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PhD Coordinator:
Professor Raffaele Velotta

Examiners:

ii
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Abstract

We carry out a theoretical investigation on the self-modulated dynamics of a relativistic,

nonlaminar, charged particle beam travelling through a magnetized plasma due to the plasma

wake field excitation mechanism. In this dynamics the beam plays the role of driver, but at

the same time it experiences the feedback of the fields produced by the plasma. Driving

beam and plasma are strongly coupled by means of the EM fields that they produce: the

longer the beam (compared to the plasma wavelength), the stronger the self-consistent beam-

plasma interaction. The sources of these EM fields are charges and currents of both plasma

and driving beam. While travelling through the plasma, the beam experiences the electro-

mechanical actions of the wake fields. They have a 3D character and affects sensitively

the beam envelope. To provide a self-consistent description of the driving beam dynamics,

we first start from the set of governing equations comprising the Lorentz-Maxwell fluid

equations for the beam-plasma system. In the unperturbed particle system (i.e., beam co-

moving frame) and in quasi-static approximation, we reduce it to a 3D partial differential

equation, called the Poisson-type equation. The latter relates the wake potential to the beam

density which is coupled with the 3D Vlasov equation for the beam. Therefore, the Vlasov-

Poisson-type pair of equations constitute our set of governing equation for the spatiotemporal

evolution of the self-modulated beam dynamics. We divide the analysis in two different

cases, purely transverse and purely longitudinal.

In the purely transverse dynamics, we investigate the envelope self-modulation of a cylin-

drically symmetric beam by implementing the Vlasov-Poisson-type system with the corre-

sponding virial equations. This approach allows us to find some constant of motions and

some ordinary differential equations, called the envelope equations that govern the time evo-

lution of the beam spot size. They are easily integrable analytically and/or numerically and

xviii



xix

therefore facilitate the analysis. Additionally, to approach our analysis also from the qualita-

tive point of view, we make use of the so called pseudo potential or Sagdeev potential, widely

used in nonlinear sciences, that is associated with the envelope equations. We first carry out

an analysis in two different regimes, i.e., the local regime (where the beam spot size is much

greater than the plasma wavelength) and the strongly nonlocal regime (where the beam spot

size is much smaller than the plasma wavelength). In both cases, we find several types of

self-modulation, such as focusing, defocusing and betatron-like oscillations, and criteria for

instability, such as collapse and self-modulation instability. Then, the analysis is extended to

the case where the beam spot size and the plasma wavelength are not necessarily constrained

as in the local or strongly nonlocal cases. We carry out a full semi-analytical and numerical

investigation for the envelope self-modulation. To this end, criteria for predicting stability

and self-modulation instability are suitably provided.

In the purely longitudinal dynamics, we specialize the 3D Vlasov-Poisson-type equation

to the 1D longitudinal case. Then, the analysis is carried out by perturbing the Vlasov-

Poisson-type system up to the first order and taking the Fourier transformation to reduce

the Vlasov-Poisson system to a set of algebraic equations in the frequency and wavenumber

domain. This allows us to easily get a Landau-type dispersion relation for the beam modes,

that is fully similar to the one holding for plasma modes. First, we consider the case of a

monochromatic beam (i.e., cold beam) for which we find both a purely growing mode and a

simple stability criterion. Moreover, by taking into account a non-monochromatic distribu-

tion function with finite small thermal correction, the Landau approach leads to obtain both

the dispersion relation for the real and imaginary parts. The former shows all the possible

beam modes in the diverse regions of the wave number and the latter shows the stable or

unstable character of the beam modes, which suggests a simple stability criterion.

Finally, within the framework of the 1D longitudinal Vlasov-Poisson-type system of

equations, we introduce the concept of coupling impedance in full analogy with the con-

ventional accelerators. It is shown that also here the coupling impedance is a very useful tool

for the Nyquist-type stability analysis.



Introduction

It is well known that a plasma can sustain large-amplitude electric and magnetic fields by

means of suitable external actions that provide therein the creation of a charge separation

between ions and electrons and the generation of an electric current. Typical external actions

are provided by very intense electromagnetic pulses [1–3] or intense relativistic charged-

particle beams [4–7], both called drivers, that are suitably launched into the plasma. The

principal effect, predicted by the theory and even experimentally observed, is the generation

of a plasma density perturbation behind the drivers at the same speed of the latter, as the water

wake moves behind the boat. Very intense electric and magnetic fields, called wake fields,

are associated with such a plasma perturbation. The mechanisms of the wake field excitation

(WFE) can be artificially or naturally produced and, therefore, are relevant to the diverse

environmental conditions ranging from laboratory to space and astrophysical plasmas.

Where do the WFE mechanisms take place?

In laboratory plasmas, the most relevant scientific and technological applications of the WFE

are the realization of very compact schemes to provide very high gradients of accelerations.

They can be efficiently used to accelerate bunches of charged-particles to ultra-high energy

(f.i., up to 1 GeV in a few centimeters), or to provide the particle beam focusing (or other

types of transverse beam manipulations) with ultra-strong strengths (f.i., 100 MGauss/cm)

to be used in the final focusing stage of a linear collider. In addition, they can be used also to

provide wiggling of particle beams with plasma undulators (or plasma wigglers) to be used

in free electron laser (FEL) devices to produce coherent radiation of very small wavelengths

1
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(f.i., X rays), by employing charged-particle beams of modest energies [1–12].

WFE-based acceleration of charged particle beams takes place also in space and astro-

physical environments [13–16]. A mechanism for a cosmic accelerator has been proposed

recently [17]. Even, Alfvén shocks can also excite large amplitude wake fields which, in

turn, accelerate charged particles to high energy [17].

Why a plasma is necessary to sustain large amplitude wake
fields?

The strong development of high-energy physics registered in the last three decades has re-

quired that particle accelerators have to work at the extreme conditions of luminosity, i.e.,

beyond 1034 cm−2 s−1 or brightness (high-intensity beams) and beam energy beyond sev-

eral tens of TeV. To satisfy these requirements, but at the same time keeping very compact

both the experimental set-up and the accelerating machines, very intense electromagnetic

(EM) fields of about 100 GV m−1 are needed to manipulate the beams/bunches in suitable

ways. Unfortunately, limitations in terms of costs and technology encountered in the use of

the present generation of conventional accelerators fix the maximum fields at a few tens of

MeV m−1. On the other hand, the generation of coherent radiation in the X-ray regime using

conventional magnetic undulators was accomplished long ago by using high energy electron

beams. Many examples are found in the fields of free electron lasers (FELs) and synchrotron

radiation sources [18–20]. However, this was done at very large and expensive accelera-

tor facilities. New potentially inexpensive and compact FELs are needed to manipulate the

charged particle beams in a more efficient way where the wiggler/undulator wavelength and

the beam energy are effectively reduced.

To overcome such current technological limitations, plasma-based devices for efficient

manipulation of charged particle beams seem to be feasible, manageable and flexible from

the point of view of their insertion in a transport beam line.

It can been easily seen that the maximum electric field, Emax, expressed in V/cm, that can
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be supported by a charge separation in a plasma of unperturbed density n0

[
cm−3

]
, is given

by

Emax [V/cm] ≈
√

n0
[
cm−3] . (0.0.1)

This is the well known Dawson limit first introduced by John M. Dawson in 1959 [21, 22].

For a density n0 ∼ 1018cm−3, Emax ∼ 1GV/cm, which is much greater than the one available

in the conventional accelerating machines, i.e., 20 − 30 MV/m (104 times larger than the

ones employed in conventional accelerators!). This limit is sometimes also referred to as

the cold wave-breaking limit. Recent valuable experimental results in this area have shown

the absolute feasibility beyond 1cm acceleration with the record energy exceeding 1 GeV

[23–29].

Compared to the conventional accelerators, the plasma-based acceleration is advanta-

geous in terms of:

• compactness, because the size of the acceleration devices are reduced drastically of

several order of magnitudes;

• costs, because less devices and the reduced dimensions drastically reduce the cost, as

well;

• time, because the simpler arrangement implies reduced time of construction;

• technology, because simpler operations in delivering a charged-particle beam from the

accelerator are required and no problems of electric insulation have to be solved. In

fact, in the conventional accelerators the maximum electric fields must be suitably

below the dielectric breakdown threshold. On the contrary, the plasma is the state of

matter where a gas is fully ionized and, therefore, no problems of breakdown have to

be solved!

Therefore, very compact accelerating and manipulating systems for charged particle

beams, in principle capable to accelerate electrons to GeV in a few centimeters, or to fo-

cus particle or radiation beams with ultra-strong strengths (several orders more than the ones
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provided by the conventional lenses), or to generate coherent radiation of very small wave-

lengths ranging from X- to γ-rays windows, seem to be feasible in the near future [30–36].

How does the wake field excitation work in a plasma and
how do the wake fields provide very compact schemes?

As we have already mentioned above, there are two typical way to excite the wake fields in

a plasma by using, as drivers, laser pulses and charged-particle beams, respectively. Let us

briefly describe the related mechanisms.

Ultra-short and ultra-intense laser pulses as drivers

Recent studies of the EM pulse propagation in plasmas have witnessed the rapid growth of

the frontiers of nonlinear optics. Thanks to this development, ultra-short and ultra-intense

EM pulses are nowadays available. When such EM pulses are launched into the plasma, the

gradient of the radiation intensity introduces a force on the plasma particles, the so-called

ponderomotive force. It is independent of the charge sign, directly proportional to the oppo-

site of the gradient of the radiation intensity, but inversely proportional to the particle mass.

Therefore, it pushes the particles from the regions of greater intensities to the regions of

lower intensities (ponderomotive effect), but it affects significantly the electron density com-

pared to the ion one. On a time scale much less than the one of the carrier wave component of

the laser pulse, the interplay by the ponderomotive effects and the restoring electric field be-

tween ions and electrons produces a net oscillating charge separation (plasma wave) behind

the laser pulse. The plasma wave moves as a wake at the phase velocity that is almost equal to

the group velocity of the laser pulse. This mechanism is usually referred to as the laser wake

field excitation (LWFA) and it is expected to provide ultra-intense acceleration and strong fo-

cusing gradients [30, 37–39] at relatively lower cost compared to conventional accelerators.

In general, the interaction between the ultra-short, ultra-intense laser pulse and the surround-

ing plasma consists of the number of electromechanical actions, which depend on the pulse
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Figure 1: Scheme of the laser wakefield acceleration excited by a laser pulse. The driving
laser pulse interacts with the active medium plasma and produces a driven system (charged
particle beam) which leads to acceleration.

intensity. In turn, these actions affect the collective pulse dynamics which is nonlinear, as

well. Consequently, the plasma and the pulses are strongly coupled. The electromechanical

actions can be longitudinal (self-compression/expansion, self-modulation, bunch lengthen-

ing/shortening, etc.) or transverse (self-focusing/defocusing, beam widening, etc.), but they

have a three dimensional (3D) character, in general. Usually, these effects provide the phys-

ical mechanisms that may enhance an initially small perturbation in the beam amplitude,

leading to the large variety of instabilities, such as the modulational instability, filamentation

and collapse (in the broadest sense, they belong to the family of coherent instabilities). An

efficient plasma acceleration has been already tested in preliminary experiments devoted to

the diverse aspects of very high energy gain, very intense focusing and production of radi-

ation of very small wavelengths. A great effort in this direction is ongoing also at Intituto

Nazionale di Fisica Nucleare (INFN) within the project Sparc Lab (SL), devoted to the R&D

of plasma-based new acceleration techniques that has been originated by the former project

PLASma acceleration and MONochromatic X-ray production (PLASMONX). SL collects

a number of synergic experiments, all coming from the former multidisciplinary project

PLASMONX. The INFN effort is based on the use of the FLAME laser, which provides one

of the most powerful femtosecond pulsed laser with 10 Hz repetition rate presently available
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with a maximum power of 220 TW and the maximum intensities of the order of or exceeding

1021 W/cm2.

In summary, in the laser-plasma accelerators (LPA) schemes, high power laser (HPL)

pulses produce a very strong ponderomotive effect (macroscopic Compton effect) capable of

inducing very strong charge separations between ions and electrons. The latter create very

strong electric fields (whose character is three-dimensional due to the three-dimensional

profile of the HPL). The longitudinal component of such a field can be used to accelerate

externally-injected charged particle beams. It has been demonstrated that suitable physical

conditions, in terms of plasma density and HPL intensity, allow also to efficiently accelerate

the electrons of the plasma to very high energy (self injection scheme) that are compara-

ble to the ones achievable in the external injection scheme. In both schemes, the acceler-

ated charged-particle beams are driven by the laser pulse. To reach these goals, ultra-strong

(powers and intensities of the order of 102 TW and 1020 W/cm2, respectively) and ultra-short

femto-second HPL pulses have to be employed.

Intense relativistic beams as drivers

The interest, and therefore the study, of the relativistic charged-particle beam dynamics in

plasmas has increased gradually in connection with the richness of nonlinear and collective

effects induced by the propagation of very intense charged-particle bunches, even earlier than

the growth of interest for the LWF acceleration [4]. The typical charged particle beam-driven

plasma wave excitation is the well-known plasma wake field (PWF) excitation [4, 40, 41].

In the PWF excitation, a relativistic charged particle beam/bunch (i.e., driver, also called

driving beam/bunch) is launched into a neutral plasma. This way, due to the violation of

the local charge neutrality, the beam induces both charge and current perturbations of the

plasma. In general, the spatial particle distribution of the driver has a 3D character, as in

the case of the LWF excitation. Then, the driver carries charge and current that are spatially

distributed and therefore they are, together with the charge and the current perturbations of

the plasma, the sources of the total electromagnetic field of the system driver + plasma. The
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resulting plasma perturbation manifests as a wake behind the driver. It corresponds to the

generation of a plasma wave moving behind the driver with a phase velocity almost equal

to the driver velocity. Electromagnetic fields, i.e., plasma wake fields (PWFs), are associ-

ated with such a wave. As in the driving laser case, the plasma wave has a 3D character

(due to the 3D density profile of the driving bunch) and it oscillates at the electron plasma

frequency [4]. Consequently, the electromagnetic field associated with the wake has both

transverse and longitudinal components. The stronger the gradient of both longitudinal and

transverse driver profiles, the stronger the amplitude of the longitudinal and transverse PWF

components, respectively. Thus, a test particle experiences the effects of both the trans-

verse (focusing/defocusing) and the longitudinal (acceleration/deceleration) components of

the wake field. Depending on the regimes, the test particle can be the one of a secondary

beam, called driven beam, externally injected in phase locking with the wake or belonging

to the driver. In general, as in the case of LWF excitation, the transverse fields can be usable

to manipulate the driven beam while accelerated by the longitudinal electric field. Drivers

Figure 2: Plasma wake field acceleration scheme, excited by a relativistic electron beam,
where the beam interacts with the surrounding plasma and thereby produces an wake field
behind the beam itself.

sufficiently short compared to the plasma wavelength generate wakes that are completely

located behind them. However, as the driver length gradually increases, the PWF generation

takes place also partially inside the driver (especially within its tail), due to the head of the

driver. Then, sufficiently long drivers compared to the plasma wavelength generate PWFs
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mostly inside themselves. Therefore, the driver experiences the effects of the PWF that itself

has produced (self interaction). This is a sort of collective self-consistent effect of the beam-

plasma interaction that leads to the self-modulation of the driver. Physically, when a charged

particle beam enters the plasma, the violation of the local charge neutrality is shielded by

the plasma. The shielding of the beam is provided by an excess of plasma particles with

opposite charge. Therefore, the longer beam the longer time of the shielding. This implies

that for sufficiently long beams, the plasma has the time to shield adiabatically the driver in

such a way that the drivers’ dynamics is fully governed by the collective self-consistent PWF

excitation.

There are many remarkable experimental and theoretical projects devoted to the PWF

excitation. A plasma-based acceleration project planned at CERN (Geneva, Switzerland)

jointly with Max Planck Institute for Physics (Munich, Germany), i.e., the Advanced Wake-

field Experiment (AWAKE) [42, 43] which deals with proton-driven PWF excitation. Since

long time, SLAC laboratory is dealing with many projects relating PWF acceleration mech-

anism. One of the recent activities is the one where FACET facilities are used in an ex-

periment to employ short electron bunch to generate high gradient field which accelerates a

second trailing beam to high energies [44]. Theoretical and numerical studies seem to show

that this technique has the capability to produce a high brightness beam. Moreover, within

the Italian SPARC LAB collaboration COMB (Coherent plasma Oscillations excitation by

Multiple electron Bunches) is a PWF-based experiment which is in progress at the National

Laboratories of INFN in Frascati (Rome, Italy). The generation of sub-picosecond, high

brightness electron bunch trains is achieved by means of velocity bunching technique (the

so called comb beam). Such bunch trains (with a charge ranging from 200 pC to 400 pC at

energies greater than 100 MeV) can be used to drive tunable and narrow band THz sources,

FELs and PWF accelerators [45].
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What is the goal of this thesis?

In this thesis we deal with the self modulated dynamics of a relativistic, nonlaminar, charged

particle beam while travelling in a plasma. This is done in the context of PWF excitation

mechanism. During the self interaction, the driving beam experiences a number of elec-

tromechanical effects in both longitudinal and transverse directions which are fully similar

to the ones mentioned above for the case of LWF excitation. A large spectrum of lon-

gitudinal and transverse phenomena involving the beam density modulation, such as self-

compression/decompression, self-focusing/defocusing, beam widening/squeeezing, beam length-

ening/shortening, envelope oscillations are generated in the diverse conditions of:

• plasma motion (i.e., nonrelativistic or relativistic);

• plasma temperature (i.e., cold or warm plasma);

• beam motion (i.e., nonrelativistic or relativistic beam);

• beam temperature (i.e., cold or warm beam);

• beam-plasma collisions (i.e., collisionless or collisional beam-plasma system);

• ambient conditions (i.e., unmagnetized or magnetized plasma).

We first elaborate the appropriate models to describe self-consistently the modulated

beam-plasma dynamics. The description of the dynamics of the beam-plasma system is

provided by the kinetic theory by means of the Vlasov-Maxwell system of equations which,

under suitable assumptions, can be reduced to the fluid Lorentz-Maxwell system of equations

or to an hybrid system of equations comprising the Vlasov-Maxwell system for the driving

beam and the Lorentz-Maxwell system for the plasma, respectively.

Going to the beams’ co-moving frame and expressing the electromagnetic fields in terms

of the four-potential, the Maxwell’s equations can be conveniently reduced to a Poisson-like

equation for a scalar function, called plasma wake potential, whose gradient gives the PWF.
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Therefore, the Vlasov-Maxwell (or Lorentz-Maxwell) system of equations is reduced to the

Vlasov-Poisson-type (or Lorentz-Poisson-like) pair of equations.

A further level of description of the beam modulation is given in terms of averaged quan-

tities (such as, beam length, beam spot-size, longitudinal and transverse beam momentum

spreads, etc.) by determining the virial equations (virial description) associated with the

Vlasov-Poisson-type pair of equations. The virial description provides a very useful ap-

proach to the analysis of the envelope modulation which includes the formulation of the

stability criteria.

Basic concepts of plasma and beam physics

In order to facilitate the description given in the next chapters, here we put forward some

basic and tutorial concepts concerning both plasmas and beams. To this end, we privilege

the physical aspects compared to the mathematical ones.

Plasma concept and plasma parameters

A plasma is a globally neutral system which is basically constituted of ionized matter and

eventually of a minor part of neutral matter. In this thesis, for simplicity, we consider plasma

constituted by a fully ionized matter. Under this assumption, the plasma is a system of ions

(in general of several species) and electrons. In principle, all these charged particles are

free to move with the random thermal motion, under the internal mutual electromagnetic

forces, and eventually under the action of external forces that include external electromag-

netic forces. Due to the long range character of the internal mutual electric and magnetic

forces, the plasma motion (i.e., the motion of its particle) exhibit a collective behaviour. It is

characterized by regimes of high temperature and low density, commonly found in laboratory

as well as in space and astrophysical environments.

Due to the difference of three orders of magnitude between ions and electron mass (note

that the proton mass is almost 1.8 × 103 times the electron mass), the mobility of the ions is
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much reduced compared to the one of electrons. This means that, under the actions of oscil-

lating electric fields, the electrons may respond with vibrations while ions remain practically

at rest, provided that the oscillation frequency is sufficiently high. This physical circum-

stance, allows to separate electrons from ions. On the other hand, oscillating fields with

much lower frequency can solicit the ions to vibrate, but the small mass of the electrons

allows them the respond almost instantaneously by means of the electric restoring force and

therefore ions and electrons are dragged along by the oscillating field and do not separate

significantly.

When a portion of plasma is depleted of some electrons (thus creating a net positive

charge), the resulting Coulomb force tends to pull back the electrons towards the excess

of positive charge. Due to their inertia, the electrons will not simply replenish the positive

region, but travel further away thus re-creating an excess of positive charge. In the absence

of collisions, this effect gives rise to undamped electron oscillations at a frequency, i.e., ωp,

called the electron plasma frequency (or simply plasma frequency).

To provide a simple mathematical description of plasma frequency, let us assume a cold,

collision-less electron plasma with ions constituting uniform background. We consider a

rigid layer of electrons that are displaced along the x direction, lead by the vector displace-

ment ~ξ (with respect to ions). In the case of a capacitor plate, the electric field produced by

the capacitor is E = 4πene~ξ, where ne is the plasma electron number density and e being

the absolute value of electron charge, respectively. Then, the electric restoring force on an

electron is F = −eE = −4πe2ne~ξ. From these relation, we can find that the electron motion

equation yields as,

d2ξ

dt2 + ω2
pξ = 0, (0.0.2)

where ωp =
(
4πe2ne/me0

)1/2
and me0 is the rest mass of electron. Equation (0.0.2) is the

equation for simple harmonic motion describing the oscillation frequency of the fluctuating

plasma electrons around the equilibrium position.

Let us consider a plasma initially with a uniform density of n0 for both protons and
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electrons. There is no net charge density, so that we can assume that there is initially no

electric field. Now, let us suppose that the proton density is changed from n0 to (1 − δ)n0 in

the region −L < x < L. If L is sufficiently small, the electric field due to this change will

be so small that the electrons will suffer negligible disturbance. On the other hand, if L is

sufficiently large, the change will have a drastic effect on the electron distribution. We are

going to estimate the range of L at which transition takes place.

If there were no change in electron density, the Poisson’s equation would lead to the

following equation for the electric potential

d2φ

dx2 = 4πδn0. (0.0.3)

Assuming that the plasma as a whole is maintained at potential φ = 0, the appropriate solu-

tion of Eq. (0.0.3) is φ = 2πδn0(x2 − L) for |x| < L and φ = 0 for |x| > L, which in particular

becomes, φ(0) = −2πδn0L2.

Now suppose that the plasma has a temperature T , so that each particle has mean kinetic

energy kBT/2 in each degree of freedom (kB is the Boltzmann constant). If φ(0) is so small

that an electron of average thermal energy can easily reach x = 0, there will be only a

small change in the state of plasma. On the other hand, if φ(0) is so large that a very few

electrons can reach x = 0, there will be a drastic change in the state of the plasma. Hence the

requirement that the plasma remain ‘quasi-neutral’ is that 1
2kBT > 2πδn2

0L2, which can be

rewritten in the form δ <
(
λD
L

)2
, where we have introduced the quantity called the the ‘Debye

length’:

λD =

(
kBT
4πn2

0

)1/2

.

The Debye length describes the important phenomenon of electrostatic screening, i.e., if

an excess of positive charge is introduced in the plasma, it will be rapidly surrounded by a

cloud of electrons (which are more mobile and thus react quickly). As a result, the positive

charge will be partially screened and will be virtually ‘invisible’ to other particles situated at

a large enough distance. The Debye screening is at the origin of one of the most crucial of

all plasma properties, namely quasi-neutrality.
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A dimensionless parameter using the above quantities (me0, e, n0, and T ) exists, and it

reads as, coupling parameter i.e.,

Γc =
4πe2n1/3

0

kBT
. (0.0.4)

Γc can be written as the ratio of the potential energy to the average kinetic energy. When Γc

is small, the plasma is dominated by thermal effects. This is known as the weakly coupled

plasma. On the contrary, when Γc & 1, the plasma is said to be strongly coupled.

A violation of the local charge neutrality induces an electrostatic oscillation of the electric

field in the plasma with frequency ωp. This means that the quantity Tp = ωp/2π, called the

plasma period, estimates the characteristic time of charge separation.

Plasma can support ultra-high electric field which depends on the number density pertur-

bations according to the Poisson equation, ∇ · E = −4πen1, where n1 is the number density

perturbation. However, the maximum value of the field amplitude corresponds to a density

perturbation numerically equal to the unperturbed plasma density (i.e., n1 ∼ n0). It easily

leads to the Dawson limit given by Eq. (0.0.1).

However, plasmas can become relativistic when the temperature is very large (T > mc2)

[46] or in the presence of large amplitude waves [47]. The case of large amplitude wave for

cold plasma has been investigated by Akhiezer et al. [48]. In this case, relativistic corrections

to plasma particle’s mass and velocity are important.

Under the action of an oscillating field with large amplitude EM at frequency ω, the

plasma particle motion can be described in terms a parameter, called quiver velocity, i.e.,

ν = qEM/mωc, where q and m are the charge and mass of the particle. If ν � 1, the

plasma particle motion is non relativistic. With the gradual increase of amplitude, plasma

particle velocity gradually become a significant fraction of light velocity, c. The condition

ν ≈ 1, corresponds to radiation intensity of the order of 1013−1016 W/cm2. Larger intensities

(& 1017 W/cm2) lead the plasma particles to be fully relativistic.
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Particle beam concept and beam parameters

There is no univocal definition of beam. Typically, a charged particle beam stands for a

collection of particles that have almost same same velocity and hence same kinetic energy

and, therefore, move in almost same direction. The charged particle beams we are dealing

with in this thesis are paraxial systems. In such a system the particle velocities are almost

oriented along a privileged direction, say z, called the propagation direction or longitudinal

direction. Let us denote by x and y a pair of orthogonal axis that are orthogonal to z, as well.

This way, x, y and z, consitute a Cartesian reference frame. In such a frame, the trajectory of

each beam particle can be represented by equation of the type:

z = z(x, y) . (0.0.5)

Then, the paraxial character of our beam is established by the conditions

dx
dz
� 1 , and

dx
dz
� 1 , (0.0.6)

which state that the slopes of the particle trajectories in the beam must be very small.

At normal temperature, the kinetic energies of the particles are higher than the thermal

energies. Charged particle beams can be categorized into two branches i.e., laminar beams

and nonlaminar beams. In a laminar beam, the particles follow fixed layers of trajectories

that never intersect. All the particles have identical transverse velocities and while flowing

they make a small angle with the propagation axis (paraxial motion). The area of the phase

space, that is occupied by a laminar beam, is a straight line of zero thickness. When the beam

crosses the ideal lens is transformed in a converging laminar beam. It is easy to transform a

diverging (or converging) beam to a parallel beam by using a lens of the proper focal length.

On the other hand, the particles of a nonlaminar beam have random transverse velocities.

Therefore, it is impossible to focus all particles from a location in the beam toward a common

point. Lenses can influence only the average motion of particles. The phase space plot of a

non-laminar beam is not a straight line.
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A charged particle beam can be released from a material source and propagated through

a medium (like plasma) or in a vacuum. When a charged particle beam has pulsed motion

in the longitudinal direction, it is called bunched beam. The unbunched (coasting) beam has

no pulses in the longitudinal direction. The bunched beams are the ones that are mostly used

in modern accelerators. Charged particle beams can be described by various properties viz.,

particle species, energy, current, beam size, beam emittance (a measure of thermal spreading

in the particle trajectories), brightness, etc.

The beam-plasma interaction ruled by the PWF mechanism can be described in various

situations those depend on the relative density of beam and plasma, the velocity, temperature,

collective or single particle behavior, etc. For instance, if the beam density is much smaller

than the plasma density i.e., nb � n0, the system is in the overdense regime. When the beam

density is nearly equal or a little above the plasma density i.e., nb & n0 the PWF interaction

is in underdense regime [4–8].

Brief summary of all the chapters We report here the synthetic descrip-

tions of the chapters’ contents. To help the reader, they are also reported as abstracts at the

beginnings of each chapter.

Chapter 1: Models for plasmas

We present the basic concept of the kinetic theory for plasmas that are relevant for the self-

consistent plasma wake field excitation. We start from the Vlasov-Maxwell system of equa-

tions for a plasma. From the kinetic model of each plasma specie, we find the hierarchy of

moment equations of the distribution function that we truncate, with suitable closure condi-

tions, to the level of fluid theory. This way, the set of fluid Lorentz-Maxwell equations is

also presented in view of the construction of plasma wake field theory in Chapter 2. Finally,

a simple extension of both kinetic and fluid models to include collisional effects is presented.

Chapter 2: The theory of plasma wake field excitation: the Poisson-type
equation
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We present the general theory of plasma wake field excitation in a magnetoactive, nonrel-

ativistic, warm and collisionless plasma. This is done by using the 3D Lorentz-Maxwell

system of equation for the ‘beam-plasma’ system that has been presented in Chapter 1. The

driving beam is assumed to be ultra-relativistic in overdense regime. We first give a simple

concept of plasma wake field and plasma wake potential by starting from the expression of

the Lorentz force experienced by a test particle in its co-moving frame, in the presence of the

self-consistent EM field of the ‘beam-plasma’ system. Then, in the quasi-static approxima-

tion, we reduce the Lorentz-Maxwell system of equations to a novel 3D partial differential

equation, i.e., the generalized Poisson-type equation, that relates the beam density to the

wake potential. Such an equation extends the PWF theory to the case of warm plasmas

and accounts for the presence of an ambient magnetic field, the longitudinal and transverse

plasma pressure terms, and the generalized conditions of beam energy and sharpness of the

beam profile. The generalized Poisson-type equation found here is then specialized to sev-

eral limiting cases in order to recover the particular equations that have been used in the

literature.

Chapter 3: Models for charged particle beams and its self-consistent in-
teraction with the surrounding medium

We formulate the kinetic description of an ultra-relativistic driving beam while self-consistently

interacting with the plasma wake field excited in a warm, magnetized, collisionless plasma

in overdense regime. The driver is supposed to be in the arbitrary conditions of sharpness

of its density profile. Such a general formulation is provided by starting from the relativistic

single-particle 3D Hamiltonian in the presence of an ambient magnetic field. In the reference

frame of the unperturbed particle, we express the Hamiltonian of the perturbed particle in

terms of a slight variation from the one of the unperturbed particle that is associated with the

relativistic unperturbed beam state. After expanding the four potential to the first-order and

performing the non-relativistic expansion with respect to the unperturbed state, we get the

effective single-particle Hamiltonian. The latter is used to construct the 3D Vlasov equation
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for the beam motion in the reference frame of the unperturbed particle. This way, by cou-

pling the Vlasov equation with the generalized Poisson-type equation obtained in Chapter 2,

we provide the self-consistent 3D kinetic description to be used in the next chapters to study

the self-modulated dynamics of the driver while interacting with the surrounding plasma.

Chapter 4: Transverse self-modulated beam dynamics of a nonlaminar,
ultra-relativistic beam in a non relativistic cold plasma

An analysis of the self-modulated transverse dynamics of a cylindrically symmetric non-

laminar driving beam is carried out. To this end, we disregard the longitudinal dynamics.

Therefore, the general 3D Vlasov-Poisson-type system of equation constructed in Chapter

3 is reduced to a 2D pair of equations governing the spatiotemporal evolution of the purely

transverse dynamics of the driving beam, which is supposed to be very long compared to the

plasma wavelength and travelling through a cold, magnetized and overdense plasma. Due to

the conditions of very long beam, the self-consistent PWF mechanism is very efficient and it

sensitively characterizes the self-modulated dynamics.

The analysis is carried out by using the pair of Vlasov-Poisson-type equations in cylindri-

cal symmetry that are implemented by the virial equations to provide the analysis of the

self-modulated dynamics of the driver envelope. We show the important role played by the

constants of motions that are involved in such a description. We first carry out an analysis

in two different limiting cases, i.e., the local case (the beam spot size is much greater than

the plasma wavelength) and the strongly nonlocal case (the beam spot size is much smaller

than the plasma wavelength) where several types of self-modulation, in terms of focusing,

defocusing and betatron-like oscillations, are obtained and the criteria for instability, such

as collapse and self-modulation instability, are formulated. To this ends, within the context

of the envelope description, we find suitable envelope equations, i.e., ordinary differential

equations for the beam spot size, that are easily integrated analytically and that provide also

suitable physical explanations in terms of the method of the pseudo potential or Sagdeev

potential.
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Then, the analysis is extended to the case where the beam spot size and the plasma wave-

length are not necessarily constrained as in the local or strongly nonlocal cases. The analysis

of the system can be still carried out with the virial equations and with the same methods

used in the above limiting cases (envelope equations, Sagdeev potential) to provide a full

semi-analytical and numerical investigation for the envelope self-modulation. To this end,

criteria for predicting stability and self-modulation instability are suitably provided.

Chapter 5: Instability analysis of beam-plasma system

We carry out an analysis of the beam modes that are originated by perturbing the ‘beam-

plasma system’ in the purely longitudinal case. This is done by considering the pair of

3D Vlasov-Poisson-type equation, presented in Chapter 3 that are specialized to the case

in which the transverse driving beam dynamics is disregarded and only the longitudinal

dynamics becomes effective. To this end, we perturb the Vlasov-Poisson-type system up to

the first order, then take the Fourier transform to reduce the Vlasov-Poisson system to a set

of algebraic equations in the frequency and wavenumber domain, from which we easily get

a Landau-type dispersion relation for the beam modes, that is fully similar to the one holding

for plasma modes. First, we consider the case of a monochromatic beam (i.e., cold beam,

that is described by a distribution function in the form of delta-function in p space) for which

the existence of a purely growing mode is shown and a simple stability criterion formulated.

Then, by taking into account a unperturbed distribution function with finite, relatively small

width (small thermal correction), the Landau approach, widely used in other physics area,

leads to obtain both the dispersion relation for the real part (showing all the possible beam

modes in the diverse regions of the wavenumber) and an expression for the imaginary part of

the frequency (showing the stable or unstable character of the beam modes), which suggests

a simple stability criterion.

Chapter 6: The coupling impedance concept for PWF self-interaction

Starting from the collisionless Vlasov-Poisson-type system of equation for longitudinal beam

dynamics, that has been presented in Chapter 5, we formulate a novel approach in which
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we put forward the concept of longitudinal coupling impedance associated with the beam-

plasma interaction, in a way fully similar to the one in use in conventional particle accelerator

physics. As in the conventional theory, the concept of coupling impedance seems to be very

fruitful in a plasma-based accelerator to schematize the self-interaction of the relativistic

driving beam with the surrounding plasma. In particular, it allows us to develop a simple

instability analysis in the plane of the real and imaginary parts of the impedance that is based

on the Nyquist approach widely used in the control system theory. Furthermore, we extend

the Vlasov-Poisson-type system to the collision context with a simple model of collisions

between the plasma particles (actually plasma electrons) and the beam particles. Under these

assumptions, the role and the features of the coupling impedance defined here are compared

to then ones of the coupling impedance in conventional theory. Examples of specific physical

situations are finally illustrated.



Chapter 1

Models for plasmas

We present the basic concept of the kinetic theory for plasmas that are relevant for the self-consistent

plasma wake field excitation. We start from the Vlasov-Maxwell system of equations for a plasma.

From the kinetic model of each plasma specie, we find the hierarchy of moment equations of the

distribution function that we truncate, with suitable closure conditions, to the level of fluid theory.

This way, the set of fluid Lorentz-Maxwell equations is also presented in view of the construction of

plasma wake field theory in Chapter 2. Finally, a simple extension of both kinetic and fluid models to

include collisional effects is presented.

1.1 Preliminary considerations

We refer here to the notions of plasmas and charged particle beams (CPBs) given in the

Introduction. In both systems, the (charged) particles are free to move and their collective

dynamics is governed by the electromagnetic interactions. The most important difference

between plasmas and CPBs is that the former are globally neutral whilst the latter carry a

nonzero total electric charge. Since in this thesis we are interested in describing the self-

modulated dynamics of a beam, we consider the plasma as the environment which the beam

moves through and interacts with. Therefore, in the collective beam dynamics the role of the

plasma is taken into account through the wake fields produced therein. The wake fields can

be derived from a potential, i.e., the wake potential, which is a function of the Eulerian space

20
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coordinates. The wake potential is related to the beam density by means of the Poisson-

like equation. This means that the beam interacts with the plasma through a macroscopic

quantity which can be indifferently provided by a kinetic or a fluid description. In this thesis,

we provide the Poisson-like equation within the context of the fluid plasma theory.

In the next section, in view of the presentation of the self-modulated dynamics of a rela-

tivistic beam travelling in a plasma (see Chapters 4-6), we will first present the simple kinetic

description of a nonrelativistic plasma, within the context of the Vlasov-Maxwell theory, and

derive the fluid limit and the corresponding set of plasma fluid equations (Lorentz-Maxwell

system). Then, we generalize the latter to the fluid theory of a relativistic plasma.

Plasma models depend on the adopted length scale. On a scale much less than λD, the

dynamics is governed by equations which take into account the collisions among the single

plasma particles (short range interaction). At this scale, the most appropriate description of

plasma is the microscopic one, which focuses on the single collision processes and on the

single-particle dynamics in the presence of microscopic electromagnetic fields. At length

scales of the order of λD, the short range interaction are almost negligible, whilst the sys-

tem dynamics is dominated by the longer range interactions. The latter are due to mean

macroscopic electric and magnetic fields. At such scales, the most appropriate description

of plasma is the one provided by the Boltzmann’s kinetic theory, but with the inclusions of

the collective effects due to the collective nature of the macroscopic fields. At length scales

much greater than λD, the plasma description reduces to the one of a set of fluids: a single

fluid for each ion specie and one for electrons. In this limiting case, the system dynamics

is governed by a set of fluid dynamics equations with the inclusion of the collective effects

introduced by the macroscopic fields.

The kinetic model for plasma has been first introduced by Vlasov [49]. The plasma

is thought to be as a system of macroparticles whose dimensions are of the order of λD.

They are assumed to be the effective particles of the system. Vlasov’s model is based on

the Hartree’s mean field theory [50] which allows to simplify the interaction among many

particles, by assuming that each particle moves in a field (mean field) generated by all the



Models for plasmas 22

other particles of the plasma. Note that the mean field depends on the instantaneous particle

distribution and it is defined in any point of the space. The kinetic model can be introduced

by means of the notion of single-particle Boltzmann’s phase space, also called reduced phase

space or simply µ-space [51]. A point P of this space represents a single-particle dynamical

state, i.e., the pair of single-particle position and velocity (or momentum). Therefore, P has

six coordinates: (r, v) = (x, y, z, vx, vy, vz), where r = (x, y, z) is the position of the generic

particle in configuration space and v = (vx, vy, vz) is the related velocity.

Let us now suppose to have a system of charged particles constituted by a so large number

of identical particles that, at the length scales of the order of the Debye length, the dynamical

states are distributed with continuity in µ-space. We define the Boltzmann’s distribution

function of such a system as the function f = f (r, v, t) such that the mean number, say dN, of

dynamical states within an elementary volume d3r d3v of the µ-space dN = f (r, v, t) d3r d3v.

Given the uniqueness of the solutions of the single-particle motion equations (provided that

the initial conditions are imposed), the above system is a set of identical but distinguishable

particles. Consequently, the dynamical states (i.e., points of the µ-space) are in a one-to-one

correspondence with the particle of the system. Then, at each instant of time t, the total

number of dynamical state concides with the total number, N, of system particles, i.e.,

N =

∫
f (r, v, t) d3r d3v . (1.1.1)

Note that, if the particles keep their own identity during the evolution of the system (f.i.,

absence of ionization/recombination processes, decays, etc.), N remains unchanged in time.

It follows that f (r, v, t) is normalizable. Then, under this assumption, if we normalize f ,

i.e.,
∫

f (r, v, t) d3r d3v = 1, it can be regarded as a probability density in µ-space. Adopting

the kinetic model, at the scale comparable to λD, it is then possible to describe any sys-

tem constituted by a large number of interacting charged particles, such as charged-particle

beams (usually produced and/or employed in an accelerating machine or naturally generated

in space and astrophysical environments) and plasmas (usually produced in and/or employed

in laboratory for a number of scientific and technological applications or already present in
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space and astrophysical environments in the most diversified conditions of density and tem-

peratures). In particular, in a plasma we can attribute a distribution function, say fs(r, v, t), to

each species s, i.e., each subsystem of identical particles (called plasma components, such as

electrons and various species of ions). Let us assume that there are no processes capable to

change the identity of the particles of each specie and that the short-range collisions are neg-

ligible (collisionless plasma). Then, given the one-to-one correspondence between particles

and dynamical states, during the evolution of the system, the number of dynamical state of

a given specie that enter per unitary time an arbitrary volume of µ-space equals the number

of dynamical states of the same species that leave per unitary time the same volume. This

corresponds to assume an equation of continuity in µ-space for a continuous system of dy-

namical states of each species with density fs(r, v, t) and velocity field U(6) = (ṙ, v̇) = (v, a),

where a is the instantaneous acceleration of the generic volume element of such a continuous

system. Then, we can write
∂ fs

∂t
+ ∇(6) ·

(
fsU(6)

)
= 0 , (1.1.2)

where ∇(6) = (∂x, ∂y, ∂z, ∂vx , ∂vy , ∂vz) is the six-dimensional gradient in the µ.

By taking into account that: (i) r and v are indipendent variables; (ii) given the force field

acting on the specie s, i.e., Fs = Fs(r, v, t), from the motion of the single particle (of mass

ms) it follows a = Fs(r, v, t)/ms; continuity equation (1.1.2) becomes

∂ fs

∂t
+ v · ∇r fs +

Fs

ms
· ∇v fs +

fs

ms
(∇v · Fs) = 0 , (1.1.3)

where ∇r = (∂x, ∂y, ∂z) and ∇v = (∂vx , ∂vy , ∂vz) are the gradients in the configuration space and

in the velocity space, respectively. The force field Fs(r, v, t) can be in general the sum of the

external fields and the ones that are generated by the particles of the system (self-consistent

fields). For the time being, we confine our attention to the self-consistent fields and put:

Fs = qs[E + v × B], where the fields E = E(r, t) and B = B(r, t) satisfy suitable Maxwell’s

equations, whose sources are given by both the charge and current distributions ranging over

all the species. To calculate these source terms, we introduce the following macroscopic
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quantities

ns(r, t) =

∫
fs(r, v, t)d3v , (1.1.4)

Vs(r, t) =

∫
v fs(r, v, t)d3v

ns
, (1.1.5)

corresponding to the density and the mean velocity (also called current velocity or velocity

field) of the specie s, respectively. Then, the total charge and the total current of the specie s

are respectively given by

ρ =
∑

s

qsns(r, t) , (1.1.6)

and

j =
∑

s

qsns(r, t)Vs(r, t) , (1.1.7)

where qs is the charge of the single particle of the species s.

According to to above arguments and assumptions and observing that the electromagnetic

Lorentz force Fs satisfies the condition ∇v ·Fs = 0, from Eq. (1.1.3) and the above equations,

we obtain the following set of Vlasov-Maxwell system of equations, viz. (in cgs units),

∂ fs

∂t
+ v · ∇r fs +

qs

ms
[E + qv × B] · ∇v fs = 0 , (1.1.8)

∇ · E = 4πqs

∑
s

∫
fs(r, v, t)d3v , (1.1.9)

∇ · B = 0 , (1.1.10)

∇ × B =
4πqs

c

∑
s

∫
v fs(r, v, t)d3v +

1
c
∂E
∂t

, (1.1.11)

∇ × E = −
1
c
∂ B
∂t

, (1.1.12)

where s ranges over all particle species, which means all ions species and electrons and we

have used Eqs. (1.1.4) - (1.1.7). It describes the self-consistent spatiotemporal phase space

evolution of the plasma within the kinetic theory. It is worthy to outline some important

aspects of this system of equations.

1. For any s, Eq. (1.1.8) is called kinetic Vlasov equation for the specie s. It can be

thought as a Boltzmann equation in which the collisions are negligible. Actually, the
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presence of long-range interaction through the Lorentz force term involves the self-

consistent collective effects and therefore makes this equation deeply different from

Boltzmann equation. For nstance, an important aspect of this diversity is the devel-

opment of non-dissipative damping of collective oscillations with reversible character,

usually referred to as the Landau damping. In the Vlasov’s kinetic theory, these pro-

cesses can be described as a statistical result of a large number of resonant interactions

between the collective modes and the individual particles of the plasma [52].

2. For any s, the left-hand side of Eq. (1.1.8) can be thought as the total derivative of fs.

In fact, we observe that:

∂ fs

∂t
+ v · ∇r fs +

Fs

ms
· ∇v fs =

∂ fs

∂t
+ ṙ · ∇r fs + v̇ · ∇v fs =

d fs

dt
.

Consequently, by virtu of Eq. (1.1.8), it follows that d fs/dt = 0. Hence, the distribu-

tion function fs is conserved along the characteristics r = r(t), v = v(t). This result

has the following simple physical interpretation. Since each fs represents the density

of dynamical states in µ-space, the set of these states constitutes an incompressible

fluid. Consequently, by virtu of the conservation of the number of dynamical states in

an arbitrary volume of µ-space (continuity equation), the volume of the phase space

associated with any subsystem of particles of the specie s conserves (Liouville theorem

in µ-space). It is easy to show that the same property holds for the volume associated

to any subsystem containing particles of all species.

3. The mathematical coupling among the equations of the system (1.1.8) - (1.1.12) corre-

sponds to the following representation of the self-consistency. In principle, given both

the initial conditions and the boundary conditions, we can formally integrate Vlasov

equation for each specie with respect to fs. Then we can compute both charge and

current distributions which, in turn, allow us to integrate the Maxwell equations for E

and B, once both initial and boundary conditions are imposed. However, to determine

explicitly fs for any s from Eq. (1.1.8), it is necessary to know already explicitly the
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fields E and B; but, nevertheless, to determine the latter from the Maxwell equations it

is necessary to know explicitly the distributions of the sources (charges and currents)

and, therefore, fs for any s.

4. System of equations (1.1.8) - (1.1.12) is a system of nonlinear partial differential equa-

tions. The sources of nonlinearity lie in the third term at the left-hand side of Eq.

(1.1.8) for any s. The nonlinearity of system (1.1.8) - (1.1.12) makes impossible the

application of the superposition principle. Then, a linear combination of solutions of

system (1.1.8) - (1.1.12) is not, in turn, a solution of this system.

For simplicity, we will consider plasmas constituted by electrons and only one ion specie,

whose electric charge is e (i.e., atomic number Za = 1) which is the absolute value of the elec-

tron charge (the generalization to an arbitrary numbers of ion species with arbitrary atomic

number Za is not difficult), viz.,

∂ fe

∂t
+ v · ∇r fe −

e
me

[E + qv × B] · ∇v fe = 0 , (1.1.13)

∂ fi

∂t
+ v · ∇r fi +

e
mi

[E + qv × B] · ∇v fi = 0 , (1.1.14)

∇ · E = 4πe
[∫

fi(r, v, t) −
∫

fe(r, v, t)
]
, (1.1.15)

∇ · B = 0 , (1.1.16)

∇ × B =
4πe

c

[∫
v fi(r, v, t)d3v −

∫
v fe(r, v, t)d3v

]
+

1
c
∂E
∂t

, (1.1.17)

∇ × E = −
1
c
∂ B
∂t

, (1.1.18)

where e and i stand for electrons and ions, respectively, and we have used Eqs. (1.1.4) -

(1.1.7).

1.2 Fluid theory of a nonrelativistic plasma:
the Lorentz-Maxwell system

It is possible to derive a set of equations for fluid plasma species at scales much larger than

the Debye length for a certain species constituting the plasma. The set of Vlasov-Maxwell
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equations can be cast into a set of fluid equations, called Lorentz-Maxwell (LM) system.

This can be done by reducing the system in µ- space to the configuration space. To do this,

we integrate Vlasov equation upon multiplying by appropriate monomial or polynomials of

velocity.

We first consider a plasma which is free from any external field. The plasma is constituted

by electrons and ions. Then, let us introduce the following differential operator in the µ-

space:

D̂s =
∂

∂t
+ v · ∇r +

qs

ms

[
E(r, t) +

v
c
× B(r, t)

]
· ∇v .

In terms of this operator, Vlasov equation (1.1.8) can be written as,

D̂s fs = 0 . (1.2.1)

Now we multiply Eq. (1.2.1) by a monomial of v, such as 1 (scalar), v (vector), vv (tensor),

..., and integrate over velocity space. Then, we perform the following integrals:∫
D̂s fs d3v = 0 , (1.2.2)∫

vD̂s fs d3v = 0 , (1.2.3)

........................... , (1.2.4)

by obtaining
∂I(0)

s

∂t
+ ∇r · I(1)

s = 0 , (1.2.5)

∂I(1)
s

∂t
+ ∇r · Î(2)

s −
qs

ms
I(0)

s

[
E +

I(1)
s

c
× B

]
= 0 , (1.2.6)

........................... , (1.2.7)

where we have introduced the following quantities: Moment of zero order of fs (scalar quan-

tity),

I(0)
s =

∫
fs(r, v, t) d3v = ns(r, t) . (1.2.8)

First order moment of fs (vector quantity, also called as current density of species s),

I(1)
s =

∫
v fs(r, v, t) d3v = ns(r, t)Vs(r, t) . (1.2.9)
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Second order moment of fs (tensor quantity),

Î(2)
s =

∫
vv fs(r, v, t) d3v =

P̂s

ms
= ns〈vv〉s , (1.2.10)

........................... . (1.2.11)

In Eqs. (1.2.8) - (1.2.11), the integration is done over all the entire velocity space. In addition,

flux momentum density tensor of the species s is,

P̂s ≡ ms Î(2)
s (r, t) = ms

∫
vv fs(v) d3v = msns

∫
vv fs(r, v, t) d3v∫

fs(r, v, t) d3v
. (1.2.12)

From Eq. (1.2.5), we can observe that to know the zero-order moment, I(0)
s , we need to know

the first order moment I(1)
s . Furthermore, from Eq. (1.2.6), we can observe that to know the

first-order moment, I(1)
s , we need to know the second-order moment I(2)

s . Similarly, we can

obtain an equation for second-order moment, which will contain third-order moment as well.

In fact, an evolution equation for the moment of order n would contain the moments of order

n + 1.

To obtain fluid equations up to the first order of moment equation, we need to truncate

the hierarchy by expressing Î(2)
s in terms of moments of lower order (closure reports). This

can be done by taking averages of physical quantities on scales much greater than λD which

represents a sort of smoothing operation. If λ is the characteristic length of the spatial varia-

tion of the physical quantities involved in our description, then the condition of validity of a

fluid model is expressed by λD � λ. For each specie s, we express velocity v as the sum of

a part corresponding to its average and another part which has a random character, i.e.,

v = Vs + u , (1.2.13)

where Vs = 〈v〉s and 〈u〉s = 0. Here, u is the random velocity of the particle that takes into

account their thermal motion. Using Eqs. (1.1.4) and (1.1.5), into Eqs. (1.2.8) - (1.2.11) and

(1.2.13), Eqs. (1.2.5) and (1.2.6) become,

∂ns

∂t
+ ∇r · (nsVs) = 0 , (1.2.14)

∂Vs

∂t
+ (Vs · ∇r)Vs =

qs

ms

(
E +

Vs

c
× B

)
−
∇r · p̂s

msns
, (1.2.15)
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where p̂s is the pressure tensor on the species s, defined as

p̂s = msns〈uu〉s = ms

∫
fs uu d3u . (1.2.16)

Since the short ranged collisions are considered negligible and if no other form of dissipa-

tions are important, then we can assume the following isotropic form for the pressure tensor

p̂s = psÎ , (1.2.17)

where Î is the identity tensor and ps is the scalar pressure of the species s. It is also assumed

to be ps = nskBTs for temperatures Ts and Boltzmann constant kB. The most recurrent forms

of closure of the system are the following one corresponds to the adiabatic hypothesis, i.e.,

Ts/n
γsr−1
s = constant, where γsr is the ratio of specific heat at constant pressure to the specific

heat at constant volume of species s. In this case, Eq. (1.2.15) becomes:(
∂

∂t
+ Vs · ∇r

)
Vs =

qs

ms

(
E +

Vs

c
× B

)
− γsr

kBTs

ms

∇rns

ns
. (1.2.18)

The other hypothesis is called isothermal, i.e., ∇rTs = 0, for which case Eq. (1.2.15) can be

written as (
∂

∂t
+ Vs · ∇r

)
Vs =

qs

ms

(
E +

Vs

c
× B

)
−

kBTs

ms

∇rn
ns

. (1.2.19)

Equations (1.2.18) and (1.2.14) or (1.2.19) and (1.2.14) have to be coupled with the Maxwells

equations given in the following form:

∇ · E = 4π
∑

s

qsns , (1.2.20)

∇ · B = 0 , (1.2.21)

∇ × B =
4π
c

∑
s

qsnsVs +
1
c
∂E
∂t

, (1.2.22)

∇ × E = −
1
c
∂ B
∂t

. (1.2.23)

The system of equations consisting of (1.2.20) - (1.2.23), (1.2.14) and (1.2.18) is known as

the Lorentz-Maxwell system in the adiabatic approximation, whilst the system of equations
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(1.2.20) - (1.2.23), (1.2.14) and (1.2.19) is known as Lorentz-Maxwell system in the isother-

mal approximation, respectively. Note that these systems of equations contain the following

sources of nonlinearity:

1. the product nsVs in continuity equation and equation for ∇ × B;

2. the products (Vs · ∇) Vs and Vs × B, and the term Ts∇ns/ns in motion equation.

1.3 Kinetic description of a relativistic plasma

The Vlasov-Maxwell system of Eqs. (1.1.8) - (1.1.12) can be easily generalized to a rela-

tivistic case [53, 54].

Let us consider a collisionless plasma with an arbitrary different species of particles,

where a particle of species s has rest mass mso. The plasma is assumed to be relativistic, i.e.,

its particles may move at relativistic speed. This implies that, in principle, particle masses

depend on the speed (note that the relativistic mass is ms = msoγ, γ = 1/(1 − v2/c2)1/2 be-

ing the relativistic factor) and, therefore, the Boltzmann µ-space, presented above for the

non-relativistic case, has to be redefined. In fact, the pair (r, v) cannot be used to denote

a dynamical state. If p is the instantaneous single-particle linear momentum, the µ-space

is now defined as the six-dimensional space of all the pairs (r,p). Each pair (r,p) repre-

sents a dynamical state of the single particle. Given the uniqueness of the relativistic motion

equations, the set of dynamical states associated to each species is in a one-to-one corre-

spondence with the particles of the same specie. Therefore, each species is described by a

particle density fs = fs(r, v, t). As in the non-relativistic case, the particles interact by the

electromagnetic forces they create themselves so that the density functions fs together with

the self consistent electromagnetic fields E(r, t) and B(r, t) evolve according to the following
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relativistic Vlasov-Maxwell system, viz.,

∂ fs

∂t
+ v · ∇r fs + qs

(
E +

v
c
× B

)
· ∇p fs = 0 , (1.3.1)

∇ · E = 4π
∑

s

qs

∫
fs(r,p, t)d3 p , (1.3.2)

∇ · B = 0 , (1.3.3)

∇ × B =
4π
c

∑
s

qs

∫
v fs(r,p, t)d3 p +

1
c
∂E
∂t

, (1.3.4)

∇ × E = −
1
c
∂ B
∂t

, (1.3.5)

where s ranges over all the species and the particle velocity is given by

v =
p

ms0γ
=

p

ms0

(
1 + p2/m2

s0c2
)1/2 . (1.3.6)

Note that the number density ns, the current velocity Vs, the total charge density ρ and the

total current densities j are here defined, respectively, as

ns(r, t) =

∫
fs(r,p, t)d3 p , (1.3.7)

Vs(r, t) =

∫
v fs(r,p, t)d3 p

ns
, (1.3.8)

ρ(r, t) =
∑

s

qsns(r, t) =
∑

s

qs

∫
fs(r,p, t)d3 p , (1.3.9)

j(r, t) =
∑

s

qsns(r, t)Vs(r, t) =
∑

s

qs

∫
v fs(r,p, t)d3 p . (1.3.10)

It is easy to see that the relativistic extension of the Vlasov-Maxwell system (1.1.13) -

(1.1.18) is the following

∂ fe

∂t
+ v · ∇r fe − e

(
E +

v
c
× B

)
· ∇p fe = 0 , (1.3.11)

∂ fi

∂t
+ v · ∇r fi + e

(
E +

v
c
× B

)
· ∇p fi = 0 , (1.3.12)
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∇ · E = 4πe
[∫

fi(r,p, t)d3 p −
∫

fe(r,p, t)d3 p
]
, (1.3.13)

∇ · B = 0 , (1.3.14)

∇ × B =
4πe

c

[∫
v fi(r,p, t)d3 p −

∫
v fe(r,p, t)d3 p

]
+

1
c
∂E
∂t

, (1.3.15)

∇ × E = −
1
c
∂ B
∂t

, (1.3.16)

where s = e (electrons), i (ions).

1.4 Fluid description of a relativistic plasma

The procedure of constructing the hierarchy of moment equations, starting from the Vlasov-

Maxwell system (1.1.8) - (1.1.12), can be easily extended to the relativistic case to obtain

the Lorentz-Maxwell system of equation for a relativistic plasma [52, 53]. We easily arrive

to the following relativistic Lorentz-Maxwell fluid equations

∂ns

∂t
+ ∇ · (nsVs) = 0 , (1.4.1)(

∂

∂t
+ Vs · ∇

)
Ps = qs

(
E +

Vs

c
× B

)
− ∇ · Π̂s , (1.4.2)

∇ × E = −
1
c
∂B
∂t

, (1.4.3)

∇ × B = −
4π
c

∑
s

qsns Vs +
1
c
∂E
∂t

, (1.4.4)

∇ · E = 4π
∑

s

qsns , (1.4.5)

∇ · B = 0 , (1.4.6)

where ns = ns(r, t) and Vs = Vs(r, t) are the number density and the fluid velocity of the s-th

specie and still defined by Eqs. (1.3.7) and (1.3.8), Π̂s(r, t) is a stress tensor accounting for

the thermal effects of the s-th specie, Π̂s is the pressure tensor and

Ps(r, t) = ms0γs(r, t)Vs(r, t) (1.4.7)
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is the relativistic fluid linear momentum of the s-th specie, γs(r, t) being the fluid relativistic

factor of the s-th specie, i.e.,

γs(r, t) =
1√

1 − V2
s (r, t)/c2

. (1.4.8)

The stress tensor term, under the assumptions of adiabatic or isothermal conditions, can be

cast in forms that are similar to the corresponding non relativistic cases, respectively.

Note that the relativistic Lorentz-Maxwell system contains all the sources of nonlinearity

that are contained in the corresponding non-relativistic system, but in addition it contains the

one due to the relativistic mass variation through the term ms0Vs/
√

1 − V2
s (r, t)/c2 in motion

equation.

1.5 Collisional plasmas

The descriptions provided in the previous sections has regarded collisionless plasmas. This is

a physical circumstance compatible with the Vlasov equation, which can be basically thought

as a sort of collisionless Boltzmann equation. Although the presence of collective effects in

Vlasov equations make this equation quite different from Boltzmann equation, actually one

can introduce collision effects in the plasma by assuming that the right-hand side of Vlasov

equation is no longer zero, but equal to a source of collisions, as it is done with Boltzmann

equation in the case of a neutral gas [51]. Therefore, the existence of non negligible colli-

sional effects of the specie s makes non zero the total derivative of the distribution function fs

along the characteristics. This, in turn, implies the non conservation of the volume in the µ-

space (i.e., Liouville theorem for the s-th specie is no longer valid). It is worthy noting that,

if we include the collision source terms in the Vlasov-Maxwell system, the corresponding

fluid model will contain collisional terms, as well. Then, in both kinetic and fluid models,

they lead to the inclusion of the dissipative effects as well as the macroscopic irreversibility

of the system.

We assume here that: (i) the rate of collisions among particles belonging to the same
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specie is much less than the characteristic parameter of time variation of the plasma quan-

tities; (ii) the rate of binary collisions between particles of different species is comparable

to the characteristic parameter of time variation of the plasma quantities. Then, a possible

estimate of the variation rate of fs due to binary collisions of the particles of s-th specie with

the ones of the s′-th specie is given by(
∂ fs

∂t

)
coll,ss′

=
fs′ − fs

τss′
, (1.5.1)

where τss′ is the characteristic time of the momentum transfer from the specie s-th to the

specie s′. Consequently, the total rate that accounts for all the collisional contributions is

obtained by summing over all the species s′ , s. Therefore, the total derivative is no longer

zero, as in the collisionless case, but

d fs

dt
=

∑
s′

(
∂ fs

∂t

)
coll,ss′

=
∑

s′

fs′ − fs

τss′
. (1.5.2)

Hence, the inclusion of the collisions in Eq. (1.3.1) finally gives

∂ fs

∂t
+ v · ∇r fs + qs

(
E +

v
c
× B

)
· ∇p fs =

∑
s′

fs′ − fs

τss′
. (1.5.3)

For any s, Eq. (1.5.3) has to be coupled with Eqs. (1.3.2) - (1.3.5).

To get the corresponding fluid description, we have to calculate the moments of Eq.

(1.5.3). We easily see that the zero-th order moment equation gives still the continuity Eq.

(1.4.1), because the integral of the collision term at the right-hand side of Eq. (1.5.3) over

all the momentum space vanishes in the absence of production or losses of particles of each

specie. Moreover, the first-order moment equation gives the motion equation of the s-th

specie that in principle differs from Eq. (1.4.2) due to the presence of the variation of the

momentum of the specie s per unit time due to the collisions with all the other species. Under

the assumption that the current velocities of two different species, say s and s′, are different,

a net momentum transfer between them takes place. It turns out that such a momentum

transfer is proportional to the difference of current velocities of the two different species.

Therefore, the total net momentum transfer of the s-th specie results from the sum over all
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the species s′ which appears as a new term at the right-hand side of the motion equation, i.e.,(
∂

∂t
+ Vs · ∇

)
Ps = qs

(
E −

Vs

c
× B

)
− ∇ · Π̂s =

∑
s′

Vs′ − Vs

τss′
. (1.5.4)

1.6 Conclusions

The basic concept of the kinetic theory for plasmas that are relevant for the self-consistent

plasma wake field excitation have been presented. Starting from the Vlasov-Maxwell system

of equations for the single plasma specie, we have provided the kinetic description of the

plasma. Furthermore, we have found the hierarchy of moment equations of the single-specie

distribution function that we have truncated, with suitable closure conditions, to the level of

fluid theory. In view of the construction of plasma wake field theory in Chapter 2, this has

allowed to provide the fluid description of the plasma in terms of the set of fluid Lorentz-

Maxwell system of equations. Finally, both kinetic and fluid models have been also extended

in order to include simple collisional effects.



Chapter 2

The theory of plasma wake field
excitation: the Poisson-type equation

We present the general theory of plasma wake field excitation in a magnetoactive, nonrelativistic,

warm and collisionless plasma. This is done by using the 3D Lorentz-Maxwell system of equation

for the ‘beam-plasma’ system, where the sources of the EM fields include charges and currents of

both plasma and beam. The driving beam is assumed to be relativistic in overdense regime. We

first give a simple concept of plasma wake field and plasma wake potential by starting from the

expression of the Lorentz force experienced by a test particle in its co-moving frame, in the presence

of the self-consistent EM field of the ‘beam-plasma’ system. Then, in the quasi-static approximation,

we reduce the Lorentz-Maxwell system of equations to a novel 3D partial differential equation, i.e.,

the generalized Poisson-type equation, that relates the beam density to the wake potential. Such an

equation extends the PWF theory to the case of warm plasmas and accounts for the presence of an

ambient magnetic field, the longitudinal and transverse plasma pressure terms, and the generalized

conditions of beam energy and sharpness of the beam profile. The generalized Poisson-type equation

found here is then specialized to several limiting cases in order to recover the particular equations

that have been used in the literature.

36
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2.1 Introduction

The basic concept of PWF can be suitably provided by determining the force experienced by

a relativistic particle of charge q, which has a relative motion with respect to an electromag-

netic field, i.e., the pair (E(r, t),B(r, t)) of electric and magnetic field that has been created

by some source.

Let us denote the test particle velocity by v and assume that it has the relativistic motion

along z, i.e., v = βcẑ + v⊥, where β ∼ 1 and v⊥ is the transverse component of v such that

v⊥ � c. Then, the Lorentz force experienced by the particle is:

F =
dp
dt

= q
[
E +

v
c
× B

]
, (2.1.1)

where p is the linear momentum of the particle, i.e.,

p = m0γ v , (2.1.2)

where m0 and γ are the rest mass and relativistic factor, respectively. We now introduce the

four-potential (A(r, t), φ(r, t)), such that:

E = −∇φ −
1
c
∂A
∂t

, (2.1.3)

B = ∇ × A . (2.1.4)

Then, Eq. (2.1.1) can be easily cast as:

F = q
[
∇

(
A ·

v
c
− φ

)
−

1
c

(
∂

∂t
+ v · ∇

)
A
]
. (2.1.5)

Note that vector and scalar potentials, i.e., A and φ, depend on the Eulerian coordinates r

and t, whilst F depends on r, v and t, v being independent of r. We split r, gradient operator,

and A into longitudinal and transverse components, i.e.,

r = ẑz + r⊥ , (2.1.6)

∇ = ẑ
∂

∂z
+ ∇⊥ , (2.1.7)

A = ẑAz + A⊥ . (2.1.8)



The models of plasma wake field excitation... 38

Then, Eq. (2.1.5) becomes:

F = q∇ (βAz − φ) + q∇
(
A⊥ ·

v⊥
c

)
−

q
c

(
∂

∂t
+ βc

∂

∂z

)
A −

q
c

(v⊥ · ∇⊥) A , (2.1.9)

which under the following coordinate transformation

ξ(r⊥, z, t) = z − β′ct , (2.1.10)

R⊥(r⊥, z, t) = r⊥ , (2.1.11)

τ(r⊥, z, t) = t , (2.1.12)

where β′ ∼ 1, becomes:

F′ = q∇′Ω + q(β′ − β)
∂A′

∂ξ
−

q
c
∂A′

∂τ
+ q∇′

(
A′⊥ ·

v′⊥
c

)
− q

(
v′⊥
c
· ∇′⊥

)
A′ . (2.1.13)

Here we have denoted the transformed quantities by primes and also defined the quantity

Ω(R⊥, ξ, τ) = βA′z(R⊥, ξ, τ) − φ′(R⊥, ξ, τ). We assume that the test particle and the fields

are moving at the same speed, i.e., β′ = β (rigidity condition). Furthermore, since v′⊥ � c,

we neglect the higher-order terms coming from the last two terms at right hand side of Eq.

(2.1.13). Then, we finally obtain:

F′(R⊥, ξ, τ) = q∇′Ω(R⊥, ξ, τ) −
q
c
∂A′(R⊥, ξ, τ)

∂τ
, (2.1.14)

where ∇′ = ∂/∂R⊥ + ẑ∂/∂ξ.

2.2 Definition of plasma wake field

Let us now consider a relativistic charged particle beam moving through a plasma along

the z-direction. We assume that the beam has a finite temperature. Therefore, we assume

that the beam particles experience the effect of the thermal spreading while moving in the

plasma along z in such a way that the beam performs a nonlaminar motion. In these physical

conditions, the velocity of each beam particle can be thought as the sum of a determinis-

tic part corresponding to the relativistic motion along z whose average is not zero (mean
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velocity), plus a random instantaneous part along an arbitrary direction whose average is

zero corresponding to the thermal spreading. In addition, we assume that the beam temper-

ature corresponds to a non-relativistic random motion, so that the instantaneous slope of the

single-particle trajectory can be considered sufficiently small to fulfill the conditions:

dx
dz
� 1 ,

dy
dz
� 1 , (2.2.1)

where x and y are the transverse space coordinates assumed by the single particles. Condition

(2.2.1) is equivalent to assume that the beam is paraxial.

The excess of charge that is introduced by the beam while moving through the plasma

is responsible for the violation of the local charge neutrality, which in turn, creates a local

electric field in the system. On the other hand, the motion of the beam corresponds to a

current injected in the plasma which generates a local magnetic field. We can conclude

that the propagation of a relativistic charged particle beam through the plasma perturbs the

initial stationary conditions of the plasma itself. Therefore, the beam-plasma system excites

therein the local electromagnetic field. This is a macroscopic field, whose sources are the

charges and the currents of both plasma and beam, that it is called plasma wake field (PWF).

The corresponding mechanism is usually referred to as PWF excitation. Since the PWF is

excited the propagation of the relativistic beam through the plasma, it is evident that it moves

through the plasma with almost the same velocity of the beam itself.

Note that, in principle, the PWF can act on any test particle which is instantaneously

in the plasma region where it has been excited. We want here to emphasize the causality

aspects of the beam-plasma interaction: (i) starting from the initial stationary condition,

the charged particle beam propagates through the plasma and introduces therein an excess

of charge and an external current; (ii) the latter generates plasma perturbations that, in turn,

excite the PWF. Then, we can conclude that the relativistic beam has actually driven the PWF

excitation by means of the an active medium, i.e., the plasma. We call this beam the driving

beam or simply the driver of the PWF excitation. In other words, the mechanism of the PWF

excitation is obtained by the external action of the driver into the active medium which, in
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turn, can sustain such an excitation. Although the causality works as described here, the

connection between the external action of the driver and the response of the active medium

manifests so rapidly that they should be considered contextually, i.e., on same timescale.

If the driver is actually a bunch, i.e., it carries a very sharp particle distribution in con-

figuration space (number density), the PWF acts on test particles those are behind the bunch

travelling at almost its same speed. If the driver density profile has a 3D character it is

expected that the PWF has a 3D character as well. Therefore, a test particle can be accel-

erated or decelerated by the instantaneous longitudinal component of the PWF, depending

on the synchronism conditions of the test particles with respect to the phase of the PWF. On

the other hand, meanwhile, the transverse component of the PWF may affect the test particle

motion by providing a transverse manipulation of its trajectory, such as focusing, defocusing,

etc.

If the driver is a sufficiently long beam, the PWF will act also on the particle of the driver

itself, providing this way a sort of self-interaction of the beam: the driver is affected by the

PWF that itself has generated.

According to the above assumptions, the force produced by the PWF, that is experienced

by a test charged particle located in the position (R⊥, ξ) at time τ, is given by Eq. (2.1.14).

However, since the external action of the driver and the plasma-response manifest on the

same timescale, we can assume that ∂/∂τ ' 0 (quasi-static approximation). Consequently,

the force per unitary charge, at the location (r⊥, ξ) that is generated by the PWF mechanism

is given by:

W(r⊥, ξ) = ∇Ω(r⊥, ξ) , (2.2.2)

where ∇ = ∂/∂r⊥+ẑ∂/∂ξ and Ω(r⊥, ξ) = βAz(r⊥, ξ)−φ(r⊥, ξ), Az(r⊥, ξ) and φ(r⊥, ξ) being the

z-component of the vector potential and scalar potential, respectively, of the beam-plasma

system at location (r⊥, ξ). Here, W is the PWF excited by the driving beam and Ω is the

related plasma wake potential. It can be easily proven that

∇⊥Wz =
∂W⊥

∂ξ
, (2.2.3)
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which is the Panofsky-Wenzel theorem [55]. Here Wz and W⊥ are longitudinal and trans-

verse components of W, respectively. Therefore, in the quasi-static approximation, W has

the feature of an electrostatic field which can be derived by an effective potential Ω. In the

subsequence sections, we show that the Lorentz-Maxwell system that governs, at the diverse

physical conditions, the spatiotemporal evolution of the plasma in the presence of both in-

ternal sources (charge and current provided by the plasma) and external sources (charge and

current provided by the beam), can be reduced to a Poisson-type equation which relates the

PWF potential to the beam density.

All the Poisson-type equation that we will obtain at the diverse physical assumptions,

can be cast in the following generic form:

P̂Ω = Q̂ nb , (2.2.4)

where nb = nb(r⊥, ξ) is the local number density of the beam; P̂ and Q̂ are two generic partial

differential operators whose explicit form depends on the physical assumptions we take for

the beam-plasma system. Their role will be crucial in Chapter 4 and subsequent chapters,

where we couple Eq. (2.2.4) with appropriate equations for the beam dynamics to describe

the self-consistent spatio-temporal beam evolution (beam self-modulation).

2.3 Lorentz-Maxwell system of equations for the
beam-plasma system

Let us consider a plasma where a relativistic charged particle beam is travelling through,

along the z axis, as the driver of the PWF. We also assume, for simplicity, that the plasma

consists of electrons and a single specie of ions with Za = 1. The latter are also supposed

to be infinitely massive forming a uniform background of positive charge with unperturbed

number density n0. Let us finally assume that the plasma electrons have in general a rela-

tivistic motion. Then, according to the section 1.4 and 1.5, and in order to take into account

the presence of an external uniform magnetic field and collisions between plasma particles

and the beam particles, our system is described by the following set of coupled relativistic
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fluid equations (s = e):

∂ne

∂t
+ ∇ · (neVe) = 0 , (2.3.1)(

∂

∂t
+ Ve · ∇

)
Pe = −e

[
E +

Ve

c
× B

]
− ∇ · Π̂e −

(Ve − Vb)
τeb

, (2.3.2)

∇ × E = −
1
c
∂B
∂t

, (2.3.3)

∇ × B = −
4π
c

ene Ve +
4π
c

qnb Vb +
1
c
∂E
∂t

, (2.3.4)

∇ · E = 4πe (n0 − ne) + 4πqnb , (2.3.5)

∇ · B = 0 , (2.3.6)

where Ve = Ve(r, t) is the electron plasma current velocity, Pe = Pe(r, t) is the electron

plasma fluid linear momentum, i.e.,

Pe(r, t) = me0γe(r, t)Ve(r, t) (2.3.7)

(me0 being the plasma electron rest mass), Π̂e = Π̂e(r, t) is the pressure tensor of the electron

plasma fluid, Vb = Vb(r, t) is the beam fluid velocity, ne = ne(r, t) and nb = nb(r, t) are

the electron plasma number density and the beam number density, respectively, and q is the

charge of the single particle of the beam. In addition, within the adiabatic approximation,

we assume that the pressure tensor has the form:

Π̂e =


pe⊥ 0 0

0 pe⊥ 0

0 0 pez

 , (2.3.8)

where pe⊥ = nekBTe⊥, and pez = nekBTez, Te⊥ and Tez being transverse and longitudinal

temperatures, respectively. Here, pe⊥ and pez are transverse and longitudinal pressures, re-

spectively. The adiabatic approximation implies that the following conditions:

pe⊥n−Γe⊥
e = constant (2.3.9)

and

pezn−Γez
e = constant (2.3.10)
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has to be satisfied. Here Γe⊥ = D + 2/D = 2 and Γez = D + 2/D = 3 are the adiabatic ex-

ponents in transverse and longitudinal directions, respectively, where D is the number of de-

grees of freedom. Note that, in the above set of fluid equations, the driving charged-particle

beam is involved through its charge density, i.e., ρb(r, t) ≡ qnb(r, t), its current density,

i.e., Jb(r, t) ≡ qnb(r, t)Vb(r, t), and the collision term accounting for the collisions between

plasma electrons and beam particles, i.e., − (Ve − Vb) /τeb, τeb being the corresponding char-

acteristic collision time.

In the next sections, confining our attention to a collisionless nonrelativistic plasma, we shall

reduce the system (2.3.1) - (2.3.10) to suitable Poisson-type equations for the diverse physi-

cal assumptions we shall adopt. To this end, we assume that density and fluid velocity of the

driver are, respectively, of the form:

nb(r, t) = nb(r⊥, ξ) , (2.3.11)

Vb(r, t) = ẑ βc + vb(r⊥, ξ) , (2.3.12)

where ξ = z − βct and vb is a fluid component such that: |vb| � c, with β ∼ 1. Equation

(2.3.12) states that the driver’s velocity is basically relativistic along with a 3D nonrelativistic

instantaneous displacement, vb, with instantaneous orientation, that accounts for both the

longitudinal and transverse beam dynamics.

2.4 Poisson-type equation in overdense regime: collision-
less nonrelativistic plasma

We assume that the driver has the maximum density, say nbmax, much smaller than the unper-

turbed plasma density, i.e.,

nbmax � n0 . (2.4.1)

This condition defines the so-called overdense regime. It implies that the driver introduces

a small perturbation in terms of charge density and current density into the plasma. Let

us assume that initially the plasma is in the following equilibrium state: ne = n0, Ve = 0,
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E = 0, B = B0 = B0ẑ = constant, and Π̂e = Π̂0 = constant. Here B0 is a uniform and

constant magnetic field which is oriented along the longitudinal direction. It is evident that

it represents an external magnetic field. Once the driver is supposed to travel through the

plasma, the resulting excited PWF is a quantity of the order of nb/n0. According to the

assumption of overdense regime, this ratio is much smaller than 1. Therefore, it is clear

that the driver density nb is a first-order quantity and produces first-order displacement in all

physical quantities. So that, it is possible to linearize the system of Eqs. (2.3.1) - (2.3.10)

with the additional assumptions (2.3.11) and (2.3.12) and assume that the plasma motion is

nonrelativistic, i.e., Pe(r, t) ≈ me0Ve(r, t).

In order to find the appropriate Poisson-type equation for the system under consideration,

we do the following steps.

(i) We express both electric and magnetic fields, E and B, in terms of the four-potential

(A, φ), according to Eqs. (2.1.3) and (2.1.4) and adopt the Lorentz gauge, i.e.,

∇ · A +
1
c
∂φ

∂t
= 0 . (2.4.2)

(ii) We linearize the system of Eqs. (2.3.1) - (2.3.12). To this end, we introduce first-

order perturbations of all the physical quantities (denoted by the subscript 1) around the

above mentioned equilibrium states, i.e., ne = n0 + n1, Ve = V1, E = E1, B = B0 + B1,

A = A0 + A1, φ = φ1, and Π̂ = Π̂0 + Π̂1. Consequently, the Lorentz-Maxwell system of

equations becomes,

∂n1

∂t
+ n0∇ · V1 = 0, (2.4.3)

∂V1

∂t
=

e
me0

[
∇φ1 +

1
c
∂A1

∂t

]
−

eB0

me0 c
V1 × ẑ −

∇ · Π̂1

me0 n0
, (2.4.4)

1
c2

∂2φ1

∂t2 − ∇
2φ1 = 4π

[
qnb − en1

]
, (2.4.5)

1
c2

∂2A1

∂t2 − ∇
2A1 =

4π
c

(qnbβcẑ − en0V1) , (2.4.6)
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where Eqs. (2.1.3) and (2.1.4) become,

E1 = −∇φ1 −
1
c
∂A1

∂t
, (2.4.7)

B0 + B1 = ∇ × A0 + ∇ × A1 . (2.4.8)

Here, A0 denotes the zero-order vector potential, i.e., B0 = ∇ × A0(r). Note that A0(r) =

(B0 × r) /2 . Correspondingly, the Lorentz gauge can be split into the following conditions:

∇ · A0 = 0, (2.4.9)

∇ · A1 +
1
c
∂φ1

∂t
= 0. (2.4.10)

(iii) We split the vector quantities and the gradient operator (∇) into perpendicular (de-

noted by the subscript⊥) and longitudinal components (denoted by the subscript z), i.e., Eqs.

(2.4.3) - (2.4.6) give:

∂n1

∂t
+ n0

∂V1z

∂z
+ n0∇⊥ · V1⊥ = 0, (2.4.11)

∂V1z

∂t
=

e
me0

(
∂φ1

∂z
+

1
c
∂A1z

∂t

)
−

ΓzkBT0z

me0n0

∂n1

∂z
, (2.4.12)

∂V1⊥

∂t
=

e
me0

(
∇⊥φ1 +

1
c
∂A1⊥

∂t

)
+ ωc(V1⊥ × ẑ) −

Γ⊥kBT0⊥

me0n0
∇⊥n1, (2.4.13)

1
c2

∂2φ1

∂t2 −
∂2φ

∂z2 − ∇
2
⊥φ1 = 4π

[
qnb − en1

]
, (2.4.14)

1
c2

∂2A1z

∂t2 −
∂2A1z

∂z2 − ∇
2
⊥A1z =

4π
c

(qnbβc − en0V1z) , (2.4.15)

1
c2

∂2A1⊥

∂t2 −
∂2A1⊥

∂z2 − ∇2
⊥A1⊥ = −

4πen0

c
V1⊥, (2.4.16)

where ωc = −eB0/me0c is the electron cyclotron frequency.

(iv) We perform the coordinate transformation:

ξ = z − βct , r′⊥ = r⊥ , τ = t . (2.4.17)

Consequently,

∂/∂z = ∂/∂ξ , ∇⊥ = ∇′⊥ , ∂/∂t = −βc∂/∂ξ + ∂/∂τ , (2.4.18)
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where ∇′⊥ denotes the transverse gradient with respect to the new transverse co-ordinates.

(v) In addition, we assume the quasi-static approximation (see the previous chapter) by

imposing that all the quantities are independent of τ, i.e.,

∂/∂τ = 0 . (2.4.19)

As we have seen already in section 2.2, this corresponds to a sort of electrostatic approxima-

tion on fast time scale.

(vi) Under transformations (2.4.17) - (2.4.19), system of Eqs. (2.4.11)-(2.4.16), after a

relatively long but straightforward procedure, can be reduced to the following Poisson-type

equation (for simplicity, we have replaced ∇′⊥ by ∇⊥):
(
∂2

∂ξ2 +
k2

uh

β2 − αz
∂2

∂ξ2 − α⊥∇
2
⊥ − αz

k2
c

β2

) [
1
γ2

0

∂2

∂ξ2 + ∇2
⊥ − k2

p

]
+ (1 − β2αz)

k2
pk2

c

β4

 Ω

=
k2

p

β2

qme0c2

e2

[
1
γ2

0

(
β2 ∂

2

∂ξ2 + k2
c − β

2αz
∂2

∂ξ2 − β
2α⊥∇

2
⊥ − αzk2

c

)
− (1 − αz)β2k2

p

]
nb

n0
, (2.4.20)

where we have observed that γ0 = 1/
√

1 − β2 is the unperturbed relativistic energy factor,

αz = ΓzvTz/β
2c2, α⊥ = Γ⊥vT⊥/β

2c2 (vTz and vT⊥ being longitudinal and transverse thermal

velocities, respectively), kp =
(
4πe2n0/me0c2

)1/2
≡ ωp/c is the electron plasma wavenumber

(ωp =
√

4πe2n0/me0, being the electron plasma frequency), kuh =
(
k2

p + k2
c

)1/2
(kc ≡ ωc/c

being the electron cyclotron wavenumber). Equation (2.4.20) is of the type (2.2.4) which

relates the beam density nb (r⊥, ξ) to the plasma wake potential Ω (r⊥, ξ) for a collisionless,

non-relativistic, magnetized, warm plasma with non isotropic temperature. In addition, we

have derived this equation by assuming arbitrary conditions of both sharpness and relativistic

motion of the driver along the longitudinal direction. It represents a very significant general-

ization of the Poisson-type equation derived in the original treatment of the PWF excitation

[4]. By imposing appropriate boundary and initial conditions, the formal solution of Eq.

(2.4.20) gives Ω as the functional of nb. Then, the explicit form of the latter will give the

related solution of the wake potential. Furthermore, given the linearity of the system of Eqs.

(2.4.11) - (2.4.16), once Eq. (2.4.20) is solved for Ω, in principle the other physical first-

order quantities involved in this system can be easily found in terms of nb, as well, provided
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that appropriate boundary and initial conditions are imposed. Note that, although here β ∼ 1,

in order to distinguish between the simple relativistic case with respect to more extreme con-

ditions, such as the ultra-relativistic one, in Eq. (2.4.20) this constant has not yet replaced by

1. At this regard, we may suitably distinguish among three different energy regimes: non-

relativistic regime, i.e., γ0 & 1; relativistic regime, i.e., γ0 > 1; ultrarelativistic regime, i.e.,

γ0 � 1. Here, we focus only on relativistic and ultrarelativistic drivers. Then, provided that

γ0 can be� 1 or > 1 only, we can distinguish among different sharpness of the longitudinal

driver density profile as well as different sharpness of the transverse driver density profile.

By denoting σz as the longitudinal effective size of the driver (i.e., rms of the longitudinal

density profile), we may distinguish among three diverse longitudinal sharpnesses (note that

|∂/∂ξ| ∼ 1/σz): ultrashort bunch, i.e., kpσz � 1; moderately short bunch, i.e., kpσz ∼ 1;

long beam, i.e., kpσz � 1.

Let us specialize Eq. (2.4.20), in some of the above limiting cases prescribed by the com-

bination of energy and longitudinal sharpness regimes. To this end, we note that such a

combination should be done with care because of the competition that the physical condi-

tions, fixed by a given energy regime, has with the ones that are fixed by a given sharpness

regime. For instance, in the ultrarelativistic case, the product γ0kpσz may give a quantity ∼ 1

(which means that 1/γ0|∂/∂ξ| ∼ kp); whilst, in the simple relativistic case, the same product

may give a quantity � 1 or < 1 (which means (1/γ0)|∂/∂ξ| � kp or (1/γ0)|∂/∂ξ| < kp,

respectively). One can repeat analogous arguments for other combinations.

Let us now denote by σ⊥ the transverse effective size of the driver (i.e., rms of the trans-

verse density profile). Regarding the transverse sharpness, we may distinguish among three

regimes of transverse sharpness (note that |∇⊥| ∼ 1/σ⊥): strongly focussed beam, i.e.,

kpσ⊥ � 1; moderately focussed beam, i.e., kpσ⊥ ∼ 1; wide beam, i.e., kpσ⊥ � 1.
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2.5 Ultrarelativistic driver in a cold plasma: longitudinal
sharpness regimes

We assume that the driver is ultra-relativistic. This means that the condition γ0 � 1, implies

that in Eq. (2.4.20) we can surely replace β with 1. Furthermore, the cold plasma assumption

implies that αz = α⊥ = 0. In this framework we consider two cases: strongly magnetized

and unmagnetized cases.

2.5.1 Magnetized plasma

The strongly magnetized plasma assumption stands for the condition kc & kp. The latter

means that the effect of the external magnetic field, i.e., B0, in terms of gyromotion has to

be at least comparable to the collective plasma motion. Given the present technology to

produce magnetic field amplitudes up to tens of tesla, in laboratory we may have at most

kc . kp. However, in the astrophysical environments, B0 can assume values such that also

the condition kc � kp can be easily fulfilled.

Ultrashort bunch

According to the arguments presented in the previous sections, the assumptions taken here

allow us to reduce Eq. (2.4.20) to the following:[(
∂2

∂ξ2 + k2
uh

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥ − k2

p

)
+ k2

pk2
c

]
Ω = k2

p
qme0c2

e2

[
1
γ2

0

(
∂2

∂ξ2 + k2
c

)
− k2

p

]
nb

n0
, (2.5.1)

which is based on the very delicate interplay between the longitudinal strong sharpness and

the extreme relativistic energy conditions. They compensate each other, in such a way to

ensure that the term (1/γ0) |∂/∂ξ| is non negligible.

Moderately short bunch

Excluding the extreme astrophysical magnetized plasma conditions, if the driver is simply a

moderately short bunch, Eq. (2.4.20) reduces to:[(
∂2

∂ξ2 + k2
uh

) (
∇2
⊥ − k2

p

)
+ k2

pk2
c

]
Ω = −k4

p
qme0c2

e2

nb

n0
, (2.5.2)
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where the sharpness no longer compensates the effect of the extreme energy conditions.

Equation (2.5.2) has been derived for the first time in Ref. [56].

Long beam

When the beam length is long enough to fulfill the condition kpσz � 1, then the second-order

derivative with respect to ξ in Eq. (2.5.2) can be neglected and, it simplifies as:(∇2
⊥ − k2

p

)
+

k2
pk2

c

k2
uh

 Ω = −
k4

p

k2
uh

qme0c2

e2

nb

n0
, (2.5.3)

which has been used in [56] to investigate the PWF excitation in quantum regime. Note that

now the longitudinal coordinate ξ appears only as parameter in Eq. (2.5.3). As we will see

better later, it can be used as one of the governing equation of the purely transverse dynamics

of a paraxial nonlaminar beam, provided that ξ plays the role of a timelike variable.

2.5.2 Unmagnetized plasma

If the ambient magnetic field is absent or its effects can be considered negligible, in Eq.

(2.4.20) we can impose the condition B0 = 0 which corresponds to put kc = 0. Then, the

various cases of longitudinal sharpness are straightforwardly obtaine as follows.

Ultrashort bunch

According to the arguments presented in the previous sections, the assumptions taken here

allow us to reduce Eq. (2.5.1) to the following:(
∂2

∂ξ2 + k2
p

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥ − k2

p

)
Ω = k2

p
qme0c2

e2

[
1
γ2

0

∂2

∂ξ2 − k2
p

]
nb

n0
. (2.5.4)

Also Eq. (2.5.4) is based on the very delicate interplay between the longitudinal strong

sharpness and the extreme relativistic energy conditions, in such a way they compensate

each other to ensure that the term (1/γ0) |∂/∂ξ| is non negligible. Note that Eq. (2.5.4) has

been derived in a recent work where it was used to investigate the formation and stability of

a hollow electron beam in the presence of a PWF excitation driven by an ultra-short electron

bunch in a unmagnetized cold plasma [57].
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Moderately short bunch

Once the condition, kc = 0, is imposed, Eq. (2.5.2) reduces to:(
∂2

∂ξ2 + k2
p

) (
∇2
⊥ − k2

p

)
Ω = −k4

p
qme0c2

e2

nb

n0
, (2.5.5)

which is equivalent, in case of electrons/positron beams, to the set of equations that has been

derived for the first time in Ref. [4].

Long beam

By substituting kc = 0 in Eq. (2.5.2), we obtain:

(
∇2
⊥ − k2

p

)
Ω = −k2

p
qme0c2

e2

nb

n0
, (2.5.6)

which has been recently used to investigate the self-modulated transverse dynamics in both

classical [58–60] and quantum-like [61, 62] domains. Note that, as in the magnetized case,

also here the longitudinal coordinate ξ appears only as parameter.

2.6 Ultrarelativistic driver in a cold plasma: transverse sharp-
ness regimes

Similarly to the previous section, we specialize Eq. (2.4.20) for the diverse cases of trans-

verse sharpness that can be obtained in combination with the ultrarelativistic regime of a

driver travelling in a cold plasma (αz = α⊥ = 0). Also here we consider the two cases of a

strongly magnetized and unmagnetized plasma, respectively.

2.6.1 Magnetized plasma

Strongly focussed beam

According to the classification presented in the previous section, the strongly focussed beam

assumption corresponds to the condition kpσ⊥ � 1. Therefore, by imposing it in Eq. (2.4.20)
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we easily obtain:[(
∂2

∂ξ2 + k2
uh

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥

)
+ k2

p k2
c

]
Ω = k2

p
qme0c2

e2

[
1
γ2

0

(
∂2

∂ξ2 + k2
c

)
− k2

p

]
nb

n0
. (2.6.1)

Here, the derivatives with respect to ξ are not affected by any approximation, because the

longitudinal sharpness is considered to be arbitrary (therefore to be specified for each specific

case).

Moderately focussed beam

In this case, since kpσ⊥ ∼ 1, it is obvious that in Eq. (2.4.20) we have just to put: αz = α⊥ =

0, and no comparison between transverse and longitudinal sharpness is assumed in special

cases. Then, the corresponding expression coincides with Eq. (2.5.1).

Wide beam

When the beam is wide enough to fulfill the condition kpσ⊥ � 1, then Eq. (2.4.20) can be

reduced as the following:[(
∂2

∂ξ2 + k2
uh

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
+ k2

pk2
c

]
Ω = k2

p
qme0c2

e2

[
1
γ2

0

(
∂2

∂ξ2 + k2
c

)
− k2

p

]
nb

n0
. (2.6.2)

2.6.2 Unmagnetized plasma

If the ambient magnetic field is absent or its effects can be considered negligible, in Eq.

(2.4.20) we put kc = 0. Then, the various cases of longitudinal sharpness are straightfor-

wardly obtained as follows.

Strongly focussed beam

When the condition kc = 0 is replaced in Eq. (2.6.1), we easily obtain the following Poisson-

type equation: (
∂2

∂ξ2 + k2
p

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥

)
Ω = k2

p
qme0c2

e2

(
1
γ2

0

∂2

∂ξ2 − k2
p

)
nb

n0
. (2.6.3)
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Moderately focussed beam

Once the condition kc = 0 is imposed, Eq. (2.5.1) reduces to:(
∂2

∂ξ2 + k2
p

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥ − k2

p

)
Ω = k2

p
qme0c2

e2

(
1
γ2

0

∂2

∂ξ2 − k2
p

)
nb

n0
, (2.6.4)

which is equivalent, in case of electrons/positron beams, to the set of equations that has been

derived for the first time in Ref. [4].

Wide beam

By substituting ∇⊥ = 0 in Eq. (2.5.4), we obtain:(
∂2

∂ξ2 + k2
p

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
Ω = k2

p
qme0c2

e2

(
1
γ2

0

∂2

∂ξ2 − k2
p

)
nb

n0
. (2.6.5)

2.7 Poisson-type equation for purely longitudinal case

We can also confine our attention on 1D case of purely longitudinal beam profile. In this

case, in Eq. (2.4.20), all the transverse derivative should be suppressed while retaining the

longitudinal ones.

2.7.1 Magnetized plasma

Warm plasma

By putting α⊥ = 0 and ∇⊥ = 0, we easily get:[(
∂2

∂ξ2 + k2
uh − αz

∂2

∂ξ2 − αzk2
c

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
+ (1 − αz)k2

pk2
c

]
Ω

= k2
p
qme0c2

e2

[
1
γ2

0

(
∂2

∂ξ2 + k2
c − αz

∂2

∂ξ2 − αzk2
c

)
− (1 − αz)k2

p

]
nb

n0
. (2.7.1)

Cold plasma

If in addition we put αz = 0, we have the Poisson-type equation for the case of cold plasma,[(
∂2

∂ξ2 + k2
uh

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
+ k2

pk2
c

]
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qme0c2

e2

[
1
γ2

0

(
∂2

∂ξ2 + k2
c

)
− k2

p

]
nb

n0
. (2.7.2)
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2.7.2 Unmagnetized plasma

Warm plasma

By putting α⊥ = ∇⊥ = kc = 0, we easily get:(
∂2

∂ξ2 + k2
p − αz

∂2

∂ξ2

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
Ω =

k2
p qme0c2
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γ2

0

(
∂2

∂ξ2 − αz
∂2
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)
− (1 − αz)k2

p

]
nb

n0
.

(2.7.3)

Cold plasma

If in addition we put αz = 0, we have the Poisson-type equation for the case of cold plasma,(
∂2

∂ξ2 + k2
p

) (
1
γ2

0

∂2

∂ξ2 − k2
p

)
Ω = k2

p
qme0c2

e2

[
1
γ2

0

∂2

∂ξ2 − k2
p

]
nb

n0
. (2.7.4)

If 1/γ0∂/∂ξ � kp, then above equation becomes(
∂2

∂ξ2 + k2
p

)
Ω = k2

p
qme0c2

e2

nb

n0
. (2.7.5)

2.8 Poisson-type equation for purely transverse case

Now we confine our attention on 2D case of purely transverse beam profile. In Eq. (2.4.20)

all the longitudinal derivative should be suppressed while retaining the transverse ones.

2.8.1 Magnetized plasma

Warm plasma

By putting αz = 0 = ∂/∂ξ = 0, we easily get:[(
k2

uh − α⊥∇
2
⊥

) (
∇2
⊥ − k2

p

)
+ k2

pk2
c

]
Ω = k2

p
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)
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p

]
nb

n0
. (2.8.1)

Cold plasma

If in addition we put α⊥ = 0, we have the Poisson-type equation for the case of cold plasma,(∇2
⊥ − k2

p

)
+

k2
pk2

c

k2
uh

 Ω =
k2

p
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qme0c2

e2

(
k2

c

γ2
0

− k2
p

)
nb

n0
. (2.8.2)
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2.8.2 Unmagnetized plasma

Warm plasma

By putting αz = ∂/∂ξ = kc = 0, we easily find:(
k2

p − α⊥∇
2
⊥

) (
∇2
⊥ − k2

p

)
Ω = −k2

p
qme0c2

e2

(
1
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0
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2
⊥ + k2

p

)
nb

n0
. (2.8.3)

Cold plasma

If in addition we put α⊥ = 0, we have the Poisson-type equation for the case of cold plasma,(
∇2
⊥ − k2

p

)
Ω = −k2

p
qme0c2

e2

nb

n0
. (2.8.4)

2.9 Conclusions

We have presented the general theory of plasma wake field excitation in a magnetoactive,

nonrelativistic, warm, overdense, and collisionless plasma. This has been accomplished by

using the set of 3D fluid equations, comprising continuity and the motion equations, that

are coupled with the Maxwell equations (i.e., Lorentz-Maxwell system) in the adiabatic

approximation (see Chapter 1), in the presence of an ultra-relativistic driving beam. We

have first put forward the simple concept of plasma wake field and plasma wake potential

by starting from the expression of the Lorentz force experienced by a test particle, in its co-

moving frame, in the presence of the self-consistent EM field provided by the ‘beam-plasma’

system. In the quasi-static approximation, we have reduced the above Lorentz-Maxwell

system to a novel 3D partial differential equation, called here the generalized Poisson-type

equation. It relates the beam density to the wake potential and extends the PWF theory to

the case of warm plasmas. Additionally, it accounts for the presence of an ambient magnetic

field, the longitudinal and transverse plasma pressure terms, and the generalized conditions

of beam energy and sharpness of the beam profile. We have finally specialized this novel

equation to several limiting cases in order to recover the particular equations that have been

used in the literature.



Chapter 3

Models for charged particle beams and
its self-consistent interaction with the
surrounding medium

We formulate the kinetic description of an relativistic driving beam while self-consistently interacting

with the plasma wake field excited in a warm, magnetized, collisionless plasma in overdense regime.

The driver is supposed to be in the arbitrary conditions of sharpness of its density profile. Such a

general formulation is provided by starting from the relativistic single-particle 3D Hamiltonian in

the presence of an ambient magnetic field. In the reference frame of the unperturbed particle, we

express the Hamiltonian of the perturbed particle in terms of a slight variation from the one of the

unperturbed particle that is associated with the relativistic unperturbed beam state. After expanding

the four potential to the first-order and performing the non-relativistic expansion with respect to the

unperturbed state, we get the effective single-particle Hamiltonian. The latter is used to construct

the 3D Vlasov equation for the beam motion in the reference frame of the unperturbed particle. This

way, by coupling the Vlasov equation with the generalized Poisson-type equation obtained in Chapter

2, we provide the self-consistent 3D kinetic description to be used in the next chapters to study the

self-modulated dynamics of the driver while interacting with the surrounding plasma.

55
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3.1 Preliminary considerations

In this chapter, according to the Introduction, we refer to the concept of beam as a parax-

ial and nonlaminar system of many charged particles, whose dynamics is affected by the

interaction with the surrounding plasma. Such an interaction typically involves the self-

consistent fields as well as any eventual external field that has been generated by sources

that are external to the beam-plasma system. The self-consistent fields are involved in the

PWF excitation, as described in Chapter 2. They are generated by all the sources that are

internal to the beam-plasma system, such as the beam charge and current distributions and

the plasma charge and current distributions, respectively. In general, the internal sources are

dynamically involved in the Lorentz-Maxwell system of equations, as extensively described

in Chapter 2. The approach used has, in particular, shown how to reduce such a system of

equation to the appropriate Poisson-type equation. This has been accomplished for a number

of physical examples. However, only the Poisson-type equation fixes a functional relation

between the beam number density and plasma wake potential Ω. In other words, by referring

to Chapter 2, for any beam number density nb, we can solve the Poisson-type equation for

Ω. Therefore, the knowledge of Ω allows us to determine the wake fields. The latter, in

turn, affect the behaviour of the beam and, consequently, its particle distribution (i.e., nb).

We conclude that, according to the self-consistency of the beam-plasma interaction, an equa-

tion that governs the reaction of the wake fields on the beam itself, to be coupled with the

Poisson-type equation, is necessary. Such an equation, which hereafter we call the beam

motion equation, would account for the instantaneous forces exserted by the plasma wake

fields (PWFs) on the beam particles.

In the next sections, we will find the appropriate motion equations of the problem we want

to discuss. To this end, we will proceed according to the following scheme.

• We start from the Hamiltonian for a relativistic single-particle that is moving under the

action of the EM fields (self-consistent plus external fields) and define the unperturbed

state as the one in the absence of the self-consistent fields.
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• We split the vector quantities in longitudinal (parallel to the beam propagation direc-

tion) and radial (perpendicular to the beam propagation direction) components.

• We perturb the physical quantities around the unperturbed state.

• We finally find the effective Hamiltonian associated with the single-particle motion in

the beam co-moving frame.

3.2 Relativistic Hamiltonian for a single-particle motion in
the presence of EM fields

Let us consider a relativistic charged particle of charge q and rest mass mb0, moving with an

arbitrary velocity v in the presence of an EM field, i.e., E = E(r, t), B = B(r, t). It is well

known that the Hamiltonian for such a motion is given by [63]:

H(r,P, t) = c
[(

P −
q
c

A
)2

+ m2
b0c2

]1/2

+ qφ , (3.2.1)

where A = A(r, t) and φ = φ(r, t) are vector and scalar potential, respectively, that are

associated with the fields E(r, t) and B(r, t) by means of the relations (2.1.3) and (2.1.4),

respectively. In Eq. (3.2.1), P is the canonical momentum which is related to the particle

kinetic linear momentum, p = mb0γv, by:

P = mb0γv +
q
c

A , (3.2.2)

where γ =
(
1 − v2/c2

)−1/2
is the relativistic gamma factor.

In the absence of the fields, i.e., E = B = 0, we can define the unperturbed state of the

particle, i.e., v = v0 ≡ βcẑ (β ∼ 1) and γ = γ0 ≡ (1 − β2)−1/2, in which the particle trajectory

is a straight line that we have assumed to be the z− axis.

Note that the state of the particle remains unperturbed also if we consider the presence of

an uniform and constant magnetic field B0 = B0ẑ, oriented along the z− axis. In fact, since

the particle velocity in this state, i.e., v = v0, is constant of motion and has the longitudinal

component only, the particle does not interact with B0 and therefore, does not assume a
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transverse component during the time. Therefore, it is easy to see that the Hamiltonian

associated with such an unperturbed state is:

H0 = mb0γ0c2 . (3.2.3)

3.2.1 Slightly perturbed motion

If we now consider a paraxial relativistic charged-particle travelling along the z− axis in the

presence of the same uniform and constant magnetic field B0, we can state that each beam

particle has an instantaneous velocity that can be cast in the following form:

v = βcẑ + u , (3.2.4)

where u represents slight displacement of v from the unperturbed state v0 = βcẑ, i.e.,

u � c , (3.2.5)

with an arbitrary instantaneous orientation. Therefore, taking into account all the possible

slight displacements that are possible in a paraxial beam, the unperturbed state particle plays

the role of an ideal condition of the beam particle. Note that the perturbed state requires

the presence of an EM field, whose strengths have to be compatible with Eq. (3.2.4) and

condition (3.2.5). Note also that the quantity u has in general longitudinal and transverse

components, i.e.,

u = uzẑ + u⊥ . (3.2.6)

3.2.2 Perturbed effective single particle Hamiltonian

We perturb all the physical quantities of our interest around the state of the unperturbed

particle, i.e.,

γ = γ0 + γ1 , (3.2.7)

P = P0 +P = mb0γ0βc ẑ +Pz ẑ +P⊥ , (3.2.8)

A = A1zẑ + A0⊥ + A1⊥ , (3.2.9)

φ = φ1 , (3.2.10)
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where we have also split the vector quantities into longitudinal and transverse components.

Note that the term A0⊥ accounts for the presence of the magnetic field B0 [63], i.e.,

A0⊥ = −
1
2

r⊥ × B0 , (3.2.11)

where r⊥ is the transverse component of the position vector r, i.e.,

r = zẑ + r⊥ . (3.2.12)

We replace Eq. (3.2.2) in Eq. (3.2.1), obtaining:

H = mb0c2
[
1 + γ2 v2

c2

]
+ qφ . (3.2.13)

Then, we perturb Eq. (3.2.2) according to Eqs. (3.2.4) - (3.2.6) and (3.2.7) - (3.2.10) and

separate the orders and longitudinal from transverse components. In addition, we perturb

also Eq. (3.2.13) according to Eqs. (3.2.4) - (3.2.6) and (3.2.7) - (3.2.10); then, we perform

the non-relativistic expansion. By combining the results of the two expansions, we easily get

the following effective Hamiltonian:

H (r⊥, z,P⊥,Pz, s) =
1
2
Pz

2 + βPz +
1
2
P⊥

2 +
1
2

kc ẑ · (r⊥ × P⊥)

+
1
2

Kr2
⊥ −

q
mb0γ0c2

[
βA1z (r⊥, z, s) − φ1 (r⊥, z, s)

]
, (3.2.14)

where we have introduced the time-like variable s = ct,H = (H−H0)/H0, Pz =Pz/mb0γ0c,

P⊥ = P⊥/mb0γ0c, kc = −qB0/mb0γ0c2, and K =
(
qB0/2mb0γ0c2

)2
= (kc/2)2. This is the

Hamiltonian of a generic single-particle of the beam whose motion slightly deviates from the

one of the unperturbed particle. The last term, i.e., −
(
q/mb0γ0c2

)
(βA1z − φ1), corresponds to

an effective self-consistent potential term, whose gradient gives the self-consistent EM fields

that the beam itself has created via the interaction with the plasma. Furthermore, the term

(1/2) kc ẑ · (r⊥ × P⊥) accounts for the longitudinal component of the single-particle angular

momentum related to the beam particle gyro-motion around the ambient magnetic field B0,

whereas the term (1/2) Kr2
⊥ comes from A2

0⊥ and, since K > 0, represents the potential

well, whose gradient gives the focusing transverse force that is experienced by the perturbed
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single-particle in the presence of B0.

Let us now consider the coordinate transformation; ξ = z−β
′

s, R⊥ = r⊥, τ = s, P
′

z = Pz +α,

and P
′

⊥ = P⊥, where α is an arbitrary real constant. Its inverse is; z = ξ + β
′

τ, r⊥ = R⊥,

s = τ, Pz = P
′

z − α, and P⊥ = P
′

⊥. In addition, we write the Hamilton equations associated

with Hamiltonian 3.2.14, i.e.,

dz
ds

=
∂H

∂Pz
= Pz + β, , (3.2.15)

dPz

ds
= −

∂H

∂z
=
∂

∂z

{
q

mb0γ0c2

[
βA1z (r⊥, z, s) + φ1 (r⊥, z, s)

]}
. (3.2.16)

Then, by using above mentioned transformations, Eqs. (3.2.15) and (3.2.16) can be easily

reduced to

dξ
dτ

= P
′

z +
(
β − β

′
)
− α ≡

∂H

∂P′z
, (3.2.17)

dP
′

z

dτ
=

∂

∂ξ

[
q

mb0γ0c2

(
βA

′

1z − φ
′

1

)]
≡ −

∂H

∂ξ
, (3.2.18)

where A
′

1z = A
′

1z (R⊥, ξ, τ), φ
′

1 = φ
′

1 (R⊥, ξ, τ) andH =H
(
R⊥, ξ,P

′

⊥,P
′

z, τ
)

stand for the

image of A1z (r⊥, z, s), φ1 (r⊥, z, s) andH , respectively, under the transformations.

If we now require that the above transformation leads to dξ/dτ = P
′

z, we get that α = β− β
′

.

Consequently, Eq. (3.2.17) becomes:

dξ
dτ

= P
′

z ≡
∂H

∂P′z
. (3.2.19)

If, in addition, we impose the rigidity condition, i.e., β
′

= β, which means that our refer-

ence frame corresponds to the one where the unperturbed particle is at rest, the fourth of

transformations becomes simply

P
′

z = Pz , (3.2.20)

and the effective potential Ω (R⊥, ξ, τ) =
[
βA

′

1z (R⊥, ξ, τ) − φ
′

1 (R⊥, ξ, τ)
]

becomes the plasma
wake potential that has been introduced in Chapter 2. Furthermore, Eqs. (3.2.20), (3.2.19)
and (3.2.18) allow us finally to get easily the transformed Hamiltonian, viz.,

H (R⊥, ξ,P⊥,Pz, τ) =
1
2
Pz

2 +
1
2
P⊥

2 +
1
2

kc ẑ · (R⊥ × P⊥) +
1
2

KR2
⊥ + Uw (R⊥, ξ, τ) , (3.2.21)
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where we have introduced the dimensionless plasma wake potential energy:

Uw (R⊥, ξ, τ) = −
q Ω (R⊥, ξ, τ)

mb0γ0c2 . (3.2.22)

3.3 The Vlasov equation for a relativistic charged-particle
beam

In this section, we find the kinetic equation that describes the phase space evolution of the

perturbed charged particles, whose Hamiltonian is given by Eq. (3.2.21), that belong to

a relativistic paraxial beam. To this end, we first of all introduce the six-dimensional µ-

space, i.e., (R⊥, ξ,P⊥,Pz). Then, we denote by f = f (R⊥, ξ,P⊥,Pz, τ) the single-particle

distribution function in such a phase space. According to Chapter 1, the kinetic equation is

given by the total derivative of f , viz.,

∂ f
∂τ

+
dξ
dτ

∂ f
∂ξ

+
dR⊥
dτ
·
∂ f
∂R⊥

+
dPz

dτ
∂ f
∂Pz

+
∂P⊥
∂τ
·
∂ f
∂P⊥

= 0 . (3.3.1)

By substituting Eq. (3.2.21) in Eq. (3.3.1), we easily get the following Vlasov equation:

∂ f
∂τ

+Pz
∂ f
∂ξ

+

[
P⊥ +

1
2

kc (ẑ × R⊥)
]
·
∂ f
∂R⊥

−
∂Uw

∂ξ

∂ f
∂Pz

−

[
KR⊥ −

1
2

kc (ẑ × P⊥) +
∂Uw

∂R⊥

]
·
∂ f
∂P⊥

= 0 ,

(3.3.2)

which describes the collective behavior of the charged-particle beam while interacting

with the plasma via the plasma wake potential and in the presence of an ambient mag-

netic field. It is worthy noting that, if N is the total number of particles in the beam,

−mb0γ0c2 ẑ∂Uw (R⊥, ξ, τ) /∂ξ and −mb0γ0c2 ∂Uw (R⊥, ξ, τ) /∂R⊥ are the effective longitudi-

nal and transverse components, respectively, of the force on the single particle at the Eulerian

position (R⊥, ξ, τ) that have been generated by the other N − 1 particles of the beam (mean

field approximation).

3.4 The Vlasov-Poisson-type system of equations

From the previous section, it is clear that the gradient of Uw accounts for the self-consistent

collective interaction, via the plasma, among the beam particles (beam self-interaction), in
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the mean field approximation. However, to describe in a self-consistent way the beam-

plasma evolution we need to couple the Vlasov Eq. (3.3.1) for f with the Poisson-type Eq.

(2.4.20) for Ω (or Uw). To this end, we first simplify the notations in Eq. (3.3.1), just by

performing the following substitutions:

R⊥ → r⊥ , P⊥ → p⊥ , Pz → pz , H , (R⊥, ξ,P⊥,Pz, τ)→ H (r⊥, ξ,p⊥, pz, τ) . (3.4.1)

Then, the self-consistent Vlasov-Poisson-type system of equations reads as follows:

∂ f
∂τ

+ pz
∂ f
∂ξ

+

[
p⊥ +

1
2

kc (ẑ × r⊥)
]
· ∇⊥ f −

∂Uw

∂ξ

∂ f
∂pz
−

[
Kr⊥ −

1
2

kc (ẑ × p⊥) + ∇⊥Uw

]
· ∇p⊥ f = 0 ,

(3.4.2)

and( ∂2

∂ξ2 +
k2

uh

β2 − αz
∂2

∂ξ2 − α⊥∇
2
⊥ − αz

k2
c

β2

) (
1
γ2

0

∂2

∂ξ2 + ∇2
⊥ − k2

p

)
+ (1 − β2αz)

k2
pk2

c

β4

 Uw =

−

(q
e

)2 me0

mb0

k2
p

γ0β2

[
1
γ2

0

(
β2 ∂

2

∂ξ2 + k2
c − β

2αz
∂2

∂ξ2 − β
2α⊥∇

2
⊥ − αzk2

c

)
− (1 − αz) β2k2

p

]
nb

n0
, (3.4.3)

with the closure condition, i.e.,

nb (r⊥, ξ, τ) =

∫
f (r⊥, ξ,p⊥, pz, τ) d2 p⊥ dpz . (3.4.4)

Equation (3.4.4) defines the local beam number density as the projection (marginalization)

of the beam distribution function to the configuration space, i.e., (r⊥, ξ). Note that, in the

above equations, ∇⊥ stands for the transverse component of the gradient in configuration

space, i.e., ∇⊥ = ∂/∂r⊥, whereas ∇p⊥ stands for the transverse component of the gradient in

momentum space, i.e., ∇p⊥ = ∂/∂p⊥.

In the next Chapters, we use the system (3.4.2) - (3.4.4) for several different cases concerning

the self-modulated beam dynamics in a plasma.

3.5 Conclusions

The kinetic description of an ultra-relativistic driving beam travelling through a warm, mag-

netized, collisionless plasma in overdense regime has been presented. The driver has been
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supposed to be in the arbitrary conditions of sharpness of its density profile while interacting

with the surrounding plasma. We first started from the 3D Hamiltonian of a test particle that

is experiencing the forces produced by the plasma wake fields. Then, we have expanded the

Hamiltonian of the perturbed particle with respect to the one of the unperturbed particle that

is associated with the unperturbed relativistic beam state. This has been accomplished by

expanding the four potential to the first-order as well as by performing the non-relativistic

expansion of the perturbed Hamiltonian with respect to the unperturbed state. We have, in

this way, found the effective single-particle Hamiltonian that has been used to construct the

Vlasov equation for the driver. The latter has been coupled with the generalized Poisson-type

equation that we have found in Chapter 2. The pair of Vlasov-Poisson-type equations con-

stitute the set of governing equation to provide the kinetic description of the self-consistent

collective dynamics of the driving beam while interacting with the surrounding plasma. In

the next chapters, it will be used to analyse the self-modulated dynamics of the driving beam.



Chapter 4

Transverse self-modulated beam
dynamics of a nonlaminar,
ultra-relativistic beam in a non
relativistic cold plasma

An analysis of the self-modulated transverse dynamics of a cylindrically symmetric nonlaminar driv-

ing beam is carried out. To this end, we disregard the longitudinal dynamics. Therefore, the general

3D Vlasov-Poisson-type system of equation constructed in Chapter 3 is reduced to a 2D pair of equa-

tions governing the spatiotemporal evolution of the purely transverse dynamics of the driving beam,

which is supposed to be very long compared to the plasma wavelength and travelling through a cold,

magnetized and overdense plasma. Due to the conditions of very long beam, the self-consistent PWF

mechanism is very efficient and it sensitively characterizes the self-modulated dynamics.

The analysis is carried out by using the pair of Vlasov-Poisson-type equations in cylindrical symmetry

that are implemented by the virial equations to provide the analysis of the self-modulated dynamics of

the driver envelope. We show the important role played by the constants of motions that are involved

in such a description. We first carry out an analysis in two different limiting cases, i.e., the local case

(the beam spot size is much greater than the plasma wavelength) and the strongly nonlocal case (the

beam spot size is much smaller than the plasma wavelength) where several types of self-modulation,

in terms of focusing, defocusing and betatron-like oscillations, are obtained and the criteria for in-

stability, such as collapse and self-modulation instability, are formulated. To this ends, within the

64
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context of the envelope description, we find suitable envelope equations, i.e., ordinary differential

equations for the beam spot size, that are easily integrated analytically and that provide also suitable

physical explanations in terms of the method of the pseudo potential or Sagdeev potential.

Then, the analysis is extended to the case where the beam spot size and the plasma wavelength are not

necessarily constrained as in the local or strongly nonlocal cases. The analysis of the system can be

still carried out with the virial equations and with the same methods used in the above limiting cases

(envelope equations, Sagdeev potential) to provide a full semi-analytical and numerical investigation

for the envelope self-modulation. To this end, criteria for predicting stability and self-modulation

instability are suitably provided.

4.1 Introduction

In this chapter, we focus on the purely transverse dynamics of a nonlaminar driving beam,

while experiencing the self-consistent PWF excitation, that has been extensively described

in Chapters 2 and 3. To consider a specific case related to some typical experimental sit-

uation, we assume that our beam is constituted by ultra-relativistic electrons or positrons

traveling along the constant and uniform magnetic field B0 = ẑB0, in overdense regime (i.e.,

nbmax � n0, nbmax being the maximum value of the beam density). Furthermore, we assume

that the plasma can be effectively thought as cold. This is physically justified by the very

high energy that the ultra-relativistic driving beam transfers to the plasma by means of the

PWF mechanism. According to Chapters 2 and 3, the typical wake field intensities are of

the order of nbmax/n0 times Emax, i.e., the Dawson limit (see the Introduction of this thesis),

which is given by m0ωpc/e. For plasma densities ranging from 1017 to 1018cm−3, Emax ranges

from ∼ 0.1 to ∼ 1 GV/cm. Correspondingly, for nbmax/n0 ∼ 10−2, the wake field intensities

range from ∼ 0.1 to ∼ 1 GV/m. The corresponding electric pressure ranges from ∼ 105 to ∼

106 erg/cm3 (i.e., from ∼ 104 to ∼ 105 J/m3). On the other hand, keeping the above values

of plasma density and the temperature of a few 105K (i.e., kBT ∼ 10 eV), the kinetic plasma

pressure ranges roughly from 1 to 10 erg/cm3 (i.e., from 0.1 to 1 J/m3). Therefore, it is clear



Transverse self-modulated beam dynamics 66

that the kinetic plasma pressure is several orders of magnitude less than the electric pres-

sure to justify the assumption of cold plasma we have taken. Only relativistic temperatures

(kBT . me0c2 ≈ 0.5 MeV) can justify an assumption of warm plasma, but such a physical

condition does not match with the typical features of a plasma for particle accelerator appli-

cations. It should be emphasized that, in the underdense regime (i.e., nbmax & n0, the wake

fields are much greater than in the overdense regime (those become of the order of Daw-

son limit). This way, the enormous quantity of energy transferred from the driving beam to

the plasma makes the plasma electron motion relativistic. But, this does not imply that the

thermal motion of the plasma electrons is relativistic to justify kinetic plasma pressures com-

parable to the electric pressures. In fact, for accelerator applications, the plasma is created

with a non relativistic thermal motion. Once an ultra-relativistic driving beam is launched

into the plasma, the part of the beam energy that is transferred to the plasma by means of the

PWF mechanism contribute mainly to the ordered (i.e., fluid) plasma motion. A very small

fraction of that energy contributes to the plasma heating.

In the next section, we start from the appropriate governing equations, i.e., the set of Vlasov-

Poisson-type equations, that are written in the frame of the unperturbed particle, according

to Chapter 3 (co-moving frame) and that are compatible with the above assumptions.

In this framework, we formulate the envelope description of the self-modulated beam dynam-

ics. Such a description reveals to be very helpful to carry out a stability/instability analysis.

Since the Vlasov-Poisson-type system of equations that we adopt is nonlinear and nonlocal,

we specialize our analysis in three different regimes, where a specific nonlocal or local char-

acter of the nonlinearity plays a role.

It is worth pointing out that the reference of the problem under discussion in this chapter

to the context of plasma-based acceleration is a little generic. Actually, the purely trans-

verse case we have assumed implies absence of dynamics along the longitudinal direction,

i.e., z-direction. On the other hand, the beam particles experience the action of the trans-

verse PWF, while moving along z, with respect to the laboratory frame. However, in the

unperturbed-particle frame, without longitudinal dynamics, all the particles are moving in
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the transverse direction, only. Although the transverse action of the wake fields on the beam

particles produces particle acceleration in a wider sense, this physical circumstance should

be more conveniently referred to as a sort of self-manipulation of the beam. Note that this

is actually a macroscopic feedback that the driving beam receives from the plasma after

exciting the latter (i.e., the generation of the strong electric fields and electric pressures).

It should be emphasized that such a feedback is more and more important as the effective

length of the beam (i.e., σz), compared to the plasma wavelength, increases more and more.

For this reason, we assume that the driving beam is relatively long to satisfy such a phys-

ical circumstance. Within the framework of the envelope description, given later in this

chapter, the self-manipulation corresponds to a variety of electro-mechanical actions, such

as self-focusing (leading eventually to the beam collapse), self-defocusing (leading eventu-

ally to the envelope self-modulation instability), or stable configurations (in particular, stable

envelope betatron-like oscillations).

4.2 The governing equations of the transverse beam dy-
namics

To write the appropriate governing equation, we have to specialize the general set of Eqs.

(3.4.2) - (3.4.4) to our assumptions. In particular, we have chosen to focus our analysis on a

beam of electrons (q = −e, mb0 = me0) or positrons (q = e, mb0 = me0) as a driving beam.

Therefore, the quantity (q/e)2 (me0/mb0) appearing at the right-hand side of Eq. (3.4.3) be-

comes 1. In addition, the assumptions of purely transverse beam dynamics can be imposed

by formally putting ∂/∂ξ = ∂/∂pz = 0 in Eqs. (3.4.2) - (3.4.4), whereas the cold plasma as-

sumptions corresponds to put in this same equations αz = α⊥ = 0. Finally, the assumptions

of ultra-relativistic and long beam correspond to β ≈ 1, γ0 � 1, and ksσz � 1, respec-

tively. Then, similarly to what we have done in Chapter 2 to obtain the diverse Poisson-type

equations, the above assumptions easily lead to the following pair of equations:

∂ f
∂τ

+

[
p⊥ +

1
2

kc (ẑ × r⊥)
]
· ∇⊥ f −

[
Kr⊥ −

1
2

kc (ẑ × p⊥) + ∇⊥Uw

]
· ∇p⊥ f = 0 , (4.2.1)
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(
∇2
⊥ − k2

s

)
Uw = k2

sλ0

∫
f d2 p⊥ , (4.2.2)

where λ0 = N/n0γ0σz (N being the total number of electrons or positrons of the driving

beam) and ks = k2
p/kuh. Note that here f = f (r⊥,p⊥, τ) stands for the single-particle dis-

tribution function in the 4D (r⊥,p⊥)-phase space; therefore, the local beam density, i.e.,

nb (r⊥, τ), has been expressed in terms of this 4D distribution function, as follows:

nb (r⊥, τ) =
N
σz

∫
f (r⊥,p⊥, τ) d2 p⊥ . (4.2.3)

Note that definition (4.2.3) has been chosen in such a way that nb is the number of particles

per unity volume of the 3D configuration space (r⊥, ξ). In fact, since in this chapter nb is

independent of ξ, the total number of beam particles is given by:

N = σz

∫
nb(r⊥, τ)d2r⊥ , (4.2.4)

where the integration in dξ is replaced by the simple multiplication by σz. Consequently, the

integral of f in the 4D-phase space (r⊥,p⊥) is fixed to unity, i.e.,∫
f (r⊥,p⊥, τ)d2r⊥, d2 p⊥ = 1 . (4.2.5)

It is worth noting that the nonlinearity of the above system of Eqs. (4.2.1) and (4.2.2) lies

in the term (∇⊥Uw · ∇p⊥ f ) in Vlasov equation, whereas the local and nonlocal character of

the system depend on the interplay between the terms ∇2
⊥Uw and k2

sUw in the Poisson-type

equation.

In order to perform the analysis of our system in the diverse physical conditions, we distin-

guish among the following three different regimes of the beam dynamics, i.e.,

1. Purely local regime, where the beam spot size (i.e., σ⊥) is much greater than the wave-

length λs ≡ 2π/ks, i.e., ks σ⊥ � 1, which corresponds to impose formally |∇⊥| � ks .

2. Moderately nonlocal regime, where the beam spot size is of the order of λs, i.e.,

ks σ⊥ ∼ 1, which corresponds to impose formally |∇⊥| ∼ ks .
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3. Strongly nonlocal regime, where the beam spot size is much smaller than λs, i.e.,

ks σ⊥ � 1, which corresponds to impose formally |∇⊥| � ks .

Note that, in absence of an external magnetic field, the above regimes are simply character-

ized by the following conditions:

1. Purely local regime, kpσ⊥ � 1 (i.e., |∇⊥| � kp);

2. Moderately nonlocal regime, kpσ⊥ ∼ 1 (i.e., |∇⊥| ∼ kp);

3. Strongly nonlocal regime, kpσ⊥ � 1 (i.e., |∇⊥| � kp).

Note that, according to Chapter 2, the purely local, moderately nonlocal and strongly non-

local regimes correspond also to the conditions for wide, moderately focussed, and strongly

focussed beam, respectively, that we have introduced there as well.

4.3 Beam envelope description

In this section, we introduce the so-called beam envelope description, or virial description,

that is obtained by taking the average of certain physical quantities by means of the distribu-

tion function f = f (r⊥,p⊥, τ). Such an approach is supported by a set of equations, usually

referred to as the virial equations. The latter spring directly from the kinetic description, i.e.,

from the pair of Vlasov-Poisson-type equations. In order to obtain the virial equations, let

us consider the Hamiltonian given in the unperturbed-particle frame, i.e., H (r⊥,p⊥, τ) [see,

section (3.4) ]. We can cast it as:

H (r⊥,p⊥, τ) = T (p⊥) + U(r⊥,p⊥, τ) , (4.3.1)

where

T (p⊥) =
1
2

p2
⊥ (4.3.2)

and

U(r⊥,p⊥, τ) =
1
2

kc ẑ · (r⊥ × p⊥) +
1
2

Kr2
⊥ + Uw (r⊥, τ) . (4.3.3)
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Therefore, the spatiotemporal evolution of the beam is provided by the following Vlasov

equation in phase space:

∂ f
∂τ

+
∂H
∂p⊥
·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

= 0 . (4.3.4)

If F(r⊥,p⊥, τ) is a generic physical quantity defined in the 4D-phase space, according to Eq.

(4.2.5), the phase space average of F is defined as:

〈F〉 =

∫
F(r⊥,p⊥, τ) f (r⊥,p⊥, τ)d2r⊥, d2 p⊥ . (4.3.5)

In particular, we introduce the following averaged quantities:

- the beam spot size (effective transverse beam size), i.e.,

σ⊥(τ) = 〈r2
⊥〉

1/2 =

[∫
r2
⊥ f d2r⊥ d2 p⊥

]1/2

; (4.3.6)

- the momentum spread, i.e.,

σp⊥(τ) = 〈p2
⊥〉

1/2 =

[∫
p2
⊥ f d2r⊥ d2 p⊥

]1/2

; (4.3.7)

-the average of the total energy, i.e.,

E(τ) = 〈H〉 =

∫
H f d2r⊥ d2 p⊥ = 〈T 〉 + 〈U〉 , (4.3.8)

where

〈T 〉 =

∫
1
2

p2
⊥ f (r⊥,p⊥, τ) d2r⊥ d2 p⊥ =

1
2
σ2

p⊥(τ) (4.3.9)

and

〈U〉 =

∫
U (r⊥,p⊥, τ) f (r⊥,p⊥, τ) d2r⊥d2r⊥ . (4.3.10)

It should be emphasized that to define σ⊥ and σp⊥ , we have assumed that 〈r⊥〉 = 〈p⊥〉 = 0,

since in the unperturbed particle frame, the beam centroid is moving always along ẑ.
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4.3.1 First virial equation

In order to find an evolution equation forσ2
⊥(τ), we first differentiate the square of Eq. (4.3.6)

with respect to τ, i.e.,
dσ2
⊥

dτ
=

∫
r2
⊥

∂ f
∂τ

d2r⊥ d2 p⊥ . (4.3.11)

Then, we substitute ∂ f /∂τ by means of Eq. (4.3.4) obtaining

dσ2
⊥

dτ
= −

∫
r2
⊥

[
∂H

∂p⊥
·
∂ f
∂r⊥
−
∂H

∂r⊥
·
∂ f
∂p⊥

]
d2r⊥ d2 p⊥ . (4.3.12)

After integrating by parts and imposing the boundary conditions at the infinity (compatible

with the normalization of the distribution function) we get (for details see Appendix A):

dσ2
⊥

dτ
= 2

〈
r⊥ · ∇p⊥H

〉
+

〈
r2
⊥

[
∇r⊥ · (∇p⊥H) − ∇p⊥ · (∇r⊥H)

]〉
. (4.3.13)

By using the Hamilton’s equations for the Hamiltonian (4.3.1), i.e.,

dr⊥
dτ

=
∂H
∂p⊥

= p⊥ +
1
2

kc(ẑ × r⊥) , (4.3.14)

and
dp⊥
dτ

= −
∂H
∂r⊥

= −[Kr⊥ + ∇⊥Uw −
1
2

kc(ẑ × p⊥)] , (4.3.15)

one can easily show that the second term at the right-hand side of Eq. (4.3.13) vanishes.

Therefore Eq. (4.3.13) becomes:

dσ2
⊥

dτ
= 2 〈r⊥ · p⊥〉 = 2

∫
(r⊥ · p⊥) f d2r⊥ d2 p⊥ , (4.3.16)

which can be also cast as:

σ⊥
dσ⊥
dτ

= 〈r⊥ · p⊥〉 . (4.3.17)

Note that Eq. (4.3.17) remains formally the same in the unmagnetized case (B0 = 0). How-

ever, without external magnetic field, Hamilton’s equation (4.3.14) gives (note that τ(= ct)

can be thought as longitudinal length):

dr⊥
dτ

= p⊥ . (4.3.18)
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Then, we observe that, within the context of the electron optics, r⊥(τ) and p⊥(τ) are the

instantaneous position and slope in the instantaneous transverse plane with respect to the

longitudinal direction of a generic electron ray (charged particle trajectory). In particular,

the paraxial assumption imposes the condition: |p⊥| = |v/c| � 1. In addition, Eq. (4.3.17)

shows that the average of the product of position and slope of the electron rays is simply the

product of σ⊥ (i.e., rms of electron ray positions in the transverse plane) and its slope with

respect to the longitudinal direction.

On the other hand, we observe that the product r⊥ ·p⊥ = r⊥ · (dr⊥/dτ) = 1/2 (dr2
⊥/dτ) is,

by definition, the virial of the generic single-particle.

Note that, by analogy with this definition, we may assume that σ⊥(τ) and σ′⊥ ≡ dσ⊥/dτ

are the instantaneous position and velocity of a hypothetic particle. Then, the instantaneous

virial is defined as,

σ⊥
dσ⊥
dτ

=
1
2

dσ2
⊥

dτ
.

We conclude that Eq. (4.3.17) defines statistically a sort of “effective” virial, i.e., σ⊥dσ⊥/dτ,

that corresponds to the average of the beam particle virial, i.e.,

σ⊥
dσ⊥
dτ

=

〈
r⊥ ·

dr⊥
dτ

〉
. (4.3.19)

If we now consider the magnetic field no longer negligible, according to Eq. (4.3.14), the

meaning of p⊥ is no longer simply the slope of the electron ray. However, due to the orthog-

onality between r⊥ and (ẑ× r⊥), r⊥ · p⊥ = r⊥ · (dr⊥/dτ). Consequently in the presence of B0,

Eq. (4.3.19) still holds the same meaning of virial.

We now take the derivative of Eq. (4.3.16), obtaining:

d2σ2
⊥

dτ2 = 2
∫

(r⊥ · p⊥)
∂ f
∂τ

d2r⊥ d2 p⊥ . (4.3.20)

We, once more, substitute ∂ f /∂τ by means of Eq. (4.3.4), i.e.,

d2σ2
⊥

dτ2 = −2
∫

(r⊥ · p⊥)
[
∂H

∂p⊥
·
∂ f
∂r⊥
−
∂H

∂r⊥
·
∂ f
∂p⊥

]
d2r⊥ d2 p⊥ . (4.3.21)
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Which can be integrated by parts, obtaining the following equation for the derivative of the

averaged virial (see Appendix A):

d2σ2
⊥

dτ2 = 2
〈
p⊥ · ∇p⊥H

〉
+ 2

〈
(r⊥ · p⊥)∇r⊥ · (∇p⊥H)

〉
− 2

〈
r⊥ · (∇r⊥H)

〉
. (4.3.22)

By using again the explicit form of the Hamiltonian (4.3.1) and the corresponding Hamilto-

nian equations, we finally obtain the following equation:

d2σ2
⊥

dτ2 = 4〈T 〉 − 2〈r⊥ · ∇⊥V〉 , (4.3.23)

where,

V(r⊥, τ) =
1
2

Kr2
⊥ + Uw(r⊥, τ) . (4.3.24)

We refer Eq. (4.3.23) to as the first virial equation.

It can be consequently cast in the following form, viz.,

d2σ2
⊥

dτ2 = 2σ2
p⊥ − 2Kσ2

⊥ − 2〈r⊥ · ∇⊥Uw〉 , (4.3.25)

or,
d2σ2

⊥

dτ2 = 4(E − 〈U〉) − 2〈r⊥ · ∇r⊥U〉 + kcLz , (4.3.26)

where Lz = 〈Lz〉, Lz = ẑ · (r⊥ × p⊥), and U is given in Eq. (4.3.3).

In case of unmagnetized plasma, the first virial equation becomes (kc = K = 0):

d2σ2
⊥

dτ2 = 4(E − 〈Uw〉) − 2〈r⊥ · ∇r⊥Uw〉 , (4.3.27)

where

E =
1
2
〈p2
⊥〉 + 〈Uw〉 . (4.3.28)

4.3.2 Second virial equation

In this section, we find an equation for the time evolution of the averaged total energy E(τ) =

〈H〉, according to its definition, i.e., Eq. (4.3.8). To this end, we differentiate Eq. (4.3.8)

with respect to τ, obtaining:

dE
dτ

=

∫
∂H
∂τ

f d2 p⊥d2r⊥ +

∫
H
∂ f
∂τ

d2 p⊥d2r⊥ , (4.3.29)
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which, by using Eq. (4.3.4), can be cast as:

dE
dτ

=

〈
∂H
∂τ

〉
−

∫
H

[
∂H
∂p⊥
·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
d2 p⊥d2r⊥ . (4.3.30)

Performing the integration by parts in the second term at the right-hand side, we easily find

that this term vanishes, and therefore Eq. (4.3.30) becomes simply (for details see Appendix

A):
dE
dτ

=

〈
∂Uw

∂τ

〉
=

∫
∂UW

∂τ
f d2r⊥d2 p⊥ , (4.3.31)

where we have used the explicit form of H given by Eqs. (4.3.1) - (4.3.3) and observed that

Uw(r⊥, τ) is the only term of the Hamiltonian that depends explicitly on τ.

We refer Eq. (4.3.31) to as the second virial equation, which describes the time evolution

of the averaged energy E.

4.3.3 Virial description and constants of motion

Equations (4.3.23) and (4.3.31) constitute a pair of coupled equations governing the time

evolution of the beam envelope. However, this is not a complete set of equations, since

it requires the knowledge of f and Uw. This implies that the envelope description is sub-

ordinated to the kinetic description. To satisfy the self-consistency, we have to couple the

Vlasov-Poisson-type system of equations, i.e., Eqs. (4.2.1) and (4.2.2), with Eqs. (4.3.23)

and (4.3.31). Provided that suitable initial and boundary conditions are imposed, in principle,

we have first to solve Eqs. (4.2.1) and (4.2.2). Once f (r⊥,p⊥, τ) and Uw(r⊥, τ) are known,

we can use the virial equations to describe the time evolution of the beam envelope. We refer

this approach to as the virial description. Actually, often, the Vlasov-Poisson-type system is

difficult to solve, then the virial description reveals to be very helpful. In fact, in the most

fortunate cases, if for instance our beam-plasma system satisfies some suitable specific prop-

erties of symmetry, the virial description can be constructed without the explicit knowledge

of the instantaneous distribution function, whereas the knowledge of the initial distribution

would be necessary. This aspect is strictly connected to the existence of suitable constants

of motion (due to, for instance, the properties of symmetry mentioned above), because the
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constants of motions can allow us to fix conditions among the physical quantities given at

arbitrary times. Therefore, one can fix these quantities, in particular, at the initial time or

at any other time that could be convenient to the ends of our analysis. If Eqs. (4.3.23) and

(4.3.31) can be combined into a single differential equation for the beam spot-size, called

beam envelope equation, this approach allows to reduce the study of the time evolution of

the beam envelope to the one of the beam spot size, i.e., σ⊥(τ).

In the next sections, we describe specific problems of beam self-modulation within the con-

text of the viral description, where the search of constants of motion associated with the

spatiotemporal evolution of the system (4.2.1), (4.2.2), (4.3.23) and (4.3.31) is very helpful

and plays a crucial role.

4.3.4 Constants of motion and envelope equations

We show here the existence of a constant of motion for the set of Eqs. (4.2.1), (4.2.2),

(4.3.23) and (4.3.31). To this end, we observe that the integral in Eq. (4.3.31) can be cast

as
∫

d2r⊥ (∂Uw/∂τ)
∫

f d2 p⊥, since Uw is independent of p⊥. Then, by making use of Eq.

(4.2.2), Eq. (4.3.31) becomes:

dE
dτ

=
1

k2
sλ0

[ ∫
∂Uw

∂τ
∇2
⊥Uw d2r⊥ − k2

s

∫
Uw

∂Uw

∂τ
d2r⊥

]
, (4.3.32)

which, after integrating by parts, can be cast as (for details, see Appendix B):

dE
dτ

= −
1

2k2
sλ0

d
dτ

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ . (4.3.33)

Consequently, from this equation we can define the following constant of motion:

C = E +
1

2k2
sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ . (4.3.34)

By expressing explicitly E = 〈H〉 with Eqs. (4.3.1) - (4.3.3) in the above equation, we easily

get:

C =
1
2
σ2

p⊥ +
1
2

Kσ2
⊥ +

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ + 〈Uw〉 +

1
2

kcLz . (4.3.35)
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Then, observing that

〈Uw〉 = −
1

k2
sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ , (4.3.36)

Eq. (4.3.35) becomes

C =
1
2
σ2

p⊥ +
1
2

Kσ2
⊥ −

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ +

1
2

kcLz . (4.3.37)

By means of (4.3.37), we express E in terms of C and substitute it in the first virial equation.

Then, using (4.3.37) and (4.3.3) into (4.3.26) we easily get:

d2σ2
⊥

dτ2 + 4 Kσ2
⊥ = 4C −

2
k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ − 4〈Uw〉 − 2〈r⊥ · ∇⊥Uw〉 − 2kcLz .

(4.3.38)

After performing by parts the various integrations contained in the terms at the right-hand

side of Eq. (4.3.38), we finally obtain the following envelope equation, i.e.,

d2σ2
⊥

dτ2 + 4 Kσ2
⊥ = 4C +

2
k2

sλ0

∫
|∇⊥Uw|

2 d2r⊥ − 2kcLz . (4.3.39)

Note that, for the case of unmagnetized plasma (B0 = 0), we easily get:

d2σ2
⊥

dτ2 = 4C′ +
2

k2
pλ0

∫
|∇⊥Uw|

2 d2r⊥ , (4.3.40)

where C′ = 1/2σ2
p⊥ − 1/(2k2

sλ0)
∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥.

4.3.5 Beam emittance

A useful quantity that is typically involved in the charged-particle beam transport is the so-

called thermal emittance or simply beam emittance, that has been introduced by Lapostolle.

It is defined in terms of all the second-order moments of the distribution function. The

simplest definition of beam emittance is usually given in each 2D-subspace of the 6D-phase

space. Let qi and pi be the i-component (i = x, y, z) of the single-particle position and

conjugate momentum, respectively. By following the definition of average quantity given in
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section 4.3, we introduce the second-order moments of the normalized distribution function

f (q,p, τ) on the (qi, pi)-subspace, where q = (qx, qy, qz), p = (px, py, pz), i.e.,

σi(τ) =
〈
(qi − 〈qi〉)2

〉1/2
=

[∫
(qi − 〈qi〉)2 f d3q d3 p

]1/2

, (4.3.41)

σpi(τ) =
〈
(pi − 〈pi〉)2

〉1/2
=

[∫
(pi − 〈pi〉)2 f d3q d3 p

]1/2

, (4.3.42)

σipi(τ) = 〈(qi − 〈qi〉) (pi − 〈pi〉)〉 =

∫
(qi − 〈qi〉) (pi − 〈pi〉) f d3qd3 p , (4.3.43)

where

〈qi〉 =

∫
qi f (q,p, τ)d3q, d3 p , (4.3.44)

〈pi〉 =

∫
pi f (q,p, τ)d3q, d3 p , (4.3.45)

and pi = dqi/dτ. In general, 〈qi〉 and 〈pi〉 are supposed not to be zero.

Note that σi(τ) is the instantaneous rms of the particle positions, σpi(τ) is the instan-

taneous rms of the particle momentum, i.e., momentum spread and σipi(τ) stands for the

instantaneous position-momentum correlation term, along i-direction.

Note also that:

σ2
i (τ) =

〈
q2

i

〉
− 〈qi〉

2 , (4.3.46)

σ2
pi(τ) =

〈
p2

i

〉
− 〈pi〉

2 , (4.3.47)

σipi(τ) = (〈qi pi〉 − 〈qi〉 〈pi〉) . (4.3.48)

We can define the diffusion co-efficient, say εi, associated with the i-direction, in terms of

the following combination of the above mentioned second order moments:

εi(τ) = 2
[
σ2

i (τ)σ2
pi

(τ) − σ2
ipi

(τ)
]1/2

, (4.3.49)

or

εi(τ) = 2
[(〈

q2
i

〉
− 〈qi〉

2
) (〈

p2
i

〉
− 〈pi〉

2
)
− (〈qi pi〉 − 〈qi〉 〈pi〉)2

]1/2
, (4.3.50)
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which is the so-called thermal emittance (or simply beam emittance) associated with i-

direction. If 〈qi〉 = 〈pi〉 = 0, then the emittance definition reduces simply to:

εi(τ) = 2
[〈

q2
i

〉 〈
p2

i

〉
− 〈qi pi〉

2
]1/2

. (4.3.51)

It can be proven that, if Ai(τ) is the instantaneous area occupied by the beam in the 2D

subspace (qi, pi), the following identification of εi(τ) holds [64, 65]:

εi(τ) =
Ai(τ)
π
≥ 0 . (4.3.52)

This is also usually referred to as the geometrical emittance. Note that, in principle, εi(τ)

depends on time. Given the non-negativity of εi(τ) from Eq. (4.3.52), Eq. (4.3.51) or (4.3.50)

easily implies that:

σi(τ)σpi(τ) ≥
εi(τ)

2
, (4.3.53)

which represents a sort of uncertainty relation between the beam effective size and the cor-

responding momentum spread, along the i-direction. An interesting situation takes place

when εi(τ) is a conserved quantity. This is possible when the beam particles are drifting in

absence of forces as well as they are moving in the presence of a linear force, such as −k(τ)qi

(harmonic oscillator force).

If we restrict the above definition to the transverse case only, εx(τ) and εy(τ) represent the

emittances related to the phase space planes (x, px) and (y, py), respectively, while εz(τ) = 0.

In addition, we can conveniently introduce the transverse emittance, i.e., ε⊥, generalizing Eq.

(4.3.51) to the 2D case, i.e.,

ε⊥(τ) =
[〈

r2
⊥

〉 〈
p2
⊥

〉
− 〈r⊥ · p⊥〉2

]1/2
. (4.3.54)

According to Eq. (4.3.17) and definitions (4.3.6) and (4.3.7), Eq. (4.3.54) can be re-cast as:

ε⊥(τ) =
[
σ2
⊥(τ)σ2

p⊥(τ) − σ2
⊥(τ)(σ′⊥(τ))2

]1/2
, (4.3.55)

where σ′⊥(τ) ≡ dσ⊥(τ)/dτ. Note that, if at a given time, τ = τ0, σ′⊥(τ0) = 0, then at this time

the emittance reaches its minimum value, ε0 = σ⊥(τ0)σp⊥(τ0).
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4.3.6 Cylindrical Symmetry

In the cylindrical symmetry, f = f (r⊥, p⊥, τ), nb = nb (r⊥, τ) and Uw (r⊥, τ), where r⊥ is the

radial cylindrical position coordinate and p⊥ is the corresponding radial conjugate momen-

tum. Under this assumption, the time-derivative of the single-particle angular momentum,

i.e., L = r⊥ × p⊥ = r⊥p⊥ẑ, after some transformations gives (∇⊥ = êr
∂
∂r⊥

):

dL
dτ

= (êrr⊥) ×
(
êr
∂Uw

∂r⊥

)
= 0 , (4.3.56)

which implies that L is a conserved quantity and, consequently, Lz is a conserved quantity,

as well. This result allows us to re-write, finally, Eq. (4.3.39) as:

d2σ2
⊥

dτ2 + 4Kσ2
⊥ = 4A +

2
k2

sλ0

∫
|∇⊥Uw|

2 d2r⊥ , (4.3.57)

whereA = C − 1/2kcLz is a new constant of motion, i.e.,

A =
1
2
σ2

p⊥+
1
2

Kσ2
⊥ −

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ =

1
2
σ2

p⊥+
1
2

Kσ2
⊥+

1
2
〈Uw〉 . (4.3.58)

In the unmagnetized case, Eq. (4.3.57) reduces to (C = A):

d2σ2
⊥

dτ2 = 4C +
2

k2
pλ0

∫
|∇⊥Uw|

2 d2r⊥ . (4.3.59)

4.4 Self-modulated beam dynamics in purely local regime

In this section, we present a first application of the virial description to the self-modulated

dynamics of a cylindrically symmetric beam in the purely local regime [58]. According to the

classification introduced in section 4.2, in the purely local case, the beam spot size satisfies

the condition ksσ⊥ � 1, which implies that in the Poisson-type Eq. (4.2.2) the condition

|∇⊥Uw| � k2
s |Uw| holds. Hereafter, for simplicity we make the following replacements:

r⊥ → r, p⊥ → p. Then, f = f (r, p, τ), nb = nb(r, τ) and Uw = Uw(r, τ). Consequently, Eq.

(4.2.2) becomes

Uw = −λ0

∫
f d2 p . (4.4.1)
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Then, in the purely local regime, the evolution of the beam while travelling through the

plasma is governed by the pair of Eqs. (4.2.1) and (4.4.1). It is worthy noting that the

concept of strong magnetic field may differ in the laboratory and astrophysical plasma cases.

In the laboratory case, the values of B0 cannot exceed several tens of teslas. Therefore, for

plasma density ranging from 1012 to 1019 (typical of the wide spectrum of possible plasma-

based particle acceleration schemes), it results that ωc . ωp. This implies that the condition

of purely local regime reduces to kpσ⊥ � 1. On the other hand, we encounter a very different

situation in the astrophysical environments, where the ambient magnetic fields can largely

overcome 10 T (ωc � ωp), and therefore the strictly purely local regime condition becomes

(k2
p/kc)σ⊥ � 1, which represents a constraint for σ⊥ that differs completely from the one for

the laboratory case.

We observe that according to the assumption of purely local regime, the integrand at the

right-hand side of Eq. (4.3.57) is proportional to 1/ksσ⊥ � 1. Therefore, it can be neglected,

and Eq. (4.3.57) reduces to the following ordinary differential equation for σ⊥ (i.e., envelope

equation):
d2σ2

⊥

dτ2 + 4Kσ2
⊥ = 4A , (4.4.2)

where

A =
1
2
σ2

p(τ) +
1
2

Kσ2
⊥(τ) −

1
2λ0

∫
U2

w(r, τ) d2r = constant . (4.4.3)

Here, we have observed that, since here |∇⊥Uw| � ks|Uw|, from Eq. (4.3.36)

〈Uw〉 = −
1
λ0

∫
U2

w d2r . (4.4.4)

For the given initial conditions, viz.,

σ0 = σ⊥(τ0), σ′0 =

(
dσ⊥
dτ

)
τ0

≡ σ′⊥(τ0), (4.4.5)

the envelope equation (4.4.2) allows us to follow the evolution of the beam through the

transformation of its rms envelope surface. As we have put forward in the previous section,

the analysis of this time evolution can allow us also to predict the transverse stability of the

beam motion without finding explicitly the solution of the Vlasov-Poisson system.
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The suitable use of the constant of motion (i.e., A) indicates that, besides the initial

condition of σ⊥, σ′⊥, only the initial distribution function, i.e., f (r, p, τ0), is needed (τ0 being

an arbitrary value of τ, here assumed to be the initial time). Then, according to Eq. (4.4.3),

such initial conditions fix the constantA, i.e.,

A =
1
2
σ2

p0
+

1
2

Kσ2
0 −

1
2λ0

∫
U2

w(r, τ0) d2r, (4.4.6)

where σp0 ≡ σp(τ0). To this end, we perform our analysis considering separately the cases

of B0 = 0 and B0 , 0.

4.4.1 Unmagnetized plasma

In this regime we have, K = 0. Then

A =
1
2
σ2

p0 −
1

2λ0

∫
U2

w(r, 0) d2r (4.4.7)

and Eq. (4.4.2) becomes
d2σ2

⊥

dτ2 = 4A , (4.4.8)

which for σ′0 = 0, readily gives:

σ2
⊥(τ) = σ2

0 + 2A(τ − τ0)2 . (4.4.9)

The sign of the constantA depends on the way in which the interplay is established between

the kinetic energy, i.e., σ2
p0/2 and the self energy (wake energy), i.e., 1/2 λ0

∫
U2

w(r, 0) d2r =

〈Uw(r, 0)〉 in Eq. (4.4.7). Since the beam has been assumed to be warm, in the Maxwellian

conditions, we have σ2
p0 ∼ kBT/mb0γ0c2. Therefore, ifA > 0, the thermal energy overcomes

the self-energy; otherwise, A may be zero or negative. Consequently, Eq. (4.4.9) leads us

to conclude that the beam self-defocusses when A > 0, and that it is in equilibrium when

A = 0 (when the exact balance between the thermal energy and the self energy takes place)

or it experiences the self-focusing when A < 0, for which the self energy overcomes the

thermal energy.
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Figure 4.1: Beam envelope surface that, at each τ, is described by x2 +y2 = σ2
⊥ (τ), forA > 0

(self-defocusing of the beam for B0 = 0). Here, σ0 = 1, σ
′

0 = 0, τ0 = 0 andA = 0.4.

Figure 4.2: Beam envelope surface that, at each τ, is described by x2 +y2 = σ2
⊥ (τ), forA = 0

(self-equilibrium of the beam for B0 = 0). Here, σ0 = 1, σ
′

0 = 0 and τ0 = 0.

Note that, in this case, σ⊥ vanishes at a finite value of τ, say τ̄, such that τ̄ = τ0+σ0/
√
|A|.
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Figure 4.3: Beam envelope surface that, at each τ, is described by x2 +y2 = σ2
⊥ (τ), forA < 0

(self-focusing of the beam for B0 = 0). Here, σ0 = 1, σ
′

0 = 0, τ0 = 0 andA = −0.5.

It corresponds to the case of beam collapse. The above three physical circumstances are

illustrated in Figures 4.1 - 4.3 through the behaviour of the envelope surface.

4.4.2 Magnetized plasma

Since in this regime we have K , 0, the full Eq. (4.4.2) needs to be considered. For the

initial conditions (4.4.5), the solution of Eq. (4.4.2) is given by (note that, for simplicity, we

have chosen τ0 = 0 and σ′0 = 0):

σ2
⊥(τ) = σ2

0

[
2
(
A

Kσ2
0

− 1
)

sin2
(√

Kτ
)

+ 1
]
, (4.4.10)

which clearly shows that:

1. ForA < 0 and 0 ≤ A ≤ 1
2 Kσ2

0, the beam is unstable, reaching the collapse condition,

i.e., σ⊥ = 0 at the finite time value

τ =
1
√

K
arcsin


[
2
(
1 −

A

Kσ2
0

)]−1/2
 .
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2. IfA > 0 and we choose σ0 =
√
A/K, then the beam is in the self-equilibrium condi-

tion, i.e., σ⊥ = σ0.

3. Finally, forA > Kσ2
0/2, the beam performs stable betatron-like oscillations describing

the sausage-like rms beam envelope shape.

Figure 4.4: Beam envelope surface that, at each τ, is described by x2 + y2 = σ2
⊥ (τ), for

A < 0 and 0 ≤ A ≤ 1
2 Kσ2

0 (beam self-focusing leading to collapse for B0 , 0). Here,
σ0 = 2, σ

′

0 = 0, K = 1 andA = 1.5.

Figures 4.4 - 4.6 illustrate the behaviour of the envelope surface corresponding to the insta-

bility/stability conditions discussed in this section.

4.4.3 Transverse beam emittance and equivalent Gaussian beam

It is easy to prove that the envelope Eq. (4.4.2) can be cast in the form of an Ermakov-Pinney

equation, i.e.,
d2σ⊥
dτ2 + Kσ⊥ −

A0

σ3
⊥

= 0 , (4.4.11)

where A0 is a constant of motion given by

A0 = 2σ2
⊥

(
A−

σ′⊥
2

2
−

1
2

Kσ2
⊥

)
. (4.4.12)
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Figure 4.5: Beam envelope surface that, at each τ, is described by x2 + y2 = σ2
⊥ (τ), σ0 =

√
A/K (beam self-equilibrium for B0 , 0). Here, σ0 = 2, σ

′

0 = 0, K = 1 andA = 4.

Figure 4.6: Beam envelope surface that, at each τ, is described by x2 + y2 = σ2
⊥ (τ), for

A > Kσ2
0/2 (beam self-modulation, i.e., betatron-like oscillation, for B0 , 0). Here, σ0 = 1,

σ
′

0 = 0, K = 1 andA = 2.5.
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This can be, in fact, accomplished by:

1. expanding the time derivative in Eq. (4.4.2) getting, i.e.,

2
(
dσ⊥
dτ

)2

+ 2σ⊥
d2σ⊥
dτ2 + 4Kσ2

⊥ = 4A ; (4.4.13)

2. multiplying Eq. (4.4.2) by dσ2
⊥/dτ and then integrating one time with respect to τ, i.e.,

2
(
dσ⊥
dτ

)2

+ 2Kσ2
⊥ = 4A +

A0

σ2
⊥

, (4.4.14)

where A0 is an arbitrary integration constant;

3. combining, finally, Eqs. (4.4.13) and (4.4.14) to obtain Eq. (4.4.11).

Note that from Eq. (4.4.14) one can easily calculate the arbitrary constant A0, once the initial

conditions are imposed. After combining Eq. (4.4.3) with (4.4.12), we finally get:

A0 = σ2
pσ

2
⊥ − σ

2
⊥σ
′
⊥

2
−
σ2
⊥

λ0

∫
U2

w(r, τ) d2r (4.4.15)

or, A0 = σ2
pσ

2
⊥ − σ

2
⊥σ
′
⊥

2
+ 〈Uw(r, τ)〉σ2

⊥ , (4.4.16)

where we have observed that, here − (1/λ0)
∫

U2
w(r, τ) d2r = 〈Uw(r, τ)〉.

We now evaluate the constant of motion A0, by assuming the following initial (normal-

ized) transverse distribution function:

f0 (r, p) = f (r, p, 0) =
exp

[
−

(
r2/σ2

0 + p2/σ2
p0

)]
πσ2

0σ
2
p0

, (4.4.17)

which is consistent with the initial conditions for the second-order moments, viz., σ0 =

σ⊥ (0), σp0 = σp (0), and σ
′

0 = σ
′ (0) = 0. By using these initial conditions in Eqs. (4.4.15)

and (4.4.16), we easily get

〈Uw (r, 0)〉 = −
1
2

nb0

n0γ0
(4.4.18)

and

A0 = σ2
0

(
σ2

p0 −
1
2

nb0

n0γ0

)
, (4.4.19)
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where nb0 = N/σzπσ
2
0 estimates the unperturbed volumic number density of the beam. It

is worthy noting that ε ≡ σ0σp0 is the emittance and πσ0σp0 = πε is the conserved area

of the rms ellipse associated with a Gaussian beam travelling in vacuo in the presence of

the cylindrically symmetric quadrupole-like potential well Kr2/2, whose initial condition is

provided by Eq. (4.4.17). Consequently, Eq. (4.4.19) becomes

A0 = ε2 + 〈Uw(r, 0)〉σ2
0 = ε2 −

1
2

nb

n0γ0
σ2

0 . (4.4.20)

The latter shows clearly that, when the constant of motion A0 is positive,
√

A0 plays the role

of the emittance of our beam travelling through the plasma, having in vacuo the same initial

conditions assumed for the Gaussian beam. In these conditions,
√

A0 represents the beam

emittance that is modified by the presence of the collective effects provided by the PWF self-

interaction. However, to the ends of the rms envelope evolution, the beam motion through

the plasma can be associated with a Gaussian beam travelling in vacuo in the presence of

the quadrupole-like potential well Kr2/2, whose emittance is given by
√

A0 = σ0 σp0, i.e.,

whose initial conditions are σ0 = σ⊥ (0), σp0 ≡

√
σ2

p0 − nb/2n0γ0 (the radicand is positive

because A0 > 0), and σ
′

0 = σ
′ (0) = 0. Therefore, the initial distribution function to be used

for the equivalent Gaussian beam (EGB) is

f 0 (r, p) =
exp

[
−

(
r2/σ2

0 + p2/σ2
p0

)]
πσ2

0σ
2
p0

. (4.4.21)

With these initial conditions, the EGB performs the betatron-like rms envelope oscillations

described above for the beam travelling through the plasma.

If the initial conditions are such that A0 is not positive, then it is easy to see that the EGB is

no longer stable and, therefore, our beam travelling through the plasma is no longer stable

either.

In general, on the basis of the above results, we can easily conclude that, for the given initial

conditions:

• If A0 < 0, i.e.,
ε

σ0
< 0.7

(
nb

n0γ0

)1/2

, (4.4.22)
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then the beam will experience the collapse.

• If A0 = 0, i.e.,
ε

σ0
= 0.7

(
nb

n0γ0

)1/2

, (4.4.23)

then the beam remains in the self-equilibrium (σ(τ) = σ0).

• Finally, if A0 > 0, i.e.,
ε

σ0⊥
> 0.7

(
nb

n0γ0

)1/2

, (4.4.24)

then the beam will execute stable betatron oscillations.

4.5 Self modulation in strongly nonlocal regime

In this section we study the transverse dynamics of a cylindrically symmetric beam in the

strongly nonlocal regime, i.e., when ksσ⊥ � 1 or |∇⊥Uw|
2 � k2

s |Uw|
2. Once this condition is

used, the Poisson-type equation (4.2.2) reduces to:

∇2
⊥Uw = k2

sλ0

∫
f d2 p . (4.5.1)

Furthermore, it is easy to see that in this limiting case, Eq. (4.3.57) is still valid and can be

cast as:
d2σ2

⊥

dτ2 + 4Kσ2
⊥ = 4A− 2〈Uw〉 , (4.5.2)

where the constant of motionA is given by:

A =
1
2
σ2

p⊥ +
1
2

Kσ2
⊥ +

1
2
〈Uw〉 = constant . (4.5.3)

Note that the general expression for 〈Uw〉 given by Eq. (4.3.36) here reduces to

〈Uw〉 = −
1

k2
sλ0

∫ (
∂Uw

∂r

)2

d2r . (4.5.4)

Note also that Eq. (4.5.2) differs from the virial equation that holds for the local regime for

the presence, at the right hand side, of the self-energy 〈Uw〉 (constant of motion in both cases
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has formally the same expression). In other words, in the local case the beam envelope equa-

tion can be exactly cast as an harmonic oscillator equation, whilst in the strongly nonlocal

case Eq. (4.5.2) cannot be reduced to such a form. This implies that the collective effects

introduced by the self-energy characterizes a different behavior of the beam from the point of

view of the stability/instability. In the next section, we deepen these aspects, by considering

the beam self-modulation in cylindrical symmetry.

We here express our governing equations in cylindrical coordinate and assume that the

distribution function is cylindrically symmetric, i.e., f = f (r, p, τ), where r is the cylindrical

radial coordinate and p is the corresponding conjugate momentum. Therefore, the Vlasov

equation is
∂ f
∂τ

+ p
∂ f
∂r
−
∂V
∂r

∂ f
∂p

= 0 , (4.5.5)

where

V(r, τ) =
1
2

Kr2 + Uw(r, τ) . (4.5.6)

The Poisson-type equation (4.5.1) can be formally integrated as:

Uw(r, τ) = 2πk2
sλ0

∫ r

0

1
r′

dr′
∫ r′

0
r′′ dr′′

∫ ∞

0
f (r′′, τ, p) p dp .

4.5.1 Aberration-less approximation

Since in the strongly nonlocal regime the beam is mostly confined in a smaller region around

the propagation axis, it is reasonable to assume that the total potential V(r, τ) has a minimum

for r = 0. Furthermore, due to the beam confinement around the z-axis (ks σ⊥ � 1), we can

expand V(r, τ) in powers of r up to r2 (aberration-less approximation), viz.,

V(r, τ) ' V(0, τ) +

(
∂V
∂r

)
r=0

r +
1
2

(
∂2V
∂r2

)
r=0

r2. (4.5.7)

By using above equation we easily find that:

V(0, τ) = Uw(0, τ) = 0,
(
∂V
∂r

)
r=0

= 0 (4.5.8)
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and (
∂2V
∂r2

)
r=0

= K + K(τ) ≡ k(τ) , (4.5.9)

where

K(τ) = πk2
sλ0

∫ ∞

0
f (0, p, τ) p dp . (4.5.10)

Therefore:

V(r, τ) '
1
2

k(τ) r2 . (4.5.11)

Note that the request of a minimum in r = 0 implies that k(τ) > 0. Therefore, from Eqs.

(4.5.9) and (4.5.10), we get the condition

K > −k2
sλ0

∫ ∞

0
f (0, p, τ) p dp , (4.5.12)

which, according to the definitions of ks and λ0, is always satisfied. On the other hand, for

an initially given Gaussian beam distribution, the solution of the Vlasov Eq. (4.5.5) with the

potential (4.5.11) is given by

f (r, p, τ) = A exp
{
−

1
ε

[
γ(τ) r2 + 2α(τ) rp + β(τ) p2

]}
, (4.5.13)

where A is a normalization constant, ε is the beam emittance and the functions α(τ), β(τ)

and γ(τ) (the analog of the Twiss parameters in electron/radiation beam optics) obey the

following first-order ordinary differential equations, viz.,

dγ
dτ

= 2kα,
dβ
dτ

= −2α and
dα
dτ

= −2γ + 2kβ . (4.5.14)

For given initial condition, i.e., α0 = α(τ = 0), β0 = β(τ = 0) and γ0 = γ(τ = 0), the

solutions α(τ), β(τ) and γ(τ) provide the explicit solution of the Vlasov equation that includes

the collective effects of the beam self-modulation in the strongly nonlocal regime (in the

aberration-less approximation). By using Eq. (4.5.14), it is easy to prove that:

γ(τ) β(τ) − α2(τ) = γ0 β0 − α
2
0 = constant. (4.5.15)
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It is useful to fix γ0 β0 − α
2
0 = 1. In this way initial conditions γ0, β0, and α0 are no longer

independent. Furthermore, we introduce the following second order moment (see section

4.3):

σrp(τ) = 〈rp〉 = σ
dσ
dτ

. (4.5.16)

It can be easily seen that, if we perform explicitly the averages σ2 = 〈r2〉, σ2
p⊥ = 〈p2〉 and

σrp = 〈rp〉, by means of the distribution (4.5.13), we easily get

σ2(τ) = εβ(τ), σ2
p(τ) = εγ(τ), σrp(τ) = εα(τ) . (4.5.17)

Consequently, Eq. (4.5.15) allows us to obtain

σ2 σ2
p − σ

2
rp = ε2(γ β − α2) = ε2 . (4.5.18)

Furthermore, by combining Eq. (4.5.14) into a differential equation for β, we finally get the

following Ermakov-Pinney equation

d2σ

dτ2 + k(τ)σ −
ε2

σ3 = 0 . (4.5.19)

On the other hand, substituting Eq. (4.5.13) into (4.5.10) we obtain

K(τ) =

(
k2

sλ0

2π

)
1
σ2 . (4.5.20)

Then, substituting in turn the latter and Eq. (4.5.9) in Ermakov-Pinney equation we finally

get the following envelope equation (Sacherer-type equation), viz.,

d2σ

dτ2 + K σ +
η

σ
−
ε2

σ3 = 0 , (4.5.21)

where η = k2
sλ0/2π = k2

s N/2πσzn0γ0, which accounts for the collective effects (through the

presence of N and n0) as well as the magnetic field through ks. The above envelope equation

resembles the Sacherer’s equation governing the envelope description of a non-laminar beam

in conventional particle accelerators in the presence of magnetic focusing and space charge

effects.
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4.5.2 Self-modulation analysis by means of the Sagdeev potential

In order to perform an analysis of the self-modulation due to the PWF interaction in the

strongly nonlocal regime and aberration-less approximation, we use the method of Sagdeev

potential (or pseudo-potential) that can be constructed from the envelope Eq. (4.5.21). To

this end, we introduce the following dimensionless quantities:

τ̃ = ksτ , σ̃ = ksσ , K̃ = K/k2
s , ε̃ = ksε .

Then, Eq. (4.5.21) can be cast as the motion equation of a single particle of unitary mass

d2σ̃

dτ̃2 = −
∂Vs(σ̃)
∂σ̃

, (4.5.22)

where

Vs(σ̃) =
1
2

K̃σ̃2 +
1
2
η ln σ̃2 +

ε̃2

2σ̃2 . (4.5.23)

Note that the initial conditions of Eq. (4.5.21) are:

σ̃0 ≡ σ̃(τ̃ = 0) and σ̃
′

0 ≡ (dσ̃/dτ̃)τ̃=0 .

Once these conditions are fixed, the mechanical energy (which is constant) of a representative

point in the σ̃ - space is fixed, i.e.,

E =
1
2

(
dσ̃
dτ̃

)2

+
1
2

K̃σ̃2 +
1
2
η ln σ̃2 +

ε̃2

2σ̃2 =
1
2
σ̃′

2
0 +

1
2

K̃σ̃2
0 +

1
2
η ln σ̃2

0 +
ε̃2

2σ̃2
0

.

Then, we can analyse the features of the corresponding motion that characterizes the evolu-

tion of σ̃(τ). This evolution includes in particular the features related to the stability/instability.

Figures 4.7 and 4.8 display the Sagdeev potential Vs(σ̃), i.e., Eq. (4.5.23) and the corre-

sponding numerical solution of the Eq. (4.5.22) [namely, solution of Eq. (4.5.21)] for given

initial conditions (σ̃0 = 1.5, σ̃′0 = 0) and different parameters K̃ and η. From all the dis-

played cases, it is clear that the self-modulation is stable. This is not only a result for the

given initial conditions and the choices of the parameters. In fact, the analysis of Eq. (4.5.23)

for arbitrary values of K̃ and η leads to conclude that the potential well is always trapping.
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Figure 4.7: Sagdeev potential Vs (left) as defined by Eq. (4.5.23) and the corresponding
numerical solution (right) of the Eq. (4.5.21) in absence of external magnetic field, where
the plot of Vs is scaled by a factor 105.

Figure 4.8: Sagdeev potential Vs (left) as defined by Eq. (4.5.23) and the corresponding
numerical solution (right) of the Eq. (4.5.21) in the presence of a strong external magnetic
field, where the plot of Vs is scaled by a factor 105.

If the energy E coincides with the minimum of the potential well (σ̃0 = σ̄), the beam is in a

stationary state (self-equilibrium) and its spot size does not change, being fixed to the initial

value σ̃0 (note that σ̃′0 = 0), according to Eq. (4.5.21), i.e.,

K̃ σ̄ +
η

σ̄
−
ε̃2

σ̄3 = 0 , (4.5.24)

where we have expressed Eq. (4.5.21) in terms of the dimensionless quantities and imposed

the equilibrium condition d2σ̃/dτ̃2 = 0. Note that in Figures 4.7 - 4.9, we have fixed the

parameters in such a way that σ̄ ∼ 0.025. This facilitates the analysis we are going to
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Figure 4.9: Sagdeev potential Vs as defined by Eq. (4.5.23) and corresponding oscillations of
spot sizes for the different values of the external magnetic field amplitude B0, ranging from
laboratory to astrophysical environments. Initial conditions defined by σ̃0 sufficiently small
and σ̃′0 = 0. Here, the plot of Vs is scaled by a factor 105

perform.

If the energy is fixed to a value above the minimum of the potential well with σ̃0 > σ̄ and,

for simplicity, σ̃′0 = 0, the motion of the representative point will be a nonlinear oscillation,

provided that the condition σ̃ � 1 is fulfilled. Therefore, the beam spot size will execute

stable nonlinear transverse oscillations as a result of the stable beam self-modulation (see

Figures 4.7 and 4.8). It would be emphasized that the features of the beam self-modulation

strongly depend on the external magnetic field amplitude B0. This is clear by observing

that the nonlinear oscillations described by Eq. (4.5.21) depend on the magnetic focusing

strength K which is proportional to B2
0. Figures 4.7 and 4.8 show sensitive changes in both the

structures of the Sagdeev potential and the period of the corresponding beam self-modulation

as function of B0, when all the beam and plasma parameters are fixed (note that in these

conditions η depends on B0 only). Figure 4.9 displays Vs(σ̃) for different values of B0,

ranging from 0 to 500T (i.e., from laboratory to astrophysical environments).

It is worthy noting that, although the condition σ̃ � 1 is initially fulfilled, there are

specific initial conditions that are leading to an unstable evolution of the beam modulation,

i.e., the self-modulation instability (SMI). In fact, as illustrated in Figure 4.9, if we choose

σ0 sufficiently less than σ̄, the corresponding energy E will be sufficiently high to allow σ̃ to

grow until the kinetic energy of the representative point becomes zero, i.e., σ̃′2/2 = 0. Then,
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if the magnetic field is strong enough, its trapping effect limits the excursion of σ̃ oscillations

to values that are still of the same order of magnitude of σ̃0 (Figure 4.9). However, if B0

is zero or assumes relatively small values, σ̃ can easily grow until one or two orders of

magnitude greater than σ̃0. This aspect is deepen in Section 4.6 from qualitative point of

view, and in Section 4.7 from quantitative point of view.

4.6 Qualitative stability analysis

The analysis of the displayed plots leads to conclude that, during the beam evolution, pro-

vided that ideally the system is always in the strongly nonlocal regime, the self-modulation

is stable and the potential well is always trapping. However, as we have already indicated

above, this condition is fulfilled provided that
∣∣∣∇2
⊥Uw

∣∣∣ � k2
s |Uw| (i.e., σ̃ � 1). Therefore,

for a suitable choice of the initial conditions, such that σ satisfies this inequality, Figure

4.9 shows that the envelope self-modulation is stable and represents periodic solutions in

σ. This corresponds to fix the total energy E to relatively small values, in Figure 4.9 for

some of the profiles of the Sagdeev potential. If the energy E coincides with the minimum

of the potential well (i.e., σ̃0 = σ̄), the beam is in a stationary state (self-equilibrium) and

its spot size does not change, being fixed to the initial value σ̃0 (note that (dσ̃/dτ̃)τ̃=0 = 0),

according to Eq. (4.5.22). If the energy is fixed to a value above the minimum of the poten-

tial well with σ̃0 > σ̄, the motion of the representative point will be a nonlinear oscillation,

provided that the condition σ̃ � 1 is still fulfilled. In particular, values of E that are very

close to the minimum imply harmonic oscillations of σ. However, as B0 increases, sensitive

changes in both the structure of the Sagdeev potential and the period of the corresponding

beam self-modulation are observed in such a way that the beam spot size will execute more

and more stable nonlinear transverse oscillations. It is worthy noting that, although the con-

dition σ̃ � 1 is initially fulfilled, there are specific initial conditions that lead to an unstable

evolution of the beam modulation, i.e., SMI. In fact, as illustrated in Figure 4.9, if we choose

σ̃0 sufficiently less than σ̄, the corresponding energy E will be sufficiently high to allow σ̃ to
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Figure 4.10: Qualitative plot of Vs over all the three different regimes.

grow until the kinetic energy of the representative point becomes zero, i.e., 1/2 (dσ̃/dτ̃)2 = 0.

Then, if the magnetic field is strong enough, its trapping effect limits the excursion of σ̃ os-

cillations to values that are still of the same order of magnitude of σ̃0. However, if B0 = 0

Figure 4.11: Qualitative plot of Vs over all the regimes with a qualitative smoothing of the
moderately non-local regime.

or assumes relatively small values, σ̃ can easily grow and becomes much greater than σ̃0.

Otherwise, when this is just about to happen, the condition σ̃ << 1 is no longer fulfilled

and, therefore, the system enters progressively into the moderately nonlocal regime (i.e.,

σ̃ ∼ 1) and then into the purely local regime (i.e., σ̃ >> 1) [58]. We conclude that, although
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the system starts with an initial condition falling into the strongly nonlocal regime, it may

rapidly violate the condition σ̃ << 1 in such a way that its time evolution leads finally the

beam to the region of local regime where the self modulation becomes unstable. To study

this physical circumstance, we restrict our analysis to the case of B0 = 0 (ks = kp). It is

now useful to plot it as function of the dimensionless variable σ̃ ≡ kpσ. According to Figure

4.10, the plot can be qualitatively divided into the three regions of σ̃, ranging from σ̃ = 0 to

at least σ̃ ∼ 10−102, corresponding to strongly nonlocal (i.e., σ̃ � 1), moderately non local

(i.e., σ̃ ∼ 1) and purely local (i.e., σ̃ � 1) regimes, respectively. Therefore, the Sagdeev

potential should assume different shapes in the different regions. This implies that, out of

the region σ̃ � 1, the Sagdeev potential has to be determined starting with the appropriate

Vlasov-Poisson-type system of equations. Since we are interested in providing a qualitative

explanation of the unstable evolution of the self-modulation, we determine the analytical

expression of the Sagdeev potential in the purely local region. Then, we try to approach

qualitatively the moderately nonlocal region just by prolonging, one toward another, the plot

of the strongly nonlocal region and the plot of the purely local region, respectively. The in-

tersection of these two branches is illustrated in Figure 4.10, where the point of intersection

is denoted by P∗. In the σ̃-space it corresponds to the value σ̃∗. On the scale of the potential

adopted in Figure 4.10, the branch of the purely local region, compared to the nonlocal one,

appears practically constant, because it varies much slowly in σ̃. According to the analytical

treatment presented before, these two branches are respectively given by:

Vs1(σ̃) =
1
2
η ln σ̃2 +

ε̃2

2σ̃2 , 0 < σ̃ ≤ σ̃∗ , (4.6.1)

Vs2(σ̃) =
1
2

(
ε̃2

σ̃2
0

−
1
2

nb

n0γ0

)
σ̃2

0

σ̃2 + C0 , σ̃ ≥ σ̃
∗ , (4.6.2)

where σ̃0 = σ̃(0), and

C0 =
1
2
η ln σ̃∗2 +

1
4

nb

n0γ0

σ̃2
0

σ̃∗2

is the constant which allows the continuity between the two branches. Figure 4.11 displays

qualitatively these two brunches once a qualitative smoothing of the moderately non-local
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regime is done. This, of course, is only a qualitative way to connect the nonlocal region

with the local one. From Figures 4.10 and 4.11 it is evident that, with initial conditions σ̃0

falling in the strongly nonlocal region (i.e., σ̃0 � 1) and such that the total energy of the

representative point in the Sagdeev potential is ≤ E, the variation in σ̃ are stable (periodic

self-modulations). But if the initial conditions correspond to a total energy which is > E,

then the representative point is no longer trapped in the potential. This corresponds to a

progressive increasing of σ̃, i.e., to an unstable evolution of the beam envelope modulations.

It is worthy noting that the flatness of the asymptotic region of σ̃ (i.e., purely local

regime) does not depend on the sign of the difference
(
ε̃2

σ̃2
0
− 1

2
nb

n0γ0

)
. However, it is easy

to see that the time evolution in the purely local region is given by

σ̃2(τ̃) =

(
ε̃2

σ̃2
0

−
1
2

nb

n0γ0

)
(τ̃ − τ̃∗)2

+ σ̃∗2 , (4.6.3)

where τ̃ = kpτ and τ̃∗ is the timelike value of τ̃ such that σ̃(τ̃∗) = σ̃∗. Therefore, the growth

of σ̃ is compatible only with the positive value of the difference
(
ε̃2

σ̃2
0
− 1

2
nb

n0γ0

)
.

4.7 Quantitative analysis of beam self-modulation in the
arbitrary regime

4.7.1 General solution of Uw

In this section we provide a quantitative description of the self-modulated dynamics of a

cylindrically symmetric beam beyond the diverse special regimes that have been considered

in the previous section, such as the nonlocal (strong and moderate) and purely local cases.

Here, we develop a more general approach finalised to carry out self-consistent envelope

description associated with the Vlasov-Poisson-type system keeping both terms of the left-

hand side of Eq. (4.2.2), i.e., ∇2
⊥Uw and k2

sUw. To this end, we assume that the system is not

far from the local thermal equilibrium. In this way, the solution of the Vlasov equation, i.e.,

∂ f
∂τ

+ p
∂ f
∂r
−
∂V
∂r

∂ f
∂p

= 0 , (4.7.1)
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where f = f (r, p, τ) is the cylindrically symmetric distribution function and

V = V(r, τ) =
1
2

Kr2 + Uw(r, τ) ,

can be approximated by the following form:

f (r, p, τ) = nb(r, σ(τ))
e−p2/σ2

p

πσ2
p
, (4.7.2)

where σ2
p(τ) = 〈p2〉 and σ2(τ) = 〈r2〉. By introducing the dimensionless quantities: r̃ = ksr,

τ̃ = ksτ, p̃ = ks p, σ̃ = ksσ, and σ̃p = ksσp, solution (4.7.2) can be cast as

f (r̃, p̃, τ̃) = nb(r̃, σ̃(τ̃) )
e− p̃2/σ̃2

p

πσ̃2
p
, (4.7.3)

and the Poisson-type equation (4.2.2) in cylindrical co-ordinates, i.e.,

1
r
∂

∂r

(
r
∂Uw

∂r

)
− k2

sUw = k2
sλ nb , (4.7.4)

can be cast as
∂2Uw

∂r̃2 +
1
r̃
∂Uw

∂r̃
− Uw = λ nb , (4.7.5)

where, Uw = Uw(r̃, σ̃) and λ = 1/n0γ0.

Note that we have explicitly indicated the dependence of f on τ̃ also trhough the time depen-

dence of σ̃(τ̃) and σ̃p(τ̃), respectively. Once the time evolution of σ̃ is known, the time

dependence of nb is known, as well. Therefore, starting from an initial condition, i.e.,

σ̃0 = σ̃(τ̃ = 0) and σ̃′0 = σ̃′(τ̃ = 0), our analysis will allow us to study the envelope

evolution of the beam not far from the local thermal equilibrium. However, such an evolu-

tion can be stable and unstable, being dependent on the initial conditions. Therefore, we are

looking for suitable criteria that allows us to predict the stable or unstable evolution of the

beam envelope, just on the basis of the given initial conditions. To this end, we need to find

the envelope equation corresponding to our physical problem.

Equation (4.7.5) has the following solution

Uw(r̃, σ̃) = −λ

[
K0(r̃)

∫ r̃

0
I0(r̃1)nb(r̃1, σ̃)r̃1dr̃1 + I0(r̃)

∫ ∞

r̃
K0(r̃2)nb(r̃2, σ̃)r̃2dr̃2

]
(4.7.6)
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(where I0(r̃) and K0(r̃) are the modified Bessel functions of the first and second kind, respec-

tively) that satisfies the boundary conditions:

lim
r̃→0

Uw(r̃, σ̃) < ∞ , lim
r̃→∞

Uw(r̃, σ̃) = 0 . (4.7.7)

Figure 4.12 displays the initial beam density nb(r̃, σ̃0) for the following four different profiles:

• Parabola-square, i.e.,

nb1(r̃, σ̃) =
3nb0

4πσ̃2

(
1 −

r̃2

4σ̃2

)2

Θ

(
1 −

r̃
2σ̃

)
, (4.7.8)

where Θ is a Heaviside function.

• Gaussian, i.e.,

nb2(r̃, σ̃) =
nb0

πσ̃2 exp
(
−

r̃2

σ̃2

)
. (4.7.9)

• Lorentzian square, i.e.,

nb3(r̃, σ̃) =
nb0

4πσ̃2

(
1

1 + r̃2/(4σ̃2)

)2

. (4.7.10)

• Cosine-square, i.e.,

nb4(r̃, σ̃) =
2π nb0

(2.07252σ̃)2(π2 − 4)
cos2

(
π

2
r̃

(2.07252σ̃)

)
Θ

(
1 −

r̃
2.07252σ̃

)
. (4.7.11)

For simplicity, in Figure 4.12, we have chosen σ̃0 = 1. Figure 4.13 shows Uw as function of

r̃ at τ̃ = 0, with σ̃0 = 1, for all the above different profiles, whereas Figure 4.14 displays the

3D plot of Uw as function of x̃ and ỹ (r̃ =
√

x̃2 + ỹ2) for the case of parabola-square density

profile (see Eq. (4.7.8)). We note that in Figure 4.13 the shape of Uw(r̃, σ̃0) is similar for all

the profiles. Given this similarity, in the followings we will obtain the evolution of σ̃ for one

of the above profiles, only. Most of both qualitative and quantitative considerations that we

will develop for this case will be also applied to all the other cases. However, to the ends of

determining the general expression of the envelope equation, for the time being we proceed

by considering an arbitrary profile of nb.
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Figure 4.12: Plot of different initial profiles as function of r̃.

Figure 4.13: Plot of different Wake potential, Uw, for different density profiles. The plot is
scaled here by a factor 106.

4.7.2 Envelope equation and Sagdeev potential in the general case

In this section, we derive the envelope equation starting from Eq. (4.3.57) that we rewrite in

the dimensionless form, i.e.,

d2σ̃2

dτ̃2 + 4K̃σ̃2 = 4A +
4π

k2
sλ0

∫ ∞

0

∣∣∣∣∣∂Uw

∂r̃

∣∣∣∣∣2 r̃dr̃ , (4.7.12)
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Figure 4.14: 3D plot of plasma wake potential, Uw(r̃) for the parabola-square profile where
r̃ =

√
x̃2 + ỹ2. The plot is scaled here by a factor 106.

where K̃ = K/k2
s . We multiply the latter by dσ̃2/dτ̃. Then, we integrate one time with respcet

to τ̃, obtaining:

2
(
dσ̃
dτ̃

)2

+ 2K̃σ̃2 = 4A +
2
σ̃2

∫
G( ˜̃σ) σ̃ dσ̃ +

E0

σ̃2 , (4.7.13)

where

G(σ̃) =
4π

k2
sλ0

∫ ∞

0

∣∣∣∣∣∂Uw(r̃, σ̃)
∂r̃

∣∣∣∣∣2 r̃dr̃ , (4.7.14)

and E0 is an integration constant, which can be evaluated by using the initial conditions, i.e.,

E0 = 2σ̃2
0σ̃
′2
0 + 2K̃σ̃4

0 − 4Aσ̃2
0 − 2

[∫
G(σ̃) σ̃ dσ̃

]
σ̃=σ̃0

. (4.7.15)

Now, we expand d2σ̃2/dσ̃2 in Eq. (4.7.12), i.e., d2σ̃2/dσ̃2 = 2 (dσ̃/dτ̃)2 + 2σ̃d2σ̃/dτ̃2, then

combine this with Eq. (4.7.13). We finally obtain the following envelope equation:

d2σ̃

dτ̃2 + K̃σ̃ +
E0

2σ̃3 +
1
σ̃3

∫
G(σ̃) σ̃ dσ̃ −

G(σ̃)
2σ̃

= 0 . (4.7.16)

In a way fully similar to the one shown in the previous sections, we introduce also here the

definition of Sagdeev potential, i.e.,

d2σ̃

dτ̃2 = −
∂Vs

∂σ̃
.
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Then, unless an arbitrary constant, we get:

Vs(σ̃) =
1
2

K̃σ̃2 −
E0

4σ̃2 −
1

2σ̃2

∫
σ̃

G(σ̃′) σ̃′ dσ̃′ . (4.7.17)

Note that in Eqs. (4.7.15) - (4.7.17) the integration in dσ̃ is indefinite. Furthermore, the last

two terms at left-hand side of Eq. (4.7.16) and at right-hand side of Eq. (4.7.17) have to be

evaluated explicitly by substituting the explicit form of nb(r̃, σ̃) in Eq. (4.7.6), as we do in

the next section.

Figure 4.15: Vs as function of σ̃ for the entire range of values and for a relatively small point
of minimum, i.e., σ̄ = 0.2.

4.7.3 Analysis of the envelope self-modulation in the general case

Once we have replaced the explicit form of the beam density in Eq. (4.7.6), we have eval-

uated numercally Uw(r̃, σ̃). The latter, in turn has been used to evaluate numerically the

function G(σ̃), as defined by Eq. (4.7.14). Therefore, the numerical knowledge of G(σ̃)

has allowed us to determine numerically the Sagdeev potential defined by Eq. (4.7.17) and

to integrate numerically the envelope equation (4.7.16) for given initial conditions. As we

already pointed out in the previous sections, we have performed this analysis by considering

only the beam profile defined by Eq. (4.7.8), since the features of the other profiles (Eqs.
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Figure 4.16: Vs as function of σ̃ ranging in the nonlocal region, for a very small point of
minimum, i.e., σ̄ = 0.09.

E = -0.19

0.0 0.5 1.0 1.5 2.0
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

σ
˜

V
s
(σ˜

)

σ
˜
0 = 0.15, (dσ

˜
/dτ˜)

τ
∼
=0

= 0, B0 = 0, σ = 0.09

0 2 4 6 8 10 12 14

0.06

0.08

0.10

0.12

0.14

τ
˜

σ˜
(τ˜
)

σ
˜
0 = 0.15, (dσ

˜
/dτ˜)

τ
∼
=0

= 0, B0 = 0, σ = 0.09

Figure 4.17: Left: Vs as function of σ̃, for a very small point of minimum, i.e., σ̄ = 0.09.
Right: envelope oscillations corresponding to initial conditions that fix E < 0 (see left) above
the minimum, but below the plateau, i.e., E = −0.19.

(4.7.9) - (4.7.11)) are very similar. Due to this similarity, the analysis permits us extrapolate

considerations and write that are the same for all cylindrically symmetric bell-like shaped

density profiles. We restrict our discussion to the case of B0 = 0.

Figures 4.15 and 4.16 display the structure of Vs(σ̃) in two different scales of σ̃. Figure

4.15 shows almost entire shape of Vs(σ̃), whereas Figure 4.16 shows s similar structure on

a smaller scale of σ̃. In all profiles obtained (including a number is not displayed here),
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Figure 4.18: Left: Vs as function of σ̃, for a relatively small point of minimum, i.e., σ̄ =

0.394. Right: envelope oscillations corresponding to initial conditions that fix E < 0 (see
left) above the minimum, but below the plateau, i.e., E = −0.06.

Figure 4.19: Left: Vs as function of σ̃, for a relatively small point of minimum, i.e., σ̄ =

0.394. Right: envelope oscillations corresponding to initial conditions that fix E < 0 (see
left) above the minimum, but below the plateau (i.e., E = −0.004), and therefore leading to
an unstable evolution of the beam envelope, starting from of values of σ̃0 sufficiently small
between the asymptote around zero and σ̄.

Vs(σ̃) has a relative minimum in the region of relatively small or very small σ̃ (i.e., σ̃ � 1).

Approaching the adjacent region of larger σ̃ (& 1), Vs(σ̃) grows slowly reaching a region of

a plateau, with a relatively long extent compared to the one where the relative minimum is

located. Further larger values of σ̃ lead to a region where Vs(σ̃) decrease very fast showing

the existence of a vertical asymptote. Another asymptote exists for σ̃ → 0. Figures 4.15

and 4.16 are plotted for different values of σ̃, say σ̄, corresponding to the minimum of Vs,
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E = 0.021
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Figure 4.20: Left: Vs as function of σ̃, for a very small point of minimum, i.e., σ̄ = 0.09.
Right: envelope oscillations corresponding to initial conditions that fix E > 0 (see left) above
the plateau (i.e., E = 0.021), and therefore leading to an unstable evolution of the beam
envelope, starting from of values of σ̃0 sufficiently small between the asymptote around zero
and σ̄.

i.e., (∂Vs/∂σ̃)σ̄ = 0. The small values of σ̄ indicate the character of strong nonlocality of

the beam envelope dynamics of this region, in agreement with both qualitative and quantita-

tive descriptions presented in the previous sections. Finally, Figures 4.15 and 4.16 show in

particular the same structure of Vs predicted for the general case by means of the qualitative

analysis carried out in section 4.6, except for the asymptotic behaviour for very large σ̃.

On the other hand, the discrepancy in this asymptotic region is anyway expected, because

as σ̃ becomes larger and larger, the limit of applicability of the numerical comutation method

used starts to fail as well as our model starts to be no longer applicable. In fact, the larger

flatness of the beam transverse profile produced by the increase of σ̃, makes such signifi-

cant the transverse dynamics. Therefore, in agreement with the previous analysis, we can

conclude that the region around the minimum corresponds to the strongly nonlocal region,

the adjacent are between the former and the plateau corresponds to the moderately nonlocal

region and, finally, the plateau, which is the most extended one corresponds to the local re-

gion. If we overcome this region, i.e., we exclude from the analysis the asymptotic region,

the qualitative prediction presented in section 4.6 is fully recovered.

Figures 4.17 and 4.18 show (left) the existence of periodic time evolutions of σ̃ with



Transverse self-modulated beam dynamics 107

different values of the initial conditions and σ̄, respectively. This, in fact, corresponds to the

values of the conserved quantity

E =
1
2
σ̃′

2
0 + Vs(σ̃0) (4.7.18)

that are below the plateau (and therefore, E < 0), where for simplicity σ̃′0 = 0 for all cases.

The plots on the right, confirm such a prediction.

Figures 4.19 and 4.20 display a different behaviour. Plots on the left regards value of

σ̃0 and σ̄ corresponding two values of E (negative of positive) that are above the plateau.

From there, it is evident that we predict motion that are not periodic with unstable evolution.

This is confirmed by the plots on he right. In particular, such unstable evolution correspond

to initial conditions belonging to the strongly nonlocal region between the asymptote and

the minimum of Vs. This is the clear evidence of the envelope self-modulation instability

occurrence.

4.8 Conclusions

We have carried out an analysis of the transverse self-modulation experienced by a cylin-

drically symmetric ultra-relativistic and nonlaminar driving beam while interacting with the

surrounding plasma. This has been accomplished by using the pair of 3D Vlasov-Poisson

equations found in Chapter 3, that here has been specialized to the purely 2D transverse case

in cylindrical symmetry. The plasma has been supposed to be overdense, cold, and magne-

tized. Due to the conditions of very long beam, the self-consistent PWF mechanism works

very efficiently to sensitively characterize the self-modulated dynamics.

We have implemented the Vlasov-Poisson-type system of equation with the virial equations.

Their coupling have provided a suitable description of the beam envelope self-modulation.

Remarkably, we have shown the importance of the constants of motion involved in such a

description, that have allowed us to obtain suitable beam envelope equations, i.e., ordinary

differential equations for the beam spot size that are easily integrated analytically and/or

numerically. To approach also our problem qualitatively, we have used the method of the
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pseudo potential (or Sagdeev potential) that is associated with these envelope equations.

We have first carried out an analysis in two different limiting cases, i.e., the local case (the

beam spot size is much greater than the plasma wavelength) and the strongly nonlocal case

(the beam spot size is much smaller than the plasma wavelength) where several types of

self-modulation, in terms of focusing, defocusing and betatron-like oscillations, have been

obtained and the criteria for instability, such as collapse and self-modulation instability, have

been formulated. To this ends, within the context of the envelope description, we have found

suitable envelope equations, i.e., ordinary differential equations for the beam spot size, that

have been easily integrated analytically and physically described in terms of the Sagdeev

potential method.

Then, the analysis has been extended to the general case where the beam spot size and the

plasma wavelength are not necessarily constrained as in the local or strongly nonlocal cases.

In these conditions, we have performed a semi-analytical and numerical analysis by means of

the virial equations, where the above methods of the envelope equations and Sagdeev poten-

tial have been used, as well. To this end, criteria for predicting stability and self-modulation

instability have been suitably provided.



Chapter 5

Longitudinal instability analysis of
beam-plasma system

We carry out an analysis of the beam modes that are originated by perturbing the ‘beam-plasma’

system in the purely longitudinal case. This is done by considering the pair of 3D Vlasov-Poisson-

type equation, presented in Chapter 3 that are specialized to the case in which the transverse driving

beam dynamics is disregarded and only the longitudinal dynamics becomes effective. To this end, we

perturb the Vlasov-Poisson-type system up to the first order, then take the Fourier transform to reduce

the Vlasov-Poisson system to a set of algebraic equations in the frequency and wavenumber domain,

from which we easily get a Landau-type dispersion relation for the beam modes, that is fully similar

to the one holding for plasma modes. First, we consider the case of a monochromatic beam (i.e., cold

beam, that is described by a distribution function in the form of delta-function in p space) for which

the existence of a purely growing mode is shown and a simple stability criterion formulated. Then,

by taking into account a unperturbed distribution function with finite, relatively small width (small

thermal correction), the Landau approach, widely used in other physics area, leads to obtain both

the dispersion relation for the real part (showing all the possible beam modes in the diverse regions

of the wavenumber) and an expression for the imaginary part of the frequency (showing the stable or

unstable character of the beam modes), which suggests a simple stability criterion.

109
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5.1 Introduction

As we have shown in the previous chapters, the interaction of a relativistic beam with the

plasma involves self-consistent collective and nonlinear mechanisms that lead to the beam

self-modulation. In particular, in Chapter 4, we have presented the envelope self-modulation

that has shown the occurrence of several self-consistent transverse electromechanical effects

and investigated the conditions for the occurrence of the self-modulation instability. Analo-

gous effects occur also in the longitudinal dynamics. In particular, a high-intensity electron

beam of finite extent can be subjected to longitudinal instabilities. The nonlinear collective

effects that take place in the longitudinal dynamics of charged-particle beams while trav-

elling in a plasma constitute a large-body of phenomena in the plasma-based accelerators.

The standard theory of collective longitudinal relativistic beam dynamics in accelerators is

based on kinetic theory described by the Vlasov equation, which in general is coupled with

a Poisson-type equation describing the plasma wake field excitations.

In this chapter, we carry out an instability analysis within the linearized kinetic the-

ory of the self-consistent beam-plasma interaction, where the Landau damping plays a role.

This is done by assuming that the beam-plasma system is governed by the self-consistent

Vlasov-Poisson-type pair of equation. We take into account a cold, unmagnetized plasma,

constituted by immobile ions (forming a backgroud of positive charge) and mobile electrons,

and a nonlaminar, relativistic charged particle beam travelling therein, along the longitudinal

direction (ẑ). According to the concepts described in Chapter 2, in the purely longitudinal

case, the wake field and the wake potential reduce to the longitudinal electric field and the

scalar potential, respectively. Correspondingly, in absence of significant magnetic effects

(the vector potential can be fixed to zero), Eq. (2.1.14) reduces to:

F(ξ, τ) = q
∂Ω(ξ, τ)
∂ξ

. (5.1.1)

In case of free evolution, the plasma oscillations are governed by the differential equation

∂2Ω

∂ξ2 + k2
p Ω = 0 , (5.1.2)
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whereas in the presence of the charged particle beam this equation contains, additionally, a

forcing term, i.e.,
∂2Ω

∂ξ2 + k2
p Ω = 4πqnb , (5.1.3)

where nb = nb(ξ, τ) is the volumic beam number density. It is related to the single-particle

distribution function f (ξ, p, τ) which is defined in the longitudinal 2D (ξ, p) phase space (p

being the longitudinal single-particle linear momentum conjugate of ξ). In fact, by denot-

ing with λ(ξ, τ) the longitudinal 1D number density (i.e., number of particles per unitary

longitudinal length), we have:

λ(ξ, τ) = nb(ξ, τ) πσ2
⊥ ,

where σ⊥ is the effective beam transverse size (i.e., spot size). Thus, the following relation-

ship holds:

nb(ξ, τ) πσ2
⊥ =

∫
f (ξ, p, τ) dp . (5.1.4)

In addition, f (ξ, p, τ) obeys to the following purely longitudinal Vlasov equation (for details,

see Chapter 3):
∂ f
∂τ

+ p
∂ f
∂ξ

+
q

mb0γ0c2

∂Ω

∂ξ

∂ f
∂p

= 0 . (5.1.5)

We start from the equilibrium state that is described by the quantities:

np = n0 , nb = nb0 , Ω = Ω0 , and f = f0(p) ,

where np is the plasma electron density. Then, we perturb this state with small (i.e., first-

order) deviations, i.e.,

np(ξ, τ) = n0 + n1(ξ, τ) , nb(ξ, τ) = nb0 + nb1(ξ, τ) , Ω(ξ, τ) = Ω0 + Ω1(ξ, τ) ,

and

f (ξ, p, τ) = f0(p) + f1(ξ, p, τ) .

Here, n0, nb0, and Ω0 are constant quantities. Consequently, up to the first order, the system

of equations (5.1.3) - (5.1.5) reduces to:

k2
p Ω0 = 4π q nb0 , (5.1.6)
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which defines the unperturbed wake potential in terms of the unperturbed beam density,

where

nb0 πσ
2
⊥ =

∫
f0(p) dp , (5.1.7)

and

∂2Ω1

∂ξ2 + k2
p Ω1 = 4πq nb1 , (5.1.8)

∂ f1

∂τ
+ p

∂ f1

∂ξ
+

q
mb0γ0c2

∂Ω1

∂ξ

∂ f0

∂p
= 0 , (5.1.9)

where

nb1 =
1
πσ2
⊥

∫
f1 dp . (5.1.10)

The linearized system of equations (5.1.8) - (5.1.10) governs the self-consistent spatiotem-

poral evolution of the PWF interaction in the case of purely longitudinal dynamics. Note the

full similarity between Eq. (5.1.8) and Eq. (2.7.5), which holds in the overdense regime (i.e.,

nb � n0). Here, nb1 (� nb0 ∼ n0) plays the role that in Eq. (2.7.5) is played by nb as first

order quantity. This means that, in the case under discussion, the perturbation nb1 is actually

the source of the plasma wake field.

The linearization of the Vlasov-Poisson-type system of equations, offers the advantage, by

means of the Fourier transform, to reduce such system to a set of algebraic equations, lead-

ing to the dispersion relations, i.e., a relation between the frequency and the wave number of

each mode. This procedure is carried out in the next section.

5.2 Dispersion relation

The Fourier transformation transforms the system of equations (5.1.8) - (5.1.10) into the

following algebraic system of equations (∂/∂τ→ −iω/c and ∂/∂ξ → ik), i.e.,

(
k2

p − k2
)
Ω̃1 = 4πq ñb1 , (5.2.1)

i
(
pk −

ω

c

)
f̃1 +

ikqΩ̃1

mb0γ0c2 f ′0 = 0 , (5.2.2)
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where f ′0 = d f0/dp and the quantities Ω̃1 = Ω̃1(k, ω), ñb1 = ñb1(k, ω) and f̃1 = f̃1(k, p, ω)

stand for the Fourier transforms of Ω1, nb1 and f1, respectively.

Then, by combining Eqs. (5.2.1) to (5.2.2), we easily get,

1 =
ω2

b

γ0c2

1
k2 − k2

p

∫ f̂ ′0 dp
p − ω

ck

. (5.2.3)

where ωb =
(
4πq2nb0/mb0

)1/2
is the plasma frequency of the beam and

f̂0 = f0/(nb0πσ
2
⊥).

Therefore, Eq. (5.2.3) can be written as:

1 =
η

k̄2 − 1

∫ f̂ ′0 dp

p − ω̄
k̄

, (5.2.4)

where η = (nb0/γ0n0) (q2/e2)(me0/mb0) is a positive constant, k2
b = ω2

b/c
2, and we have

introduces the following normalized quantities

ω̄ = ω/ωp, k̄ = k/kp.

We assume, for simplicity, that the beam under consideration is an electron beam, i.e., mb0 =

me0 and q = e. Hence the constant η becomes

η =
1
γ0

nb0

n0
.

Once the profile of f̂0 is given, dispersion relation (5.2.4) can be suitably used to carry

out an analysis of the beam modes. Then, taking into account both the Landau damping

phenomenon and the instability occurrence, we try to formulate the instability criteria.

5.3 Monochromatic profile

We start to analyse the case when the beam is monochromatic (or cold), i.e., f̂0 ∝ δ(p). By

integrating by part the term at the right-hand side of Eq. (5.2.4) we obtain,

ω̄2 =
η k̄2

k̄2 − 1
. (5.3.1)
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Then, after writing ω̄ = ω̄R + iω̄I , and assuming that k̄ is real, we can divide the real from the

imaginary part. So that we finally find

ω̄R ω̄I = 0 , (5.3.2)

ω̄2
R − ω̄

2
I =

η k̄2

k̄2 − 1
. (5.3.3)

• If ω̄I = 0, from Eq. (5.3.3) we get,

ω̄R = ±

√
η |k̄|

√
k̄2 − 1

. (5.3.4)

Then, since ω̄R is real, k̄2 > 1. In addition, since ω̄I = 0, the modes (k̄, ω̄R

(
k̄
)
)

described by dispersion relation (5.3.4) are stable.

• If ω̄R = 0, from Eq. (5.3.3) we get,

ω̄I = ±

√
η |k̄|

√
1 − k̄2

. (5.3.5)

Then, since ω̄I is real, k̄2 < 1.

According to Eq. (5.3.5), at fixed k̄, for any negative solution of ω̄I there is a positive solution

of ω̄I . This indicates instability of the corresponding beam mode which appears as a purely

growing mode.

Figure 5.1 and 5.2 show the plots of the dispersion relation i.e., ω̄R

(
k̄
)

and ω̄I

(
k̄
)
, for

an initial monochromatic beam profile and for a given ratio nb0/n0. The former displays the

stable modes that possess cut-off for both k̄ and ω̄R. The latter, shows the purely growing

mode, whose growth rate, i.e., ω̄I , does not possess any cuf-off, but is limited in the range,

−1 < k̄ < 1.

Note that for a plasma density n0 = 5 × 1017cm−3, the plasma frequency is ωp ' 4 × 1013

rad/s. Then, from the definition of ω̄R and ω̄I , we find that in Figures 5.1 and 5.2, |ωR| and

|ωI | range (from 0.4 to 2.4) ×1013 rad/s and (from 0 to 1.6) ×1013 rad/s, respectively.
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Figure 5.1: Variations of ω̄R with k̄ for a monochromatic beam profile at fixed ratio nb0/n0.
Here the solid lines indicate positive ω̄R and the dashed lines indicate negative ω̄R according
to Eq. (5.3.4).

Figure 5.2: Variations of ω̄I with k̄ for a monochromatic beam profile at fixed ratio nb0/n0.
Here the solid lines indicate positive ω̄I and the dashed lines indicate negative ω̄I according
to Eq. (5.3.5).

5.4 Non-monochromatic case: weak Landau damping and
instability

The beam is called non-monochromatic or warm when the distribution function f̂0(p) has a

finite width due to the presence of the random character of the particle motion. We assume

that f̂0(p) is a bell-like shaped function such that f̂0(−p) = f̂0(p), such as in the case of
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normalized parabola-square profile, i.e.,

f̂0(p) =
15
16

1
√

7σp

(
1 −

p2

7σ2
p

)2

, −
√

7σp ≤ p ≤
√

7σp , (5.4.1)

and the case of normalized Gaussian profile, i.e.,

f̂0(p) =
1√

2πσ2
p

exp
[
−

p2

2σ2
p

]
, −∞ < p < ∞ , (5.4.2)

where σp = 〈p2〉1/2. Furthermore, one can introduce reasonably the definition of temperature

T , i.e., σp ≡ vT ≡
(
kBT/mb0γ0c2

)1/2
, where vT is the dimensionless thermal velocity.

We assume that vT is very small compared to the dimensionless phase velocity, i.e., ω̄/k̄,

of the beam perturbation: k̄vT/ω̄ � 1. Therefore, compared to the case of Eq. (5.3.4) of the

monochromatic beam (where ω̄I = 0), this condition represents a small deviation from the

delta function distribution. Then, the integral in Eq. (5.2.4) has to be solved according to the

Landau prescription [66, 67], i.e.,

1 =
η

k̄2 − 1

∫
PV

f̂ ′0dp

p − ω̄
k̄

+ iπ f̂ ′0
(
ω̄

k̄

) , (5.4.3)

where
∫

PV
f̂ ′0/(p − ω̄/k̄) dp stands for the Cauchy principal value and the second term in the

square bracket accounts for the residue. By performing the integration by parts in the integral

of Eq. (5.4.3), expanding the term (p − ω̄/k̄)−1 in powers of p, and taking into account the

assumptions of both symmetry and small deviation from the monochromatic case, one can

easily get, ∫
PV

f̂ ′0dp

p − ω̄
k̄

=
k̄2

ω̄2

(
1 +

3k̄2v2
T

ω̄2

)
, (5.4.4)

where, consistently with the above assumptions, we have truncated the expansion in p up

to the second power. The small deviation from the monochromatic case is therefore related

to the smallness of the quantity k̄vT/ω̄. For a given vT , it implies that f̂ ′0
(
ω̄R/k̄

)
is a small

quantity compared to the principal value. In turn, the smallness of the residue implies the

smallness of ω̄I , compared to ω̄R. Therefore, in Eqs. (5.4.3) and (5.4.4), we assume that
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ω̄ = ω̄R + i ω̄I with the condition |ω̄I | � |ω̄R|. Then, separating the real from the imaginary

parts, we obtain

ω̄2
R =

η k̄2

k̄2 − 1

(
1 +

3k̄2 v2
T

ω̄2
R

)
, k̄2 > 1 , (5.4.5)

which can be cast as,

ω̄R = ±

√
η |k̄|

√
k̄2 − 1

(
1 +

3k̄2 v2
T

ω̄2
R

)1/2

, k̄2 > 1 . (5.4.6)

However, since k̄vT/ω̄R � 1, in second term of right-hand side of the above mentioned

equation we can replace ω̄R by using Eq. (5.3.4). Therefore, Eq. (5.4.6) can be approximated

as:

ω̄R = ±

√
η |k̄|

√
k̄2 − 1

(
1 +

3
2

v2
T

η
(k̄2 − 1)

)
, k̄2 > 1 , (5.4.7)

On the other hand, the imaginary part of the combination of Eqs. (5.4.3) and (5.4.4) gives

ω̄I =
π

2
η ω̄R

k̄2 − 1
f̂ ′0

(
ω̄R

k̄

)
, k̄2 > 1 . (5.4.8)

Equation (5.4.8) shows that, for positive (negative) sign of the product ω̄R f̂ ′0
(
ω̄R
k̄

)
, ω̄I is posi-

tive (negative). If ω̄I is negative, the wave associated with the beam perturbation experiences

the damping effect. This is the phenomenon of Landau damping which is well known in plas-

mas [67] and in a number of other physics areas [68]. However, if ω̄I is positive the wave

amplitude grows and this circumstance indicates the instability of the beam perturbation.

As in the ordinary Landau damping occurring in plasmas, here we can provide the physi-

cal explanation in terms of wave-particle interaction. In fact, the beam is non-monochromatic,

i.e., its phase space distribution f0(p) is bell-like shaped [see the examples given by Eqs.

(5.4.1) and (5.4.2)]. Then for a given phase velocity of the beam density perturbation or

of the PWF perturbations (i.e., ω/ck), there are more particles with p < ω/ck (that are

taking energy from the wave) than the ones with p > ω/ck (that are giving energy to the

wave). Therefore, statistically, the wave experiences the phenomenon of damping (i.e., Lan-

dau damping). This effect, being in competition with the instability, contributes to the system
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stabilization. It is worthy noting that Landau damping disappears as the temperature of the

system goes to zero (cold beam or the monochromatic beam). The absence of such an effect

leads to instability that is, therefore, the analog of the two stream instability and represents a

purely growing mode.

Figure 5.3: Variation of ω̄R with k̄ for bell-like shaped non-monochromatic beams for differ-
ent beam temperatures at fixed energy and ratio nb0/n0 = 0.5.

Figure 5.4: Variation of ω̄R with k̄ for bell-like shaped non-monochromatic beams for differ-
ent beam temperatures at fixed energy and ratio nb0/n0 = 1.5.

In Figures 5.3 and 5.4, the solid lines indicate positive ω̄R and the dashed lines indicate

negative ω̄R, according to Eq. (5.4.7). These figures show ω̄R as function of k̄ when the

distribution function is a bell-like shaped non-monochromatic, but exhibits a small width

due to the finite temperature. The different plots are given for different temperatures with

fixed γ0 and nb0/n0. Compared to the corresponding plot of the monochromatic case (Figure
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5.1), the case of T = 0 is recovered. As T increases, the horizontal asymptotes changes into

oblique axes, increasing gradually the cut-off frequency of each of the four sectors of the

plot. This produces a progressive enlargement of the gap between the domain of the positive

frequency and the one of the negative frequency, showing also a more “acute” shapes of each

plot. An important consequence of this deformation is the increasing of the absolute value

of both phase velocity and group velocity in all the permitted domains of k̄. In addition, the

deformation is stronger in the case of smaller energy of the beam (γ0).

5.5 Conclusions

We have carreid out an analysis of the beam modes that are originated by perturbing the

‘beam-plasma system’ in the purely longitudinal dynamics of a relativistic driving beam.

This has been accomplished by specializing to the 1D longitudinal case the pair of 3D

Vlasov-Poisson-type equation, presented in Chapter 3. To this end, we have perturbed the 1D

Vlasov-Poisson-type system up to the first order, then used the Fourier transform to reduce

the Vlasov-Poisson system to a set of algebraic equations in the frequency and wavenumber

domain. From the latter we have easily found the Landau-type dispersion relation for the

beam modes that is fully similar to the one holding for plasma modes. As a first case, we

have studied the dispersion relation in the case of monochromatic beam that is described by

a distribution function in the form of delta-function in p space). The analysis has shown the

existence of a purely growing mode and a simple stability criterion. Then, by taking into

account a non-monochromatic (i.e., a distribution function with a relatively small width due

to the finite temperature), the Landau approach has lead to obtain both the dispersion rela-

tion for the real part (showing all the possible beam modes in the diverse regions of the wave

number) and an expression for the imaginary part of the frequency, which has suggested a

simple stability criterion.



Chapter 6

The coupling impedance concept for
PWF self-interaction

Starting from the collisionless Vlasov-Poisson-type system of equation for longitudinal beam dynam-

ics, that has been presented in Chapter 5, we formulate a novel approach in which we put forward the

concept of longitudinal coupling impedance associated with the beam-plasma interaction, in a way

fully similar to the one in use in conventional particle accelerator physics. As in the conventional

theory, the concept of coupling impedance seems to be very fruitful in a plasma-based accelerator

to schematize the self-interaction of the relativistic driving beam with the surrounding plasma. In

particular, it allows us to develop a simple instability analysis in the plane of the real and imaginary

parts of the impedance that is based on the Nyquist approach widely used in the control system theory.

Furthermore, we extend the Vlasov-Poisson-type system to the collision context with a simple model

of collisions between the plasma particles (actually plasma electrons) and the beam particles. Under

these assumptions, the role and the features of the coupling impedance defined here are compared to

the ones of the coupling impedance in conventional theory. Examples of specific physical situations

are finally illustrated.

6.1 Introduction

In a conventional particle accelerator, the coupling impedance schematizes the interaction of

a (relativistic) charged particle beam with the surrounding medium. This interaction involves
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the wake fields that are produced by each charged particle of the beam [69]. Therefore, such

an interaction is a macroscopic (collective) manifestation of the beam in the surroundings.

A very effective way to describe such an interaction makes use of the concept of both im-

age charges and image currents [70, 71]. They are produced, for instance, on the metallic

walls of the vacuum chamber, by the charged particles of the beam. Therefore, they are the

sources of electric and magnetic fields which are moving behind the beam at the same its

speed (wake fields). However, there are some other sources of wake fields, such as the vari-

ations of the vacuum chamber geometric features, which produce scattered electromagnetic

fields. In general, one can distinguish short range wake fields influencing the single bunch

beam dynamics from the long range wake fields, influencing the multi-bunch beam dynam-

ics. However, restricting to the wake fields associated with the space charge effects, one can

see that sufficiently short bunches affect mainly the particle of another bunch moving behind.

However, as the beam becomes longer and longer, those fields affect more and more the par-

ticles of the beam itself. As we discuss later for plasma wake field (PWF) accelerators, in

analogy with the conventional accelerators, the dynamics of long enough single bunches is

sensitively affected by the wake fields. Then, the beam particles experience the effects of the

fields that they have themselves produced in the surroundings (self-interaction). Due to the

nature of the interaction between the beam and the surroundings, some reactive (capacitive

as well as inductive) energy related to the beam space charge and current is involved in the

system. In addition, the possible resistive character of the metallic walls experienced by the

image currents and the geometric variation of the pipe (leading to beam losses), involves

some resistive energy, as well. Therefore, in the domain of frequency and wave number, the

interaction of the beam with the surroundings can be effectively represented by a sequence of

elements of an electric transmission line. Each of these elements accounts for an equivalent

impedance per unitary length which is constituted by an equivalent capacitance, inductance

and resistance per unitary length. This is usually referred to as the coupling impedance, since

it schematizes the self-consistent interaction between the beam and the surrounding medium.

In 1959, Andrew M. Sessler, in collaboration with Carl Nielsen and Keith Symon, took



The coupling impedance concept for PWF 122

up the study of collective instabilities of a relativistic charged-particle beam that take place in

an accelerating machine, the so-called coherent beam instabilities (a special case of them is

the well known negative-mass instability) [72]. The approach of these researchers lead soon

to conclude that coherent instabilities are due to the beam space charge through the mecha-

nism of the self interaction that the same space charge experiences with the surroundings via

the image charges distributed on the wall of the vacuum chamber. It was the first exploration,

based on the Vlasov kinetic theory, that allowed them to realize the important role of the Lan-

dau damping [66] as a stabilizing effect acting to cure the coherent instabilities. The Landau

damping is, in fact, a phenomenon resulting from the interaction of space charge waves (the

so-called electrostatic waves arising in plasmas or in generic charged-particle systems, such

as beams) with the single particles. Namely, this is the interaction of a collective mode of

the system with a single individual (single-particle). In the single process of wave-particle

interaction, the energy can be transferred from the wave to the particle or from the particle to

the wave, provided that the phase velocity of the wave is slightly greater or slightly smaller

than the particle velocity, respectively. The resonance condition is established when these

velocities are the same. This means that wave and particles are actually interacting around

the resonance. Lev D. Landau demonstrated that, for single-humped thermal particle distri-

butions, the statistical energy balance coming from all the wave-particle interactions shows

that the space charge wave is damped and, therefore, it provides to contrast the wave growth

due to the instability. Then, the way in which the interplay between coherent instability and

Landau damping takes place works leading to stable or unstable evolution of the system.

The stability or the instability depends on precise conditions that are related to the coupling

impedance.

In subsequent studies with L. Jackson Laslett and V. Kelvin Neil [73] and Ernest Courant

[74], Sessler became interested in single bunches rather than a continuous beam, and he

realized that wall resistance is only one aspect of the general concept of impedance. The

latter was later developed in collaboration with Vittorio G. Vaccaro [75], who suggested to
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formulate a more general definition of the coupling impedance that they applied to the col-

lective longitudinal dynamics of an azimuthally uniform beam. Although Sessler had a high

opinion of Vaccaro, this formulation was not soon accepted at CERN. Meanwhile, Vaccaro

was producing a subsequent work in collaboration with Alessandro G. Ruggiero [76], where

the previous approach to the longitudinal instability was improved and formalized in terms

of a stability criterion a la Nyquist, later sometimes referred to as Sessler-Ruggero-Vaccaro

criterion. After a few years, the concept of coupling impedance became more and more

popular in particle accelerator physics. � Nowadays everyone uses their work to calculate,

measure, and control impedance in order to limit instabilities.� [77].

6.2 Phenomenological platform of the beam-plasma inter-
action

The interaction between charged-particle beams with plasmas touches a large variety of phe-

nomena, ranging from laboratory to space and astrophysical plasmas.

Part of these phenomena concern types of beam-plasma interactions in which the plasma

can be thought as a collection of streams. Each of them is constituted by different particle

species in terms of mass and charge. Such a system satisfies the global charge neutrality

condition. In linear theory, the multi-stream instability theory is the simplest approach to the

plasma instability that can be provided by both fluid and kinetic models. In particular, it is

very useful to approach the beam-plasma instability, such as Buneman instability [78, 79].

Note that here, the beam is not an object external to the plasma. It actually represents one

of its own components. Therefore, the self-consistent spatiotemporal evolution of the beam

takes place while contributing to satisfy the global neutrality conditions.

A different scenario appears when a charged-particle beam enters the plasma. In fact,

while the plasma components satisfy all together the global neutrality condition, the external

beam introduces an additional charge that cannot be balanced in the beam-plasma system.
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The beam introduces a local charge density perturbation which the plasma tends to neutral-

ize locally. Contextually, a current density perturbation is introduced, as well. The resulting

electric and magnetic fields act locally on the particles of the system and, therefore, both

plasma and beam evolve in space and time self-consistently, according to the pair of Vlasov-

Poisson-type equations for the beam-plasma system. Then, the concept of the coupling

impedance in the beam-plasma interaction ruled by the PWF excitation can be introduced

after linearizing the Vlasov-Poisson-type system (around an unperturbed state) and taking

the Fourier transform of the resulting equations.

6.3 Vlasov-Poisson-type pair of equations

To perform an analysis of the linearized beam-plasma system dynamics by means of the

concept of coupling impedance, for simplicity, we confine our description to the case of

an electron beam. We take into account the case of a collisionless beam-plasma dynam-

ics, where a nonlaminar, relativistic, electron beam travelling through a cold, unmagnetized

plasma in the longitudinal direction. In general, this analysis can be easily applied to the

transverse case or extended to the 3D case. Then, the linearized pair of Vlasov-Poisson-type

equations governing the spatiotemporal longitudinal dynamics of our system (similar to the

system of equations given in Section 5.1) is(
∂2

∂ξ2 + k2
p

)
Ω1 = k2

p
me0c
e2n0

Ib1

βπσ2
⊥

, (6.3.1)

∂ f1

∂τ
+ p

∂ f1

∂ξ
+

(−e)
me0γ0c2

∂Ω1

∂ξ

∂ f0

∂p
= 0 , (6.3.2)

where Ω1 = Ω1 (ξ, τ), f0 = f0 (p) is the unperturbed distribution function, f1 = f1 (ξ, p, τ) is

the first-order correction of this distribution and

Ib1 (ξ, τ) = (−e)βc
∫

f1 (ξ, p, τ) dp = −e)βcπσ2
⊥nb1 (6.3.3)

is the perturbed beam-current. Here e and σ⊥ are the absolute value of the electron charge

and the transverse beam spot size, respectively.
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Equation (6.3.1) is a linear equation relating nb1 (ξ, τ) to Ω1 (ξ, τ). Equation (6.3.2) ac-

counts for the slower evolution of the beam beyond the stationary state and it is coupled

with the former, therefore it is in principle a nonlinear equation. Then, the pair of equations

(6.3.1) - (6.3.2) governs the self-consistent spatio-temporal evolution of the PWF interaction.

6.4 Heuristic definition of coupling impedance

Here, we put forward the following heuristic definition of longitudinal coupling impedance

per unity length, say Z, which is fully similar to the heuristic definition given in conventional

accelerators [71]. Then, by denoting with Ω̃1 (k, ω) and Ĩb1 (k, ω) the Fourier transform of

Ω1 (ξ, τ) and Ib1 (ξ, τ), respectively, we define Z (k, ω) as

Z(k, ω) = −i k
Ω̃1 (k, ω)
Ĩb1 (k, ω)

. (6.4.1)

In principle, Z (k, ω) is a complex quantity. Then, in general, we can cast it as the sum of real

and imaginary part, i.e., Z (k, ω) = ZR (k, ω)+ i ZI (k, ω). By combining the Fourier transform

of both Eqs. (6.3.1) and (6.3.2), where (∂/∂τ→ −iω/c and ∂/∂ξ → ik), we get the following

dispersion relation of the beam-plasma system, viz.,

1 = −iηc
Z (k, ω)

k

∫ f̂ ′0(p)dp
p − ω/ck

, (6.4.2)

where ηc = ω2
b/(γ0c2) βcσ2

⊥/4, is a positive constant, f̂0 denotes the normalized equilibrium

distribution function and f̂
′

0 (p) ≡ d f̂0/dp. This is the Landau-type dispersion relation. Each

possible mode (k, ω) of the system must satisfy it. For each mode (k, ω), if ZR , 0, the

coupling between beam and plasma involves some resistive energy that must be represented

by losses; whilst if ZI , 0, some reactive energy is involved in such a coupling, which means

that the energy is stored in the electric and magnetic parts of the PWFs.

6.5 Stability analysis

The spectrum of the possible modes is different for different explicit expression of Z (k, ω)

provided by Eq. (6.4.1) and the Fourier tranform of Eq. (6.3.1). For the specific case under
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consideration here, the latter is:

(−k2 + k2
p)Ω̃1 = k2

p
me0c
e2n0

Ĩb1

βπσ2
⊥

. (6.5.1)

Then, by combining it with Eq. (6.4.1), we easily get the following conditions of compati-

bility

ZR = 0 ,
Z(k)

k
=

i ZI(k)
k

⇒
ZI(k)

k
=

K0k2
p

(k2 − k2
p)
, (6.5.2)

where K0 = me0c/n0e2βπσ2
⊥, and here we have assumed that k is a real quantity. These

conditions show that in the case under discussion the impedance is purely imaginary (i.e.,

purely reactive). In fact, we have assumed that the beam-plasma system is collisionless,

and this implies that there is no dissipation in the system. Consequently, dispersion relation

(6.4.2) becomes:

1 = ηc
ZI (k)

k

∫ f̂ ′0(p)dp
p − ω/ck

. (6.5.3)

6.5.1 Monochromatic beam

We first consider the case of monochromatic beam, i.e., a beam with the particle distribution

function which is represented by a delta function, viz.,

f̂0 = δ(p) . (6.5.4)

Consequently, the dispersion relation (6.5.3) reduces to:

ω2 = ηc k ZI(k) . (6.5.5)

For kZI > 0 (kZI < 0), ω is real (imaginary). On the other hand, ZI > 0 (ZI < 0) when k

is such that −kp < k < 0 or k > kp (k < −kp or 0 < k < kp). Then conditions of stability

or instability can be summarized as in Table 6.1. We conclude that in the plane (ZR,ZI) of

the impedance (see Figure 6.1), the system can be represented with a point that falls on the

imaginary axis only. If this point falls on the positive (negative) semi-axis of ZI , then the

system is stable (unstable) against a small perturbation.
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Table 6.1: Possible cases of stability/instability occurrence.

6.5.2 Non-monochromatic beam

If the beam has a finite spread in the thermal distribution, then the situation changes. We

have to expect a stabilizing effect produced by the Landau damping which does work with

a finite spread but does not in the monochromatic case. To show qualitatively this effect we

refer to the following distribution function:

f̂0(p) = (1 − p2/d2)2, −d ≤ p ≤ d , (6.5.6)

where d is a positive constant. By inserting (6.5.6) in (6.4.2), we can plot the possible

contours relating ZR to ZI in the plane of impedance by means of the mapping

ZR + iZI =
k
ηc

−i
∫

PV

f̂
′

0 (p)dp
p − (ωR/ck + iωI/ck)

+ π f̂
′

0

(
ωR

ck

)−1

, (6.5.7)

where ω has been split into real and imaginary parts (ω = ωR +iωI) and, according to Landau

prescription, the integral at the r.h.s. of Eq. (6.4.2) has been split into Cauchy principal value

and residue. Figure 6.2 qualitatively displays the contours in the plane of the impedance

by running ωR/k at fixed values of ωI/k (growth rate). We can see that the inner contour

for ωI = 0 limits the stable region which prolongs along the positive part of the ZI . The

presence of the closed region is due to the stabilizing effect of Landau damping. Outside

of this stable region, the growth rate is positive and therefore would correspond to unstable

region. However, since in the case under discussion the impedance is purely imaginary, we
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Figure 6.1: Stability analysis in the plane of the impedance for a monochromatic beam.

need to intersect contours of Figure 6.2 with the condition ZR = 0. This is what we can see

in Figure 6.3, from which we can conclude that, compared to the monochromatic case (see

Figure 6.1), the stable region is increased by extending with a segment along the negative

part of ZI . This simply comes from the intersection of the closed region of Figure 6.2 and

the ZI axis.

6.6 Collisional beam-plasma system

Let us take here the same assumptions of section 6.3 except that now the beam-plasma system

is collisional, i.e., the rate of collision between the beam particles and the plasma particles

is not negligible. This way, a dissipation is introduced in the system and therefore a real

part of the coupling impedance of the beam-plasma system is expected to be non-zero. In

fact, we take the set of Lorentz-Maxwell system governing the spatiotemporal evolution of

the plasma in the presence of beam’s charge and current, that is written in the presence of a

viscous force term to model the collisions between beam’s and plasma’s particles. Then, the
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Figure 6.2: Qualitative plot of the contours in the plane (ZR, ZI), generated by the mapping
(6.5.7) for different constant instability growth rates ωI , for a thermal distribution given by
(6.5.6). The stability region is surrounded by the curve ωI = 0.

linearized Poisson-like equation in Fourier space is affected by this collision term and can be

cast as
Ω̃1

Ĩb1
=

K0k2
p (1 + iνc/ck)

k2
p − (1 + iνc/ck) k2 , (6.6.1)

where νc stands for collision frequency. Regarding the beam spatiotemporal evolution, a col-

lisional Boltzmann-Vlasov equation is adopted, where the collisional term is simply mod-

elled by νc( f0 − f ). Consequently, the linearized kinetic equation is

∂ f1

∂τ
+ p

∂ f1

∂ξ
+

(−e)
me0γ0c2

∂Ω1

∂ξ

∂ f0

∂p
= −νc

f1

c
. (6.6.2)

Taking the Fourier transform of the latter and combining it with Eq. (6.6.1), we finally get

the following collisional Landau-type dispersion relation

1 = −iηc
Z (k, ω)

k

∫ f̂ ′0(p)dp
p − ω/ck − iνc/ck

. (6.6.3)

Note that Eq. (6.6.3) is formally similar to the one of collisionless case, except for the

presence of the collisional frequency, which represents a shift for the imaginary part of the
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Figure 6.3: Qualitative stability diagram in the plane of the impedance for a non-
monochromatic beam whose thermal distribution is given by (6.5.6), as a result of the in-
tersection between the contours of Figure 6.2 and the ZI axis.

frequency. The presence of νc is not found in the dispersion relation for a conventional

accelerator. The reason is related to the fact that in a conventional accelerator the beam does

not travel through a plasma but through a vacuum chamber where the collisional effects due

to the interaction with the residual gas are sensitively reduced (by the way, not in case of

millions or billions of turns as in the circular machines). Collisional effects in conventional

accelerators are encountered in the resistive effects that the image charge experience on the

vacuum chamber walls. In this case the effect is strictly related to the electric resistance of

the walls. On the other hand, in the beam-plasma interaction ruled by the PWF mechanism

the dissipation is encountered only in the collisional processes, provided that the collision

rate is not negligible.

For the case, under discussion, we can calculate ZR and ZI by expressing the ratio Ω̃1/Ĩb1
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with Eq. (6.4.1) and separating real and imaginary parts. This way, we get

ZR =
νc

c

K0k4
p

(−k2 + k2
p)2 + ν2

ck2/c2 , (6.6.4)

ZI = −
K0k2

p

[
(−k2 + k2

p) − ν2
c/c

2
]

(−k2 + k2
p)2 + ν2

ck2/c2 k . (6.6.5)

Therefore, the collisions introduce a resistance which now plays a role in the beam-plasma

dynamics. Note that in the limit νc → 0, Eqs. (6.6.4) and (6.6.5) recover Eqs. (6.5.2). In

addition, it should be emphasised that the collisions affect also the imaginary part of the

impedance and this is another important difference with respect to the conventional acceler-

ators. For brevity, we do not present here the stability analysis for the collisional case, but

the approach is fully similar to the one presented in section 6.5, except for the additional role

played by νc.

6.7 Conclusions

We have put forward the concept of coupling impedance that schematizes the self consistent

beam-plasma interaction ruled by the PWF excitation. We have emphasised similarity and

differences in comparison to the concept of coupling impedance in conventional accelerators.

We have illustrated with simple examples the role of the coupling impedance in the approach

to coherent beam-plasma instabilities. We have also outlined the interplay between Landau

damping and instability. An exhaustive and more rigorous approach which opens up to

important physical aspects, both energetic and collisional, is under way.

We would like to point out that the conditions of stability/instability discussed in section

6.5.1 and summarized in Table 6.1, have some similarities with the ones of monochromatic

coasting beam in the conventional accelerators. In particular, the possibility to combine the

sign of ZI with the sign of k fixes two symmetric conditions of instability that resemble the

ones of positive and negative mass instability, respectively. In conventional accelerators,

ZI > 0 and ZI < 0 correspond to impedances dominated by inductive and capacitive charac-

ters, respectively. The interplay between these impedance characters and the sign of the slip
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factor [64] leads to the coherent instability conditions. Compare to the latter, the stability

conditions obtained in this work carry a little different meaning. In fact, the analog of the

negative mass instability seems to be associated with the case of k < 0 and ZI > 0, displayed

in Table 6.1. But here, the unstable evolution of a beam density/current perturbation appears

when the latter is propagating backward (and therefore, associated to some negative momen-

tum/energy). This and several other aspects of the beam-plasma instability, resulting from

the self-consistent PWF excitation, such as the physical condition of positive and negative

coupling impedance in connection with their inductive or capacitive character, and the exten-

sion of the coupling impedance in PWF accelerators to the transverse case, will be deepen in

a forthcoming work.

As a final remark we point out that a sensitive momentum (and thus energy) spread,

typical of beams accelerated injected in plasmas [80], could in principle stabilize the beam

itself by Landau damping, as described in this Section; such stabilization can only occur

provided that the growth rate of the instability that is inducing the momentum spread is

lower than the damping rate. Further work is necessary to study the interaction between

such kind of instabilities and Landau damping in the beam.



Conclusions and Remarks

We have carried out a theoretical investigation on the self-modulated dynamics that takes

place when a nonlaminar, relativistic, charged particle beam is travelling through a magne-

tized plasma while experiencing a strong interaction with the latter. This has been accom-

plished by developing the kinetic theory of the plasma wake field excitation. While trav-

elling, the beam experiences the strong electromechanical actions of the self consistent EM

fields of beam-plasma system that affect the beam envelope evolution. In this framework, the

pair of the 3D Vlasov-Poisson-type equations has been derived in the unperturbed particle

reference system. These equations governs the spatiotemporal evolution of the beam. We

have specialized this system of equations to a 2D purely transverse system and to a 1D purely

longitudinal system to describe the transverse and the longitudinal dynamics, respectively.

In the transverse dynamics, we have implemented the 2D Vlasov-Poisson-type equa-

tions for a cylindrically symmetric driving beam with the related virial equations. This has

allowed us to find some constant of motions and to obtain ordinary differential equations

for the time evolution of the beam spot size (envelope equations), that have been easily inte-

grated analytically and/or numerically. The use of the method of pseudo potential or Sagdeev

potential has been very helpful to carry out a qualitative analysis of the beam envelope self-

modulation. On the basis of such method, we have first carried out our analysis in the two

limiting cases of local (the beam spot size is much greater than the plasma wavelength) and

strongly non-local regimes (the beam spot size is much smaller than the plasma wavelength).

We have described several types of self-modulations, in terms of focusing, defocusing and

betatron-like oscillations, and have obtained the criteria for instability, such as collapse and

self-modulation instability. The analysis has been, then, extended to the general case where

133
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the beam spot size and the plasma wavelength are not necessarily constrained as in the lo-

cal or strongly nonlocal regimes. In these conditions, we have performed a semi-analytical

and numerical analysis of the envelope self-modulated dynamics and criteria for predicting

stability and self-modulation instability have been suitably provided.

In the longitudinal dynamics, we have used the Landau approach to the longitudinal

Vlasov-Poisson-type pair of equations. In fact, after linearizing this system around an un-

perturbed state, and taking the Fourier transformation of the resulting equation, we have

obtained a set of algebraic equation in frequency and wave number domain. From the lat-

ter, we have easily found the Landau-type dispersion relation. By using the latter, in the

monochromatic beam case, we have shown the existence of a purely growing mode and a

simple stability criterion. Then, by taking into account a non-monochromatic beam (de-

scribing a slightly warm beam), the Landau approach has lead to obtain both the dispersion

relation for the real part (showing all the possible beam modes in the diverse regions of the

wave number) and an expression for the imaginary part of the frequency, which has sug-

gested a simple stability criterion.

Within the context of the longitudinal beam dynamics, we have also introduced the novel

concept of coulpling impedance in plasma wake field accelerators in a way that is fully

similar to the one introduced in conventional particle accelerators. Based on the Landau-

type dispersion relation and the methods of Nyquist control theory, we have put forward an

alternative way to describe the coherent instabilities in the beam-plasma interaction.

In conclusion, the results we have obtained can be summarized as follows:

• We have developed the kinetic theory of the PWF excitation that provides the gener-

alized Vlasov-Poisson-type pair of equations for the diverse conditions of plasma and

beam;

• We have provided the self-modulated beam dynamics analysis in both purely trans-

verse and purely longitudinal cases;

• We have provided a satisfactory model for the self-modulation instability in the trans-

verse case, by implementing the Vlasov-Poisson-type equations with the related virial
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description (envelope equations);

• We have carried out an instability analysis within the linearized kinetic theory of the

self-consistent beam-plasma interaction, in the purely longitudinal case within two

approaches based on Landau theory.



Appendix A

Virial descriptions

Virial description is a method to integrate the single particle motion equation (i.e., Vlasov

equation) of a statistical system of charged particle beam, where the beam optics is described

in terms of root mean square (rms) beam moments and their respective equations of motion.

This method leads to find a set of equations, usually referred to as the virial equations for the

system of N particles bounded by a potential. Virial equations relate the average of the total

kinetic energy which comes from the kinetic description once the average of certain physical

quantities are taken by means of the distribution function.

Let us consider the transverse dynamics of a relativistic charged particle electron/positron

beam into a cold, Magnetized plasma. The beam is travelling along the z− axis with velocity

βc (β ' 1) in the presence of an external magnetic field (B0 = ẑB0). The motion of each

single particle is associated with an unperturbed total energy mb0γ0c2 (mb0 and γ0 being the

particle rest mass and the unperturbed relativistic factor, respectively). In the unperturbed-

particle frame, the transverse motion of each single-particle is associated with an effective

Hamiltonian, i.e., H (r⊥,p⊥, τ), i.e.,

H (r⊥,p⊥, τ) =
1
2

p2
⊥ +

1
2

kc ẑ · (r⊥ × p⊥) +
1
2

Kr2
⊥ + Uw (r⊥, τ) , (A.0.1)

where Uw is the normalized plasma wake potential, K =
(
qB0/2mb0γ0c2

)2
= (kc/2)2, kc =

−qB0/mb0γ0c2, r⊥ and p⊥ are the transverse component of position vector r and correspond-

ing conjugate momentum p. We can cast the above mentioned equation as:

H (r⊥,p⊥, τ) = T (p⊥) + U(r⊥,p⊥, τ) , (A.0.2)
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where

T (p⊥) =
1
2

p2
⊥ , (A.0.3)

U(r⊥,p⊥, τ) =
1
2

kc ẑ · (r⊥ × p⊥) +
1
2

Kr2
⊥ + Uw (r⊥, τ) . (A.0.4)

The spatiotemporal evolution of the beam can be provided by the following Vlasov equation

in phase space:
∂ f
∂τ

+
∂H
∂p⊥
·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

= 0 , (A.0.5)

where f = f (r⊥,p⊥, τ) is the single-particle distribution function in 4D (r⊥,p⊥)-phase space

which is normalized to unity, i.e.,∫
f (r⊥,p⊥, τ)d2r⊥, d2 p⊥ = 1 . (A.0.6)

If F(r⊥,p⊥, τ) is a generic physical quantity defined in the 4D-phase space. Then, according

to Eq. (A.0.6), the average of F is defined as:

〈F〉 =

∫
F(r⊥,p⊥, τ) f (r⊥,p⊥, τ)d2r⊥, d2 p⊥ . (A.0.7)

Using this definition of F, we introduce the following averaged quantities:

- the beam spot size (effective transverse beam size), i.e.,

σ⊥(τ) = 〈r2
⊥〉

1/2 =

[∫
r2
⊥ f d2r⊥ d2 p⊥

]1/2

; (A.0.8)

- the momentum spread, i.e.,

σp⊥(τ) = 〈p2
⊥〉

1/2 =

[∫
p2
⊥ f d2r⊥ d2 p⊥

]1/2

; (A.0.9)

-the average of the total energy, i.e.,

E(τ) = 〈H〉 =

∫
H f d2r⊥ d2 p⊥ = 〈T 〉 + 〈U〉 , (A.0.10)

where

〈T 〉 =

∫
1
2

p2
⊥ f (r⊥,p⊥, τ) d2r⊥ d2 p⊥ =

1
2
σ2

p⊥(τ) (A.0.11)

and

〈U〉 =

∫
U (r⊥,p⊥, τ) f (r⊥,p⊥, τ) d2r⊥d2r⊥ . (A.0.12)

Note that to define σ⊥ and σp⊥ , we have assumed that 〈r⊥〉 = 〈p⊥〉 = 0, since in the unper-

turbed particle frame, the beam centroid is moving always along ẑ.
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First virial equation

We are going to derive an evolution equation for σ2
⊥(τ). Therefore, we first differentiate the

square of Eq. (A.0.8) with respect to τ, i.e.,

dσ2
⊥

dτ
=

∫
r2
⊥

∂ f
∂τ

d2r⊥ d2 p⊥ . (A.0.13)

Using Eq. (A.0.5), we substitute ∂ f /∂r⊥ in Eq. (A.0.13), and get,

dσ2
⊥

dτ
= −

∫
r2
⊥

[
∂H

∂p⊥
·
∂ f
∂r⊥
−
∂H

∂r⊥
·
∂ f
∂p⊥

]
d2r⊥ d2 p⊥ . (A.0.14)

This equation can be written as,

dσ2
⊥

dξ
= −

∫
r2
⊥

∂H

∂p⊥
·
∂ f
∂r⊥

d2r⊥ d2 p⊥ +

∫
r2
⊥

∂H

∂r⊥
·
∂ f
∂p⊥

d2r⊥ d2 p⊥ . (A.0.15)

To evaluate the first integral in the left-hand side of Eq. (A.0.15), at first we take the diver-

gence of the quantity r2
⊥ (∇p⊥H) f ,

∇⊥ ·
[
r2
⊥(∇p⊥H) f

]
= 2r⊥ · (∇p⊥H) f + r2

⊥∇⊥ · (∇p⊥H) f + r2
⊥(∇p⊥H) · (∇⊥ f ) (A.0.16)

or,

r2
⊥

∂H

∂p⊥
·
∂ f
∂r⊥

= ∇⊥ ·

[
r2
⊥

∂H

∂p⊥
f
]
− 2r⊥ ·

∂H

∂p⊥
f − r2

⊥∇⊥ · (∇p⊥H) f . (A.0.17)

Taking integration of (A.0.17), we get,∫
r2
⊥

∂H

∂p⊥
·
∂ f
∂r⊥

d2r⊥ d2 p⊥ =

∫
∇⊥ ·

[
r2
⊥

∂H

∂p⊥
f
]

d2r⊥ d2 p⊥ − 2
∫

r⊥ ·
∂H

∂p⊥
f d2r⊥ d2 p⊥

−

∫
r2
⊥∇⊥ · (∇p⊥H) f d2r⊥ d2 p⊥ . (A.0.18)

At the infinity the first integration of the right-hand side of Eq. (A.0.18) goes to zero and

after using Eq. (A.0.18) into (A.0.15), we get

−

∫
r2
⊥

∂H

∂p⊥
·
∂ f
∂r⊥

d2r⊥ d2 p⊥ = 2
〈
r⊥ · ∇p⊥H

〉
+

〈
r2
⊥∇⊥ · (∇p⊥H)

〉
. (A.0.19)

The second integral in the right-hand side of Eq. (A.0.15) can be written as,∫
r2
⊥

∂H

∂r⊥
·
∂ f
∂p⊥

d2r⊥ d2 p⊥ = −
〈
r2
⊥∇p⊥ · (∇⊥H)

〉
. (A.0.20)
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Using Eqs. (A.0.19) and (A.0.20) into Eq. (A.0.15), we get:

dσ2
⊥

dτ
= 2

〈
r⊥ · ∇p⊥H

〉
+

〈
r2
⊥

[
∇⊥ · (∇p⊥H) − ∇p⊥ · (∇⊥H)

]〉
. (A.0.21)

By taking the derivatives of Hamiltonian given in Eq. (A.0.1) with respect to p⊥ and r⊥, we

get,

∇p⊥H =
∂H
∂p⊥

= p⊥ +
1
2

kc(ẑ × r⊥) (A.0.22)

and

∇⊥H =
∂H
∂r⊥

= Kr⊥ + ∇⊥Uw −
1
2

kc(ẑ × p⊥) . (A.0.23)

Taking the scalar products of Eq. (A.0.22) with respect to ∇⊥ and of Eq. (A.0.23) with

respect to ∇p⊥ , respectively, we get,

∇⊥ · (∇p⊥H) = ∇⊥ ·

[
p⊥ +

1
2

kc(ẑ × r⊥)
]

= 0 (A.0.24)

and

∇p⊥ · (∇⊥H) = ∇p⊥ ·

[
Kr⊥ +

∂Uw

∂r⊥
−

1
2

kc(ẑ × p⊥)
]

= 0 . (A.0.25)

Using Eqs. (A.0.24) and (A.0.25), we see that the second term at the right-hand side of Eq.

(A.0.21) vanishes; therefore this equation becomes

dσ2
⊥

dτ
= 2 〈r⊥ · p⊥〉 = 2

∫
(r⊥ · p⊥) f d2r⊥ d2 p⊥ , (A.0.26)

which can be also cast as

σ⊥
dσ⊥
dτ

= 〈r⊥ · p⊥〉 . (A.0.27)

We take the derivative of Eq. (A.0.26),

d2σ2
⊥

dτ2 = 2
∫

(r⊥ · p⊥)
∂ f
∂τ

d2r⊥ d2 p⊥ . (A.0.28)

Then, we obtain ∂ f /∂τ from Eq. (A.0.5) and substitute into (A.0.28),

d2σ2
⊥

dτ2 = −2
∫

(r⊥ · p⊥)
[
∂H

∂p⊥
·
∂ f
∂r⊥
−
∂H

∂r⊥
·
∂ f
∂p⊥

]
d2r⊥ d2 p⊥ (A.0.29)

or,

d2σ2
⊥

dτ2 = −2
∫

(r⊥ · p⊥)
∂H

∂p⊥
·
∂ f
∂r⊥

d2r⊥ d2 p⊥ + 2
∫

(r⊥ · p⊥)
∂H

∂r⊥
·
∂ f
∂p⊥

d2r⊥ d2 p⊥ . (A.0.30)
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Following the similar procedure to reach Eqs. (A.0.19) and (A.0.20), the integrals in the

right-hand side of (A.0.30) can be expressed as,

− 2
∫

(r⊥ · p⊥)
∂H

∂p⊥
·
∂ f
∂r⊥

d2r⊥ d2 p⊥ = 2
〈
p⊥ · ∇p⊥H

〉
+ 2

〈
(r⊥ · p⊥)∇⊥ · (∇p⊥H)

〉
(A.0.31)

and

2
∫

(r⊥ · p⊥)
∂H

∂r⊥
·
∂ f
∂p⊥

d2r⊥ d2 p⊥ = −2 〈r⊥ · ∇⊥H〉 . (A.0.32)

Using Eqs. (A.0.31) and (A.0.32) into (A.0.30), we get

d2σ2
⊥

dτ2 = 2
〈
p⊥ · ∇p⊥H

〉
+ 2

〈
(r⊥ · p⊥)∇⊥ · (∇p⊥H)

〉
− 2 〈r⊥ · (∇⊥H)〉 . (A.0.33)

Then, taking dot product of p⊥ and r⊥ with Eqs. (A.0.24) and (A.0.25), respectively, we get

p⊥ · ∇p⊥H = p2
⊥ +

1
2

kcp⊥ · (ẑ × r⊥) , (A.0.34)

r⊥ · ∇⊥H = Kr2
⊥ + r⊥ · ∇⊥Uw −

1
2

kcr⊥ · (ẑ × p⊥) . (A.0.35)

Furthermore, we observe that,

∇⊥ · (∇p⊥H) = ∇⊥ ·

[
p⊥ +

1
2

kc(ẑ × r⊥)
]

= 0 . (A.0.36)

Using Eqs. (A.0.34) - (A.0.36) into (A.0.33), we finally obtain:

d2σ2
⊥

dτ2 = 2
〈
p2
⊥

〉
+ kc〈p⊥ · (ẑ × r⊥)〉 − 2K〈r2

⊥〉 − 2〈r⊥ · ∇⊥Uw〉 + kc〈r⊥ · (ẑ × p⊥)〉 ,

which can be expressed as

d2σ2
⊥

dτ2 = 2σ2
p⊥ − 2Kσ2

p⊥ − 2〈r⊥ · ∇⊥Uw〉 + kc〈ẑ · (r⊥ × p⊥) + ẑ · (p⊥ × r⊥)〉 . (A.0.37)

We observe that the sum of the last two terms of Eq. (A.0.37) is zero, i.e., ẑ · (r⊥ × p⊥) + ẑ ·

(p⊥ × r⊥) = 0, hence, we get,

d2σ2
⊥

dτ2 = 2σ2
p⊥ − 2Kσ2

p⊥ − 2〈r⊥ · ∇⊥Uw〉 . (A.0.38)

In terms of T and V , Eq. (A.0.38) can be written as,

d2σ2
⊥

dτ2 = 4〈T 〉 − 2〈r⊥ · ∇⊥V〉 , (A.0.39)



APPENDIX A: VIRIAL DESCRIPTIONS 141

where,

V(r⊥, τ) =
1
2

Kr2
⊥ + Uw(r⊥, τ) . (A.0.40)

Equation (A.0.39) is referred to be the first virial equation. It can be consequently cast in the

following form,
d2σ2

⊥

dτ2 = 2σ2
p⊥ − 2Kσ2

⊥ − 2〈r⊥ · ∇⊥Uw〉 (A.0.41)

or,
d2σ2

⊥

dτ2 = 4(E − 〈U〉) − 2〈r⊥ · ∇r⊥U〉 + kcLz , (A.0.42)

where Lz = 〈Lz〉, Lz = ẑ · (r⊥ × p⊥), and U is given in Eq. (A.0.4). In case of unmagnetized

plasma, the first virial equation becomes (kc = K = 0):

d2σ2
⊥

dτ2 = 4(E − 〈Uw〉) − 2〈r⊥ · ∇r⊥Uw〉 , (A.0.43)

where E = 1
2 〈p

2
⊥〉 + 〈Uw〉. In order to close the virial description, we need the second virial

equation which will relate E with Uw.

Second virial equation

Now we are going to find an equation for the time evolution of the averaged total energy

E(τ) = 〈H〉 which is defined in Eq. (A.0.10). To do this, we differentiate Eq. (A.0.10) with

respect to τ, obtaining

dE
dτ

=

∫
∂H
∂τ

f d2 p⊥d2r⊥ +

∫
H
∂ f
∂τ

d2 p⊥d2r⊥ , (A.0.44)

which, by using Eq. (A.0.5) can be cast as:

dE
dτ

=

〈
∂H
∂τ

〉
−

∫
H

[
∂H
∂p⊥
·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
d2 p⊥d2r⊥ . (A.0.45)

The last term of Eq. (A.0.45) can be written as,

H
[
∂H
∂p⊥
·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
=

H
2

(
∂H2

∂p⊥
·
∂ f
∂r⊥
−
∂H2

∂r⊥
·
∂ f
∂p⊥

)
. (A.0.46)

We can write the following derivatives as,

∇⊥

[
∂H2

∂p⊥
f
]

=
∂H2

∂p2
⊥

∂ f
∂r⊥

+ f∇⊥(∇p⊥H2) (A.0.47)



APPENDIX A: VIRIAL DESCRIPTIONS 142

and

∇p⊥

[
∂H2

∂r⊥
f
]

=
∂H2

∂r⊥
∂ f
∂p⊥

+ f∇p⊥(∇r⊥H2) . (A.0.48)

Using Eqs. (A.0.47) and (A.0.48) into Eq. (A.0.46) while using the boundary condition at
infinity, the last integral of Eq. (A.0.45) becomes,∫

H
[
∂H
∂p⊥

·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
d2 p⊥d2r⊥ =

∫
f
[
∇⊥ · (H∇p⊥H) − ∇p⊥ · (H∇⊥H)

]
d2 p⊥d2r⊥ ,

or,∫
H

[
∂H
∂p⊥

·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
d2 p⊥d2r⊥ =

∫
f
[
H

∂

∂xi

(
∂H
∂pi

)
− H

∂

∂p j

(
∂H
∂x j

)]
d2 p⊥d2r⊥ ,

or,∫
H

[
∂H
∂p⊥

·
∂ f
∂r⊥
−
∂H
∂r⊥
·
∂ f
∂p⊥

]
d2 p⊥d2r⊥ =

∫
f
[
H

[
∂2H
∂xi∂pi

−
∂2H
∂p j∂x j

]]
d2 p⊥d2r⊥ = 0 .(A.0.49)

Using Eq. (A.0.49) into Eq. (A.0.45), we get

dE
dτ

=

〈
∂Uw

∂τ

〉
=

∫
∂UW

∂τ
f d2r⊥d2 p⊥ , (A.0.50)

where we have used the explicit form of H given by Eq. (A.0.1) and observed that Uw(r⊥, τ)

is the only term of the Hamiltonian that depends explicitly on τ.

We refer Eq. (A.0.50) to be the second virial equation, which describes the time evolution

of the averaged energy E. Equations (A.0.39) and (A.0.50) constitute a pair of coupled

equations governing the time evolution of the beam envelope.



Appendix B

Envelope descriptions

To give a complete self-consistent description of the beam plasma system, along with the

two virial equations (A.0.39) and (A.0.50) described in the Appendix A, the knowledge of f

and Uw is required. Therefore, equations (A.0.39) and (A.0.50) do not comprise a complete

set of equations. To satisfy the self-consistency, we have to couple the Vlasov-Poisson-type

system of equations with equations with (A.0.39) and (A.0.50). Imposing suitable initial

and boundary conditions, we have to solve the Vlasov-Poisson-type pair of equations. Once

f (r⊥,p⊥, τ) and Uw(r⊥, τ) are known, we can use the virial equations to describe the time

evolution of the beam envelope.

We take into account the following Vlasov-Poisson-type pair of equations,

∂ f
∂τ

+

[
p⊥ +

1
2

kc (ẑ × r⊥)
]
· ∇⊥ f −

[
Kr⊥ −

1
2

kc (ẑ × p⊥) + ∇⊥Uw

]
· ∇p⊥ f = 0 , (B.0.1)

(
∇2
⊥ − k2

s

)
Uw = k2

sλ0

∫
f d2 p⊥ , (B.0.2)

where λ0 = N/n0γ0σz (N being the total number of electrons or positrons of the driving

beam) and ks = k2
p/kuh. Since Uw is independent of p⊥, from Eq. (A.0.50) we get,

dE
dτ

=

∫
∂UW

∂τ
d2r⊥

∫
f d2 p⊥ . (B.0.3)

Using Eqs. (B.0.2) and (B.0.3), we get:

dE
dτ

=
1

k2
sλ0

[ ∫
∂Uw

∂τ
∇2
⊥Uw d2r⊥ − k2

s

∫
Uw

∂Uw

∂τ
d2r⊥

]
. (B.0.4)
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To evaluate the first integral in the left-hand side of Eq. (B.0.4), at first we take the divergence

of the (∂Uw)/(∂τ)∇⊥Uw,

∇⊥ ·

[
∂Uw

∂τ
∇⊥Uw

]
=

(
∇⊥

∂Uw

∂τ

)
· ∇⊥Uw +

∂Uw

∂τ
∇2
⊥Uw ,

which in turn gives,

∂Uw

∂τ
∇2
⊥Uw = ∇⊥ ·

[
∂Uw

∂τ
∇⊥Uw

]
−

1
2
∂

∂τ
|∇⊥Uw|

2 . (B.0.5)

Using Eq. (B.0.5) into Eq. (B.0.4), we get

dE
dτ

=
1

k2
sλ0

[ ∫
∇⊥ ·

(
∂Uw

∂τ
∇⊥Uw

)
d2r⊥ −

1
2

∫
∂

∂τ
|∇⊥Uw|

2 d2r⊥ − k2
s

∫
1
2
∂U2

w

∂τ
d2r⊥

]
. (B.0.6)

At the infinity the first integration of the right-hand side of Eq. (B.0.6) goes to zero. There-

fore, we get,
dE
dτ

= −
1

2k2
sλ0

d
dτ

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ , (B.0.7)

or,
d
dτ

[
E +

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥

]
= 0 . (B.0.8)

Consequently, from this equation we can define the following constant of motion:

C = E +
1

2k2
sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ . (B.0.9)

By expressing explicitly E = 〈H〉 along with Eqs. (A.0.2) - (A.0.4) in the above equation,

we easily get:

C =
1
2
σ2

p⊥ +
1
2

Kσ2
⊥ +

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ + 〈Uw〉 +

1
2

kcLz . (B.0.10)

Then, using 〈Uw〉, i.e.,

〈Uw〉 = −
1

k2
sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ , (B.0.11)

into Eq. (B.0.10), we get

C =
1
2
σ2

p⊥ +
1
2

Kσ2
⊥ −

1
2k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ +

1
2

kcLz . (B.0.12)
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By means of Eq. (B.0.12), we express E in terms of C and substitute it in the first virial

equation. Then, using Eqs. (B.0.12) and (A.0.4) into Eq. (A.0.42) we easily get:

d2σ2
⊥

dτ2 + 4 Kσ2
⊥ = 4C −

2
k2

sλ0

∫ (
|∇⊥Uw|

2 + k2
sU2

w

)
d2r⊥ − 4〈Uw〉 − 2〈r⊥ · ∇⊥Uw〉 − 2kcLz .

(B.0.13)

After performing the integrations by parts, contained in the terms at the right-hand side of

Eq. (B.0.13), we finally obtain the following envelope equation, i.e.,

d2σ2
⊥

dτ2 + 4 Kσ2
⊥ = 4C +

2
k2

sλ0

∫
|∇⊥Uw|

2 d2r⊥ − 2kcLz . (B.0.14)

Note that, for the case of unmagnetized plasma (B0 = 0), we easily get:

d2σ2
⊥

dτ2 = 4C +
2

k2
pλ0

∫
|∇⊥Uw|

2 d2r⊥ . (B.0.15)
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eralized self-consistent 3D plasma wake field excitation in overdense regime, Roma,

Italy, 21-25 September, 2015.

International conferences & visits

1. 2nd European Advanced Accelerator Concepts Workshop, La Biodola, Isola dElba,

Italy, 13-19 September, 2015.

2. 101◦ Congresso Nazionale, Societa Italiana di Fisica, Roma, Italy, 21-25 September,

2015.

3. 100◦ Congresso Nazionale SIF, 22 - 26 September 2014, Pisa, Italy.

4. International Congress On Plasma Physics ICPP 2014, 15 - 19 September 2014, Lis-

bon, Portugal.

5. Joint ICTP-IAEA College on Advanced Plasma Physics, 18 - 29 August 2014, ICTP,

Trieste, Italy.



List of Publications/Communications 149

6. VLASOVIA 2013, International workshop on the theory and applications of Vlasov

equation, 25 - 28 November 2013, Nancy, France.



Bibliography

[1] T. Tajima and J. M. Dawson. Laser electron accelerator. Phys. Rev. Lett., 43:267–270,
1979.

[2] L. M. Gorbunov and V. I. Kirsanov. Excitation of plasma waves by an electromagnetic
wave packet. Sov. Phys. JETP, 66:290–294, 1987.

[3] P. Sprangle, E. Esarey, A. Ting, and G. Joyce. Appl. Phys. Lett., 53:2146–2148, 1988.

[4] P. Chen, J. M. Dawson, R. W. Huff, and T. Katsouleas. Acceleration of electrons by the
interaction of a bunched electron beam with a plasma. Phys. Rev. Lett., 54:693–696,
1985.

[5] R. D. Ruth, A. W. Chao, P. L. Morton, and P. B. Wilson. Part. Accel., 17:171, 1985.

[6] P. Chen, J. J. Su, J. M. Dawson, K. L. F. Bane, and P. B. Wilson. Phys. Rev. Lett.,
56:1252, 1986.

[7] J. Rosenzweig. IEEE Trans. Plasma Science, PS-15:186, 1987.

[8] T. Katsouleas. Phys. Rev. A, 33:2056, 1986.

[9] R. Fedele, U. de Angelis, and T. Katsouleas. Generation of radial fields in the beat-wave
accelerator for gaussian pump profiles. Phys. Rev. A, 33:4412–4414, 1986.

[10] U. De Angelis, R. Fedele, G. Miano, and C. Nappi. Plasma Phys. Control. Fusion,
29:789, 1987.

[11] C. Joshi, T. Katsouleas, J. M. Dawson, Y. T. Yan, and J. M. Slater. IEEE Trans. J.
Quantum Electronics, QE-23:1571, 1987.

[12] R. Fedele, G. Miano, and V. G. Vaccaro. Physica Scripta, T30:192, 1990.

150



Bibliography 151

[13] A. O. Benz. Astrophys. J., 211:270, 1977.

[14] J. Kuijpers. ‘Particle acceleration’ in Plasma Astrophysics, Springer:Berlin, 1996.

[15] M. E. Dieckmann, P. Ljung, A. Ynnerman, and K. G. McClements. Phys. Plasmas,
7:5171, 2000.

[16] K. G. McClements, R. O. Dendy, M. E. Dieckmann, A. Ynnerman, and S. C. Cha Pma.
J. Plasma Physics, 71:127, 2005.

[17] P. Chen, T. Tajima, and Y. Takahashi. Phys. Rev. Lett., 89:161101, 2002.

[18] A. M. Sessler and D. Vaughan. Free-Electron Lasers. University of California, Berke-
ley, 1987.

[19] H. Winick et al. Wiggler and undulator magnets. Phys. Today, 34N5:50–63, 1981.

[20] H. Winick. Synchrotron radiation. Scientific American, 255:88–89, 1987.

[21] J. M. Dawson. From Particles to Plasmas, page 131. Addison Wesley, Reading, MA,
1959.

[22] J. M. Dawson. Nonlinear electron oscillations in a cold plasma. Phys. Rev.,
113:383387, 1959.

[23] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau,
F. Burgy, and V. Malka. Nature, 431:541, 2004.

[24] C. G. R. Geddes, Cs. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruh-wiler,
C. Nieter, J. Cary, and W. P. Leemans. Nature, 431:538, 2004.

[25] S. P. D. Mangles et al. Monoenergetic beams of relativistic electrons from intense
laserplasma interactions. Nature, 431:535–538, 2004.

[26] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka. Nature,
444:737, 2006.

[27] W. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes,
E. Esarey, C. B. Schroeder, and S. M. Hooker. Nat. Phys., 2:696, 2006.



Bibliography 152

[28] C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi, W.Lu,
K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F.S. Tsung, B. B. Pollock, J. S. Ross,
L. O. Silva, and D. H. Froula. Phys. Rev. Lett., 105:105003, 2010.

[29] K.A. Marsh, C. E. Clayton, C. Joshi, W. Lu, W. B. Mori, A. Pak, L. O. Silva, N. Lemos,
R. A. Fonseca, S. de Freitas Martins, F. Albert, T. Doeppner, C. Filip, D. Froula, S. H.
Glenzer, D. Price, J. Ralph, and B. B. Pollock. LLNLPROC, 476791, 2011.

[30] R. Bingham, J.T. Mendonça, and P.K. Shukla. Plasma based charged-particle acceler-
ators. Plasma Phys. Control. Fusion, 46:R1–R23, 2004.
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