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Introduction 

Multiple Sclerosis (MS) is the most common cause of non-traumatic disability in young adults and 

affects more than two million people worldwide. The disease etiology is unknown but MS prevalence 

increases with increasing distance north or south of the equator and the risk of developing MS 

correlates with the place of residence during childhood; it is therefore believed that an early exposure to 

an unidentified infectious agent could trigger the disease in individuals with a favorable genetic 

background (alleles of the MHC DR4, DR15 and DQ6) (Compston and Coles, 2008; International MS 

Genetics et al., 2013). MS is characterized by an inflammatory component, which is responsible for 

acute occurrence of clinical relapses and development of focal lesions and by a degenerative 

component, which is responsible for accrual of progressive physical and cognitive disability (Compston 

and Coles, 2008). In about 80% of cases, the disease onset is characterized by a subacute and transient 

neurological deficit (clinically isolated syndrome), while, in the remaining 20%, the disease causes, 

from the beginning, a gradual clinical worsening over time (primary progressive MS). After the first 

episode, the presence of dissemination in time and space is required in order to confirm the diagnosis of 

MS (Polman et al., 2011). MS clinical course is usually characterized, during the initial stage, by 

unpredictable clinical and radiological relapses (relapsing-remitting MS -RR-MS); over time the 

recurrence of relapses tends to decrease and a gradual neurological worsening occurs (secondary 

progressive MS).  

The etiology of MS is still unknown but the pathogenetic process seems to start in the periphery with 

the priming of myelin-autoreactive T lymphocytes, which, crossing the blood brain barrier, mediate an 

acute autoimmune reaction against myelin and cause the activation of resident microglia and infiltrated 

macrophages. Auto-reactive CD4+ T cells secreting interferon-gamma and interleukin-17 are among 

the main mediators of the pathological process. The release of inflammatory mediators (nitric oxide, 
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reactive oxygen species, myeloperoxidase, tumor necrosis factor-alfa) causes oligodendrocytes damage 

and myelin sheets disruption, and contributes to neuro-axonal damage and loss (Waxman, 2008).  

In addition to inflammation, axonal damage can be driven or amplified by a number of other 

pathological processes including Wallerian degeneration following axonal transection due to focal 

lesions (Trapp et al., 1998), lack of trophic support from myelin (Nave and Trapp, 2008), mutation of 

mitochondrial DNA (Dutta et al., 2006; Campbell et al., 2011), astrocytes dysfunction (Cambron et al., 

2012), glutamate excitotoxicity (Pitt et al., 2000), iron accumulation (Lassmann et al., 2012; Lassmann, 

2014) and sodium (23Na) ions accumulation (Smith, 2007).  

Studies in experimental models of MS and in post-mortem samples from MS patients have provided 

evidence for the presence of over-expression and increased activation of persistent 23Na channels in 

demyelinated axons and MS plaques (Moll et al., 1991; Craner et al., 2004; O'Malley et al., 2009). 

Brain 23Na MRI has been introduced almost twenty years ago but poor signal to noise ratio (SNR) led 

to relatively long imaging times and/or poor spatial resolution compared to proton (1H) MRI and the 

sparse availability of MRI scanners with broadband capability limited its use. Recent technological 

advances in MRI hardware and software and the availability of ultra-high field magnets have prompt 

new developments that permit better spatial resolution with shorter imaging times and better 

quantitative measurements of tissue 23Na concentration (Boada FE, 1997; Thulborn et al., 1999b). Over 

time, various invasive methods have been used to measure 23Na content in animals and ex vivo human 

brain tissue (Woodward et al., 1967; Winter et al., 1998; Winter and Bansal, 2001). Non-invasive 

determination of brain 23Na concentration with 23Na imaging has shown to be equivalent to invasive 

biochemical ex vivo techniques (Thulborn et al., 1999a).  

Currently, there are eleven FDA-approved disease-modifying treatments for MS with a partial efficacy 

in decreasing relapse rate and accumulation of white matter (WM) lesions. Since none of them is 

effective on the neurodegenerative component of the disease, there is an unmet need for a reliable, non-
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invasive technique that could help understanding the mechanisms responsible for neurodegeneration 

and be used for monitoring the response to new, neuroprotective therapies when they become available.  

In this overview we summarize the main findings obtained by the application of 23Na imaging in 

preclinical and clinical studies, their importance in the light of 23Na role in MS pathogenesis and their 

implications for disease monitoring and therapeutics development.   

 

Biology of 23Na 

23Na yields the second strongest nuclear magnetic resonance (NMR) signal among biologically relevant 

NMR-active nuclei. In the brain, 23Na has a bicompartimental distribution with higher concentration 

(140 mmol/L) in the extracellular space and a lower concentration (ranging from 10 to 15 mmol/L) in 

the intracellular space. 23Na has a critical role in several cellular functions such as mitosis, cellular 

proliferation, generation and propagation of action potentials and cell volume regulation (Hodgkin and 

Huxley, 1952; Koch and Leffert, 1979; Lang, 2007). To ensure the maintenance of tissue homeostasis 

and the preservation of intracellular structures and processes, 23Na concentration is strictly controlled 

by the ATP-driven Na/K pump; pathological changes that determine an expansion of the extracellular 

space (e.g. tissue injury, edema or necrosis) or functional impairment of the Na/K pump are therefore 

expected to result in an increased tissue 23Na concentration (Cameron et al., 1980; Nagy et al., 1983; 

Jain, 1987; Thulborn et al., 2005). 

 

Role of 23Na in the pathogenesis of MS  

Nerve fibers conduction is generated and propagated by activation of 23Na channels, which, in intact 

myelinated axons, are clustered in the Ranvier nodes, enabling fast saltatory conduction; in 

unmyelinated axons, the distribution of 23Na channels is more homogeneous along the axonal 
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membrane and conduction is slower and continuous. 23Na ions, entering the nerve through voltage 

gated 23Na channels, have to be actively extruded via an energy dependent process; therefore the 

greater the 23Na influx, the greater the energy demand the neuron needs to fulfill (Trapp and Stys, 

2009).  

When demyelination occurs, 23Na channels are redistributed from the Ranvier nodes to long segments 

of demyelinated membrane. Demyelinated axons express two voltage-dependent 23Na channel 

isoforms: Nav1.2, which is normally present along premyelinated axons, and Nav1.6, which is the 

predominant isoform at normal Ranvier nodes. Nav1.6 channels produce a persistent current that is able 

to drive reverse Na/Ca exchange even in the absence of action potentials (Rush et al., 2005). 

While channels re-distribution represents an adaptive mechanism to preserve action potential 

conduction and facilitate recovery of neurological deficits, it imposes a huge burden on the axonal 

metabolism thus increasing the risk of axonal damage secondary to energy deprivation (England et al., 

1991; Craner et al., 2004).  In MS, the state of virtual hypoxia secondary to mitochondrial dysfunction 

(Waxman, 2006b; Lassmann, 2007) determines a decrease in ATP production, which, associated to the 

increased energy request needed to guarantee conduction along demyelinated axons, causes neuronal 

energy failure (Dutta et al., 2006). Since the maintenance of 23Na balance is an active process 

controlled by the Na/K pump, the ATP deficit induces intracellular 23Na accumulation and reverse 

activation of Na/Ca exchanger; the activation of the 20Ca dependent proteases and the cytoskeleton 

disruption represent the final step leading to cellular death (Fig. 1) (Stys, 2005; Waxman, 2008; 

Frischer et al., 2009; Trapp and Stys, 2009; Lassmann et al., 2012). Increased concentrations of 

intracellular 23Na stimulate further 20Ca accumulation by release from the endoplasmic reticulum, 

triggered by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (Fig. 1) (Nikolaeva et al., 

2005).  
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Fig. 1. Role of 23Na channels in the axon degeneration cascade. Mitochondrial damage determines 

energy failure, with ATP deprivation and loss of function of Na/K ATPase. Consequent loss of ionic 

transmembrane gradient activates Nav1.6 channels producing a sustained 23Na influx and reversing the 

operation of the Na/Ca exchanger. Further 20Ca release into the axoplasm occurs from injured 

mitochondria and intracellular stores, triggered by inositol 1,4,5-trisphosphate receptors and ryanodine 

receptors, stimulate by increased intracellular 23Na concentrations. Elevated intracellular levels of 20Ca 

activate downstream proteolytic cascade, which produce axonal injury. Reproduced from Waxman 

2006 (Elsevier Ltd.) 
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In summary, the two key factors leading to abnormal 23Na influx in MS are (i) the defective 

mitochondrial function and (ii) the 23Na influx via Nav1.6 channels (Waxman, 1977; Stys et al., 1992b; 

Rush et al., 2005); however, their relative contribution to axonal injury is still unclear. 

Supporting this hypothesis, over expression of 23Na channels along demyelinated axons (Moll et al., 

1991; Craner et al., 2004) and upregulation of 23Na channels in activated macrophages, microglia and 

astrocytes (Craner et al., 2005; Black et al., 2010) have been reported in MS plaques (Fig. 2).  
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Fig. 2. Altered axonal expression of 23Na channels in MS. Sections of postmortem spinal cord white 

matter from control (A and B) and MS (C–L) patients, immunostained to show Nav1.6 (red), Nav1.2 

(red), Caspr (integral constituent of paranodal junctions-green), and neurofilaments (blue). In control 

white matter (A) and in normal-appearing white matter in MS tissue (C), Nav1.6 is localized at nodes 

of Ranvier whereas Nav1.2 is not detectable (B and D). Within MS plaques, continuous Nav1.6 (E) and 

Nav1.2 (F) immunostaining are present; in some instances bounded by Caspr (G-H). Colocalization of 

Nav1.6 (I) and Nav1.2 (J) with neurofilament immunostaining (K and L; blue) confirms the axonal 

identity of these profiles. Reproduced from Craner et al.2004 Copyright (2004) National Academy of 

Sciences, U.S.A. 
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Moreover, it has been shown that in the animal models of experimental autoimmune encephalomyelitis 

(EAE), the mutation of the 23Na channel subunit, which controls the expression of 23Na channels on the 

cells surfaces, determines reduced axonal degeneration and neurological disability (O'Malley et al., 

2009). Adaptation to the increased energy demand has been reported not only in lesions and normal 

appearing white matter (NAWM) but also in the normal appearing grey matter (GM), where 

pathological studies have shown an increased mitochondrial density (Blokhin et al., 2008). Moreover, 

the 23Na related damage in the GM could be linked to the presence of cortical demyelinating lesions 

and to the abnormal neuronal expression of 23Na channels with atypical properties, as exemplified by 

the expression of Nav1.8 channels, resistant to inactivation, in the Purkinje neurons of animals with 

EAE and patients with progressive MS (Black et al., 2000).   

Since 23Na channels upregulation is responsible for axonal degeneration, 23Na channels blockers are 

expected to exert neuroprotective effects. Indeed, state-dependent 23Na channels blockers (e.g. class I 

anti-arrhythmic or anticonvulsants) are able to protect axons from anoxic-ischemic injury in vitro (Stys 

et al., 1992a; Stys et al., 1992b; Fern et al., 1993; Stys, 1995; Stys and Lesiuk, 1996) and in animal 

models of MS (Lo et al., 2003; Bechtold et al., 2004; Bechtold et al., 2006; Black et al., 2007; Al-Izki 

et al., 2014), at concentrations that do not compromise the conduction of action potentials. This is 

further supported by the demonstration that the abrupt withdrawal of phenytoin and carbamazepine 

seems to induce disease exacerbation and increase of the inflammatory markers in EAE (Black et al., 

2007).   

These findings have prompt clinical trials to investigate the neuroprotective effect of voltage-gated 

23Na channel blockers in patients with MS. Unfortunately, the first clinical trial assessing the 

neuroprotective effect of lamotrigine in MS patients failed to show an effect on brain atrophy accrual. 

In particular, cerebral volume of patients treated with lamotrigine did not differ from that of placebo 

over 24 months; moreover, lamotrigine seemed to cause early volume loss that reversed partially on 
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discontinuation of treatment. In contrast with the pseudoatrophy described over the first few months of 

therapy with other immunomodulatory agents, the decrease in cerebral volume during lamotrigine 

treatment occurred slowly over 6-12 months and was not associated with reduction in relapse rate and 

MRI activity; it is therefore possible that it reflected the development of actual axonal loss (Kapoor et 

al., 2010).  Although the treatment failure may in part be explained by the high rate of non-adherence 

to therapy in the lamotrigine group, it is also possible that the decrease of cells volume induced by 

reduced entry of 23Na ions and water caused by 23Na channel blockade and the lamotrigine anti-

inflammatory activity within normal-appearing tissue may have contributed to the results.  

Even if the direct blockage of 23Na voltage channel has not produced the expected results in the 

lamotrigine trial (Kapoor et al., 2010), the systemic administration of amiloride, and the consequent 

blockage of 23Na and 20Ca influx through the proton-gated acid-sensing ion channel 1, has proven a 

neuroprotective effect not only in acute and chronic experimental models of MS (Friese et al., 2007; 

Vergo et al., 2011), but also in progressive MS patients (Arun et al., 2013). 

There are a few ongoing trials testing the efficacy of 23Na channel blockers in different MS phenotypes 

(see ClinicalTrials.gov for details) and, therefore, once validated in longitudinal studies, 23Na imaging 

might prove useful in providing and additional measure of cellular and metabolic brain changes during 

treatment with 23Na blockers. 

 

23Na imaging techniques 

Single quantum (SQ) 23Na MRI is an imaging technique that exploits the magnetic resonance properties 

of 23Na atomic nuclei, allowing the metabolic characterization of brain tissue in vivo. Unlike other 

metabolic imaging techniques (e.g. MR spectroscopy) it allows exploration and quantitative assessment 

of brain metabolism both at a global and regional level. Unfortunately, since the concentration of 23Na 
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ions in the human body is much lower than 1H concentration, 23Na MRI presents a poor SNR, which is 

responsible for the longer acquisition time and the poor spatial resolution of 23Na MRI in comparison to 

standard 1H MRI. In addition, in most biologic tissues, 23Na interactions with macromolecules 

determines a bi-exponential transverse relaxation time (T2) with the signal main component (up to 

60%) hardly detectable due to its short echo time (Maudsley and Hilal, 1984).  

These technical limitations have been partially overcome by the development of ultra-short TE 

sequences (Boada FE, 1997) and the availability of ultra-high field magnets (Thulborn et al., 1999b) 

leading to a rekindled interest  and application of  brain 23Na imaging in neurological diseases such as 

ischemic stroke, brain tumors and Alzheimer’s disease (Thulborn et al., 1999b; Ouwerkerk et al., 2003; 

Mellon et al., 2009).  

23Na MRI quantifies the tissue total sodium concentration (TSC), which represents the weighted 

average of intracellular and extracellular 23Na (respectively 10-15 mmol/L and 140 mmol/L). TSC is 

sensitive to changes in both extra- and intra-cellular space, being affected by cellular death, swelling, 

proliferation (Jain, 1987; Thulborn et al., 2005) as well as by metabolic changes that affect 23Na 

exchange across the cell membrane (Cameron et al., 1980; Nagy et al., 1983). In the CNS, we may 

therefore assume that TSC increase is related to intra-axonal accumulation of 23Na ions, determined by 

Na/K pump dysfunction, as well as to enlargement of extra-axonal space consequent to neuronal 

degeneration.  

 

Results of 23Na MRI application in clinical studies 

The first application of 23Na MRI in patients with MS has been reported by Inglese et al. (Inglese et al., 

2010b) and has demonstrated that patients with RR-MS show higher NAWM TSC in comparison with 

healthy controls; such increase in23Na concentration is even higher in acute and chronic lesions 

compared to areas of NAWM. In addition, TSC levels in lesions, NAWM and GM showed a direct 
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correlation with T2-weighted and T1-weighted lesion load while NAGM TSC was found to be 

negatively associated with GM volume. In the same study the EDSS (Expanded Disability Status 

Scale) (Kurtzke, 1983) showed a mild, positive association with the mean TSC value in chronic lesions, 

NAWM and GM. These results suggest that the abnormal increase of TSC in MS patients might reflect 

changes in cellular and metabolic integrity of WM lesions as well as normal appearing brain tissue. 

These findings have been reproduced in different laboratories around the world and the application of 

the method has been extended to patients with clinical phenotypes other than RR-MS (Zaaraoui et al., 

2012; Paling et al., 2013; Maarouf et al., 2014). In MS patients at early disease stage 23Na increase 

seems to be limited to macroscopic lesions (Zaaraoui et al., 2012) while in patients with longer disease 

duration (>5 years) TSC appears to be increased not only in lesions, but also in NAWM, cortical and 

deep GM (Inglese et al., 2010b; Zaaraoui et al., 2012; Paling et al., 2013) with higher concentration 

reported in more destructive lesions (Fig. 3) (Inglese et al., 2010b; Paling et al., 2013) and in patients 

with progressive phenotypes (Fig. 4) (Paling et al., 2013; Maarouf et al., 2014).  
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Fig. 3. Selected brain axial proton density (A), T1-weighted (B), 23Na images (C) and corresponding 

TSC map (D) from an MS patient. The arrow indicates a hypointense periventricular lesion (B) that 

shows a higher TSC value. The color bar represents the TSC values (mM). Reproduced from Inglese et 

al. 2010 (Oxford University Press). 
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Fig. 4.  Global 23Na concentration across MS phenotypes. Raw 23Na images in 23Na space (top), tissue 

23Na  maps with CSF partial volume correction (middle) and T2-weighted images (bottom) registered 

to the T1 volumetric scan in controls (A) and patients with MS (B-C-D). Increased 23Na  is seen in 

relapsing remitting- MS patients lesions (B) and, more extensively, in lesions and normal appearing 

white matter of secondary- (C) and primary- (D) progressive MS patients.  Reproduced from Paling et 

al.2013 (Oxford University Press). 
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While TSC increase in lesions might be explained by gliosis, tissue disruption and replacement with 

extracellular fluid, TSC increase in normal appearing brain tissue might be related not only to increased 

extracellular space, caused by demyelination and axonal loss, but also to intra-axonal 23Na increase.  

Brain regional analysis of TSC distribution has shown a limited involvement of the NAWM 

(brainstem, cerebellum and temporal poles) in the early stage of the disease, and a widespread TSC 

increase, involving the entire brain, in more advanced MS (Zaaraoui et al., 2012).  In particular, while 

in PP patients TSC increase seems to be restricted to the motor system, in SP patients it is more diffuse, 

involving also frontal, limbic and visual cortex, deep GM and cerebellum (Fig. 5) (Maarouf et al., 

2014). 

In both relapsing and progressive patients, TSC shows only a modest correlation with clinical disability 

(Inglese et al., 2010b; Paling et al., 2013) and a weak correlation with lesion load and GM atrophy 

(Inglese et al., 2010b; Zaaraoui et al., 2012). The correlation between TSC increase, clinical disability 

and MRI parameters of tissue loss, although present and consistently replicate across studies, is only 

modest; this could indicate that TSC reflects not only the irreversible neuronal loss responsible for 

clinical disability, but also the potentially reversible neuronal functional damage and could therefore be 

especially useful as predictive factor of clinical outcome. Supporting this hypothesis, only a small 

overlap has been identified between local brain atrophy and regions showing TSC increase (Maarouf et 

al., 2014); moreover, disability seems to correlate with NAWM TSC but not with WM fraction (Paling 

et al., 2013). 
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Fig. 5. Statistical mapping of TSC increases in secondary progressive MS patients relative to controls 

(A) and in primary progressive MS patients relative to controls (B). In order to reduce CSF 

contamination grey matter, normal appearing white matter and T2 lesion masks were applied onto the 

co-registered quantitative sodium concentration maps to obtain TSC distribution maps of each 

compartment for each patient. Reproduced from Maarouf  et al. 2013 (Springer Ltd.) 
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Conclusions 

23Na MRI allows direct visualization, in vivo, of ongoing cellular metabolic dysfunction and death. 

Unfortunately, so far, the impossibility to determine if TSC increase is linked to an accumulation of 

intracellular 23Na or an increase in extracellular volume represents a major limitation.  

In Part 2 we present the first application, in MS patients, of a method combining single quantum (SQ) 

and triple quantum filtered (TQF) 23Na MRI, to quantify TSC and the intracellular sodium molar 

fraction (ISMF) and then derive ISC and the ISVF, an indirect measure of ESC (the lower the ISVF, 

the higher the ESC). 

In MS patients, TSC and ISC increase might indicate axonal dysfunction, offering insights in axonal 

metabolism before the generation of stable, irreversible, axonal damage they could be a putative target 

for therapeutic interventions (Nikic et al., 2011) TSC and the more technically changeling ISC, might 

enable in vivo assessment of the metabolic state on the brain and identification of an ‘intervention 

window’, providing a better tool to investigate the neuroprotective effects of experimental therapies 

and to monitor the response to putative neuroprotective agents and 23Na blockers in clinical trials. 23Na 

imaging could also be helpful in studying and understanding the role of energy failure, clarifying MS 

pathophysiology in comparison with others neuroinflammatory conditions (e.g. neuromyelitis optica, 

and acute disseminated encephalomyelitis).  
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Introduction 

MS is the most common cause of non-traumatic neurological disability in young adults and has a high 

socio-economic impact, which increases as disability progresses (Noseworthy et al., 2000). Although 

there is increasing evidence that neuro-axonal degeneration is a relevant cause of permanent disability 

(De Stefano et al., 1998; Miller et al., 2002; Bjartmar and Trapp, 2003; Frischer et al., 2009; Tallantyre 

et al., 2010; Filippi et al., 2013), the pathophysiological mechanisms underlying neuroaxonal injury or 

loss are poorly understood and there are no therapeutic agents with proven efficacy in preventing or 

slowing the progressive accumulation of disability. Several histological and experimental studies have 

suggested that the increase of sodium influx in demyelinated axons could be one of the key 

mechanisms of delayed axonal injury and that partial blockade of sodium channels protects axons from 

degeneration in experimental models of MS (Lo et al., 2003; Bechtold et al., 2006; Black et al., 2006; 

Black et al., 2007; Waxman, 2008; Al-Izki et al., 2014).  

Recent in vivo MRI studies using sodium (23Na) imaging, have shown increased brain total sodium 

concentration (TSC) in patients with MS (Inglese et al., 2010b; Zaaraoui et al., 2012; Paling et al., 

2013; Maarouf et al., 2014).  Brain sodium concentration is increased both in lesions and normal-

appearing brain tissue, especially in the advanced and progressive stages of the disease, and in patients 

with greater disability. TSC is a weighted average of intracellular sodium concentration (ISC ~ 10-15 

mM) and extracellular sodium concentration (ESC~140 mM) and its increase in MS can result from 

neuro-axonal metabolic dysfunction (Trapp and Stys, 2009), and/or from the expansion of the 

extracellular space secondary to neuro-axonal loss or presence of edema (Perier and Gregoire, 1965; 

Turski et al., 1986). However, TSC measurement does not allow discrimination between the two 

compartments and, therefore, the disease-related change in ISC and ESC and their relationship with 

structural MRI measures and clinical parameters is yet unknown. 
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The measurement of the MRI signal from ISC is quite challenging and can be performed in vivo with a 

few techniques that include the use of shift reagents, inversion recovery pulses, and multiple quantum 

filters (MQFs). MFQs is based on the different relaxation properties of the sodium nuclei in the extra-

cellular and intra-cellular space, which generate a mono- and bi-exponential NMR signal decay, 

allowing the differentiation of the signal from the two compartments (Muller N et al., 1987; Borthakur 

et al., 1999; Hancu et al., 1999).  Despite its importance, in vivo measurement of ISC in humans has 

been hampered by technical challenges and the few examples of the application of MQFs 23Na MRI to 

the human brain available in the literature are limited to case reports and qualitative results (Hancu et 

al., 1999; Boada et al., 2004).  

Our group has recently implemented a MR pulse sequence for the acquisition of triple-quantum filtered 

(TQF) 23Na MRI (Fleysher et al., 2010b) and developed a non-invasive method which employs single 

quantum (SQ) and TQF imaging at 7 Tesla to quantify ISC and intracellular sodium volume fraction 

(ISVF), an indirect measure of ESC. Since the brain–sodium model considers the cell membrane a part 

of intracellular space, the term ISVF is a synonymous of cell volume fraction (cell volume divided by 

tissue volume). Therefore, an ISVF reduction indicates loss of the intracellular volume and reflects an 

increase of the extracellular space and, as a consequence, of ESC (Fleysher et al., 2013a). We obtained 

quantitative mapping of ISC and ISVF maps in healthy volunteers, with ISC and ISVF values in good 

agreement with those obtained with invasive methods and/or ex vivo studies (Fleysher et al., 2013a). 

Ultra-high field MRI is particularly suited for the application of this method, due to the relatively low 

sensitivity of 23Na MRI. 

The present study is the first to investigate the feasibility of ISC and ISVF measures in patients with 

MS. We sought to explore the hypothesis that while a decrease in ISVF would be associated with tissue 

loss as measured by conventional MRI techniques, an increase in ISC would not be associated 

reflecting axonal metabolic dysfunction rather than tissue destruction. Therefore, the aims of our study 
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were: i) to determine the feasibility of TQF 23Na MRI in patients with MS at 7 Tesla; ii) to measure the 

global and regional brain distribution of TSC, ISC and ISVF; iii) to investigate the relationship between 

intra- and extra-cellular sodium concentration and measures of lesion and brain volume; iv) to evaluate 

the clinical impact of abnormal brain sodium distribution.  
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Materials and Methods 

Subjects 

Nineteen patients diagnosed with MS according to the McDonald criteria (McDonald et al., 2001) and 

presenting a relapsing-remitting (Lublin and Reingold, 1996) course were prospectively enrolled in the 

present study. The exclusion criteria were: i) a current or past medical or psychiatric disorder other than 

MS; ii) current or past substance abuse, and/or iii) MS relapse or corticosteroid use in the previous 6 

weeks. Disability was assessed by a single, experienced neurologist who was blind to the MRI findings, 

using the Expanded Disability Status Scale (EDSS) score (Kurtzke, 1983) within 1 week of MRI. All 

the patients were under immunomodulatory treatment with either interferon beta-1a or glatiramer 

acetate. Seventeen age- and gender-matched healthy volunteers were enrolled as control group. 

Demographic characteristics of the study populations are presented in Table 1. Approval for this study 

was obtained from the local Institutional Board of Research Associates, and informed consent was 

obtained from all subjects before study initiation.  

MRI acquisition 

All subjects underwent 1H-MRI at 3T (Siemens Medical Solutions, Germany) and SQ and TQF 23Na 

MRI at 7T (MAGNETOM, Siemens Healthcare) in two separate sessions on the same day of their 

clinical assessment. The 3T 1H-MRI protocol included the following sequences: i) dual-echo turbo spin 

echo (repetition time [TR]=5000 ms; echo time [TE]=11 ms; 48 contiguous 3-mm thick axial slices) ii) 

3D T1-weighted – magnetization-prepared rapid-acquisition gradient echo (TR=2400 ms; TE=2.71 ms; 

inversion time [TI]=900 ms; flip angle=12°; voxel size=1 mm3) iii) post-gadolinium (Gd) T1-weighted 

spin-echo (TR=354 ms; TE=2.73 ms; 50, 3 mm-thick axial slices). The sodium SQ and TQF protocol at 

7T was acquired with a custom-built dual-tuned TX/RX 1H/23Na head coil (Wiggins et al., 2010). SQ 

23Na MRI was acquired using a 3D gradient echo sequence (TR=150 ms, TE=6.8 ms, flip angle=90°, 
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field of view=240x240 mm2, matrix=48x48, voxel size=5x5x5 mm3); TQF 23Na MRI was acquired 

using a modified 3D gradient-echo sequence with a new 12-step phase-cycling B0-corrected triple-

quantum-filtered scheme (TR=150 ms, TE=6.8 ms, flip angle=90°, field of view=240x240x240 mm3, 

matrix 30x30x24, voxel size 8x8x10 mm3, τ1=6.8 ms τ2=150 ms, 2 averages) (Fleysher et al., 2013a). 

For the purposes of TSC quantification, calibration phantoms with known sodium concentrations (50 

and 100 mM/L) were placed into the field of view. For TQF B0–correction, B0–maps were computed 

from the phase difference between two SQ images acquired over 3.6min (TR=150ms) with TE=6.8ms 

and TE=8.8ms, respectively. The SQ image with TE=6.8ms was used for TSC calculation. B1–maps 

were computed from the ratio of two additional SQ images acquired over 3.6 min with FA=60° and 

120°, TR=150 ms using the double flip–angle method. Using the B1–maps, B1–correction was applied 

to SQ and TQF images (Fleysher et al., 2013). 

Image analysis 

Image processing was performed off-line on a PC workstation. All images were assessed by consensus 

by two experienced observers who were blind to the patients’ identity and clinical status.   

Lesion volume assessment 

T2-hyperintense and T1-hypointense white matter lesions were identified and outlined, for each patient, 

respectively on the dual echo and T1-weighted images, using a semi-automated technique based on 

user-supervised local thresholding (Jim version 6; Xinapse Systems, Northants, England, 

http://www.xinapse.com).  

Lesion Probability Maps (LPMs) assessment  

For the patients group, LPMs were obtained using imaging analysis tools of the FMRIB Software 

Library FSL 5 (www.fmrib.ox.ac.uk/fsl/) as described in Rossi et al. (Rossi et al., 2012). Briefly, the 
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procedure consisted of three steps: brain extraction, registration to standard-space and computation of 

the maps.  First, the brain was extracted from the 3D T1-weighted and T2-weighted images using the 

brain extraction tool and then corrected for intensity non-uniformity (Smith, 2002). Next, a two-stage 

registration was performed to align the T2 lesion masks of each patient to the Montreal Neurological 

Imaging 152 standard brain: (i) each lesion mask was linearly co-registered to the corresponding 3D 

T1-weighted brain images with FMRIB's Linear Image Registration Tool using the transformation 

parameters derived by linearly registering the T2-weighted on the 3D T1-weighted image; (ii) each 

lesion mask previously registered on the 3D T1-weighted brain image was nonlinearly registered on the 

standard brain template using the transformation parameters derived by nonlinearly registering the 3D 

T1-weighted image on the standard brain template.  Finally, the LPMs were generated by first merging 

and then averaging all the standard-space lesion masks. For each map, voxel intensity represents the 

frequency of lesion occurrence in that voxel. A threshold of 50% was used to include the peaks of the 

lesion frequency on the LPMs.  

Brain volume assessment 

Normalized brain volume, gray matter and white matter volumes were computed for all subjects on the 

3D T1-weighted sequence using FSL's SIENAX program (SIENAX; FMRIB Centre, Oxford, England) 

as described elsewhere (Battaglini et al., 2012). To avoid tissue misclassification, T2-weighted lesions 

were refilled with intensities matching the surrounding normal-appearing white matter (Battaglini et 

al., 2012). 

Sodium imaging post-processing 

The computation of Na maps is based on the canonical brain–sodium tissue model (Thulborn et al., 

1999b; Ouwerkerk et al., 2003), which assumes that sodium is distributed between only two 

compartments: intracellular and extracellular. 
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The canonical brain–sodium tissue model is described by a homogeneous intracellular compartment 

occupying volume Vin and a homogeneous extracellular compartment with volume Vex. Next, Min and 

Mex are used to denote respective sodium contents in intra– and extracellular compartments. Using 

these notations, bulk tissue sodium concentration (ρΤ) and ISC (ρin) can be expressed as:  

𝜌Τ =
𝑀in +𝑀ex

𝑉in + 𝑉ex
                              𝜌in =

𝑀in

𝑉𝑖n
                               [1] 

 

Furthermore, the ISVF (ηin) and intracellular sodium molar  fraction (ISVF, χ) are defined as: 

𝜂in =  
𝑉in

𝑉in + 𝑉ex
=  

𝜌ex −  𝜌Τ
𝜌ex −  𝜌in

                  𝜒 =  
𝑀in

𝑀in +𝑀ex 
 =  

𝜌in
𝜌Τ

 𝜂in     2          

 

where ρex stands for ESC. 

Combining equations [1] and [2], we obtain the ISC ρin and the  ISVF ηin in terms of tissue sodium 

concentration ρT and intracellular sodium molar fraction χ: 

𝜌in =  
𝜒𝜌Τ𝜌ex

𝜌ex − (1− 𝜒)𝜌Τ
𝜂in = 1− (1−  𝜒)

𝜌Τ
𝜌ex

                                                                   [3] 

 

This representation of ISC and ISVF in terms of TSC and ISMF is convenient because TSC and ISMF 

are MRI–assessable quantities. Therefore, once TSC and ISMF are measured, ISC and ISVF can be 

computed using equation [3]. Since ESC is maintained in a narrow range between 136 and 142 mmol/L 

and did not vary much among subjects throughout this work, we used ρex=140 mmol/L.                 
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As previously described (Fleysher et al., 2013a), ISC and ISVF were quantified as follows: first, SQ 

and TQF images were acquired and corrected for B0 and B1 inhomogeneities as described in Fleysher 

et al. (Fleysher et al., 2010b). Second, TSC maps were quantified in Image J1.36b on a voxel-by-voxel 

basis from the SQ images using a linear method, dependent on the calibration phantom, as described by 

Inglese et al. (Inglese et al., 2010b). Third, single-quantum and triple-quantum images were combined 

with TSC maps using an in-house procedure developed in Matlab (Fleysher et al., 2013a) and ISC and 

ISVF maps were computed. 

The resulting concentration maps (Fig. 1) were further analyzed with a global approach to measure 

TSC, ISC and ISVF over the entire gray and white matter tissue and with a voxel-based approach to 

measure TSC, ISC and ISVF at a regional level.  
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Fig. 1. 23Na group maps. Mean TSC, ISC and ISVF maps for patients with MS (respectively A, C, E) 

and controls (respectively B, D, F). In both groups, TSC appears higher while ISC and ISVF are lower 

in grey matter than in white matter. Note that, since intracellular molar content and cell volume are 

equal to zero in extracellular tissue, ISVF and ISC measurements in CSF have to be considered 

meaningless.  



	 31	

Test-retest variance evaluation, conducted on three patients and three controls imaged on two separate 

occasions, at baseline and after 1 month (range 25 to 37 days), showed a coefficient of variation 

smaller than 5% for ISVF measures, ranging from 6% to 5% for TSC measures and from 10% to 6% 

for ISC measures. 

Global analysis of sodium concentration 

The analysis of the 23Na concentration maps (i.e. TSC, ISC and ISVF maps) was performed with FSL 5 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The TSC maps were co-registered to the corresponding T1-

weighted images with an affine-linear registration and the transformation matrices were saved. T1-

weighted images were segmented and the obtained grey and white matter masks were superimposed 

onto 23Na concentration maps in native 23Na-image space using the inverse transformation matrix 

obtained in the step above; mean values from each tissue were extracted for each subject, obtaining 

grey matter, white matter and cerebrospinal fluid TSC, ISC and ISVF values.  A probability of 50% 

was considered as threshold for grey and white matter tissue type classification due to the bigger voxel 

sizes and hence higher mixture of tissue type. 

Sodium concentrations in T2- and T1-weighted lesions 

Because of the limited spatial resolution of ISVF and ISC scans, only TSC was measured in T2- and T1-

visible lesions. The assessment of sodium concentrations was performed with FSL 5 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). First, the TSC maps were co-registered to the T2-weighted and 3D 

T1-weighted images with an affine linear registration using correlation ratio and trilinear interpolation. 

The generated inverse transformation matrix was applied to the lesions masks (including only lesions 

with a diameter equal or higher than 5 mm) in order to transfer them from the structural images space 

into the sodium native space. The T2- and T1-weighted lesions masks in sodium space were therefore 

superimposed on 23Na concentration maps, obtaining mean TSC values in white matter lesions.  
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Voxel-based analysis of sodium concentration 

The voxel-based processing on 23Na concentration maps (i.e. TSC, ISC and ISVF maps) was performed 

with SPM8 (Welcome Institute, London, England). For each patient, the 23Na concentration maps were 

co-registered to the 3D T1-weighted image using normalized mutual information and trilinear 

interpolation. The 3D T1-weighted scans were spatially normalized into the Montreal Neurologic 

Institute space (VBM8); the transformation matrix between the native image space and the normalized 

stereotaxic Montreal Neurological Institute space with affine transformation and nonlinear warping 

generated during this process was applied to the co-registered 23Na image maps, to reduce inter-

individual differences. The partial volume effect was minimized by subtracting the cerebrospinal fluid 

segmented maps from each of the 23Na concentration maps. Finally, the obtained quantitative 23Na 

maps were smoothed with an 8-mm full width at half maximum Gaussian kernel for statistical mapping 

analysis. The Talairach Daemon Atlas from Wake Forest University Pickatlas toolbox from SPM8 

(http://www.nitrc.org/projects/wfu_pickatlas) was used for grey matter labeling, whereas the JHU 

white matter tractography atlas from FSL was used (http://www.fmrib.ox.ac.uk/fsl/data/atals-

descriptions.html#wm) was used for white matter labeling. 

Statistical analysis 

SPSS version 20.0 (IBM, Chicago IL) was used for all statistical computations in terms of structural 

and global sodium parameters. Between-group comparisons of structural MRI parameters (brain 

volumes and lesion volumes) were assessed with an ANCOVA test, controlling for age and gender 

(p<0.05). Between-group comparisons of global 23Na concentrations (grey matter and white matter 

TSC, ISC and ISVF) were assessed with an ANCOVA test, controlling for age, gender and intra-cranial 

volume (p<0.05). Within-group comparisons of global 23Na concentrations (grey matter and white 

matter TSC, ISC and ISVF) were assessed with a paired sample t-test (p<0.05).  
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Pearson bivariate correlation was applied to evaluate the association between sodium concentrations, 

age and disease duration.  

A voxel-based statistical mapping analysis (SPM8) was used to assess regional brain differences in 

sodium concentration on the TSC compartments, using the spatially normalized TSC maps, and a two-

groups ANCOVA test controlling for age, gender and intra-cranial volume (p<0.001, corrected for 

family-wise error at p<0.05, cluster extent 20 voxels). Then, the significant TSC clusters were 

extracted with MarsBaR toolbox (http://marsbar.sourceforge.net/) and used to restrict the ISC and ISVF 

voxel-based statistical mapping analysis, that was performed with a two-groups ANOVA (p<0.05, 

cluster extent 10 voxels, uncorrected for multiple comparisons).  

Partial correlations were assessed between global and regional 23Na concentration, lesion and brain 

volumes, and clinical data (disease duration, EDSS score) controlling for age and gender (p<0.05). 

Due to the exploratory nature of this study, multiple testing correction was not performed and therefore 

the reported P values should be interpreted as descriptive. However, all analyses were performed with 

established a priori hypotheses. Correction for family wise error was only applied to the whole brain 

voxel wise comparison of TSC maps to avoid a massive multiple comparison penalty.  
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Results  

Structural imaging  

T2-weighted, T1-weighted lesion volumes and brain volumes are shown in Table 1. The anatomical 

distribution of T2 lesions across the brain is shown in Fig. 2, super- imposed on the statistical 

parametric maps of brain sodium concentrations in MS patients. The peak of lesion frequency was 

localized in the right anterior thalamic radiation (39%). None of the patients presented Gd-enhancing 

lesions. Normalized brain volume, grey matter volume and white matter volume were decreased in MS 

patients compared to healthy controls (respectively p<0.01, p<0.05 and p=0.05). 
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Table 1. Demographics characteristics and structural 1H-MRI parameters in patients with MS and in 

healthy controls. 

 

 MS patients Healthy controls 

Gender F:M 11:8 8:9 

Age (years) 40.06 ±11.27 46.16 ±11.65 

Disease duration (years) 9.11 ± 7.48 - 

Median EDSS (range) 2.0 (0.0-5.5) - 

T2  lesion volume (mL) 6.61 ± 8.93  - 

T1  lesion volume (mL) 1.79 ± 4.84  - 

NBV (mL) 1415 ± 153.84** 1523.24 ± 57.96 

GMV (mL) 744.47 ± 91.13* 793.76 ± 55.65 

WMV (mL) 686.68 ± 76.46 735.59 ± 35.96 
 

EDSS= Expanded Disability Status Scale; NBV= normalized brain volume; GMV= grey matter 

volume; WMV=white matter volume. 

Unless otherwise specified data shown are mean ± standard deviation; *p<0.05; **p<0.01 
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Fig. 2. Statistical parametric maps of brain sodium concentrations in MS patients. Regional increases 

of brain TSC (SPM8, 2-group ANCOVA p<0.001, k=20 voxels, corrected for FWE at a p value of 

0.05) and ISC, as well as ISVF decreases (SPM8, 2-group ANOVA p<0.05, k=10 voxels, uncorrected 

for multiple comparisons) are shown respectively in A, B and C on a high-resolution T1-weighted 

standard template. The color bar indicates the T-scores. In blue is reported the T2 lesion probability 

map (50%).  
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Global analysis of grey and white matter sodium concentration (TSC, ISC and ISVF)   

Global grey matter and white matter sodium concentrations for patients and controls are shown in 

Table 2 and Fig. 3. In both groups, TSC was higher and ISVF lower in grey matter than in white 

matter (p<0.05) while there was no difference in terms of ISC (p>0.1). TSC was higher in T1 lesions 

than in T2 lesions (respectively, 52.27±23.9 and 37.54±12.18 mM; p<0.015) and both TSC in T2 lesions 

and T1 lesions were higher than in white matter (respectively, 37.54±12.18 vs 31.38±4.03 mM, p<0.05 

and 52.27±23.9 vs 31.38±4.03 mM, p<0.01).  

Compared to healthy controls, MS patients showed higher global grey matter and white matter TSC 

and ISC (respectively p<0.05 and p<0.01 for TSC; p<0.001 for ISC) and lower global grey matter and 

white matter ISVF (respectively p=0.62 and p<0.001).  
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Table 2. Sodium concentrations in different tissue types in healthy controls and patients with MS. 

 

 Patients with MS  Healthy controls p values 

Grey matter TSC (mM) 42.82 ± 5.17  40.26 ± 2.99  p<0.05 

Grey matter ISC (mM) 13.96 ± 1.44 13.59 ± 1.26 p<0.001 

Grey matter ISVF (%) 84.20 ± 1.57  84.79 ± 1.25  p=0.62 

White matter TSC (mM) 31.38 ± 4.03  27.88 ± 2.55 p<0.01 

White matter ISC (mM) 14.29 ± 1.35  13.84 ± 1.26 p<0.001 

White matter ISVF (%) 87.91 ± 1.52  89.38 ± 1.40  p<0.001 

 

Data presented are mean ± standard deviation. TSC= tissue sodium concentration; ISC= intracellular 

sodium concentration; ISVF= intracellular sodium volume fraction 
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Fig. 3. Box plots displaying the 25% to 75% values (boxes)±95% values (whiskers), median values 

(horizontal lines within boxes) of mean TSC (A), ISC (B) and ISVF (C) value distribution in grey 

matter and white matter among healthy controls (empty box) and patients with relapsing-remitting MS 

(hatched box). 
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Regional analysis of grey and white matter sodium concentration (TSC, ISC and ISVF)   

Between-groups statistical mapping analyses performed on sodium maps are displayed in Fig. 2. The 

voxel-based analysis of grey matter showed clusters of increased TSC values in bilateral thalamus, left 

caudate, right anterior cingulate gyrus (BA24, BA25 and BA32), left posterior cingulate gyrus (BA23), 

left middle frontal gyrus (BA10), right precentral gyrus (BA6), right postcentral gyrus (BA40), 

(p<0.001 Ke=20, family wise error corrected p<0.05) (Table 3). A voxel by voxel comparison of ISVF 

and ISC values within significant grey matter TSC clusters, showed lower ISVF values in portions of 

bilateral thalamus, right anterior cingulate gyrus (BA25 and BA32), left middle frontal gyrus (BA10), 

right precentral gyrus (BA6), right postcentral gyrus (BA40), (p<0.05, Ke=10, uncorrected for multiple 

comparisons) (Table 4) and higher ISC values in bilateral thalamus, left middle frontal gyrus (BA10), 

right precentral gyrus (BA6) (p<0.05, Ke=10, uncorrected for multiple comparisons) (Table 5).  

The voxel-based analysis of white matter showed clusters of increased TSC values in bilateral cortico-

spinal tract, bilateral anterior thalamic radiation, corpus callosum, bilateral inferior fronto-occipital 

fasciculus, forceps minor, uncinate fasciculus (p<0.001 Ke=20, family wise error p<0.05) (Table 3). A 

voxel by voxel comparison of ISVF and ISC values within significant white matter TSC clusters, 

showed lower ISVF values in the bilateral corticospinal tract and forceps minor (p<0.05, Ke=10, 

uncorrected for multiple comparisons) (Table 4) and higher ISC values in left cortico-spinal tract and 

forceps minor (p<0.05, Ke=10, uncorrected for multiple comparisons) (Table 5).  

In the restricted analysis of ISC and ISVF maps in TSC significant clusters, no cluster survived the 

family-wise error correction (because 133 independent voxels comparisons were tested, an adjusted 

significance level of 0.0004 would have granted significant results at p<0.05 after multiple 

comparisons); therefore, for ISC and ISVF we report uncorrected results.  

No clusters of decreased TSC were identified in MS patients. 
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Table 3. Brain regions showing an increase in TSC in MS patients compared to healthy controls.  

 

Cluster extent T value MNI coordinates (mm) Brain region BA 
x y z 

4507 4.67 -9 -30 3 Left thalamus - 
 4.65 10 -30 3 Right thalamus - 
 4.13 -7 -28 3 Left anterior thalamic radiation - 
 3.80 7 -27 4 Right anterior thalamic radiation - 
3724 3.52 4 7 52 Right precentral gyrus 6 
 3.52 4 12 55 Right superior frontal gyrus 6 
 3.44 4 9 49 Right cingulate gyrus 24 
3504 3.58 -4 -22 28 Left post cingulate cortex 23 
 3.53 -6 -31 24 Corpus callosum, splenium - 
 3.47 -10 -15 31 Corpus callosum, body - 
3434 3.57 -24 -27 25 Left cortico spinal tract - 
 3.57 -30 -48 13 Left anterior thalamic radiation - 
 3.55 22 -10 24 Right cortico-spinal tract - 
 3.42 -33 -49 13 Left inferior fronto occipital faciculus - 
2640 3.86 -15 13 9 Left caudate, body  - 
  -15 21 -1 Left caudate, head - 
  -15 10 9 Left anterior thalamic radiation - 
2456 3.61 -34 52 1 Left middle frontal gyrus 10 
 3.61 -34 54 -6 Left inferior fronto occipital fasciculus - 
 3.60 -34 54 1 Forceps minor - 
 3.55 -34 54 4 Uncinate fasciculus  - 
1984 3.57 10 63 -12 Forceps minor - 
 3.29 19 63 -12 Right inferior fronto occipital fasciculus - 
1790 3.49 4.5 -1.8 4.5 Right thalamus - 
 3.34 -1 -12 4 Left thalamus - 
 3.33 -1 6 -10 Right anterior cingulate gyrus 25 
660 3.55 22 -10 24 Right cortico-spinal tract - 
507 3.41 6 19 42 Right anterior cingulate gyrus 32 
61 3.40 67 -25 19 Right postcentral gyrus 40 

 

SPM8 2-group ANCOVA p<0.001, Ke=20, family wise error corrected p<0.05 

TSC=total sodium concentration, BA= Brodmann area 
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Table 4. Brain regions showing a decrease in ISVF in MS patients compared to healthy controls-ISVF 

voxel based analysis on TSC significant clusters.  

Cluster extent T 
value 

MNI coordinates 
(mm) 

Brain region BA 

x y z 

2610 2.25 -22 -22 30 Left cortico spinal tract - 

855 4.73 -28 48 20 Left middle frontal gyrus 10 

773 1.88 24 57 10 Forceps minor - 

683 4.24 -14 -31 3 Left thalamus - 

598 4.31 4 -9 3 Right thalamus - 

497 3.21 44 -10 43 Right precentral gyrus 6 

424 3.31 -4 20 -8 Right anterior cingulate gyrus 25 

318 2.37 22.5 -13 30 Right cortico spinal tract - 

188 3.15 6 22 30 Right anterior cingulate gyrus 32 

60 3.05 66 -22 19 Right postcentral gyrus 40 

 

SPM8 2-group ANOVA p<0.05, Ke=10, uncorrected for multiple comparisons 

ISVF= intracellular sodium volume fraction, TSC= total sodium concentration, BA= Brodmann area 
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Table 5.  Brain regions showing an increase in ISC in MS patients compared to healthy controls-ISC 

voxel based analysis on TSC significant clusters. 

 

Cluster 
extent 

T value MNI coordinates (mm) Brain region BA 

x y z 

1473 2.46 -25 -27 16 Left cortico spinal tract - 

344 2.05 20 58 10 Forceps minor - 

245 4.17 -12 -10 4 Left thalamus - 

204 2.90 -27 36 27 Left middle frontal gyrus 10 

113 2.25 42 -10 40 Right precentral gyrus 6 

91 3.31 6 -10.5 9 Right thalamus - 

 

SPM8 2-group ANOVA p<0.05, Ke=10, uncorrected for multiple comparisons 

ISC= intracellular sodium concentration, TSC= total sodium concentration, BA= Brodmann area 
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Correlations among sodium concentrations, lesion and brain volumes and clinical parameters 

T2 lesion volume was associated with TSC in cortico-spinal tract, right anterior cingulate gyrus and 

right precentral gyrus (r ranging from 0.47 to 0.71; 0.05<p<0.01); and with ISVF in right postcentral 

gyrus (r -0.59, p<0.01) and showed a trend of correlation with ISVF in corticospinal tract (r -0.46, 

p=0.06). 

T1 lesion volume was associated with global grey matter ISVF (r -0.53 p<0.05) and with TSC in 

cortico-spinal tract, right precentral gyrus, right anterior cingulate gyrus and thalamus (r ranging from 

0.50 to 0.63, 0.05<p<0.01); and with ISVF in corticospinal tract and anterior cingulate gyrus 

(respectively r -0.55, p<0.05 and r -0.70, p<0.01). 

There was no association between global and regional TSC, ISC and ISVF and measures of brain 

volumes except for a trend between white matter ISVF and NGMV (r=0.42, p=0.08). 

While in healthy controls age was correlated with white matter (r=0.5, p<0.05) and grey matter (r=0.73, 

p<0.01) TSC and with grey matter ISC (r=-0.50, p<0.05), in patients age was inversely correlated with 

white matter (r=-0.68, p<0.01) and grey matter (r=-0.60, p<0.01) ISC but not with ISVF and TSC 

values (p>0.1). Disease duration was associated with white matter TSC (r=0.63, p<0.01), white matter 

ISC (r=-0.67, p<0.01) and grey matter ISC (r=-0.57, p=0.01). 

Finally, an association was detected between global grey matter ISVF and EDSS (r=-0.47, p<0.05). 
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Discussion 

The present study confirms previous findings of increased TSC in grey matter, white matter and focal 

white matter lesions (Inglese et al., 2010b; Zaaraoui et al., 2012; Paling et al., 2013; Maarouf et al., 

2014) and provides first evidence of non-invasive brain intra- and extra-cellular sodium quantification 

in patients with MS.  

Although TSC holds promise as a clinically meaningful marker of tissue injury, it does not allow to 

discern between the ISC concentration that reflects metabolic cellular dysfunction and/or plasticity, and 

the ESC that reflects expansion of the extracellular space secondary to irreversible cellular damage or 

edema. Herein, we employed a newly developed, non-invasive method based on the combined use of 

SQ and TQF 23Na to measure ISC and ESC in MS patients (Fleysher et al., 2010b; Fleysher et al., 

2013a). 

There has been a significant effort over the years, to optimize the acquisition scheme and the 

reconstruction technique of TQF 23Na imaging and improve signal to noise ratio, spatial resolution and 

acquisition time (Stobbe and Beaulieu, 2005; Tanase and Boada, 2005; Fleysher et al., 2010b; Matthies 

et al., 2010; Tsang et al., 2012; Fleysher et al., 2013a; Madelin et al., 2014; Tsang et al., 2015). To 

date, the application of TQF 23Na imaging in humans has been limited to a few case reports (Boada et 

al., 2004; Fiege et al., 2013) of patients with brain tumors that have suggested a possible role for TQF 

23Na MRI to discriminate cell proliferation (tumor recurrence) from areas of tumor necrosis and edema 

(Boada et al., 2004; Fiege et al., 2013). Although promising, these approaches were limited to a 

qualitative assessment of the pathologic tissue. 

To overcome this limitation, our method combined SQ and TQF 23Na MRI, to quantify TSC and the 

intracellular sodium molar fraction (ISMF) and then derive ISC and the ISVF, an indirect measure of 

ESC (the lower the ISVF, the higher the ESC) (Fleysher et al., 2013a). A previous application of this 
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method in healthy volunteers resulted in brain ISC values between 10–15 mmol/L and an ISVF values 

between 85–95 %, in line with previous theoretical predictions and experimental works (Fleysher et al., 

2013a).  

Global and regional white matter TSC, ISC and ISVF 

Global white matter TSC and ISC values were higher and ISVF values lower in patients than controls 

supporting the concept that TSC is not only the mere consequence of the expansion of the extracellular 

space secondary to demyelination and neuroaxonal loss. Similar results were found at a regional level 

where the voxel based analysis showed not only a quite widespread ISVF decrease within the white 

matter clusters of increased TSC, but also a fewer clusters of ISC increase.  

Since none of our patients had Gadolinium-enhancing lesions, the decrease of ISVF (i.e., ESC increase) 

is likely to reflect tissue disruption, demyelination and axonal loss not only within lesions but also, to a 

lesser extent, within normal-appearing white matter. Due to the difference in spatial resolution between 

the T2-weigheted images and the TQF 23Na images we decided to analyze the global white matter 

rather than normal appearing white matter. However, as reported in previous 23Na MRI studies of 

patients with MS (Inglese et al., 2010b; Zaaraoui et al., 2012; Paling et al., 2013; Maarouf et al., 2014) 

and as visualized in Fig. 2, TSC, ISC and ISVF are altered not only in white matter areas occupied by 

lesions but also in white matter areas outside clusters of lesions. The lack of complete correspondence 

between T2 lesion map and sites of 23Na increases on SPM maps can be explained by the low resolution 

of sodium maps. The averaging of lesional and non-lesional sodium concentration in each voxel most 

likely prevented the voxel wise statistical analysis from identifying increased sodium concentration 

specifically within white matter lesions. 

Several factors may explain the increase of ISC. First of all, the upregulation of voltage-gated sodium 

channels along demyelinated axons in lesions and normal appearing white matter leads to restoration of 
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conduction at the cost of an increased influx of intraxonal sodium ions (Waxman, 2006a). Second, the 

disease-related mitochondrial dysfunction can lead to a reduction in energy supply and to the failure of 

ATP-dependent pumps (Dutta et al., 2006; Trapp and Stys, 2009) that further increase the intraxonal 

sodium concentration. Third, the intraxonal influx of Na ions can occur through persistent Na channels 

(Stys et al., 1993; Taylor, 1993) and glutamate receptors (Ouardouz et al., 2006) contributing to the 

intracellular accumulation and to the dysfunction of the Na/Ca exchanger. Finally, the well-established 

upregulation of Na channels in activated microglia, macrophages and reactive astrocytes within active 

and chronic MS lesions (Craner et al., 2005; Black et al., 2010) is likely to contribute to the measured 

increase of ISC. All together, these pathophysiological processes can either lead to neuroaxonal death 

trough the increase of intracellular calcium, the activation of calcium dependent proteases, and 

glutamate-mediated cytotoxicity (Trapp and Stys, 2009) or to a spontaneous reverse of metabolic 

dysfunction into a physiological condition (Nikic et al., 2011). Although it remains only a speculation 

due to the cross-sectional design of our study and the lack of confirmatory post-mortem data, we 

believe that the ISC increase in our relapsing-remitting MS patients reflects neuroaxonal metabolic 

dysfunction rather than loss. This is supported by several findings of our study: a) the association of 

conventional MRI measures of tissue destruction such as T1 lesion volume and normalized grey matter 

volume with the decrease of ISVF but not with the increase of ISC; b) the correlation between the 

EDSS score and measures of ISVF decrease but not ISC increase; c) the presence of an inverse 

relationship of disease duration with ISC and a direct relationship with TSC and ISVF suggesting that 

while TSC and ISVF are expression of structural damage, which increases as the disease progresses, 

ISC increase could reflect a compensatory mechanism, more active in the initial stage of the disease 

and becoming less efficient as the disease progresses. Hence, ISC might provide information about 

brain areas that are metabolically dysfunctional but still able of functional compensatory mechanisms 

preventing structural alterations.  
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Global and regional grey matter TSC, ISC and ISVF 

Global grey matter TSC and ISC values were higher in patients than controls while the difference in 

ISVF did not reach a statistical relevant difference although the values were lower in MS patients. 

Similarly to the white matter regional analysis, a decrease in ISVF was detected in almost all the 

cortical and deep grey matter regions that showed a TSC increase, while ISC increase was detected 

only in a few areas.  

Our findings about the regional brain distribution of increased TSC are in agreement with those of a 

previous study in relapsing-remitting MS (Zaaraoui et al., 2012), that showed increased TSC in areas 

involved in locomotor function (left caudate, right premotor cortex) as well as areas involved in high 

cognitive functions, speech, stimuli integration and emotion (thalamus, cingulate cortex, bilateral 

prefrontral cortex, right postcentral gyrus). The presence of cortical grey matter lesions may explain 

changes in both ISVF and ISC. Cortical lesions are a very frequent finding at histological examination 

of brain samples (Kutzelnigg et al., 2005) and a quite common finding in patients with MS when non-

conventional MRI sequences such as double inversion and phase sensitive inversion recovery are 

employed. Neuronal loss can be very extensive in cortical lesions and can lead to the increased TSC 

found in the grey matter of our patients. However, in patients with relapsing-remitting MS cortical 

lesions are less frequent than in patients with progressive MS and they are characterized by 

demyelination rather than axonal loss (Kutzelnigg et al., 2005). Thus, explaining the relevant increase 

of ISC in presence of a less conspicuous change in global ISVF.   

Nevertheless, ISVF was decreased in grey matter clusters of increased TSC suggesting that, in addition 

to cortical lesions, other mechanisms can lead to neuroaxonal loss in the cortex. Indeed, it has been 

shown that grey matter damage occurs as a consequence of trans-synaptic degeneration of axons 

transected in distant white matter lesions and/or secondary to the diffuse microscopic damage occurring 
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in normal appearing white matter (Sailer et al., 2003; Bodini et al., 2009). Pro-inflammatory and 

cytotoxic mediators derived from the meninges may also have a direct pathological effect on normal-

appearing, non demyelinated grey matter as suggested by recent post-mortem and in vivo PK11195 

PET studies (Magliozzi et al., 2010; Politis et al., 2012). 

In addition to the redistribution of sodium channels in demyelinated cortical lesions, cortical 

mitochondrial dysfunction can contribute to the increase of intracellular sodium. Campbell and 

colleagues have demonstrated the presence of respiratory-deficient neurons with multiple 

mitochondrial DNA deletions or absence of catalytic subunits of complex IV in layer VI of the cortex 

of brain samples from patients with MS (Campbell et al., 2011). 

Our findings in the grey matter have to be interpreted with caution due to the spatial resolution of our 

triple-filtered 23Na scans. We tried to minimize partial volume effect by using a 0.5 probability (rather 

than the more commonly used 0.75) as a threshold for grey and white matter tissue type classification. 

However, we cannot rule out that the inclusion of voxels containing in part cerebro-spinal fluid and 

white matter may have biased the grey matter measures. Future improvement in MRI acquisition 

techniques and coil design will lead to smaller voxel sizes and more accurate measurements. 

Several limitations have to be considered when interpreting our results. First, we focused on patients 

with relapsing-remitting MS and on a cross-sectional design study to determine the feasibility of our 

method; future longitudinal studies, designed to follow over time patients with different clinical 

subtypes will allow to extend our investigation on the clinical impact of sodium concentration increase 

in the transitional stage between relapsing and progressive phases of the disease. Second, due to the 

inherently low signal of TQF 23Na, we selected larger voxel size that precluded a reliable assessment of 

ISVF and ISC within white matter lesions. Future implementations of our technique and the use of 

multichannel receive arrays for sodium imaging will improve image SNR and will allow the voxel size 
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to be reduced, thus improving the accuracy and precision of concentration quantification in white 

matter lesions.  

Third, the application of our model in MS is based on the assumption that the pathology itself does not 

determine any substantial, persistent, alteration of 23Na relaxation times. Nonetheless, the specific 

effect of microstructural alterations on 23Na relaxation times has not been ruled out and the possibility 

of protein induced alteration of 23Na relaxation times cannot be excluded (Bansal et al., 2000). 

Fourth, as this was an exploratory study, correction for multiple comparisons was not performed; 

however, all analyses were performed with established a priori hypotheses. Correction for family-wise 

error was only applied to the whole brain voxel wise comparison of TSC maps to avoid a massive 

multiple comparison problem.  

Finally, even if a correction for B1 inhomogeneity was applied, we cannot exclude the presence of 

residual radiofrequency field artifacts. In addition, possible contribution to TQF signal from the 

extracellular sodium could have biased the results of the measurement. Although the intracellular origin 

of the TQF signal is supported by studies in experimental models (Winter and Bansal, 2001), it is not 

possible to clarify the magnitude of the bias, if any, based on the tissue model and the acquisition used 

in this work. We believe, however, that since ISC and ISVF values obtained in our study (Fleysher et 

al., 2013a) were within the expected physiological range, the possible biases remained small. Future 

studies comparing ours with new models and acquisition schemes (Stobbe and Beaulieu, 2005; Madelin 

et al., 2014) will help clarify this issue.  

Although preliminary, our findings demonstrate that TQF 23Na MRI is feasible in patients with MS and 

that ISC and ISVF values can complement TSC measures by providing information about different 

pathophysiologic aspect of MS. ISVF values reflect expansion of the extracellular volume related to 

cellular loss and development of tissue atrophy; ISC values reflect changes in cellular metabolism 
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related to mitochondrial and ion channels dysfunction.  Abnormal cellular metabolism and ion 

dyshomeostasis can either lead to cellular death or can reverse to physiological conditions. Hence, ISC 

may be a potential tool for the selection of patients with brain neuroplastic reserve and repair capability 

who may benefit from preventive neuroprotective treatments before the occurrence of structural 

damage (Kapoor, 2006; Nikic et al., 2011; Arun et al., 2013). Future improvements in 23Na MRI 

acquisition (Matthies et al., 2010), reconstruction algorithms and coil design as well as the employment 

of alternative approaches (Madelin et al., 2014) are needed to understand the dynamics of sodium 

changes in the different stages of the disease and their clinical impact. 
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Brain intracellular sodium concentration: 

A window on age-related microstructural changes 
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Introduction 

Post mortem studies and MR investigations have extensively characterized the brain structural 

modifications associated to normal aging, disclosing the presence of both morphological changes and 

micro- structural damage (Rees, 1976; Meier-Ruge et al., 1992; Kemper, 1994; Tang et al., 1997; 

Marner et al., 2003; Hedman et al., 2012; Billiet et al., 2015). Topographic distribution and temporal 

evolution pattern of such modifications seem to be tissue specific: while grey matter volume (GMV) 

shows a linear decline with age (Sowell et al., 2004; Raz and Rodrigue, 2006; Giorgio et al., 2010b), 

white matter volume (WMV) evolution is more controversial (Good et al., 2001; Ge et al., 2002; 

Benedetti et al., 2006). It seems to remain steady or increase slowly through adulthood, due to the 

ongoing maturational processes, peaks around the 4th decade and subsequently declines, unevenly 

across brain regions, from the 6th decade onward (Guttmann et al., 1998; Salat et al., 1999; Courchesne 

et al., 2000; Bartzokis et al., 2001; Jernigan et al., 2001; Ge et al., 2002; Liu et al., 2003; Allen et al., 

2005; Fotenos et al., 2005; Walhovd et al., 2005; Pagani et al., 2008; Giorgio et al., 2010a; Kakimoto 

et al., 2016). Microstructurally, the simplification of dendrite arborization, degeneration of myelin 

sheaths, reduced synaptic and fiber density induce modification in the tissue myelin content and 

diffusivity properties that can be explored through specific imaging modalities (e.g. diffusion tensor 

imaging-DTI and magnetization transfer imaging-MTI) (Abe et al., 2002; Pfefferbaum et al., 2005; 

Salat et al., 2005; Benedetti et al., 2006; Ota et al., 2006; Sullivan et al., 2006; Abe et al., 2008). 

Although sensitive to the effects of aging, often these modalities are not specific to any underlying 

biological mechanism or to the specific electrophysiological changes occurring with aging (Rizzo et 

al., 2014). Among the latter, studies in animal models have reported age-related changes in the action 

potential characteristics, with increased threshold and decreased amplitude, possibly linked to 

alterations of sodium (23Na) channel activation properties (Randall et al., 2012). Altered expression of 
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23Na channel subtypes and reduced expression of 23Na channels, resulting from changes in myelin 

sheath organization, have also been reported (Boiko et al., 2001).  

23Na yields the second strongest nuclear magnetic resonance (NMR) signal among all biologically 

relevant NMR-active nuclei but the concentration of 23Na ions in the human body is much lower than 

the 1H concentration; in addition, 23Na MRI presents a poor signal to noise ratio, which is responsible 

for the long acquisition time and the poor spatial resolution of 23Na MRI in comparison with standard 

1H MRI. While quantification of tissue total sodium concentration (TSC) can be achieved through 

single quantum (SQ) 23Na MRI (Inglese et al., 2010a), the determination of intracellular sodium 

concentration (ISC) requires the application of higher magnetic fields and more advanced imaging 

techniques (Stobbe and Beaulieu, 2005; Fleysher et al., 2010a; Tsang et al., 2012; Fleysher et al., 

2013b; Madelin et al., 2014; Tsang et al., 2015). Recently, we have implemented a new pulse sequence 

for the acquisition of triple quantum 23Na MRI at 7 Tesla (T) (Fleysher et al., 2010a) and we have 

applied to a small cohort of MS (MS) patients a newly developed method that combines SQ and TQF 

23Na MRI to assess ISC and intracellular sodium volume fraction (ISVF), an indirect measure of 

extracellular sodium concentration (ESC) (Petracca et al., 2016). Our results suggest that, while ISVF 

reflects the presence of tissue loss and expansion of extracellular space, ISC increase could reflect 

neuro-axonal metabolic dysfunction related to mitochondrial and ion channels dysfunction (Petracca et 

al., 2016). ISC exploration could therefore allow a non-invasive assessment of the aging brain 

metabolic state, contributing to the clarification of the mechanisms underlying the aging process and 

providing a baseline for comparison of brain abnormalities that occur during the preclinical stage of 

neurological disorders, especially those whose risk increases with advancing age (e.g. dementia).  

In this study, investigating the relationship between age, morphologic changes expressed by brain 

volumes and microstructural modifications expressed by 23Na concentrations, we aimed to (i) 
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demonstrate how 23Na MRI could contribute valuable information on age-related microstructural 

changes and (ii) provide normative data on 23Na concentrations for future studies.  
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Material and methods 

Subjects 

MRI data were acquired in a group of 45 healthy subjects. Exclusion criteria were a previous history of 

psychiatric or neurological disease, substance abuse and the presence of MRI abnormalities such as 

infarct, vascular malformation or tumors. Informed written consent was obtained from all participants 

according to ethical approval from the NYU Research Ethics Committee. 

MRI acquisition 

All subjects underwent 1H MRI at 3 T (Siemens Medical Solutions) and SQ and TQF 23Na MRI at 7 T 

(MAGNETOM, Siemens Healthcare). 

The 3 T 1H MRI protocol included the following sequences: (i) dual-echo turbo spin echo (repetition 

time = 8000 ms, echo time = 11 ms, 45 contiguous 3-mm thick axial slices); (ii) 3D T1-weighted 

magnetization-prepared rapid-acquisition gradient echo (repetition time = 2300 ms, echo time = 2.98 

ms, inversion time = 900 ms, flip angle = 9˚, voxel size = 1 mm3). 

The sodium SQ and TQF protocol at 7 T was acquired with a custom-built dual-tuned TX/RX 1H/23Na 

head coil  (Wiggins et al., 2010). 

SQ 23Na MRI was acquired using a 3D gradient echo sequence (repetition time = 150ms, echo time = 

6.8 ms, flip angle = 90˚, field of view = 240 x 240mm2, matrix = 48 x 48, voxel size = 5 x 5 x 5 mm3); 

TQF 23Na MRI was acquired using a modified 3D gradient-echo sequence with a new 12- step phase-

cycling B0-corrected TQF scheme (repetition time = 150 ms, echo time = 6.8 ms, flip angle = 90˚, field 

of view = 240 x 240 x 240 mm3, matrix 30 x 30 x 24, voxel size 8 x 8 x 10mm3, τ1 = 6.8 ms τ2 = 150 

ms, two averages) (Fleysher et al., 2013b). For the purposes of TSC quantification, calibration 

phantoms with known sodium concentrations (50 and 100mM/l) were placed into the field of view. For 
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TQF B0 correction, B0 maps were computed from the phase difference between two SQ images 

acquired over 3.6 min (repetition time = 150 ms) with echo times = 6.8 ms and 8.8 ms, respectively. 

The SQ image with echo time = 6.8 ms was used for TSC calculation. B1 maps were computed from 

the ratio of two additional SQ images acquired over 3.6 min with fractional anisotropy = 60 and 120, 

repetition time = 150 ms using the double flip angle method. Using the B1 maps, B1 correction was 

applied to SQ and TQF images (Fleysher et al., 2013b). 

 Image processing 

When present, white matter hyperintensities (WMHs) were identified and outlined on the dual-echo 

images using a semi-automated technique based on user-supervised local thresholding (Jim version 6; 

Xinapse Systems, http://www.xinapse.com) in order to quantify their volume. Normalized brain 

volume (NBV), GMV and WMV) were computed for all subjects on the 3D T1-weighted sequence 

using FSL’s SIENAX program (SIENAX; FMRIB Centre, Oxford, UK) as described elsewhere 

(Battaglini et al., 2012).  

As previously described (Fleysher et al., 2013b), ISC and ISVF were quantified as follows. First, SQ 

and TQF images were acquired and corrected for B0 and B1 inhomogeneities as described in Fleysher 

et al. (2010). Second, TSC maps were quantified in Image J v.1.36b on a voxel-by-voxel basis from the 

SQ images using a linear method, dependent on the calibration phantom, as described by Inglese et al. 

(2010). Third, SQ and TQF images were combined with TSC maps using an in-house procedure 

developed in Matlab (Fleysher et al., 2013b) and ISC and ISVF maps were computed. The resulting 

concentration maps were further analyzed with a global approach to measure TSC, ISC and ISVF over 

the entire grey and white matter (GM, WM) tissue. 

The analysis of the 23Na concentration maps (i.e. TSC, ISC and ISVF maps) was performed with FSL 5 

(http://fsl.fmrib.ox. ac.uk/fsl/fslwiki). The TSC maps were co-registered to the corresponding T1-
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weighted images with an affine-linear registration and the transformation matrices were saved. T1-

weighted images were segmented and the obtained GM and WM masks were superimposed onto 23Na 

concentration maps in native 23Na-image space using the inverse transformation matrix obtained in the 

step above; mean values from each tissue were extracted for each subject, obtaining GM, WM and 

cerebrospinal fluid TSC, ISC and ISVF values. A probability of 50% was considered as threshold for 

GM and WM tissue type classification. Whole brain (WB) 23Na concentrations were computed 

applying the following formula: (23Na concentration WM*WMV) + ( 23Na concentration GM*GMV) / 

(GMV+WMV). 

Statistical analysis 

Statistical analysis was performed using SPSS 22.0 (SPSS, Chicago, IL). In order to provide age-

related normative values for 23Na concentrations we divided subjects into young adults (YA), middle-

aged adults (MA) and older adults (OA). The ages chosen for defining the different age subgroups are 

broadly consistent with previous studies (Salat et al., 2005; McLaughlin et al., 2007; Giorgio et al., 

2008). Group comparisons were performed with Chi-squared Test and ANOVA, as appropriate. Since 

age related changes in brain morphology exhibit sex specificity (Good et al., 2001; O'Dwyer et al., 

2012; Kakimoto et al., 2016), sex was entered as covariate in the ANOVA analysis. 

Relationships between brain structure (volumes and 23Na concentrations) and age were explored both 

linearly and non-linearly with a hierarchical regression analysis, using age and age2 as regressors.  

Annual rates of change were calculated from the slope of the regression line (volume or 23Na metrics 

versus age at assessment), dividing the slope by the intercept in order to provide a percentage annual 

variation value that could be compared across the various metrics. 
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To compare the linear and non-linear approaches, regression plots were produced to visually assess the 

best fitting. Subsequently, to take into account the effect of sex and other potentially confounding 

variables on the relationship between age and 23Na concentrations, we repeated the correlation analysis 

entering sex, brain volumes and WMHs as covariates. Partial correlations between 23Na concentrations 

and brain volumes were also tested, entering sex and WMHs as covariates. Statistical significance was 

set at a p value ≤0.05. 
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Results 

Demographic and structural features 

Twelve out of 45 enrolled subjects (29 males, 16 females, median age=43.2 years, range=19.6-76.9 

years) presented non-specific WMHs (27%). For the purpose of subsequent subgroup analyses, subjects 

were further classified into YA (n=21, 13 males, 8 females, median age=30.6, range=19.6-39.9 years), 

MA (n=16, 11 males, 5 females, median age=50.8, range=40.1-59.6 years) and OA (n=8, 5 males, 3 

females, median age=64.8, range=61.6-76.9 years). No difference in term of sex was detected between 

groups (p= 0.90). Structural MR features of the three groups are reported in Table 1. Brain volumes 

and 23Na concentrations significantly differed among age groups, with the exception of WM TSC and 

WM ISVF (respectively p= 0.06 and p= 0.07) (Table 1). Annual percentage variations for all the 

explored variables are reported in Table 2.  
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Table 1. Structural MR features.  

 

 

 

 

 

 

 

 

 

 

 

All values express mean (SD). *p<0.05, **p<0.01 ANOVA, sex corrected 

Abbreviations: YA= young adults, MA= middle-aged adults, OA= older adults, NBV= normalized 

brain volume, GMV= grey matter volume, WMV= white matter volume, WM= white matter, WMHs = 

white matter hyperintensities, TSC= total sodium concentration, WB= whole brain, GM= grey matter, 

ISVF= intracellular sodium volume fraction, ISC= intracellular sodium concentration.  

 

 

 YA MA OA 

WMHs, mL 0.25 (0.72) 0.80 (2.97) 1.74 (2.05) 

NBV, mL 1565.90 (49.09) 1505.43 (46.39) 1458.25 (77.73)** 

GMV, mL 821.66 (25.83) 771.18 (41.76) 748.25 (37.51)** 

WMV, mL 749.09 (41.75) 734.12 (37.73) 710 (62.56)** 

TSC WB, mM 31.57 (2.43) 33.86 (2.39) 35.66 (3.04)** 

TSC GM, mM 36.74 (3.51) 40.01 (3.31) 42.74 (3.41)** 

TSC WM, mM 25.86 (1.67) 27.34 (2.56) 28.18 (3.11) 

ISVF WB, % 87.70 (1.07) 87.09 (0.90) 86.00 (1.00)** 

ISVF GM, % 85.60 (1.32) 84.79 (1.13) 83.33 (0.93)** 

ISVF WM, % 89.99 (1.25) 89.53 (1.07) 88.81 (1.20) 

ISC WB, mM 14.50 (1.71) 13.59 (1.64) 13.23 (0.72)* 

ISC GM, mM 14.42 (1.69) 13.45 (1.60) 13.07 (0.83)** 

ISC WM, mM 14.57 (1.75) 13.72 (1.72) 13.39 (0.69)** 



	 62	

Table 2. Percentage annual variation. 

 

NBV GMV WMV TSC  

WB  

TSC  

GM 

TSC  

WM 

ISVF  

WB 

ISVF  

GM 

ISVF  

WM 

ISC  

WB 

ISC 
GM 

ISC 
WM 

-0.18 -0.21 -0.15 

 

0.35 

 

0.45 

 

0.25 

 

-0.04 

 

-0.06 

 

-0.03 

 

-0.26 

 

-0.27 

 

-0.25 

 

 

Abbreviations: NBV= normalized brain volume, GMV= grey matter volume, WMV= white matter 

volume, TSC= total sodium concentration, WB= whole brain, GM= grey matter, WM= white matter, 

ISVF= intracellular sodium volume fraction, ISC= intracellular sodium concentration.  
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Regression analyses across the whole group 

Linear and non-linear regression results are reported in Table 3. While all brain structural metrics 

showed a linear relationship with age, no quadratic relationship was disclosed by the non-linear 

regression analysis (Fig. 1 and Fig. 2). After correcting for sex, brain volumes and WMHs, correlations 

between age and ISC were confirmed (WB r -0.37, p<0.05; GM r -0.32, p<0.05; WM r -0.40, p<0.01) 

while none of the correlations between age and ISVF reached the statistical significance (WB r -0.07, 

p= 0.65; GM r -0.23, p= 0.13; WM r -0.25, p= 0.11). The relationship between age and TSC survived 

only in the WM compartment (WB r 0.21, p= 0.18; GM r 0.27, p= 0.09; WM r 0.41, p<0.01). No 

significant correlations were identified between WMV and sodium concentrations (TSC r -0.16, 

p=0.32; ISVF r 0.23, p=0.14; ISC r -0.12, p= 0.43) while GMV was significantly correlated with GM 

TSC (r -0.60, p<0.01) and GM ISVF (r 0.51, p<0.01) but not with GM ISC (r 0.17, p=0.28). 
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Table 3. Parameter estimates of regressor equations for the linear and non-linear (quadratic) effects of 

age on brain volumes and sodium concentrations. 

 Linear Non-linear 

 R Square β F p R Square F p 

WMHs 0.13 0.36 6.41 0.01 0.02 0.86 0.36 

NBV 0.44 -0.66 33.93 <0.01 0.01 0.57 0.45 

GMV 0.43 -0.66 33.00 <0.01 0.00 0.08 0.78 

WMV 0.13 -0.36 6.29 <0.05 0.01 0.63 0.43 

TSC WB 0.27 0.52 15.89 <0.01 0.00 0.13 0.72 

TSC GM 0.29 0.54 17.93 <0.01 0.01 0.49 0.49 

TSC WM 0.13 0.37 6.70 0.01 0.00 0.04 0.85 

ISVF WB 0.24 -0.49 13.55 <0.01 0.02 0.71 0.40 

ISVF GM 0.27 -0.52 15.83 <0.01 0.00 0.15 0.70 

ISVF WM 0.11 -0.33 5.15 <0.05 0.02 1.06 0.31 

ISC WB 0.14 -0.38 7.11 0.01 0.00 0.18 0.67 

ISC GM 0.15 -0.39 7.78 <0.01 0.00 0.15 0.70 

ISC WM 0.12 -0.35 6.08 <0.05 0.00 0.20 0.66 

 

Abbreviations: WMHs = white matter hyperintensities, NBV= normalized brain volume, GMV= grey 

matter volume, WMV= white matter volume, WM= white matter, TSC= total sodium concentration, 

WB= whole brain, GM= grey matter, ISVF= intracellular sodium volume fraction, ISC= intracellular 

sodium concentration.  
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Fig. 1. Regression plots between age and brain volumes (i.e., normalized brain volume [NBV], gray 

matter volume [GMV], and white matter volume [WMV]) for the linear (continuous line) and quadratic 

(dotted line) models. 
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Fig. 2. Regression plots between age and 23Na metrics (i.e., total sodium concentration [TSC], 

intracellular sodium volume fraction [ISVF] and intracellular sodium concentration [ISC]) for the 

linear (continuous line) and quadratic (dotted line) models used to assess the gray matter and white 

matter compartments. 
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Discussion 

In the present cross-sectional study, applying TQF 23Na MRI to a cohort of healthy adults, we provide 

for the first time normative data for 23Na concentrations in three age groups (<40, 40-60, >60). Our 

main objective, however, was to clarify the role of ISC in the characterization of tissue microstructural 

abnormalities occurring with aging. To this purpose, we explored the relationship between 23Na 

concentrations (TSC, ISC and ISVF), brain volumes and age in 45 healthy subjects. TSC showed a 

linear increase with age, while brain volumes exhibited a constant decline, associated with the 

expansion of the ECS (ISVF decrease) but not with ISC decrease. According to the canonical brain– 

sodium tissue model, 23Na is distributed between only two compartments: intracellular and 

extracellular (Thulborn et al., 1999b; Ouwerkerk et al., 2003). While TSC represents an average of the 

two compartments, ISVF is an indirect measure of ESC and therefore is sensitive to the detection of 

neuro-axonal loss, as confirmed by our previous findings in MS patients (Petracca et al., 2016) and by 

the correlation between ISVF and GMV detected in the present study. Postmortem assessment and MR 

studies of brain tissue have revealed increased axonal dispersion (Meier-Ruge et al., 1992) and loss of 

small diameter myelinated fibers (Tang et al., 1997; Marner et al., 2003) with age, resulting in an 

increased amount of interstitial fluid that can explain the observed ISVF decrease in brain tissue with 

age. On the other hand, our finding of an age-related decrease in ISC, independent from brain volumes 

reduction, suggests how ISC might be able to depict modifications in neuronal morphology and 23Na 

channel expression induced by aging, providing valuable and specific information on tissue 

microstructure. In particular, ISC decrease could be related to the reduction in the complexity of 

dendrite arborization, change in synaptic densities due to reduction in spine number, myelin sheaths 

disruption and reduced expression/altered functionality of 23Na channels occurring with age (Dickstein 

et al., 2007; Rizzo et al., 2014). To further confirm this hypothesis we tested the correlation between 

age and 23Na concentrations taking into account the presence of WMHs and brain volumes. As 
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expected, only the correlation between ISC and age was still significant, reinforcing the idea that the 

changes depicted by ISC are independent from neuro-axonal loss and atrophy. While for brain volumes 

loss a different temporal kinetic is usually reported, with GMV loss occurring earlier than WMV 

reduction, data about the temporal dynamic of microstructural modifications in GM are scarce, mainly 

because so far studies exploring microstructural tissue modifications in aging have focused on WB or 

WM analysis (Hofman et al., 1999; Rovaris et al., 2003; Pfefferbaum et al., 2005; Abe et al., 2008; 

Barrick et al., 2010; Giorgio et al., 2010a; O'Dwyer et al., 2012; Sala et al., 2012; Billiet et al., 2015); 

however, the few available data suggest that brain WM and GM have different vulnerabilities to aging 

(Benedetti et al., 2006). In agreement with this hypothesis, the value of the correlation coefficient 

between brain volumes and age was higher for the GM than for the WM, and age explained three times 

more of the variance in GM than in WM tissue volume. In our population, both GM and WM volumes 

loss appears linearly related to age, and WMV does not exhibit the quadratic relationship with age 

mainly reported in literature, with a first wave of growth occurring from childhood to age 13 and a 

second wave of growth/stability occurring from adolescence to age 35 (Hedman et al., 2012), possibly 

because our sample did not include child or adolescents and less that 40% of our sample was aged <35 

years.  

23Na concentrations also exhibited a linear relation with age, suggesting that microstructural 

modifications occur since the early adulthood and then proceed constantly throughout the lifespan. The 

relationship between 23Na concentrations and age showed the same temporal dynamic in GM and WM, 

but the between group comparison hinted to a different degree of involvement of the two tissues: the 

lack of significant difference for WM TSC and ISVF in the between group comparison suggests that 

age-related tissue modifications might affect WM to a lower extent than GM. The percentage annual 

variations of 23Na concentrations seem to confirm this hypothesis, since WM TSC, ISC and ISVF 

percentage annual variations are lower in the WM compartment than in the GM. While this finding 
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seems to confirm a prevalent involvement of GM in age related changes, the discrepancy between the 

two compartments could also be attributed to the lack of specificity of 23Na metrics towards myelin 

modifications. In future studies, the integration of 23Na imaging with other imaging modalities could 

help clarify this point and characterize the different aspects of tissue microstructural changes ongoing 

in the gray and white matter compartments with age. The parallel analysis of 23Na concentrations and 

metrics derived from other MR modalities could also contribute to the biological interpretation of 

metrics that, although lacking in specificity, are still widely used in clinical studies. For example, the 

decrease in the DTI derived metric fractional anisotropy (FA) observed during aging could be related to 

changes in myelin content and/or increased axonal dispersion (Billiet et al., 2015); the latter 

interpretation could find further confirmation in an association between FA and ISVF.  Several 

limitations have to be considered when interpreting our results. First, our population did not include 

children or adolescents and therefore our study does not capture the evolution of 23Na concentrations 

across the entire lifespan. Second, since we did not explore topographic patterns of 23Na concentrations 

regionally, we cannot infer whether the observed changes occur uniformly across the brain or are 

localized to particular brain regions, as would support the frontal-aging hypothesis (West, 1996). 

Finally, due to the nature of our study, we did not examine the rate of change in 23Na parameters 

longitudinally.  

In conclusion, although our interpretation remains speculative due to the lack of postmortem histologic 

verification, we believe that ISC reflects neuro-axonal metabolic state rather than loss. This is 

supported by (i) the association of GMV with ISVF but not with ISC (since ISVF decrease is 

expression of extracellular space expansion, its direct correlation with GMV is to be expected); (ii) the 

association of ISC, but not ISVF with age after correction for sex, brain volumes and WMHs. Future 

studies exploring longitudinally 23Na metrics in association with other imaging modalities will help 

elucidate the dynamics of 23Na changes with age and their biological role. 
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