoid arthritis 

(RA). In fact, they are present in synovia and their activation has been 

linked to the inflammatory responses driving the development of RA. 

However, their exact contribution to the development of RA is still unclear. 

In particular, their interactions with other immune cells at synovial levels 

and their correlation to disease outcomes have never been investigated in a 

systematic fashion.  

Objective  

Aim of this PhD project was to elucidate the role of mast cells in 

rheumatoid arthritis, by studying their cellular interaction at synovial levels, 

their influence on the activation of immune cells and, finally, their 

correlation with disease outcomes.  
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Results  

In the synovia of RA patients, mast cells correlated with the degree of local 

inflammations and cellular infiltration. In particular, higher numbers of 

mast cells were associated with the presence of lymphoid aggregates, and 

mast cells were localized in close proximity of cellular aggregates of B and 

T cells. In vitro, mast cells were able to modulate the responses of immune 

cells, suppressing the pro-inflammatory activation of monocytes and 

supporting B cells survival, differentiation and antibody production. In 

patients with early RA, high numbers of synovial mast cells were 

associated with antibody positive disease and with systemic inflammatory 

markers. At the 12 months follow-up, baseline mast cells represented an 

independent predictor of radiographic progression.  

Conclusions  

Mast cells, as part of the inflammatory infiltrate in the synovia of RA 

patients, are able to induce both pro- and anti-inflammatory immune 

responses, which might explain the conflicting results obtained so far with 

experimental models not taking into account their tunable 

immunomodulatory properties. The ex vivo analysis performed in the 
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synovia of early RA patients indicate that mast cell presence can be used to 

further dissect the disease heterogeneity, as mast cells clustered with 

antibody positivity and with a higher degree of local and system 

inflammation. Interestingly, independently from these associations, mast 

cell presence at baseline represented a predictor of radiographic progression 

at 1 year. Overall, our data suggest that mast cells play a multifaceted role 

in the pathogenesis of RA, warranting additional investigations to further 

assess their involvement in disease development, progression and response 

to therapy.  
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INTRODUCTION 
 

Mast cells as effector cells of innate and adaptive immunity 

Mast cells (MCs) are granulated tissue-resident cells of hematopoietic 

lineage 1. Deriving from specific hematopoietic precursors, they circulate as 

immature cells and migrate into vascularized tissues, where they complete 

their differentiation and reside in the proximity of blood vessels. As they 

are present in all anatomic sites exposed to the external environment, they 

represent, together with dendritic cells, the first cells of the immune system 

to interact with environmental antigens, pathogens and toxins. Therefore, 

they can be considered “sentinels” of the immune system 2, localized on the 

frontline, and ready to fight in response to infections and other stimuli. In 

fact, mast cells express many receptors (i.e. complement receptors, Fc, and 

Toll-like receptors), and are able to sense danger signals and react by 

quickly releasing a wide range of mediators, both pre-formed ( e.g. 

histamine, etc) and newly produced (cytokines and chemokines). 

Even though these innate immunity functions partially overlap with other 

immune cells (e.g. neutrophils, macrophages, dendritic cells), evidences 
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from animal models demonstrated that the absence of mast cells 

significantly impairs the ability to respond to bacterial infections 3,4. 

In line with their importance in the fight against pathogens, it is also worth 

noticing that mast cells are highly conserved throughout evolution 5, as 

MC-like cells, containing histamine and heparin, have been described in 

very simple invertebrates 6. In higher species, with the evolution of adaptive 

immunity, mast cells acquire the expression of the high affinity receptors 

for IgE (FceRI) 7. Triggering of the IgE bound to the FceRI induces mast 

cells to degranulate, with the quick release of pre-formed mediators. 

Because of this property, together with circulating basophils, mast cells are 

mainly known as effector cells of IgE-mediated (Th2) responses, an arm of 

the adaptive immune system develop to fight multicellular pathogens, such 

as helminths 8, and in recent years recognized as the mechanism at the basis 

of hypersensitivity reactions 9. 

 

Mast cells and the modulation of adaptive immune responses 

In addition to their functions as effector cells, recent evidences suggest that 

mast cells are able to modulate the adaptive immunity, therefore 

representing an important link between innate and adaptive immunity 10. 
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For example, mast cells express MHC class II and have been shown to 

induce antigen-specific T cell activation 11-13. Vice versa, mediators derived 

from cells of the adaptive immunity can influence mast cell activation, as 

shown for example by the ability of IgG to activate mast cells through the 

FcgammaR 14,15. In the crosstalk between mast cells and adaptive immunity, 

the protective role of mast cells in the response against pathogens, i.e. their 

ability to orchestrate Type 2 responses against helminths 11,16, can become 

harmful when the immune response is dysregulated, and mast cells can 

potentially contribute to the deleterious responses leading to allergy and 

autoimmunity 5. 

A great deal of evidences indicate that mast cells have deleterious effects in 

these contexts, given their ability to release mediators with clear pro-

inflammatory effects, such as histamine, and several prostaglandins and 

cytokines.  

Albeit mostly known for their pro-inflammatory effects, many of these 

mediators have been also shown to have opposite effects.  

As an example, histamine is well-known for its pro-inflammatory functions 

(e.g. vasodilation, increased vascular permeability, bronchospasm etc). 

However, we have shown that basophil-derived histamine is able to shown 
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to suppress the pro-inflammatory activation of monocytes 17, thereby 

contributing to the down-regulation of immune responses. 

Although apparently contra intuitive, it is not surprising that the same cells, 

mechanisms and mediators responsible for the early inflammatory 

responses (e.g. histamine-induced vasodilation) are also able to suppress 

inflammation (e.g. the above cited histamine-induced immune modulation). 

In fact, resolution is a process starting early in the course of inflammation 

in order to restore homeostasis, prevent tissue damage and facilitate wound 

repair.  

In line with this concept, mast cell have been shown to produce mediators 

known for their immune regulatory effects toward the resolution of 

inflammation 18, such as IL-10, and mast cell-derived IL-10 has been shown 

to have protective effects in vivo 19-21. 

Overall, mast cells should be considered more than effector cells, as they 

are able to orchestrate the adaptive immune responses, acting as 

immunomodulatory/ regulatory cells that can be finely tuned by multiple 

stimuli 22,23. 
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Mast cells in rheumatoid arthritis  

As immune cells present the synovial membrane, mast cells have been 

implicated in the pathogenesis of many rheumatic diseases, including 

Rheumatoid Arthritis (RA) 24. The synovial membrane is the primary 

inflammatory site of RA and its inflammation – i.e. synovitis - is mainly 

characterised by thickening of the synovial layer, with cellular hyperplasia 

and infiltration of immune cells 25. Mast cells are among the immune cells 

found in the inflamed synovia of RA patients. They are known to be present 

as resident cells in healthy synovia 26, and an increase in their numbers has 

been shown to accompany the cellular hyperplasia in RA 27-29. Starting from 

this observation, many attempts have been made to further elucidate their 

involvement in the disease process leading to RA. Robust laboratory 

evidences support the hypothesis of a pro-inflammatory (pro-arthritogenic) 

role of mast cells in the pathogenesis of RA, and the pathways leading to 

mast cell activation in the context of rheumatic diseases and their effector 

functions have recently been extensively reviewed 30. However, mast cell 

activation in inflamed tissues is sometimes considered as a mere 

consequence of tissue inflammation, rather than playing a specific role in 

disease pathogenesis. The functional contribution of mast cells to RA and 
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other autoimmune diseases is difficult to assess in patients, because of the 

lack of specific mast cell inhibitors for clinical studies. Therefore, the study 

of their functional relevance relies on the use of animal models, that in most 

cases do not fully reproduce the human disease, only representing one 

component of the immune response 31. Therefore, it is not surprising that 

different animal models generated inconclusive results, failing to confirm 

specific role for mast cells, so that many of their functions have been 

labelled as redundant. More recently, the inconsistency of the results in 

vivo has been attributed to the experimental flaws of the techniques to 

obtain mast cell depletion 32. In fact, early experiments used models of mast 

cell depletion based on mutations affecting c- kit (Stem Cell Factor 

receptor) structure or expression and that consequently exhibit a profound 

MC deficiency together with a variety of other phenotypic abnormalities. 

The promising results obtained in such models have been subsequently 

challenged by using new ‘KIT-independent’ models of MC deficiency, so 

that, in many contexts, the involvement of mast cells have been now 

labelled as redundant 33.  

A recent publication further addressed the complexity of the animal models 

to study the involvement of mast cells in RA, finally shedding some light 
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on the inconsistent results obtained so far 34. Schubert and colleagues 

studied MC functions using both antibody-induced and antigen-induced 

experimental arthritis in Mcpt5-Cre;iDTR mice as a model of inducible 

MC-deficiency that is independent of Kit mutations and reflects a normal 

immune system despite the absence of MCs. Consistently with previous 

findings 35 MC role was found to be redundant in the K/BxN serum-induced 

joint inflammation. However, in this model, joint inflammation is induced 

passively by the injection of an arthritogenic serum, therefore only 

assessing the effector functions of the immune system. This is suggesting 

that mast cells are dispensable for this type of response, which is only a part 

of the complex immune response leading to the development of RA. On the 

contrary, mast cell depletion significantly reduced the disease severity in a 

model of collagen-induced arthritis, based on an active immunization with 

an antigen (collagen), more accurately mimicking the early phases of RA, 

in which mast cells could contribute to the breach of tolerance against self-

antigens. The conclusion from this study is that mast cells could play a role 

in the early immune response in the course of arthritis, while their functions 

seem to be redundant in the later effector phases.  
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Albeit fascinating, the transfer of these results to human disease is complex, 

especially because animal models rely on genetically identical mouse 

strains, clearly not taking into account the heterogeneity of the human 

diseases, which is particularly true for RA, well recognized as a highly 

heterogeneous disease, with enormous differences between patients in 

terms of pathogenesis 36, disease progression and response to therapy25,37. In 

this context, the previously discussed evidences of the anti-inflammatory 

and immunomodulatory roles of mast cells could offer an alternative 

explanation for the conflicting results obtained in different animal models. 

In particular, it is intriguing to speculate that mast cells, as tunable effector 

cells, have various functions in different patient subsets, and, possibly, in 

different disease stages, adding more complexity to the heterogeneity of 

RA.  

The only way to confirm this hypothesis would be to study the presence of 

mast cell directly at synovial level, which has been challenging in the past, 

with a few studies relying on synovial tissue obtained by arthroscopy or 

during surgery in patients with long-standing disease 38,39. However, the 

recent technological advancements of ultrasound-guided synovial biopsies 

allowed to obtain synovial tissue from patients with a minimally invasive 
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procedure 40. Therefore, synovial histology has been proposed as a tool to 

dissect the heterogeneity of RA, and the study of synovial histopathology in 

early patients has led the stratification of patients in subgroups, according 

to histological patterns (pathotypes), that are emerging as potential 

taxonomic classifiers of disease phenotypes 41. In particular, synovial 

histopathology, depending on predominant type of infiltrating cells, has 

been defined as fibroid, myeloid and lymphoid. The latter is characterized 

as lymphoid follicle-like structures ranging from T and B cell aggregates to 

highly organized structures comprising follicular DC (fDC) networks 

reminiscent of germinal centres (GCs). These structures are present in up to 

40% of RA patients 41,42 and have been associated with severe disease, T 

cell priming, and autoantibody production 43-45. Particularly interesting is 

the evidence that these ectopic lymphoid structures (ELS) support the local 

ongoing production of class-switched autoantibodies 45, including anti-

citrullinated protein/peptide antibodies (ACPA), which are highly specific 

markers of RA, predict a poor prognosis, and have been suggested to be 

pathogenic. 

Although mast cell presence in synovia has been known for a long time, it 

is not clear if their presence is associated with any of the pathotypes and, 
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ultimately, if the analysis of synovial mast cells could contribute to a better 

definition of the synovial histopathology. 

Aim of this PhD project was to elucidate the role of mast cells in 

rheumatoid arthritis, by studying their cellular interaction at synovial levels, 

their influence on the activation of immune cells and, finally, their 

correlation with disease outcomes. 
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MATHERIALS AND METHODS 
 

Peripheral blood derived mast cells. 

Buffy coat cells were obtained from the peripheral blood of healthy 

volunteers, with samples collected from a blood bank. CD34+ 

hematopoietic stem cells were isolated from peripheral blood mononuclear 

cells (PBMCs) using CD34 microbeads (Miltenyi Biotec). Isolated CD34+ 

stem cells were differentiated into mast cells using a previously described 

method 46. After 6–8 weeks, the purity of the mast cells was determined by 

flow cytometry analyses for the expression of CD117 (c-Kit), Ig E-class–

binding Fc receptor type I (FcERI), and CD203c; purity ranged from 90% 

to 99%. 

Mast cell activation 

Plate bound IgG were used as a model to study Fc-receptor-mediated-

activation of mast cells 47,48. Briefly, culture plates (flat-bottom 96-wells or 

48-wells) were coated with 100 g/mL of purified human IgG (Jackson 

Immunoresearch) in PBS for 1,5 hours at 37 °C and washed 2x with PBS 

Mast cells were cultured at a concentration of 1x106/mL in RPMI-1640 
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medium containing 10% fetal calf serum (FCS), glutamine, penicillin, 

streptomycin (Invitrogen) + 100 ng/mL of SCF (Tebu-bio), without or with 

100 ng/mL of recombinant human IL-33 (PeproTech). After 24h, cells were 

harvested, supernatants collected and stored at -20°C and cells used for 

flow cytometry analyses. 

 

IgG-ACPA mediated mast cell activation 

CCP2 peptides were obtained from Dr. Drijfhout, Department of IHB, 

LUMC, The Netherlands. Nunc Maxisorp plates (VWR) were coated with 

CCP2 peptide or arginine control peptide and incubated at 37 degrees for 1 

hour with serum of ACPA-positive RA patients, diluted 50x in 

PBS/0,1%BSA. After washing, mast cells were added to the wells, and 

cultured in the presence or absence of 100 ng/mL of recombinant human 

IL-33. After 24h, cells were harvested, supernatants collected and stored at 

-20°C. 

 

Monocyte isolation and stimulation with Mast cell supernatants 

CD14+ monocytes were isolated from buffy coats PBMCs using magnetic-

labeled anti-CD14 beads (Miltenyi Biotec), according to the manufacturer’s 
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instructions. Isolated monocytes (purity > 95%) were cultured in the same 

medium used for mast cells. 

Monocytes were incubated with mast cell supernatants (diluted 1:4 in 

medium) or control media and stimulated with lipopolysaccharides (LPS) 

from Salmonella typhosa (Sigma-Aldrich) at a concentration of 5 ng/mL. 

After overnight (18h) incubation, cells were harvested, supernatants 

collected and stored at -20°C for further analysis. Cells were used for flow 

cytometry analyses. For blocking experiments, supernatants of activated 

mast cells were pre-incubated with anti-IL-10 antibody or matching isotype 

control Rat IgG2a (BDBiosciences) at 10 g/ for 30 min at 37°C in 5% 

CO2 atmosphere, prior to addition to the monocytes. For inhibition of 

histamine, monocytes were pre-incubated for 30 min at 37°C with 

histamine receptor 2 antagonist ranitidine at 10-4 M (Sigma) 17.  

B-cell isolation  

Human B cells were immunomagnetically selected from tonsils obtained 

following routine tonsillectomy. Briefly, tonsils were washed with chilled 

(4°C) MACS buffer (phosphate buffered saline (PBS), 0.5% FCS and 2 

mM EDTA), minced and gently mashed through a cell strainer. Cells were 

washed, centrifuged and B cells were isolated using anti-IgD microbeads 
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(Miltenyi Biotec), according to the manufacturer’s instructions. The purity 

of IgD+ unswitched B cell isolation was checked by fluorescence activated 

cell sorting.  

Co-culture of B cells and Mast cells  

IgD+ B cells and mast cells were resuspended at a concentration of 

1x106/mL in IMDM-1640 medium containing 10% fetal calf serum (FCS), 

glutamine, penicillin, streptomycin (Invitrogen). In cell–cell contact 

experiments, B cells (1×10 6 cells/300 µl/ well) were cultured together with 

mast cells at a ratio of 1:6 (1x10/ 50 µl/ well) In transwell experiments, 

microporous PET cell inserts (3 µm pore) were employed, with mast cells 

in the upper well and B cells on the base of the well. B cells were activated 

with 1ug/mL of CPG. After 6 days, cells were harvested, supernatants 

collected and stored at -20°C for further analysis and cells were 

resuspended for FACS analysis. In parallel experiments, B cells were 

labelled with CFSE (Biolegend) a 5 µM, according to the manufacturer’s 

protocol.  

Patient samples 

Serum samples were obtained from RA patients, with the presence of total 

IgG-ACPA tested by routine diagnostic ELISA. Synovial tissue for 
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immunofluorescence analysis was obtained from 3 patients (aged 59, 70 

and 76) with ACPA+ established RA patients who had undergone surgery. 

For mRNA sequencing, mRNA was extracted from the synovial tissues 

obtained from ultrasound guided biopsies of patients with early (< 12 

months) active RA naïve for DMARDs therapy (n=40), enrolled in the 

Pathobiology of Early Arthritis Cohort (PEAC) cohort 

http://http://www.peac-mrc.mds.qmul.ac.uk 41 of the Centre for 

Experimental Medicine and Rheumatology of Queen Mary University 

(London). Additionally, the presence of mast cells was analysed by 

immunohistochemistry in a total of 90 patients from the PEAC cohort. The 

PEAC is a prospective, observational study in patients with early 

symptomatic arthritis (3-12months durations), in which patients were 

categorized, monitored and treated according to best practice. X rays at 0 

and 12 months were scored according to the Van der Heijde-modified 

Sharp method 49 and radiographic progression was defined as an increase in 

the Van der Heijde-modified Sharp score by more than 1 points over 1 year. 

All patients selected for our analyses fulfilled the 1987 revised American 

College of Rheumatology criteria for RA 50. Written informed consent was 
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obtained from the patients, and the study was approved by local human 

ethics committees. 

Immunofluorescence  

Samples were fixed by 4% (wt/vol) formaldehyde (Merck) in PBS and 

stored in 70% (vol/vol) ethanol. Tissues were embedded in paraffin, 

sectioned at 4 μm. Slides were deparaffinised with xylene (Merck), 

endogenous peroxidase activity was blocked with 1% hydrogen peroxide 

(Merck) in methanol for 10 min. After antigen retrieval with a Tris/EDTA 

solution (pH9; DAKO) for 30 min at 96 °C, slides were stained with 

primary antibodies (tryptase, CD117, CD14, CD3, CD20) or corresponding 

isotypes (Dako). Detection was performed using the appropriate secondary 

antibodies (Invitrogen). All slides were mounted with Vectashield Hard Set 

mounting medium with DAPI (Vector Laboratories). Slides were stored in 

the dark at 4ºC before visualisation using a Zeiss Axio Scope A1 and 

AxioVision 4.9.1 or a microscope name and cellSens software (Olympus).  

 

Immunohistochemistry analysis of synovial tissue 

Sections of paraffin embedded synovial tissue obtained by ultrasound-

guided synovial biopsy from DMARD-naïve patients with early (<12 



28 
 

months) RA (n=90) were stained with H&E and underwent semi-

quantitative (SQ) scoring (0-9) to determine the degree of synovitis, 

according to a previously validated method 51. Sequentially cut sections 

were stained by IHC for CD117+ MCs and immune cells (CD20+ B cells, 

CD3+ T cells, CD68+ macrophages and CD138+ plasma cells). Upon SQ 

scoring (0-4), sections were stratified into synovial pathotypes according to 

the degree of immune cell infiltration: (i) Lymphoid- grade 2/3 B cell 

aggregates, CD20≥ 2 and/or CD138>2 ii) Myeloid- CD68 SL≥ 2, CD20≤1 

and/or CD3≥1, CD138≤2 and iii) Fibroid- CD68 SL<2 and CD3, CD20, 

CD138<1).  

 

Flow cytometry 

For flow cytometry staining, cells were incubated with fluorochrome-

conjugated antibodies diluted in PBS 0.5% BSA at 4 ºC for 30 min. To 

exclude dead cells, just prior to flow cytometric acquisition, 0.2 uM DAPI 

(Invitrogen) was added. Flow cytometric acquisition was performed on 

LSR-II (BD). Analysis was performed using FACS Diva (BD) and FlowJo 

software (Tree Star Inc.).  
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Measurement of cytokines and immunoglobulins 

Quantitative immunoassays in mast cell culture supernatants were 

performed using the 42-plex cytokine Milliplex assay (Millipore). 

Additionally, the following ELISA kits were used: Human IL-8 ELISA 

Ready-SET-Go!® (ebioscience), Human TNF ELISA set (BD Biosciences), 

IL-10 Human PeliPair™ ELISA kit (Sanquin Reagents) and Histamine 

ELISA kit (Neogen), IgG and IgM ELISA kit (Jackson Immunoresearch). 

mRNA sequencing  

Total RNA from synovial tissue was extracted using the Qiagen RNeasy 

mini kit as per manufacturer’s protocol including the on-column DNase 

digestion. Quality control of samples was done to determine RNA quantity 

and quality prior to their processing by RNA-seq. The concentration of total 

RNA samples was determined using NanoDrop 8000 (Thermo Scientific). 

The integrity of RNA samples 1was determined using both 2100 

Bioanalyzer and 2200 TapeStation (Agilent Technologies). Where 

available, 1ug of total RNA was used as an input material for library 

preparation using TruSeq RNA Sample Preparation Kit v2 (Illumina). 
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Generated libraries were amplified with 10 cycles of PCR. Size of the 

libraries was confirmed using 2200 TapeStation and High Sensitivity D1K 

screen tape (Agilent Technologies) and their concentration was determined 

by qPCR based method using Library quantification kit (KAPA). The 

libraries were first multiplexed (five per lane) and then sequenced on 

Illumina HiSeq2500 (Illumina) to generate 50 million of paired end 75 base 

pair reads (synovial samples). For the data analysis, the Genomic Short-

read Nucleotide Alignment Program (GSNAP) (http://research-

pub.gene.com/gmap/) was used to map and assemble transcripts using the 

UCSC hg19 human genome reference sequence and associated 

transcriptome map. 
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RESULTS 
 

Mast cells activation in rheumatoid arthritis  

We investigated the activation of mast cells by stimuli known to be present 

in human synovium and implicated in the pathogenesis of RA, such as IgG 

immune complexes, specifically ACPA-IgG. 

Mast cell activation, evaluated by measurement of CXCL8/IL-8 levels, was 

observed upon triggering with IgG ACPA immune complexes, which were 

formed by binding of the serum of patients with ACPA-positive RA to 

citrullinated peptides (Figure 1, A-B). Importantly, mast cells were not 

activated by ACPA-positive serum incubated with the arginine control or 

by serum from ACPA- negative patients. The activation of mast cells by 

IgG was significantly enhanced by TLR agonists 14, including endogenous 

ligands (e.g. HSP70), known to be present in synovia (Figure 1, C-D).  

Overall, these data indicate that mast cells can contribute to synovial 

inflammation by producing pro-inflammatory mediators (IL-8, a potent 

chemoattractant for neutrophils) upon triggering with IgG immune 

complexes, including ACPA immune complexes and that other stimuli 

present in synovia (e.g. TLR ligands) can further enhance this response. 
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This is in line with previous reports indicating a deleterious role for mast 

cells in RA 52,53 54, recently reviewed in 30. 

Figure 1. Activation of mast cells by ACPA immune complexes 

A, B Mast cells were stimulated on CCP-coated plates incubated with no serum (ctr) or 

serum of antibodies against citrullinated proteins (ACPA+) and ACPA− rheumatoid 

arthritis patients, as indicated, for 24 h, after which IL-8 production was measured in 

supernatant. Results are shown as the summary of all experiments (A) or pairwise (B), 

with each symbol representing an individual patient serum tested. C, IL-8 production by 

mast cells in response to combined triggering using plate-bound ACPA and HSP70 or 

their separate stimulations. Results are shown as the summary of all independent (n=5) 

experiments. D, IL-8 production after combined stimulation with HSP70 and ACPA 

(closed symbols) compared to the sum of IL-8 following separate stimulation with 

HSP70 and ACPA(open symbols). Asterisks indicate significant (p<0.05) differences 

between the indicated conditions, using paired samples t test.  

Modified from Suurmond J, Rivellese F, et al. Ann Rheum Dis. 2015 Oct;74(10):1915-

23.doi: 10.1136/annrheumdis-2014-205562 
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Mast cells as immunomodulatory cells in rheumatoid arthritis 

Having found that mast cells can be activated by IgG immune complexes, 

we assessed the influence of IL-33 on IgG-induced mast cell activation. 

Interestingly, IL-33 was shown to prime mast cells toward a Th2 & 

immunomodulatory phenotype. In fact, stimulation of mast cells with IL-33 

induced higher amounts of histamine and IL-10, compared to the induction 

CXCL8/IL-8 upon triggering with IgG (Figure 2, A). Likewise, only IL-33, 

and not pbIgG, induced the upregulation of the mast cell activation marker 

CD203c (Figure 2, B). The histamine release observed upon IL-33 

triggering was not accompanied by the upregulation of CD63, a marker of 

mast cell degranulation. Combination of the two stimuli led to an increased 

activation of mast cells, with the release of significantly higher amounts of 

CXCL8/IL-8, histamine and IL-10, as compared to unstimulated mast cells 

or to single stimuli (Fig 2 A, last columns). To discriminate between an 

additive or synergistic effect, we compared the sum of single stimuli with 

the actual amounts produced upon combined stimulation with IL-33 and 

pbIgG (Figure 2C, empty Vs filled dots). This comparison showed higher 

amounts of histamine and IL-10 with combined stimulation, indicating a 



34 
 

clear synergistic effect for these IL-33-triggered mediators, while for 

CXCL8/IL-8 only an additive effect was observed.  

Figure 2. Activation of mast cells via interleukin-33 (IL-33) and immune complexes 

Mast cells were triggered with IL-33 or plate bound IgG for 24h. A, CXCL8/IL-8, 

histamine and IL-10 measured by ELISA. Mean + SEM from 4 independent 

experiments (n=4). B, Expression of CD203c left, as Median Fluorescence Intensity 

(MFI) ratio to isotype, and CD63 (right), as % of positive mast cells. Each symbol 

represent a mast cells donor (n=12) from 5 independent experiments *p<0.05 

determined by ANOVA with Bonferroni’s post-test (for multiple comparisons) C, 

Synergy was assessed by comparing sums of mediators measured in single stimulations 

(IL-33 + IgG) and the actual values measured in the supernatants of cells simultaneously 

stimulated (IL-33 & IgG). Each symbol represents a mast cells donor (n=4) from 4 

independent experiments C, CXCL8/IL-8 levels, measured by ELISA, after incubation 

of mast cells with ACPA+ RA sera bound to citrullinated peptides or arginine controls 

(n=6 mast cell donors, with sera from 3 ACPA+ patients). D, Histogram (representative 

of 4 independent experiments, n= 4 mast cell donors) showing FcRIIa expression by 
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mast cells upon stimulation with IL-33 (black line) and blocking of IL-33 receptor ST2 

(dashed black line). On the right, expression of FcRs by mast cells without and with IL-

33 triggering, as MFI ratio to isotype. Each symbol represent a mast cells donor (n>7) 

from 5 independent experiments. *p<0.05 determined by ANOVA with Bonferroni’s 

post-test (for multiple comparisons) and by Student t test (for comparisons between two 

groups). Modified from Rivellese F, et al. Arthritis Rheumatol. 2015 Sep;67(9):2343-53. 

doi: 10.1002/art.39192. 

 

 

We next sought to identify the mechanism by which IL-33 enhances mast 

cell activation and hypothesized that IL-33 modulates the expression of Fc 

receptors on mast cells. Indeed, IL-33 induced a significant up regulation of 

the activating FcRIIa (Figure 2 D). This effect was mediated by the IL-33 

receptor ST2, as it could be blocked by anti-ST2 antibodies (Figure 2 D). 

Importantly, we did not detect expression of other FcRs by cultured human 

mast cells and these were not influenced by IL33 stimulation (Figure 2 D, 

right).  

Together, these results indicate that IL-33, via its receptor ST2, induces the 

up regulation of FcRIIa, enhancing the activation of mast cells upon 

triggering with pbIgG, as well as ACPA-IgG, as demonstrated by the 

increased production of CXCL8/IL-8. More specifically, IL-33 induces 
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IgG-triggered mast cells to release histamine and IL-10, but not CXCL8/IL-

8, in a synergistic fashion. To further support the notion that IL-33 is able to 

modulate mast cell activation by IgG, we performed a multiplex assay on 

MC supernatants.  

In line with previous literature, MCs triggered with IL-33 and pbIgG 

secreted a wide range of mediators 55-57. When comparing the two 

stimulations, we found that pbIgG induced higher amounts of classical pro-

inflammatory mediators, while IL-33 induced higher levels of Th2 and 

immunomodulatory cytokines such as IL-5, IL-10 and IL-13. 

Interestingly, as shown in Figure 3A, the combination of IL-33 and pbIgG 

induced higher levels of these cytokines, when compared to IL-33 single 

stimulation. 
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Figure 3. IL-33 skews mast cells toward an immunomodulatory phenotype.  

A, comparison between single and combined stimulations with IL-33 and pbIgG. B, 

Synergy, assessed as in Figure 1B. n=3 mast cell donors, 3 independent experiments, 

measured by multiplex (only the mediators significantly increased upon stimulation of 

mast cells with either IL-33 or pbIgG are shown). *p<0.05 determined by ANOVA with 

Bonferroni’s post-test (A) and by Student t test (B). Modified from Rivellese F, et al. 

Arthritis Rheumatol. 2015 Sep;67(9):2343-53. doi: 10.1002/art.39192. 
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On the contrary, no additional effects of IL-33 could be observed on top of 

IgG for the pro-inflammatory mediators such as TNF-or FLT-3Ligand. In 

line with the data presented in Figure 2B, the combined stimulation showed 

a synergistic effect that was only present for the mediators induced by IL-

33 (Figure 3B).  

Altogether, these data indicate that IL-33 is not simply enhancing mast cell 

activation by IgG, but is actually able to fine tune mast cell activation, 

inducing the production of a specific set of Th2-associated and 

immunomodulatory mediators. 

Interaction of mast cells with synovial immune cells  

To better understand the possible consequences of mast cell activation at 

the synovial level in RA, we investigated the occurrence of cellular 

interactions between mast cells and other immune cells ex vivo, by 

performing immunofluorescent stainings for mast cells tryptase together 

with the monocyte/macrophage marker CD14, the B cell marker CD19 or 

the T cell marker CD3 on tissue sections from synovia of RA patients. We 

found numerous tryptase+ cells (mast cells) scattered in the synovium of 

RA patients. Interestingly, tryptase+ cells showed clear cell-to-cell 
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interaction with CD14+ (Figure 4A), CD3+ (Figure 4B) and CD20+ cells 

(Figure 4C).  

 

Figure 4. Mast cells interaction with immune cells in RA synovium 

A-C, Immunofluorescence analysis of RA synovia, showing tryptase+ mast cells, in red, 

closely interacting with other immune cells, in green: CD14+ cells (A), CD3+ T cells 

(B) and CD20+ B cells (C). In blue nuclear staining (DAPI). Representative images 

from one donor out of three showing similar results. Modified from Rivellese F, et al. 

Arthritis Rheumatol. 2015 Sep;67(9):2343-53. doi: 10.1002/art.39192. 

 

To quantify these interactions, we counted the number of tryptase+ cells in 

close contact with each cell type. As shown in Table 1, a substantial 

proportion of mast cells (mean of 19.5 %) was found to be in contact with 

CD14+ cells in the synovia of RA patients. Similarly, the proportion of total 

CD14+ cells interacting with mast cells was considerably higher compared 

to B and T cells. 
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These results show that mast cells in the synovia of RA patients are in close 

contact with immune cells. In particular, a substantial number of synovial 

mast cells are localized in proximity of synovial CD14+ cells. 

Table 1. Interactions between mast cells (MCs) and other immune cells in RA synovia  

RA 1 RA 2 RA 3 Mean* 

Mast cells 31.3 11.7 30.7 24.6 
Close to CD14+ 6.7 (21.4%) 1.7 (14.6%) 6 (19.6%) 4.8 (19.5%) 

Mast cells 18.7 24 26.3 23 
Close to CD20+ 1.7 (9.1%) 3 (12.5%) 0.3 (1.1%) 1.7 (7.3%) 

Mast cells 27.3 25.6 38.3 30.4 
Close to CD3+  3.3 (12.1%) 1.7 (6.6%) 2 (5.2%) 2.3 (7.6%) 

     

CD14+ cells 80.7 7.0 125.3 71 
Close to mast cells 8.3 (10.3%) 0.3 (4.3%) 11.0 (8.8%) 6.5 (9.2%) 

CD20+ cells 49.6 45.0 240.3 111.6 
Close to mast cells 1 (2.0%) 0.3 (0.7%) 2.3 (1%) 1.2 (1.1%) 

CD3+ cells 358.6 0 14.7 124.4 
Close to mast cells 6.7 (1.9%) 0 (0 %) 0 (0 %) 2.2 (1.8%) 

Means of the number of cells counted in 10 high power fields by 3 independent and 

blind observers. RA = Rheumatoid arthritis. n=3. *Mean of the three patients.  

Modified from Rivellese F, et al. Arthritis Rheumatol. 2015 Sep;67(9):2343-53. doi: 
10.1002/art.39192. 
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Modulation of monocyte responses by mast cells 

Since a substantial proportion of mast cells were located near CD14+ cells 

in synovium (Figure 4 and Table 1), we next examined whether IL-33-

primed mast cell supernatants were able to influence the activation of 

CD14+ cells. To this end, LPS was used to boost the pro-inflammatory 

activation of CD14+ monocytes, as a model for TLR-4-induced activation 

of monocyte. Monocyte responses were evaluated in the presence or 

absence of mast cell supernatants. We used TNF-production as read-out 

because mast cells produce little amounts of TNF-compared to LPS-

stimulated monocytes. Figure 5A shows that the supernatants of mast cells 

inhibited the TLR4-mediated TNF- production by monocytes. The 

activation of mast cells with IL-33 and pbIgG significantly enhanced the 

inhibition of TNF- production without affecting monocyte survival 

(measured by DAPI staining, data not shown). This effect was in part 

dependent on IL-10, as it could be partially inhibited by IL-10 blocking 

antibodies (Figure 5B). In addition, blocking of histamine receptor 2 with 

ranitidine also partially reverted TNF- production by monocytes. When 

both histamine and IL-10 were blocked, the ability of monocytes to produce 
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TNF-was further retained. Importantly, direct effects of IL-33 on 

monocytes were excluded as no effect on the release of cytokines by 

monocytes was observed after adding this cytokine to the control media. 

Membrane markers of monocyte activation were also evaluated and the 

influence of mast cell mediators was assessed with blocking experiments. 

Interestingly, the LPS-induced expression of the co-stimulatory molecule 

CD80 was reduced by mast cell supernatants (Figure 5C), an effect mainly 

dependent on histamine, as it could be reverted by histamine receptor 2 

antagonist ranitidine. 

Altogether, these data indicate that IL-33 triggered mast cells inhibit the 

pro-inflammatory responses of monocytes, as shown by the suppression of 

TNF-production and CD80 expression, presumably through the release of 

IL-10 and histamine. 
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Figure 5. Mast cells modulate monocyte activation 

A, Monocytes were incubated with control media, containing the same stimuli used for 

mast cells (i.e. IL-33, white bars), or mast cell supernatants (black bars) and triggered 

with LPS. TNF- levels were measured by ELISA after 18h. TNF- levels in mast cell 

supernatants were below detection levels (dotted line). B, Monocytes were incubated 

with the supernatants of activated mast cells and anti-IL-10 blocking antibody, 

correspondent isotype control and histamine receptor 2 antagonist ranitidine. LPS-

induced TNF- is shown as percentage over control, with control media set as 100%. C, 

Flow cytometry analyses of the expression of CD80 by monocytes triggered with LPS 

after incubation with IL-33 + pbIgG mast cell supernatants, with IL-10 blocking and 

ranitidine. A-B, Data is shown as mean + SEM, n=6 monocyte donors and 12 mast cells 

donors, 5 independent experiments. C, Mean + SEM from n=6 monocyte donors and 8 

mast cell donors, 4 independent experiments, with histograms of a representative 

experiment on the right *p<0.05 For comparison between two groups, Student t test was 

performed. For multiple comparison of conditions, ANOVA was used with Bonferroni’s 

post-test. Modified from Rivellese F, et al. Arthritis Rheumatol. 2015 Sep;67(9):2343-

53. doi: 10.1002/art.39192. 
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Synovial expression of mast cell-related genes inversely associates with 

disease activity in early RA patients 

 To investigate whether the mast cell mediated 

immunomodulatory/homeostatic functions we observed in vitro might have 

a functional relevance in RA patients, we analysed the mRNA extracted 

from synovial biopsies of RA patients with early disease (<12 months), 

naïve to DMARDs therapy. As expected, the levels of mRNA of immune 

cells markers (e.g. CD3, CD14, CD16) and TNF- were significantly 

higher in patients with severe disease activity (i.e. DAS28 >5.2) than in 

patients with moderate disease activity (i.e. 3.2 >DAS28 ≤5.1) (Figure 6A). 

In contrast, the opposite observation was made for the mRNA-expression 

levels of mast cell-specific genes, selected on the basis of a recent study 

describing highly specific genes for human mast cells (39). Using the 

mRNA levels of these genes as a proxy for the presence of mast cells, we 

observed that most of the mast cell-related genes (such as, for example, c-

kit, tryptase  and chymase, etc.) displayed a significantly lower 

expression in patients with severe disease activity (i.e. DAS28 >5.2) than in 

patients with moderate disease activity (i.e. 3.2 >DAS28 ≤5.1) (Figure 6B). 

These data are in line with the observations made in our in vitro studies, as 
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they suggest that mast cell markers, unlike other immune cells, are not 

associated with a more severe clinical phenotype.  

Finally, the mRNA levels of IL-33 showed an inverse correlation with pro-

inflammatory markers, such as CD14, the FcRIIIa and TNF-Figure 6C).  

Together, these data further support our hypothesis that IL-33 triggered 

mast cells have an immunomodulatory/homeostatic role in RA and could 

potentially influence the disease severity in patients with RA.  

 

Figure 6. Gene expression in the synovia of early RA patients. 

A, mRNA levels of immune cell markers and TNF-in patients with moderate (3.2 > 

DAS-28 ≤ 5.1, empty dots) and severe (DAS-28 > 5.2, filled dots) disease activity. B, 

mRNA levels of mast cell-specific genes in patients grouped as above. C, Correlation of 

IL-33 mRNA levels with CD14, FcRIIa and TNF- Each dot represents a single 

patient, with line at the mean in A and B and regression line in C. n=40 *p<0.05 with 

Student t test performed to compare means of expression levels in two groups of patients 
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(moderate Vs severe DAS-28) for each gene in A and B and Pearson’s correlation in C. 

Modified from Rivellese F, et al. Arthritis Rheumatol. 2015 Sep;67(9):2343-53. doi: 

10.1002/art.39192. 

 

Synovial mast cells correlate with synovial inflammation and cellular 

infiltration in patient with early RA  

Having found that mast cell activation in synovia can be differently induced 

toward pro-inflammatory or immunomodulatory responses, we wondered if 

mast cells, as tunable effector cells, could have various functions in 

different patient subsets, and, possibly, in different disease stages, further 

adding complexity to the heterogeneity of RA. 

To address this question, we analysed the presence of mast cells in the 

synovia obtained by ultrasound-guided biopsy from a large cohort of 

patients (n=90) with early RA. Table 2 shows a summary of patient 

characteristics. Importantly, these patients had disease duration of less than 

12 months (early RA) and were naïve to therapy with DMARDs, allowing 

for the first time the study of synovial inflammation without the biases of 

long-standing disease and/or immunosuppressive therapy.  

 

 



47 
 

Table 2. Summary of patient characteristics (n=90) 

Age, years mean (SD), range 52 (16) 19-89 

Sex (% Female)  72.3%   

DAS-28 mean (SD), range 5.64 (1.39) 1.88-8.92 

ACPA+ % 78.7%   

RF+ % 74.5%  

ESR (mm/h) mean (SD), range 39 (30) 2-120 

CRP mean (SD), range 17 (27) 0-162 

Disease onset (Months) mean (SD), range 6 (3) 1-12 
 

As shown in Figure 7, MCs were positively correlated with the degree of 

synovial inflammation, evaluated by the Krenn score, a validated 

measurement taking into account the enlargement of lining cell layer, the 

cellular density of synovial stroma and the leukocytic infiltrate 51. 

MCs correlated with the infiltration of T cells, B cells, macrophages and 

plasma cells. Of particular interest is the strong correlation with B cells.  
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Figure 7. Mast cells correlate with synovial inflammation 

Density of mast cells (number of cells/mm2) in relation to synovitis score, and 

semiquantitative score of T cell, B cells, macrophage and plasma cells. n=90. Spearman 

correlation. 

 

We have then stratified patients according to MC numbers, as shown in 

figure 8 A.  

The results in table 3 indicate that the groups of patients with high mast cell 

counts have significantly higher levels of inflammatory markers (CRP and 

ESR) and a higher prevalence of antibody positivity (both RF and ACPA). 
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Table 3. Stratification of patients according to mast cell number 

  MAST CELLS 
STRATIFICATION 

 

 All  
(n=90, 
100%)

Low 
(n=29) 

Medium 
(n=29) 

High 
(n=31) 

P 
value* 

Female, %  72.3% 68.8% 71.9% 72.7% 0.985 

Age, mean (SD) 52 (16) 50 (15) 54 (17) 52 (15) 0.562 

ESR, mean (SD) 39 (30) 28 (28) 42 (30) 49 (29) 0.018 

CRP, mean (SD) 17 (27) 7 (15) 22 (33) 21 (25) 0.036 

RF+, % 74.5% 61.3% 65.6% 93.9% 0.002 

ACPA+, % 78.7% 74.2% 68.8% 93.5% 0.042 

DAS28, mean (SD) 
5.64 (1.39) 

5.16 
(1.51) 

5.85 
(1.26) 

5.91 (1.31) 0.059 

Krenn score, mean 
(SD) 

4.56 (2.17) 3 (1.44) 
4.55 

(2.14) 
5.77 (1.93) <0.001 

Pathotypes <0.001 

Fibroid, % 21.3% 51.6% 12.5% 0.0% 

Myeloid, % 29.8% 35.5% 37.5% 16.1% 

Lymphoid, % 48.9% 12.9% 50.0% 83.9% 

*one way Anova or Chi Square test 
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Additionally, the level of synovitis, measured by the Krenn score, was 

significantly different among the three groups, with higher scores in 

patients with high mast cell counts, in agreement with the previously shown 

correlations between mast cell numbers and the synovitis score. 

Finally, the proportion of lymphoid pathotype was significantly higher in 

patients with high vs intermediate vs low MC count (83.9% vs 50% vs 

12.9%, respectively, p<0.0001, table 3 and Figure 8 B). Similarly, synovial 

MCs were significantly higher in patients with a lymphoid pathotype (mean 

MC density in lymphoid 41.06/mm2 Vs fibroid/myeloid 11.66/mm2, 

p<0.0001, Figure 8 C).  
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Figure 8. Stratification of RA patients according to mast cell numbers and 

association with lymphoid pathotype 

A, Patients were stratified according to MC numbers as low MC count (<33rd 

percentile), Medium MC count (33rd-66th percentile) and high MC count (>66th 

percentile). The pictures on the right show how this stratification, although 

mathematical, corresponds to a clearly histological difference in the number of 

infiltrating mast cells. B, % of ELS positivity in patients stratified as in A. C, Density of 

mast cells in patients stratified according to the synovial pathotype. P<0.05, Chi Square 

in B and Mann Whitney in C.  
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Overall, these results indicate that MCs strongly associate with the 

lymphoid synovial pathotype in early RA patients. 

We then studied the cellular interaction at synovial level, using tonsils as a 

control of an organ with aggregates of B and T cells (i.e. the germinal 

centres of secondary lymphoid organs). Double immunofluorescence 

showed MCs bordering the germinal centres in secondary lymphoid organs. 

Similarly, mast cells were found in close contact with B and T cell 

aggregates in synovia of RA patients, which is confirming that mast cells 

have a spatial interaction with synovial B cell aggregates (Figure 9). 

 

 

 

 

 

 

 

Figure 9. Mast cells bordering lymphoid aggregates in tonsil (left) and RA synovia. 

Immunofluorescence analysis showing mast cells (in clear blue), T cells (in red) and B 

cells (in green) in tonsil germinal centres (left) and synovial lymphoid aggregates 

(right). 
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Synovial mast cells are functional associated to ectopic lymphoid 

structures 

Having found an association between the presence of mast cells and 

lymphoid pathotype, and a co-localization of mast cells and lymphoid 

aggregates in synovia, we wondered whether the interaction between mast 

cells and B cells has also functional consequences. 

To address this hypothesis, we co-cultured primary mast cells with naïve 

(IgD+) B cells isolated from tonsils. The preliminary results of these 

experiments suggest that mast cells are able to support B cell survival 

(Figure 10, A), proliferation (Figure 10, B) and differentiation (Figure 10, 

C). Interestingly, MCs induced a full differentiation of naïve B cells into 

antibody producing cells, as demonstrated by and the induction of IgG 

production upon co-culture of B cells with MCs (Figure 10, D). 

Importantly, the IgG class-switching was dependent on cell contact, as it 

was fully abrogated when cells were separated by a transwell membrane. 

As for the effect of mast cells on survival and proliferation, these were only 

partially abrogated by transwell, which is suggesting an additional 

contribution of soluble mediators.  Potential candidates are CD40L and IL-

6, both known to be expressed/produced by human mast cells, and 
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additional studies will be needed to unravel the mechanisms underlying the 

interaction between mast cell and B cells. 

Altogether, these data indicate that mast cells are able to support B cell 

survival, activation and differentiation, suggesting that they may contribute 

to functional activation of lymphoid aggregates in vivo.  

 

Figure 10 Mast cell and B cell coculture 

Naïve (IgD+) B cells isolated from tonsils were co-cultured with primary mast cells. 

Cells were in contact or separated by a transwell™ membrane. A, proportion of live B 

cells, in unstimulated cells (left) and cells stimulated with CPG (right). B, Proportion of 

naïve B cells, gated as CD20+IgDhiCD38-CD27-. C, Proportion of divided cells and 

division index (average number of cell divisions that a cell in the original population has 

undergone) calculated by CFSE incorportation. D, IgG measured by ELISA. One 

preliminary experiment in triplicate.  
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Synovial mast cells as predictors of radiographic progression 

Because our results suggest that high counts of synovial mast cell at 

baseline are associated with antibody positivity and a higher degree of local 

and system inflammation, and in particular is with lymphoid-rich 

inflammation, we hypothesized that the presence of mast cell could identify 

a subset of patients (a mast cell-rich pathotype) with specific clinical 

features. As already outlined in table 3, high numbers of mast cells at 

baseline was associated with higher inflammatory state and antibody 

positivity, which are typical feature of a severe disease. Accordingly, the 

number of mast cells showed a positive correlation with inflammatory 

parameters (ESR and CRP), with disease activity score (DAS28) and its 

components (tender and swollen joints) (Figure 11). 

 

 

 

 

 

 

Figure 11. Correlation of mast cell counts with markers of disease activity 



56 
 

This is suggesting that higher number of synovial mast cells is associated 

with a more severe clinical phenotype. As RA is a chronic disease with a 

great deal of heterogeneity in terms of progression and response to therapy, 

we wondered whether the different mast cell counts at baseline would help 

to predict the disease progression. The PEAC study was an observational 

study, in which patients were treated according to local guidelines, 

therefore starting standard therapy according to local and international 

guidelines with DMARDS and re-assessed at 6 months interval up to 2 

years. Most of the patients were treated with DMARD combinations, as 

specified in table 4. 

Table 4. Overview of therapy   

DMARDs number   

1 11.80%  

2 81.20%  

3 7.10%  
   

DMARDs combinations  
MTX 3.5%  

HCQ 5.9%  

SSZ 2.4%  

MTX+SSZ 64.7%  

MTX+HCQ 15.3%  

SSZ+HCQ 1.2%  

MTZ+ASA+HCQ 7.10%  

MTX=methotrexate; HCQ=hydroxychloroquine; SSZ=sulfasalazine 
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Preliminary results from the analysis of the 12m follow-up, shown in table 

5, indicate that the baseline presence of mast cells is not associated with 

differences in inflammatory markers or disease activity at 12 months or 

with response to therapy, evaluated according to the EULAR criteria 58, or 

remission rates, defined as a DAS-28 score <2.6.  

**one way Anova or Chi Square test. 

 

 

Table 5. Stratification of patients according to MC counts and 12m follow-up 

   Baseline MAST CELL 
STRATIFICATION 

  

12m follow-up 
All  Low Medium High P 

value*(n=70, 100%) (n=25) (n=24) (n=24) 

ESR  21 14 17 17 0.078 

CRP 4 5 7 7 0.216 

DAS28 3.73 3.64 3.51 4.19 0.534 

EULAR response   0.277 

no response 30.6% 42.1% 22.7% 28.9%   

moderate response 25.8% 21.1% 18.2% 38.1%   

good response 43.5% 36.8% 59.1% 33.3%   

DAS28<2.6 37.1% 31.6% 45.5% 33.3% 0.569 

Radiographic progression 16.4% 4.0% 12.5% 33.3% 0.018 
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Interestingly, the proportion of patients showing radiographic progression 

at 1yr (defined as an increase in the Van der Heijde-modified Sharp score 

by more than 1 point over 1 year), was significantly higher in patients with 

high Vs medium and low mast cell counts.  

These results suggest that high mast cell counts at baseline are associated 

with a higher risk of radiographic progression, as shown in Figure 12 A and 

further confirmed by the analysis in Table 6, showing that the high MC 

counts (>66th percentile) confer a 12-fold higher risk of RP compared to 

low MC counts (<33rd percentile). 

Table 6. Mast cell stratification and odds ratio of radiographic progression  
Radiographic 
progression  

Tot
al 

no yes 
Mast cell stratification  <33rd percentile 24 1 25 

>66th percentile  16 8 24 
Total 40 9 49 

Odds Ratio High Vs Low MC count 
(95% CI) 

12 (1.366 - 
105.411) 

 

This observation suggests that the presence of mast cells in synovia could 

be used to identify a subgroup of patients with a high risk of radiographic 

progression. 
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However, it could be easily objected that mast cells in this context are 

simply markers of inflammation, as we have previously shown that higher 

numbers of mast cells are associated with local and systemic inflammation 

and, more specifically, with lymphoid infiltration. Accordingly, the data in 

figure 11 B confirms that the lymphoid pathotype is also associated with a 

higher rate of radiographic progression, which would indicate that the 

association of mast cells with radiographic progression is indirect. 

However, as shown in figure 11 C, if patients with lymphoid pathotype are 

selected, only those with high mast cell counts show high rates of 

radiographic progression, indicating that mast cell association with 

radiographic progression is independent from the pathotype.  
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Figure 12. Mast cell counts, pathotypes and radiographic progression.  

To identify additional factors potentially associated with radiographic 

progression, we compared various baseline clinical parameters at baseline 

in the two groups (radiographic progressors Vs non-progressors). The 

results of this analysis (not shown), identified the following factors to be 

significantly different in the two groups: mast cell counts, Krenn score, age 

at inclusion, presence of ELS and baseline Sharp score. There was no 

difference in baseline disease activity (DAS-28), inflammatory markers 

(CRP, ESR) or antibody positivity, which is somehow surprisingly but in 

line with previous reports showing that single markers, including 

inflammatory markers, are not always able to predict radiographic 
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progression59. To assess the individual contribution of mast cells to the 

prediction of radiographic progression, we performed a logistic regression 

analysis entering the mentioned baseline variables (age, Krenn score, mast 

cell counts, synovial pathotypes and baseline Sharp score). Performing a 

backward stepwise regression we found that the best fit, predicting erosions 

correctly in 86.6% of cases (Nagelkerke R Square of 0.241), could be 

obtained with a model including mast cell counts (high MC count Vs 

medium/low MC count), age and baseline Sharp Score (table 7), with mast 

cells giving the main contribution (p=0.019) to the prediction of 

radiographic progression. Interestingly, this analysis confirmed that high 

MC counts confer a significantly higher risk of radiographic progression 

compared to medium/low MC count (OR 5.7, CI 1.338-24.296). Altogether, 

these results indicate that mast cells, in addition to being a simple marker of 

synovial inflammation, could help identifying a specific subset of patients 

with a higher risk of radiographic progression.  

Table 7. Logistic regression analysis of radiographic progression (best fit) 

p Odds ratio 
95% C.I. 

Lower Upper 
Baseline Sharp Score  .743 .978 .857 1.117 

Age .062 1.049 .998 1.103 

MC High VS low/medium  .019 5.702 1.338 24.296 
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CONCLUSIONS 

Mast cells, as part of the inflammatory infiltrate in the synovia of RA 

patients, exert complex and sometimes controversial effects in the 

pathogenesis of RA. 

In fact, several lines of evidence indicated that mast cell activation can 

contribute to the unbalanced inflammatory response in the course of RA. 

Accordingly, we have shown here that mast cells can be activated by 

immune-complexes formed by ACPA from the sera of RA patients bound 

to citrullinated antigens, a response that can be augmented by Toll-like 

receptors triggering.  

At the same time, we have also identified IL-33-mediated mast cell 

activation as a new mechanism able to down-regulate immune responses 

upon specific triggering in the context of RA. In fact, we found that IL-33 

induces human mast cells to release immunomodulatory mediators, such as 

IL-10 and histamine, as well as other cytokines associated with type 2 

immune responses such as IL-5 and IL-13. The release of these IL-33-

induced mediators was further enhanced by IgG triggering. In particular, 

the combined stimulation with IL-33 and IgG showed a synergistic effect 

that, intriguingly, was present for IL-33-induced mediators (such as IL-5, 
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IL-10, IL-13 and histamine) and absent for mediators induced by IgG (such 

as CXCL8/IL-8). These data are important as they indicate that IL-33 is 

able to prime mast cell toward a Th2/immunomodulatory phenotype, a 

phenotype that becomes more prominent upon concomitant activation of 

mast cells by IgG. 

Having found such tunable responses by mast cells, we explored their 

ability to influence the response of other synovial immune cells. Mast cells 

triggered with IL-33 and pbIgG were able to dampen monocyte activation, 

inhibiting the production of the prototypical pro-inflammatory cytokine 

TNF- and the upregulation of the co-stimulatory molecule CD80. These 

effects were mediated, at least in part, by the release of IL-10 and histamine 

from mast cells.  

These results indicate that mast cells, in addition to their well-known pro-

inflammatory functions, are also able to mediate regulatory/homeostatic 

responses, in particular when exposed to IL-33.  

To confirm the relevance of the latter hypothesis, we studied a cohort of 

early (<12 months) RA patients naïve to DMARD therapy. Interestingly, 

while the presence of many types of immune cells, as determined by cell-

specific gene-expression, was associated with high disease activity, the 
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presence of mast cells displayed an inverse association with disease 

severity. At the same time, IL-33 was inversely correlated with pro-

inflammatory markers, such as CD14, CD16 (FcRIIIA) and TNF-. 

Overall, these data suggest that mast cells can exert both pro- and anti-

inflammatory effect, with the net result depending on a fine balance of 

different triggers. As a consequence, we hypothesised that mast cell 

contribution to RA could vary in different disease stages and, considering 

the well-known heterogeneity of RA, they could play different roles in 

different disease subsets.  

To explore this hypothesis, overcoming the discussed limitation of animal 

models that do not take into account the disease heterogeneity and only 

study one aspect of the disease process, we directly evaluated the presence 

of mast cells in synovial tissue obtained by ultrasound-guided synovial 

biopsies. The analysis of a large cohort of patients (n=90) with early RA, 

naïve the DMARD therapy, indicated that high mast cell numbers are 

associated with antibody positivity, with local and systemic inflammation 

and with the degree of cellular infiltration. In particular, higher numbers of 

mast cells strongly associate with a lymphoid pathotype. The ability of mast 

cells to support B cell survival, activation and differentiation in vitro 
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suggests that they may contribute to functional activation of lymphoid 

aggregates in vivo, warranting additional studies to establish the role of MC 

interaction with B cells.  

In addition to the implications of these results toward a better understanding 

of RA pathogenesis, our study also show that synovial mast cell emerge as 

potential markers for patient stratification. In fact, our preliminary analysis 

of the 12 months follow-up indicates that the presence of mast cells at 

baseline represents an independent predictor of radiographic progression at 

one year. This was independent from the association of mast cells with 

baseline disease activity and inflammatory markers. Additionally, the 

association of mast cells with radiographic progression was independent 

from local inflammation, including the presence of lymphoid-rich 

inflammatory infiltrate. This observation is of utmost importance, as joint 

damage is one of the central aspects of rapid progressive disease, and 

radiographic progression is difficult to predict 60. For example, high disease 

activity is considered a negative prognostic factor for radiographic 

progression, but the exact correlation between inflammatory markers, 

disease activity and radiographic progression is still being debated59. Our 

results indicate that mast cells are predictors of radiographic progression, 
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independently from their association with baseline inflammatory markers or 

disease activity. In other words, within the group of patients with high 

disease activity, the presence of high numbers of mast cells seem to be 

specifically associated with radiographic progression. This observation has 

biological plausibility, as mast cell release several mediators able to induce 

bone erosions. Accordingly, patients with mastocytosis, a clonal disorder of 

mast cells, have a deranged bone metabolism with high incidence of 

osteoporosis and bone fractures61. We have also found (preliminary data, 

not shown) that primary mast cells express RANKL, the most important 

factor in the regulation of bone metabolism, also involved in bone 

destruction in RA 62.  However, the exact role of mast cells in the regulation 

of bone metabolism is unknown and further studies will be needed to 

unravel the contribution of mast cells to bone erosions in the context of RA. 

Our observations suggest that the presence of mast cells in synovia could 

help identifying a subgroup of patients with a high risk of radiographic 

progression, in which a more aggressive treatment plan should be 

considered, ideally aimed at preventing bone erosions. In fact, patients 

stratified according to baseline MC counts did not show any difference at 

the 12m follow-up in terms of inflammatory markers, disease activity and, 
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most importantly, response to treatment (table 5). This is particularly 

interesting considering the recent observation that therapies, mainly with 

biologicals63, but possibly also with standard DMARDs 64, may disconnect 

the relationship between disease activity and joint damage. Accordingly, 

patients with high baseline MC counts showed significantly higher rates of 

radiographic progression, which is “disconnected” from the inflammatory 

markers and disease activity, as these show a similar decrease in all patients 

at 12 months, independently from their stratification according to mast cell 

counts. In other words, high mast cell counts seem to identify a group of 

patients with an aggressive disease. These patients seem to have an 

apparently good response to therapy, with reduction of inflammatory 

markers and disease activity score. Nonetheless, in these patients the 

disease is still active, as they show radiographic progression. Considering 

that bone damage is the most dreadful consequence of RA, leading to 

severe disability in the long term, it is clear how these patients would 

require a more aggressive therapy, ideally aimed at preventing bone 

erosions, possibly by specifically targeting mast cells.   

Our future plans include assessing whether mast cell numbers correlate 

with response to biological DMARDs, to understand whether mast cells can 
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further dissect the heterogeneity of RA, allowing the stratification of 

patients to the right treatment, toward the goal of personalized medicine 65. 

Overall, the data presented in this dissertation indicate that mast cells give 

an important but multifaceted and sometimes controversial contribution to 

the pathogenesis of RA. The direct analysis of mast cells in the synovia of 

RA patients is a promising tool to help dissecting the histopathological and 

clinical heterogeneity of RA. In particular, our data suggest that their 

presence, independently from local and systemic inflammatory markers and 

disease activity scores, help identifying a group of patients with high risk of 

radiographic progression. Additional studies are warranted to better clarify 

mast cell involvement in the pathogenesis of RA and, from the clinical 

point of view, assess whether their presence in synovia can help to stratify 

patients to the most-effective treatment. 
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