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PENDEKATAN KOLOKASI SPLIN-B UNTUK MENYELESAIKAN 

PERSAMAAN-PERSAMAAN PEMBEZAAN SEPARA 

 

ABSTRAK 

 

Fungsi-fungsi splin-B dan trigonometri splin-B telah digunakan secara 

meluas dalam Rekabentuk Geometri Berbantu Komputer (RGBK) sebagai alat untuk 

menjana lengkung dan permukaan. Kelebihan fungsi-fungsi secara sepotong ini ialah 

ciri sokongan setempat dimana fungsi-fungsi ini dikatakan mempunyai sokongan 

dalam selang tertentu. Disebabkan oleh ciri ini, splin-B telah digunakan untuk 

menjana penyelesaian-penyelesaian berangka bagi persamaan pembezaan separa 

linear dan tak linear. Dalam tesis ini, dua jenis fungsi asas splin-B dipertimbangkan. 

Ianya adalah fungsi asas splin-B dan fungsi asas trigonometri splin-B. Pembangunan 

fungsi-fungsi ini untuk peringkat-peringkat yang berbeza dilaksanakan. Satu fungsi 

baru dipanggil fungsi asas hibrid splin-B dibangunkan dimana satu parameter 

digabungkan bersama fungsi-fungsi asas splin-B dan trigonometri splin-B 

diperkenalkan. Kaedah-kaedah kolokasi berdasarkan fungsi-fungsi asas tersebut dan 

hampiran beza terhingga dibangunkan. Splin-B digunakan untuk interpolasi 

penyelesaian pada dimensi-x dan hampiran beza terhingga digunakan untuk 

mendiskrit pembeza-pembeza masa. Secara umum, masalah nilai awal-sempadan 

yang melibatkan persamaan gelombang satu dimensi, persamaan tak linear Klein-

Gordon dan persamaan Korteweg de Vries diselesaikan menggunakan kaedah-

kaedah kolokasi ini. Dalam usaha untuk menunjukkan keupayaan skim-skim 

tersebut, beberapa masalah diselesaikan dan dibandingkan dengan penyelesaian-

penyelesaian tepat dan keputusan-keputusan daripada literatur. Satu lagi penemuan 



xxii 

baru tesis ini ialah kaedah-kaedah kolokasi yang boleh diterima pakai untuk 

menyelesaikan persamaan-persamaan pembezaan separa tak linear dengan keputusan 

yang tepat. Kestabilan skim-skim dianalisis menggunakan analisis kestabilan Von 

Neumann dan ralat pemangkasan diteliti. Kaedah-kaedah yang dicadangkan telah 

dibuktikan stabil tidak bersyarat. Kaedah kolokasi splin-B kubik dan kuartik telah 

disahkan sebagai 2( ) ( )O t O h   tepat. Sumbangan dan inovasi utama tesis ini adalah 

pembangunan fungsi asas hibrid splin-B dan kebolehgunaan kaedah-kaedah kolokasi 

yang dicadangkan untuk menyelesaikan persamaan-persamaan pembezaan separa tak 

linear. 
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B-SPLINE COLLOCATION APPROACH FOR SOLVING PARTIAL 

DIFFERENTIAL EQUATIONS 

 

ABSTRACT 

 

The B-spline and trigonometric B-spline functions were used extensively in 

Computer Aided Geometric Design (CAGD) as tools to generate curves and 

surfaces. An advantage of these piecewise functions is its local support properties 

where the functions are said to have support in specific interval. Due to this 

properties, B-splines have been used to generate the numerical solutions of linear and 

nonlinear partial differential equations. In this thesis, two types of B-spline basis 

function are considered. These are B-spline basis function and trigonometric B-spline 

basis function. The development of these functions for different orders is carried out. 

A new function called hybrid B-spline basis function is developed where a new 

parameter incorporated with B-spline and trigonometric B-spline basis functions is 

introduced. Collocation methods based on the proposed basis functions and finite 

difference approximation are developed. B-splines are used to interpolate the 

solution in x-dimension and finite difference approximations are used to discretize 

the time derivatives. In general, initial-boundary value problems involving one-

dimensional wave equation, nonlinear Klein-Gordon equation and Korteweg de 

Vries equation are solved using the collocation methods. In order to demonstrate the 

capability of the schemes, some problems are solved and compared with the 

analytical solutions and the results from literature. Another new finding of this thesis 

is the collocation methods that are applicable to solve nonlinear partial differential 

equations with accurate result. The stability of the schemes is analysed using Von 
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Neumann stability analysis and the truncation errors are examined. The proposed 

methods have been proved to be unconditionally stable. Cubic and quartic B-spline 

collocation methods have been verified as 2( ) ( )O t O h   accurate. The main 

contribution and innovation of this thesis are the development of hybrid B-spline 

basis function and the applicability of the proposed collocation methods to solve 

nonlinear partial differential equations.  

 



1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to travelling waves and their modelling  

A variety of physical phenomena involve waves. For example, a simple phenomena is 

when a pebble is dropped into a pool.  There is a disturbance created which moves 

outward until it finally reaches the edge of the pool.  This disturbance is called wave. 

Wave is defined as a disturbance that propagates through space or medium and time 

which transfers energy from one point to another (Faughn, 2003). 

According to Faughn (2003), waves are divided into three types: 

(a) Travelling wave where the wave transfers energy from one point to another 

by vibration.  Demonstration of this wave motion is to flip one end of a long 

rope with the opposite end fixed (as shown in Figure 1.1).  Then, the end rope 

that is not fixed is moved, there is a pulse that travels to the other end of the 

fixed rope with definite speed.    

 

 

 

 

 

 

 

 

Figure 1.1: Demonstration of travelling wave (Faughn, 2003) 
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(b) Transverse wave where a disturbance moves perpendicular to the wave 

motion. The stretched spring is usually used to explain the propagation of 

transverse wave.  The end of the spring is pumped up and down (as shown in 

Figure 1.2).  It will produce a hump which propagates or moves perpendicular 

to the direction of the movement of the spring. 

 

 

 

 

Figure 1.2: Demonstration of tranverse wave (Faughn, 2003) 

 

(c) Longitudinal wave  is the disturbance move parallel to the wave motion.  To 

demonstrate this wave, a stretched spring is pumped back and forth.  This 

action produces compressed and stretched regions of the spring where 

parallel of wave motion is seen as in Figure 1.3.  

 

 

  

 

Figure 1.3: Demonstration of longitudinal wave (Faughn, 2003) 

 

 

Compressed Compressed 

Stretched Stretched 
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In this thesis, three types of travelling wave are considered. These are the one-

dimensional wave equation, nonlinear Klein-Gordon equation and Korteweg de Vries 

(KdV) equation. To gain in depth understanding of these phenomena, these equations 

need to be solved efficiently and accurately. Various mathematical methods are 

available. However, the use of B-spline has been rather limited. This thesis will focus 

on the use of B-splines for solving equations which describe travelling waves. 

 

1.2 Introduction to partial differential equation 

Mathematical models have been developed to represent some problems that arise in 

real life phenomenon. The model usually contains derivatives of an unknown 

function which lead to a type of equation called differential equation. There are two 

basic types of differential equations: ordinary differential equations (ODE) and 

partial differential equations (PDE).  

PDEs are used to describe a wide variety of physical phenomenon especially 

in physics and engineering problems. The problems inherently bring the need for 

partial derivatives in the description of their behaviour. A PDE is a differential 

equation which is expresses a relation among the partial derivatives of the function 

that contains two or more independent variables (Vvedensky, 1993). The general 

form of PDE for a function u with two independent variables, x and t is 

 
2 2

2 2
, , ( , ), , , , , 0

u u u u
F x t u x t

x t x t

    
 

    
             (1.1) 

where ( , )u x t  is the solution of (1.1). 

 The order of PDE is equal to the order of the highest derivative appearing in 

(1.1). A differential equation is said to be linear if  

i) the function F is algebraically linear in each variables and 
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ii) the coefficients of the dependent variable and its derivatives are function of 

the independent variables. 

Otherwise, it is called nonlinear PDE (DuChateau & Zachmann, 2011). 

 The solution of PDE has to satisfy the initial and boundary conditions which 

appear in the problem formulation. There are four main types of boundary 

conditions: 

i) Dirichlet condition where the solution, u has to satisfy the given value on the 

boundary, s. 

s
u g  

ii) Neumann condition where the solution, u has to satisfy the value of 

derivatives on the boundary, s. 

s

u
g







 

iii) Robin condition where the solution u has to satisfy a combination of u and its 

derivatives on the boundary, s. 

s

u
u g 



 
  

 
 

iv) Mixed condition where the solution u has to satisfy the following condition 

1

2

s

s

u

gu








 

 

 where 1 2 .s s s     

Initial conditions define the solution, u at initial time, t. Differential equation with the 

only initial condition or boundary condition is called initial value problem or 
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boundary value problem, respectively. A problem consisting differential equation 

with initial and boundary conditions is called an initial-boundary value problem.  

 

1.3 Spline approach for solving partial differential equation 

Spline functions can be used to approximate the solution of differential equation 

using piecewise-polynomial approximation. Bickley (1968) began the investigation 

by applying cubic spline on two-point boundary value problems involving a linear 

ODE. The method was then improved and the same mathematical problems were 

solved by Fyfe (1969) and Albasiny and Hoskins (1969). The spline approximations 

were then developed for PDEs. Papamichael and Whiteman (1973) approximated the 

heat conduction equation using spline function in the space direction and finite 

difference approximation in the time direction. 

B-spline functions are piecewise functions with local support properties 

where the functions are said to have support in specific interval. Due to these 

properties, B-splines have been used to generate the numerical solution of linear 

problems. For example, Dehghan and Lakestani (2007) generated the solution of 

one-dimensional hyperbolic equation using cubic B-spline scaling functions. Çağlar 

et al. (2008) solved the boundary value problem for one-dimensional heat equation 

by third degree B-spline functions. Subsequently, Goh et al. (2011) presented cubic 

B-spline method incorporated with finite difference approximation for solving one-

dimensional heat and wave equation.  

Nonlinear wave involve nonlinear partial differential equations which can 

also be solved using B-spline approximations. Gardner and Gardner (1990) produced 

a finite element solution of the regularised long wave equation using Galerkin’s 

method based on cubic B-spline. The proposed method was also tested by them on 
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the equal width wave equation (Gardner & Gardner, 1992). The numerical solution 

of Burger’s equation were developed by Dağ et al. (2005) using a method based on 

collocation of cubic B-spline over finite elements. New types of spline called 

Blended B-spline and multilevel B-spline were proposed by Yu et al. (2013a, 2013b) 

for solving KdV equation. In term of errors, the methods cited above indicated that 

B-spline approximations were easy to implement. 

 

1.4 Motivation of research 

The finite difference approximation is the oldest method used to approximate the 

derivatives in differential equation. In the last five decades, theoretical results have 

been obtained regarding the accuracy, stability and convergence of the finite 

difference method for various PDEs. The spline approximation method is now also 

used as a tool to approximate the solution of partial differential equation. The spline 

method has flexibility to generate the accurate approximation at any point in the 

domain compared to the finite difference method which yields approximation only at 

grid points. 

 Caglar et al. (2006) introduced the cubic B-spline interpolation method to 

solve two-point boundary value problem of ODE. Evidently, B-spline demonstrates 

better approximation compared to the finite difference method, finite element method 

and finite volume method. Due to the advantages of finite difference approximations 

and B-spline functions, Goh et al. (2011) and Abbas et al. (2014) presented a 

combination of both methods to solve linear PDE. The method performed very well 

compared to the use of only finite difference scheme. But the question is, does this 

method perform equally well for nonlinear PDEs? And, how accurate is the 
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approximation obtained using a hybrid of B-spline function and the finite difference 

method? 

 In order to answer the questions, the nonlinear Klein-Gordon equation and 

KdV equation will be considered as initial-boundary value problems in this thesis. 

The numerical scheme proposed by Goh et al. (2011) and Abbas et al. (2014) will be 

applied to the problems. A new hybrid B-spline function will be introduced and 

applied to the same problems. Our new hybrid B-spline function will also used to 

solve the linear one-dimensional wave equation as a preliminary case study. The 

stability and error analysis of the methods will be discussed for each schemes. 

 

1.5 Objective of research 

The objectives of this study are: 

1. to develop hybrid B-spline basis function for solving PDEs. 

2. to develop and apply B-spline collocation method, trigonometric B-spline 

collocation method and hybrid B-spline collocation method in solving one-

dimensional partial differential equation i.e. one-dimensional wave equation, 

nonlinear Klein-Gordon equation and KdV equation. 

3. to investigate the stability and error analysis of the proposed methods when 

applied to the selected PDEs. 

4. to make a comparative study between the proposed methods and the current 

methods available in literature. 

 

1.6 Scope and methodology 

The recent literatures on spline-based methods for solving ODEs and PDEs will be 

summarized. Two types of B-spline basis function will be considered. These are B-

spline basis function and trigonometric B-spline basis function. The development of 
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these functions for different orders will be carried out. Based on these two functions, 

hybrid B-spline basis function will be developed.  

Subsequently, collocation methods based on the proposed B-spline basis 

functions incorporated with finite difference approximations will be developed. 

Initial-boundary value problems involving one-dimensional wave equation, nonlinear 

Klein-Gordon equation and KdV equation will be solved, in general, using the 

collocation methods. In order to demonstrate the capability of the schemes, some 

problems will be solved and compared with the analytical solution and the results 

from literatures. MATLAB R2012a has been used as software to solve the problems. 

The stability of the schemes will be analysed using Von Neumann stability analysis. 

Lastly, the truncation errors of selected schemes will be examined.  

 

1.7 Thesis organization 

This thesis contains eight chapters. Chapter 1 gives a brief introduction of wave and 

partial differential equations. The motivation, objective, scope and methodology of 

the research are also described in this chapter. A review on B-spline and 

trigonometric B-spline basis function of some order are discussed in Chapter 2. The 

formation of hybrid B-spline basis function is included in this chapter. In this chapter, 

an existing cubic B-spline collocation method on solving one-dimensional wave 

equation is also briefly discussed. 

  Chapter 3 provides the review of related literatures. The histories of spline 

application on solving differential equation are covered. A survey of analytical and 

numerical methods which has been used for solving one-dimensional wave equation, 

nonlinear Klein-gordon equation and KdV equation are revealed in this chapter. 
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Selected literatures on B-spline collocation method applied to linear and nonlinear 

PDEs are also presented. 

B-spline and trigonometric B-spline collocation method applied to initial-

boundary value problems of nonlinear Klein-Gordon equation and KdV equation are 

discussed in Chapter 4 and 5, respectively. Chapter 6 presents the application of 

hybrid B-spline collocation method to initial-boundary value problems of one-

dimensional wave equation, nonlinear Klein-Gordon equation and KdV equation. For 

comparison purpose, the proposed methods are tested on several problems.  

The stability of the linearized scheme obtained from Chapter 4 to 6 are 

analysed using Von Neumann stability analysis in Chapter 7. The local truncation 

errors of selected schemes are examined in the same chapter. Finally, the conclusions 

on whole of this thesis with the suggestions toward future research are presented in 

Chapter 8.        
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CHAPTER 2 

REVIEW ON BASIS FUNCTIONS 

 

2.1 Introduction 

B-spline function were first formulated in the 1940s but were only seriously 

developed in the 1970s by several researchers (De Boor, 2001). The designation “B” 

stands for Basis so the full name of this function is basis spline. Trigonometric B-

spline functions were introduced by I. J. Schoenberg in 1964 (De Boor, 2001). As 

suggested by the name, the functions were constructed from sine functions instead of 

polynomial functions. 

The B-spline and trigonometric B-spline functions were used extensively in 

Computer Aided Geometric Design (CAGD) as tools to generate curves and 

surfaces. The following sections will discuss the theory to generate the B-spline and 

trigonometric B-spline basis functions. A new basis function called hybrid B-spline 

basis function will be introduced. The theory of hybrid B-spline basis function of 

order four will be developed. At the end of this chapter, a collocation method based 

on B-spline basis function will be described.   

 

2.2 B-spline basis function 

Generally, there are two ways to generate B-spline basis functions. These are by 

divided difference of truncated power function and by recursive formula. Since it is 

most useful for computer implementation, recursive formula is used in this thesis. 

Generally, B-spline basis function of order m satisfies the following properties (De 

Boor, 2001): 

i. Non-negativity 
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 ,m jB x  are positive for all m, j and x 

ii. Local support 

 , 0m jB x   in knot span ,j j mx x 
  and  , 0m jB x   in elsewhere. 

Hence, the function  ,m jB x  is said to have support on interval 

, .j j mx x 
  

iii. Partition of unity 

 ,

0

1
n

m j

j

B x


  for knot span  1 1, , .m nx x 
 

iv. Continuity at join 

 ,m jB x  has continuity 
2mC 
 at each knot .jx  

2mC 
 is the degree of 

derivative for  ,m jB x  at each knot jx  equal to 2.m   

v. Translation invariance 

   , ,0m j m jB x B x x   which is B-spline basis function with same 

order are translated to each other. 

 Initially, the non-decreasing sequence of knot is considered as 

 0 1 1 1, , , , , , ,j j j nx x x x x x   where 1 1j j jx x x    for 0,1, , .j n  The j-th B-

spline basis function of order m (degree 1m ) can be defined recursively as  

      , 1, 1, 1

1 1

j j m

m j m j m j

j m j j m j

x x x x
B x B x B x

x x x x



  

   

 
 

 
            (2.1) 

where B-spline basis function of order 1 is defined as  

  
1

1,

1 ,

0 otherwise

j j

j

x x
B x


   


              (2.2) 

for 2,3,m   and 0,1, , .j n  This recursive formula is known as The Cox-de 

Boor recursion formula (De Boor, 2001). 
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Let us consider the knots as 
0 0,x   1 1x   and 

2 2.x   The basis function of 

order 1,  1,0 1B x   in the knot span  0,1  but  1,0 0B x   elsewhere,  1,1 1B x   in 

the knot span  1,2  but  1,1 0B x   in elsewhere and so on. Each basis function is not 

continuous at the knots. In other words, this basis function has 1C  continuity on the 

knots. Figure 2.1 show the plot of B-spline basis function of order 1. It can be seen 

that the function is a step function. 

In order to generate B-spline basis function of order 2, 2m   is substituted 

into Eq. (2.1) to obtain 

  





1

2, 2 1 2

,

1
,

0 otherwise

j j j

j j j j

x x x x

B x x x x x
h



  

  



  



             (2.3) 

The function,  2,

1
( )j jB x x x

h
   in knot span 1, ,j jx x 

  2, 2

1
( )j jB x x x

h
   in 

knot span 1 2,j jx x 
  and  2, 0jB x   in elsewhere. Figure 2.2 depicts the B-spline 

basis function of order 2. The figure shows that the function is linear. Each of two 

consecutive knots is joined and has 0C  continuity. 

The quadratic b-spline basis function is obtained by substituting 3m   into 

Eq. (2.1). After some simplification, the following basis function of order 3 is 

obtained. 

  







2

1

2 2

1 1 1 2

3, 2 2

3 2 3

( ) ,

2 ( ) 2( ) ,1

2 ( ) ,

0 otherwise

j j j

j j j j

j

j j j

x x x x

h h x x x x x x
B x

h x x x x



   

  

  

     

 
 




            (2.4) 
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Each knot spans contain quadratic polynomial except for 3jx   onward. Figure 2.3 

shows that the three polynomials are joined to each other smoothly. These functions 

have 1C  continuity at the knots. 

 

x j x j 1

x

11

B1, j x

  
Figure 2.1: B-spline basis function of order 1. 

 

x j x j 1 x j 2

x

11

B2, j x

 
Figure 2.2: B-spline basis function of order 2. 
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x j x j 1 x j 2 x j 3

x

0.75

B3, j x

 
Figure 2.3: B-spline basis function of order 3. 

 

The cubic B-spline basis function is generated from Eq. (2.1) by substituting 

4.m   It can be written as 

      

  

      

      

  

3

1

2 3
3 2

1 1 1 1 2

2 3
3 2

4, 3 3 3 3 2 3

3

4 3 4

,

3 3 3 ,

1
3 3 3 ,

6

,

0 otherwise

j j j

j j j j j

j j j j j j

j j j

x x x x

h h x x h x x x x x x

B x h h x x h x x x x x x
h

x x x x



    

    

  

  


      


       

  



   (2.5) 

According to Eq. (2.5), each knot spans have cubic polynomial except for knot 4jx   

onward. Figure 2.4 depicts the B-spline basis function of order 4. Each of the 

polynomial are joined smoothly with derivatives up to second order continuous, 2.C  

 The B-spline basis function of order 5 is also generated from Eq. (2.1). This 

function also called quartic B-spline basis function which is can be written as 
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  

   

   


   

   


   

   


 

4

1

2
4 3 2

1 1

1 23 4

1 1

2
4 3 2

2 2

2 33 4
5, 4

2 2

2
4 3 2

4 4

3 43 4

4 4

4

5

,

4 6
,

4 4

11 12 6
,1

( ) 12 624

4 6
,

4 4

j j j

j j

j j

j j

j j

j j

j
j j

j j

j j

j j

j j

x x x x

h h x x h x x
x x

h x x x x

h h x x h x x
x x

B x h x x x xh

h h x x h x x
x x

h x x x x

x x x



 

 

 

 

 

 

 

 

 

 

 

   


   

   
    

   


   

 4 5,

0 otherwise

jx 


















 



 (2.6) 

 

Eq. (2.6) is a piecewise function constituted by five segments of quartic polynomials. 

The plot of this function is shown in Figure 2.5. All segments are joined to each 

other smoothly with 
3C  continuity at the knots. 

 

x j x j 1 x j 2 x j 3 x j 4

x

0.65

B4, j x

 
Figure 2.4: B-spline basis function of order 4 
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x j x j 1 x j 2 x j 3 x j 4 x j 5

x

0.6

B5, j x

 
Figure 2.5: B-spline basis function of order 5 

 

2.3 Trigonometric B-spline basis function 

Let’s consider a knot vector 0 1 1 1( , , , , , , , )j j j nx x x x x x x  with step size 

1j jh x x   where 1 1j j jx x x    for 0,1, , .j n  Thus, the j-th trigonometric B-

spline basis function of order m (degree 1m ) is defined recursively as (Walz, 1997) 

      , 1, 1, 1

1 1

sin sin
2 2

sin sin
2 2

j j m

m j m j m j

j m j j m j

x x x x

T x T x T x
x x x x



  

   

    
   
    

    
   
   

  (2.7) 

for 2,3,m   where the first order trigonometric B-spline basis function is given as 

  
1

1,

1 ,

0 otherwise

j j

j

x x
T x


   


              (2.8) 

According to previous section, the trigonometric B-spline function of order 1 is a 

step size function. Figure 2.6 shows the function in details.  
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x j x j 1

x

11

T1, j x

 
Figure 2.6: Trigonometric B-spline basis function of order 1 

 

By using similar approach as section 2.2, the following trigonometric B-spline 

basis function of order two to five are obtained: 

i. Second order ( 2)m   

 

  

  

1

2, 2 1 2

1

,

1
( ) ,

0 otherwise

j j j

j j j j

p x x x

T x q x x x




  

 


  



             (2.9) 

ii. Third order ( 3)m   

  

  

        

  

2

1

2 1 3 1 2

3,
2

2
3 2 3

,

,1

,

0 otherwise

j j j

j j j j j j

j

j j j

p x x x

p x q x p x q x x x
T x

q x x x



    

  

 
   
 



          (2.10) 

iii. Fourth order ( 4)m   
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 

  

         

   


         

   


  

3

1

2

2 3 1

1 22

4 1

2
4, 3 4 1 3

3
2 32

4 2

3

4 3 4

,

,

1

,

,

otherwise

j j j

j j j j j

j j

j j

j j j j j j

j j

j j

j j j

p x x x

p x q x p x q x p x
x x

q x p x

T x p x q x q x p x q x
x x

q x p x

q x x x

o





  

 

 

   

 

 

  

 

 
 


  
 


 



      (2.11) 

iv. Fifth order ( 5)m   

 

  

         

         


   

       

           

       

   



   

4

1

3 2

2 3 1

1 22 3

4 1 5 1

2 2

3

4 1 3

2 2

4 2 5 1 3 2 3

5,

4
5 1 4 2

2 2

5 2

3

4

,

,

,1

j j j

j j j j j

j j

j j j j j

j j

j j j j

j j j j j j j j

j

j j j j

j j

j j

p x x x

p x q x p x q x p x
x x

p x q x p x q x p x

p x q x

p x q x p x q x

p x q x p x q x p x q x x x
T x

q x p x q x p x

q x p x

p x q x





  

 

   



  

      

   

 








 



  





      

         


  

2

5 1 4

3 42 3

5 2 4 5 3

4

5 4 5

,

,

0 otherwise

j j j

j j

j j j j j

j j j

q x p x q x
x x

q x p x q x q x p x

q x x x

  

 

    

  


















 
 

 

   (2.12) 

where ( ) sin ,
2

j

j

x x
p x

 
  

 
( ) sin ,

2

j

j

x x
q x

 
  

 
1 sin ,

2

h


 
  

 
 2 sin sin ,

2

h
h

 
  

 
 

 3

3
sin sin sin

2 2

h h
h

   
    

   
 and    4

3
sin sin sin sin 2 .

2 2

h h
h h

   
    

   
 The plots of 

each functions are shown in Figure 2.7 to Figure 2.10 
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x j x j 1 x j 2

x

1

T2, j x

 
Figure 2.7: Trigonometric B-spline basis function of order 2 

 

x j x j 1 x j 2 x j 3

x

0.85

T3, j x

 
Figure 2.8: Trigonometric B-spline basis function of order 3 

 

x j x j 1 x j 2 x j 3 x j 4

x

0.95

T4, j x

 
Figure 2.9: Trigonometric B-spline basis function of order 4 
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x j x j 1 x j 2 x j 3 x j 4 x j 5

x

1.5

T5, j x

 
Figure 2.10: Trigonometric B-spline basis function of order 5 

 

2.4 Hybrid B-spline basis function 

One of the main contributions of this thesis is a new form of basis functions have 

been developed. Functions that combine the B-spline and trigonometric B-spline 

basis functions are called hybrid B-spline basis functions. The m-th order of hybrid 

B-spline basis function is given as 

        , , ,1m j m j m jH x B x T x               (2.13) 

where , ( ),m jB x  B-spline basis function, , ( ),m jT x  trigonometric B-spline basis 

function and 0 1.   The value of   plays an important role in the hybrid B-spline 

basis function. If 0,  the basis function is equal to trigonometric B-spline basis 

function and if 1,   the basis function is equal to B-spline basis function. 

Hybrid B-spline basis function of order 4 is constructed by substituting 4m   

into Eq. (2.13). Thus,  

        4, 4, 4,1j j jH x B x T x               (2.14) 

where 4, ( )jB x  is given in Eq. (2.5) and 4, ( )jT x  is given in Eq. (2.11). Figure 2.11-

2.13 depict the basis functions for different values of .  It can be seen that Figure 
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2.11 with 0.1   is close to Figure 2.9 and Figure 2.13 with 0.9   is close to 

Figure 2.4. In this thesis, fourth and fifth order of hybrid B-spline basis function will 

be used to solve selected partial differential equations.  

  

x j x j 1 x j 2 x j 3 x j 4

x

0.9

B4, j x

 
Figure 2.11: Hybrid B-spline basis function of order 4 with 0.1    

 

x j x j 1 x j 2 x j 3 x j 4

x

0.8

B4, j x

 
Figure 2.12: Hybrid B-spline basis function of order 4 with 0.5    
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x j x j 1 x j 2 x j 3 x j 4

x

0.7

B4, j x

 
Figure 2.13: Hybrid B-spline basis function of order 4 with 0.9    

 

2.5 Collocation method 

In this section, cubic B-spline (CuBS) collocation method is described. The 

following one-dimensional wave equation is considered: 

 0tt xxu u    (2.15) 

with the given initial and boundary conditions 

    1,0 ,u x x  
2( ,0) ( ),tu x x  a x b   

 
1( , ) ( ),u a t t  

2( , ) ( ),u b t t  0 t T   

A uniform mesh with grid points ( , )j kx t  is considered to discretize the grid region 

[ , ] [0, ]a b T   with jx a jh   and kt k t   where 0,1,2, ,j n  and 

0,1,2, , .k N  The value of h and t  denote mesh space size and time step size, 

respectively. An approximation of wave equation by - weighted scheme is given as 

follows (Dağ et al., 2005)  

       
1

1 0
k k k

tt xx xxj j j
u u u 


               (2.16) 
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In order to solve the equation, time derivative term is discretized by central 

difference approach. The value of   is chosen to be 0.5 (Dağ et al., 2005). Hence, 

the following semi implicit scheme is produced  

        
2 1 21 10.5 2 0.5

k kk k k

j xx j xx jj j
u t u u t u u

                 (2.17) 

which is evaluated for 0,1, ,j n  at each time level k. According to the method, an 

approximate solution of this equation is 

      
1

4,

3

,
n

j j

j

u x t C t B x




             (2.18) 

where  jC t  are time dependent unknowns to be determined and 4, ( )jB x  is cubic B-

spline basis function of order 4 given in Eq. (2.5).  

 Due to the local support properties of the basis function, there are only three 

nonzero basis functions included for evaluation at each .jx  Thus, the approximate 

solution, ( , )j ku x t  and the derivatives with respect to x  can be obtained as follows 

            3 4, 3 2 4, 2 1 4, 1

k k k k

j j k j j j k j j j k j ju C t B x C t B x C t B x         

 3 2 1

1 4 1

6 6 6

k k k

j j jC C C  

     
       
     

           (2.19) 

              3 4, 3 2 4, 2 1 4, 1

k k k k

x j k j j j k j j j k j jj
u C t B x C t B x C t B x     

      

 3 1

1 1

2 2

k k

j jC C
h h

 

   
    
   

            (2.20) 

              3 4, 3 2 4, 2 1 4, 1

k k k k

xx j j j j j j j j jj
u C t B x C t B x C t B x     

      

 3 2 12 2 2

1 2 1k k k

j j jC C C
h h h

  

     
       
     

           (2.21) 

for 0,1,j n  (derivation in Appendix A).  
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Initially, time dependent unknown 
0

C  is calculated by using the following initial 

condition and boundary values of the derivatives of the initial condition (Caglar et 

al., 2006; Dağ et al., 2005): 

i.    
0

1x jj
u x   for 0j    

  0 0

3 1 1 0

1 1

2 2
C C x

h h
 

        
   

            (2.22) 

ii.  0

1j ju x  for 0,1,2,...,j n  

  0 0 0

3 2 1 1

1 4 1

6 6 6
j j j jC C C x  

     
       

     
           (2.23) 

iii.    
0

1x jj
u x   for j n  

  0 0

3 1 1

1 1

2 2
n n nC C x

h h
 

        
   

           (2.24) 

This yields a ( 3) ( 3)n n    matrix system, 
0 .AC = B  The solution of the system 

can be obtained by using the Thomas Algorithm. Then, the calculation is continued 

to generate the time dependent unknowns, 
k

C  for 1k   using (2.17) scheme. 

However, the system consists only ( 1)n  linear equations with ( 3)n  unknowns. 

Thus, the boundary conditions are approximated as follows and substituted to the 

system. 

i.  1 1 1

3 2 1 1 1

1 4 1

6 6 6

k k k

kC C C t  

       

ii.  1 1 1

3 2 1 2 1

1 4 1

6 6 6

k k k

n n n kC C C t  

       

This operation produce a    3 3n n    tridiagonal matrix system, 

1 -1 .k k kMC = NC - PC +Q  This system can be solved using the Thomas Algorithm 

repeatedly for 0,1, , .k N  


