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Abstract

In this thesis we [1] try to understand the non-perturbative regime of QCD through

long and short distance matching of the decay amplitude K → πe+e−. The first

Chapter contains brief introduction and motivation then in the end we introduce

the notations and transformation properties of various quantities and tables of phe-

nomenological parameters. In the second chapter we discuss the Chiral Symmetry

and its breaking and the construction of ∆S = 0, 1 Lagrangians. Then we apply

chiral Lagrangian to calculate the amplitude of K+ → π+π− decay at one loop in

section 2.7.2 of the second chapter, the approach is a little bit different than that

of Ecker, Pick and Raffael [2] but a few tricks introduced by them were used. In

section 2.7.3 we introduce the beyond leading order dispersive calculation of the

same decay by D’Ambrosio et al. [3] where the phenomenological parameters ai and

bi (that completely fixes the form factor of the decay under study) were introduced

and were predicted in the last chapter. In chapter 3 we start with a brief discussion

of long and short distance matching of QCD and the calculation of Wilson coef-

ficients. Then we introduce in reasonable detail the Bardeen, Buras and Gèrard

(BBG) [4, 5, 6] scheme of matching which plays the central role in our work. In

the last chapter we apply BBG scheme to calculate the form factor of the deacy

K → πe+e−, first in section 4.0.4 without vector meson resonances and find values

which are extremely small compared to the experimental values then in section 4.1

we introduce the resonances through Hidden Local Symmetry (HLS) and construct
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the weak chiral Lagrangian containing vector coupling based on the Gilman-Wise[7,

8] ∆S = 1 Hamiltonian, we then use it to calculate the appropriate extension of the

BBG long distane evolution operator introduced in chapter 3 and calculate the ai

and bi parameters. Vector inclusion shows huge enhancements in both parameters,

where a+ and aS are very close to the experimental values but b+ still lacks a factor

of 2, the possible reasons for this were also discussed. We provide detailed evalua-

tions of the loop integrals in Appendix B, Feynman rules and other conventions are

presented in Appendix A and in Appendix C we present the large N structure of

relevant Wilson coefficients. Notations, symbols and transformation properties of

quantities along with various phenomenological parameters and their values are pro-

vided in the end of the introductory chapter. We preferred to provide the references

in the end of each Chapter.
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Chapter 1

Introduction

It is well known that QCD can be treated perturbatively at very high energy scale

(scale � 1 GeV) due to the beautiful property called asymptotic freedom [1, 2,

3] that non-Abelian gauge theories enjoy but they also become non-perturbative

(typically around and below 1 GeV) at the low energy scale because the coupling

constant becomes too large (O(1))! Because of this we have very good understanding

of the high energy (short distance) region of the Standard Model (SM). On the other

had at very low energy sale (long distance), typically at the scale of pion mass, we

have a wonderful effective field theory called Chiral Perturbation Theory (ChPT)

[4, 5, 6, 7, 8, 9, 10, 11, 12] built upon the symmetries of the standard model. ChPT

is capable of predicting processes involving strong and weak interactions at the pion

scale. In principle ChPT is capable of producing perfect results even at a scale very

close to 1 GeV, but as we will discuss it in Chapter 2 that as we go up in energy scale

more and more counter terms are needed [4, 13, 14, 15] to kill the loop divergences

and hence renormalize the theory and ChPT looses the predicting power. To fix the

values of large number of unknown coefficients (LEC’s) large number of experiments

on different scattering processes are needed leading to more input than the output

! So practically speaking, ChPT is perfect only at the pseudo-scalar meson scales.

Hence we have two extreme regions where we understand physics well but no clear

understanding of the region in between. As we will see in Chapter 3 how one can

come down from the W boson mass scale to almost 1 GeV using Operator Product

Expansion and Renormalization Group improved perturbation theory [16]. On the

1



Chapter 1. Introduction 2

other hand using ChPT we can reach up to a scale slightly below the first vector

resonance ρ mass (775 MeV), starting from zero. But the region 0.7-1 GeV is a

purely non-perturbative. In the time of LHC when we want to see physics beyond

standard model it is necessary that we must have SM results ready to be tested

but unfortunately that is not the case when look at the long distance region of SM

because of the reasons discussed above. So we must be very efficient to choose the

processes that are accessible and manageable theoretically. Decays of Kaons offer

one of the best channels to do exactly that.

Among various available attempts (for example [17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27]) to understand non-perturbative QCD, a relatively simple but interesting

framework based on the large Nc (= N) structure of long and short distance QCD

is the one developed by Bardeen, Buras and Gèrard (BBG) [28, 29, 30] is partially

successful in explaining a long standing puzzle called ∆I = 1/2 rule that we will

discuss in section 2.7.1 of Chapter 2. The ε/ε′.... Their results are also backed well

by lattice collaboration [RBC-UKQCD ]. We will review this (BBG) framework

in reasonable details in Chapter 3.

As the title “...Matching Long and Short Distance Physics ” says, we are inter-

ested to understand the SM at any energy scale in the cotext of “Rare Kaon Decays”

especially “K → πe+e−” and eventually predict the values of phenomenological pa-

rameters ai and bi introduced in section 2.7.3 of Chapter 2. The motivation is to

test this framework on experimentally well understood processes so that if it passes

the test we can finally produce SM based theoretical predictions. The decay that

we are studying is especially important because if we understand the form factor

well, it can be used to look for the Universal Lepton Flavour Violation [31]. As

our work discussed in Chapter 4 suggests, BBG framework looks promising and in

such a case we can look for deviations from the standard model if any. Fortunately

NA62 [refer] experiment will study .... at accuracy.... s/n... this is a great window

of opportunity, we can produce numbers and test in the experiment to look for new

physics.

The approach is the following: one uses RG improved perturbation theory to
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come down from very high energy scale to 1 GeV (keeping the large N structure

of the anomalous dimension matrix manifest) where the short distance informa-

tion gets encoded in the Wilson Coefficients then using a hard momentum cut-off

(M) regularized long distance effective theory (such as ChPT) develops an RG like

evolution (and so an analogous anomalous dimension matrix with large N struc-

ture) of the matrix elements and looks for a range of M where the short distance

logarithmic divergence gets numerically cancelled by the quadratic divergence of

the long distance theory and amplitude becomes scale independent. This obtained

scale is the matching scale where physical quantities can be reliably evaluated and

corresponding cross-sections can be matched with the experiment.

Our work is available here [32]. We have also calculated the low energy constant

L9 in the BBG approach which is not included in this thesis but will be published

shortly. We are currently also working 1 on a more formal approach to match the

long and short distance QCD through Functional Bosonization method which will

be sent for publication soon.

1In collaboration with M. Knecht.
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1.1 Notations and Symbols

Symbols

G The chiral symmetry group SU(3)L × SU(3)R

H The unbroken symmetry groupSU(3)V

C, P , T Charge conjugation, parity and time-reversal transformations

respectively

Σ Exponential representation of mesons.

Π Meson octet.

L, R and V Left, right and vector transformations of

SU(3)L, SU(3)R and SU(3)V respectively.

λa, T
a Gell-mann matrices and SU(3) generators with a = 1, ...8

vµ, aµ External Vector and axial-vector fields respectively.

s, p, χ = s+ ip External scalar fields.

lµ, rµ Left and right handed gauge fields of the chiral group

SU(3)L, SU(3)R respectively

Lµ, Rµ Noether’s currents corresponding to the left and right chiral

symmetry.

Lµν Rµν Field strength tensors corresponding to lµ, rµ

L∆S=0,1
pn O(pn) strong and ∆S = 1 weak chiral Lagrangians

respectively.

mK , mπ, mη, mρ Masses of kaon, pion, η and ρmesons respectively

m̃ Is the mass parameter introduced by Bardeen, Buras

and Gerard in [30].

MW Mass of W Boson

mq Mass of q = u, d, s, c, b, t quarks.

M Momentum cut-off of loop integrals

α
(f)
s (µ) QCD running coupling constant at the M̄S scale µ

where f is the number of active flavours

αe QED coupling constant = e2

4π
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1.1.1 Definitions of Parameters and Values

ri = mi/mK

zi = z/r2
i

zK = z = q2/m2
K

zM = q2/M2

(1.1.1)

List of values of parameters are given in Table. 1.2 and 1.3.

Everything is in GeV.

mc mb mt MW mπ mK mV mη m̃

1.3 4.4 170 80.3 0.139 0.494 0.775 0.546 0.3

Table 1.1: Masses of particles.

Everything is in MeV.

Fπ FK ΛQCD

93 120 300

Table 1.2: Decay constants and ΛQCD.

α and β are in the units of 10−8 and GF has a factor of 10−5

GF ( GeV−2) z0 α+ β+ αS βS

1.17 0.41 −20.6± 0.5 −2.8± 1.2 −5.2± 0.5 −0.5± 1.3

Table 1.3: Values of other phenomenological parameters.
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1.2 Transformation Properties of Various Quanti-

ties

Transformation of Σ and It’s Covariant Derivative

(Σ, DµΣ)
G7−→ L(Σ, DµΣ)R†

(Σ, DµΣ)
C7−→ (Σ†, DµΣ†)
P7−→ (ΣT , DµΣT )
T7−→ (Σ, DµΣ), if TΠT−1 = Π

Transformation of External Vector Fields

(lµ, rµ)
L7−→ L(lµ, rµ)L† + iL∂µL

†

(lµ, rµ)
R7−→ R(lµ, rµ)R† + iR∂µR

†

lµ
C←→ −rTµ , lµ

P←→ rµ, (lµ, rµ)
T←→ −(lµ, rµ)

Transformation of Left and Right Field-Strength Tensors

(Lµν , Rµν)
L7−→ L(Lµν , Rµν)L

†

(Lµν , Rµν)
R7−→ R(Lµν , Rµν)R

†

Lµν C←→ −RT
µν , Lµν P←→ Rµν , (Lµν , Rµν)

T←→ (Lµν , Rµν)

Transformation of Chiral Currents

(Lµ, Rµ)
L7−→ L(Lµ, Rµ)L†

(Lµ, Rµ)
R7−→ R(Lµ, Rµ)R†

Lµ C←→ −RT
µ , Lµ P←→ Rµ, (Lµ, Rµ)

T←→ (Lµ, Rµ)

Transformation of External Scalar Fields

χ transforms exactly like Σ.
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Chapter 2

Chiral Perturbation Theory

2.1 Spontaneous Breakdown of Chiral Symmetry

and Mesons

Let us begin with writing down the quark part of the mass-less QCD Lagrangian:

L 0
q = iq̄ /∂q (2.1.1)

where q is the quark spinor that also contains different flavors and colors but for

the moment we will just consider the lightest ones that is u and d. This Lagrangian

enjoys so called Chiral symmetry SU(2)L × SU(2)R × U(1)V × U(1)A
1, that will

become apparent when we write down the Lagrangian in terms of Weyl spinors:

L 0
q = iq†Lσ̄

µ∂µqL + iq†Rσ
µ∂µqR = iq̄L/∂qL + iq̄R/∂qR (2.1.2)

where, σµ = (1, σi) and σ̄µ = (1,−σi) and

γµ =

σ̄µ 0

0 σµ

 (2.1.3)

12 × 2 because we are considering only the lightest family of quarks. And V and A stand for

vector and axial.

9
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The Lagrangian is symmetric under the independent transformations:

qL 7→ L qL, qR 7→ R qR, L,R ∈ SU(2)L,R (2.1.4)

In practice there is a mass term,

L m
q = −mq q̄q = −mq (q̄LqR + q̄RqL) (2.1.5)

that breaks the independent left-right symmetry but preserves the vector symmetry,

that is the subgroup SU(2)V whose elements are L = R = V is still a symmetry

known as the isospin symmetry which is of course approximate because mu 6= md.

This whole scheme can be upgraded to 3-flavor case (u, d, s) and the symmetry

group will becomes SU(3)L × SU(3)R × U(1)V × U(1)A. For the moment if we

consider the masses of u, d and s quarks to be zero which is justified in comparison

to ΛQCD (almost true for u and d though) but it has been shown that [1] U(1)A is an

anomaly of the quantum theory while U(1)V is a symmetry and it leads to baryon

number conservation. So let us talk about the rest that is SU(3)L × SU(3)R. But

QCD vacuum condensate 〈q̄q〉 6= 0 breaks the chiral symmetry SU(3)L × SU(3)R

down to SU(3)V , the mechanism of which is not known but it is strongly believed

that the breakdown is a dynamical one [2] and the 8 broken generators create an

octet of massless Nambu-Goldstone bosons [3, 4] living in the coset space SU(3)L×
SU(3)R/SU(3)V . From 〈qq̄〉 we see that we need spin zero, isospin 1, parity odd 8

Goldstone bosons and in nature we have an octet of light mesons (π’s, K’s and η8
2)

that has this exact quantum numbers. In practice, u, d, and s are very light but

not massless making the original chiral symmetry an approximate one which is the

reason why mesons are light but not massless. So here we see two steps of symmetry

breaking:

• Massless QCD chiral symmetry spontaneously breaking down and creating

massless Goldstone bosons.

2the 9th meson, η kills everything because it is too heavy (mη′ ' 1 GeV), but we will not

discuss that here.
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• Quarks acquire masses through Higgs mechanism leading to further and ex-

plicit breaking of the chiral symmetry that finally gives masses to the original

Goldstone bosons (mesons).

Based on only these facts and parametrizing the coset space, a theory of very low

energy QCD, that is the theory of mesons [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. We will

consider the most popular parametrization, and start with the beautiful and the

most successful theory of mesons, that is the Chiral Perturbation Theory.

2.1.1 Parametrization of The Coset Space

There are infinite ways we can parametrize the coset space of course because there

are infinite directions the vacuum can choose that ultimately breaks the global sym-

metry, hence there are infinitely many ways the mesons can be parametrized and

of course it’s consistent with the equivalence theorem.3 That may sound depressing

but there’s a beautiful formalism called CCWZ [15, 16] which can save us(A review

on this worth mentioning can be found here [17]). We will talk about this now and

then will cherry-pick two most popular parametrizations.

CCWZ Formalism

In a theory where the global symmetry group G breaks down to a subgroup H,

the vacuum manifold is the coset space G/H, in our case G = SU(3)L × SU(3)R,

H = SU(3)V and the coset space is also isomorphic to SU(3). We would like to

choose a set of coordinates to describe the local orientation of the vacuum for small

fluctuation around the standard vacuum. Let us say Ξ(x) ∈ G be the element that

rotates the standard vacuum configuration to the local field configuration. But as

H is a residual symmetry, that is symmetry of the standard vacuum, hence Ξ(x)h

where h ∈ H also plays the same role as Ξ(x) does. CCWZ procedure is to pick a

set of broken generators Xa and parametrize the coset space as:

3Field redefinitions that preserves symmetries and 1-particle states allow classical EOM to

simplify local EFT operators without affecting the observables.
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Ξ(x) = eiX
aπa(x) (2.1.6)

where πa(x) are the pseudo-scalar meson fields. Under a global transformation

g ∈ G, Ξ(x) 7→ gΞ(x) and is not in the standard form any more and can be

expressed as:

gΞ(x) = Ξ′(x) h =⇒ Ξ(x) 7→ gΞ(x) h−1(g,Ξ(x)) (2.1.7)

Since g Ξ(x) and Ξ′(x) h describe the same field configuration differ by H, this h is

non-trivial because the Goldstone boson manifold G/H is curved. 2.1.6 and 2.1.7

together define the CCWZ parametrization. Any other parametrization (infinitely

many of them) will yield the same physics (S-matrix elements).

The generators of chiral symmetry (G = SU(3)L × SU(3)R ) are T aL and T aR

and that of the unbroken group (H = SU(3)V ) are T aL + T aR. There are two com-

monly used bases for writing down the effective Lagrangian called the ξ and the Σ,

meaning, there are two choices of broken generators that provides two most popular

paramtrizations of the coset space in terms of which chiral effective Lagrangian de-

scribing the dynamics of the goldstone bosons (8 mesons in this case) can be written

down and we will discuss them now.

The ξ Basis

This basis is defined by the choice Xa = T aL − T aR. If the G is represented in a block

diagonal form then any g ∈ G can be written as:

g =

L 0

0 R

 (2.1.8)

where L ∈ SU(3)L and R ∈ SU(3)R, the unbroken group (H) then can be repre-

sented by,
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h =

V 0

0 V

 (2.1.9)

With L = R = V . Then by CCWZ scheme we can parametrize the mesons as:

Ξ(x) = eiX·π(x) = exp

{
i

T aπa(x) 0

0 −T aπa(x)

} =

ξ(x) 0

0 ξ†(x)

 (2.1.10)

where T a are the SU(3) generators, can be Gell-Mann matrices and ξ = eiT
aπa and

the transformation law is:

ξ(x) 0

0 ξ(x)

 7→

L 0

0 R

ξ(x) 0

0 ξ†(x)

V−1 0

0 V−1


That gives:

ξ(x) 7→ Lξ(x)V−1(x) = V(x)ξ(x)R† (2.1.11)

which defines V in terms of L and ξ.

The Σ Basis

In Σ basis, the left generators are chosen as broken and so CCWZ gives:

Ξ(x) = eiX·π(x) = exp

{
i

T aπa(x) 0

0 0

} =

Σ(x) 0

0 1

 (2.1.12)

where Σ = eiT ·π and the transformation law takes the form:

Σ(x) 0

0 Σ(x)

 7→
L 0

0 R

Σ(x) 0

0 Σ(x)

V−1 0

0 V−1


That means,
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Σ(x) 7→ LΣ(x)R† (2.1.13)

Comparing this with Eq. (2.1.11) we can see that:

Σ(x) = ξ2(x) (2.1.14)

2.2 The Leading Order Chiral Lagrangian L ∆S=0
p2

From here on we will choose the Σ parametrization of the mesons unless it is specified

otherwise. Goldstone boson fields are angular variables and so dimensionless but to

write a Lagrangian for the mesons we need mass dimension 1 fields hence we cast

Σ in terms of a mass dimension 1 constant quantity f such that Σ is dimensionless

and the most popular parametrization is:

Σ(x) = e2iΠ(x)/f (2.2.15)

where Π(x) = T aπa(x) and tr[T aT b] = δab/2. For T a = λa/2 meson matrix takes

the form:

Π =
1√
2


π0/
√

2 + η8/
√

6 π+ K+

π− −π0/
√

2 + η8/
√

6 K0

K− K̄0 −2η8/
√

6

 (2.2.16)

We will soon see that f is the pion decay constant (∼ 93 MeV) and is related to the

quark condensate. Following points will guide us to construct a Lagrangian:

• The Lagrangian must be an invariant function of Σ(x), in variant both under

the chiral symmetry group and Lorentz group and must have right transfor-

mation properties under C and P .
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• As it describes a low energy theory of mesons, it must have an expansion

in terms of external momenta, that is equivalent to say that there will be

increasing number of derivatives at each higher order.

O(p0) order is just a function of ΣΣ† hence an uninteresting constant moreover,

there cannot be odd orders of momenta because of Lorentz invariance, hence:

L ∆S=0 = L ∆S=0
p2 + L ∆S=0

p4 + ... (2.2.17)

At O(p2) there is only one choice4

L ∆S=0
p2 =

f 2

4
tr[∂µΣ∂µΣ†] (2.2.18)

where the trace is in the flavor space of 3 × 3 matrices, pre-factor f 2 ensures that

the kinetic terms of pions and kaons have the right coefficients. This Lagrangian

can be used to calculate tree level amplitudes like π-π scattering etc. But before

that let us convince ourselves that f indeed is the pion decay constant.

2.2.1 The Chiral Currents

Noether left and right currents associated with SU(3)L.R can be obtained by con-

sidering infinitesimal left and right transformation of Σ by L = 1 + iεaL(x)T a+O(ε2)

under the left transformation Σ 7→ Σ + iεaLT
aΣ putting this in Eq. (2.2.18) we can

obtain the change in Lagrangian:

δL ∆S=0
p2 = L ∆S=0

p2 +
if 2

4
tr[2T aΣ∂µΣ†]∂µε

a
L +

if 2

4
tr[T a(∂µΣ∂µΣ† − ∂µΣ†∂µΣ)]εaL

(2.2.19)

Taking derivative of the change in Lagrangian with respect to ∂µεaL we obtain:

4As Σ is dimensionless and we are still in the chiral limit so no masses either, hence at O(p2)

only double derivative term that counts right and this is the only one.
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Laµ =
if 2

2
tr[T aΣ∂µΣ†] (2.2.20)

When we expand Σ we find:

Laµ =
if 2

2
tr[T a1T b

−2i

f
∂µπ

b] + ...

=
f

2
∂µπ

a (2.2.21)

And so

〈0| Laµ |πb(p)〉 = −if
2
pµδ

ab + ... (2.2.22)

which proves that f is indeed the pion decay constant at leading order and we call

f |p2 = Fπ. Measuring the decay π → µν we can fix f ∼ 93 MeV at this order.

Similarly under right transformation we get:

Ra
µ =

if 2

2
tr[T aΣ†∂µΣ] (2.2.23)

The axial current in terms of pion fields appears as:

jµaA = Rµa − Lµa (2.2.24)

=
if 2

2
tr[T a(Σ†∂µΣ− Σ∂µΣ†)] (2.2.25)

=
if 2

2
tr[T a(1

2i

f
T b∂µπb + 1

2i

f
T b∂µπb)] + ...

= −2f tr[T aT b]∂µπb + ...

= −f∂µπa + ... (2.2.26)

Before dealing with the masses let us pause for a moment and try to understand

whatever we have achieved till now. Two questions:

1. This Lagrangian has an expansion in low momenta, but low with respect to

what ?
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2. It is an infinite series with all possible diagrams, how do we determine what

are the relevant contributions ?

3. What about perturbative unitarity and loops and so divergences ?

We have to understand the counting rules to answer these questions. At first we

will take a naive approach and then will introduce more formal analysis [7].

Low Momentum Expansion and Naive Dimensional Counting

As we have already seen that the chiral Lagrangian is a series in number of derivatives

involved so from dimensional counting we expect that coefficient of a term involving

n numbers of derivatives will behave like Λ4−n
χ , where Λχ is the scale of our chiral

EFT. Therefore, such a vertex will look like pn/Λn−4
χ , so if we restrict ourselves to

momenta p� Λχ we just have to consider a few terms in the momentum expansion of

the Lagrangian and needless to say Lp2 will be the leading term with first correction

coming from Lp4 and so on.

Loops and Chiral Symmetry Breaking Scale Λχ

At a first glance it would appear that our dimensional counting logic is shattered by

the loops ! For example we may expect that at O(p4), two of momenta are external

and two internal that gets integrated leading to a disastrous behavior p2/Λ4−4
χ ! For-

tunately, that never happens. Let us consider an example to illustrate this before

going into a more formal proof.

Let us consider the loop diagram of Fig. 2.1 that contributes to π+-π0 scattering:

If we use O(p2) vertices then we have one f 2 pre-factor in each vertex from the

Lagrangian and 1/f coming with each pion field from the expansion of Σ hence an

over all factor of 1/f4 and for simplicity let us take all the external momenta to be

equal (p let us say). In that case each vertex will give us a set of terms like (p2, p·l, l2)

which will provide and overall numerator in the amplitude of the following form:
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π+

π0

π+

π0

π+

π0

Figure 2.1: Loop contribution to π+-π0 elastic scattering.

(p4, p2(pµl
µ), p2l2, pµpνl

µlν , pµl
µl2, l4) and then we have two denominators, if we

want to look at the UV divergence then let us consider the loop momenta to be very

high, that is l2 � p2, in that case:

〈π+π0|L ∆S=0
p2 |π+π

0〉loop ∼ 1
f4

∫
d4l
l4

(
p4, p2pµl

µ, p2l2, pµpνl
µlν , pµl

µl2, l4
)

∼
(
p
f

)4 ∫ (
d4l
l4
, pµ
p2

d4l lµ

l4
, 1
p2
d4l
l2
, pµpν

p4
d4l lµlν

l4
, pµ
p4

d4llµ

l2
, d

4l
p4

)
All these terms in side the parenthesis are visibly dimensionless and the only quantity

that has a dimension is p, hence the integral of the parenthesis must be expressible

in terms of a dimensionless function of the external momenta.

〈π+π0|L ∆S=0
p2 |π+π

0〉loop ∼
(
p

f

)4

f(p2/µ2) (2.2.27)

where µ is some momentum scale, now if we would have used dimensional regular-

ization with space-time dimension d then we had to use:

∫
d4l→ µ(4−d)

∫
ddl (2.2.28)

And so we would have found that function f(p2/µ2) to be a logarithm plus dimen-

sionless numbers and pole type divergence. Hence we can see that this loop does

behave like p4 and not p2. With each 1/f2 factor entering at each vertex enters a

p2 to maintain the dimensionless nature of the amplitude, a higher order loop will

have more vertices so more such 1/f2 factors hence more p2 factors too, therefore the

initial notion of counting rule is ok. We will come up with a more formal proof in a

moment but let us estimate the scale of our EFT.
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The scale Λχ: Considering a tree diagram we can see 〈π+π0|S |π+π
0〉tree ∼ p2/f 2

while the loop result as we have seen shows a behavior p4/f4 that means the loop is

suppressed by a factor of p2/f2 and of course 1/16π2 is always there with every loop,

hence a loop is suppressed by a factor of p2/(4πf)2 and so we can guess Λχ ∼ 4πf ∼ 1

GeV.

2.2.2 Weinberg’s Power Counting

A general diagram at order pn will look like the one shown in Fig. 2.2, which has mi

vertices coming from L ∆S=0
pi where i = 2, 4 ..., it has l number of loops, I number

of internal lines.

Figure 2.2: A generic loop at O(pn).

Corresponding generic amplitude will have the following form:

A =

∫
(d4p)l

1

(p2)I

∏
n

(pn)mn (2.2.29)

where p is a generic momentum. In mass independent subtraction scheme (MS,

MS etc), external momenta are the only dimensional parameters so A ∼ pD, where,

D = 4l− 2I +
∑
n

nmn (2.2.30)

But number of internal lines is related to the number of vertices and loops by the

following relation:
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∑
n

mn − I + l = 1 (2.2.31)

Combining Eq. (2.2.30) and (2.2.31) we have,

D = 2 + 2l +
∑
n

(n− 2)mn (2.2.32)

The Lagrangian series starts at O(p2) so of course n ≥ 2, and hence Eq. (2.2.32)

contains only non-negative terms so only finite number of terms are needed at any

fixed momentum order, which is the EFT definition of renormalization.

Summary:

• At O(p2) of course there can only be tree level contributions.

• Unitarity demands loops that comes at O(p4), vertices in the loop will come

from Lp2 while there will be tree contributions from Lp4 which will renormalize

the loop diagrams.

2.2.3 Classical Sources and The Explicit Breaking of Chiral

Symmetry

So far we have been treating the quarks (u,d and s) as massless and the effective

theory was also built on chiral symmetry, but in nature this symmetry is only

approximate, the fact that these three quarks are very light can be used to treat the

mass term in QCD as a perturbation but then this breaking of the chiral symmetry

will manifest itself in the long distance theory, the chiral perturbation theory, as a

breaking of the symmetry there too generating masses of the mesons.

The Spurion Trick

The trick is to plug in a classical and external gauge field (or a bunch of them if

necessary) to the QCD Lagrangian and replacing the partial derivatives with corre-
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sponding covariant derivatives in such a way that the chiral symmetry is preserved,

this scheme then will be translated down to the EFT and everything will be fine until

we freeze the gauge field leading to an explicit breaking of the chiral symmetry, this

field then will be re-interpreted as the quark mass matrix in the QCD Lagrangian

which will generate the meson masses too in the low energy effective theory.

Let’s start with the QCD Lagrangian with a triplet of light quarks (q = u, d, s):

LQCD = L 0
QCD + q̄γµ(vµ + aµγ5)q − q̄(s+ ipγ5)q

= L 0
QCD + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄R(s+ ip)qL

−q̄L(s− ip)qR (2.2.33)

where L 0
QCD is the QCD Lagrangian when quark masses are zero, vµ, aµ, lµ, rµ, s

and p are classical Hermitian 3× 3 matrices:

rµ = vµ + aµ, lµ = vµ − aµ (2.2.34)

Through rµ and lµ gauge fields QCD achieves now SU(3)L×SU(3)R gauge symmetry

where these fields are also the sources of the Noether currents. This theory is

invariant under the following transformations:

qR 7→ R qR

qL 7→ L qL
(2.2.35)

Transformation of the vector and scalar fields and related quantities are listed in

section 1.2 of Chapter 1. Same symmetry can be carried out to the low energy EFT

by letting these classical source fields to interact with the low energy theory through

minimal coupling, that is:

∂µΣ 7→ DµΣ = ∂µΣ− ilµΣ + iΣrµ, DµΣ† = ∂µΣ† − irµΣ† + iΣ†lµ (2.2.36)
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We already know the Noether’s currents corresponding to this gauge symmetry but

we can identify again by using the covariant derivative in the effective Lagrangian

and then looking for the currents that couple to the left and right gauge fields and

we can cast them in the following form:

(Lµ)ij =
if 2

2

[
(∂µΣ)Σ†

]
ji

(2.2.37)

(Rµ)ij =
if 2

2

[
(∂µΣ†)Σ

]
ji

(2.2.38)

here i, j are the flavor indices and to achieve the above results we used the cyclic

property of trace and the fact that Σ is unitary.

Mesons Acquiring Masses

To introduce masses we have to break this symmetry and we know what breaks the

chiral symmetry in QCD it is the mass term q̄LMqqR + h.c, where:

Mq =


mu 0 0

0 md 0

0 0 ms

 (2.2.39)

As s and p always enters as s ± ip we can name these two combinations χ and χ†.

Now at the lowest order we can create the unique invariant that can be added to

the chiral Lagrangian:

L χ
p2 = B0 tr[Σ†χ+ χ†Σ] (2.2.40)

Setting s = Mq, p = 0 produces the mass term in QCD Lagrangian and of course

breaks the chiral symmetry because S and P do not transform any more. This

one the other hand generates meson masses in the chiral Lagrangian and B0 is

proportional to the quark condensate 〈q̄q〉. Expanding Σ in terms of meson fields

we can obtain their masses:
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m2
π = 4B0

f2 m+O((mu −md)
2) ' mB0

m2
k = 2B0

f2 (m+ms) +O((mu −md)
2) ' 1

2
ms B0

m2
η = 4B0

f2 (m
3

+ 2ms
3

) +O((mu −md)
2) ' 2

3
ms B0

(2.2.41)

Here we have used the following substitution: 4B0/f2 = B0. Eq. (2.2.41) recovers

the Gell-Mann Okubo relation [18, 19, 20] :

3m2
η +m2

π = 4m2
K (2.2.42)

We have considered the isospin limit5 mu = md = m and ignored weak and elec-

tromagnetic effects and assumed isospin invariance. At the leading order, chiral

Lagrangian takes the following form:

L ∆S=0 = L ∆S=0
p2 =

f 2

4

(
tr[DµΣDµΣ†] + B0 tr[Σχ† + Σ†χ]

)
(2.2.43)

s = Mq, p = 0 =⇒ χ = Mq choice no longer allows the fields to transform and hence

breaks the chiral symmetry explicitly through gauge fixing, this choice reproduces

the mass term in QCD and leads to mass term in chiral effective theory too. We

have new expansion parameters in our theory, the quark masses and before we move

on we should specify the counting powers of the new source fields in general, lµ and

rµ counts like derivatives (O(p)) can be understood from their transformations and

from the masses of mesons we can see χ is O(p2).

We are now ready to discuss the next to leading order Lagrangian with which

comes loops and of course the renormalization that deserves a separate section.

2.3 O(p4) Strong Lagrangian

As discussed in the last section, we need loops for unitarity and indeed loops can

be constructed using O(p2) vertices but these are divergent hence we need counter-

5A chiral limit would be mu = md = ms = 0
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terms which is why we need O(p4) Lagrangian. Based on the arguments that drove

to the leading order Lagrangian the most general form of the next to leading order

effective Lagrangian can also be obtained that is constructing invariants of O(p4)

out of Σ and χ but at this order field-strength tensors can also be used which was

not possible earlier because they are O(p2) and needs contractions of two indices

which is only possible by considering 1) two gauge fields or 2) two derivatives or

3) one field-strength tensor, that precisely means O(p4). We will not go into the

construction but will directly write it down [5]:

L ∆S=0
p4 = L1

{(
tr[DµΣDµΣ†]

)2
+ L2 tr[DµΣDνΣ

†] tr[DµΣDνΣ†]

+ L3 tr[DµΣDµΣ†DνΣDνΣ
†] + L4 tr[DµΣDµΣ†] tr[Σχ† + χΣ†]

+ L5 tr[DµΣDµΣ†(Σχ† + χΣ†)] + L6

(
tr[Σχ† + χΣ†]

)2

+ L7

(
tr[Σχ† − χΣ†]

)2
+ 4µ2L8 tr[Σχ†Σχ† + χΣ†χΣ†]

− iL9 tr[RµνD
µΣDνΣ

† + LµνDµΣ†DνΣ] + L10 tr[ΣLµνΣ†Rµν ]

+H1 tr[LµνLµν +RµνRµν ] + 4µ2H2 tr[χχ†]
}

(2.3.44)

where Lµν ,Rµν are the field strength tensors corresponding to the gauge field lµ, rµ

respectively. As Hi terms involve only external fields they are not physical.

2.3.1 The Low Energy Constants (LEC)’s

The Li’s and Hi’s are constants and in principle can be derived from the underlying

theory that is QCD that requires a “matching” which involves non-perturbative

QCD, a full calculation of this sort have never been achieved but some QCD inspired

models [21, 22, 23, 24], vector meson resonance saturation [25, 26, 27, 28, 29] and

lattice calculations [30, 31] along with experiments were able to fix these values to

some extent. Although a complete long distance and short distance QCD matching

is still unavailable, present work is an attempt to understand and apply one such

matching technique that we will discuss later in detail.
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LEC’s and Renormalization

From Weinberg’s counting argument we have already seen that O(p2) Lagrangian

leads to O(p4) loops hence the divergences cannot be absorbed into the renormal-

ization of the known parameters f and B0 ! We need these Li’s to absorb the

divergences of one loop, this has been achieved by Gasser and Leutwyler [5] and

they are listed below:

Li = Lri +
Γi

32π2
Rε, i = 1, ..., 10, (2.3.45)

(2.3.46)

Γi’s are listed in the table 2.1 and Rε is defined in Eq. (B.1.1).

Coefficient Experimental Values Γi

Lr1 0.4± 0.3 3/32

Lr2 1.35± 0.3 3/16

Lr3 −3.5± 1.1 0

Lr4 −0.3± 0.5 1/8

Lr5 1.4± 0.5 3/8

Lr6 −0.2± 0.3 11/144

Lr7 −0.4± 0.2 0

Lr8 0.9± 0.3 5/48

Lr9 6.9± 0.7 1/4

Lr10 −5.5± 0.7 −1/4

Table 2.1: Renormalized LEC’s in units of 10−3 at the scale µ = mρ [32]

L ∆S=0
p4 contains redundant terms that can be eliminated using equations of motion

but we will not discuss it here. We will also not discuss Wess-Zumino-Witten action

as it is out of the scope of this whole study but this discussion can be found here

[11].
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2.4 Application of The Strong Lagrangian

Strong chiral Lagrangian can be applied to various processes but we will consider

the following examples:

• Wave function renormalization.

• Pion and kaon electromagnetic form factors.

Because these are the ones that we will need in these study. And we will consider

only O(p2) Lagrangian because the reason for this will become clear in Chapter 4.

Feynman rules for relevant vertices corresponding to the Lagrangian in Eq. (2.2.43)

are given in Appendix A.

2.4.1 Wavefunction Renormalization (WFR)

Diagram that contributes to WFR is shown in Fig. 2.3.

K(k), π(p) K(k), π(p)

K, π, η(l)

Figure 2.3: Loop contribution to wavefunction renormalization.

At O(p4) the self-energy of a meson field Π can be expressed in terms of the constants

aΠ and bΠ as:

ΣΠ(p2) = aΠ + p2bΠ (2.4.47)

Fig. 2.3 contributes to these constants and they also have tree level contributions

from L ∆S=0
p4 that we will not consider here. bΠ by definition is:
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Σ′Π(p2) =
∂ΣΠ

∂p2
= BΠ (2.4.48)

where −iΣΠ(p2) is all the 1-PI diagrams that contribute at 1-loop level and Π rep-

resents any meson field. So we need to multiply all the loop results by i to retrieve

aΠ and bΠ hence ΣΠ
6.

Wavefunction renormalization constant for the field Π is defined as:

ZΠ =
1

1− Σ′(M2
Π)

(2.4.49)

where MΠ is the physical mass of the field Π. Although we have carried out this

calculation ourselves7 but this exists in many reviews including this one [11] so we

can directly state the values of aΠ and bΠ below:

bπ =
1

3f 2

[
A(m2

K) + 2A(m2
π)
]

aK =
1

4f 2
{A(m2

π) + I(m2
η) + 2A(m2

K)}

Hence the pion and kaon wavefunction renormalization (WFR) constants are:

Zπ =
1

1− Σ′(p2 = m2
π)

=
1

1− bπ
= 1 + bπ +O(p4)

' 1 +
1

3f 2

[
A(m2

K) + 2A(m2
π)
]

ZK =
1

1− Σ′(k2 = m2
K)

=
1

1− bK
= 1 + bK +O(p4)

' 1 +
1

4f 2
{A(m2

π) + A(m2
η) + 2A(m2

K)}

The integral A(m2
i ) is the one-point function defined in [33] and is evaluated in

Appendix B. Of course one needs the contributions from tree diagrams coming from

6 For the lack of symbols we have to use Σ for both the exponential representation of mesons

as well as self energy, but there will be suffix Π = π, K etc and this ambiguity will be limited to

this subsection only
7Unrenormalized.
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O(p4) Lagrangian given by Eq. (2.3.44) to remove the divergences, we will come

back to this regularization issue in Chapter 4. We will need the quantity
√
ZKZπ so

we better write it down below in the limit m2
π � m2

K and up to O(1/f2):

√
ZKZπ = 1 +

1

(4πf)2

{
M2 − 5

12
m2
K log

(
1 +

M2

m2
K

)
− 1

8
m2
η log

(
1 +

M2

m2
η

)}

(2.4.50)

2.4.2 Off-Shell Pion and Kaon Electromagnetic Form Factors

Pion and kaon electromagnetic form factors are calculated in details in many places

for example in [34] and in [14], hence we will write down the un-renormalized results

in the following form:

= i e ε∗(q) · (pi + pf )

[
1 +

1

(4πf)2

(
FΠ

0 (M2) + z FΠ
1 (M2)

)

+ ...

]
+ ε∗(q) · q-terms.

(2.4.51)

Where Π = π+, K+ the ellipses represent terms higher order in z and ε · q-terms are

irrelevant for us. And:

F π+

0 (M2) =−M2 +
1

3
m2
K log

(
1 +

M2

m2
K

)
+O(m2

π/M
2) ' −M2

FK+

0 (M2) =−M2 +
m2
K

4
log

(
1 +

M2

m2
K

)
+
m2
η

4
log

(
1 +

M2

m2
η

)
+O(m2

π/M
2) ' −M2

(2.4.52)

The fact that F0’s get killed by WFR is apparent from Eq. (2.4.52) and (2.4.50).
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But the following survive:

F π+

1 (M2) =
m2
K

3

{
4 + log

(
1 +

M2

m2
π

)
+

1

2
log

(
1 +

M2

m2
K

)}
+O(m2

π/M
2)

FK+

1 (M2) =
m2
K

3

{
4 + log

(
1 +

M2

m2
K

)
+

1

2
log

(
1 +

M2

m2
π

)}
+O(m2

π/M
2)

(2.4.53)

Where we have used SPCR regularization method discussed in Appendix B and

used the correspondence given by Eq. (B.3.27) and (B.3.28) to extract the cut-off

(M2) divergence from dimensionally regularized results of the references mentioned

above. In chapter 3 and 4 we will see that the energy rangeM = 0.6-0.9 is of special

relevance, and in that range we can approximate:

FK+

1 (M2) ' 1.2F π+

1 (M2) ' m2
K

3

(
4 +

3

2
log

M2

m̃2

)
(2.4.54)

Where m̃ = 0.3 GeV. If we apply the WFR, then we have:

= i e ε∗(q) · (pi + pf )
(

1 +
z

(4πf)2
FΠ

1 (M2)
)

+ ...

' i e ε∗(q) · (pi + pf )
r2
V

r2
V − z

(2.4.55)

Where we have approximated the form factors using a pole like function. If we plot

this for Pion case (Fig. 2.4) in the range of interest that we mentioned then we

obtain the value of mV ' 0.78, which is excellent. In fact this tells us why this

range of scale is crucial, because this is the scale where vector mesons start to enter

the dynamics and so of course this is obvious that exactly around the ρ mass we

found the matching with the experimental value of it.

But we will also need the unrenormalized approximate form factor in Chapter 4. So

we summarize:

F π+

0 (M2) ' FK+

0 (M2) ' −M2 = F0(M2)

F π+

1 (M2) ' FK+

1 (M2) ' m2
K

3

[
4 +

3

2
log

M2

m̃2

]
= F1(M2)

(2.4.56)
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Figure 2.4: Mass of ρ from a pole fit of the pion EM form factor.

Let us end the analysis of strong chiral Lagrangian for now later we will reboot

it in the context of long and short distance matching in chapter 4, where it will not

be quite the Chiral Perturbation Theory but the core will still be based on it.

2.5 Weak Chiral Lagrangian and The Kaons

In the Standard Model strangeness changing weak processes are mediated by W

boson, following the line of Fermi theory we can think of introducing such inter-

actions in the chiral Lagrangian as perturbation through current-current operators

that transforms properly under SU(3)×SU(3). And translating such a current from

the Standard Model itself can be carried out in a straight forward way through ex-

ternal source method that we already discussed in section 2.2.3. We will minimally

couple W -boson to the chiral Lagrangian through the covariant derivative and iden-

tify the currents attached to it both in Standard Model and the chiral Lagrangian.

From this current then we can build strangeness changing current-current operators.
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In the Standard Model [see Eq. (2.2.33)] quark-W interaction can be introduced

via the left handed external field:

rµ = 0, lµ = −g2

2
Wµ + h.c (2.5.57)

where g2 is the SU(2)L weak coupling constant and the charged W boson in this

basis takes the form:

Wµ =


0

√
2W+

µ Vud
√

2W+
µ Vus√

2W−
µ Vud 0 0

√
2W+

µ Vus 0 0

 (2.5.58)

So the interaction Lagrangian looks:

Lq−W = −g2

2
q̄Lγ

µWµqL (2.5.59)

Sum over colors and flavors is understood. And from Eq. (2.2.20) and (2.2.23) we

already know what the form of left handed current is that couples to lµ. Coupling

to photons8 can be introduced in the usual way by taking:

lµ = rµ = −eQAµ (2.5.60)

where

Q =
1

3


2 0 0

0 −1 0

0 0 −1

 (2.5.61)

is the quark charge matrix and Aµ is the electromagnetic gauge field, and we need

to just do the substitution ∂µ 7→ Dµ = ∂µ − ieAµ[Q, ] everywhere in the effective

theory, that is also in the current given by Eq. (2.2.37) and (2.2.38).

8Which leads to the familiar form of covariant derivative DΣ = ∂Σ + i eA [Q,Σ] and DΣ† =

∂Σ† + i eA [Q,Σ†] in ChPT.
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2.5.1 Leading Order ∆S = 1 Lagrangian

We have to again look back to the short distance structures of weak interaction to

construct operators in long distance theory, OPE and RG can be used to come down

from the top mass scale to a scale µ < 1 GeV [35, 36] construct the ∆S = 1 effective

Hamiltonian:

H ∆S=1
eff =

GF√
2
VudV

∗
us

∑
i

Ci(µ)Qi, GF =

√
2g2

2

8M2
W

(2.5.62)

The Wilson coefficients (Ci) were evaluated up to two loops so far [35, 37, 38, 39,

40, 41, 42]. The transformation ( under SU(3)× SU(3) ) properties of the current-

current 9 ((V − A)× (V − A)) four quark operators given in Eq. (3.2.18) guide us

to construct two terms with similar transformation properties at the leading order

with the current Lµ and this leads to an interaction Lagrangian:

L ∆S=1
p2 =

GF√
2
VudV

∗
usg8 tr[λLµLµ] + g27

(
Lµ23Lµ11 +

2

3
Lµ21Lµ13

)
+ h.c (2.5.63)

where λ = (λ6 − iλ7)/2 projects onto s → d sector. First term transforms as (8L, 1R)

and the second as (27L, 1R). We have two new LEC’s g8 and g27, short distance

analysis shows g8 � g27, this is popularly known as the “octet enhancement”. Ex-

perimentally, K → ππ decay fixes |g8| ' 5.1 10 and g27 ' 0.3, we will hence drop

the non-octet part from now on. And we will also introduce the following notation:

G8 =
GF√

2
VudV

∗
usg8 (2.5.64)

2.6 O(p4) Weak Lagrangian

It is easy to see that L ∆S=0 ∼ tr[LµLµ] = tr[RµRµ] which transforms as a singlet,

using this property and the transformation properties of ∆S = 1 Lagrangian We

9Electroweak penguin operators will be dealt with in the next chapter.
10We have reproduced this value of g8 inside our framework pretty reasonably in section 4.0.5

in the next Chapter.
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want to construct O(p4) Lagrangian that also must have the same transformation

property, that means L ∆S=1
p4 must transform as (8L, 1R) and (27L, 1R). We will not

discuss in detail the construction of O(p4) weak Lagrangian here as in our actual

calculation we will not require O(p4) local terms in the Lagrangian, we will not list

down all the possible terms which has been nicely done by [43, 44, 45] but when we

discus a particular weak decay the relevant interaction terms will be used. Here we

will try to have a basic idea about how one can construct the Lagrangian from the

building blocks which in the current-current sector are:

The currents Lµ,Rµ which are O(p)

Field strength tensors Lµν ,Rµν are O(p2)
(2.6.65)

Then we have the matrix λ = (λ6 − iλ7)/2 that projects onto s-d sector. So we need

to contract the Lorentz indices to construct O(p4) invariants and then project them

with λ and take one trace or product of two trace terms. So the Lagrangian will

look like:

L ∆S=1
p4 ∼ tr[λLµLµLνLν ] + tr[λLµLνLµν ] + tr[λLµνLµν ]

+ double trace terms + all possible distinct permutations

The full list of all the O(p4) ∆S = 1 terms are derived by [46, 43] which we will not

discuss in detail here and we also do not need them for the present study.

2.7 Kaon Decays In ChPT

There are so many reasons that motivate us to study the decay of kaons, in fact

kaons played the key role in the construction and development of the Standard

Model and it is the window to new physics too. In the discovery of Strangeness

[47, 48], parity violation [49, 50], meson-antimeson mixing [51, 52], quark mixing

[53, 54], CP violation [55], suppression of FCNC and the GIM mechanism [56], kaon

decays played the most important role. A comprehensive review was done [57] but

they did not include processes forbidden under SM while rare decays are discussed

in [58, 59].
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2.7.1 K → ππ and The ∆I = 1/2 Rule

Bose symmetry tells us that in the decays K → ππ, the S-wave final state has two

basic modes: total isospin 0 or 2, hence such decays can be parametrized as:

A(K0 → π+π−) = A+− = A0e
iχ0 +

1√
2
A2e

iχ2 (2.7.66)

A(K0 → π0π0) = A00 = A0e
iχ0 −

√
2A2e

iχ2 (2.7.67)

A(K+ → π+π0) = A+0 =
3

2
A+

2 e
iχ+

2 (2.7.68)

We have three kinds of basic amplitudes here, A0 corresponds to I = 0 final state

where as we have two different amplitudes describing I = 2 state, latter two are equal

if there is no ∆I = 5/2 contribution which is expected to come from electromagnetic

corrections, but if we neglect electromagnetic corrections thenA0 = A+0, experiment

suggests:

|A(K0 → π+π−)| = 5.56× 10−7mK (2.7.69)

|A(K0 → π0π0)| = 5.28× 10−7mK (2.7.70)

|A(K+ → π+π0)| = 3.72× 10−8mK (2.7.71)

Experimental fit of π − π scattering suggests δ0 − δ2 ' 45°and in this case there is

a ∆i = 5/2 contribution but for δ0 − δ2 ' 57°it is not there. If we consider only the

isospin amlitudes then

∣∣∣∣A0

A2

∣∣∣∣ ' 22 (2.7.72)

This dominance of ∆I = 1/2 amplitude is known as the ∆i = 1/2 rule [60, 61, 62, 63,

64, 65, 66]. The origin of this rule can be traced back to the short distance dynamics

that is QCD, and we will attempt to understand this in the next chapter.
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2.7.2 K → πl+l− Decay

This process have been calculated at O(p4) by [67] but we have used a different

method which makes the problem simpler, the trick was suggested by them but

used in another problem [68] not in this one. It is well known that this decay is

dominated by photon exchange, that is K → πγ∗ → K → πl+l− which is why

this is forbidden at leading order Chiral Perturbation Theory even if the photon is

off-shell. Leading order Lagrangian describing this process is of course:

Lp2 = L ∆S=0
p2 + L ∆S=1

p2 (2.7.73)

No O(p2) Amplitude: Reason-I

Consider the most general form of the amplitude allowed by Lorentz and gauge

invariance:

A(K(k)→ πγ∗(q)) = eW (q2) (εµ(q)qν − εν(q)qµ) (kµpν − kνpµ) (2.7.74)

where W (q2) is the dynamical unknown lorentz invariant function of photon mo-

mentum. We can clearly see that the amplitude requires three external momenta

but leading order chiral Lagrangian can only offer only two !

No O(p2) Amplitude: Reason-II

If we diagonalize the kinetic and mass term simultaneously11 by a transformation

that mixes kaons and pions then gauge invariance removes also kπγ vertex12 vertex

as a consequence. Hence there’s no tree level vertex present in our leading order

Lagrangian to ask for a contribution ! This is the trick that we will use to simplify

the problem.

11Which can always be done and is well known.
12Because kinetic term involves covariant derivatives through which photon field couples to

mesons.
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O(p4) Calculation

The amplitude given by Eq. (2.7.74) can be cast into a more convenient form as:

A(K(k)→ πγ∗(q)) = e
W (z)

(4π)2
[z(k + p)µ − (1− r2

π)qµ]ε∗µ(q) (2.7.75)

rπ, z are defined in Eq. (1.1.1). Ecker, Pick and de Rafael [67] argued the following

that we are going to apply too:

1. In Lorentz (Landau) gauge, terms proportional to qµ do not contribute to

the process K → πl+l− so we can drop all the diagrams and terms that are

proportional to qµ and consider only those who provides us with (k + p)µ

component.

2. We can also restrict ourselves to the diagrams that can give us factors of q2

because of the form of the amplitude given by Eq. (2.7.75).

3. Diagonalizing the kinetic and mass terms simultaneously in the Lagrangian

(see Eq. (2.7.73)) we can remove all the bilinear mixed terms that is Kπ-terms

and through co-variant derivative KπAµ terms will also disappear leading to

no diagrams involving kπ and kπγ vertices.

These two arguments reduces a lot of diagrams and leaves us with just two and also

in these two diagrams qµ can be dropped, furthermore, qµqν term in the photon

propagator will not contribute either. So the final amplitude will look like:

〈l+(p+)l−(p−)π(p)|Lp2 |K(k)〉 = − αe
4πm2

K

W (z) (k + p)µ [ūl(p−)γµvl(p+)]

(2.7.76)

where α = e2

4π
.
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All possible loop diagrams are shown in Fig. 2.5 and then by the diagonalization

argument we can remove the diagrams that involve K-π and/or K-π-γ vertices,

finally we will list the remaining diagrams in two categories:

• Type-I: Diagrams that do not provide a factor of q2 shown in Fig. 2.6

• Type-II: Diagrams that a factor of q2 shown in Fig. 2.7

Question of Gauge Invariance

One might ask, Type-I diagrams are not zero and if we do not calculate them then

how come ward identity will be satisfied by Type-II diagrams alone ? The answer

is, we will not explicitly calculate Type-I diagrams but they will not be discarded

completely but will be included indirectly by the virtue of another trick used in [67]

that we will discuss and describe now. If we consider the first diagram of the Type-I

(Fig. 2.7), the photon vertex can only contain terms like ε∗·(k, p) and the four-meson

vertex can be either be proportional to square of either the loop momentum (l2) or

the external momentum (p2), other kinds will vanish due to Lorentz invariance.

Now the non-zero terms coming from the second diagram of Type-I contains just

one vertex that has to be of the form ε∗ · (k, p) that is why they do not produce a

factor of q2 while Type-II can have both q2 and q2-less terms, so schematically we

can write:

Type-I ∝ (k + p)µf0(mπ,mK) + ... (2.7.77)

Type-II ∝ (k + p)µ [f1(mπ,mK) + q2 f2(mπ,mK)] + ... (2.7.78)

Ellipsis represent the qµ terms which will not contribute in the end and f, g amd

h are some functions of the masses, exact forms of which are not important at the

moment. So the amplitude will be:

i 〈γ∗(q)π(p)|L ∆S=1 |K(k)〉 ∝ Type-I + Type-II (2.7.79)
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Figure 2.5: List of all possible diagrams before diagonalization of bilinear terms in

the leading order chiral Lagrangian.

And gauge invariance requires lim
q2→0

i 〈γ∗(q)π(p)|L ∆S=1 |K(k)〉 = 0, this suggests:

lim
q2→0

Type-I = − lim
q2→0

Type-II

=⇒ Type-I = − lim
q2→0

Type-II (2.7.80)

Last line is true because Type-I does not have any q2 in it so does not get effected

by the limit. This result is remarkable, because we can now substitute Type-I

contribution in terms of Type-II in Eq. (2.7.81) and get:
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A(K → πγ∗) ∝ Type-II− lim
q2→0

Type-II (2.7.81)

Which of course says that the function f0 = −f1, but we just proved that we do not

need them we only need to find the function f2. This is exactly the trick that we

promised above to describe.

Figure 2.6: Type-I diagrams that do not provide q2.

K, πK, π

K(k) π(p)

γ(q)

Figure 2.7: Type-II diagrams that do provide q2.

Loop Calculations

Contribution of the Type-II diagrams can be written down as:

i 〈π+(p)γ∗(q)|Lp2 |K+〉 =

∫
d4l

(2π)4
i

K+(k)

π+(p)

K+, π+(l)

K+, π+(l − q)

l2 −m2
π + i0+

× i
K+, π+(l)

K+, π+(l − q)

γ(q)

(l − q)2 −m2
π + i0+

(2.7.82)

Another trick: Before we actually calculate this we must consider another trick

that simplifies the problem further. Let us consider the general structures of the
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two relevant vertices:

K+(k)

π+(p)

K+, π+(l)

K+, π+(l − q)

∼ a0 + a1 (k + p)µl
µ + a2 l

2 (2.7.83)

K+, π+(l)

K+, π+(l − q)

γ(q) ∼ ε∗ν(b0 q
ν + b1 l

ν) (2.7.84)

where a’s and b’s are l-independent Lorentz invariant constants. The product of

the above vertices will enter the integral (Eq. (2.7.82)), and except the product

of terms linear in the loop momenta coming from both vertices, every other term

will finally be proportional to ε∗µqµ which as we discussed earlier, does not have any

contributions in the end. So we just need to consider only the terms in the two

vertices which can give just one lµ, then the product of two vertices will be lµlν kind

which when integrated can produce the important term proportional to gµν and

another irrelevant term proportional to qµqν . Hence it is also clear that any term in

the Lagrangian that does not contain any derivative will not contribute either, such

an irrelevant term could appear from the (symmetry breaking) mass term of the

strong Lagrangian, that is the χ term in Eq. (2.2.43) due to the field redefinition

discussed in section A.2. In fact this is the reason we did not provide any Feynman

rules in Appendix A.

Using the vertex rules given by Eq. (A.2.14) and (A.1.6) we have:

〈π+(p)γ∗(q)|Lp2 |K+〉 =− 2 eG8 (k + p)µε
∗
ν

×
∫

d4l

(4π)4

lµlν

[l2 −m2
π + i0+][(l − q)2 −m2

π + i0+]

=− 2 eG8 (k + p)µε
∗
ν q

2gµν
[
B21(q2,m2

π)

+ B21(q2,m2
K)
]

(2.7.85)

here we have dropped the q · ε∗ terms. The function B21(q,m2
1,m

2
2) of one and two

point functions [33] have been evaluated in Appendix B. Of course Eq. (2.7.85)

is not the full contribution to the one loop amplitude, we need to apply the trick

discussed in section 2.7.2 that is we need to subtract from the above result its q2 → 0

limit. Hence finally the one loop contribution to the amplitudeK+(k)→ π+(p)γ∗(q)

(without counter terms) is given by:
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〈π+(p)γ∗(q)|Lp2 |K+〉 =− 2 eG8 (k + p)µε
∗µ

{
q2
∑
i=π,K

B21(q2,m2
i )

− lim
q2→0

[
q2
∑
i=π,K

B21(q2,m2
i )

} (2.7.86)

Comparing this with Eq. (2.7.75) we can extract the one loop contribution to the

form factor(unrenormalized):

W+(z) =− G8
32π2

z

{
q2
∑
i=π,K

B21(q2,m2
i )

− lim
q2→0

[
q2
∑
i=π,K

B21(q2,m2
i )

}

=− m2
K G8

(
χ(z/r2

π) + χ(z) +
1

3
log

mπmK

M2
− 2θ

)
(2.7.87)

where θ is a constant that depends on the regularization scheme, for example θ =

5/18, 1/6, 0 in Naive Momentum Cut-off Regularization (NCR), Symmetry Preserving

Cut-off Regularization (SPCR)13 and Dimensional Regularization respectively. We

will keep this general form so that one can use whatever regularization method

and replace the loop integrals inside B21 (Appendix B) and we are not interested

in renormalizing the results yet by using the counter term Lagrangian given by Eq.

(2.3.44), the reason for this is discussed in section 3.2 of Chapter 3. For completeness

though we would like to write down the following form of the form factor:14

W+(z) =− m2
K G8

(
χ(z/r2

π) + χ(z) +
1

3
log

mπmK

M2

)
(2.7.88)

where the function χ(z) is given in Eq. (B.2.4) of Appendix B. One can easily

obtain the loop contribution to the final amplitude for the process K+ → π+e+e−

by plugging in W+(z) given by Eq. (2.7.87) in Eq. (2.7.76).

13Details can be found in Appendix B.
14Here dimensional regularization was used hence θ = 0
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Before we end this chapter we need to discuss a very beautiful calculation of the

above amplitude at O(p6) (partial) by using the unitarity property of the S-matrix

element. And in fact this dispersive calculation and its results play the most crucial

role in our whole work.

Figure 2.8: One loop function χ(z) and χ(z/r2
π).

2.7.3 Unitarity and O(p6) Calculation of K → πγ∗ Form Fac-

tor

As the form factors Wi (i = +, S, L) are analytic functions of complex variable z

and they have the branch-cut that obviously starts at z = 4r2
π because the decay

K → πγ∗ starts at one loop and the lightest particles allowed to run in the loop

are the pions, and the leading contribution needs two pions in the loop, hence 4r2
π.

Because the final state is an electron-positron pair, the biggest contribution to the

amplitude should come from lightest pseudo meson pair: π+π− intermediate state.

D’Ambrosio et al. (DEIP) [69] used this argument and gave this ansatze for the
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form factor:

Wi(z) = GF m
2
KW

pol
i (z) +W ππ

i (z) (2.7.89)

where they also argued that the contribution of massive intermediate states can

all be expressed as a low order polynomial in z encoded in the function W pol
i (z)

and W ππ
i (z) is understandably the dominant pion-loop contribution. At the leading

order the polynomial part will be a constant although a tiny term linear in z will be

there for the kaon-loop and in fact we have already seen that the χ(z) function (Eq.

(B.2.4)) coming from the kaon loop is negligible (See Fig. 2.8) in the allowed region

(approximately 0-1) in comparison to χ(z/r2
π) coming from pion loop, this is because

the range gets enhanced by the huge factor of 1/r2
π. This is all well understood at

O(p4) in the chiral expansion. But their result has information of higher orders

and also of higher degrees of freedom entering through ai and bi, the expansion

parameters they used to parametrize the polynomial part of the form factor:

W pol
i (z) = ai + bi z , (i = +, S) (2.7.90)

They used the pion loop diagram of the Type-II diagrams shown in Fig. 2.7 using

using K → πππ amplitude expanded up to O(p4) to replace the Kπππ vertex. The

physical K → πππ amplitude expansion are given by:

A(K+(k)→ π+(p1)π+(p2)π−(p3)) = 2 ac + (bc + b2)Y + 2 cc (Y 2 +
X2

3
)

+ (dc + d2)(Y 2 − X2

3
)

A(KS(k)→ π+(p1)π−(p2)π0(p3)) =
2

3
b2X −

4

3
d2X Y

(2.7.91)

where,

X =
1

m2
π

(s1 − s2), Y =
1

m2
π

(s3 − s0), si = (k − pi)2, s0 =
1

3
(s1 + s2 + s3)

As this vertex is O(p4) of course the other vertex has to be taken up to that order

too to calculate a consistent amplitude at the order O(p6), and at O(p4) the pion

electromagnetic form factor can be written down as [14, p.174]:
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FV (z) =
r2
V

r2
V − z

= 1 +
z

r2
V

+O(z2/r4
V ) (2.7.92)

where V stands for the vector meson and so for the lightest vector meson ρ, rV =

mρ/mK ' 1.6.

O(p6) amplitude corresponding to the pion loop diagram of Type-II diagrams

(Fig. (2.7)) can be evaluated using dispersive integral up to a polynomial of the

form given in Eq. (2.7.90):

W ππ
i (z) =

1

3r4
π

[
3 r2

π (αi − βi) + βi (3 z − 1)
]
FV (z)χ

(
z

r2
π

)
(2.7.93)

χ(z) is the one loop function given in Eq. (B.2.4) and the values of the parameters

αi, βi are given in Table 1.3. Experimentally found [70, 71, 72, 73] values of the

DEIP [69] parameters for K → πl+l− are given in Table 2.2.

l a+ b+ |aS|
e 0.578± 0.016 0.779± 0.066 1.06+0.26

−0.21

µ 0.578± 0.016 0.779± 0.066 1.54+0.40
−0.32

Table 2.2: Experimental values of the parameters ai and bi.

Let us end this chapter here with an announcement that we have used the long and

short distance matching of the standard model through a matching scheme that we

will discuss in the next chapter and predicted the values of the a, b parameters in

Chapter 4 which are in good agreement with the experimental values.
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Chapter 3

Long and Short Distance Matching

What we did in the last chapter was an example of “Bottom Up” effective field

theory, that is we start at a very low energy (long distance) scale and construct a

Lagrangian looking at the symmetry and symmetry breaking structure of a theory

that lies at very high energy (short distance) scale. One might ask, “There could be

many such high energy theories who share the same symmetry structure with QCD

then how is our effective theory unique ?” The answer is, it is indeed not unique,

there are unknown low energy parameters (LECs) that can assume different values

that will connect them to different high energy theories. But once we fix them by

fitting with experiments or matching the EFT with one of the high energy theory,

it becomes unique.

Now we will do exactly the opposite, we will start with QCD and will come down

step by step in energy scale and will construct a “Top Down” effective field theory

based on the method called Operator Product Expansion (OPE). Our aim will be to

construct ∆S = 1 Lagrangian at a scale as low as ∼ 1 GeV, which is possible because

of the nice asymptotic freedom of QCD that will allow us to treat it pertubatively

at high energy scales (mt down to ∼ 1 GeV). We will be using MS regularization

scheme in this chapter and all the quantities like QCD running coupling constant,

ΛQCD etc will be in MS, furthermore we will be solely working within the leading

logarithmic approximation.

The scheme is as follows:

49
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• At the scale of (let us say µ = mt), where we can neglect the QCD correc-

tions, there are a few operators (just one in some cases), that contributes to a

particular process.

• Then we include corrections due to hard-gluons which brings new operators

into the picture. This is the so called “operator-mixing”.

• Integrate out heavier particles as we come down the energy scale step by step

and in each step we impose certain continuity conditions.

The above mentioned continuity condition is that at each step where we integrate

out a particle we impose the continuity of the running coupling constant α(f)
s (µ),

were f is the number of active quark flavors. For example, if we start with f(µ) = fi

number of flavors at an energy scale µ > µi and come down below the scale µi by

integrating out the heaviest among these quarks then the following condition must

be obeyed:

α(fi)
s (µi) = α(fi−1)

s (µi) (3.0.1)

This is called the matching condition and this must be imposed at each step. If we

are coming down from mt to µ < mc then we will have the following three matching

conditions at subsequent steps:

α(6)
s (mt) = α(5)

s (mt), α(5)
s (mb) = α(4)

s (mb), α(4)
s (mc) = α(3)

s (mc) (3.0.2)

At a scale µ where only f flavors are active, we have:

α
(f)
s (µ) = 4π

β
(f)
0

1
log(µ2/Λ2)

β
(f)
0 = 11N−2f

3
, where N is the number of colors

(3.0.3)

3.1 RG Evolution and Operator-Mixing

Let us consider an example [1] of c→ sud̄, at the scale of MW QCD corrections can

be neglected and the amplitude is simply,

A(c→ sud̄) = i
GF√

2
V ∗csVud(s̄αcα)V−A(ūβdβ)V−A +O

(
k2

M2
W

)
(3.1.4)
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where k is the momentum flow through theW -boson and is much smaller thanMW .

This amplitude can be calculated using an effective Hamiltonian:

Heff =
GF√

2
V ∗csVudO2 + ... (3.1.5)

where ellipses mean higher than dimension 6 operators which are sub-leading and

we will not consider here and,

O2 = (s̄αcα)V−A(ūβdβ)V−A (3.1.6)

where (ψ̄1ψ2)V−A(ψ̄3ψ4)V−A ≡ [ψ̄1γ
µ(1 − γ5)ψ2][ψ̄3γµ(1 − γ5)ψ4]. Here specifically

in this example we are using the notation O1,2 for operators to distinguish them

from Q1,2 of Chapter 2 which involve only light quarks but we will get back to Qi
notation later.

If we now include the hard-gluon correction then we can see that a gluon can link

up the two distinct color singlet currents in the operator to mix the colors keeping

the flavor structure intact, that is because of the color algebra of the generators

(T aαβ):

T aλ1λ2
T aλ′2λ′2 = − 1

2N
δλ1λ2δλ′1λ′2 +

1

2
δλ1λ′2

δλ2λ′1
(3.1.7)

Due to which a new operator will enter the picture:

O1 = (s̄αcβ)V−A(ūβdα)V−A (3.1.8)

Which means we have to modify our effective Hamiltonian now to explain physics

at this slightly lower scale where hard-gluon exchange is significant:

Heff =
GF√

2
V ∗csVud (C1O1 + C2O2) (3.1.9)

In the beginning we had C1 = 0 and C2 = 1 now both are non zero ! Now if we

calculate the same amplitude it will be given by:

A(c→ sud̄) = −iGF√
2
V ∗csVud (C1 〈O1〉+ C2 〈O2〉) (3.1.10)

Because a physical amplitude must be independent of scale we can calculate the

amplitude at very high scale which is given by Eq. (3.1.4) and then we can calculate
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the matrix elements of O1 and O2 and plug them into Eq. (3.1.10) then equating the

two amplitudes we can extract the values of C1 and C2 which will of-course depend

on the scale so will 〈Oi〉’s but the amplitude of course will not. This is an example

of matching the effective long distance theory with the full theory at short-distance

through OPE where Ci’s are the Wilson [2] coefficients.

3.1.1 K → πe+e− Effectice Hamiltonian Due To Gilman and

Wise

We will consider the simpler 4-quark case of effective Hamiltonian relevant for the

decay K → πe+e−, where one considers an effective region where only four quarks

(q = u, d, s and c) and W boson, are active and when one comes down from µ >

MW to µ < MW considering W as much heavier than those four quarks then the

Hamiltonian describing this decay is given by:

HGW = −GF√
2
V ∗udVus

[
C

(4)
+ (µ)Qc+(µ) + C

(4)
+ (µ)Qc−

]
+ h.c (3.1.11)

GW stands for Gilman and Wise [3]. C(f)
± (µ) are given in Eq. (3.2.29) and the op-

erators are defined in Eq. (3.2.16), (3.2.15). They also considered another operator

relevant for this process namely:

Q7 = αe[s̄αγ
µ(1− γ5)dα][ēγµe] (3.1.12)

This operator involves the conserved vector current hence does not need renormal-

ization and hence will be scale independent. When we come down below the charm

quark mass, all the operators mix among themselves and they obtained the final

effective Hamiltonian:

H eff
GW = −GF√

2
V ∗udVus

[
C̃+(µ)Q+(µ) + C̃−(µ)Q−(µ) + C̃7(µ)Q7(0)

]
+ h.c

(3.1.13)
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where,

C̃+(µ) =
1

2

[
α

(4)
s (m2

c)

α
(3)
s (µ2)

] 2
9
[
α

(4)
s (M2

W )

α
(4)
s (m2

c)

] 6
25

C̃−(µ) =
1

2

[
α

(4)
s (m2

c)

α
(3)
s (µ2)

] 4
9
[
α

(4)
s (M2

W )

α
(4)
s (m2

c)

] 12
25

C̃7(µ) =
16

99α
(4)
s (m2

c)


(

1−
[
α

(4)
s (m2

c)

α
(3)
s (µ2)

] 11
9
)[

α
(4)
s (M2

W )

α
(4)
s (m2

c)

] 6
25


− 16

90α
(4)
s (m2

c)


(

1−
[
α

(4)
s (m2

c)

α
(3)
s (µ2)

]− 5
9
)[

α
(4)
s (M2

W )

α
(4)
s (m2

c)

] 12
25


As we explained above, Q7 is scale independent while Ci(µ)’s (i = +,−, 7) and Q±
are all scale dependent and because 〈πe+e−|H eff

GW |K〉 has to be scale independent,

the scale dependence of
∑
i=−,+

Ci 〈Qi〉 must be cancelled by the scale dependence of

C7(µ) alone. Gilman and Wise did not keep the large N structure of their analysis

explicit but we have obtained the large N structure of C7(µ) and is presented in

Appendix C, large N structure of C± are of course available due to Bardeen, Buras

and Gèrard [4] that we will discuss in section 3.2.1.

This Hamiltonian will be used in the next chapter when we present our own work

in the study of the long and short distance matching of QCD in the context of the

same decay K → πe+e− using the Bardeen, Buras and Gèrard scheme that we are

going to introduce now.

3.2 Bardeen-Buras-Gèrard Matching Scheme

Bardeen, Buras and Gèrard [5, 4, 6] devised a scheme to match short and long

distance QCD that can be summarized in the following way:

1. One starts with a truncated chiral Lagrangian and calculate loops with hard-

momentum cut-off M . Matrix elements of Qi’s are evaluated using such UV
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truncated loops such that they are now M dependent: 〈Qi〉 7→ 〈Qi(M)〉 and
mixing among the matrix elements is obtained through the RG-like (“meson-

evolution”) evolution: 〈Qi(M)〉 = Eij(M2) 〈Qj(0)〉 where “0” stands for tree

level calculation in the meson theory. In this “meson-evolution” a long-distance

anomalous dimension matrix is obtained that serves the purpose of mixing the

〈Qi〉s and shown to have a large N structure.

2. Usual short distance RG improved perturbation theory is used with explicit

large N structure to come down (“quark-evolution”) from a scale µ ∼ MW to

µ ∼ 1GeV.

3. UV scale of the long distance theory M is identified with the short distance

(MS) IR scale µ appearing in the Wilson coefficients.

4. Large N structure of long and short distance anomalous dimension matrices

are shown to be consistent. The matching have been studied in the range

M = 0.6 - 1 GeV.

Let us elaborate a bit. The whole scheme is divided into two broad parts:

3.2.1 Part-I: Short Distance Evolution of Wilson Coefficients

and Large N

At a scale way above theW mass where strong-interaction is practically absent they

[4] start with ∆S = 1 Hamiltonian given by:

H∆S=1 = −GF√
2
V ∗udVus[(Qu2 −Qc2) + τ(Qc2 −Qt2)] (3.2.14)

where

Qq2 = [s̄αγ
µ(1− γ5)qα][q̄βγµ(1− γ5)dβ], τ = − V

∗
tsVtd

V ∗usVud
(3.2.15)

For completeness we also define:

Qq1 = [s̄αγ
µ(1− γ5)dα][q̄βγµ(1− γ5)qβ] (3.2.16)
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then they [4] consider the OPE method as discussed in the beginning of this chapter

to come down to a scale µ ∼ 1 GeV and as expected new operators are generated

(“mixing”) and the new effective Hamiltonian at this scale takes the following form:

H∆S=1 =
GF√

2
V ∗udVus

∑
i

Ci(µ)Qi(µ) (3.2.17)

where

Q1 = [s̄αγ
µ(1− γ5)dα][ūβγµ(1− γ5)uβ]

Q2 = [s̄αγ
µ(1− γ5)uα][ūβγµ(1− γ5)dβ]

Qq3 = [s̄αγ
µ(1− γ5)dα][q̄βγµ(1− γ5)qβ]

Qq4 = [s̄αγ
µ(1− γ5)qα][q̄βγµ(1− γ5)uβ]

Qq5 = [s̄αγ
µ(1− γ5)dα][q̄βγµ(1 + γ5)qβ]

Qq6 = −8(s̄αLqαR)(q̄βRdβL)

(3.2.18)

here q = u, d, s only and all of Qis are not independent because of the relation:

Q4 = Q2 +Q3 −Q1 (3.2.19)

And the Wilson coefficients are given by:

Ci(µ) = zi(µ) + τyi(µ), (3.2.20)

The difference between their method of short distance analysis and that of Gilman

and Wise [7] is that they have considered the large N structure of the anomalous

dimension matrix to reduce work significantly. Consider the 6 × 6 anomalous di-

mension matrix γQG written in the Qi (i = 1− 6) basis and defined as:

M2 ∂

∂M2
〈Qi(M2)〉 = −1

2
γQGij 〈Qj(M2)〉 (3.2.21)

with

γQG =
g2

8π2



− 3
N

3 0 0 0 0

3 − 3
N

− 1
3N

1
3

− 1
3N

1
3

0 0 − 11
3N

11
3

− 2
3N

2
3

0 0 (3− f
3N

) (f
3
− 3

N
) − f

3N
f
3

0 0 0 0 3
N

−3

0 0 − f
3N

f
3

− f
3N

(f
3

+ 3
N
− 3N)


(3.2.22)
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As we defined in the beginning of this chapter, f is the number of active flavors, in

this case f = 5, 4, 3. If one considers the LO in large N expansion then only Q6

operator will survive and there will be no mixing between Q2 and other operators

but for the evolution we need this mixing because Q2 is the operator that we start

with at very short distance, hence we need to consider the NLO terms. They argued

that the long evolution from MW scale down to 1 GeV will compensate for this 1/N

suppression from NLO in the Q1-Q2 sector. On the other hand Q2-Qi (i 6= 1, 2,

the penguins) mixing is GIM suppressed up to the scale mc and hence considering

LO will be sufficient, for the same reason mixing within the penguin sector and the

diagonal evolution of Q3,4,5 are also neglected. This leads to a 4 × 4 anomalous

dimension matrix:

γQG =
g2

8π2


−3/N 3 0 0

3 −3/N 1/3 1/3

0 0 0 0

0 0 0 −3N

 (3.2.23)

With active operators Q1, Q2, Q4 and Q6 only. In fact they have shown in their

long distance calculation that at the leading order in N ' Λ2
χ the matrix elements

of only these four operators survive and here we have already started to see the

consistency between long and short distance behaviors of the anomalous dimension

matrix under large N . The Wilson coefficients can be calculated from the evolution

relation [8]:

〈Qi(M2
W )〉 = Uij(M

2
W , µ

2) 〈Qj(µ2)〉 (3.2.24)

where the U(M2
W , µ

2) is the evolution operator that relates the four-quark operators

at the scales MW and µ and is given by:

U(µ2
1, µ

2
2) = T

{
exp

[
−
∫ M2

W

µ2

dp2

2p2
γQG(α(f)

s (p2))

]}
(3.2.25)

where T defines the momentum order products of γQG(α
(f)
s ) matrices so that f is

taken as 5, 4, 3 in successive steps as we come down in momentum scale. The pen-

guin operators are of course important here in their (BBG) study but it is out of
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the scope of this thesis so far so we will drop them from our discussion from now

on and it is not so bad because the evolution of Q1,2 is unaffected by the presence

of the penguins. We will also not consider the CP violating yi part of the Wilson

coefficients.

In this sector (Q1-Q2) the following Q± = Q2 ± Q1 operators diagonalize the

anomalous dimension matrix. Corresponding Wilson coefficients will than take the

form C± = (C2 ± C1)/2 and this makes the calculation of C1 and C2 fairly simple. The

anomalous dimension matrix in this sector becomes:

γQG =
g2

8π2

γQG+ 0

0 γQG−

 (3.2.26)

where,

γQG± = ±3− 3/N (3.2.27)

Evolution matrix then can be written as:

U(M2
W , µ

2) =

C(f)
+ (M2

W , µ
2) 0

0 C
(f)
− (M2

W , µ
2)

 (3.2.28)

Eq. (3.2.25), (3.2.26) and(3.2.27) then leads to:

C
(f)
± (M2

W , µ
2) = exp

[
−
∫ M2

W

µ2

dp2

4πp2
γQG±(α(f)

s (p2))

]
=

[
α

(f)
s (M2

W )

α
(f)
s (µ2)

]a(f)
±

(3.2.29)

It must be noted here that when the scale jump is done, that is crossing µ = MW ,

α
(f)
s is kept fixed, that means in Eq.(3.2.29) f remains fixed. α(f)

s = g2/4π had been

used in the derivation above and,

a
(f)
± =

3γQG±

11N − 2f
(3.2.30)

We can now write down the final ∆S = 1 effective Lagrangian valid at ∼ 1 GeV:

H∆S=1
eff = − 1√

2
V ∗udVus

(
C

(f)
+ (µ)Q(µ) + C

(f)
− (µ)Q(µ)

)
+ Penguins (3.2.31)
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here we have used the short notation in the argument of the Wilson coefficients,

that is just (µ) instead of (M2
W , µ

2). It is now time to proceed to the next part of

the game, that is the long distance meson-evolution picture.

3.2.2 Part-II: Long Distance Evolution of Matrix Elements

and The Chiral Large N ∼ f 2

In the long distance part (below 1 GeV) they [6] start with the following effective

Lagrangian:

L ∆S=0
BBG =

f 2

4

{
tr[DµΣDµΣ†] + B0 tr[Mq(Σ + Σ†)]

}
+ L Λ (3.2.32)

where,

L Λ = −f
2

4

B0

Λ2
tr[Mq(D

2Σ +D2Σ†)] (3.2.33)

This Lagrangian possesses the following features:

1. It is a truncated chiral Lagrangian that does not have extra LECs 1 other than

the typical O(p2) parameters f and B0 and as we will see apparently the third

parameter Λ will be a function of pion and kaon decays constants Λ sets the

scale of the higher order terms. Fπ and FK respectively. Still this Lagrangian

should be treated like a full theory and loops should be considered,

2. because It is valid up to a scaleM which is the hard momentum cut-off imposed

on the loop integrals so that it explains the physics lying below M which is

expected to be smaller than Λ.

3. This provides a bosonization of QCD at very low energy (∼ mπ).

4. The large N expansion is achieved through tree (LO in 1/N), one-loop (NLO

in 1/N), ...

1But in their later work they have included resonances that saturate the LECs indeed.



3.2. Bardeen-Buras-Gèrard Matching Scheme 59

Bosonization of the four-quark operators and hence eventually of the effective

Hamiltonian given by Eq. (3.2.31) can be achieved through the left chiral current

given in Eq. (2.2.37) plus an extra term coming from Eq. (3.2.33). Procedure is

simple if we use the fact that left currents couple to W boson in the standard model

then we can gauge the chiral covariant derivative and identify the left current coming

from the truncated chiral Lagrangian, this time we have to just use this extra piece

of Lagrangian to recover term (LΛ
µ let us say.) that should be added to the already

derived left current given by Eq. (2.2.37).

Considering the term linear in lµ:

L Λ = −if
2

4

B0

Λ2
tr
[
lµ
(
Mq(∂µΣ†)− (∂µΣ)Mq

)]
+O(l2) +O(l0) (3.2.34)

and the same in Eq. (2.2.33) and evaluating the following at lµ = W µ:

δL Λ

δlµ
=
δLQCD

δlµ
(3.2.35)

we extract:

LΛ
µij + ... = q̄jLγµq

j
L = −if

2

4

B0

Λ2

[
Mq(∂µΣ†)− (∂µΣ)Mq

]
ji

+ ... (3.2.36)

Ellipsis represent the term coming from L Λ subtracted part of the Lagrangian

in Eq. (3.2.32). Adding this piece of the current to the left current given in Eq.

(2.2.37) we obtain the full current:

(LBBGµ )ij = q̄iLγµq
j
L = Lij + LΛ

µij (3.2.37)

Hence the bosonized current-current operators are2

Q1 = 4(LBBGµ )32(LBBGµ)11 (3.2.38)

Q2 = 4(LBBGµ )31(LBBGµ)12 (3.2.39)

These then imply:

Q± = 4
[
(LBBGµ )31(LBBGµ)12 ± (LBBGµ )32(LBBGµ)11

]
(3.2.40)

2Here we have used (1± γ5)2 = 2(1± γ5) and (1± γ5) : ψ 7→ 2ψR,L .
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And finally we can plug them in Eq. (3.2.31) to obtain the ∆S = 1 effective

Hamiltonian that governs the dynamics of the region below the scale Λ. Before we

proceed to calculate the matrix elements we need to estimate the value of Λ as we

promised above.

Pion and Kaon Decay Constants and Λ

Like we did in the last chapter, we can expand Σ in terms of pion and kaon fields

to obtain their decay constants by looking at the coefficients of ∂µπ and ∂µK in the

left current but let us do it a little bit differently in not so elegant way just for fun.

The decay constants must be of the following form:

Fπ,K = f

(
1 +

a2
π,K

Λ2

)
(3.2.41)

The first term is coming from Lµ piece of LBBGµ while the correction should come

from the LΛ
µ piece. The constants aπ,K should be proportional to B0Mq and they

can be guessed studying the structural similarity of the two pieces of the current.

Notice that,

Lµ =
if 2

2
[(∂µΣ)Σ†]

=
if 2

4
[(∂µΣ)Σ† − Σ(∂µΣ†)]

= −if
2

4
[1(∂µΣ†)− (∂µΣ)1]

This will look exactly like LΛ if we do the following substitution:

1 7→ B0

Λ2
Mq

In the pion sector Mq = m12×2 which implies aπ = B0m
Λ2 = m2

π

Λ2 and in the limit

of isospin symmetry, that is mπ = mK we must have Fπ = FK and this enforces

aπ = aK , in the isospin limit hence we must have aK =
m2
K

Λ2 or aK = m2
π

Λ2 , but we

know that the isospin symmetry is broken hence the later choice is not possible. One

could argue that there could be possibilities like aK = 2m2
K−m2

π etc, but notice that

Mq is diagonal and if you look at the component of the left current “LΛ
3i,i3, i 6=3” then
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only ms will enter the picture giving rise to m2
K . Here we have used Eq. (2.2.41) to

express the meson masses in terms of quark masses.

Hence,

Fπ,K = f

(
1 +

m2
π,K

Λ2

)
(3.2.42)

and indeed this is the leading order large N expression provided by Bardeen,

Buras and Gèrard in [4], they also evaluated the ratio to estimate Λ,

FK
Fπ

= 1 +
m2
K −m2

π

Λ2
+O

(
1

Λ4

)
+O

(
1

N

)
(3.2.43)

Experimentally this ratio is 1.28 and if we impose the large N limit then this

implies Λ ' 0.9 GeV, so indeed this theory lies beneath the scale where perturbative

QCD fails. The aim is to match this theory to the lower limit of OPE-obtained QCD

governed by the Hamiltonian given by (3.2.31). They calculated the matrix elements

of the four-quark operators in the tree level [4] we will just list down 〈Q1,2〉 here,

〈π+π0| Q1,2(0) |K+〉 = = X/
√

2 (3.2.44)

〈π+π−| Q2(0) |K0〉 = −〈π0π0| Q1(0) |K0〉 = X (3.2.45)

All other matrix elements of Q1,2 are zero and

X =
√

2Fπ(m2
K −m2

π) ' 0.03 GeV3 (3.2.46)

Loops And O(1/N) Corrections

1/N correction to the matrix elements and decay constants are achieved through

one-loop calculations done with the momentum cut-off M in [6], we will list them

below. The pion and kaon decay constants at one loop (Fig. 3.1) are given by:

Fπ = f
[(

1 +
m2
π

Λ2

)
− 1

2f 2

(
2A0(M2,m2

π) + A0(M2,m2
K)
)]

FK = f
[(

1 +
m2
K

Λ2

)
− 3

8f 2

(
2A0(M2,m2

K) + A0(M2,m2
π)

+ A0(M2,m2
η)
)] (3.2.47)

where the extra argument M2 in A0 means that the usual one point function

[9] has been calculated in a cut-off regularization ( please check Eq. (B.3.17) and
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W
π, K

Figure 3.1: Loop contribution to pion and kaon decay constants.

(B.3.29)) scheme instead of dimensional regularization. Scale dependence of the

expansion parameter f is given by:

f 2 = f 2(M2) = F 2
π + 2A0(M2,m2

π) + A0(M2,m2
K) (3.2.48)

Comparing Eq. (3.2.47) with Eq. (3.2.42), we can see the N -structure of decay

constants:

FK,π = FK,π +O

(
1

N

)
(3.2.49)

And also their ratio have the same structure which is at one loop takes the form:

FK
Fπ

=
(

1 +
m2
K −m2

π

Λ2

)
− 1

8f 2

(
2A0(M2,m2

K)− 5A0(M2,m2
π) + 3A0(M2,m2

η)
)

(3.2.50)

and it is well understood [10] that low energy theory of interacting mesons is dual

to QCD and so they both should have the same N structure and this structure is

the basis of BBG matching scheme. We now list the one loop (Fig. (3.2)) correction

terms to the matrix elements of Q1,2.

〈π+π−| Q1 |K0〉 = X1 (3.2.51)

〈π+π−| Q2 |K0〉 = X2 (3.2.52)

〈π0π0| Q1 |K0〉 = X3 (3.2.53)

〈π0π0| Q2 |K0〉 = X4 (3.2.54)

〈π+π0| Q1,2 |K+〉 = X5 (3.2.55)
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Where,

X1 =
X

(4πf)2

f

Fπ

{
−2M2

(m2
K

4
+

19

9
m2
π

)
log
(

1 +
M2

m̃2

)}

X2 = X

{[
1 +

f

Fπ

(FK
Fπ
− 1
) m2

π

m2
K −m2

π

]
1

(4πf)2

f

Fπ

[
M2 +

(
m2
K −

3

2
m2
π

)
log
(

1 +
M2

m̃2

)]}

X3 = X

{[
1 +

f

Fπ

(FK
Fπ
− 1
) m2

π

m2
K −m2

π

]
− 1

(4πf)2

f

Fπ

8

9
m2
π

)
log
(

1 +
M2

m̃2

)]}

X4 =
X

(4πf)2

f

Fπ

[
3M2 +

(3

4
m2
K −

9

2
m2
π

)
log
(

1 +
M2

m̃2

)]

X5 =
X√

2

{
−
[
1 +

f

Fπ

(FK
Fπ
− 1
) m2

π

m2
K −m2

π

]
1

(4πf)2

f

Fπ

[
− 2M2 +

(1

4
m2
K3m2

π

)
log
(

1 +
M2

m̃2

)]}



(3.2.56)

K
π

π

π

π

π

π

π

π

K

Figure 3.2: Loop contributions to K → ππ process.
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Long Distance Mixing

Bardeen, Buras and noted that these loop corrections to the matrix elements can be

interpreted as an evolution in M from the tree results, much like the short distance

RG-evolution that leads to operator mixing. In fact this evolution in M is in tune

with the evolution in 1/N. This becomes apparent when we observe thatM = 0 leads

to all the 1/N corrections to vanish which further justifies the notation that the tree

matrix elements 〈Qi(0)〉 represents the leading order large N values. Symbolically

this fact can be expressed as:

〈Qi(M2)〉 ≡ 〈Qi(0)〉+O

(
M2

N

)
(3.2.57)

In fact they showed that in the limit m2
π 7→ 0, these matrix elements listed in Eq.

(3.2.51) can be cast into an operator mixing relations:

Q1(M2) = Q1(0)−
[
f

Fπ

]
c1(M2)

(4πf)2
Q2(0)

Q2(M2) = Q2(0)−
[
f

Fπ

]
c1(M2)

(4πf)2
Q1(0)

+

[
f

Fπ

]
c2(M2)

(4πf)2
[Q2(0)−Q1(0)]

(3.2.58)

And in terms of Q±,

Q+(M2) =

(
1−

[
f

Fπ

]
c1(M2)

(4πf)2

)
Q+(0) +

[
f

Fπ

]
c2(M2)

(4πf)2
Q−(0)

Q−(M2) =

(
1 +

[
f

Fπ

]
c1(M2) + c2(M2)

(4πf)2

)
Q−(0)

(3.2.59)

Where,

c1(M2) = 2M2 − m2
K

4
log
(

1 +
M2

m̃2

)
(3.2.60)

c2(M2) = M2 +m2
K log

(
1 +

M2

m̃2

)
(3.2.61)

Important thing to notice here is that Q− evolves independently while Q+ mixes

with Q−. This mixing is approximately suppressed by a factor of 2 if one looks at the
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quadratically divergent term. Another fact is that Q+ is also numerically suppressed

in comparison to Q− as evident from the above expressions, which is significant

because it is consistent with the short distance behavior of the dominance of C−(µ)

over C+(µ). It will be useful later to define the following long-distance evolution

operator:

E−(M2) = 1 +

[
f

Fπ

]
c1(M2) + c2(M2)

(4πf)2

= 1 +
1

(4πf)2

[
f

Fπ

] [
3M2 +

3

4
m2
K log

(
1 +

M2

m̃2

)] (3.2.62)

that evolves Q− from 0 to M . Here f of course means f(M2) given by Eq.

(3.2.48). We must pause and stress that this result is significant which one can

realize when calculating processes where Q− is the dominant operator. One just

will have to calculate the leading order matrix element of Q− which can be even one

loop but still leading order in 1/N expansion and can apply E−(M2) to extract the

NLO result without taking the trouble of actually calculating NLO that is the next

order in loop expansion. In fact we will use this property to calculate the amplitude

K+ → π+e+e− in Chapter 4.

3.2.3 The Matching of Quark and Meson Evolution

So far we have seen that there exist a division between the short and long distance

physics, in the SD case the scale µ enters through usual renormalization prescription

which in this case must be below the charm mass while the LD scale is the UV cut-

off M . They [6] made the identification µ = M and because they have a quadratic

divergence (M2) in the long distance part it is now possible to have a point µ =

M where the quadratic divergence kills the logarithmic divergence of the Wilson

coefficients and that will be the matching scale. Their approach is more general,

they evaluated a long distance anomalous dimension matrix, we will consider the
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Q1,2 sector of it. Eq. (3.2.58) can be expressed in a renormalization equation form:

M2∂Q1(M2)

∂M2
= −

[
f

Fπ

]
M2

(4πf)2

∂c1(M2)

∂M2
Q2(0) (3.2.63)

M2∂Q2(M2)

∂M2
= −

[
f

Fπ

]
M2

(4πf)2

∂c1(M2)

∂M2
Q1(0)

+

[
f

Fπ

]
M2

(4πf)2

∂c2(M2)

∂M2
[Q2(0)−Q1(0)] (3.2.64)

Now if we denote the long distance (meson) anomalous dimension matrix by γM

then,

γM12 = γM21 = 2

[
f

Fπ

]
M2

(4πf)2

∂c1(M2)

∂M2
> 0 (3.2.65)

has the same structure as that of its short distance counterpart given by Eq.

(3.2.23), the sign and large N structure matches. The only difference is that in

long distance case its evolution is much faster because of the quadratic divergence

which will become slower due to the inclusion of resonances as we will see later.

Furthermore they also calculated the mixing with penguins and so achieved the

following ratios for µ = M = 0.8 GeV:

γM12

γM26

= 12.2,
γQG12

γQG26

= 9 (3.2.66)

This ratio γM12/γM26 is closed to 9 when µ = M = 0.7 GeV value is taken. They also

showed that in the region 0.6−0.8 GeV the amplitudes are almost scale independent.

We quote their results expressed in Table (3.1).

Of course these results involve the penguin operators that we did not discuss here

much but the intention of quoting this table was to demonstrate the success of the

scheme and hence to build some confidence in this approach. This table produces
T1/T3 ' 12 which is encouraging because the experimental value is 15 and shows the

promise of finally explaining ∆I = 1/2 rule. And this is motivating enough to apply

this scheme to other processes that we will do in the next chapter and also in other

processes in the future but with necessary modification to the scheme that we have

proposed in our own work in the next chapter and in conclusion.
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Here T1 = A(K0 → π+π−), T1 = A(K0 → π0π0) and T1 = A(K+ → π+π0).

ms (MeV) µ = M (GeV) T1 T2 T3

125 0.6 22.8 20.3 1.75

125 0.7 22.3 20.0 1.58

125 0.8 22.2 20.3 1.33

150 0.6 20.4 17.9 1.75

150 0.7 20.1 17.8 1.58

150 0.8 20.1 18.2 1.33

175 0.6 19.0 16.5 1.75

175 0.7 18.8 16.5 1.58

175 0.8 18.8 17.0 1.33

Data 27.7 26.3 1.84

Table 3.1: The amplitudes for the processes K → ππ in the units of 10−8 GeV for

different values of ms.

3.3 Inclusion of Vector Mesons In The BBG Scheme

We will not discuss Hidden Local Symmetry (HLS) that BBG uses to introduce

vectors in full detail in this chapter, this is because in fact they did not consider

all the technicalities and issues. We will however describe in full details what they

did [11] in this chapter and we promise to come back to this topic of Hidden Local

Symmetry in the last part of the next chapter where we will take it more seriously

and will present it in full detail. For now, let us start where BBG started.

The motivation to include the resonances is straightforward, that is to make the

matching scheme smoother that means to shrink the gap between meson and quark

sectors. As we have seen in the last section that the typical matching scale was

achieved by BBG at around 0.7 GeV which is expected because the next lightest

particles are the vector mesons and ρ(775) is in fact lightest among them. The

expectation is that when one includes these resonances the drastic M2 behavior
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will start to diminish and will start to get replaced by poles of these resonances

together leading towards a logarithmic behavior, which eventually will justify the

identification µ = M .

In Sec. 2.1.1 of Chap. 2 we introduced two bases for parametrizing the mesons,

Σ and Ξ which are related by the Eq. (2.1.14), this relation hides a U(3) symmetry

which is apparent in Eq. (2.1.11) under which Σ is an invariant. Exploiting this

hidden gauge symmetry U(3) BBG introduced the corresponding gauge field V which

transforms under h(x) ∈ U(3) as:

Vµ 7→ h(x)Vµh
†(x) +

i

gV
h(x)∂µh

†(x) (3.3.67)

which fixes the covariant derivative:

Dµξ = ∂µξ − igV V ξ, Dµξ
† = ∂µξ

† − igV Vµξ† (3.3.68)

and an associated field strength tensor given by:

Vµν = ∂µVν − ∂νVµ − igV [Vµ, Vν ] (3.3.69)

They have taken the mass less limit of their Lagrangian 3.2.32 :

L (π) =
f 2

4
tr[∂µΣ∂µΣ†] (3.3.70)

and had directly wrote down the following Lagrangian as an extension of the

above Lagrangian that incorporates the vector (1−−) nonet Vµ :

L (π, V ) = L (π)−af
2

4
tr
[(

(∂µξ
†)ξ+ (∂µξ)ξ

†− 2igV Vµ

)2]
− 1

4
tr[VµνV

µν ] (3.3.71)

where,

Vµ = T aV a
µ =

1√
2


ρ0
µ + ωµ/

√
2 ρ+

µ K∗+µ

ρ−µ −ρ0
µ + ωµ/

√
2 K∗0µ

K∗−µ K̄∗0µ φµ

 (3.3.72)

We will discuss the construction of a Lagrangian based on this “Hidden Local Sym-

metry” in the next chapter in much more details when we introduce vector mesons
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in our own work. We feel like there are issues for example how does one identify

this gauge field V as the vector meson field etc that BBG [11] did not address and

so we will go on and discuss things presently in their context. They interpret L (π)

to be the limiting value of L (π, V ) for arbitrary values of the parameter a in the

absence of any vector propagation, that is absence of the kinetic term for V in the

above Lagrangian. But when vector propagation is considered, a ' 2 is successful in

producing results that are consistent with Vector Meson Dominance. If we consider

just ρ0 vector meson then,

Vµ =
ρ0
µ

2
λ3 (3.3.73)

and we can read off the mass of ρ0 from tr[V 2] term in Eq. (3.3.71):

m2
V = af 2g2

V (ρ0
µρ

0µ) (3.3.74)

Comparing this with the the mass of ρ = 0.775 GeV, we get the constraint:

√
agV = 8.33 (3.3.75)

And looking at the ΠΠV term:

LΠΠV = iagV tr
[
Vµ[∂µΠ,Π]

]
(3.3.76)

we can extract the coupling strength:

gVΠΠ =
ag

2
(3.3.77)

Using the experimental value gVΠΠ ' 6.1, Eq. (3.3.75) and Eq. (3.3.77) we see

that,

a ' 2 (3.3.78)

This had been worked out in [12], considering the following term

Lijµ = −af
2

2
gV (ξVµξ)

ji + other terms (3.3.79)

in the left current coming from the above Lagrangian given by Eq. (3.3.71) and

calculating the matrix element:

〈0| Lijµ |ρ+〉 = −af
2gV√
2
εµ + ... = −fV

2
mV εµ + ... (3.3.80)
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where ε is the polarization of ρ, they showed that the ρ+ decay constant fV =
√

2af produces the KSRF [13, 14] relation:

fV = 2f = 2Fπ, if a = 2 (3.3.81)

We will discuss other virtues of HLS in the next chapter. Let us now proceed to

show how inclusion of vector mesons improved the BBG matching scheme by listing

the correction to decay constants and matrix elements. And we must emphasize

once again that we will just consider those parts of their work which are relevant to

our own work which we will present in the next chapter, so we will not go into CP

violation pion electro magnetic mass difference and penguins etc that are essential

ingredients of their paper [11] basically on which this chapter stands.

3.3.1 Vector Improved Chiral Expansion Parameter f(M 2)

Vector-loop corrected tree level decay constants of mass-less scalar mesons described

by the Lagrangian Eq. (3.3.71) as calculated by BBG reads:

f(M2,m2
V ) = F 2

π +
3

(4π)2

[(
1− 9a

16

)
M2 +

9a

16
m2
V log

(
a+

M2

m2
V

)]
(3.3.82)

In the limit m2
V � M2 for any value of a they recover f(M2 � m2

V ) = F 2
π . It

has been also discussed that for a = 16/9 the M2 dependence vanishes which shows

the virtue of including vector mesons because even if a 6= 16/9, it still is close as

discussed above and so the quadratic divergence is way weaker than the earlier case

of without vectors.

But coming back to the case of a = 2 and the massive pseudo scalars described by

Eq. (3.2.32) they add the vector-loop correction to the earlier result (Eq. (3.2.48))

and the complete result f(M2,m2
V ) is:

f(M2) 7→ f(M2,m2
V ) = f(M2) + ∆f 2(M2,m2

V ) (3.3.83)

where

∆f 2(M2,m2
V ) = −27

8
A0(M2,m2

V ) (3.3.84)
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where ∆f 2(M2,m2
V ) is the correction term. The slower variation of improved

chiral coupling constant is apparent from their table that we quote below (Table.

3.2):

M (GeV) 0.6 0.7 0.8 0.9 1.0

f 2(M2) (MeV) 114.7 123.5 133.3 143.7 154.8

f 2(M2,m2
V ) (MeV) 107.6 112.1 116.4 120.6 124.3

Table 3.2: Variation of f 2 with the scale, with and without vector inclusion.

3.3.2 Vector Contributions To 〈Q±〉

Vector contribution to the current current matrix elements was again shown to

maintain the same operator mixing structure described in Eq. (3.2.59) where the

corrections enter the coefficients only, and so we have the new mixing equations:

Q+(M2) =

(
1−

[
f

Fπ

]
c1(M2,m2

V )

(4πf)2

)
Q+(0) +

[
f

Fπ

]
c2(M2,m2

V )

(4πf)2
Q−(0)

Q−(M2) =

(
1 +

[
f

Fπ

]
c1(M2,m2

V ) + c2(M2,m2
V )

(4πf)2

)
Q−(0)

(3.3.85)

By f we mean f(M2,m2
V ) given by Eq. (3.3.83) and

c1(M2,m2
V ) = c1(M2) + ∆c1(M2,m2

V )

c2(M2,m2
V ) = c2(M2) + 0

(3.3.86)

And

∆c1(M2,m2
V ) = 4π2

[9

2
A0(M2,m2

V )− 3m2
VB0(M2, 0,m2

V )
]

(3.3.87)

where B0 is the ‘t Hooft-Veltman two point function [9] evaluated in cut-off reg-

ularization and is given in Eq. (B.3.19) and Eq. (B.3.30) of Appendix B. Meson

evolution operator that we defined in Eq. (3.2.62) a correction:

E−(M2) 7→ E−(M2,m2
V ) + ∆E−(M2,m2

V ) (3.3.88)
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where,

∆E−(M2,m2
V ) =

9

8

[( m2
V

M2 +m2
V

− 3

2

)
M2 +

1

2
m2
V log

(
1 +

M2

m2
V

)]
(3.3.89)

And it must be noticed that the quadratic divergence that we had earlier (Eq.

(3.2.62)) is much reduced now. If we consider the new matching scale that they

obtained around M ' mV , then we can see that the reduction in the strength of

quadratic divergence is ∼ 38% and as more and more resonances are taken into

account this reduction will be even higher and presumably in the end leading to

no quadratic divergence at all. In the light of discussion below Eq. (3.3.82), we

can expect that even for value of a = 2, M2 term will disappear, so in a sense

the inclusion of more and more resonances is a limit where the coefficient of M2 is

expected eventually to become (1 − a/2) in f(M2,m2
V ) given by Eq. (3.3.82). We

will discuss below how vector mesons improve the matching.

3.3.3 Improved LD-SD Matching

The ratios given in Eq. (3.2.66) now improved by the vectors [11] look:

γM12

γM26

= 8.7,
γQG12

γQG26

= 9 (3.3.90)

at µ = M = 0.8 GeV.

Before we proceed to present our own work it is time we summarize their results:

1. In the range of M considered by them (0.6 - 1 GeV) the γM12 is larger than γM26

as in the case of short distance (QG) case.

2. Matching scale achieved with and without vector mesons are 0.8 and 0.7 GeV

respectively and so they claim that the range 0.8 - 0.9 GeV is the most reliable

range of matching scale.

3. They conclude that evolution is much faster in the long distance case than that

in the short distance region of course because of the quadratically divergent

term.



3.3. Inclusion of Vector Mesons In The BBG Scheme 73

It is the matching of the anomalous dimension matrices or equivalently the renor-

malization group flow structure in the regions above and below 1 GeV that makes

their approach so reliable and attractive and makes one tempted to apply it outside

the process K → ππ around which BBG built this scheme. In fact we will take this

a bit further and will apply this to K → πe+e− because in this process Q− is one of

the dominant operators.
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Chapter 4

Application of BBG Scheme

This chapter is based solely on our own work [1] 1 unless specified otherwise. But

previous chapters also contain instances of our contributions, for example the cal-

culations of section 2.7.2 of Chapter 2 was done by us in a different way, which of

course we will continue again in this chapter. Then in the second chapter we also

had our own inputs through interpretations, explanations and sometimes calcula-

tions but mostly last two chapters were reviews. Before we indulge ourselves in the

detailed calculations, it will be better to have a blueprint of what we are going to

do.

The Steps:

1. We start with the Gilman-Wise Hamiltonian given by Eq. (3.1.13).

2. Bosonize it at very low energy 2 using BBG procedure.

3. Calculate the matrix element 〈πe+e−| Q±,7(0) |K〉 at leading order in ChPT

(Eq. (3.2.33)).

4. Evolve them using BBG scheme: 〈Q(0)〉 7→ 〈Q(M2)〉 and plug them with their

corresponding Wilson coefficients to obtain the amplitude.

1In Collaboration with G. D’Ambrosio, D. Greynat and E. Coluccio.
2Bosonization of Q± is already done in Eq. (3.2.40), here we will just do it for Q7

75
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5. Set µ = M and look for the scale where the amplitude is scale independent.

Obtain this matching scaleM and evaluate “a” and “b” parameters (introduced

in the end of Chapter 2) and predict their values.

6. We include the ρ-meson using Hidden Local Symmetry and repeat the steps

described above.

As we discussed in the last chapter that one starts at a very high scale e.g. MW

scale and through OPE achieves an effective Hamiltonian at ∼ 1 GeV. Gilman and

Wise [2] constructed such a Hamiltonian through OPE, the final form of which 3 is

given by Eq. (3.1.13). Then we consider the relevant operators, which are Q± and

Q7and bosonize them at the pion mass scale. Bosonization of Q± are given by Eq.

(3.2.40) and using the current (Eq. (3.2.37)) we can bosonize Q7 (introduced in Eq.

(3.1.12)) too:

Q7 = 2αe (LBBGµ )32 [ēγµe] (4.0.1)

These bosonization must be understood to be valid at the pion mass scale and is

tagged by the argument“0” in Q−(0). Which can only be taken to the higher scale

(∼ 1 GeV) through long distance evolution (check Eq. (3.2.62)), while Q7 cannot

evolve and we discussed in section 3.1.1. We also consider the fact that Q+(µ) is

suppressed in comparison to Q−(µ) in the short distance evolution due to Gilman

and Wise [2], we consider only Q− and Q7 as our dominant operators. One can

argue that as Q+ mixes with Q− as in Eq. (3.2.59) in the long distance evolution,

Q− can pop out from Q+ then dropping of Q+ based on short distance evolution is

not justified ! Well it is, because looking the Wilson coefficients C̃ given in Eq (??)

we can see that C̃+(1 GeV)� C̃−(1 GeV) and even if a Q− appears due to the LD

evolution of Q+ it will be multiplied by C+ and hence will still be sub-leading in

comparison to Q−.

3For this study we took the four-quark model instead of six-quark.
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∆S = 1 Effective Lagrangian

The effective Lagrangian at the order of ∼ 1 GeV is the following:4

L ∆S=1
GW =

G8

g8

[
C̃−(M)Q−(M) + C̃7(M)Q7

]
+ h.c (4.0.2)

Wilson coefficients C̃i=−,7 are given in Eq (??) and here we have already implemented

µ = M and used Eq. (2.5.64). The amplitude will be given by:

A(K → πe+e−) = 〈L ∆S=1
GW 〉 (4.0.3)

4.0.4 Long Distance Mixing (Without Vectors)

Calculation of the amplitude requires the evaluations of 〈Q−,7〉 and before we do

that we must set things in the context of BBG, we need to address what do we mean

by 〈Qi〉.

Meaning of the matrix element notations:

〈Qi(0)〉 = 〈πe+e−| Qi |K〉 Tree level matrix element.

〈Qi(M)〉 = 〈πe+e−| Qi |K〉loop Loop level matrix element where M is the loop

momentum cut-off.
(4.0.4)

When we have no vector mesons in the game the only tree level matrix element

available for the process is coming from the Q7 operator. So it is clear that diagonal

evolution of 〈Q−〉 is missing but there will be mixing among them due to evolution

in M . And as we discussed earlier 〈Q7〉 does not evolve at all so we can rephrase it

by saying its evolution is always diagonal and the evolution operator is unity. The

meaning is, in the absence of vector mesons we expect a relation like the following:

〈Q−(M)〉 = 1×
[
〈Q−(0)〉 = 0

]
+ η−7(M) 〈Q7(0)〉

〈Q7(M)〉 = 〈Q7(0)〉+

[
η7−(M) = 0

]
×
[
〈Q−(0)〉 = 0

] (4.0.5)

4Check Eq. (3.1.13)
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Notice that there are two zeroes in the above equations, the first one is due to

the fact that 〈Q−(0)〉 requires a photon exchange that, in the absence of vector

resonances, can only occur at one loop5 while the other one is η7−(M) = 0 because

〈Q7〉 does not evolve and hence cannot have a scale dependence. Where ηij(M) is

the off-diagonal mixing coefficient that connects 〈Qi〉 (M) with 〈Qj(0)〉. So we have:

η−−, η77 = 1, η−7 6= 0, η7− = 0 (4.0.6)

So in general (with or without vectors) we will have the following mixing among

matrix elements:

〈Q−(M)〉
〈Q7(M)〉

 =

1 η−7(M)

0 1

〈Q−(0)〉
〈Q7(0)〉

 (4.0.7)

When we implement this to the amplitude given by Eq. (4.0.3) we get:

A(K → πe+e−) =
G8

g8

{
C̃−(M) 〈Q−(0)〉+

[
C̃−(M)η−7(M) + C̃7(M)

]
〈Q7(0)〉

}
(4.0.8)

Next step is to follow the BBG scheme, that is writing down the loop matrix elements

in terms of the tree level ones and extract the coefficient η−7 relevant in our case,

which of course will contain the M dependence and at least the chiral logarithm,

so even at this point looking at the above amplitude we can understand how the

cancellation of scales will look like.

Scale Cancellation

As we discussed in the previous chapter that Q7 involves a conserved current and

hence its matrix element cannot have a scale dependence but its Wilson coefficient

C̃7(M) is scale dependent, hence to have a scale independent amplitude the scale de-

pendence of C̃7 must be cancelled by the total scale dependence of C̃7(M) 〈Q−(M)〉.

5O(p2) level must be understood because in BBG scheme we do not have higher order local

operators.
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That asks for a mixing of the matrix elements of Q− and Q7. This is because, as

counting of logarithms go,

C̃−(M) logM2 ∼ C̃7(M) (4.0.9)

Hence we must have:

η−7(M) ∼ logM2 (4.0.10)

to have a cancellation of scale dependence of C7(M). This already tells us that Eq.

(4.0.9) will be the form of the mixing coefficient η−7. And this is expected because

the mixing coefficient arises from the matrix elements in ChPT which will of course

provide the so called chiral log.

4.0.5 K+ → π+e+e− Matrix Elements (No Vectors)

Tree Level Matrix Elements

As we already said there is only one tree level matrix element that is 〈Q7〉 so let us

calculate it. Considering the bosonized form of it from Eq. (4.0.1) and using the

Feynman rule given by Eq. (A.3.23) we can directly write down the matrix element:

〈Q7(0)〉 = −αe [ū(p−)(/k + /p)v(p+)] (4.0.11)

One Loop Matrix Elements

This will be essentially a continuation of the calculation paused in section 2.7.2 of

Chapter 2, the only difference is that we will be using cut-off regularization and

instead of form factor, we will focus on the matrix element of Q−. Bosonized Q− in

the context of this decay process has exactly the same structure as that of the one

given by usual weak chiral Lagrangian Eq. (2.7.73) hence all the tricks of section

2.7.2 of Chapter 2 perfectly applies. In fact we do not have to calculate anything

new, we can plug Eq. (2.7.87) into Eq. (2.7.76) applying the following substitutions:

B21(q2,m2) 7→ B21(M2, q2,m2)
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where the new argument M2 signals the cut-off scheme. The integrals are from Ap-

pendix B, given by Eq. (B.3.26) or (B.3.31) in NCR or SPCR schemes respectively,

which comes down to choosing a value of θ, which is the only difference among DR

(θ = 0), NCR (θ = 5/18) and SPCR (θ = 1/6) schemes. We drop the coefficient G8,

because we are calculating matrix element and not the amplitude, finally we write

down the one loop matrix element of Q− as:6

〈Q−(M)〉loop =
αe
4π

[ū(p−)(/k + /p)v(p+)]

×
{
χ(z/r2

π) + χ(z) +
1

6
log
[(

1 +
M2

m2
π

)(
1 +

M2

m2
K

)]
− 2θ

} (4.0.12)

And so the complete matrix element takes the form:

〈Q−(M)〉 = 〈Q−(0)〉+
αe
4π

[ū(p−)(/k + /p)v(p+)]

×
{
χ(z/r2

π) + χ(z) +
1

6
log
[(

1 +
M2

m2
π

)(
1 +

M2

m2
K

)]
− 2θ

} (4.0.13)

Comparing Eq. (4.0.11) and Eq. (4.0.13) we can write down the following relation:

〈Q−(M)〉 = 〈Q−(0)〉+ η−7(M, z) 〈Q7(0)〉 (4.0.14)

Of course 〈Q−(0)〉 = 0 in this case and,

η−7(M, z) = − 1

4π

{
χ(z/r2

π) + χ(z) +
1

6
log
[(

1 +
M2

m2
π

)(
1 +

M2

m2
K

)]
− 2θ

}

(4.0.15)

Crucial Remark I: η−7(M, z) must not be seen as a Wilson-like long distance

coefficient yet because it involves the photon transfer-momentum z = q2/m2
k, but the

relation Eq. (4.0.14) should be seen as an evolution of matrix elements and not

an operator level evolution equation that can be applied outside the context of the

6O(m2
i/M2) corrections in the loop integrals are neglected.
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decay process considered. But if one wishes to extract the long distance anomalous

matrix element as discussed in section 3.2.2 of Chapter 3, one will have to consider

the appropriate scale for q2 inside this coefficient η−7 and the z in the 〈Q(0)〉 should
not be touched. This is in the spirit of BBG, where they took the chiral limit in the

long distance mixing coefficients c1,2 (Eq. (3.2.58)) but did not take this limit in

the matrix elements. Because we are interested in the amplitude and hence matrix

elements only, we do not intend to obtain an operator level evolution equation7 and

hence we can keep the z dependence in the coefficient η−7.

Crucial Remark II: It is clear that η−7 does not have a quadratic dependence

in M , it has only log (which of course is needed based on the argument of section

4.0.4), therefore a long and short distance BBG-matching apparently is not possible.

But actually that is not the case, we have to look at Eq. (3.2.57) to realize that M2

can only appear at the next to leading order in large N correction. What we did

so far is just the leading order calculation which is O(f 0 ∼ N0) (because K → πγ∗

amplitude starts at one loop in O(p2) chiral Lagrangian as we discussed in section

2.7.2 of Chapter 2) hence we have to include the 1/N corrections and only then we

can expect a quadratic divergence. 1/N corrections can arise from three places, (i)

Wavefunction renormalization8 factor
√
ZKZπ given by Eq. (2.4.50), (ii) correction

of the Kπππ, KKKπ vertices in the diagram shown in Fog. (2.7) which can enter

naturally through the BBG’s evolution operator E−(M2) coming from Kππ analysis.

(iii) Pion and Kaon electromagnetic form factor correction to the π+π−γ∗, K+K−γ∗

vertices given by Eq. 2.4.51. That is9

η−7(M, z) 7→ η−7(M, z) (F0(M2) + z F1(M2)) (4.0.16)

This of course does not enter the 〈Q7(0)〉. But one must understand that these M2

and/or accompanying extra logarithms do not spoil the cancellation of log argument

7Check Eq. (4.0.7 that we kept the mixing at the K → πe+e− matrix element level.)
8Which of course in the leading order is unity.
9Please check Eq. (2.4.56) for F0,1.
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discussed section 4.0.4 because these extra corrections are sub-leading in large N .

In the present case the whole coefficient η−7 is coming from the pion and kaon loop

hence we can plug E(M2) with it to obtain the quadratic divergence, which can also

be viewed as a Kπππ and KKKπ vertex-corrections. Hence the next extension:

η−7(M, z) 7→ E−(M2)η−7(M, z) (4.0.17)

A remark on g8

Based on Eq. 4.0.17) and considering the Lagrangian given by Eq. (4.1.58) we can

predict the scale dependence of g8 (defined in Eq. (A.3.25)):

g8(M) = E−(M2) C̃−(M) (4.0.18)

This precisely gives the running of g8 and is shown in Fig. 4.1.

Figure 4.1: Variation of g8 with scale M (in GeV).

Around the ρ mass (0.775 GeV) we have g8 ' 5.4.
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The Amplitude and a, b Parameters

Now that we have η−7 we can directly write down the amplitude using Eq. (4.0.8)

and multiplying with the wavefunction renormalization (WFR) factors10:

A(K → πe+e−) =
G8

g8

{[
C̃−(M)E−(M2)η−7(M, z)(F0(M2) + z F1(M2))

+ C̃7(M)
]
〈Q7(0)〉

}√
ZKZπ

(4.0.19)

where we have used 〈Q−(0)〉 = 0. By comparing this with Eq. (2.7.76) and inserting

〈Q7(0)〉 from Eq. (4.0.11) we can obtain the form factor:

W+(M2, z) = −m2
K

G8

g8

(
4πC̃−(M)E−(M2)η−7(M, z)(F0(M2) + z F1(M2))

+ 4πC̃7

)√
ZKZπ

(4.0.20)

Now that we have the full form factor we can look back to section 2.7.3 of Chap-

ter 2 and try to predict the phenomenological parameters a and b introduced by

D’Ambrosio et al. [3]. But fore the sake of completeness let us end this section by

writing down the spectrum of the dilepton invariant mass:

dΓ

dz
=

α2
emK

12π(4π)4
λ

3/2(1, z, r2
π)

√
1− 4

r2
e

z

(
1 + 2

r2
e

z

) ∣∣W+(M2, z)
∣∣2 (4.0.21)

where λ(a, b, c) = a2 + b2 + c2−2(ab+ bc+ ca) and 4r2
e ≤ z ≤ (1− rπ)2. Eq. (4.0.21)

is unusual because it is apparently scale dependent ! But actually it is not, at this

moment we can just insist that scale dependence of C̃−(M)E−(M) 〈Q−(0)〉 conspire
with C̃7 〈Q7〉 to kill the scale dependence of the form factor, in fact this will be our

demand to achieve the matching scale µ = M and the a and b parameters will play

10WFR factors are given in Eq. (2.4.50)



Chapter 4. Application of BBG Scheme 84

the fundamental role in this game. So let us proceed to extract the values of these

parameters.

4.0.6 a Parameter and LD-SD Matching

To extract the these two parameters [3] introduced in Eq. (2.7.89) of Chapter 2, we

must be careful because everything was calculated there in dimensional regulariza-

tion and dispersive method but here we have “apparent” cut-off (M) dependence,

so we expanded both W+(z) defined in Eq. (2.7.89) and our form factor W+(M2, z)

given by Eq. (4.0.20) in powers of z and equate the coefficients. To compare the

coefficients we first expand their form factor given in Eq. (2.7.89), (2.7.90) and

(2.7.93):

W+(z) ∼
z→0

GFm
2
K a+

+

(
GFm

2
K b+ +

3r2
π(α+ − β+)− β+

180r6
π

)
z

(4.0.22)

And we expand also W (M2, z):

W+(M2, z) ∼
z→0
−m2

K

G8

g8

(
4πC̃−(M)E−(M2)η−7(M, 0)F0(M2) + 4πC̃7

)√
ZKZπ

−m2
K

G8

g8

(
4πC̃−(M)E−(M2)η−7(M, 0)F1(M2)

)√
ZKZπ

−m2
K

G8

g8

(
C̃−(M)E−(M2)

√
ZKZπ

(1 + r2
π)

60r2
π

)
z

(4.0.23)

Comparing the coefficients of z in Eq. (4.0.22) and (4.0.23) we obtain a+:

a+(M2) = −4πV ∗usVud√
2

(
C̃−(M)E−(M2)η−7(M, 0)F0(M2) + C̃7

)√
ZKZπ (4.0.24)

and,

b+(M2) =− V ∗usVud√
2

(
C̃−(M)E−(M2)

(1 + r2
π)

60r2
π

) √
ZKZπ

− V ∗usVud√
2

(
4πC̃−(M)E−(M2)η−7(M, 0)F1(M2)

)√
ZKZπ

− 3r2
π(α+ − β+)− β+

GFm2
K180r6

π

(4.0.25)
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where we have used Eq. (2.5.64) and the expansion of η−(M, z) around z = 0:

η−(M, z) ∼
z→0

η−(M, 0)− 1

4π

z

60r2
π

(
1 + r2

π

)
η−(M, 0) = − 1

4π

{1

6
log
[(

1 +
M2

m2
π

)(
1 +

M2

m2
K

)]
− 2θ

} (4.0.26)

Let us put the final formulas inside a box:

a+(M2) '− 4πV ∗usVud√
2

(
C̃−(M)E−(M2)η−7(M, 0)F0(M2) + C̃7

)√
ZKZπ

b+(M2) '− V ∗usVud√
2

C̃−(M)E−(M2)

60r2
π

√
ZKZπ

− V ∗usVud√
2

(
4πC̃−(M)E−(M2)η−7(M, 0)F1(M2)

)√
ZKZπ

− 3r2
π(α+ − β+)− β+

GFm2
K180r6

π

(4.0.27)

In the above formulas we have dropped r2
π in comparison to 1 and also O(m2

K,π/M
2)

corrections have been neglected. Due to the product of wavefunction renormalization

factors and E−(M2), 1/f4 term will also appear but for consistency we have to keep

terms up to 1/f2 only. Notice that a+ and b+ are written with explicitM dependence

which is of course superficial and will disappear due to the cancellation of scales

displayed in Fig. (4.3) below.
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Long and Short Distance Matching Through a+

Schematically the matching can be represented by the diagram11 shown in Fig. 4.2

shown below.

Figure 4.2: Schematic representation of LD-SD matching through a quadratic di-

vergence.

The parameter a+ is the value of the form factor at very low q2, hence demanding

scale independence of the form factor can be achieved in the region where a+ has

extrema.

This gives the range of the matching scale in the range M ' 0.9-1 GeV which

is much above the Bardeen, Buras and Gèrard [4] matching scale M = 0.7 GeV

(without vectors) ! But it is very clear from the figure that a+ is almost scale

independent in a much wider range that includes the BBG range, hence its value

does not change much. Hence we can use the BBG scale to evaluate the parameters.

Therefore, a+(0.7 GeV) ' −0.17 which is almost one third the experimental value

2.2. But b+(0.7 GeV) ' 0.02 which is basically the small kaon loop contribution

factor 1/60! This can be blamed to the non-inclusion of vector resonances. Because

vector exchange can generate a tree level Q− matrix element that presumably should

11This diagram was produced by my colleague Dr. D. Greynat.
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Figure 4.3: Long and short distance matching through a+(M2). b+ has been also

shown (red) on this plot.

enhance bothe a+ and b+. With this motivation we intend to include vectors in the

next section.

4.1 Inclusion of Vector Meson Through Hidden Lo-

cal Symmetry

The idea of massive vector mesons were well known even before QCD [5], in fact

vector meson dominance [6] was based on this. But the notion that massive vector

mesons can be actually gauge bosons, was never taken seriously even after the dis-

covery of Higg’s mechanism, because it was thought that they cannot be given mass

through the spontaneous symmetry breaking. Finally Bando et al. [7, 8, 9, 10] had

shown that a consistent description of massive vector mesons as gauge bosons of the

Hidden Local Symmetry (HLS) is indeed possible. Present introduction is in the

line of the elaborate review [11] where vector mesons were introduced as a nonlinear

realization of the HLS, they had shown that a non-linear sigma model based on

the coset space “G/H is equivalent to another model that has the symmetry group

Gglobal ×Hlocal”. They also review calculations showing that gauge bosons of the

Hlocal (or the Hidden Symmetry) acquire kinetic terms through quantum effects
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and become dynamical. We will mostly rely on a more recent and extensive review

[12] ( which is based on [11]) on HLS.

In the beginning of Chapter 2 we discussed how one can construct the Chi-

ral Lagrangian from the non-linear realization of the coset space G/H where G =

SU(3)L×SU(3)R and H = SU(3)V , the well known fact stated in the last paragraph

then tells us that there exists another equivalent model which has the symmetry

[SU(3)L× SU(3)R]global× [SU(3)V ]local and vector mesons can be accommodated in

the later model as gauge bosons of the group [SU(3)V ]local. This model does not

have issues with the masses of the gauge bosons (vector mesons) because the masses

arise through Higgs mechanism after fixing the (unitary) gauge of the hidden local

group. Although the local hidden symmetry group breaks down and along with

it breaks the global [SU(3)L × SU(3)R]global, the diagonal sum [SU(3)V ]global (light

quark flavor symmetry) remains as a residual unbroken symmetry of the system.

4.1.1 Construction of The Lowest Order Lagrangian

In section 2.1.1 of the second chapter we discussed two special CCWZ parametriza-

tions: Σ and ξ and we identified Σ = ξ2, well this was a special case, in general Σ

can be split into two quantities ξL and ξR as:

Σ = ξ†LξR (4.1.28)

But even Σ = ξ†Lh
†(x)h(x)ξR would also be as good as the splitting defined in

the above equation, so there is an ambiguity which can be understood as a local

gauge freedom and the local transformation is nothing but an element of Hlocal.

Considering the fact that Σ 7→ gΣ g†R under the global chiral group if ξL,R transform

the following way under the full group Gglobal ×Hlocal:

ξL,R(x) 7→ h(x) ξL,R gL,R (4.1.29)

where h(x) ∈ Hlocal and g ∈ Gglobal. Under the above transformation splitting of Σ

defined in Eq. (4.1.28) is ambiguous and this ambiguity is the hidden local symmetry
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group Hlocal = [SU(3)V ]local. ξ’s can be parametrized using CCWZ parametrization

as:

ξL = ξ† eiσ/fσ ξR = ξ eiσ/fσ (4.1.30)

where ξ = exp[iΠ/f ] is of course the one defined in the second chapter (check

sec. 2.1.1 of Chapter 2) with NG-Bosons Π = πa T
a of the broken glocal symmetry

(Gglobal) while Σ = σa T
a is the octet of NG-Bosons absorbed inside the gauge bosons

of the local symmetry Hlocal. The ratio of the decay constants is defined as:

f 2
σ

f 2
:= a (4.1.31)

Invariants and The Leading Order Lagrangian

Two Maure-Cartan 1-forms can be built out of ξL,R and they are the following:

α⊥µ =
1

2i

[
(∂µξR)ξ†R − (∂µξL)ξ†L

]
α‖µ =

1

2i

[
(∂µξR)ξ†R + (∂µξL)ξ†L

] (4.1.32)

And their transformations are:

α⊥µ 7→h(x)α⊥µ h
†

α‖µ 7→h(x)α‖µ h
† − i(∂µh)(x)h†(x)

(4.1.33)

Eq. (4.1.29) dictates the covariant derivative12

DµξL,R = ∂µξL,R − iVµξL,R (4.1.34)

Where

Vµ = Vµa T a (4.1.35)

12We used D as the covariant derivative of ChPT introduced in the Chapter 2 (Eq. (2.2.36))

that acts on Σ and we have used it so far before the introduction of HLS in this chapter. To avoid

any confusion we will use the symbol D for the covariant derivative of the HLS that act on ξ the

way its defined here. Also the normalization is different than the one introduced in Eq. (3.3.68)

in the BBG framework.
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And they transform as:13

Vµ 7→ h(x)Vµ h† − i(∂µh(x))h†(x) (4.1.36)

We can now use ∂µ 7→ Dµ in Eq. (4.1.32) to obtain their manifestly covariant form:

α̂⊥µ =
1

2i

[
(DµξR)ξ†R − (DµξL)ξ†L

]
α̂‖µ =

1

2i

[
(DµξR)ξ†R + (DµξL)ξ†L

] (4.1.37)

where

α̂⊥µ = α⊥µ, α̂‖µ = α‖µ − Vµ (4.1.38)

These covariantized quantities now transform homogeneously so invariant objects

can be constructed in the most straight forward way. In the lowest order in deriva-

tives we have the following two invariants (under Gglobal ×Hlocal):

LA = f 2 tr[α̂⊥µ α̂
µ
⊥]

aLV = f 2
σ tr[α̂‖µ α̂

µ
‖ ] = f 2

σ tr[
(
α̂‖µ − Vµ

)2

]
(4.1.39)

The lowest order Lagrangian with full unbroken symmetry is then given by:

L hls
p2 = LA + aLV −

1

2g2
V

tr[VµνVµν ] (4.1.40)

If we are at very low energy scale (pion mass scale) then the vector mesons are frozen

and hence the kinetic term for them can be dropped, in such a case the equation of

motion for Vµ is:

Vµ = α‖µ (4.1.41)

When this is substituted in Eq. (4.1.40), LV term disappear and LA is nothing but

the usual ChPT Lagrangian in the absence of external fields, that is:

LA =
f 2

4
tr[∂µΣ∂Σ†] (4.1.42)

here we have shown (in a very sketchy way) how ChPT, which is based on the

Gglobal/Hglobal is equivalent to the HLS Lagrangian which is built on Gglobal×Hlocal.14

13Different normalization is used than the one used in Eq. (3.3.67)
14G = SU(3)L × SU(3)R and H = SU(3)V was implied.
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How do we know this is the physical vector meson ?

Physical ρ meson was defined in Eq. (7.3) of Weinberg’s 1968 paper [13] and we will

show how this transformation property arises naturally when one breaks the hidden

local symmetry through (unitary) gauge fixing.

In the unitary gauge (σ = 0) we have:

ξR = ξ†L = ξ = exp[iΠ/f ] (4.1.43)

But this sigma-less form is not preserved, σ comes back when we do a general global

transformation shown in Eq. (4.1.29) which after gauge fixing of the Hlocal takes the

form:
Gglobal : ξ 7→ ξ′ = gL xi = ξ g†R

= exp[±iσ′/fσ] exp[iΠ′/f ]
(4.1.44)

So to maintain the covariance under Gglobal we need a simultaneous local transfor-

mation that exactly cancels the σ′-exponential factor, that is for each such transfor-

mation defined above an unique local transformation of the following form:

h ∈ Hlocal = exp[iσ′(Π, gR, gL)/fσ] = h(Π, gR, gL) (4.1.45)

is required. The system will have a global symmetry under SU(3)L×SU(3)R under

the transformation:

Gglobal : ξ 7→ h(Π, gR, gL) ξ h†(Π, gR, gL) (4.1.46)

The gauge field Vµ (of Hlocal) transforms now as:

Gglobal : Vµ 7→h(Π, gR, gL)Vµ h†(Π, gR, gL)

− i[∂µh(Π, gR, gL)] h†(Π, gR, gL)
(4.1.47)

Which is Weinberg’s ρ meson and so in the unitary gauge of HLS we indeed have

a theory of physical ρ meson. Now that it has been identified we can assign the

physical particles namely:

Vµ = Vµ/gV =
1√
2


(ρ0
µ + ωµ)/

√
2 ρ+

µ K∗+µ

ρ−µ (−ρ0
µ + ωµ)/

√
2 K∗0µ

K∗−µ K̄∗0µ φµ

 (4.1.48)
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where we have switched to Vµ 15. from Vµ.

We can now use the gauge fixed variables from Eq. (4.1.43) and substitute them

in Eq. (4.1.40) to obtain the final form of the leading order Lagrangian that we are

going to use:

L A = −f
2

4
tr
[ (

Dµξ
†ξ −Dµξξ

†)2
]

(4.1.49)

L V = −f
2

4
tr
[ (

Dµξ
†ξ + Dµξξ

†)2
]

(4.1.50)

where the final Lagrangian is the sum of the above two pieces and given by Eq.

(4.1.40). Before we start the calculations it is crucial to specify the counting rules

which are:
a f 2 = f 2

σ ∼ O(p0)

gV ∼ O(p)

m2
V ∼ O(p2)

Vµ ∼ O(p0)

(4.1.51)

We must also introduce the covariant derivative in terms of the external sources:

Dµξ = ∂µξ − i gV Vµ ξ + i ξ rµ

Dµξ
† = ∂µξ

† − i gV Vµ ξ† + i ξ† lµ

(4.1.52)

Photon and W -bosons are introduced in the usual manner:

lµ = −eQAµ −
g2

2
Wµ

rµ = −eQAµ

(4.1.53)

Following the procedure used in section 3.2.2 of the previous chapter we can identify

the left current that couples to W -boson both in Eq. (2.5.59) and (4.1.40) and can

extract it:

Lhlsµ = LAµ + aLVµ (4.1.54)

15Vµ was used in Chapter 3 for example check Eq. (3.3.67), (3.3.68) and (3.3.69).
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Where,

[LAµ ]ij = − if 2

2

[
ξ
(

(∂µξ
†)ξ − (∂µξ)ξ

†
)
ξ† − i eAµ [QΣ†,Σ]

]
ji

[LVµ ]ij = − if 2

2

[
ξ
(

(∂µξ
†)ξ + (∂µξ)ξ

†
)
ξ† − i eAµ {QΣ†,Σ}

]
ji

− gV f
2
[
ξVµξ

†
]
ji

(4.1.55)

Total current can be cast into more transparent form:

[Lhlsµ ]ij =
i f 2

2
(1− a) [(DµΣ)Σ†]ji + i a f 2 [(Dµξ)ξ

†]ji (4.1.56)

Based on the arguments of Bardeen, Buras and Gèrards [14] we can bosonize the

operators Using these currents in the same manner as we explained in Chapter 3:

Qhls− = 4
{

[Lhlsµ ]31[Lhlsµ]12 − [Lhlsµ ]32[Lhlsµ]11

}
Qhls7 = 2αe [Lhlsµ ]32 [ēγµe]

(4.1.57)

And finally plug them into the ∆S = 1 Lagrangian given by Eq. (4.0.2). 16:

L ∆S=1
hls =

G8

g8

[
C̃−(M)Qhls− (M) + C̃7(M)Qhls7

]
+ h.c (4.1.58)

Once again the amplitude can be cast into the form similar to the one given by Eq.

(4.0.8):

A(K → πe+e−) =
G8

g8

{
C̃−(M) 〈Qhls− (0)〉+

[
C̃−(M)ηhls−7 (M, z) + C̃7(M)

]
〈Qhls7 (0)〉

}

(4.1.59)

where we have used the evolution equations:

〈Qhls− (M)〉 = 〈Qhls− (0)〉+ ηhls−7 (M, z) 〈Qhls7 (0)〉

〈Qhls7 (M)〉 = 〈Qhls7 (0)〉+ 0
(4.1.60)

16To avoid confusion we re-write the effective Lagrangian here tagging it with “hls”.
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The only difference this time is that the diagonal evolution of 〈Q−〉 exists or simply

put 〈Qhls− (0)〉 6= 0, along with the usual mixing with 〈Qhls7 (0)〉 discussed in the last

section. We expect an extension of the mixing coefficient in the following manner:

η−7(M, z) 7→ ηhls−7 (M, z) = η−7(M, z) + ηV (M, z) (4.1.61)

where the extra piece will encode the vector contributions to the mixing. Before

we actually calculate it, we can have an idea about how this parameter should look

like based on the argument of scale cancellation discussion in section Let us now

repeat the steps of the last section but fortunately we will see that we will need to

calculate only one diagram which is just the tree level matrix element of Q−, some

of the other new diagrams can be shown to be non-contributing or identically zero

and the rest can be built out of the one loop calculation of the last chapter based

on arguments alone.

4.1.2 K+ → π+e+e− Matrix Elements (With Vectors)

Tree Level Matrix Elements

As we said earlier and is well known that vector resonances induce a non-zero tree

level matrix element of Q−, then we also have 〈Q7(0)〉, so we have these two tree

level matrix elements to take care.

Tree Level Qhls− Matrix Element

There are two diagrams that contributes to 〈Qhls7 〉, one involves no vectors shown

in Fig. (4.4), which in ChPT was zero but its presence here does not violate gauge

invariance, in fact this diagram ensures gauge invariance, it combines with the Type-

IIhls diagram shown in Fig. (4.5) to cancel the overall q2 independent part and

produces the final gauge invariant result. So we can apply the trick of Chapter 2,

that is subtracting from Type-IIhls its q2 → 0 limit and obtain the complete result

but we will not do it here because of two reasons:
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1. Naturally one will be suspicious of the non-vanishing contribution of the dia-

gram shown in Fig. (4.4), in the context of ChPT. So we need to prove that

there is nothing spooky here inside HLS.

2. This proof will be valid off-shell which means we can apply this vertex even in

the loop diagrams without thinking about violating ethics.

K(k) π(p)

γ(q)

Figure 4.4: Type-Ihls diagram contributing to 〈Qhls− 〉 in HLS.

K(k) π(p)

γ(q)

V (q)

Figure 4.5: Type-IIhls diagram contributing to 〈Qhls− 〉 in HLS. V stands for ρ, ω and

φ

Using the vertices given by Eq. (A.5.34) and (A.6.45) from Appendix A17 we get

the following contribution of Fig. 4.5:

〈π+γ∗| Qhls− (0) |K+〉II = e ε∗ · (k + p)a f 2

(
2a− 1

3

)
m2
V

m2
V − q2

(4.1.62)

where we have used the vector meson mass:

m2
V = a f 2 g2

V (4.1.63)

17We drop the factors G̃8 because we are interested in matrix element of Qhls− and not in full

amplitude.
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And using Eq. (A.6.47) we calculate the matrix element corresponding to the dia-

gram given in Fig. 4.4:

〈π+γ∗| Qhls− (0) |K+〉I = −e ε∗ · (k + p)a f 2

(
2a− 1

3

)
(4.1.64)

Adding Eq. (4.1.62) and (4.1.64) we find the full tree level contribution for K+ →
πγ:

〈π+γ∗| Qhls− (0) |K+〉total = e ε∗(q) · (k + p)
2a− 1

3

z

r2
V − z

a f 2 (4.1.65)

So this completes the proof that non-q2 terms gets cancelled when the two diagrams

added and the complete result is gauge invariant.

Now we can use Eq. (4.1.65) to obtain the final matrix element of interest:

〈Qhls− (0)〉 = 〈π+e+e−| Q−(0) |K+〉

= −αe[ū(p−)(/k + /p)v(p+)]
8πf 2

m2
V

FV (z)
(4.1.66)

where we have used a = 2 and the definition of FV (z) given in Eq. (2.7.92).

Tree Level Q7 Matrix Element

As argued in section A.5.1 of Appendix A that the vertex due to Q7 just receives a

factor or FV (z), hence using Eq. (A.5.39) we have:

〈Qhls7 (0)〉 = −αe [ū(p−)(/k + /p)v(p+)]FV (z) (4.1.67)

We summarize the tree level matrix elements in our HLS based scheme:

〈Qhls7 (0)〉 = −αe [ū(p−)(/k + /p)v(p+)]FV (z)

〈Qhls− (0)〉 = −αe[ū(p−)(/k + /p)v(p+)]
8πf 2

m2
V

FV (z)
(4.1.68)

Matching With Just Tree Level In Vectors ?

This is a right place to pause for a while and ask if it is possible to do the matching

and calculate the a+ and b+ considering just the tree level contributions of vectors !
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If we pause at tree level in vectors, and of course the earlier chiral loop (but without

any vectors attached), we will not have the ηV introduced in Eq. (4.1.61) because

ηV (M, z) is the vector contribution to the 〈Q−〉-〈Q7〉mixing which can only appear if

we consider vector involved loop diagrams. But there is another problem: due to the

absolute vector meson dominance in the pion-pion and kaon-kaon electromagnetic

form factors, “just a chiral loop” (Fig. 2.7) vanishes for a = 2, because18

Lπ+π−γ ∝ (a− 2)

LK+K−γ ∝ (a− 2)
(4.1.69)

Therefore we do not even have usual vector-less mixing coefficient η−7(M, z) defined

in Eq. (4.0.5), therefore in view of the discussion in section 4.0.4 (Eq. (4.0.9,4.0.10)

nothing to cancel the scale of C̃7 ! Therefore it is absolutely necessary that when we

include vectors we must include at least loops with vectors attached such as the one

shown in Fig. 4.9. On the other hand the same scale cancellation argument once

again tells us how the ηV (M, z) should look like. It must be of the following form:

ηV (M, z) ∼ logM2
[
η0(m2

π,m
2
K ,m

2
V ) + z η1(m2

π,m
2
K ,m

2
V ) + ...

]
(4.1.70)

Logarithm is essential based on the scale cancellation argument (Eq. (4.0.9))while

phenomenologically we know that a+ and b+ parameters must be enhanced by vec-

tors, clearly η0 will enhance a+ and η1 will enhance b+. Let us now explicitly

calculate these constant coefficients (η1,η2) that supposedly should enhance ai’s and

bi’s.

One Loop Matrix Element

Once again there is just Q− which will acquire a loop level matrix element. Before

proving it explicitly let us claim that the result is the following:

〈Qhls− (M)〉
loop

= 〈Q−(M)〉loop × FV (z) + ∆η(M, z) 〈Qhls− (0)〉 (4.1.71)

where 〈Q−(M)〉loop is the usual “without vector” matrix element given by Eq. (4.0.12)

18Please check Appendix A for details.
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It is easy to see that our non-vector mixing coefficient will receive the following

extension:

η−7(M, z) 7→ ηhls−7 (M, z) = η−7(M, z) +
8πf 2

m2
V

(∆η(M, z)− 1) (4.1.72)

Therefore Eq. (4.1.61) tells us that

ηV (M, z) =
8πf 2

m2
V

(∆η(M, z)− 1) (4.1.73)

One Loop Qhls− Matrix Element: Proof Through Algebra of Diagrams

All the diagrams can be split into a few broad classes, let us call them Type-A,B,C...

etc. Type-A diagrams are shown in Fig. (4.6), they are the (
√
ZK−1) and (

√
Zπ−1)

multiplied usual tree level matrix elements that we already have calculated but they

will of course contribute to the ηV factor, so we write them down here as:

〈Qhls− (M)〉
A

= 〈Qhls− (0)〉
(√

ZK − 1 +
√
Zπ − 1

)
= 〈Qhls− (0)〉

(√
ZKZπ − 1

)
+O(f−4)

(4.1.74)

Notice that we have subtracted 1 from
√
ZK,π because the 1 corresponds to tree level

matrix element and here we are calculating only loop contributions. Then we have

Type-B diagrams in Fig. (4.7) that are one of the usual ChPT Type-I diagrams

(first two diagrams of Fig. 2.6) multiplied by FV (z) in the pion-pion-gamma (or

kaon-kaon-gamma) vertex.

K K π

V

γ

K, π

γ

V

K π

K, π

π

Figure 4.6: Type-A diagrams that just corrects the external meson propagators.

Then we have Type-C diagrams shown in Fig. 4.8, these upgrades the last diagram

of Type-I (2.6) of the Chapter 2. The fourth kinds of diagrams are Type-D shown

in Fig. 4.9, first and the last diagrams are zero because the ππγ and KKγ vertices
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K π

V

γ

K, π

γ

V

K π

K, π

π K

Figure 4.7: Type-B diagrams are just FV (z) corrected versions of first two diagrams

of Type-I diagrams of ChPT.

come with a factor of (1− a/2) so for a = 2 they vanish. While the middle one is the

usual ChPT times F (z), this is because the Kπππ or KKKπ vertices are exactly

the same as was before in non-vector case and is clear from the vertex rule given in

Eq. (A.6.43). If we summarize this discussion into an equation, what it means is:

Type-B + Type-C = Type-I × FV (z) (4.1.75)

And,

Type-D = Type-II × FV (z) (4.1.76)

K

V

γ

K, π

π

K, π

π π

γ

K π

Figure 4.8: Type-C diagrams that upgrades the Type-I diagrams of ChPT.

K π

V

γ

K, π K, π

γ K, π K, π

V

γ

K πK π

Figure 4.9: Type-D diagrams that upgrades the Type-II diagrams of ChPT.

where Type-I,II are the set of diagrams shown in Fig. 2.6, 2.7 respectively. As

the whole structure of non-vector diagrams (Type-I and II) remains intact up to an
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overall multiplicative function FV (z) we obtain and obvious update of our earlier

result:

〈π+γ∗| Qhls− (M) |K+〉D = 〈π+γ∗| Q−(M) |K+〉FV (z) (4.1.77)

where 〈π+γ∗| Q−(M) |K+〉 is given by Eq. (4.0.12) But this is not the whole

〈Qhls− (M)〉 though ! To realize this we have to look at the diagram of Fig. 2.5

(i), which gets removed by the diagonalization procedure discussed in section 2.7.2.

But this diagram does not vanish in HLS, because, although the diagonalization

procedure kills Kπ mixing vertices, it does not remove Kπγ as was the case in pure

ChPT or BBG (without vector). The reason for this is hidden in the form of the co-

variant derivative through which photon couples, a quick comparison of Eq. (4.1.52)

and (2.2.36) makes it apparent. Hence there appears the fourth kinds of diagrams

shown in Fig. 4.10, hence we need explicit calculation of these two diagrams.

Calculation of Type-E diagrams

K π

K π

V

γ

K π

γ

K π

Figure 4.10: Type-E diagram that does not have a version in ChPT (after diagonal-

ization of Kπ terms).

Although it appears that we have to calculate two diagrams but actually we

do not have to ! Because when we add the two diagrams, the weak vertex that

couples to photon directly and through a vector, adds up to produce a factor that

has been already calculated through 〈Q−(0)〉, we just need to calculate the first

diagram of Fig. 4.10 and use 〈π+γ∗| Q−(0) |K+〉 (Eq. (4.1.65)) as the photon vertex

and evaluate the loop integral that employs the trick discussed in section 2.7.2 of

Chapter 2. So we just need to replace (k + p) in Eq. (4.1.65) by 2l (and of course

an "i") and use the K+K−π+π− vertex from Eq. (A.5.33) to obtain the following
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integral:

K+(k)

π+(p)

γ(q)

K+(l)

π+(l − q)

=
4ief 2 z FV (z)

r2
V

∫
d4l

(2π)4

iε∗ν(k + p)µ
4f 2

i lµ

l2 −m2
K + i0+

× i lν

(l − q)2 −m2
K + i0+

(4.1.78)

=⇒ 〈π+(p)γ∗(q)| Q−(M) |K+(k)〉E = − e ε∗(q) · (k + p)
z FV (z)

r2
V

× q2 B21(M2, q2,m2
K ,m

2
π)

(4.1.79)

B21 is evaluated in Eq.(B.3.33) of Appendix B. Our discussion on Type-B-D proved

that they were sufficient to upgrade all the ChPT Type-I and II diagrams by a

multiplicative factor of F (z) which means Type-D,E diagrams do not have any ChPT

version to be added which in turn means that we should not subtract q2 → 0 limit of

just calculated Type-E diagram from itself this time, like the way we did in Chapter

2 and also in the non-vector in this chapter, that would also mean that they must

be automatically proportional to q2. And it is apparent from the explicit z factor

in front which says that even if we subtract q2 → 0 limit, we would be subtracting

a zero. This means there will appear quadratic divergence that got cancelled in

non-vector case due to the just mentioned q2 → 0 subtraction. This finalizes the

calculation of 〈π+γ∗| Qhls− (M) |K+〉 that can be plugged in to the electron-positron

pair to extract the final matrix element

〈π+e+e−| Qhls− (M) |K+〉

:
〈Qhls− (M)〉

E
= αe[ū(/k + /p)]×

4π z FV (z)

r2
V

B21(M2, q2,m2
K ,m

2
π)

= −z m
2
K

2f 2
B21(M2, q2,m2

K ,m
2
π) 〈Qhls− (0)〉

(4.1.80)

Now we add Type-A (4.1.74), E and tree contributions given by Eq. (4.1.66) to get

the complete 〈Qhls− (M)〉:

〈Q−(M)〉 = 〈Qhls− (0)〉+ 〈Qhls− (M)〉
A

+ 〈Qhls− (M)〉
D

+ 〈Qhls− (M)〉
E

(4.1.81)

Comparison with Eq. (4.1.60) makes it apparent that the last three terms (A,D,E)
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will contribute to ηhls−7 and is given by:

ηhls−7 (M, z) = η−7(M, z) +
8πf 2

m2
V

{
− 1

2f 2
q2B21(M2, q2,m2

K ,m
2
π) +

√
ZKZπ − 1

}
(4.1.82)

Therefore the exact expression for ηV factor (introduced in Eq. (4.1.61) and restated

in Eq (4.1.73)) will be:

ηV (M, z) = −8πf 2

m2
V

{
1−

√
ZKZπ +

1

2f 2
q2B21(M2, q2,m2

K ,m
2
π)

}
(4.1.83)

Plugging this in Eq. (4.1.72), we can get the vector upgraded mixing coefficient.

We summarize the results of this section below:

〈Qhls− (M)〉 = 〈Qhls− (0)〉+ ηhls−7 (M, z) 〈Qhls7 (0)〉

ηhls−7 (M, z) = η−7(M, z) + ηV (M, z)

ηV (M, z) ' − 1

24

πm2
K

m2
V

1

(4π)2
log

M2

m2
K

× z

(4.1.84)

The amplitude for the process K+ → π+e+e− will be given by Eq. (4.0.8) when we

make the following replacements:

〈Q−,7(0)〉 7→ 〈Qhls−,7(0)〉

η−7(M, z) 7→ ηhls−7 (M, z)
(4.1.85)

And this time F0,1 will be absent19. Which finally leads to the vector included

form factor:

W hls
+ (M2, z) = 4πm2

K

G8

g8

{
− C̃−(M)

2πf 2

m2
V

+ C̃−(M)
[
E−(M2,m2

V ) η−7(M, z) + ηV (M, z)
]

+ C̃7(M)

}√
ZKZπ × FV (z)

(4.1.86)

19 Please check Eq.(4.0.27)
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Notice that we have plugged in the BBG evolution operator20 E−(M2,m2
V ) just with

the part that contains Kπππ or KKKπ vertex, that is η−7(M, z).

Note on counting: The wavefunction renormalization factor introduces a correc-

tion of 1/f2 and hence to keep the counting consistent we must drop any term of

order lower than that, any formula presented must be viewed under this counting

rule.

Vector Upgraded a and b

Once again expanding Eq. (4.1.86) around z = 0 and comparing with Eq. (4.0.22)

we present the final forms of vector-included a+ and b+:

a+(M2,m2
V ) ' −V

∗
usVud√

2

{
C̃−(M)

2(4πf)2

m2
V

+
[
C̃−(M)E−(M2,m2

V )

(
1

3
log

M2

mKmπ
− 2θ

)

− 4π C̃7(M)
]}√

ZKZπ

b+(M2,m2
V ) ' a+(M2,m2

V )

r2
V

− V ∗usVud√
2

{
1

6

m2
K

m2
V

C̃−(M) log
M2

m2
K

+
C̃−(M)E−(M2,m2

V )

60 r2
π

}

×
√
ZKZπ −

3r2
π(α+ − β+)− β+

180GF m2
K r

6
π

(4.1.87)

20This is the vector upgraded evolution operator defined in Eq. (3.3.88).
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where θ = 1/6 or 5/18 depending on the cut-off scheme and gV ' 6.1. Notice that

both a+ and b+ receive corrections, but b+ receives two corrections, one through a+

as in a+/r2
V which is obvious and expected, but it also receives an extra piece.

No-vector limit: It is easy to see that m2
V →∞ produces the vector-less results

given by Eq. (4.0.27).

Long and Short Distance Matching Revisited

Once again we can look for the scale where a+(M2) has the extrema and that will

be our matching scale. The matching through a+ is shown in Fig. (4.11).

Figure 4.11: Long and short distance matching through vector upgraded a+(M2).

b+ has also been plotted (red). The shaded region shows the matching range.

The matching scale is obtained around M ∼ 0.66 GeV and at this scale a+ = −0.64

(∼ 280% increase) and b+ = −0.29 (∼ 1300% enhancement). Although there are

huge enhancements in both parameters, a+ matches well (up to 2σ) with experiment

(2.2) but b+ is missing almost a factor of 2.5, in fact the enhancement that will push

|b+| beyond |a+| is missing ! The reason for this could be:
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• The parameter a of Hidden Local Symmetry was fixed to 2 from VMD but

as we are interpolating between long and short distance scales, more careful

treatment would be to let it run with scale.

• So there is a need of new matchings: (i) HLS with Chpt and (ii) HLS with

QCD. Construction of the weak Hamiltonian using HLS in the BBG frame-

work needs the above mentioned matching to make the whole framework more

powerful.

4.1.3 KS → π0e+e−

For the decay KS → π0l+l−, K0π0π+π− vertex is identically zero in the Q− sector,

so we do not have pion loop in case of KS decay but kaon loop is possible and there

is a factor of −
√

2 in the K0π0K+K− vertex, hence from the definition of KS:

KS =
1√
2

(K0 − K̄0) (4.1.88)

it is apparent that the following substitution:

WS(M2, z) = − lim
mπ→mK

WS(M2, z) (4.1.89)

will fix the form factor, additionally Q7 vertex also provides a factor of −2 that

justifies above equation completely. Then the above definition provides the value of

aS ' +1.2 and the experimental value is |1.08|+0.26
−0.21. So our approach successfully

predicts ai’s and also predicts huge enhancement in b+ due to vector inclusion.
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Chapter 5

Conclusion

The motivation of this work was an attempt to understand the non-perturbative

regime of QCD through long and short distance matching using rare Kaon decays

as probes. The large Nc based framework of Bardeen, Buras and Gerard (discussed

in details in Chap 3) looks promising in the light of their achievements in K → ππ

decay, especially for the bulk of the explanation for ∆I = 1/2 rule. The agreement

of their results with lattice simulations strengthened the ground to take this method

seriously and to test it on the decay K → πe+e−, which is very well understood

experimentally. In doing so we understood the inclusion of vector mesons in the

usual Chiral Perturbation Theory (strong) and also proposed an extension to the

weak sector through Bosonization of the Gilman-Wise Hamiltonian at the Chiral

limit and then evolving it using BBG scheme. The successful prediction of the

phenomenological parameters ai and bi suggests that such a weak Lagrangian can

indeed be used to calculate the interactions of vector resonances with reasonable

accuracy and so we intend to calculate other processes using such vector-extended

weak Lagrangian in the context of BBG’s meson evolution. Especially in the wake

of this beautiful experiment NA62 [1] where 100 events of K+ → π+νν̄ are expected

and in the J-PARC KOTO [2] experiment with the goal of a few KL → π0νν̄ SM

events in 3-4 years run with Signal/Noise ratio ∼ 2. Since short contributions are

essential for theoretical predictions of these processes, our approach looks sound to

be applied. If the procedure produces consistent results then we can finally expect

to put forward the standard model results and so indication of BSM physics. Indeed
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Bardeen et al. are already indicating using their approach that there is a big (2-

3σ) difference between SM (backed by lattice [3, 4] group RBC and UKQCD) and

experimental values of Re(ε′/ε) demanding a BSM explanation. This is an exciting

situation and we would like to be in tune with the experiments to produce results

and test them.
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Appendix A

Rules and Conventions

Notations
ε Photon polarization vector.

ε̄(V ) Polarization vector of V = ρ, ω, φ
(A.0.1)

Space-Time Conventions

Propagators

Particle Diagram Value in Momentum Space

Pseudo-scalar mesons Π(p)
i

p2−m2
Π+iε

Photon
µ νγ(q)

−i
q2

(
gµν − qµqν

q2

)
(LG)

ρ-meson
µ νρ(q)

−i
q2−m2

ρ

(
gµν − qµqν

q2

)
(LG)

Table A.1: Propagators of all the relevant particles. LG stands for the Lorentz-

gauge.

Vrtices

QED L ∆S=0
p2 L hls

p2 strong L hls
− L ∆S=1

p2 ,L− L7

Table A.2: Vertex symbols.
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Vertex Conventions

• For a generic vertex, scalar fields A1, A2, A3,...,An all coming out of the vertex

(diamond) carrying momenta p1, p2, p3,...,pn respectively, governed by the

Lagrangian L has the following Feynman Vertex rule:

A1(p1)

A2(p2)

A3(p3)

An(pn)

= i 〈A1(p1), A2(p2), A3(p3), ..., An(pn)|L |0〉

• Conventions for incoming and outgoing scalar fields are:

〈0| ∂µAj |Ai(pi)〉 = −ipµj δij 〈Ai(pi)| ∂µA∗j |0〉 = −ipµj δij

A.1 Lagrangian Pieces and Feynman Rules For Chap-

ter 2

A.1.1 Relevant Lagrangian Pieces Before Diagonalization

From Weak Lagrangian: Eq. (2.5.63)

Relevant pieces of Lagrangian are:

L K+π+π−π−

p2 =
G8

3

[
(π−)2∂µK

+∂µπ+ +K+π+(∂µπ
−)2

+K+π−∂µπ
−∂µπ+ − 3π−π+∂µK

+∂µπ−
]

L K+K+K−π−

p2 =
G8

3

[
(K+)2∂µK

−∂µπ− +K−π−(∂µK
+)2

+K+π−∂µK
−∂µK+ − 3K−K+∂µK

+∂µπ−
]

(A.1.2)

and corresponding vertex rules are:
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π+(p1)

K−(k1)
π+(p2)

π−(p3)

= −iG8

3

[
2(k1 · p3 + p1 · p2) + (p1 + p2) · (p3 − 3k1)

]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

= −iG8

3

[
2(k1 · k3 + p1 · k2) + (k1 + k3) · (k2 − 3p1)

] (A.1.3)

From Strong Lagrangian: Eq. (2.2.43)

Relevant pieces of the strong Lagrangian:

L π+π−γ
p2 = ie

(
π−∂π+ − π+∂π−

)
L K+K−γ
p2 = ie

(
K−∂K+ −K+∂K−

) (A.1.4)

and corresponding vertex rules are:

γ(q)
π−(p2)

π+(p1)

= ie(p2 − p1)µε
∗µ(q)

γ(q)

K+(k1)

K−(k2)

= ie(k2 − k1)µε
∗µ(q)

(A.1.5)

And specific to the loop such as the one defined in Eq. (2.7.82) we have,

K+, π+(l)

K+, π+(l − q)

γ(q) = 2ie ε∗ν

(
lν − 1

2
qν
)

= 2ie ε∗νl
ν + ... (A.1.6)

A.2 Simultaneous Diagonalization of Kinetic and

Mass Terms

If we apply the following transformations[1] on the meson fields:
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π+ 7→ π+ − 2m2
Kf

2G8

m2
K −m2

π

K+

K+ 7→ K+ +
2m2

πf
2G∗8

m2
K −m2

π

π+

π0 7→ π0 +

√
2m2

Kf
2G8

m2
K −m2

π

(G8K
0 +G∗8K̄

0)

K0 7→ K0 −
√

2m2
πf

2G∗8
m2
K −m2

π

π0 +

√
2

3

m2
ηf

2G∗8
m2
K −m2

π

η

η 7→ η −
√

2

3

m2
Kf

2

m2
η −m2

K

(G8K
0 +G∗8K̄

0)

(A.2.7)

Transformations of π−, K− and K̄0 are just the complex conjugate of the above

transformations. We are dealing with cp conserving processes hence we can consider

the G8 to be real. These transformations when applied on the complete Lagrangian

that is Eq. (2.2.43) + Eq. (2.5.63), they mix and cancel mixed quadratic (in meson

fields) terms (Our interest is in K-π mixed terms) and as the kinetic terms contain

photons through covariant derivatives, they also eliminate K-π-γ terms, resulting

in a Lagrangian that does not have any K-π or K-π-γ terms and leaving the form

of the kinetic and mass terms invariant. Once this has been done we need to worry

about modifications in the original higher order (in number of meson fields) terms

and the fact that we are working at O(G8) will help us simplify things enormously

if we consider the following observations:

1. Weak Lagrangian (Eq. (2.5.63)) is already O(G8) so the extra terms that will

appear due to above transformations will be at least O(G2
8) hence we do not

have to touch the weak Lagrangian.

2. Consider a term from strong Lagrangian (Eq. (2.2.43)) which always has the

form ∼ π2mK2n where m and n are positive integers and π and K represents

their different isospin varities and derivative etc are all included. This kind of

terms will transform to:

π2mK2n 7→ π2mK2n +G8(π2m−1K2n+1 + similar one field changing terms )

+G2
8(π2m−2K2n+2 + similar two fields changing terms ) +O(G3

8)
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Of course also K transforms into π etc, we are just interested in the G8 powers

here and not the details of the structure of the terms. So the message is that at

O(G8) we just have to consider one field fliiping terms of the strong Lagrangian.

We have got just two relevant weak terms which are Kπππ and KKKπ and due

to the above transformations they can receive just two contributions each, from the

strong Lagrangian that involve single field transformations. That is Kπππ can come

from ππππ 7→ G8Kπππ and KKππ 7→ G8Kπππ. Similarly KKKπ can come from

KKKK 7→ G8KKKπ and KKππ 7→ G8KKKπ and nothing else at this order. We

introduce the following notations here:

L ∆S=0
p2 7→ L ∆S=0

p2 +G8 δL
∆S=0
p2 (A.2.8)

where G8 δL ∆S=0
p2 is the extra piece of weak Lagrangian coming from the original

strong Lagrangian due to the fields transformations described above. So we will

keep the definition of strong Lagrangian intact, that is given by Eq. (2.2.43) but

will redefine the weak Lagrangian as:

L ∆S=1
p2 7→ L ′∆S=1 = L ∆S=1

p2 +G8 δL
∆S=0
p2 (A.2.9)

We will keep this extra piece explicit so that we can track the mass ratios and expand

in m2
π/m2

K whenever it is necessary. From now on let us call this extra piece:

G8 δL
∆S=0
p2 = δL ∆S=1

p2 (A.2.10)

A.2.1 Relevant Weak Lagrangian Pieces After Diagonaliza-

tion

Terms coming from the weak Lagrangian given by Eq. (A.2.9) will be the original

ones given by Eq. (2.5.63) plus the extra pieces coming from Eq. (A.2.10), so we

will first write down only the extra terms below.
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From δL ∆S=1
p2 : Eq. (A.2.10)

δL K+π+π−π−

p2 = −2G8

3

[
(π−)2∂µK

+∂µπ+ +K+π+(∂µπ
−)2

−K+π−∂µπ
+∂µπ− − π−π+∂µK

+∂µπ−
]

δL K+K+K−π−

p2 = −2G8

3

[
(K+)2∂µK

−∂µπ− +K−π−(∂µK
+)2

−K+π−∂µK
−∂µK+ −K−K+∂µK

+∂µπ−
]

(A.2.11)

and corresponding vertex rules are:

δ

π+(p1)

K−(k1)
π+(p2)

π−(p3)

=
2iG8

3

[
2(k1 · p3 + p1 · p2)− (p1 + p2) · (k1 + p3)

]

δ

K−(k1)

π+(p1)
K−(k3)

K+(k2)

=
2iG8

3

[
2(k1 · k3 + p1 · k2)− (p1 + k2) · (k1 + k3)

] (A.2.12)

Note: Of course there are other ∆S = 1 terms which do not involve any deriva-

tives, they are coming from the χ (mass) term of the strong Lagrangian given by

Eq. (2.2.43) due to the above diagonalization process, but as we discussed in Section

2.7.2 of Chapter 2. These terms are unimportant for our calculations and that is

why we have not written down the Feynman rules for them.

Vertices Coming From The Total Weak Lagrangian: Eq. (A.2.9)

Adding the extra pieces given in Eq. (A.2.12) to the original weak terms in Eq.

(A.1.3) we obtain the following vertex rule corresponding to full weak Lagrangian

given by Eq. (A.2.9):

π+(p1)

K−(k1)
π+(p2)

π−(p3)

=
iG8

3

[
2(k1 · p3 + p1 · p2) + (p1 + p2) · (5k1 + p3)

]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

=
iG8

3

[
2(p1 · k2 + k1 · k3)− (k1 + k3) · (k2 + 5p1)

] (A.2.13)
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Vertices specific to the loop integral Eq. (2.7.82):

K+(k)

π+(p)

K+, π+(l)

K+, π+(l − q)

= iG8 (k + p)µl
ν + ... (A.2.14)

Ellipses represent the terms that are not linear in l and they do not contribute.

A.3 Lagrangian Pieces and Feynman Rules For Chap-

ter 4

Remark I: Because we will be calculating the matrix elements in Chapter

4, we can directly derive the Feynman rules for the bosonized operators Q−,7
without referring to the Lagrangians given by Eq. (4.0.2) and/or (4.1.58). But

to implement the diagonalization procedure to remove Kπ mixing vertices etc

discussed and implemented in the last section, we need to do things in terms

of Lagrangians. Hence we will split the Lagrangian into two pieces due to the

obvious reason that we have two operators only. We will do this for both non-

vector and vector included Lagrangians. So let us split the weak Lagrangian of

Eq. (4.0.2):

L ∆S=1
GW = L− + L7 + h.c (A.3.15)

where,

L− =
G8

g8

C̃−(M)Q−(0) (A.3.16)

L7 =
G8

g8

C̃7(M)Q7 (A.3.17)
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And similarly in the vector included case we split the Lagrangian given by Eq.

(4.1.58):

L ∆S=1
hls = L hls

− + L hls
7 + h.c (A.3.18)

where,

L hls
− =

G8

g8

C̃−(M)Qhls− (0) (A.3.19)

L hls
7 =

G8

g8

C̃7(M)Qhls7 (A.3.20)

Then after deriving the final Feynman vertex rules using diagonalization and

everything we can remove G8, g8 and the Wilson coefficients C̃−,7 to obtain the

rules for the operators (Q−,7) only.

Remark II: Rules of last section cannot be naively applied to Chapter 4

because the effective weak Lagrangian is apparently different now. About the

strong Lagrangian, despite the fact that it has an extra piece given by Eq.

(3.2.33) which in any case does not contribute in the decay we are studying, it

does not affect ππγ andKKγ vertices in the Lorentz gauge, so the vertices given

by Eq. (A.1.5) and (A.1.6) will still be applicable. But the weak Lagrangian is

different in two ways: firstly, because of extra piece in the Lagrangian mentioned

above which will add an extra piece to the left current too but it does not affect

the K → πγ∗ through pion/or loop calculation because of the Lorentz structure

of the integral and gauge invariance. And secondly, usual chiral weak Lagrangian

is of the form:

L2iLi3, i = 1, 2, 3

While our weak Lagrangian involves Q− operator and in fact just Q2 that con-

tributes to this process, that means i = 2, 3 of the above Lagrangian are missing.

But these are just superficial observations. We will see that indeed the relevant

piece of the weak Lagrangian for Kπππ and KKKπ vertices have the same

structure of ChPT case.
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A.3.1 Relevant Lagrangian Pieces Before Diagonalization

Relevant Pieces of Lagrangian From L7: Eq. (A.3.17)

L K+π−e+e−

7 = i αe
G8

g8

C̃7(M)

[
(K+∂µπ

− − π−∂µK+)

− m2
K −m2

π

2Λ2
(K+∂µπ

− + π−∂µK
+)

]
(ēγµe)

(A.3.21)

Corresponding vertex rule is:

e+(p+)

e−(p−)
K−(k1)

π+(p1)

= i αe
G8

g8

C̃7(M)
[
(k1 − p1) +

m2
K −m2

π

2Λ2
(k1 + p1)µ

]

×
[
ū(p−)γµv(p+)

] (A.3.22)

And specific to the decay we have,

e+(p+)

e−(p−)
K+(k)

π+(p)

= −i αe
G8

g8

C̃7(M) [(k + p)µ] [ū(p−)γµv(p+)] + ... (A.3.23)

Ellipses represents the qµ term that does not contribute.

Relevant Pieces of Lagrangian From L−: Eq. (A.3.16)

We will not consider L Λ given in Eq. (3.2.33) because it is irrelevant for the present

study. So the currents involved in the Lagrangian are usual currents without the

Λ-term (check Eq. (2.2.37)).

L K+π+π−π−

− =
G8

3g8
−(M2)C̃−(M)

[
(π−)2∂µK

+∂µπ+ +K+π+(∂µπ
−)2

+K+π−∂µπ
−∂µπ+ − 3π−π+∂µK

+∂µπ−
]

L K+K+K−π−

− =
G8

3g8
−(M2)C̃−(M)

[
(K+)2∂µK

−∂µπ− +K−π−(∂µK
+)2

+K+π−∂µK
−∂µK+ − 3K−K+∂µK

+∂µπ−
]

(A.3.24)
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This is exactly the same as in Eq. (A.1.2) if

G8 7→
G8

g8

C̃−(M) := G̃8(M) (A.3.25)

This is precisely the relation that defines g8 within our approach and shows the

scale dependence of the ChPT weak coupling g8 defined in Eq. (2.5.64) when the

BBG evolution operator E−(M2) is multiplied when Kπππ vertex is present, scale

dependence has been explicitly shown in Fig. (4.1). It has been discussed in section

4.0.5 in more details.

Applying above substitution (Eq. (A.3.25)) 1

π+(p1)

K−(k1)
π+(p2)

π−(p3)

= − i
3
G̃8(M)

[
2(k1 · p3 + p1 · p2) + (p1 + p2) · (p3 − 3k1)

]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

= − i
3
G̃8(M)

[
2(k1 · k3 + p1 · k2) + (k1 + k3) · (k2 − 3p1)

]
(A.3.26)

Which are of course same as that in Eq. (A.1.3) under the substitution mentioned

above.

A.4 Diagonalization In Chapter 4

We have to modify the diagonalizing transformation given in Eq. (A.2.7) using the

substitution defined in Eq. (A.3.25) and as we have realized that the weak chiral

Lagrangian Eq (A.1.2) and L− given by Eq. (A.3.24) are exactly the same under

the substitution Eq. (A.3.25), we do not have to go through everything that we

did in section A.4 to obtain the rotated Lagrangian. All we have to do is apply the

1In this section and the following ones, we will always need this quantity and to save space we

will use G̃8(M) for G8C̃−(M)−(M2)/g8
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substitution. Hence the weak vertices after diagonalization (Eq. (A.2.7)) become:

π+(p1)

K−(k1)
π+(p2)

π−(p3)

=
i

3
G̃8(M)

[
2(k1 · p3 + p1 · p2) + (p1 + p2) · (5k1 + p3)

]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

=
i

3
G̃8(M)

[
2(p1 · k2 + k1 · k3)− (k1 + k3) · (k2 + 5p1)

] (A.4.27)

Vertices specific to the loop integral Eq. (2.7.82):

K+(k)

π+(p)

K+, π+(l)

K+, π+(l − q)

= iG̃8(M) (k + p)µl
ν + ... (A.4.28)

Note: As no Kπēγµe terms cannot be generated from the strong Lagrangian (Eq.

(3.2.32)) by applying Eq. (A.2.7), L7 remains unchanged.

A.5 Rules and Conventions After Vector Inclusion

A.5.1 Relevant Lagrangian Pieces Before Diagonalization

Relevant Pieces of Lagrangian From Strong Lagrangian L hls
p2 : Eq. (4.1.40)

L γ V
p2 =

1

3
e a f 2 gV Aµ(3ρµ + ωµ −

√
2φµ)

L π+π−V
p2 =

i

2
a gV ρµ(π−∂µπ+ − π+∂µπ−)

L K+K−V
p2 =

i

2
a gV (

ρµ + ωµ
2

− φ√
2

)(K−∂µK+ −K+∂µK−)

L K+K−π+π−

p2 =
3a− 4

24f 2

{
∂µπ

+∂µπ−K+K− + ∂µK
+∂µK−π+π−

+ ∂µπ
+∂µK−K+π− + ∂µK

+∂µπ−K−π+

− 2
(
∂µK

+∂µπ+K−π− + ∂µK
−∂µπ−K+π+

)}

(A.5.29)

ππγ and KKγ terms are very special in this case so we write them separately below:
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L π+π−γ
p2 = i e

(
1− a

2

)
Aµ

(
π−∂µπ+ − π+∂µπ−

)
L K+K−γ
p2 = i e

(
1− a

2

)
Aµ

(
K−∂µK+ −K+∂µK−

) (A.5.30)

Note: Notice that for a = 2 these vertices disappear ! But there is no reason

to panic because pion or kaon pair annihilation to photon gets dominated by a

ρ exchange which restores the charge in the pion and kaon electromagnetic form

factors. Schematically:

γ(q)

π+, K+(p1)

π+, K+(p2)

+ γ(q)

ρ(q)

π+, K+(p1)

π+, K+(p2)

= i e ε∗ · (p1 + p2) +O

(
q2

m2
ρ

)
(A.5.31)

This becomes very clear once we notice the vertices corresponding to Eq. (A.5.29)

and (A.5.30):

π+(p1)

π−(p2)

V (q)
=
i

2
a gV ε̄

∗µ(q) · (p2 − p1)

V (q)

K+(k1)

K−(k2)

=
i

2
a gV ε̄

∗µ(q) · (k2 − k1)

π+, K+(p1)

π−, K−(p2)

γ(q)

= i e
(

1− a

2

)
ε∗(q) · (p1 − p2)

(A.5.32)

Vertex rules for the strong vertex K+K−π+π− specific to the loop integral defined

in Eq. (4.1.78) is:

K+(k)

π+(p)

π+(l − q)

K+(l)

= i
3a− 4

8f 2
(k + p) · l + irrelevant qµ term. (A.5.33)

And we write the V -γ separately:

ρ(q1) γ(q2) =
i e

3
a f 2 gV ε

∗ · (3ε̄∗(ρ) + ε̄∗(ω) −
√

2ε̄∗(φ)) (A.5.34)
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Relevant Pieces of Lagrangian From L−: Eq. (A.3.19)

L K+π+π−π−

− = −G̃8(M)

12

[
(3a2 − 4)

(
(π−)2∂µK

+∂µπ+ +K+π+(∂µπ
−)2
)

+ (6a− 3a2 − 4)K+π−∂µπ
−∂µπ+ + 3(4− 2a− a2)π−π+∂µK

+∂µπ−
]

L K+K+K−π−

− = −G̃8(M)

12

[
(3a2 − 4)

(
(K+)2∂µK

−∂µπ− +K−π−(∂µK
+)2
)

+ (6a− 3a2 − 4)K+π−∂µK
+∂µK− + 3(4− 2a− a2)K−K+∂µK

+∂µπ−
]

L K+π−V
− = i G̃8(M) af 2gV

(
1− a

2

)
(ρµ + ωµ)(∂µK+π− − ∂µπ−K+)

L K+π−γ
− = −2i e f 2

(
1 +

a(a− 1)

3

)
Aµ

(
∂µK+π− − ∂µπ−K+

)
(A.5.35)

Corresponding vertices are:

π+(p1)

K−(k1)
π+(p2)

π−(p3)

=
iG̃8(M)

12

[
2(3a2 − 4)(k1 · p3 + p1 · p2)

+ (p1 + p2) ·
(
p3(6a− 3a2 − 4) + 3k1(4− 2a− a2)

)]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

=
iG̃8(M)

12

[
2(3a2 − 4)(k1 · k3 + p1 · k2)

+ (k1 + k3) ·
(
k2(6a− 3a2 − 4) + 3p1(4− 2a− a2)

)]

K−(k1) π+(p1)

ρ, ω(q)

= −i (k1 − p1) · (ε̄∗ρ + ε̄∗ω)(af 2gV )
(

1− a

2

)

K−(k1) π+(p1)

γ(q)

= 2i ε∗(q) · (k1 − p1) e f 2

(A.5.36)

Relevant Pieces of Lagrangian From L7: Eq. (A.3.20)

L K+π−e+e−

7 = i αe

(
1− a

2

) G8

g8

C̃7(M)
(
K+∂µπ

− − π−∂µK+
)

(A.5.37)

It of course is the same as in Eq. (A.3.21) when a = 0 but when a = 2, this

vertex disappears. This does not mean that 〈πe+e−|L hls
7 |K〉, here we must recall
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the vertex given by Eq. (A.5.31), where we saw that π+π−γ vertex also has the

same factor in front 1− a/2 and hence vanishing at a = 2, but we saw how another

tree diagram where the vertex got a correction due to a vector propagator and we

summed up the two diagrams we recovered pure ChPT ππγ form factor which is 1

in the low momentum transfer limit. For the same reason, at very low momentum

transfer, where vectors are completely decoupled, we must get back our usual a-

independent 〈L7〉 given by Eq. (A.3.21). Like we found in pion electromagnetic

form factor case:

1 7→ FV (z) =
r2
V

r2
V − z

, rV =
mV

mK

(A.5.38)

same should be in this case also, so the full vertex rule will take the following form:

e+(p+)

e−(p−)
K−(k1)

π+(p1)

= i αe FV (z)
G8

g8

C̃7(M)
[
(k1 − p1)

]

×
[
ū(p−)γµv(p+)

] (A.5.39)

And specific to the decay we have,

e+(p+)

e−(p−)
K+(k)

π+(p)

= −i αe FV (z)
G8

g8

C̃7(M) [(k + p)µ] [ū(p−)γµv(p+)] + ...

(A.5.40)

A.6 Diagonalization In Chapter 4: HLS

The diagonalization transformation will be carried out with the same replacement

defined in Eq. (A.3.25) because the same form of Kπ term in the weak Lagrangian

in Eq. (A.3.19) and (A.3.16) when expanded, but due to the presence of extra terms

in the four-meson terms the result will now be different than we had in section A.4.

We will therefore write down the relevant Lagrangian pieces and also the vertex

rules originating from L hls
− defined in Eq. (A.3.19) and of course L hls

7 does not

change due to the reasons discussed in section A.4.
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Relevant Pieces of Lagrangian From L hls
− After Diagonalization

L K+π+π−π−

− = −G̃8(M)

12

[
(4− 6a + 3a2)

(
(π−)2∂µK

+∂µπ+ +K+π+(∂µπ
−)2
)

− 3(a− 2)2K+π−∂µπ
−∂µπ+ + (4− 3a2)π−π+∂µK

+∂µπ−
]

L K+K+K−π−

− = −G̃8(M)

12

[
(4− 6a + 3a2)

(
(K+)2∂µK

−∂µπ− +K−π−(∂µK
+)2
)

− 3(a− 2)2K+π−∂µK
+∂µK− + (4− 3a2)K−K+∂µK

+∂µπ−
]
(A.6.41)

We will write down KπV and Kπγ terms in a moment, but before that we write

down the following vertices:

π+(p1)

K−(k1)
π+(p2)

π−(p3)

=
iG̃8(M)

12

[
2(4− 6a + 3a2)(k1 · p3 + p1 · p2)

+ (p1 + p2) ·
(
k1(4− 3a2)− 3p3(a− 2)2

)]

K−(k1)

π+(p1)
K−(k3)

K+(k2)

=
iG̃8(M)

12

[
2(4− 6a + 3a2)(k1 · k3 + p1 · k2)

+ (k1 + k3) ·
(
p1(4− 3a2)− 3k2(a− 2)2

)]
(A.6.42)

Vertices specific to the loop integral in Eq. (2.7.82) are:

K+(k)

π+(p)

K+, π+(l)

K+, π+(l − q)

= i G̃8(M) (k + p)µl
ν

[
1 +

3a

2

(a
2
− 1
)]

+ ... (A.6.43)

Notice that a = 0, 2 reduces the vertices to the ChPT case which says that there is

no modification to the usual “only meson” weak vertex.

The Kπρ term is given by:

L K+π−V
− =− i G̃8(M)af 2gV

2(m2
K −m2

π)
(∂µK+π− − ∂µπ−K+)

×
(

[m2
π + a(m2

K −m2
π)]ρµ + [(a− 2)m2

K + (1− a)m2
π]ωµ + [

√
2m2

π]φµ

)
(A.6.44)
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Corresponding vertex rule is:

K−(k1)

π+(p1)

ρ(q)

=iaf 2 gV G̃8(M) (k1 − p1)

(
[m2

π + a(m2
K −m2

π)]ε̄∗(ρ)

+ [(a− 2)m2
K + (1− a)m2

π]ε̄∗(ω) + [
√

2m2
π]ε̄∗(φ)

) (A.6.45)

And Kπγ term and corresponding vertex rule are:

L K+π−γ
− =iG̃8(M) e a f 2 1− 2a

3
Aµ

(
∂µK+π− − ∂µπ−K+

)
(A.6.46)

K−(k1) π+(p1)

γ(q)

=i G̃8(M) e ε∗(q) · (k1 − p1) a f 2 2a− 1

3
(A.6.47)
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Appendix B

Loop Integrals and Functions

DR Dimensional Regularization

CR Hard or Naive Cut-off Regularization

SPCR Symmetry Preserving Cut-off Regularization

B.1 Notations Specific To Loop Integrations

d space-time dimension used to evaluate loop integrals.

ε = 4− d

0+ An infinitesimal positive number.

γE Euler’s constant ' 0.577...

Rε = −2/ε+ γE − log(4π)− 1

µ scale introduced in DR to keep the dimension of the integrals right.

M Momentum cut-off used in CR and SPCR.

rM = M/mK

(B.1.1)
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B.2 List of Relevant Analytic Functions

F(z, x) = 1 + z x(x− 1) (B.2.2)

H(z) =

∫ 1

0

dx log [F(z, x)] = −2 + 2G(z) (B.2.3)

χ(z) =
4

9
− 4

3z
− 1

3

(
1− 4

z

)
G(z) (B.2.4)

G(z) =

√
4

z
− 1 arcsin

√
z

4
, z ≤ 4

= −1

2

√
1− 4

z

(
log

1−
√

1− 4/z

1−
√

1− 4/z
+ iπ

)
, z ≥ 4

 (B.2.5)

Rest of the symbols like ri, z etc are all defined in Eq. (1.1.1).

B.2.1 Behavior of The Functions Around z = 0

H(z) = −z
6

+O
(
z

3/2
)

(B.2.6)

χ(z) =
z

60
+O

(
z2
)

(B.2.7)

G(z) = 1− z

12
+O

(
z

3/2
)

(B.2.8)

B.3 Loop Integrals

The one and two point functions are evaluated in dimensional regularization in [1]

and are given in numerous places, so we will just provide with the definitions and

the results in dimensional regularization but evaluate them explicitly in cut-off.

B.3.1 Definitions of All The Integrals

A0 Integral

A0(m2
i ) = i

∫
d4l

(2π)4

1

l2 −m2
i + i0+

(B.3.9)
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B0 Integral

B0(q2,m2
1,m

2
2) =i

∫
d4l

(2π)4

1

l2 −m2
1 + i0+

1

(l − q)2 −m2
2 + i0+

(B.3.10)

For m1 = m2 = m we get:

B0(q2,m2,m2) = B0(q2,m2) =

∫ 1

0

dx
∂ A0(t2)

∂t2

∣∣∣∣
t2 = m2 + q2 x(x− 1)

(B.3.11)

B20, 21 Integrals

B20, 21 are actually functions of one point and two point functions and we feel the

need to list them down here.

q2 B20(q2,m2) =
1

d− 1

[
d− 2

2
A0(m2) +

(
d q2

4
−m2

)
B0(q2,m2)

]
(B.3.12)

q2 B21(q2,m2) =
1

d− 1

[
1

2
A0(m2) +

(
m2 − q2

4

)
B0(q2,m2)

]
(B.3.13)

Bµν Integral

Bµν(q2,m2) =i

∫
d4l

(2π)4

lµ
l2 −m2 + i0+

lν
(l − q)2 −m2 + i0+

=qµqνB20(q2,m2) + gµνq
2B21(q2,m2)

(B.3.14)

B.3.2 The Values of The Integrals In Dimensional Regular-

ization (DR)

A0 Integral In DR:

A0(m2
i ) =

m2
i

16π2

(
Rε − log

µ2

m2
i

)
+O(ε) (B.3.15)
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B0 Integral In DR:

B0(q2,m2
i ) =

1

16π2

(
Rε − log

µ2

m2
i

+ 1 +H(z/r2
i )

)
+O(ε) (B.3.16)

Bµν Integral In DR:

It will be enough to give the value of B21 and that will determine Bµν because we will

see later when we calculate everything in cut-off scheme, that B21 and B20 are related

and we will provide exact expressions later. But B21 is expressed in terms of A0 and

B0 in Eq. (B.3.13) and so Bµν is already known in dimensional regularization.

B.3.3 The Values of The Integrals In Naive Cut-off Regular-

ization (NCR)

A0 is trivial so we will just write down the results below but we will evaluate all B

integrals in details.

A0 Integral In NCR:

A0(m2) 7→ A0(M2,m2) =
1

16π2

[
M2 −m2 log

(
1 +

M2

m2

)]
(B.3.17)

B0 Integral In NCR:

Using the derived definition Eq. (B.3.11) we can write down:

B0(q2,m2
i ,m

2
i ) 7→B0(M2, q2,m2

i )

=B
(0)
0 (q2,m2

i ,m
2
i ) + δ(1)B0(M2, q2,m2

i ) + δ(2)B0(M2, q2,m2
i )

(B.3.18)

where the first term is the value of B0(M2, q2,m2
i ) when M � mi and in fact this

result is well known:

B
(0)
0 (M2, q2,m2

i ) =
1

16π2

[
1− log

M2

m2
i

+H(z/r2
i )

]
(B.3.19)
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But there are corrections δ(1,2)B0 due to the fact thatM is not so large (for example

when mi = mK). Before we evaluate their values we expect that δ(1,2)B0(M2, q2,m2
i )

must vanish by cancelling each other or each separately when M2 � m2
i limit is

taken. Our expectation is that the scale M will be close to 1 GeV and in that case

this correction should be very small and we can easily neglect it. But we do not

know yet where exactly M stands and in fact these corrections to B0 will affect

the matching hence value of M itself so better we calculate the correction exactly

because it is not so difficult. These corrections are simple to calculate when we

notice that they involve integration of F(z′), where z′ is a scaling of z due to the

presence of non-zero m2
i/M2, precisely:

z 7→ z m2
i

m2
i +M2

(B.3.20)

and this helps cast the corrections into the following form:

δ(1)B0(M2, q2,m2
i ) =

1

16π2

∫ 1

0

dx

{(
1 +

m2
i

M2

)−1 1

F(
z m2

i

M2+m2
i
, x)
− 1

}

=
1

16π2

{(
1 +

m2
i

M2

)−1

G
(

z m2
i

m2
i+M

2

)
1− z

4

m2
i

m2
i+M

2

− 1

}
(B.3.21)

δ(2)B0(M2, q2,m2
i ) = − 1

16π2

[
log

(
1 +

m2
i

M2

)
+

∫ 1

0

dx log

[
F
(

z m2
i

M2 +m2
i

, x

)]]

= − 1

16π2

[
log

(
1 +

m2
i

M2

)
+H

(
z m2

i

M2 +m2
i

)]
(B.3.22)

Expansion around z = 0

B
(0)
0 (M2, q2,m2

i ) =
1

16π2

(
1− log

M2

m2
i

− z

6

)
+O

(
z

3/2
)

(B.3.23)

δ(1)B0(M2, q2,m2
i ) =

1

16π2

(
miM

m2
i +M2

)2
z

6
+O

(
z

3/2
)

(B.3.24)

δ(2)B0(M2, q2,m2
i ) = − 1

16π2
log

(
1 +

m2
i

M2

)
+

1

16π2

(
miM

m2
i +M2

)2
z

6
+O

(
z

3/2
)

(B.3.25)
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B21 Integral In NCR:

Now that we know A0(m2) and B0(M2, q2,m2) integrals so substituting them in Eq.

(B.3.13) one can easily obtain the value of B21(M2, q2,m2), but we will rather write

down the value of the following quantity which is the one we need in our calculation:

32π2

q2

[
q2 B21(M2, q2,m2

i )− lim
q2→0

q2 B21(M2, q2,m2
i )
]

=χ(z/r2
i ) +

1

6
log

M2

m2
i

− θncr

+O

(
m2
i

M2

)

(B.3.26)

where θncr = 5
18
, O (m2

i /M
2) corrections are due to δ(1,2)B0(M2, q2,m2

i ) given by Eq.

(B.3.21) and (B.3.22).

B.3.4 Integrals in Symmetry Preserving Cut-off Regulariza-

tion (SPCR)

Naive momentum cut-off violates gauge symmetry but this problem can be avoided

if we introduce cut-off through a symmetry preserving procedure. Harada and Ya-

mawaki [2] used the fact realized by ’t Hooft and Veltman [3] that d = 4 poles cor-

respond to logarithmic while d = 2 ones are the origins of quadratic divergences and

evaluated the integrals in a way that preserve symmetries and still carries quadratic

divergences which are crucial in matching long and short distance physics through

BBG [4] scheme. We will not illustrate on the proof but will state the procedure

which is simple, one starts with the usual dimensional regularization and then uses

the following correspondence:

2

4− d
− γE + log(4π) + 1 7→ logM2 (B.3.27)
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And the quadratic divergence comes from:∫
ddl

(2π)d
i

l2
7→ M2

(4π)2∫
ddl

(2π)d
i lµlν

l2
7→ gµν

M2

(4π)2

(B.3.28)

Results of basic loop integrals are listed in many places for example in [], we will

state the results of A0 and A0 and finally will write down the value of the quantity

defined in Eq. (B.3.26). The only difference it makes in this quantity is that instead

of the constant −5/18 we will have −1/6 (Compare Eq. (B.3.26) and (B.3.31)). We

will abbreviate this method as SPCR (symmetry preserving cut-off regularization).

A0 Integral In SPCR:

A0(M2,m2) =
1

16π2

[
M2 −m2 log

M2

m2

]
+O

(
m2

M2

)
(B.3.29)

B0 Integral In SPCR:

B0(M2, q2,m2
i ) =

1

16π2

[
1− log

M2

m2
i

+H(z/r2
i )

]
+O

(
m2

M2

)
(B.3.30)

And using A0 and B0 we finally calculate the following quantity:

32π2

q2

[
q2 B21(M2, q2,m2

i )− lim
q2→0

q2 B21(M2, q2,m2
i )
]

=χ(z/r2
i ) +

1

6
log

M2

m2
i

− θspcr

+O

(
m2
i

M2

)

(B.3.31)

where θspcr = 1/6. Comparing the above equation with Eq. (B.3.26) we can see the

difference in the constant term θ, this is coming from the factor 1/(d− 1) sitting in

front in the definition of B21 integral in Eq. (B.3.13) which gets replaced by just 1/3

in naive momentum cut-off case and finally leads to a constant factor of −5/18 but

if special care is taken in the view of Eq. (B.3.27) we get −1/6 instead.
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Bµν(M2,m2
K ,m

2
π, q

2)

In section B.3.1 we defined the Bµν(q2,m2) loop integral when two propagators have

the same mass, we will now repeat the calculation of this integral with two different

masses and also the relevant integrals that come with it, that is B0, B21 and B20.

The following extension must be understood:

Bµν(q2,m2) 7→ Bµν(q2,m2
1,m

2
2)

B0(q2,m2) 7→ B0(q2,m2
1,m

2
2)

B20(q2,m2) 7→ B20(q2,m2
1,m

2
2)

B21(q2,m2) 7→ B21(q2,m2
1,m

2
2)

(B.3.32)

We will just need B21 for the integral in Eq. (4.1.78) and just the divergent part

numerically is relevant for us. We can directly obtain this from Appendix A of [2]

and after applying our conventions and normalizations we obtain:

B21(M2, q2,m2
K ,m

2
π) ' 1

16π2

[
M2

2
− m2

K

4
log

M2

m2
K

+
z m2

K

12
log

M2

m2
K

]
(B.3.33)
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Appendix C

Large N Structure of Wilson Coeffi-

cients

This appendix is based on the Gilman-Wise paper [1], where they have calculated

the anomalous dimension matrix and so the Wilson coefficients at around 1 GeV,

coming down from the scale of W while obtaining the effective Hamiltonian for

K → πe+e−. But large Nc counting was irrelevant in their paper hence they did not

keep Nc = N explicit. In this appendix we will equip their calculation with explicit

N structure right from the beginning (f = 4 quark case).

As this calculation is a straight forward revision of Gilman-Wise paper (referred

above) improved with N structure, we will not go into details, one can refer to the

paper, we will just revive the four quark case given in Appendix A of their paper

with the intention of extracting N explicit form of C̃7(µ) which is the coefficient of

the operator O− = Q− in Eq. A15 of their paper. Following notations will help us

a lot in the calculation:

A+ = 2/9π, A− = −1/9π, B+ = −2, B− = 4, Γ(+) = 1, Γ(−) = −2,

δ
(f)
N = 11N − 2 f, β(f)(g) = −δ(f)

N

g3

48π2
, γ(±) = Γ(±) g2

4π2
, a

(f)
± =

6Γ(±)

δ
(f)
N

b
(f)
± = 1− 3B± /δ

(f)
N , g = g(f = 4) =

√
4παs(µ2), ḡ = ḡ(mc/µ, g) =

√
4παs(m2

c),

g′(1, ḡ) ' ḡ.

In Gillman-Wise (GW) language, no-prime means original theory with full f that
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can be either f = 6 for six-quark theory, or f = 4 for four-quark theory, that is the

number of quarks (f) in the full theory. Single prime means f − 1, double prime

means f − 2 and so on.

List of Integrals

I±0 =

∫ ḡ

g

dx
γ(±)(x)

β(x)
= −a(4)

± log
ḡ2

g2
= log

(
αs(m

2
c)

αs(µ2)

)−a(4)±

(C.0.1)

I
B±
7 = B±

∫ g′(1,ḡ)

z

dx
x2

8π2β′(x)
' −6B±

δ
(3)
N

∫ ḡ

z

dx
1

x
= log

( ḡ
z

)−6B±/δ
(3)
N

(C.0.2)

I
(±0)
7 = = eΓ(±) I±0 =

(
αs(m

2
c)

αs(µ2)

)−a(4)
±

(C.0.3)

I
(±)
7± (A±, B±) = A±

∫ g′(1,ḡ)

g′
dz

(
1

β′(z)

)
eI
B±
7

= A±

∫ g′(1,ḡ)

g′
dz

(
8

β′(z)

) ( ḡ
z

)−6B±/δ
(3)
N

=
48π

δ
(3)
N

A±
(
αs(m

2
c)
)−3B±/δ

(3)
N

(αs(m
2
c))
−b(3)
± − (α′s(µ

2))
−b(3)
±

b
(3)
±

(C.0.4)

We redefine their[1] Eq. A11 the following way:

L
(±)
7

(
mc

µ
, g

)
= I

(±0)
7

{
I

(±)
7+ L

(±)
+ (1, ḡ) + I

(±)
7− L

(±)
− (1, ḡ) + L

(±)
7 (1, ḡ)

}
(C.0.5)

In leading logarythmic approximation L(±)
±,7(1, g) can be replaced by their free field

values, the free field values are: L(±)
1 (1, 0) = ±1, L(±)

2 (1, 0) = +1, L(±)
7 (1, ḡ) = 0,

that makes L(±)
+ = (1± 1)/2 and L(±)

− = (1∓ 1)/2, last two can be expressed as L(l)
i = δli

also given in Eq. (42) of their previous paper[2]. Hence,

L
(±)
7

(
mc

µ
, g

)
= I

(±0)
7 I

(±)
7± (A±, B±) (C.0.6)

Then using Eq. A1 of [1], we get:

Heff = − GF

2
√

2
V ∗usVud

(
C̃+Q+ + C̃−Q− + C̃7Q7

)
(C.0.7)
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As large N expansion of C̃− is given in many places but not C̃7 we focus on C̃7 only.

Here,

C̃7 =

(
αs(m

2
W )

αs(µ2)

)−a(4)
+

L
(+)
7 +

(
αs(m

2
W )

αs(µ2)

)−a(4)
−

L
(−)
7 (C.0.8)

As everything is expressed in terms of no. of colors (N), we can easily expand

C̃7 in large N .

C̃7(µ2) = − 4

9π

[
log

µ2

m2
c

+
2

11N
A(µ2)

]
+O(1/N2) (C.0.9)

where,

A(µ2) = log
m2
c

Λ2

{
13 + 12 log

(
log

m2
W

Λ2

log m2
c

Λ2

)}

−12 log
µ2

Λ2

{
1 + log

m2
c

Λ2
+ log

(
log

m2
W

Λ2

log m2
c

Λ2

)}
(C.0.10)

And,

C̃−(µ) =
1

2

[
α′s(µ

2)

αs(m2
c)

]−a(3)
−
[
αs(µ

2)

αs(m2
W )

]−a(4)
−

(C.0.11)

= 1− 12

11N
log

[
log(m2

W/Λ
2)

log(µ2/Λ2)

]
+O(N−2) (C.0.12)

Although it is not needed here1 but still one must use the N -explicit quark charge

matrix too in relevant calculations:

Q =
1

2


1 0 0

0 −1 0

0 0 −1

+
1

2N
(C.0.13)

1Charge enters as (Q11 − Q22,33) in our decay process hence the N dependence cancels out

precisely.
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