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GaP  Gallium phosphide 
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SIFAT-SIFAT OPTIK INFRAMERAH HETEROSTRUKTUR 

SEMIKONDUKTUR WURTZIT DENGAN ORIENTASI HABLUR 

SEMBARANGAN 

 

ABSTRAK 

 

Pergantungan orientasi hablur dengan sifat-sifat optik inframerah (IR) untuk 

semikonduktor heterostruktur wurtzit heksagon dan substrat yang berkaitan telah dikaji. 

Pengukuran spektrum pantulan IR terkutub menunjukkan bahawa tindak balas spektrum 

daripada hablur nilam pukal dan heterostruktur III-nitrida wurtzit yang terdiri daripada 

lapisan-lapisan yang bersatah kristalografi sembarangan adalah bergantung kepada 

orientasi sampel. Kecuali sampel yang mempunyai permukaan berorientasi satah-c, 

spektrum pantulan IR terkutub untuk sampel yang dikaji boleh diubahkan dengan 

memutar sampel pada normal permukaan. Formula pantulan yang mengambil kira kesan 

orientasi hablur telah digunakan bersama dengan langkah penyesuaian lengkung untuk 

menganalisis spektrum yang diukur. Parameter-parameter bahan yang penting seperti 

pemalar dielektrik, mod fonon optik, ketebalan lapisan dan orientasi kristal untuk sampel 

yang dikaji telah ditentukan secara tidak membinasa daripada penyesuaian yang terbaik 

bagi spektrum pantulan IR terkutub eksperimen dan teori. Dengan menggunakan 

parameter yang diperolehi, simulasi untuk spektrum penyebaran polariton fonon 

permukaan dan antara muka (SPhP dan IPhP) telah dijalankan dengan mengambil kira 

kesan-kesan parameter lembapan dan orientasi hablur. Keputusan teori telah 

menunjukkan bahawa tindak balas SPhP dan IPhP untuk sampel yang mempunyai 

permukaan berorientasi satah-a tanpa kutub atau permukaan berorientasi satah-r separa 

kutub adalah bergantung kepada arah. Sifat-sifat resonan bagi mod SPhP dan IPhP yang 

diramalkan sangat bersetuju dengan pengukuran pantulan penuh dikecilkan IR   

terkutub-p. 
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INFRARED OPTICAL PROPERTIES OF WURTZITE SEMICONDUCTOR 

HETEROSTRUCTURE WITH ARBITRARY CRYSTAL ORIENTATIONS 

 

ABSTRACT 

 

Crystal orientation dependence of the infrared (IR) optical properties of 

hexagonal wurtzite III-nitride heterostructures and their relevant substrates was 

investigated. Polarized IR reflectance measurements showed that the spectral responses 

of bulk sapphire crystals and wurtzite III-nitride heterostructures consisting of layers 

with arbitrary crystallographic planes depend on sample orientation. Except for sample 

with c-plane oriented surface, the polarized IR reflectance spectra of a given sample can 

be changed by rotating the sample about its surface normal. A reflection formula that 

considers the effect of crystal orientation was employed with a curve fitting procedure to 

analyze the measured spectra. Important materials parameters such as the dielectric 

constant, optical phonon modes, layer thickness and crystal orientation of the studied 

samples, have been non-destructively determined from the best-fit of experimental and 

theoretical polarized IR reflectance spectra. Using the obtained parameters, simulations 

of the surface and interface phonon polaritons (SPhP and IPhP) dispersion spectra have 

been performed by taking into account the effects of damping parameters and crystal 

orientation. The theoretical results revealed that the SPhP and IPhP responses of samples 

with non-polar a-plane or semi-polar r-plane oriented surfaces are directionally-

dependent. The predicted resonant properties of the SPhP and IPhP modes were in good 

agreement with the p-polarized IR attenuated total reflectance measurements.  
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Motivation 

III-nitride semiconductors, namely, indium nitride (InN), gallium nitride 

(GaN) and aluminium nitride (AlN) have received continuous interest from 

optoelectronics research community. The most attractive features of these solid state 

materials in the area of optoelectronics are their direct bandgaps, i.e., about 0.7 eV 

for InN (Kuyyalil et al., 2012; Matsuoka et al., 2002), 3.4 eV for GaN (Pankove et al., 

1970; Pankove and Schade, 1974) and 6.2 eV for AlN (Yamashita et al., 1979; Yim 

et al., 1973) at room temperature. Making use of the alloy composition dependence 

of bandgap, III-nitride-based alloys hold promise for the development of light 

emitting devices operated in the deep ultraviolet (UV) to near infrared (IR) spectral 

ranges (Davydov et al., 2002; Iliopoulos et al., 2008; Nepal et al., 2005; Wu et al., 

2003a). In 2014, the Nobel Prize for Physics is awarded to Professor Shuji Nakamura, 

Professor Isamu Akasaki and Professor Hiroshi Amano for their invention of 

efficient blue light emitting diode (LED) based on III-nitrides (Heber, 2014). The 

invention of efficient blue LED has paved the way for the generation of bright and 

energy-saving white light sources for illumination (Nakamura et al., 1991; 2000). 

Apart from lighting applications, III-nitrides are versatile materials for the 

production of durable electronic devices, sensors and solar cell. With wide bandgaps, 

strong chemical bonds and thermal stabilities, GaN and AlN possess outstanding 

device performance, which goes beyond the typical semiconductor materials [such as 

silicon (Si) and gallium arsenide (GaAs)] that can handle. It have been demonstrated 
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that transistors and various sensors fabricated based on GaN and AlN can operate at 

high power, high temperature, resist radiation damage and withstand caustic 

environment (Lin et al., 2010; Pearton et al., 2004; Son et al., 2010; Turner et al., 

1994). On the other hand, the narrow bandgap of InN can be adapted to fabricate 

solar cell. The efficiency of a solar cell varies as a function of bandgap. Theoretically, 

the maximum efficiency of a solar cell assuming a single p-n junction is around 

33.7 % with bandgap of 1.34 eV, which is known as Shockley-Queisser limit 

(Shockley and Queisser, 1961). Through fabrication of In-rich InGaN or InAlN 

ternary alloy, efficient solar cell that has better performance than the conventional Si-

based solar cell can be realized (Jani et al., 2007; Wu et al., 2003b; Yamamoto et al., 

2010). Besides, InN is of great scientific interest for terahertz applications due to its 

small electron effective mass, large electron mobility and high peak electron velocity 

(Ascázubi et al., 2004; Hwang et al., 2010).  

III-nitrides can crystallize in three types of structural phases, namely, wurtzite, 

zincblende and rock-salt. Under normal ambient conditions, III-nitrides preferentially 

crystallize in the wurtzite structure. Zincblende III-nitrides are thermodynamically 

metastable. To fabricate zincblende III-nitrides, epitaxial technique with special 

growth conditions and substrate with specific crystal symmetry are required (Daudin 

et al., 1998; Hu et al., 2004; Miyoshi et al., 1992). Formations of III-nitrides in the 

rocksalt structure only occur under high pressure condition. The structural phase 

transition from wurtzite to rock salt structure for InN, AlN and GaN have been 

experimentally observed under high pressure conditions at 12.1GPa, 22.9GPa and 

52.2GPa, respectively (Ueno et al., 1992; 1994). Because of the reproducibility of 

high quality wurtzite III-nitrides, most experimental studies were conducted for 

wurtzite case.  
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Wurtzite III-nitrides belong to the hexagonal crystal system and are 

conventionally grown in polar c-plane orientation. The spontaneous polarization field 

inside the c-plane wurtzite semiconductor is an advantage for certain device 

applications (Li et al., 2001; Shi et al., 2013; Woodward et al., 2012). However, it is 

a drawback for electroluminescent devices. The strong internal polarization field 

gives rise to the quantum confined Stark effect, which reduces the carrier 

recombination transition rate and red-shifts the emission wavelength. This leads to a 

reduction in the efficiency of light emitting devices (Kuokstis et al., 2002; Leroux et 

al., 1998; Miller et al., 1984). There is an upsurge of research on the wurtzite 

semiconductors in non-polar and semi-polar orientations (Huang et al., 2012; 

Kucharski et al., 2012; Paduano et al., 2013). The motivation is that the piezoelectric 

and polarization field strengths are insignificant in non-polar wurtzite 

semiconductors or can be significantly reduced in semi-polar wurtzite 

semiconductors (Farrell et al., 2012; Paskova, 2008), hence overcome the 

disadvantages of polar wurtzite semiconductors in lighting applications. Several 

reports revealed that non-polar and semi-polar wurtzite semiconductors have better 

photoluminescence characteristics than polar wurtzite semiconductors (Aggarwal et 

al., 2010; Bae et al., 2011; Ng, 2002).  

Since the proof of the minimal internal polarization field strength is beneficial 

to lighting applications, numerous works have been done to look for growth methods 

and optimum growth conditions of non-polar wurtzite III-nitride thin films (Moram 

et al., 2009; Okada et al., 2009; Sun et al., 2009; Wu et al., 2008). Nevertheless, the 

properties of non-polar wurtzite III-nitrides are less well understood than those of the 

polar III-nitrides due to the difficulties in obtaining high quality samples. The planar 

anisotropic nature of the growth mode can easily lead to an epitaxial layer with high 
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density of crystalline defects (Ajagunna et al., 2010; Fang et al., 2011; Wang et al., 

2004). Fortunately, with recent advances in crystal growth, high quality non-polar 

wurtzite III-nitrides thin films are reproducible using epitaxy technology such as 

molecular beam epitaxy (MBE) (Ajagunna et al., 2010; Lo et al., 2015) and metal-

organic chemical vapor deposition (MOCVD) (Chiang et al., 2011). The availability 

of high quality samples offers opportunities for reliable experimental characterization 

of the properties of non-polar wurtzite III-nitrides. 

A structure built up with at least two different materials in junction contact is 

known as heterostructure (Agostini and Lamberti, 2011). Integration of III-nitrides 

with other materials into heterostructure is a key step to realize III-nitride-based 

device applications. Despite extensive research on the growth of non-polar wurtzite 

III-nitride thin films, investigations of the effects of crystal orientation on the optical 

properties of wurtzite III-nitride heterostructures, in particular, in IR spectral region, 

are still scant up to date. Many related material researchers, especially for those 

doing fabrication works, are not familiar with the crystal orientation dependence of 

IR optical responses of wurtzite semiconductor heterostructure and the associated 

characterization procedure.  

In semiconductor device fabrication, there are layers that are intentionally 

grown or deposited. Meanwhile, accumulation layers and oxide layers may exist at 

the surface and interfaces. In all these cases, the lattice dynamics as well as the other 

properties related to the surface and interface regions might be altered (Chen et al., 

1990; Kim and Stroscio, 1990; Lassnig and Zawadzki, 1984). A deep understanding 

of optical phonon responses at the surface and interfaces in semiconductor 

heterostructure is thus insightful for the design of optoelectronics devices. Due to the 

dissimilar distribution of polarization charges at the surface and interfaces as 
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compared to the bulk region, the optical properties of the surface and interfaces are 

generally different from the bulk region. The existence of the interfaces in 

semiconductor heterostructure has great impact on some important fundamental 

properties, especially the electron transport and optical phonon properties (Hsu and 

Walukiewicz, 1998; Kim and Stroscio, 1990; Wendler et al., 1990).  

For a multilayer system consisting of layers having negative dielectric 

functions in the IR spectral region, surface and interface phonon polaritons (SPhP 

and IPhP) exist at the surface and interfaces of the system (Agranovich and Mills, 

1982; Albuquerque and Cottam, 2004; Mills and Maradudin, 1973). The SPhP and 

IPhP modes have great potential and adaptability in modern device applications due 

to their abilities in mediating thermal energy transfer and the sensitive resonant 

properties. Through manipulating the properties of the SPhP modes, modern devices 

such as near field surface enhanced spectroscopy (Anderson, 2005; Huber et al., 

2005), high density optical data storage device (Ocelic and Hillenbrand, 2004), 

thermo-photovoltaic energy conversion system (Laroche et al., 2006; 

Narayanaswamy and Chen, 2003; Shen et al., 2009) and antenna sensors (Kim and 

Cheng, 2010) have been designed. Since wurtzite III-nitrides possess negative 

dielectric functions in the IR spectral region, SPhP and IPhP modes exist in its 

heterostructure system. To explore new application possibility of the SPhP and IPhP 

based on wurtzite III-nitrides, a prior understanding of the factors which influence 

the SPhP and IPhP responses of wurtzite III-nitride heterostructures, is thus the 

prerequisite. Nevertheless, there is lack of investigation of the IR absorptions by the 

SPhP and IPhP modes of wurtzite III-nitride heterostructures consisting of layers 

with non-polar and semi-polar planes.  
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To contribute an understanding of the crystal orientation dependence of the 

SPhP and IPhP responses, the SPhP and IPhP characteristics of wurtzite III-nitride 

heterostructures and their relevant substrates with different crystal orientations, will 

be carried out. Information about the layered structures, specifically the crystal 

orientation, layer thickness and the IR dielectric tensor components are the basis for 

the theoretical study of the SPhP and IPhP modes. Therefore, attention is also paid to 

the characterization technique and the associated procedure for the determination of 

the crystal orientation, layer thickness and IR dielectric tensor components of the 

studied samples. Apart from wurtzite III-nitrides, the SPhP and IPhP characteristics 

of a wurtzite c-plane zinc oxide (ZnO) thin film on silicon carbide (6H-SiC) substrate 

are investigated. It is worth to highlight here that the IR optical properties of wurtzite 

ZnO and 6H-SiC are analogous to that of wurtzite III-nitrides. As compared to the 

wurtzite III-nitride samples, however, the wurtzite ZnO sample used in this work 

possesses a simpler layered structure (i.e., the system has a least number of layers 

and the free carriers’ plasma response is negligible), which is convenient for testing 

the theoretical model presented in this dissertation.  

 

1.2 Objectives and scope of work 

This dissertation focuses primarily on the investigations of the IR optical 

properties of wurtzite semiconductor heterostructure with arbitrary crystal orientation. 

Oblique-incidence polarized IR reflectance and attenuated total reflectance (ATR) 

are the main experimental techniques used in this project. The early parts of the 

dissertation are mainly dealing with the theoretical and computational works. First, 

the reflection formula that is applicable to wurtzite semiconductor heterostructure 

with arbitrary crystal orientation was derived. Based on the reflection formula and 
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appropriate dielectric function models for the studied materials, software for 

calculating the reflectivity was developed. The software can be used to simulate the 

polarized IR reflectance and ATR spectra of multilayer system consisting of arbitrary 

oriented hexagonal and/or cubic structured layers.  

The latter works are to apply the simulation software for characterizations of 

wurtzite III-nitride heterostructures with arbitrary crystal orientations. The initial 

work is the determination of material parameters of various samples using the 

polarized IR reflectance measurements. The material parameters deduced include the 

dielectric constant, optical phonon modes, layer thickness and crystal orientation. 

Through some mathematical manipulations on the reflection formula, the dispersion 

spectra of the SPhP and IPhP modes of the studied system can be simulated, hence 

predict the crystal orientation dependence of the SPhP and IPhP responses. The 

ultimate goal is to verify the theoretical predictions of the SPhP and IPhP modes of 

the studied samples with the p-polarized IR ATR measurements.  

 

1.3 Originality of the research 

 For the first time, the SPhP and IPhP responses of wurtzite III-nitride 

heterostructure consisting of layers with non-polar and semi-polar planes are 

reported. Since sapphire crystal is the main substrate for the growth of wurtzite III-

nitride heterostructure, the SPhP responses of sapphire crystals with differently 

oriented surfaces are also investigated. A method has been proposed to calculate the 

SPhP and IPhP dispersion curves/spectra taking into account the effects of crystal 

orientation and damping parameters. The validity of the method has been tested 

experimentally with the p-polarized IR ATR measurements of various samples.  
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 To simulate the polarized IR reflectance and ATR spectra, a reflection 

formula has been derived in the form of 4×4 transfer matrix following Lekner’s 

approaches (Lekner, 1991, 1992, 1994). However, the formula has been rewritten 

into a more concise form so that the formula is numerically stable and efficient for 

computation. Considering the reflection formula for arbitrary oriented hexagonal 

crystal system is not often applied as compared to the conventional reflection 

formula that is specific for polar c-plane orientation (Barker Jr and Ilegems, 1973; 

Cadman and Sadowski, 1978; Dumelow and Tilley, 1993), detailed calculation 

procedure including the numerical tricks are included in this dissertation. Apart from 

that, the polarized IR reflectance responses of bulk-like free standing zincblende 

GaN and zincblende GaN thin films have been investigated for complementary 

information. Additional resonant features, which have not been predicted from 

theory, have been detected in the first derivative of the polarized IR reflectance 

spectra measured at high angles of incidence. 

 

1.4 Organization of the dissertation 

 After a brief introduction in this chapter, various IR spectroscopic techniques 

for material characterization, the highlight of IR reflectance spectroscopy for 

characterization of semiconductors and the history of research on the SPhP and IPhP 

modes of wurtzite semiconductor heterostructures are reviewed in chapter 2. The 

early sections of chapter 3 present the theoretical models for the calculations of 

dielectric tensor components and reflectivity for wurtzite semiconductor 

heterostructure with arbitrary crystal orientation. The end of chapter 3 describes the 

method for the simulation of the SPhP and IPhP dispersion curves/spectra. Chapter 4 

elucidates the details of the samples and measurements used in this work, followed 
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by the details of software implementation and curve fitting algorithm. Chapters 5 and 

6 illustrate the main results of the dissertation. For clarity of discussion, the early 

section of chapter 5 presents the polarized IR reflectance studies of the samples with 

zincblende structure. After that, the discussions are directed to the polarized IR 

reflectance studies of wurtzite semiconductor heterostructures and their relevant 

substrates consisting of layers with arbitrary crystallographic planes. In chapter 6, the 

orientation dependence of the SPhP and IPhP responses of wurtzite semiconductor 

heterostructures and their relevant substrates are presented. Finally, chapter 7 

summarizes the important findings of this dissertation and suggests a few possible 

directions for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 Prior to the fabrication of semiconductor devices, a number of measuring 

tools are usually required to characterize the fundamental properties of raw materials 

to ensure a consistently high quality product. For examples, scanning electron 

microscope is used to investigate the surface morphology and to measure the 

individual layer thickness of semiconductor heterostructures. Secondary ion mass 

spectrometry, Hall-effect and capacitance-voltage probes are used to determine the 

electrical properties of semiconductor layers. However, these techniques cannot be 

flexibly applied in certain cases such as the manufacturing process monitoring due to 

the contamination or damage to the sample. To avoid the contamination or damage to 

the sample, complementary optical techniques such as Raman scattering, UV-visible 

and IR spectroscopies have been applied widely for non-destructive characterization 

of semiconductors. 

 The emphasis of this dissertation is on the case studies of IR spectroscopy for 

characterization of IR optical parameters, SPhP and IPhP responses of wurtzite 

semiconductor heterostructure with arbitrary crystal orientation. To exemplify the 

importance of the research topic and to ease the discussions in the latter chapters, this 

chapter briefly describes the common IR spectroscopic techniques, followed by the 

highlight of IR reflectance spectroscopy for characterization of semiconductors. 

Subsequently, the fundamentals, history and relevant studies of the SPhP and IPhP 

characteristics of wurtzite semiconductor heterostructures are reviewed.  
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2.2 IR spectroscopic techniques for material characterization  

When a light wave interacts with a material, the incident light can be 

reflected at the surface, the light passing through the surface can be scattered or 

absorbed while the remaining light which leaves the material is the transmitted light. 

The wave theory of light is established when Maxwell developed his theory of 

electromagnetic (EM) radiation and showed that light that is perceived by human 

eyes (i.e., visible light) was only a small portion of EM spectrum (Tilley, 2010). EM 

spectrum categorizes EM radiations by wavelength into radio wave, microwave, 

terahertz, IR, visible, UV, X-rays and gamma rays, as illustrated in Figure 2.1. 

Spectroscopy is a tool that is developed based on interaction between EM radiation 

and matter. The term “spectroscopy” refers to the measurement of radiation 

responses of a material as a function of wavelength, energy, frequency or 

wavenumber (Band, 2006).  

 

 

Fig. 2.1: The EM spectrum. The EM radiation that is perceived by human eyes is 
called visible light, occupies wavelength region from 400700 nm.  
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A spectroscopy that deals with the IR radiation is known as IR spectroscopy. 

The spectrum measured by IR spectroscopy is represented by a plot of IR intensity 

versus wavenumber scale (cm-1), where the wavenumber is directly proportional to 

the frequency and energy. IR spectrum can be further divided into far-, mid- and 

near-IR sub-regions, corresponding to the wavenumber regions of 10400 cm-1, 

4004000 cm-1 and 400014000 cm-1, respectively. The far-IR region provides 

information about the vibrations of molecules containing heavy atoms, molecular 

skeleton vibrations, molecular torsions and crystal lattice vibrations. The mid-IR 

region provides information about the fundamental vibrations and associated with the 

rotational-vibrational structure whereas, the near-IR region provides information 

about the excitation of overtone or harmonic vibration (Sun, 2009). Because different 

compounds have different combination of atoms and associated with unique 

vibration frequencies, IR spectrum can be exploited to deduce sample identity.  

The development of IR spectroscopic techniques lies on the basis of 

transmission and reflection phenomena. Transmittance spectroscopy is the oldest and 

simplest method. When a light wave propagates across a finite length absorbing 

medium, one may be interested in the portion of light that is either be absorbed or 

passes through the medium. The transmittance refers to the relative amount of the 

light that passes through the medium, whereas the absorbance refers to the amount of 

light dissipated in the medium (Tkachenko, 2006). Although operation of 

transmittance spectroscopy is simple, however, the user often needs to prepare the 

sample into the forms of pellet, mull, film, etc. before the transmittance measurement 

can be made. The sample preparation for transmittance spectroscopy requires 

expertise and is time consuming (Griffiths and De Haseth, 2007; Smith, 2011). To 

investigate the sample that is difficult to analyze by the transmittance technique, 
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reflectance spectroscopy is a preferential option. The reflectance refers to the fraction 

of light that is reflected from the surface of the sample. Reflectance spectroscopy can 

be further classified into two types, namely, external reflectance and internal 

reflectance measurements. In external reflectance measurement, the medium of 

incidence is a vacuum. If the light beam is reflected from a smooth surface, the 

reflection is said to be specular and the angle of reflectance equals to the angle of 

incidence. If the surface is rough, reflection occurs in random direction so-called 

diffuse reflection. In internal reflectance measurement (also known as ATR), the 

medium of incidence is a prism. Total internal reflection phenomenon occurs when 

the angle of incidence at the interface between the sample and prism is greater than 

the critical angle (Griffiths and De Haseth, 2007; Kortüm, 2012; Otto, 1975). Apart 

from the transmittance and reflectance techniques, ellipsometry is another popular 

setup of IR spectroscopy. Ellipsometry measures the change in polarization as light 

reflects or transmits from a material structure, where the change in polarization is 

quantified by the amplitude ratio and the phase difference (Tompkins and Irene, 

2005).  

In principle, the selection of which spectroscopic techniques for sample 

characterization depends on the nature of the sample and the kind of information 

demanded by the user. Specifically, this project utilized the specular reflectance and 

ATR techniques for sample characterization. Ellipsometry and transmittance cases 

are outside the scope of this dissertation. 
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2.3 Relation between IR dielectric function and IR reflectance spectrum of 

semiconductors 

To comprehensively understand the physical properties of a material on the 

theoretical basis of solid state physics, one may calculate the band structure of the 

material. The theory of band structure such as density functional theory has been 

frequently employed to explain the electronic, magnetic and optical properties of 

semiconductor materials. Useful information such as electrical conductivity, 

resistivity, vibrational modes, optical absorption, etc. can be predicted theoretically 

(Adachi, 2012; Persson et al., 2001; Vogel et al., 1997). On the other hand, to 

understanding the physical properties of a material experimentally, it is useful to 

apply spectroscopic techniques making use of the light interaction with material, 

which is the focus in this dissertation.  

For any spectral region including the IR, the reflectance of a non-magnetic 

semiconductor is related to its dielectric constant (or the refractive index). The 

dielectric constant varies as a function of frequency, so called dielectric function. 

Numerically, the reflectance is an absolute value, whereas the dielectric functionis a 

complex value that consists of imaginary part [i.e.,  = ' + i'', where  is 

wavenumber]. Investigation of the dielectric function is meaningful because the 

dielectric function is closely related to many fundamental properties such as 

electronic and optical properties. However, the reflectance measurement does not 

directly give user information about the dielectric function. A mathematical analysis, 

called Kramers-Kronig (KK) relations can be complementary applied to extract both 

' and '' from the measured reflectance spectrum (Berreman, 1967; Grosse and 

Offermann, 1991; Hopfe et al., 1992; Lucarini, 2005; Querry and Holland, 1974). 
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Using the KK relations, the reflectance coefficient as a function of , which is a 

complex value, can be retrieved, as shown in Eqs. (2.1)–(2.2) (Berreman, 1967): 
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where R() is the measured reflectance and () is the phase function. Once r is 

obtained, ' and ''can be simply derived from the formula of the reflectance 

coefficient for the system of study. For a normal-incidence reflectance measurement 

on a simple cubic crystal, ' and ''can be calculated using (Lekner, 1987):  
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Despite the exceptional ability of KK relations, ' and ''deduced from 

the KK relations may suffer from numerical errors if the numerical procedure of KK 

relations is not implemented properly. Besides, application of KK relations on the 

studies of anisotropic crystals such as the wurtzite crystal is problematic. This is 

because more than one set of dielectric tensor components [i.e., more than one set of 

' and ''] may be involved in the formula of the reflectance coefficients for 

anisotropic crystals, leading to undeterminable parameters (Berreman, 1972; Lekner, 

1991). Instead of using the KK relations, one can obtain ' and '' using the 

standard model of dielectric function derived theoretically. Given that the dielectric 

function of the sample is known, the theoretical reflectance spectrum can be 

simulated. The best fit of experimental and theoretical spectra with acceptable 
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tolerance level gives reliable ' and ''. Moreover, material parameters involved 

in the calculation of the dielectric function can be simultaneously determined. 

To analyze the IR reflectance spectrum of semiconductor, several handy 

dielectric function models have been developed since a few decades ago. Examples 

of well-known IR dielectric function models include Drude model (Bustarret et al., 

1992), classical harmonic oscillator model (Born, 1959; Kroon, 2007), four-

parameter semi-quantum model, which is also known as Gervais’s oscillator model 

(Gervais and Piriou, 1974) and Kukharskii’s model (Kukharskii, 1973). The 

mathematical descriptions of the mentioned dielectric function models will be 

discussed in Chapter 3. Attribute to the practicality of these established models, 

valuable information such as the free carrier concentration, mobility, optical phonon 

frequencies and crystalline quality of semiconductor can be quantitatively deduced 

from the IR reflectance measurement (Dumelow et al., 1993; Lee et al., 2011b; 

Misiewicz et al., 1994; Mutschke et al., 1999; Narita et al., 2004). The capability of 

IR reflectance spectroscopy to determine materials properties makes it holds promise 

for characterization of semiconductors up till now.  

 

2.4 Surface and interface phonon polaritons (SPhP and IPhP) phenomena 

A material having a negative dielectric function is known as a surface-active 

medium, which supports the surface mode when it attaches with a surface-inactive 

medium having a positive dielectric function. SPhP is one type of surface modes 

resulted from the coupling of IR photon under the p-polarization [transverse 

magnetic (TM)] field with the phonon localized near the surface of a surface-active 

medium. The SPhP mode travels along a direction perpendicular to the surface 

normal and its amplitude attenuates exponentially from the surface to bulk 
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(Albuquerque and Cottam, 2004; Cottam and Tilley, 1989). In a multilayer system 

consists of surface-active media, polarization charges exist at both the surface and 

interfaces. The dissimilar restoring forces of atoms and dissimilar lattice vibrations at 

the heterointerfaces lead to the existence of both the SPhP and IPhP modes 

(Agranovich and Mills, 1982; Mills and Maradudin, 1973).  

In implementing process of relevant application based on the SPhP or IPhP 

mode, understanding the elementary factors that significantly influence the SPhP and 

IPhP modes would be an advantage. Generally, the SPhP and IPhP characteristics of 

a semiconductor heterostructure can be predicted by simulating the SPhP and IPhP 

dispersion curves using the corresponding dispersion relation (Borstel and Falge, 

1977; Dumelow et al., 1993; Lee et al., 2011a; Mills and Maradudin, 1973). The 

dispersion relation of the SPhP and IPhP modes in a system with a given number of 

thin layers can be deduced from the boundary problems of Maxwell’s EM wave 

equations. Formal derivation principle of the dispersion relation of the SPhP and 

IPhP modes can be referred to works done by Mills and Maradudin (1973), 

Dumelow et al. (1993), Hamilton et al. (1996) and Lee et al (2011a). 

For a two-layer system, the dispersion relation of the SPhP mode can 

conveniently be derived in a form in which the wavevector component along the 

interface is explicitly expressed as a function of frequency. For example, the 

dispersion relation of the SPhP mode for a two-layer system, where the layers are 

treated to be isotropic, can be expressed as (Borstel and Falge, 1977): 

 

 
21

212




xK ,  (2.4)
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where Kx is the wavevector of the SPhP travels along the x-direction. The symbol  

represents the dielectric function and the associated subscript represents the layer 

sequence of the attached media.  

 For a multilayer system in which the total number of layers is greater than 

two, however, it is impossible to derive the dispersion relation in an explicit form. 

Therefore, the dispersion relation of the SPhP and IPhP modes for multilayer system 

is restricted to an implicit form (Bah et al., 1995; Mills and Maradudin, 1973; 

Nakayama et al., 1988; Ng et al., 2009b). An example of the dispersion relation of 

the SPhP and IPhP modes for a three-layer system, where the layers are treated to be 

isotropic, is given by (Lee et al., 2011b): 

 

0)2exp())(())(( 12231201122312011  d , (2.5)
 

where l-1 [Kx
2  l(2)2]1/2 and l = 1, 2, or 3. From Eq. (2.5), it is clear that the 

implicit dispersion relation of the SPhP and IPhP modes for multilayer system is a 

transcendental equation, which cannot be solved algebraically. However, solutions of 

implicit equation, defined within a specified tolerance level, can be evaluated 

numerically by means of standard numerical root finding procedure.  

 To reduce the complexity in root finding for implicit equation and to obtain 

the numerical solutions in the lossless limit, an ideal assumption, namely zero 

damping, is usually taken (Borstel and Falge, 1977; Dumelow et al., 1990a; Lee et al., 

2011d; Marschall and Fischer, 1972; Nakayama et al., 1988). Nevertheless, under 

certain circumstance, this ideal assumption will result in loss of information in the 

SPhP and IPhP dispersion curves, hence restricts the prediction of the SPhP and IPhP 

responses of the studied material (Lee et al., 2011b; Ng et al., 2012). Moreover, the 

ignorance of damping parameters is expected to induce a discrepancy between the 
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experimental and theoretical results. Consequently, one subject of interest in this 

dissertation is to propose a method to calculate the SPhP and IPhP dispersion curves 

taking into account the effects of damping parameters. The method is described in 

Chapter 3.  

   

2.5 Overview of research on the SPhP and IPhP modes 

Studies of the SPhP and IPhP phenomena have been started since a few 

decades ago. Early investigations of the SPhP and IPhP phenomena were mostly 

conducted on the cubic crystal system. For instances, Marschall and Fischer (1972) 

studied the SPhP mode in gallium phosphide (GaP) crystal. Bryksin et al. (1972; 

1974) studied the SPhP modes in calcium fluoride (CaF2), cadmium fluoride (CdF2) 

and several alkali halide crystals. Watanabe et al. (1983) investigated the SPhP mode 

in zinc telluride (ZnTe) slab. Nakayama et al. (1988; 1990) investigated the SPhP 

and IPhP modes in GaAs/aluminium arsenide (AlAs) heterostructure on GaAs 

substrate. Investigations of the SPhP and IPhP modes have also been done on more 

sophisticated systems such as GaAs/AlAs superlattices (Dumelow et al., 1990b), 

gratings of GaP thin slabs (Watanabe et al., 1989) and GaAs/AlGaAs multiple 

quantum well structure (El-Gohary et al., 1989).  

Latterly, investigations of the SPhP and IPhP modes were mostly conducted 

on the hexagonal crystal system, specifically the wurtzite crystal. The SPhP and IPhP 

modes in the hexagonal crystal system may reveal distinct behaviours as compared to 

the cubic crystal system. For instance, the virtual SPhP mode may exists in the 

hexagonal crystal, however, the virtual SPhP mode is always absent in the cubic 

crystal (Falge and Otto, 1973; Hartstein et al., 1973). Considerable efforts have been 

done to elucidate the SPhP and IPhP characteristics of ZnO, III-nitrides and their 



20 

 

alloy systems. For instances, Kuroda et al. (2005) studied the SPhP and IPhP modes 

in wurtzite GaN thin film on sapphire substrate. Zhang and Shi (2009) studied the 

SPhP and IPhP modes in AlGaN thin film. Valcheva et al. (2009) investigated the 

SPhP and IPhP modes in InN/AlN heterostructure on sapphire substrate. A number 

of investigations have been carried out by the research group of Ng et al. on the SPhP 

and IPhP modes in ZnO and III-nitride-based semiconductor systems (Lee et al., 

2011a; 2011b; 2011c; 2011d; Ng et al., 2007; 2008, 2009a; 2010a; 2010b). 

Up-to-date, the research trend of the SPhP and IPhP modes is directed toward 

the exploitation of the SPhP and IPhP characteristics of advanced materials and 

structures, new characterization technique of the SPhP and IPhP modes and novel 

device applications based on the SPhP and IPhP modes. For instances, Yan and Bao  

(2014) theoretically investigated the quasi-one-dimensional rectangular quantum 

well wire systems consisting of ternary mixed crystals. Kazantsev and Ryssel (2013) 

demonstrated the mapping of SPhP resonance of a SiC crystal in mid-IR region using 

apertureless scanning near-field microscope. Dai et al. (2014) applied the IR nano-

imaging technique to investigate the properties of SPhP mode in an atomically thin 

van der Waals crystal, hexagonal boron nitride (BN). Competitive efforts have been 

done to adapt the resonant behaviour of the SPhP and IPhP modes for near-field 

radiative heat transfer applications (Biehs et al., 2013; Francoeur et al., 2011; 

Messina and Ben-Abdallah, 2013).  

Despite numerous works have been carried out to comprehend the 

fundamentals and to exploit potential applications of the SPhP and IPhP modes, there 

is lack of investigation of the SPhP and IPhP modes in wurtzite semiconductor 

heterostructures consisting of layers with non-polar and semi-polar planes. Previous 

investigations of the SPhP and IPhP modes in wurtzite semiconductors were almost 
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conducted on non-polar c-plane samples in which the effect of crystal orientation is 

trivial (Lee et al., 2011b; Ng et al., 2009b; Torii et al., 2000; Valcheva et al., 2009; 

Zhang and Shi, 2009). In fact, for a material that does not crystallizes in a cubic 

structure, the dielectric function strongly depends on the crystal orientation 

(Bickermann et al., 2005; Engelbrecht and Helbig, 1993; Kazan et al., 2009; Lekner, 

1991). In view of the dielectric function is the key parameter to determine the SPhP 

and IPhP modes, the SPhP and IPhP modes in non-cubic crystal system should 

undergo changes as crystal orientation varies. To gain an insight into the effects of 

crystal orientation on the SPhP and IPhP modes, in-depth investigations of the SPhP 

and IPhP responses of wurtzite III-nitride heterostructures and their relevant 

substrates with different crystal orientations, are therefore highly demanded. 

 

2.6 Summary 

In brief, the descriptions of common IR spectroscopic techniques, the 

capability of IR reflectance spectroscopy for characterization of semiconductors, and 

the fundamentals of the SPhP and IPhP phenomena have been reviewed. The history 

and important issues arose in previous studies as well as the current trend of research 

on the SPhP and IPhP modes have also been discussed. Throughout this chapter, a 

general impression of the role of research in the SPhP and IPhP modes has been 

illustrated.  
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CHAPTER 3 

 THEORETICAL MODEL 

 

 

3.1 Introduction 

 In this chapter, the theoretical models used for the simulation of oblique 

incidence polarized IR reflectance and ATR spectra of multilayer system consisting 

of arbitrary oriented hexagonal and/or cubic structured layers is introduced. To have 

a clear depiction of the theory of reflection, the step-by-step derivation principle of 

the reflection formula is discussed. Subsequently, method for the simulation of the 

SPhP and IPhP dispersion curves/spectra taking into account the effects of damping 

and crystal orientation is presented. To realize all these simulations, the initial 

approach is to calculate the dielectric tensor components of the studied samples, as 

described in the latter section.  

 

3.2 IR dielectric function models for semiconductor 

This section presents the conventional IR dielectric function models used for 

describing the IR optical properties of semiconductors. For a doped semiconductor 

with no IR-active vibrational mode or noble metal, the IR dielectric function can be 

simply described by the Drude model (Ordal et al., 1983):   
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where ∞ is the high-frequency dielectric constant, po is the wavenumber of plasma 

mode (also known as the plasmon) and p is the plasma damping constant. 

Occasionally, a similar but slightly different form of the Drude model can be found 

in the literature (Cleary et al., 2010; Peter and Cardona, 2010):  
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Numerically, po in Eq. (3.1) is different as compared to that of p in Eq. (3.2). The 

relationship between po and p is given by p
2  po

2/∞. However, same name (i.e., 

plasma mode) is conventionally used to define both po and p, therefore, additional 

care must be taken in this regard. In particular, the equations used by po and p for 

the estimation of carrier concentration n, are different. For Eq. (3.1), po is related to 

n using (Ordal et al., 1983): 

 

*
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ne  , (3.3)

 

where e is the electron charge and m* is the electron effective mass (i.e., m* = 

effective mass ratio × me) and me is the electron mass. The permittivity of free space 

o is equivalent to 1/4 in Gaussian unit. Combining Eq. (3.3) with the expressions 

p
2  po

2/∞ and o = 1/4 gives the relation between p and n (Peter and Cardona, 

2010): 
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For an undoped semiconductor or insulator, the IR dielectric function can be 

described by a classical damped harmonic oscillator model (Born, 1959): 
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whereTO is the wavenumber of the TO phonon mode,TO is the TO phonon 

damping constant, and  is the dipole strength. G and g are the total number of 

vibrational modes and the index corresponding to a specific vibrational mode, 

respectively. The classical damped harmonic oscillator model assumes that the decay 

mechanism of each LO phonon is tied to that of TO phonon. Gervais and Pirious 

(1973) have rewritten the oscillator model into a factorized form, named as the four-

parameter semi-quantum model (also known as Gervais’s oscillator model). The 

Gervais’s oscillator model assumes that the TO and LO phonon damping constants 

are independent of each other, as given by (Gervais and Piriou, 1974):  
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whereLO is the wavenumber of the LO phonon mode andLO is the LO phonon 

damping constant. Eq. (3.6) is applied with a constraint equation, namely, Lowndes’s 

condition 0)( TOLO  g

G

g
g   to keep the physical meaning of () so that the 

extinction coefficient is always positive [i.e., ''() > 0] (Schubert, 2004).  

 For a doped semiconductor with IR-active vibrational modes, the IR 

dielectric function is simply a combination of the oscillator model and the Drude 

model that is (Dumelow et al., 1993):  
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