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Figure 3.37 The full 13C-NMR spectrum of S2 
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Figure 3.38 The FTIR spectrum of S2 
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Figure 3.39 The COSY spectrum of S2.  150 

 

Figure 3.40 

 

The NOESY spectrum of S2  151 

Figure 3.41 

 

The HSQC spectrum of S2. 
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Figure 4.42 

 

The ms spectrum of S2. 
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Figure 3.43 The full 1H-NMR spectrum of S3 
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Figure 3.44 The expanded 1H-NMR spectrum of S3  154 
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Figure 3.45 The FTIR spectrum of S3 
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Figure 3.46 The mass spectrum of S3 

 

 155 

Figure 3.47 The full 1H-NMR spectrum of S4 
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Figure 3.48 The expanded 1H-NMR spectrum of S4 
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Figure 3.49 

 

The mass spectrum of S4.  157 

Figure 3.50 Lineweaver-Burk plot for S1 as inhibitor. [I] denoted the 

concentration of the inhibitor 
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Figure 3.51 Lineweaver-Burk plot for S2 as inhibitor. [I] denoted the 

concentration of the inhibitor 
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Figure 3.52 Lineweaver-Burk plot for S3 as inhibitor. [I] denoted the 

concentration of the inhibitor 
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Figure 3.53 Lineweaver-Burk plot for S4 as inhibitor. [I] denoted the 

concentration of the inhibitor 
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Figure 3.54 Mapping of potential inhibitors from NADI guided 

compounds on pharmacophoric model S5T5H06: (A) S1, 

C, Ki = 78 µM; (B) S2, NC, Ki = 232 µM; (C) S3, NC, Ki = 

97 µM and (D) S4, NC, Ki = 29 µM. HBD shown as violet 

sphere, HBA as light green sphere, Hbic as blue sphere, 

Ring Aromatic as orange sphere and excluded volume as 

grey spheres. C and NC signified competitive and non-

competitive, respectively 
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Figure 3.55 Suggested potential lead structure for the design of non-

competitive DEN-2 NS2B-NS3 protease inhibitor 
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PENEMUAN UBAT BERASASKAN LIGAN UNTUK PERENCAT 

NOVEL PROTEASE NS2B-NS3 DENGGI-2  

 
 

ABSTRAK 
 

Kes demam denggi dilaporkan meningkat setiap tahun, namun sehingga kini 

belum ada ubat anti-denggi boleh didapati di pasaran. Oleh itu, pencarian ejen anti-

denggi adalah kritikal. Pemotongan poliprotein pelopor oleh enzim protease NS2B-

NS3 merupakan proses yang sangat penting untuk replikasi flavivirus. Oleh itu 

enzim protease NS2B-NS3 sesuai dijadikan sasaran untuk membangunkan ubat anti-

denggi. Di Malaysia, Denggi-2 adalah jenis sera yang paling lazim. Dalam kajian ini, 

pendekatan berasaskan ligan telah dilaksanakan dalam mencari perencat enzim 

protease NS2B-NS3 Denggi-2 baharu yang berpotensi. Model farmakofor telah 

dihasilkan daripada pelbagai struktur perencat enzim protease NS2B-NS3 Denggi-2 

yang pernah dilaporkan, yang terdiri daripada molekul peptida dan bukan peptida. 

Model farmakofor terpilih telah digunakan untuk menyaring senarai sebatian dalam 

pengkalan data National Cancer Institute, AS (NCI) untuk mencari perencat protease 

NS2B-NS3 Denggi-2 yang baharu secara maya. Produk semulajadi dalam pengkalan 

data Natural Product Discovery System (NADI) juga disaring dan struktur yang aktif 

secara maya telah dieksploitasi untuk merekabentuk molekul perencat baru, yang 

kemudiannya disintesis. Aktiviti-aktiviti perencatan sebatian yang aktif secara maya 

dari pengkalan data NCI dan yang disintesis telah diuji secara biocerakinan in-vitro 

terhadap enzim protease NS2B-NS3 Denggi-2 menggunakan substrat peptida Boc-

Gly-Arg-Arg-MCA. Kewajaran pemilihan model farmakofor S5T5H06 dan 

S2T3H01 telah disahkan secara ujikaji dengan penemuan 3 perencat enzim protease 

NS2B-NS3 Denggi-2 baharu dari pengkalan data NCI dengan nilai-nilai Ki 17 ± 6 
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μM (perencat tidak kompetitif), 26 ± 4 μM (perencat kompetitif) dan 95 ± 35 μM 

(perencat kompetitif).  Disamping itu, 1 perencat kompetitif (Ki = 78 ± 41 μM) dan 2 

perencat tidak kompetitif (Ki = 29 ± 6 μM dan Ki = 97 ± 49 μM) telah diperolehi dari 

molekul yang disintesis berasaskan  struktur sebatian daripada pengkalan data NADI. 

Penemuan menarik ini mendedahkan bahawa produk semulajadi dari kepelbagaian-

bio Malaysia yang terdapat dalam pengkalan data NADI adalah sumber yang 

berharga untuk pembangunan ejen anti-denggi. Daripada keputusan ujikaji ini juga, 

satu andaian dapat dibuat iaitu ligan yang mempunyai farmakofor seperti model 

S5T5H06 boleh terikat kepada tapak ikatan aktif atau tapak ikatan alosterik dengan 

mod ikatan yang sama. Daripada kajian “SAR”, satu struktur pemula yang berpotensi 

untuk membangunkan perencat tidak kompetitif terhadap protease NS2B-NS3 

Denggi-2 telah dicadangkan. Struktur ini mempunyai nukleus pusat yang terdiri 

daripada di-fenilmetana. Nukleus pusat ini dihubungkan oleh kumpulan imina di 

kedudukan 1 dan 1' ke dua tangan fenil, R1 dan R2. Selain itu, struktur pemula ini 

perlu mempunyai kumpulan hidrofobik dan penerima ikatan hidrogen (HBA) sebagai 

rantaian sampingan kepada R1 dan penderma ikatan hidrogen (HBD) sebagai 

rantaian sampingan kepada R2. Berdasarkan keputusan-keputusan yang diperolehi, 

dapat disimpulkan bahawa farmakofor model S5T5H06 dan S2T3H01 boleh 

digunakan untuk pencarian perencat enzim protease NS2B-NS3 Denggi-2 yang 

berpotensi daripada pengkalan data kimia. Farmakofor model S5T5H06 dan 

S2T3H01 juga boleh dijadikan panduan untuk merekabentuk  perencat enzim 

protease NS2B-NS3 Denggi-2 berpotensi yang baru berdasarkan struktur sasaran 

yang aktif.        
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LIGAND BASED DRUG DISCOVERY OF NOVEL DENGUE-2 

NS2B-NS3 PROTEASE INHIBITORS 
 

ABSTRACT 
 

            The reported dengue cases are increasing yearly, yet no anti-dengue agent is 

available in the market. Therefore, the search for anti-dengue is critical. In Malaysia, 

Dengue-2 (DEN-2) is the most prevalent serotype. NS2B-NS3 protease is the 

enzyme for the cleavage of polyprotein precursor, which is crucial for the flavivirus 

replications. This makes it a potential target for the development of therapeutics 

against the dengue virus. In this study, ligand-based approach was implemented in 

searching for the new potential DEN-2 NS2B-NS3 protease inhibitors. 

Pharmacophore models were developed from diverse reported structures of DEN-2 

NS2B-NS3 protease inhibitors, comprising peptide and non-peptide molecules. The 

selected pharmacophore models were employed to screen the US National Cancer 

Institute (NCI) list of compounds to search for new DEN-2 NS2B-NS3 protease 

inhibitors. The list of natural products in Natural Product Discovery System (NADI) 

database was also screened and the structures of active hits were exploited for the 

design of new inhibitor molecules. The designed molecules were then synthesised. 

The in-vitro assay were conducted to examine the inhibitory activities of the selected 

hits from NCI database and the synthesised compounds towards recombinant DEN-2 

NS2B-NS3 protease by using fluorogenic peptide substrate Boc-Gly-Arg-Arg-MCA. 

The validity of selected pharmacophore models, S5T5H06 and S2T3H01 was 

experimentally established by the identification of three new DEN-2 protease 

inhibitors retrieved from NCI database with Ki values of 17 ± 6 μM (non-

competitive), 26 ± 4 μM (competitive) and 95 ± 35 μM (competitive). One 

competitive inhibitor (Ki = 78 ± 41 μM) and two non-competitive inhibitors (Ki = 29 
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± 6 μM and Ki = 97 ± 49 μM) were found from the NADI guided compounds. This 

interesting finding revealed that the natural products from Malaysian biodiversity, 

which are available in NADI database, are valuable resources of active 

compounds/active fragments for the development of anti-dengue. It was postulated 

that the active site and the allosteric binding site on DEN-2 protease share common 

binding mode to the ligand that carry the pharmacophores of the model S5T5H06. 

From SAR study, a potential lead structure for DEN-2 NS2B-NS3 protease non-

competitive inhibitor was suggested. The structure should has a central nucleus made 

up of diphenylmethane connected by imines at the position 1,1’ to two phenyl lateral 

arms, R1 and R2. Additionally, the structure should have a hydrophobic and a 

hydrogen bond acceptor (HBA) as side chains to the phenyl group R1 and a 

hydrogen bond donor (HBD) as a side chain to the phenyl group R2. The findings 

concluded that  pharmacophoric models S5T5H06 and S2T3H01 can be useful for 

pharmacophoric exploration of chemical databases in searching for the potential 

DEN-2 NS2B-NS3 protease inhibitors as well as a guide to design new potential 

inhibitors from the active hits. 
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1 CHAPTER 1  

INTRODUCTION AND LITERATURE REVIEW 
 

1.1 PROBLEM STATEMENT 

 

Dengue is the most prevalent arthropod-borne viral infection in human. It is 

estimated that dengue virus infection is 50 – 100 million per year globally in over 

100 tropic and sub-tropic countries where over 2.5 billion people (over 40% of 

world’s population) are at risk. Out of these 2.5 billion people at risk, 1.8 billion (> 

70%) are in Asia Pacific countries (Kumar et al., 2012; WHO, 2009, 2013a, 2013b). 

The trend of reported dengue cases in Western Asia Pacific region varies from region 

to region for example from 2006 to 2012, Australia, Cambodia, Lao PDR, Malaysia, 

Philippines and Vietnam have reported more cases in 2012 than in 2011. Malaysia in 

particular reported 21,900 of Dengue cases with 35 deaths (CFR 0.2%) for the year 

2012 compared to 19,884 cases (36 deaths, CFR 0.2%) in 2011 (WHO, 2013a). As at 

December 2013, Australia, Lao PDR, Malaysia, New Caledonia and Singapore have 

reported higher cumulative cases in 2013 compared to 2012 for the same time period 

(WHO, 2013c). In Malaysia, the cases rapidly increased (43346 cases with 92 death) 

by the end of 2013, which is two-fold increase relative to 2012 (WHO, 2014). Recent 

statistics of dengue cases and fatalities in Malaysia are ringing the alarm bells across 

the country. From 1
st
 to 22

nd
 January 2014, there were 6,155 dengue cases reported, 

compared to 1,792 cases within the same period in 2013 (six-fold increase). The 

number of deaths has doubled from five deaths in 2013 to 10 deaths in 2014, all 

within the same period (Ismail, 2014). 
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The continuous prevalent of dengue cases drive the researchers to search and 

develop the vaccine and anti-dengue drugs for the treatment of dengue.  The search 

for lead anti-dengue compounds has been done from many resources. In traditional 

medicines plants extracts,  several species have been reported with anti-dengue 

activity (Reis et al., 2008). A sulphated polysaccharide, named fucoidan, from 

marine algae  was found as a potential anti-dengue agent (Hidari et al., 2008) while 

there have been many discoveries of potential anti-dengue from synthetic compounds 

using many approaches such as in silico screening from compounds libraries 

(Kampmanna et al., 2009; Wang et al., 2009), high throughput in vitro screening and 

structure-based drug design (Tomlinson et al., 2009). 

 

                                  

                          

 

Figure 1.1: Several structures of potential anti-dengue compounds reported by 

Kampmanna et al., 2009 ((a) and (b)), Wang et al., 2009 (c) and Tomlinson et al., 

2009 ((d) and (e)). 
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Figure 1.1: Continued. 

 

From the understanding of the viral life cycle, the virus structural proteins 

(capsid protein, C, membrane-associated protein, prM and envelope protein, E) as 

well as non-structural proteins (NS1, NS2B, NS3 and NS5) have been identified as 

potential targets for the development of vaccine and anti-dengue drug. The 

development of imaging techniques, high resolution x-ray crystallography and 

computer simulation technology enable the proteins structure models of the virus to 

be available (Erbel et al., 2006) to assist researchers to understand the interactions of 

the target proteins and the drugs. This availability helps the researchers to speed up 

the finding of new drugs at lower cost.  

 

Nevertheless, the development of vaccines and antiviral therapy has seen little 

success where no licensed antiviral therapy is currently available (Sampath & 
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Padmanabhan, 2009). The control of disease is focused on the control of mosquito 

vector, which is costly and often met with limited success (Gubler, 1998). Therefore, 

the search for the lead compounds and derivatives with their information on the 

structures and activities is needed in discovering novel inhibitor for the development 

of anti-dengue. 

 

1.2 DENGUE 

 

Dengue is a disease caused by the infection of the dengue virus. There are 

four antigenically related but genetically distinct serotypes of dengue viruses; DEN-

1, DEN-2, DEN-3 and DEN-4, which are transmitted to human by female Aedes 

aegypti and Aedes albopictus mosquitoes. The symptom of a disease similar to 

dengue was reported since the end of 18
th

 century. In 1780, Benjamin Rush, a 

physician of Philadelphia, provided the first detailed description of what we know 

now as dengue fever. However, the first extensively documented outbreak of dengue 

haemorrhagic fever (DHF) occured in the Philippines in 1953 followed by Thailand 

in 1958. Since 1960s dengue has spread to over 60 countries (Howard, 2005). 

 

Dengue is most prevalent in tropical Asia, Latin America and Caribbean 

(Deen et al., 2006; Kyle & Harris, 2008; Mukhopadhyay, et al., 2005). From the 

estimated number of dengue virus infection of 50 – 100 million per year globally, 

250,000 – 500,000 patients develop more severe diseases of dengue haemorrhagic 

fever (DHF) and dengue shock syndrome (DSS) with 1-5% of cases result in fatality 

(Rawlinson et al., 2006). The incidence of dengue has increased dramatically in the 

past 50 years due to the population growth and uncontrolled urbanization in tropical 

and subtropical countries that become breeding sites for the mosquitoes and 
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problematic vector control (Kyle & Harris, 2008). In addition, the increased global 

transports networks such as air travel has enabled infected humans to spread viruses 

(Gibbons & Vaughn, 2002).  

 

Dengue symptoms appear after five to eight days following the bite by an 

infected mosquito (Smith, 1995). The person infected by dengue virus may manifest 

ranges of symptoms from silent infection (no symptom) to fatal dengue 

heamorrhagic fever (DHF)/ dengue shock syndrome (DSS) (Gibbons & Vaughn, 

2002). The WHO scheme has classified dengue virus infection into three categories; 

dengue fever, DHF and DSS. 

 

Dengue fever is clinically defined as an acute febrile illness with two or more 

manifestations (headache, retro-orbital pain, myalgia, arthralgia, rash, haemorrhagic 

manifestations, leucopenia) and the occurrence should be at the same location and 

time as other cases of dengue fever. DHF is defined as a case that must meet all four 

of the following criteria: fever or history of fever lasting 2-7 days, a haemorrhagic 

tendency shown by a positive tourniquet test or spontaneous bleeding, 

thrombocytopenia and evidence of plasma leakage. DHF is further classified into 

four severity grades according to the presence or absence of spontaneous bleeding 

and the severity of plasma leakage. The dengue shock syndrome (DSS) refers to 

DHF grades III and IV, in which shock is present as well as all four DHF defining 

criteria (Deen et al., 2006; Gubler, 1998). Schematic of WHO classification of 

symptomatic dengue infection and WHO classification of dengue haemorrhagic fever 

are shown in Figure 1.2 and Table 1.1, respectively. 
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Figure 1.2: WHO classification of symptomatic dengue infection (Source: Deen et 

al., 2006). 

 

Among the infected person, less than 1% developed DHF/DSS. The 

development of DHF/DSS was influenced by many factors.  The patience with 

sequential infection of distinct dengue virus serotype from the primary infection 

showed to have 15-80-fold likely to develop DHF. However, patience that has not 

undergone a previous infection can also develop DHF. The trigger factors to the 

development of DHF could be host related such as age, sex, race, nutritional status 

and genetic predisposition. Children under 15 years old are more likely to develop 

DHF. However, in the case of DEN-2 outbreak in Santiago De Cuba in 1997, all 

DHF are in adults. Female are more likely to develop a more severe disease.  In the 

case of race factor, in Cuban epidemic in 1981, white Cubans were 3.5-fold more 

hospitalised compared to the black Cubans (Howard, 2005; Guzman, et al., 2006; 

Rawlinson et al., 2006). 
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Table 1.1: WHO classification of dengue haemorrhagic fever. Source: (Howard, 

2005). 

 

Grade Clinical description 

I Fever  with non-specific constitutional symptoms and the only 

haemorrhagic manifestations being a positive tourniquet test 

II As for Grade I, but accompanied by more extensive haemorrhagic 

manifestations 

III Sign of circulatory failure or hypertension  

IV Profound shock with pulse and blood pressure being undetectable  

 

Another trigger factor is the viral factor. The differences in genotype between 

strains also influence the severity of the disease. This phenomenon is shown by the 

capability of DEN-2 strain from Southeast Asia to cause DHF while the same strain 

did not cause DHF in epidemic event in Peru in 1995 even though  the population 

had undergone an epidemic of DEN-1 five years before. This is due to the fact that 

DEN-2 from Southeast Asia and Peru have differences in six amino acid in structural 

and non-structural proteins as well as at the 5’ and 3’ un-translated region of virus 

RNA. However, the exact factors for the minor cases of DHF/DSS development is 

still not clear (Rawlinson et al., 2006). 

 

1.3 DENGUE VIRUS 

 

Dengue virus is a member of Flaviviridae family from Flavivirus genera. The 

Flaviviridae family consists of three genera; Flavivirus, Pestivirus and Hepacivirus. 

Genus Flavivirus contains more than 70 viruses including dengue virus (DENV), 

Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), West Nile 

virus (WNV) and yellow fever virus (YFV). Dengue viruses are further divided into 

four serotypes 1, 2, 3 and 4 (DEN-1, DEN-2, DEN-3 and DEN-4).  
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1.3.1 The structure and genome of dengue virus 

 

Dengue virion is a spherical enveloped virus with diameter approximately 

500Å. It comprises a single, positive-strand RNA genome of ~10,700 nucleotides 

that is packed by three structural proteins and a lipid bilayer. The structural proteins 

are capsid, C; membrane-associated (M, which is expressed as prM, precursor to M) 

and envelope, E (Kuhn et al., 2002; Mukhopadhyay et al., 2005; Rey, 2003). The 

RNA of dengue virus consist of a 5’-untranslated region (UTR), a single open 

reading frame (ORF) and 3’-UTR (Dong et al., 2008). The RNA has type 1 cap at the 

5’-terminus (m
7
GpppAmp) and polyadenylate [Poly(A)] tail at 3’-terminus (Wahab 

et al., 2007). The three structural proteins (C, prM and E) are encoded by 5’- 

terminus of the ORF of the genome. The remainder of the ORF of the genome 

encodes seven nonstructural proteins i.e. NS1, NS2A, NS2B, NS3, NS4A, NS4B and 

NS5 (Figure 1.3).  

 

 

Figure 1.3: Schematic representation of flavivirus genome organization and 

polyprotein processing. Sites of polyprotein cleavage mediated by the viral NS2B-

NS3 and by host signalase are shown. The enzymatic activities of NS3 and NS5 are 

also indicated. Source: (Sampath & Padmanabhan, 2009)  

 

2K 
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1.3.2 Life cycle of Flavivirus 

 

The primary mammals’ cells infected by dengue virus are monocytes, 

macrophages and dendritic cells (Rawlinson et al., 2006; Sampath & Padmanabhan, 

2009). The life cycle of dengue virus and flavivirus in general, started with the 

attachment and binding of the virions on the host cell surface, followed by the entry 

into the cell by the process of endocytosis to form endosome. Endosome then  

undergoes the process of fusion where the RNA is released into the cytoplasm. The 

viral RNA is next translated into a polyprotein, which is cleaved into viral proteins 

(structural and non-structural) by polyprotein processing. Then, the replication of 

RNA and virus assembly occur. Finally, budding occurs where the new mature 

virions are released from the host cell by exocytosis (Guzman, et al., 2006; Lescar et 

al., 2008; Mukhopadhyay et al., 2005). The schematic diagram of the flavivirus life 

cycle is illustrated in Figure 1.4. 
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Figure 1.4: Flavivirus life cycle. Numbers shown in boxes refer to the pH of the 

respective compartments. Source: (Perera et al., 2008).  

 

1.3.2.1 Entry to the cell 

 

In the initial dengue virus infection process, the virion attaches to the host cell 

by the binding of E protein onto the receptor on the host cell surface (Rawlinson et 

al., 2006) . Then, the virion enters the cell by receptor-mediated endocytosis to form 

endosome (Sampath & Padmanabhan, 2009). There are different receptors for 

dengue virus on different cell types for the attachment. Fcɣ-R is the receptor for 

macrophages and monocytes, while the C-type lectine DC-SIGN(CD209) is the 

receptor for dendritic cell for the infection of all four dengue serotypes (Rawlinson et 

al., 2006). 
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Following endocytosis, the RNA genome is released into the cytoplasm of the 

host cell through the fusion of the viral membrane and the host-cell endosomal 

membrane. Acidic environment (low pH) in endosome mediates the structural 

reorganization of E protein (Sampath & Padmanabhan, 2009) from homodimers into 

homotrimers (Rawlinson et al., 2006). The trimeric conformation of the E protein 

forms more open structure, exposing the fusion peptide, thereby bringing the viral 

and endosomal membrane into close proximity and allowing insertion of the virus 

into the host cell membrane. As a result, fusion of the viral and host-cell endosomal 

membranes occurs. Upon fusion, the nucleocapsid, which carries virus RNA is 

released into the cytoplasm of the host cell (Lescar et al., 2008; Mukhopadhyay et 

al., 2005; Rawlinson et al., 2006). The capsid protein and viral RNA dissociation is 

probably a spontaneous process that occurred upon the release of nuclecapsid 

(Rawlinson et al., 2006). 

 

1.3.2.2 Translation and polyprotein processing 

 

In cytoplasm, the viral RNA served as mRNA that is directly translated into a 

long single polyprotein precursor of approximately 370 kDa. The polyprotein 

precursor is arranged in the order of NH2-C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-

NS4B-NS5-COOH (Wahab et al., 2007). The polyprotein is then cleaved into the 

three viral structural (C-prM-E) and seven non-structural (NS1-NS2A-NS2B-NS3-

NS4A-NS4B-NS5) proteins by viral-encoded serine protease (NS2B-NS3), host cell 

proteases (signalase and furin) as well as other unknown protease (Lescar et al., 

2008; Mukhopadhyay et al., 2005; Rawlinson et al., 2006; Sampath & Padmanabhan, 

2009). 
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In addition to the ten proteins, two small hydrophobic peptides are released 

from the polyprotein (Figure 1.3). One is derived from the C-terminus of the 

anchored capsid protein; after the cleavage of this fragment, the mature capsid is 

released. The second one is a small fragment between the NS4A and the NS4B that 

is called 2K (Guzman, et al., 2006). 

 

The viral NS2B-NS3 protease is involved in the cleavage on the cytoplasmic 

side of the endoplasmic reticulum (ER) membrane whilst host cellular protease takes 

part in the cleavage in the ER lumen (Lescar et al., 2008). The viral NS2B-NS3 

protease is responsible for the cleavage at the NS2A/2B, NS2B/NS3, NS3/NS4A, 

NS4A/2K and NS4B/5. Host protease cleaves at the C/prM, prM/E, E/NS1 and 

2K/NS4B junctions (Figure 1.3) that release prM, E and NS1 proteins in the ER 

lumen (Guzman, et al., 2006; Rawlinson et al., 2006). 

 

1.3.2.3 RNA replication 

 

Genome replication occurs in intracellular membranes (Mukhopadhyay et al., 

2005) and Golgi-derived membranes called vesicle packed (Sampath & 

Padmanabhan, 2009). Non-structural proteins mediate the transcription of viral RNA. 

Thus, transcription started after the non-structural proteins have been synthesised and 

released from the polyprotein precursor (Lescar et al., 2008). Starting from the 

genomic plus-strand RNA, the complimentary negative-strand RNA is synthesised, 

which then served as the template for the production of an additional genomic plus-

strand RNA (Guzman, et al., 2006).  
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1.3.2.4 Viral assembly and release of new progeny virion 

 

Virus assembly occurs on the surface of the endoplasmic reticulum (ER) 

(Mukhopadhyay et al., 2005). The newly synthesised plus stranded RNA is coated 

with C protein to form nuclecapsid. The mechanism of interaction of the C protein in 

nucleocapsid is still not clear (Sampath & Padmanabhan, 2009). Then, E and prM 

envelop the nucleocapsid resulting in the formation of non-infectious, immature viral 

and subviral particles in the lumen of ER. Immature viral particle contains E and prM 

proteins, lipid membrane and nucleocapsid. On the other hand, subviral particle does 

not contain nucleocapsid. These particles are non-infectious as they cannot induce 

host-cell fusion. They are transported through the trans-Golgi network where the 

maturation of the virus particles occurs. In the trans-Golgi network, the prM is 

cleaved to M by the host protease furin and rearrangements of E protein occur, 

resulting in the formation of mature, infectious particles (Perera et al., 2008). 

Subviral particles are also cleaved by furin. Mature and subviral particles are 

subsequently released from the cell by exocytosis (Mukhopadhyay et al., 2005; 

Sampath & Padmanabhan, 2009). 

 

1.4 PROTEINS OF DENGUE VIRUS 

 

1.4.1 Structural proteins and functions 

 

The capsid protein (~100 amino acids) is involved in the packaging of viral 

genome/form nucleocapsid core (NC). The prM protein (~165 amino acids) might 

function as a chaperone for the folding and assembly of E protein during particle 

maturation. The E protein (~495 amino acids) constructs the envelope structure of 

the virus.  
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1.4.1.1 Capsid protein 

 

Dengue-2 virus capsid protein exists in dimer form and has been suggested to 

be the building block for nucleocapsid assembly. Nuclecapsid core formed in the 

early stage of assembly process, consists of one copy of genomic RNA and multiple 

copies of the capsid protein. However, NCs are rarely found in flavivirus-infected 

cells, which indicated that the particle formation is a coordinated process between the 

membrane-associated capsid protein and the prM-E heterodimers in the ER 

(Mukhopadhyay et al., 2005). The cryoEM reconstruction of mature and immature 

dengue virus show that the nucleocapsid is not a well-formed protein shell. It has 

been suggested that the capsid protein facilitates the binding of the nucleocapsid to 

the lipid membrane (Ma et al., 2004).  

 

1.4.1.2 E and M proteins 

 

The E protein, the external structural protein of dengue virus is responsible for 

the binding with cellular receptor and interacts with the host cell membrane for 

fusion and penetration, as well as viral assembly and budding. E protein also 

possesses antigenic determinants that elicit neutralizing antibodies (Huang et al., 

2008; Kuhn et al., 2002; Modis et al., 2004, 2005; Mukhopadhyay et al., 2005; 

Zhang et al., 2004). The ability of monoclonal antibody to neutralise dengue virus 

serotype 1, 2 and 3, is primarily by inhibiting the attachment to the host. Therefore, 

the change in viral surface structure was assumed to be responsible for inhibiting 

viral attachment to cell (Lok et al., 2008). 
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During the flavivirus life cycle, the virion exists in three main conformational 

states: immature, mature and fusion-activated. The conformation of the E protein 

differs in these three states. The conformational rearrangement occur from prM–E 

heterodimers in immature particle to E homodimers in the mature particle, and 

finally to E homotrimers in the fusion-activated particle (Perera et al., 2008).  

 

Following the assembly process, an immature virus particle is produced in 

ER, which have pre-membrane protein (prM) that must be proteolytically processed 

during virion maturation. There are two types of immature virus; “spiky” and 

“smooth” virus particles. Immature virus particles have a diameter of ∼600 Å 

(Figure 1.5A and 1.5C) with a spiky surface protein shell consisting of prM and E 

proteins, which form 180 heterodimers that are arranged as 60 trimeric spikes. 

Within each spike there are three prM-E heterodimers (Zhang et al., 2003; Zhang et 

al., 2004). The prM protein forms a cap-like structure that protects the fusion peptide 

on E protein and prevents the fusion of the virus with the host membrane. 

 

In Golgi apparatus, low pH environment trigger rotational and translational 

movement of E protein resulting in the transition of E protein from prM heterodimer 

(Figure 1.5C) to anti-parallel E homodimers (Figure 1.5D). The “smooth” viral 

morphology is formed but is still considered immature due to the presence of prM 

protecting the fusion peptide on E. Maturation process of flavivirus is directed by 

proteolitic cleavage of the precursor membrane protein (prM) (Li et al., 2008). Then, 

furin cleaves the prM into pr and M. The cleaved pr portion remains associated with 

E and is only released from the virus particle following the exit into neutral pH 

environment. Following maturation, the particle is released into a neutral 
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environment and pr peptide is released from the virion (Perera et al., 2008). 

 

 

Figure 1.5: Structure of flaviviruses. (A) A surface shaded view of the cryo-EM 

reconstruction of immature DENV-2 showing the spiky surface features. (B) A 

surface shaded view of the cryo-EM reconstruction of mature DENV-2 showing the 

relatively smooth surface features (C) Fit of the atomic coordinates of the E protein 

into the immature virus and (D) Mature virus showing the arrangement of the E 

proteins on the surface of the virion. Source: (Perera et al., 2008)  
 

Mature flavivirus particles (diameter ∼500 Å) have a relatively smooth 

surface with the lipid bilayer membrane completely covered by the envelope (E) and 

membrane (M) protein shell (Figure1.5B and 1.5D). This shell consists of 180 copies 

of the E protein arranged as 90 homodimers forming a herringbone pattern or so-
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called protein rafts that lie flat on the viral surface. Following the attachment of 

mature virus particle, specific cell-surface receptors mediate endocytosis of the virus. 

In the endosome, in the low pH environment, the E homodimers within the mature 

virion dissociate and re-arrange into fusion-active homotrimers. The fusion peptide 

of the virus becomes exposed at the distal end of the E protein and is inserted into the 

host membrane, which promotes fusion of the viral and host membranes (Modis et 

al., 2004; Perera et al., 2008). 

 

1.4.2 Non-structural proteins and functions 

 

Nonstructural proteins are essential for viral replication. NS1 involves in early 

steps of viral replication (Lindenbach & Rice, 1999), while NS3 shows enzymatic 

activities, which is involved in the viral polyprotein processing and genome 

replication. NS3 functions as a serine protease (NS2B-NS3 complex mediate 

proteolytic processing of polyprotein), 5’-RNA triphosphatase (RTPase), nucleoside 

triphosphatase (NTPase) and helicase (Luo et al., 2008). NS5 exhibits two enzymatic 

activities which are involved in the methylation of 5’-cap structure of genomic RNA 

(methyltransferase) and RNA-dependent RNA polymer (Dong et al., 2008; Geiss et 

al., 2009; Zhou et al., 2007). Due to the improved knowledge on the structures and 

functions of the proteins, the development of vaccine and therapeutic design 

currently target E, NS1, NS3 and NS5 proteins (Wahab et al., 2007). 
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1.4.2.1 Dengue virus NS2B-NS3 protease 

 

Proteins are made up of a long chains of amino acids that bonded by carbon-

nitrogen bonds called amide bonds or peptide bonds. Chemical hydrolysis of amide 

bond requires activation energy of ~25 kcal/mol. Therefore, under normal 

physiological conditions (pH~7, T = 37 °C), hydrolysis of amide bond would be very 

slow. However, catalysis of amide bond hydrolysis under physiological condition is 

accomplished at much faster rate by enzymes called proteases or peptidase.  

 

The protease or proteolytic enzymes not only catalyze protein hydrolysis at a 

fast rate but also specific and selective in order to prevent uncontrolled proteolysis of 

the organism. Proteases can be divided into classes based on their mechanism of 

action, which are serine, cysteine, aspartic, threonine and metallo proteases. As an 

example, a serine protease is an enzyme in which one of the amino acids at the active 

site is serine and the catalytic nucleophile in serine protease is hydroxyl group of the 

active site serine.  

 

Protease binds with the substrate in a specific manner that is represented by 

Schechter and Berger system of nomenclature. According to this system, the amino 

acid residues (or side chains) of substrate are labeled from the N to C terminus as 

Pn,.......,P3,P2,P1,P1’,P2’,P3’,........Pn’ and the corresponding binding sub sites of the 

enzyme are labelled as Sn,.......,S3,S2,S1,S1’,S2’,S3’,........Sn’. The peptide bond 

hydrolysis is carried out between  P1,P1’ and the bond is called the scissile bond 

(Figure 1.6). The P1 residue of the substrate is called the primary specificity residue. 

The specificity and selectivity of a protease depend on the nature of the P1 residue. 

As an example trypsin only cleaves at lysine or arginine residues (positively charged 

http://en.wikipedia.org/wiki/Amino_acids
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residues/basic residues at P1). Serine proteases are classified as elastase-like (small 

hydrophobic residues at P1), trypsin-like (positively charged residues/basic residues 

at P1) or chymotripsin-like (large hydrophobic residues at P1). 

 

 

Figure 1.6: Schehter and Berger System of Nomenclature. 
 

NS2B-NS3 protease is a serine protease. Serine protease utilises a 

combination of mechanisms that are common to enzyme catalysis. First, enzyme 

binds to the substrate to form an enzyme-substrate Michaelis-Menten complex (E-S 

complex) utilizing non-covalent bonding interaction such as ionic interactions, 

dipole-dipole interactions, hydrophobic interactions, hydrogen bonding and Van der 

Waal’s interactions. When the substrate is bound to the active site of the enzyme, the 

carbonyl group of the scissile amide bond is exposed for catalysis by enzyme.  

 

The active site of serine protease consists of three conserved amino acid 

residue; serine, histidine and aspartic acid that together form the “catalytic triad”. 

Serine protease utilises an active site serine residue in a covalent catalytic cleavage 

of peptide bonds. Nucleophilic group of serine is hydroxyl, which is a poor 

nucleophile. However, the serine hydroxyl is activated by general base catalysis 
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through hydrogen bonding network involving aspartic acid, histidine and serine 

residues nearby. This process converts serine to alkoxide (ionised serine) through a 

mechanism called the charge relay system (Silverman, 2004). The active site of 

serine (activated nucleophile) then attacks the carbonyl group of the scissile amide 

bond (Figure 1.7). 

 

 

Figure 1.7: Charge relay system for activation of an active site serine residue.  

 

Dengue NS3 protein is made up of 618 amino acids. It consists of two 

domains that possess enzymatic activity: a trypsin-like serine protease located in the 

N-terminal domain of the protein and a C-terminal domain that possess RNA 

helicase and NTPase activity (Murthy et al., 1999). The NS3 protease domain adopts 

a chymotrypsin-like fold with two β-barrels, each formed by six β-strands 

(Figure1.8), with the catalytic triad (His51-Asp75-Ser135) located at the cleft 

between the two β-barrels. 
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Figure 1.8: Structures of NS2B–NS3 protease (Blue, NS3pro; Green, NS2B). 

Residues of the catalytic triad Histidine 51 (HIS 51), Aspartate 75 (ASP 75) and 

Serine 135 (SER 135) are shown as red-colored stick models. Source: (Wichapong et 

al., 2009). 

 

It has been reported that Dengue virus NS3 protease alone is not active for 

proteolysis. The enzymatic activity of NS3 protease is enhanced by its interaction 

with NS2B protein (130 amino acid) that functions as a co-factor. Both NS2B and 

NS3 are required for proteolytic processing of dengue virus polyprotein (Falgout et 

al., 1991). From the X-ray crystal structure of NS2B (PDB ID: 2FOM) (Erbel et al., 

2006), residues 51-57 of NS2B form a β-strand which associates with the NS3 

protease. Erbel et al. (2006) also expressed a construct containing residues 49–66 of 

NS2B in a soluble form, indicating that the N-terminal part of NS2B is sufficient to 

stabilise the enzyme. However, the truncated NS2B-NS3 protein is catalytically 
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inactive and cannot bind a substrate-based inhibitor, which suggests that the C-

terminal part of NS2B directly interacts with the substrate-binding site. This is in 

contrast to HCV NS3 protease, where a short fragment of NS4A, including residues 

corresponding to β-strand 1, is sufficient to yield a fully active enzyme (Erbel et al., 

2006). 

 

It is also suggested that NS2B functions as a chaperone in assisting the 

folding of NS3 protease to an active conformation (Leung et al., 2001). A 47-

residues central hydrophobic region of NS2B is found to be essential for the 

activation of NS3 protease where the absence of NS2B has adverse effects on both 

the stability and the catalytic activity of NS3 protease (Murthy et al., 1999; Yusof et 

al., 2000).  Leung et al. (2001) also reported that the enzyme is inactive on its own or 

after the addition of 13-residues cofactor but is active when fused to the 40-residues 

cofactor. The first homology model with complete structure of the protease including 

the complete cofactor NS2B in the productive form was presented by Wichapong et 

al. (2009). 

 

The active site of NS2B-NS3 protease consists of four pockets, which are S1, 

S2, S3 and S4 that interact with the substrate residues P1, P2, P3 and P4, 

respectively. The sequence alignment of Dengue 2 Virus (PDB ID: 2FOM) and West 

Nile Virus (2PF7) of NS2B and NS3 domains (Erbel et al., 2006) showed that all 

residues in the pockets are either identical or similar for these two viruses 

(Wichapong et al., 2009) as shown in the Figure 1.9.  
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Figure 1.9: Sequence alignment of DENV and WNV NS2B and NS3 domains. Stars 

indicate residues that are identical whereas dots and colons indicate similar residues. 

Residues which are drawn italic and underlined are missing residues in the X-ray 

structures. Residues located in the S1, S2, S3, and S4 pockets are colored cyan, 

yellow, green, and magenta, respectively, and catalytic triads are displayed in bold 

red. Source: (Wichapong et al., 2009). 

 

Previous alignment studies indicated that NS3 protease has structurally 

similar to trypsin-like serine protease (Murthy et al., 1999). However, unlike trypsin, 

NS3 protease has a marked preference for a pair of basic residues (either Arg or Lys) 

at P2 and P1 in its peptide substrate followed by a small, unbranch amino acid (Gly 

or Ser) at P1’ (Chambers et al., 1991; Chambers et al., 1990)   

 

Wichapong and co-workers (2009) had constructed homology model of DEN-

2 Virus NS2B-NS3 protease complexed with the peptidic inhibitor (Bz-Nle-Lys-Arg-

Arg-H).  Based on the MD simulation of this homology model, the interactions 

between the enzyme active sites and inhibitors were revealed. It was suggested that 

His51 and Asp129 of NS3 protease play significant role in stabilizing the basic 

inhibitor P1 residue Arg or Lys (Li et al., 2005; Wichapong et al., 2009). From the 

simulation, the interaction of Arg-P2 and residues Asp75 (C-terminus NS2B), 

Asn152 (NS3) and Gly182 (NS2B) were observed. This result suggested that C-

terminus of NS2B not only play an important role for stabilizing and reorganizing the 
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NS3 protease but is also essential for the interaction with P2 residue of the inhibitor. 

 

All residues in S3 pocket are made up from NS2B domain. MD simulation 

showed that the H-bond was only observed between Lys-P3 and Tyr161. The S4 

pocket of DEN-2 protease is formed by Val154, Val155, Thr156 and Arg157 

suggested that it is dominated by hydrophobic residues. Thus the preferred residue at 

the P4 position of peptidic inhibitor is norleucine or leucine (Li et al., 2005). 

Wichapong and co-workers (2009) also revealed that the hydrogen bond between 

Nle-P4 of inhibitor and the S4 pocket is very low. 

 

1.4.2.2 Dengue virus NS2B-NS3 protease as a potential drug target 

 

The replication of flaviviruses requires the correct processing of their 

polyprotein by the viral NS2B-NS3 protease. Therefore, NS2B-NS3  protease is a  

potential target for the development of therapeutics against the dengue virus 

(Tomlinson et al., 2009). Moreover, protease inhibitors have a successful history as 

being developed into antiviral drugs (Hsu et al., 2006; Malcolm et al., 2006; 

Wlodawer & Vondrasek, 1998). A few protease inhibitors have been approved by 

US Food and Drug Administration (FDA) for HIV treatement such as saquinavir 

mesylate (1995), ritonavir (1996) and indinavir (1996), amprenavir (1999) and 

atazanavir sulphate (2003) (Hsu et al., 2006). For dengue virus, the potential peptides 

and small molecules as protease inhibitors have been studied by a few reserchers 

focusing on NS2B-NS3 protease (Chanprapaph et al., 2005; Ganesh et al., 2005; Kiat 

et al., 2006; Yin et al., 2006a). 

 

 




