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PROFIL TUMBESARAN DAN KOMPOSISI LIPID DARI DIATOM BENTIK 
Amphora subacutiuscula (Schoeman, 1972): DI BAWAH KAEDAH 

PENGKULTURAN YANG BERLAINAN 
 

ABSTRAK 

 

Diatom bentik adalah pengeluar EPA semulajadi, namun demikian jumlah EPA 

yang dihasilkan adalah rendah dalam persekitaran semula jadi, terutamanya 

penderitaan daripada pembatasan resapan cahaya. Kekurangan ini telah 

mendorong penyelidikan untuk memperbaiki kandungan EPA dalam  biojisim 

yang dikultur serta mod pengkulturan heterotrofik mempersembahkan suatu 

peluang yang baru. Sebahagian daripada ini, komposisi kimia kasar dan 

komposisi asid lemak pada strain pemencilan tempatan telah ditentukan 

sebagai sebahagian daripada kajian ini untuk mencari satu spesies untuk 

digunakan sebagai makanan dalam akuakultur tropika terutamanya diet yang 

kuat mempengaruhi ke atas kemandirian dan komposisi biokimia kasar Artemia 

sp. yang sedang membesar. Walau bagaimanapun, tiada kajian setakat ini yang 

telah dijalankan untuk mengkaji hubungan antara pindahan PUFA bentik diatom 

dari mod yang berbeza penanaman ke atas Artemia sp.. Dalam kajian ini, 

diatom bentik pemencilan tempatan ini telah dikenal pasti sebagai Amphora 

subacutiuscula berdasarkan filigeni dan dinding sel silika klasifikasi.                  

A. subacutiuscula EPA pengeluaran ini telah disaring untuk mengkaji keupayaan 

heterotrofik serta mengenalpasti sumber karbon pilihannya. Faktor penghad 

yang lain seperti pemakanan (karbon, nitrogen dan silikat) dan persekitaran (pH, 
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suhu dan kemasinan) telah diambil kira untuk pengeluaran EPA. Di bawah 

kajian saringan keupayaan berheterotrofik, A. subacutiuscula mempunyai 

keupayaan untuk tumbesaran heterotrofik dengan menggunakan glukosa dan 

sukrosa sebagai sumber karbon.  Penyelidikan ini adalah unik di mana sebelum 

ini, sumber karbon pilihan dan keupayaan untuk menjalani heterotrofik tidak 

pernah dilaporkan atau tidak diketahui. Faktor pemakanan seperti sumber 

karbon (glukosa), silikat, nitrogen kompleks (ekstrak yis) dan sumber nitrogen 

ringkas (nitrat) memberi kesan yang ketara ke atas kandungan EPA                 

A. subacutiuscula. Suhu merupakan faktor alam sekitar tunggal yang paling 

mempengaruhi kandungan pemakanan dan metabolit A. subacutiuscula 

terutamanya kualiti kandungan asid lemak. Di bawah kajian pengoptimuman, 

kandungan EPA dan jumlah lipid pada heterotrofik A. subacutiuscula yang baru 

diasingkan telah dipertingkatkan dengan ketara sehingga 34.3 mg EPA g-1 

biojisim dan 57% berbanding 5.89 mg EPA g-1 biojisim dan 8% apabila ia 

dikultur di bawah mod fototrofik. Satu percubaan pemakanan dengan 

menggunakan A. subacutiuscula sebagai makanan kepada Artemia sp. telah 

menunjukkan bahawa biojisim heterotrofik A. subacutiuscula adalah lebih 

berkesan dalam meningkatkan pertumbuhan (kadar pertumbuhan spesifik, 

117.3% hari-1), kemandirian (94%) serta kandungan nutrien Artemia sp. yang 

sedang membesar. Di bawah pertumbuhan heterotrofik, A. subacutiuscula 

berupaya menghasilkan biojisim yang berkualiti untuk kegunaan industri 

akuakultur dan juga sebagai sumber EPA alternatif, begitu juga sebagai 
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makanan tambahan akuakultur dan makan tambahan yang berkhasiat untuk 

manusia.  
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GROWTH PROFILE AND LIPID COMPOSITION OF LOCALLY ISOLATED 

BENTHIC DIATOM Amphora subacutiuscula (SCHOEMAN, 1972) UNDER 

DIFFERENT CULTIVATION CONDITIONS 

 

ABSTRACT 

Benthic diatoms are the natural EPA producers but the amount is notably 

low under their natural environment, mainly suffer from the limitation of light 

diffusion. This drawback has prompted research to improve the EPA content 

and the heterotrophic mode of cultivation presents a new opportunity as a 

practical solution. The gross chemical composition and fatty acid composition of 

the locally isolated strain was determined to find a species as feed in tropical 

aquaculture, especially the diet that strongly influences survival and gross 

biochemical compositions of ongrown Artemia sp.. However, no studies to date 

have been conducted to investigate the relationship between PUFA transferred 

from different cultivation mode of benthic diatom to Artemia sp.. A locally 

isolated benthic diatom, identified as Amphora subacutiuscula based on 

phylogeny and silica cell wall classification was used in this study. This EPA 

producer A. subacutiuscula was screened for its heterotrophic capability and the 

carbon source preference. Other limiting factors, such as nutritional (carbon, 

nitrogen silicate) and environmental (pH, temperature and salinity) were taken 

into account for EPA production. Under a screening study, A. subacutiuscula 

possesses heterotrophic capabilities by utilizing glucose and sucrose as the 

carbon source. This investigation is unique as the carbon source preference and 

its ability to undergo heterotrophic were previously unknown and not reported. 
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Nutritional factors such as carbon source (glucose), silicate, complex nitrogen 

(yeast extract) and simple nitrogen source (nitrate) were found to significantly 

affect the EPA content of A. subacutiuscula. Temperature was the sole 

environmental factor that extensively affected nutritional and metabolite contents 

of A. subacutiuscula especially the quality of fatty acid methyl ester.Under the 

optimization studies, the EPA content and total lipid of this newly isolated 

heterotrophic A. subacutiuscula was enhanced significantly to 34.3mg EPA g-1 

biomass and 57% as compared with 5.89 mg EPA g-1 biomass and 8% when it 

was cultivated under phototrophic mode. A feeding trial using A. subacutiuscula 

as a feed to Artemia sp. showed that the heterotrophic biomass was a superior 

diet in improving the growth (specific growth rate, 117.3% day-1), survival (94%) 

and nutritional content of the ongrown Artemia sp.. The heterotrophic growth of 

A. subacutiuscula enables the production of higher quality of microalga biomass 

for application in aquaculture industries by serving as an alternative EPA source, 

supplemental aquaculture feeds and also as a nutritional supplement for 

humans. 
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CHAPTER 1 

INTRODUCTION 

1.1 Polyunsaturated fatty acid and its potential benefits 

Polyunsaturated fatty acids (PUFAs) are defined as fatty acids  

containing two or more ethylenic bond (Arts et al., 2009). In Algal, its fatty 

acid can be saturated or unsaturated (1 to 6 double bonds). The double 

bonds are virtually always in the cis configuration and in polyunsaturated fatty 

acid (PUFA) the double bonds are allylic ( three carbon atoms apart). Among 

the various fatty acid constituents of algal lipids, perhaps the most important 

are the PUFA, and within this group the essential fatty acids (EFA). PUFA 

are gaining increasing importance as valuable pharmaceutical products and 

ingredients of food owing to their beneficial effect on human health (Stoll et 

al., 1999; Davis and Kris-Etherton, 2003; Richardson, 2004). In aquatic 

animal, PUFA have been shown to be essential for a variety of mollusc, 

crustacean, fish larvae and also for other marine animals (Volkman et al., 

1992; Brown et al., 1997; Sargent et al., 1999; Brown, 2002; Sorgeloos et al., 

2003).  

Docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid 

(EPA, 20:5n-3) are the omega-3 PUFA that important in the development and 

functional of brain, retina, and reproductive tissue in humans as well as in 

animals. In human they can used in the treatment of various diseases and 
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disorder, including cardiovascular problems, a variety of cancers, and 

inflammatory diseases. Most marine animals have little or no capability to 

transform PUFA such as linoleic acid (LA) or linolenic acid into longer and 

more unsaturated fatty acids, they must obtained from the food chain.  

DHA and EPA have been known to be essential fatty acids for good 

survival besides improved quality and growth of the marine organism. They 

are present in high concentration in neural and visual membranes, and 

insufficiency in the diet may result in serious consequences for a wide range 

of physiological and behavioural processes (Mourente et al., 1993; Reitan et 

al., 1994; Copeman et al., 1999; Dhont and Stappen, 2003). These include 

impaired pigmentation and vision at low light intensities, leading to low 

hunting capabilities and impaired development of neuroendocrine system.   

 

1.2 Benthic diatom 

Diatoms are unicellular photosynthetic eukaryotes within the class 

Bacillariophyceae and generally between 2 to 200 µm (Hasle et al., 1996).  

Diatoms are typically divided into two categories based on valve symmetry, 

namely the centric and pennate diatoms. The centric diatoms are mostly 

planktonic and can be found floating on the water surface, while pennate 

diatoms are often found as benthic forms growing on sediments or attached 

to submerged substrates (Lebeau and Robert, 2003a). Diatoms are so 
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diverse that, scientists estimated about 100,000 extant diatom species on the 

planet (Round et al., 1990; Hasle et al., 1996).   

Pennate or benthic diatoms are used in numerous applications. In 

aquaculture, diatoms serve as feedstock for mollusks and crustaceans          

(Scipione and Mazzella, 1992), and act as larval settlement inductors and 

food for the early juvenile stages of gastropods such as abalone       

(Couteau et al., 1994; Kawamura et al., 1995; Brown et al., 1997; Gallardo 

and Buen, 2003). In biotechnology, most studies surrounding diatoms have 

been focusing on the diatoms’ intracellular metabolites such as 

eicosapentaenoic acid (EPA) production, total lipid content, amino acid 

content, pigment production, antibiotics and antioxidant properties (Kyle and 

Gladue, 1991; Wen and Chen, 2001a; 2001b; 2002; Chen et al., 2007).  

 

1.3 Cultivation of benthic diatom 

Naturally, diatoms are obligate phototrophs. They are able to 

assimilate both artificial and natural sunlight as the energy source, and 

inorganic carbon (usually carbon dioxide, CO2) as the carbon source   

(Huang et al., 2010). To date, three main phototrophic cultivation systems 

have been developed for microalgae cultivation. They are the open pond 

system, closed photobioreactors with natural sunlight and closed 
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photobioreactor with artificial illumination (Wen and Chen, 2003;           

Lebeau and Robert, 2003a).  

Under phototrophic cultivation systems, valuable products such as 

lipids and PUFAs have been produced. However the amount of these 

particular products produced are significantly low. Most phototrophic diatoms 

are affected by light limitation due to mutual shading of cells                   

(Chen and Chen, 2006) which they cannot fully overcome as light penetration 

is inversely relative to cell concentration (Chen and Johns, 1995;              

Wen and Chen, 2003) resulting in lower biomass and productivity.        

Cohen and Heimar (1994) reported that the EPA productivity of Porphyridium 

cruentum in the open pond was between 0.5 mg L-1 day-1 to 1.0 mg L-1 day-1 

during winter and summer. It is estimated that the EPA productivity in open 

ponds can only reach 4 - 8 mg L-1 day-1 in the optimum conditions (Ratledge, 

1997).  

Closed photobioreactors have been employed to overcome the 

problems encountered in open pond systems (Tredici, 1999;                 

Molina Grima et al., 2003; Wen and Chen, 2003). These systems are made 

of transparent materials and illuminated with natural light. Contamination can 

be avoided due to the closed system design, but the growth of algae is still 

limited by the bioreactor configuration and cultivation conditions              

(Wen and Chen, 2003). Enclosed photobiorectors in general are similar to 

conventional fermenters, with a requirement of light and carbon dioxide. 
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These systems have been employed for EPA production from 

Nannochloropsis sp. (Zittelli et al., 2000) and Phaeodactylum triocornutum 

(Molina Grima et al., 2001). However, it is difficult to scale up production and 

require higher capital cost (Wen and Chen, 2003).  

A heterotrophic cultivation refers to the condition where microalgae 

are cultivated in darkness and use organic substrates such as glucose and 

acetate as energy and carbon source (Chojnacka and Marquez-Rocha, 

2004). Under the heterotrophic cultivation, the requirement of light can be 

eliminated, therefore offering a possibility to greatly increase cell density and 

productivity (Chen, 1996; Huang et al., 2010; Wen and Chen, 2003). Besides 

that, heterotrophic growth can be a cost-effective alternative to phototrophic 

growth (Chen, 1996).  

However, not all species are able to undergo heterotrophic growth.           

Chen and Chen (2006) reported that a diatom suitable for heterotrophic 

growth should have four essential characteristics: (1) ability to divide and 

metabolize in darkness, (2) ability to grow in economical and easy handled 

medium, (3) ability to adapt quickly in a newly introduced environment, and  

(4) capability to survive and withstand hydromechanical stress inside a 

fermentor. Heterotrophic cultures of Nitzschia laevis can attain higher cellular 

EPA content than that in phototrophic cultures (Tan and Johns, 1996; Wen 

and Chen, 2000a; 2000b). The same result was reported by Chu et al. (1996), 

where the cultures of Nitzschia inconspicua in heterotrophic culture system 
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resulted higher cell densities than in phototrophic cultures. As a result, the 

production of the metabolite of interest may be enhanced.  

Aside from phototrophic and heterotrophic cultivation, some 

microalgae are able to undergo mixotrophic cultivation. The 

photoheterotrophic or mixotrophic cultivation is a combination of phototrophic 

and heterotrophic that is able to promote higher cell densities. 

Photoheterotrophic or mixotrophic cultivation refers to the cultivation of 

diatoms on organic carbon source in the presence of light. Under this mode 

of cultivation, microalgae are able to undertake both phototrophic and 

heterotrophic mechanisms. It is believed that the mixotrophic cultivation has 

the potential to overcome the limitations imposed by the phototrophic 

cultivation and carries the advantages of the heterotrophic mode of 

cultivation. Unfortunately, only algal strains that are not sensitive to 

photoinhibition are suitable for mixotrophic cultivation, limiting the usage of 

mixotrophic cultivation on algal cultivation (Lee, 2004). When the suitable 

strains are grown in mixotrophic cultivation, the biomass and metabolite of 

the tested microalgae increased. For instance, the EPA content of Navicula 

saprophila grown mixotrophically was 19.2 mg EPA g-1 biomass, which was 

higher compared to 13.6 and 17.3 mg EPA g-1 biomass under the 

phototrophic and heterotrophic mode, respectively (Kitano et al., 1997). 

Other than the cultivation mode, nutritional and environmental factors 

are reported to be significantly influencing the diatom in terms’ of cell growth 
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and biosynthesis of products. The major nutritional factors consist of carbon, 

nitrogen, phosphorus and silicate sources since silicates are required for cell 

wall formation. The major environmental factors include the culturing salinity 

(especially for marine strains), temperature and pH. A detailed investigation 

is needed to establish the most suitable medium and environmental condition 

for specific species.  

 

1.4 Nutritional and environmental factors towards heterotrophic 

benthic diatom 

Carbon is the most important element for heterotrophic cultivation of 

diatoms as it serves as an energy source for cells to grow. Microalgae must 

obtain energy from at least one organic carbon source which is usually 

supplied in the form of monosaccharides (glucose), disaccharides (fructose, 

galactose), polysaccharides (sucrose, lactose), starch, acetate, glycerol and 

alcohol (Droop, 1974; Tan and John, 1996; Vazhappily and Chen, 1998;  

Wen and Chen, 2003; Perez-Garcia et al., 2011) depending on the 

microalgal species used. Glucose was employed as a single carbon source 

in the heterotrophic culture of Chlorella zofingiensis (Ip and Chen, 2005), 

Nitzschia laevis (Wen and Chen, 2000a; 2001a; 2001b; 2002;                 

Chen et al., 2007); N. inconspicua (Chu et al., 1996), whereas acetate was 

used as a carbon source in the heterotrophic cultivation of Navicula 

saprophila (Kitano et al., 1997).  
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There are two types of nitrogen sources: simple nitrogen sources such 

as nitrate, urea and ammonium and the complex nitrogen sources such as 

yeast extract, tryptone and corn steep liquor which are added to the culture 

medium for heterotrophic microalgae growth. The complex nitrogen sources 

were reported to be superior compared to the simple nitrogen sources; it may 

provide amino acids, vitamins and growth factors that indirectly promote 

growth of most algal species under the heterotrophic mode (Vogel and 

Todaro, 1997; Aasen et al., 2000; Wen and Chen, 2001a). In the culture of   

N. laevis for EPA production, a combination of 0.62 g nitrate L-1, 1.6 g 

tryptone L-1 and 0.8 g yeast extract L-1 was identified as the best nitrogen 

sources (Wen and Chen, 2001a). On the other hand, different species may 

react differently towards the nitrogen supplied. Of the nitrogen sources 

(nitrate, ammonium and urea) tested, the highest biomass and lutein yield 

was attained when urea was used as a nitrogen source in the culture of 

Chlorella protothecoides (Shi et al., 2000).   

The cell walls of diatoms, the frustules, are composed of silica. In 

order to form its silica frustules, it is necessary for silicon to be supplied into 

the culture medium to grow diatoms (Wen and Chen, 2003;                     

Chen and Chen, 2006). A few studies testing the effects of different 

concentrations of silicate towards lipid and EPA content found that the lipid 

content of diatom increased with decreasing silicate (Taguchi et al., 1987). 

Under the conditions of limited silicate concentrations, Wen and Chen (2000a) 

reported an increase of EPA content in heterotrophic N. laevis.  
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Besides nutritional factors, environmental factors such as temperature 

(Wen and Chen 2003), salinity and pH also play an important role affecting 

the lipid accumulation and fatty acid composition as well as the EPA content 

of diatoms. Jiang and Chen (2000) reported a low specific growth rate and 

higher DHA content was achieved at 15°С compared to 30°С when 

Crypthecodinium cohnii was cultured under heterotrophic cultivation. Low 

temperatures also enhanced PUFA formation in N. laevis and 

Crypthecodinium cohnii (de Swaaf et al., 1999; Wen and Chen, 2001a; 

2001b). However, different species may respond differently (Wen and Chen 

2003). Therefore, the effect of chemical and environmental factors should be 

studied carefully for individual species.  

Just as temperature, salinity and pH are also important factors 

affecting the heterotrophic cultivation of diatoms. In the culture of N. laevis, 

EPA yield was the highest at 14 ppt of the artificial seawater (Wen and Chen, 

2001b). Jiang and Chen (2001) found that pH had significant effects on cell 

growth and fatty acid profile and proportion of omega 3 PUFAs. Between a 

range of pH 4 to pH 10, pH 7.2 was found to be the best for cultivation of 

Crypthecodinium cohnii.  
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1.5 Amphora subacutiuscula as EPA feedstock 

Amphora subacutiuscula, a benthic diatom which was isolated and 

identified in this study containing various biologically active compounds and 

is thus of economic interest in aquaculture for the feeding of bivalve, mollusc 

and gastropod larvae or post-larvae. To date, most benthic diatom cultivation 

still heavily depends on wild harvested biomass. Their EPA and lipid content 

plus the biomass produced were significantly very low. The research 

undertaken and presented in this thesis investigated the use of the benthic 

diatom A. subacutiuscula, as an alternative feedstock to supply lipid, fatty 

acid methyl ester, EPA, biodiesel production as well as feed for Artemia sp.. 

This study also aimed to enhance the EPA content by investigating factors 

affecting the culture of A. subacutiuscula as well as the factors affecting the 

production of EPA.     

Amphora subacutiuscula was selected as the studied strain mainly 

due to their greater specific gravity (de Jonge and van Beusekom, 1992) and 

more economical production costs contributed by its ease of harvesting and 

dewatering process. In addition, the heterotrophic benthic diatom produced in 

this study has an advantage to grow without depending on a substrate for 

attachment, which takes shorter time to grow and at the same time high 

nutrition biomass can be produced. The high EPA and fatty acid methyl ester 

content extracted from A. subacutiuscula in this study may serve as an 

alternative for commercial fish oil and fossil fuel, which are believed to be in 
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shortage in the near future. Besides that, the locally isolated                         

A. subacutiuscula may serve as feed for Artemia sp. which was then to be 

used as food for fish and gastropod larvae or juvenile.  

Among the live diets used in the larviculture of fish and shellfish, 

nauplii of Artemia constitute the most widely used food item. The cysts of 

Artemia are made available in cans and upon 24hrs incubation in seawater, 

these cyst release free swimming nauplii that can directly be fed as a 

nutritious live food source to the larvae of a variety of marine as well as 

freshwater organisms. The freshly hatched Artemia nauplii develop into 

second larval stage within a matter of hours. It is important to feed first-instar 

nauplii to the predator rather than starved second-instar meta-nauplii which 

have already consumed 25 to 30% of their energy reserves within 24 h after 

hatching. 

However, as the fish larvae grew up, the mouth opening tends to be 

bigger and therefore bigger size of Artemia is needed. Artemia juveniles and 

adults are used as a nursery diet not only for their optimal nutritional value 

but also for energetic advantages as well. The improvement of both Artemia 

growth and its biochemical composition are key issue for the suitable use of 

Artemia biomass in the rearing processes. Different kinds of diets are 

frequently used for the on-growing of Artemia such as live microalgae, dried 

algae, bacteria, yeast and waste products from food industry, but best results 

are undoubtedly obtained with live microalgae. The selected microalgal 
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species is a crucial issue for the improvement of Artemia growth, to modify 

their growth rate and its biochemical composition. 

The rapid growth of aquaculture has stimulated the increasing demand 

for live feed, especially diatom as the primary producer in the aquatic 

ecosystems. The supply and availability of feed has been and remains a 

major challenge that plagues the growth, development and productivity of the 

aquaculture industry. This is also further emphasised by limited knowledge of 

the nutritional properties of the feed. The quality and availability of feed are 

critical in determining the success of the targeted aquaculture industries. The 

high mortality rate is generally linked to the quality and quantity of the feed. 

The search for new or alternative feeds has undoubtedly been investigated. 

However, the fundamental nutritional and environmental influences on the 

growth performance and behaviour of the diatom need to be investigated as 

well as their macronutrient and micronutrient requirements before being used 

as an alternative feed for aquatic organisms. Many researcher hypothesize 

that the nutritional composition of the microalgal diet strongly influences 

survival and changes in the gross biochemical compositions of ongrown 

Artemia sp.. However, no studies to date have been conducted to investigate 

the relationship between PUFA from different cultivation mode of benthic 

diatom transferred to Artemia sp.. 
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1.6 Objectives of the study 

 

1. To isolate and identify the local strains of diatom with 

heterotrophic capability. 

2. To study and compare the effects of different cultivation modes 

on the biomass and biochemical composition of                          

A. subacutiuscula. 

3. To evaluate the nutritional and environmental requirement of    

A. subacutiuscula towards biomass and EPA accumulation. 

4. To study the growth performance and nutrient uptake of 

heterotrophically cultivated A. subacutiuscula. 

5. To evaluate the nutritional value of A. subacutiuscula as a feed 

to Artemia sp. in prolonging survival of Artemia sp.. 

 

1.7  Scope of the thesis 

 The fundamental objective of this study was to identify the species of 

the locally isolated benthic diatom. Apart from that, the detailed ultrastructure 

of the strain was used to identify the species.  

 Secondly, wild isolated A. subacutiuscula was screened for its ability 

to undergo heterotrophic growth. Five different carbon sources were 

introduced to identify the preferred carbon source for the heterotrophic 

growth of A. subacutiuscula. 
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  Laboratory based experiments were conducted to investigate the 

effects of cultivation modes, nutrients (carbon sources, silicate, simple and 

complex nitrogen sources) availability and environmental factors (salinity, 

initial pH and growth medium temperature) on the growth as well as on 

enhancing the EPA content of A. subacutiuscula. The results were used to 

optimize the cultivation process, production of total lipid, fatty acid methyl 

ester and Eicosapentaenoic Acid (EPA) content of the resulting biomass. 

Simultaneously the nutrient uptake of the strain was discussed.  

Lastly, after the optimization studies, biomass of A. subacutiuscula 

which cultivated under different modes of cultivation was used to feed 

Artemia sp. and the effects of A. subacutiuscula on the growth rate, survival 

rate and biochemical composition of Artemia sp. were investigated. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 The pennate benthic diatom genus Amphora 

Diatom are generally divided into two groups: the centric diatom and 

pennate diatom. Centric diatoms (centrales), which are radially symmetrical, 

while the pennate diatoms (pennales) are bilaterally symmetrical. Due to the 

differences noted in pennate diatoms, Round et al. (1990) divided the diatoms 

into three classes: Coscinodiscophyceae, Fragilariophyceae and 

Bacillariophyceae.  

Pennate benthic diatom can be found during low tides in the intertidal 

areas, growing on sediments (5mm from the surface) or attached to rocks, as 

well as in the soil (Round et al., 1990; Lebeau and Robert, 2003a). The benthic 

diatom genus Amphora Ehrenberg has a widely distribution in the marine, 

brackish and freshwater environment (Archibald and Schoeman, 1984; Sala and 

Maidana, 2003; Sala et al., 2006, 2007). Morphological classification analysis of 

the genus is necessary in the identification process. However, to prevent 

taxonomic confusion,  molecular analysis must always be included to the classic 

description.  

According to Sar et al. (2004), under light microscopy, Amphora from the 

Halamphora group are easily misidentified due to their similarity in their valve 

outline. The detail electron microscopy images and description might be useful 
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to reduce the current taxonomic confusion. Moreover, Amphora is a very large 

and heterogeneous genus represented in the aquatic ecosystem. 

In 1972, Amphora subacutiuscula was sampled from a maturation pond 

of the Walvis Bay and was described as a new species by Schoeman, but was 

restricted to a brief description and line drawing as the iconotype. They are 

lacking of some importance details such as morphology of striae (dorsal, ventral 

and girdle), raphe and conopeum. Little is known about the morphology of it. 

Following this idea, references must be made on classic identification 

incorporating with the modern analysis to solve the above bottomneck.  

 

2.2 Importance and application of benthic diatom 

Benthic diatoms play a major role in building and maintaining the Earth’s 

atmosphere by producing oxygen and consuming carbon dioxide. Hence,  they 

play an importance role and application in biotechnology, aquaculture, 

pharmaceutical, biomedical and biofuel industry. In addition, benthic diatoms are 

also used as a biodepollution agent besides as an alternative feedstock of lipid 

and PUFAs production. 
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2.2.1 Biotechnological application of biomass 

Benthic diatom biomass may be used for various biotechonological 

applications, mainly in a small scale to a higher scale for commercial outlets. 

Some specific examples of biotechnological applications of biomass are 

presented as below. 

 

2.2.1.1 Silica from the cell wall 

 The siliceous exoskeleton of benthic diatoms exhibits a wide range of 

morphologies. Their various forms and interesting complex structures, create an 

interest in the emerging field of nanotechnology (Lebeau and Robert, 2003a; 

2003b; Jamali et al., 2012). Silica nanoparticles are proven to be important for 

several biotechnological and biomedical applications such as drug delivery, cell 

labeling, biosensor design, ultrasound medical imaging and as a targeting and 

therapeutic platform for drug or enzyme-release systems (Dolatabadi and de la 

Guardia, 2011). In addition, it can be used as an insecticide (Korunic, 1998; 

2013), where the benthic diatom cell walls which are made of silicon dioxide, are 

able to absorb the waxes on the skin of the insect. As a result, the insect dies 

from desiccation. Benthic diatom exoskeletons can also be used in abrasive 

products, deodorants, decolouring agents, filter agents as well as the 

microfabrication of nanomaterials (Parkinson and Gordon, 1999).  
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2.2.1.2 Application in aquaculture 

 A high demand for benthic diatom production arises due to the popularity 

of abalone culture in the aquaculture industry. Benthic diatoms play an important 

role in abalone culture as they act as inductors for larval settlement and as food 

for the early juvenile stages (Kawamura et al., 1995). In the Philippines, 

Navicula sp. is used to improve larval settlement in the tropical abalone, Haliotis 

asinina (Gallardo and Buen, 2003). Besides that, benthic diatom of the genus 

Coconeis sp. was reported by Zupo (2001) to play an important role in sex 

reversal of the shrimp Hippolyte inermis Leach 1915.  

The blue green pigment, marennine, produced by pennate diatom, 

Haslea ostrearia, was used for oyster greening in the oyster farming industry in 

France (Turpin et al., 1999). Benthic diatoms are also an essential food source 

to feed different groups of commercially important aquatic organisms. For 

example, they are used to directly feed all life stages of filter-feeder molluscs 

(Brown et al., 1997) and larval or juvenile stages of some fish (Reitan et al., 

1997) and crustacean species (Piña et al., 2006); or indirectly to feed or enrich 

copepod, rotifers and Artemia, which in turn are commonly used as major live 

prey for the rearing of many marine and freshwater larval species (Couteau, 

1996; Couteau and Sorgeloos, 1997; Sorgeloos et al., 2001; Ritar et al., 2004; 

Iglesias et al., 2007; Aragão et al., 2004;Seixas et al., 2008 ). Diatoms may also 

provide adequate levels of amino acids and vitamins for aquaculture food chains 

(Brown, 1991; Lebeau and Robert, 2003b).  
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2.2.2 Pharmaceutical and biomedical application 

 Antibacterial, antitumoral and antifungicidal compounds have been 

recorded in all algal classes, notably in diatoms. Rowland et al. (2001) reported 

that antitumoral compounds against human lung cancer and anti-HIV were 

extracted from pennate diatom, Haslea ostearia. An amino acid which acts as a 

moisturizing agent in human skin was extracted from diatom (Lebeau and 

Robert, 2003a). Active dermatological compounds such as aspartic acid and 

isoleucine from Chaetocerous calcitrans; serine, glutamic and tyrosine from 

Thalassiosira sp. (Derrien et al., 1998) were used in cosmetic product. Domoic 

acid, a toxin produced by Nizschia navisvaringica (Kotaki et al., 2000) and 

Pseudo-nitzschia multiseries (Wright et al., 1989) has been used as an 

antihelminthic compound in traditional medicine and also exhibits insecticidal 

properties (Lincoln et al., 1990).  

 

2.2.3 Biofuel industries 

 Biodiesel is another potential product from diatom which recently received 

much attention worldwide. Due to the world energy crisis, many countries have 

started to find greener and sustainable resources to resolve this problem. 

Finding alternative energy resources is a pressing mission for many countries, 

especially countries lacking conventional fuel resources. Algae can be used to 

produce biofuel called algae fuel or third generation biofuel (Schenk et al., 2008; 
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Demirbas, 2010). Compared to second generation biofuels, algal fuels have a 

higher yield: they can produce 30 -100 times more energy per hectare compared 

to terrestrial crops (Demirbas, 2010). High lipid content was recorded in diatoms 

under stressful conditions (Hu et al., 2008). In order to optimize the lipid 

production with the aim to produce more biodiesel to fulfill the fuel demand, 

some diatom strains were selected for lipid enhancement studies through 

genetic manipulation (Dunahay et al., 1995). 

Microalgae have higher potential in biodiesel production compared to 

other oil crops. This is mainly because the cultivation of microalgae does not 

need much land compared to terrestrial plants (Chisti, 2007). Moreover, 

microalgae grow extremely fast and many strains are rich in oils. Oil levels of   

20 – 50% are common in microalgae and levels as high as 55% in heterotrophic 

Chlorella protothecoides (Xu et al., 2006a; Perez-Garcia et al., 2011). These 

criteria enable possible industrial production of biofuel from microalgae in the 

near future.  

 

2.2.4 Biodepollution agent  

Diatoms are potentially useful in the bioremediation of water. In 

aquaculture, wastewater from ponds must be treated due to its high phosphate 

and nitrogen content. Lefebvre et al. (1996) showed that diatoms can be used to 

treat fish farm effluent. After the treatment, the resulted diatom biomass may be 
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given back to bivalves as feed. Moreover, this method is more efficient 

compared to when effluent is provided direct to the cultured bivalves     

(Lefebvre et al., 2000). Additionally, diatoms are also largely used in heavy 

metal removal on top of serving as an important bioindicator to measure impacts 

of river pollution. For example, Maznah and Mansor (2002) showed that the 

diatom community structure and the specific sensitivity of certain diatom species 

could be related to the degree of water quality.  

 

2.2.5 Sources of lipid and PUFAs 

 An alga synthesizes fatty acids as building blocks for the formation of 

various types of lipids (Hu et al., 2008). The most commonly synthesized fatty 

acids have chain lengths that range from C16 to C18 (Hu et al., 2008). The 

polyunsaturated fatty acid (PUFA) such as arachidonic acid (ARA) and 

eicosapentaenoic acid (EPA) are also produced by benthic diatom.  

Under heterotrophic conditions, the production of saturated fatty acids are 

favoured while highly polyunsaturated fatty acids are mainly produced under 

phototrophic conditions (Suen et al., 1987; Wen and Chen, 2000b). Higher 

oxygen level in phototrophic culture could lead to the high degree of fatty acid 

unsaturation because the desaturase enzymes have a requirement for 

molecular oxygen (Ratledge, 1992; Wen and Chen 2000b). However, the 

production of EPA and DHA is higher in heterotrophic growth of benthic diatom 
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(Barclay et al., 1994; Gladue and Maxey, 1994; Tan and Johns, 1996; Kitano et 

al., 1997, 1998; Wen and Chen, 2000a,2000b, 2001, 2003; Chen et al., 2007).  

Microalgae or diatoms are an excellent source of PUFA as their fatty acid 

profile is simpler than in fish oil. Production conditions can be controlled and the 

algal species can be selected according to the required PUFA of interest 

(Lebeau and Robert, 2003b). 

 

2.3 Polyunsaturated fatty acid  

Algal lipids consist of various fatty acid constituents., and the most 

important are the polyunsaturated fatty acids (PUFAs). PUFAs are fatty acid that 

contain more than one double bond in their backbone. There are at least 4 

independent families of PUFAs, which include the ω-3 series, ω-6 series,  ω-9 

series and ω-7 series. All of  them are derived from α-linolenic acid (ALA, 18:3, 

ω-3), cis-linoleic acid (LA, 18:2, ω-6), oleic acid (OA, 18:1, ω-9) and palmitoleic 

acid (PA, 16:1, ω-7).    

LA is converted to γ -linolenic acid (GLA, 18:3, ω-6) by enzyme ∆6  

desaturase and GLA is elongated to form dihomo-GLA (DGLA, 20:3, ω-6), the 

precursor of the 1 series of prostaglandins (PGs). DGLA can also be converted 

to arachidonic acid (AA, 20:4, ω-6) by the enzyme ∆5 desaturase (d-5-d). AA 

forms the precursor of 2 series of PGs (Wen and Chen, 2003; Singh, 2005; Das, 
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2006). These pathway is called the ω-6 pathway, where  the ω-6 PUFA were 

produced (Figure 2.1). 

ALA is converted to eicosapentaenoic acid (EPA, 20:5, ω-3) by d-6-d and 

d-5-d. EPA forms the precursor of the 3 series of PGs, TXs and the 5 series of 

LTs (Wen and Chen, 2003; Singh, 2005; Das, 2006). These pathway is called 

the ω-3 pathway, where the ω-3 PUFA were produced (Figure 2.1). LA, GLA, 

DGLA, AA, ALA, EPA and docosahexaenoic acid (DHA, 22:6, ω-3) are all 

PUFAs, but only LA and ALA are essential fatty acids (EFAs).  

As demonstrated in Figure 2.1, dietary LA, ALA and OA are metabolized 

by the enzymes Δ6 and Δ5 desaturases and elongases. As a result, these 3 

series compete with one another for the same set of enzymes, though the 

enzymes seem to prefer ω-3 to ω-6 and ω-6 over ω-9. Hence under normal 

physiological conditions the metabolites of ω-9 are formed only in trivial amounts 

in the cells (Das, 2006). According to Das (2006), the activities of Δ6 and Δ5 

desaturases are slow in humans (Δ5 >Δ6). As a result, the conversion of LA 

and ALA to their respective metabolites may be inadequate under medical 

compromise patients (diabetes, hypertension, hyperlipidemia and metabolic 

syndrome X). It is necessary to supplemented AA, EPA and DHA (to bypass Δ6 

and Δ5 desaturases). Generally, supplement of AA is not necessary since; it 

can be obtained from the diet. 
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Figure 2.1: Scheme showing the metabolism of essential fatty acids and         

co- factors that enhance the activity of Δ6 and Δ5 desaturase and elongase.  

Key: (+): indicates enhancement of the activity of enzyme or increase in the 
formation of the product; (-): indicates either in the inhibition of the activity of the 
enzyme or decrease in the formation of the product; EETs: epoxy-eicosatrienoic 
acids (5,6-, 8,9-, 11,12- and 14,15-EETs); HETEs: hydroxyeicosa-tetraenoic 
acids (19- and 20-HETEs); PGA: prostaglandin A; PGE: prostaglandin E; PGF: 
prostaglandin F; PGI: prostaglandin I; TXA: thromboxane A; LTB: leukotriene B; 
Se: selenium; Vit E: vitamin E; Ca++: calcium; Vit A: vitamin A; Vit B6: vitamin B6 
Mg++: magnesium; Zn: zink; NPDI: neuroprotectin Di. (modified from Das, 2006). 
 
 


	001COVER PAGE
	002ACKNOWLEDGEMENTS
	003TABLE OF CONTENTS
	004LIST OF TABLES
	005LIST OF FIGURES
	006LIST OF PLATES
	007LIST OF ABBREVIATIONS
	008ABSTRAK
	009ABSTRACT
	010CHAPTER 1
	011CHAPTER 2
	012CHAPTER 3
	013CHAPTER 4
	014CHAPTER 5
	015CHAPTER 6
	016REFERENCE1
	017APPENDICES
	018PUBLICATIONS

