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KAEDAH BERASASKAN PEMBAHAGIAN UNTUK
PENDAFTARAN SET TITIK BESAR

ABSTRAK

Pendaftaran set titik adalah satu langkah penting untuk mengukur persamaan an-

tara dua set titik dan digunakan secara meluas dalam penglihatan komputer, grafik

komputer, analisis imej perubatan, dan sebagainya. Peralatan semasa mampu menye-

diakan data dengan butiran terperinci sebagai set titik besar. Walau bagaimanapun,

prestasi kaedah pendaftaran konvensional menurun secara mendadak apabila saiz set

titik meningkat. Dalam tesis ini, tiga kaedah pendaftaran set titik terkenal dan antara

yang mempunyai prestasi terbaik dipertimbangkan untuk mengkaji pengubahan kae-

dah konvensional kepada kaedah yang menangani pendaftaran set titik besar dengan

cekap. Kaedah-kaedah tersebut adalah Lelaran Titik Terdekat (ICP), Peralihan Titik

Bersambung (CPD) dan Model Campuran Gaussian berasaskan Plat-nipis Splin. Per-

tama, dicadangkan kaedah ICP subset berasaskan pembahagian alir-terus untuk pen-

daftaran tegar set titik besar. Daripada mengenakan pendaftaran kepada set titik penuh

seperti ICP asal, kaedah ini mendapatkan semula putaran dan translasi antara set titik

penuh dengan hanya menggunakan penghubung di antara sepasang subset. Kaedah ini

melelar menerusi semua pasangan subset sehingga penumpuan dicapai. Kedua, pem-

bahagian alir-terus digabungkan dengan kaedah CPD untuk pendaftaran bukan-tegar

set titik besar bagi mendapatkan anjakan bukan-linear di antara setiap pasangan titik

dalam kalangan dua set. Tidak seperti ICP subset, kaedah ini memanjangkan sedi-
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kit setiap subset kepada subset jiran untuk penggelintaran titik penghubung mantap.

Hasil pendaftaran bagi semua pasangan subset digabungkan secara terus. Gelintar-

an heuristik untuk menala parameter lebar kernel Gaussian dalam kaedah CPD asal

juga dicadangan, iaitu S-CPD-B. Akhir sekali, bi-GMM-TPS dicadangkan sebagai ka-

edah berasaskan dua-tahap untuk pendaftaran bukan-tegar set titik besar. Kaedah ini

menggunakan skim pengelompokan untuk mendapatkan kelompok dan mendaftarkan

pusat kelompok menggunakan GMM-TPS bagi menjajarkan secara kasar kedua-dua

set titik penuh. Kaedah ini kemudiannya mendaftarkan secara halus semua pasangan

kelompok menggunakan kaedah GMM-TPS sekali lagi. Eksperimen dijalankan seca-

ra meluas untuk mengesahkan keberkesanan kaedah yang dicadang menggunakan set

data yang tersedia kepada orang ramai termasuk set data titik yang sangat besar da-

ri pangkalan data USF. Keputusan eksperimen menunjukkan bahawa algoritma yang

dicadangkan mampu mengurangkan kos pengiraan serta mengekalkan ralat pendaf-

taran setanding dengan kaedah asal. Secara konsep tiga kaedah khusus pendaftaran

berasaskan pembahagian dirumus sebagai satu kerangka pendaftaran berbilang tahap

untuk menangani pendaftaran bukan-tegar set titik besar.
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DIVISION-BASED METHODS FOR LARGE POINT
SETS REGISTRATION

ABSTRACT

Point sets registration is a key step for measuring the similarity between two point

sets and widely used in various fields such as computer vision, computer graphics,

medical image analysis, to name a few. The current devices can capture data with

great details as large point set. However, conventional registration methods slow down

dramatically as the size of the point set increased. In this thesis, three well-known

and among-best-performance point sets registration methods incorporating division

schemes are considered to study transforming conventional methods to efficiently deal

with large point sets registration. These methods are Iterative Closest Point (ICP),

Coherent Point Drift (CPD), and Gaussian mixture models based on thin-plate splines

(GMM-TPS). Firstly, a subset-ICP method is proposed based on streaming division

for rigid registration of large point sets. Instead of applying registration on the full

point set as the original ICP does, it recovers the rotation and translation using only the

correspondence between the pair of subsets. It iterates through all subset pairs until

convergent. Secondly, streaming division is incorporated to CPD-B method for non-

rigid registration of large point sets to recover the nonlinear displacement between

each point pairs among the two sets. Unlike the subset-ICP, it extends each subset

marginally to its neighbouring subset for robust point correspondence searching. The

registration results of all subset pairs are directly merged. A heuristic search is also pro-
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posed to tune the width parameter of the Gaussian kernel in the original CPD method,

namely S-CPD-B. Finally, bi-GMM-TPS is proposed as a two stage-based method for

large non-rigid point set registration. It employs a clustering scheme to obtain clus-

ters and registers the clusters’ centres using GMM-TPS to coarsely align the two full

point sets. It then finely registers all cluster pairs using GMM-TPS again. Exten-

sive experiments were conducted to validate the efficiency of the proposed methods on

the publicly available datasets including very large point set from USF database. The

experimental results demonstrated that the proposed methods are able to reduce the

computational cost as well as maintaining registration errors at comparable level with

the original methods. Three specific division-based registration methods are concep-

tually summarised as a division-based multi-stage registration framework for handling

large non-rigid point sets registration.
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CHAPTER 1

INTRODUCTION

1.1 Background

Over the years, image registration has played a crucial role in a wide range of image

applications such as image segmentation, object detection, 3D image reconstruction,

and image fusion, to name a few. Image registration involves determining a geomet-

rical transformation that maps each pixel of one image to its appropriate position on

another image (Ma, 2014). The many registration approaches for 2D image are de-

pendent mainly on either the intensity (i.e., texture information), or the features, called

intensity-based or feature-based methods. The former recovers a transformation be-

tween two images by taking full advantage of pixel values taken from the region of

interest. Features or point signature (Tam et al., 2013) construct a highly concise and

efficient representation of an image. Pin image (Johnson and Hebert, 1999), Gaussian

curvature (Gal and Cohen-Or, 2006), shape context (Belongie et al., 2002; Battiato

et al., 2012) and integral descriptor (Pottmann et al., 2009), for example, are often used

to describe 2D images. Feature-based registration methods are typically insensitive to

noise and invariant to illumination and rotation while reducing computational com-

plexity (Szeptycki et al., 2009; Ma, 2014). In general, feature-based image registration

methods reliably accommodate registration performance better than intensity-based

methods. Among all features, points (or locations in a Cartesian coordinate system)

are the most notable feature, and are also quite easily obtained (Hasanbelliu et al.,

2011; Ma et al., 2013). Points also serve as the basis of other advanced features, such
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as curve and surface features, which are yielded by incorporating point coordinates

with additional information (Ma, 2014).

A 3D surface is a collection of points or vertices that represents the shape of an

object or scene. Surface reconstruction incorporates multiple partial surfaces captured

from different directions to form the complete surface of the object (Tam et al., 2013).

In this sense, surface registration involves moving multiple data sets into the same

coordinate system and aligning the overlapping components (refer to the corresponding

points) so as to concatenate them.

Whether 2D image registration or 3D surface registration, the main goal of regis-

tration is to find an optimal spatial mapping that transforms one data set onto another

data set to make them comparable, or to merge all possible information together. The

nature of registration is that a point cloud is moved from a space into another space

while maintaining the inherent properties, topological structure, and texture informa-

tion of the original. Hence, point sets registration that only considers coordinate val-

ues is highly challenging, and requires careful and extensive design for application in

computer vision, medical image processing, and machine learning fields. To this ef-

fect, point sets registration has attracted considerable attention from researchers and

developers in recent years.

1.1.1 Point Sets Registration

Point sets, either 2D or 3D, are usually cropped from an object possibly with dif-

ferent viewpoints or with one point set which is a warped (transformed) version of

another set, where each point represents a Cartesian coordination in Euclidean space.
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An example is displayed in Figure 1.1(a). The registration of two point sets requires

determining meaningful correspondences between two point sets or recovering the un-

derlying transformation that can map one set onto another to make them match each

other as closely as possible (Chui and Rangarajan, 2003; Myronenko and Song, 2010).

Point sets registration makes good use of the spatial locations of an object while ne-

glecting its topological structure and texture information. Naturally, correspondences

and transformation are the two core components of registration (Sandhu et al., 2010;

Hasanbelliu et al., 2011).

In the context of registration, correspondences refer to the points with the max-

imum similarity (Domokos et al., 2012; Kim et al., 2013; Battiato et al., 2012) be-

tween two point sets. The similarity is measured by either the closest distance (Besl

and McKay, 1992; Ezra et al., 2008; Yang et al., 2013) or features of point such

as correlation coefficient (Tsin and Kanade, 2004; Nandakumar and Jain, 2004), en-

tropy (Warfield et al., 2001), curvature (Szeptycki et al., 2009; Zeng and Gu, 2011),

moment (James, 2007), to name a few. Three established correspondences among two

images of fish are illustrated in Figure 1.1(b).

Geometrical transformations (motions, mappings) map a point from one space to

another space. They are typically classified as either rigid or non-rigid transformations.

Rigid transformations do no alter the size and shape of an object, on the contrary, non-

rigid transformations do change the object’s size or shape (Galarza et al., 2007; Bot-

tema, 2008). Further details regarding transformations are presented in Appendix A.

Similarly, registration can be classified as rigid or non-rigid that are also denoted as

linear (global) or non-linear (deformable) registration. The term "deformable" refers
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(a) (b)

Figure 1.1: Point sets registration, (a) two fish sets to be registered; (b) three of the
correspondences between the two fish sets.

to the observed objects are associated through non-linear dense transformation or a

spatially varying deformation model (Sotiras et al., 2013). Rigid registration is rela-

tively simple owing to only three degrees of freedom (DOF) for 2D data and six DOF

for 3D data to be determined (Bellekens et al., 2014). Non-rigid registration is more

challenging due to more complicated registration model, more unknown parameters of

non-rigid motion than rigid motion, and the topological ambiguity of the data (such as

misaligned data, noisy data or outliers), among other issues.

Many previous researchers have designed and tested point sets registration algo-

rithms in an effort to obtain satisfying solutions for non-rigid registration problems,

which are a common requirement in computer vision and medical image analysis

fields. Section 2.4 of Chapter 2 provides a comprehensive literature review about them.

Without loss of generality, most registration methods consist of the following steps: 1)

modeling two point sets; 2) establishing the correspondences; 3) estimating the spa-

tial transformation; 4) optimization techniques; and 5) refining iteratively. A general

registration procedure is shown in Figure 1.2.

4



 

 

             
          

 

 

              

                                                                    
 

 

 

 

 

 

 

 

 

 

 

 

 

Yes 

Convergence 

Optimal transformation ; 

The transformed S’ 

 
 

Refining 

No 

Measure similarity 

Transformation  

 

Correspondences 
 

Point set S 

Point set G  

Figure 1.2: Steps involved in point sets registration.
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Point matching, point set registration, and point alignment frequently appear in the

related literatures. On the one hand, one considers alignment as the initially coarse

operation that moves two point sets into a standard reference system to make them

possible overlapping, while registration is the fine operation to obtain more accurate

results (Rouhani and Sappa, 2013). For instance, a doctor may want to know whether

a tumor has changed or not according to two images obtained at different time or

modalities. It is much easier for the doctor to find any change when the two images

are aligned well. On the other hand, there is no distinct difference between point

matching and point set registration as stated in (Sandhu et al., 2010) and (Hasanbelliu

et al., 2011). Hence, registration is also called matching and the two terms are fully

interchangeable (Fischer and Modersitzki, 2008; Chui and Rangarajan, 2000b; Lian

and Zhang, 2014).

1.2 Motivations and Problem Statement

Large point set processing has become popular in many real-world applications. There

are two primary reasons for this: one, that the size of point sets has become extremely

large because many specific applications require high-quality image reconstruction or

high-fidelity 3D modeling. Two, it is possible to collect large amounts of points with

the advent of 3D laser scanners. For instance, the CyberwareT M 3030PS laser scanner

scans human faces in cylindrical coordinates to yield 3D USF face database, where

each mesh face is composed of 75972 vertices (Blanz and Vetter, 2003). The Microsoft

Kinect camera is a structured light laser scanner that can obtain coloured 3D point sets

with more than 300000 points at a frame rate of 30HZ (Houshiar et al., 2013). A large

set of points provides more information about an object, but also poses significant
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challenges because conventional registration algorithms may become impractical.

The three existing registration algorithms Iterative Closest Point (ICP), coherent

point drift (CPD) and Gaussian mixture models based on thin-plate splines (GMM-

TPS) are not reliable for large point sets registration, because they are either too slow

or show high registration error with large numbers of registered points. More specifi-

cally, Iterative Closest Point (ICP) (Besl and McKay, 1992) is a widely used rigid point

sets registration method performed within Expectation Maximization (EM) optimiza-

tion scheme, where Euclidean transformation is updated iteratively and nearest neigh-

bours are searched as the correspondences. Establishing precise correspondence can

facilitate high registration accuracy, but it is an O(N2) time-consuming process (Jost

and Hügli, 2003) (where N is the number of points) that occupies the majority of the

computational cost of ICP. Coherent point drift (CPD) (Myronenko et al., 2007; Myro-

nenko and Song, 2010) is a probability-based, robust, rigid and non-rigid registration

method, where point sets registration is formulated as the maximum likelihood of a

Gaussian Mixture Model (GMM). This registration method can afford large point sets

registration, but its registration performance degrades considerably as the number of

points increases. An alternative probability-based, robust, rigid and non-rigid point

matching registration method based on the Gaussian mixture model, GMM-TPS (Jian

and Vemuri, 2005, 2011), becomes impractical when applied to large point sets. In

addition, GMM-TPS is not reliable when the data exhibits topological ambiguity.

Overall, the size of the data inevitably becomes large, which leads to the regis-

tration of large point sets using existing methods being impractical. Thus, the main

research problem of the thesis is the efficient registration of two large point sets, espe-
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cially large non-rigid point sets by means of the chosen registration algorithms.

1.3 Research Objectives

This thesis attempts to produce efficient registration methods by means of division

schemes for large point sets registration, especially, large and non-rigid point sets reg-

istration. The division scheme incorporates into each existing registration methods

ICP, CPD, and GMM-TPS in an effort to reduce computing time while maintaining

comparable registration error when registering two large point sets. Therefore, the

main research objectives are as follows:

1. To present an algorithm based on the ICP method which can reduce computational

cost and registration error for large rigid point sets registration;

2. To propose an algorithm based on the CPD which can reduce computational cost

and registration error for registering large, non-rigid point sets;

3. To explore a flexible clustering-based GMM-TPS registration approach to register

large, non-rigid point sets.

1.4 Research Contributions

According to the above objectives, three specific division-based methods are proposed

to tackle the large point sets registration problem. The main research contributions of

this research are as follows:

1. A subset-ICP algorithm is proposed in which ICP is combed with streaming divi-

sion to reduce the computational cost of large rigid point sets registration. In addi-
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tion, the proposed subset-ICP implicitly employs structure information to improve

the convergence range and flexibility to deformation;

2. The CPD-B algorithm determines the optimal width parameter of the Gaussian ker-

nel in CPD to refine the registration accuracy of CPD. Streaming division is as-

sociated with CPD-B to develop the proposed S-CPD-B algorithm to reduce the

computational cost of registration between large, non-rigid point sets;

3. A two-stage GMM-TPS based on K-means clustering, bi-GMM-TPS, is proposed

to efficiently handle large, non-rigid point sets registration and to remedy topologi-

cal ambiguity in the globally misaligned data.

1.5 Overview of Methodology

The three proposed registration methods are the significant contributions to the the-

sis and the abundant research will be further accommodated in the respective chapter

of each method. This section briefly describes the research methodology to fit the

research objectives.

1.5.1 Designing of Division-based Registration Scheme

Divide-and-conquer strategy has been widely applied in computer science which works

recursively by dividing a task into two or more subtasks of the same type, until those

are easily to be solved (Leiserson et al., 1990; Brassard and Bratley, 1996). The promi-

nent advantage of the methods based on divide-and-conquer is the reducing of compu-

tational complexity. Within the scope of point sets registration, only making good use

of the spatial locations information without considering possibly other structural in-
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formation, large point set could be divided into several relatively smaller subsets, and

those subsets are usually considered to be independent to each other. It is relatively

easy to perform registration on smaller point cloud than larger one because the number

of points involved is greatly decreased.

The division-based registration methods are associated with the division scheme,

and the general procedure of registering large point sets is displayed in Figure 1.3.

Division-based registration methods come with reduced computational cost, to this

effect, and with comparable registration error.
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Figure 1.3: Typical procedure of three division-based registration methods.

1.5.2 Three Specific Division-based Registration Methods

Three registration methods, subset-ICP, S-CPD-B, and bi-GMM-TPS, are proposed

sequentially to efficiently handle the large point sets registration problem. This type of

methods can also benefit the articulated registration, such as motion tracking of human
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poses (Horaud et al., 2011; Ge et al., 2014; Ge and Fan, 2015), and Chinese character

registration (Sun et al., 2014).

The core idea of subset-ICP is that streaming is first used to divide the two point sets

into multiple subsets respectively. These subsets and their partners are then registered

to recover the Euclidean transformation before it is used to update the point set and its

subsets. These steps are repeated until terminal conditions are satisfied. In essence,

subset-ICP is a piecewise rigid registration method. Streaming is employed to obtain

subsets, which benefits subset-ICP with implicit structure information.

CPD-B, which is a data-driven method, tunes the width parameter of the Gaussian

kernel in CPD to refine the registration accuracy of CPD. The refined CPD (CPD-

B) once combined with the streaming division strategy forms a S-CPD-B method.

Similar to subset-ICP, streaming is employed to divide point set. In order to establish

accurate correspondences, the subsets of the target set are further extended by margin

set to make the extended subsets overlapping, and the subsets of the source set are kept

independent to each other. The subset registered by the CPD-B algorithm are merged

together to achieve the final result.

The bi-stage GMM-TPS method reduces computational cost when bi-GMM-TPS

encounters large point sets, and also manages topological ambiguity in the data. Coarse

alignment is first performed on two centre sets provided by K-means clustering, which

obtains the global deformation of the data by means of a TPS transformation. The

recovered TPS transformation is then coupled to the source point set and its clusters.

A tuned cluster and its corresponding nearest cluster from another set are registered by

11



GMM-TPS method again to release the local deformation. The registered clusters are

then collected and integrated together to obtain the holistic result.

Subset-ICP is a rigid registration approach, although it is able to manage slight

deformation. Thus, it can provide stable registration results for large, rigid registra-

tion problems. Large, non-rigid point sets registration is the focus of this study due

to the fact that it shows more general applications than rigid registration. S-CPD-B

is developed to meet the requirements of solving large, non-rigid registration problem

at low computational cost and registration error. S-CPD-B is similar to subset-ICP,

where the correspondences and transformation are considered two unknown variables

to be determined. The subsets are obtained by streaming division in the two proposed

methods discussed above. To obtain the transformation without dependence on the

correspondences, meanwhile combining existing registration methods with more gen-

eral division methods, a more flexible bi-stage registration scheme, bi-GMM-TPS, is

proposed to handle large, non-rigid, point sets. In general, each of the proposed meth-

ods is expected to yield better registration performance and wider convergence than

traditional methods. The evolution of the three specific division-based registration

methods can be summarized as follows: 1) from scattered points to probability model-

ing (GMM), 2) from rigid to non-rigid, and 3) from with correspondences to without

explicit correspondences.

1.6 Operational Definition of Certain Terms

The scope of this research is the registration of two large point sets where only spatial

locations are employed (p = [x,y]T or p = [x,y,z]T ) without considering structure or
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texture information.

(a) Large point set. The cardinality of the point sets used in existing registration

methods ranges from a few tens (2D fish data with 92 points (Chui and Rangarajan,

2003)) to no more than 5000 (3D bunny, dragon data with 4000∼5000 points (Jian

and Vemuri, 2011)). Jian and Vemuri had written in a notable study that "They (the

proposed methods GMM-TPS) are efficient for most moderate non-rigid point sets

registration problems" (Jian and Vemuri, 2011). In addition, CPD associated with FGT

can register large point sets where data contains 92, 398, 453, 1889, 8171 or 35947

points (Myronenko and Song, 2010).

According to the aforementioned overview, the term "large point set" in this thesis

refers to a collection of more than 5000 points in Euclidean space. Note that 5000

is a relative concept that reflects real-world registration applications, state-of-the-art

registration methods, and computer hardware. A stricter description will be included

in a future work.

(b) Computational complexity. Computational complexity is used to analyse an

algorithm for solving a problem or the problem itself. The computational complexity

(efficiency) of an algorithm refers to a measure of how many steps the algorithm will

require for an instance or input of a given size, and the number of steps is measured

as a function of that size (e.g., big Oh notation); while the computational complexity

of a problem refers to the inherent tractability/intractability of the problem (Arora and

Barak, 2009; Hall, cited 2015).

In this thesis, the usage of computational complexity is for the specific proposed
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algorithms (refer to Section 3.1, Section 4.4.4, and Section 5.3.4) as several other lit-

eratures did (Besl and McKay, 1992; Myronenko and Song, 2010; Jian and Vemuri,

2011; Ma et al., 2013; Gao et al., 2014; Ge et al., 2014; Ge and Fan, 2015). Addition-

ally, the quantitative evaluation of registration includes computing time (seconds) and

the registration error (MSE) information for the proposed algorithms. Computing time

of CPU sometimes is called computational cost. Generally, registration error is defined

as the mean of the distances among the points from two point sets (Salvi et al., 2007).

The term "registration accuracy" is also used as an alternative measure of "registration

error" in the thesis and the relation between them satisfies that the summation is equal

to one.

1.7 Structure of Thesis

The remaining six chapters of this thesis are organised as follows.

Chapter 2 comprehensively reviews several state-of-the-art point sets registration

methods. The literatures are organised according to two typical categories, rigid ver-

sus non-rigid. Within each category, descriptions of the related articles include two

core components of registration (i.e., correspondences and transformations). Division-

based registration approaches including approximate and exact registration are also

summarised.

The subset-ICP method is proposed for rigid registration in Chapter 3. The de-

velopment of the proposed method, the derivation process of similarity transformation

parameters are described exactly. Experimental evaluations of the proposed subset-ICP

are discussed in detail and compared extensively to other rigid registration methods.
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Chapter 4 covers the S-CPD-B approach for large non-rigid registration. First, the

algorithm is proposed that tunes the width parameter of the Gaussian kernel in CPD.

The development of the S-CPD-B algorithm is then discussed, as well as theoretical

analysis of its computational complexity. Comprehensive experimentations validates

the efficiency of the proposed method even though on the very large USF face dataset.

Chapter 5 presents the bi-GMM-TPS approach, established based on clustering, for

large, non-rigid registration. A detailed description of the bi-GMM-TPS algorithm,

including its computational complexity and performance during experiments are in-

cluded. Comparative experiments are also presented to further detail the advantages of

the proposed method.

Chapter 6 summarises and discusses the proposed subset-ICP, S-CPD-B, and bi-

GMM-TPS algorithms. Experimental comparisons among the three methods on large,

public datasets are first performed. A summary of the division-based scheme and its

core components are then addressed. Similarity measurements used to evaluate the

registration performance of registration methods are also summarised.

Chapter 7 provides a conclusion and description of future research directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter summarises and discusses prior research regarding registration methods

to support the research in this thesis; more specifically, it provides a comprehensive

overview of point sets registration. Registration of point sets involves finding meaning-

ful correspondences among points, or recovering the underlying spatial transformation.

There already exist several different registration methods for real-world applications,

which can be grouped into two basic categories according to which spatial transforma-

tions are required: rigid registration, and non-rigid registration. For rigid registration,

the underlying transformations, naturally, are rigid. These include rotation or trans-

lation transformations. For non-rigid registration, the underlying transformations are

non-rigid, such as affine or curved transformations.

This thesis adopts a hierarchical classification scheme (see Figure 2.1) to review

currently existing point sets registration methods. The methods are firstly grouped into

one of two primary categories (rigid vs. non-rigid), then specific registration algo-

rithms are divided again according to their two core components (correspondences

and transformations). Under the designed classification criteria of registration ap-

proaches, extensive summarisation is extended based on several state-of-the-art reg-

istration methods such as Iterative Closest Point (ICP), Principle Component Analy-

sis (PCA) and Singular Value Decomposition (SVD), Robust Point Matching based
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on thin-plate spline (TPS-RPM), Coherent Point Drift (CPD), and Gaussian mixture

models based on thin-plate spline (GMM-TPS).

 

 

 

 

 

 

Point sets registration methods 

Rigid registration Non-rigid registration 

Correspondences and 

transformations 
Transformations 

Figure 2.1: Classification strategies of point sets registration methods in the thesis.

The remainder of this chapter is organised as follows: Section 2.2 summarises the

classifications of existing image registration methods. Next section discusses rigid

point sets registration methods including ICP and its numerous extensions (conform-

ing to the first research objective). Following that, a series of state-of-the-art, non-rigid

point registration methods such as CPD, and GMM-TPS (conforming to the second and

third research objectives) are discussed in Section2.4. Division-based registration ap-

proaches, including approximate registration and exact registration, are then presented

in Section 2.5. Section 2.6 provides a brief summary to end the chapter.

2.2 Image Registration Methods

Research and development of imaging techniques and their numerous applications

have fostered growing diversity of image registration methods. The earliest survey on

image registration focused primarily on geometrical correlation and information com-
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pensation, which are realized by identifying corresponding points in images (Kashef

and Sawetauk, 1984). Another study surveyed the latest medical image registration

methods according to nine factors (Maintz and Viergever, 1998; Mani and rivazhagan,

2013). The nine primary factors formulated by Van den Elsen and Viergever (1993)

are introduced as follows:

(a) Dimensionality: This factor includes spatial dimensionality and temporal dimen-

sionality.

(b) Nature of registration basis: This intrinsic factor consists of landmark-based,

segmentation-based, and voxel property-based methods. Extrinsically, this factor

comprises the frame, markers or calibration of equipment. The non-image part of

the system refers to changes in the coordinate system (such as calibrated coordinate

systems).

(c) Nature of transformation: This factor involves the types of transformations used,

for example, rigid, scaling, affine, projective, or curved transformations. Further

information regarding this factor can be found in Appendix A.

(d) Domain of transformation: This factor involves local transformation vs. global

transformation.

(e) Interaction: This factor defines interactive as with or without initialization, and

semi-interactive as initialization and automatic registration.

(f) Optimization procedure: Optimization methods solve the transformation.

(g) Modalities: The images involved stem from one or more modalities.
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(h) Subjects: Images originate from inter-subject, intra-subject or atlas.

(i) Objects: This factor defines the imaging area of the subjects.

The factors of registration methods addressed in the study (Maintz and Viergever,

1998) were originally highly elaborative, but ultimately formed the basic criteria used

by subsequent researchers. For example, a simplified, five-criterion classification for

image registration methods was proposed by Goshtasby (2005) which involve: 1)

whether or not mapping is rigid, 2) the dimensionality of data, 3) data representation

structure, 4) whether subjects are the same or different, and 5) automation level. In an

effort to formulate the registration problem as an optimization problem, researchers di-

vided the optimization-based registration methods used for medical images, especially

variational-based approaches which tackle deformable shapes, into two groups accord-

ing to a fixed or iterative Tichonov regularization (Fischer and Modersitzki, 2008).

Although the set of criteria discussed above were established based on a medical

image registration study, similar criteria have been utilized for human face registration,

remote sensing image registration, and among other registration methods. The inter-

ested readers can refer to the relevant surveys (Dawn et al., 2010; Sotiras et al., 2013;

Sariyanidi et al., 2014).

2.3 Rigid Point Sets Registration

Rigid registration of two point sets identifies either a rigid transformation or estab-

lishes the correspondences between two sets. Rigid transformation includes isotropic

transformations that preserves the distances in Euclidean space. So, it is also called
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Euclidean transformation (Galarza et al., 2007; Bottema, 2008). Rigid transformation

typically comprises a linear combination of rotation and translation motions that can

be modeled by six Degree Of Freedom (DOF) for 3D data or three DOF for 2D data.

Without loss of generality, the transformation is denoted as T , and then the aligned data

is T ◦X . For this reason, rigid transformation is also categorized as linear transforma-

tion. Regardless of the particular or generic registration methods employed, correspon-

dences and transformations are the two key components of rigid point sets registration

algorithms. Existing rigid registration methods can thus be described according to the

combination of these two components.

2.3.1 Rigid Registration Methods Determining Correspondences and Transfor-

mations

In this registration procedure, the correspondences and transformation parameters are

unknown. The Expectation Maximization (EM) algorithm, which updates the corre-

spondences and transformation parameters iteratively, is appropriate for deriving the

closed-form solution.

2.3.1(a) Iterative Closest Point (ICP) Registration Algorithm

Iterative Closest Point (ICP) is a popular rigid point sets registration method that has

been applied successfully to a wide variety of registration problems (Besl and McKay,

1992; Chen and Medioni, 1992). ICP has become the generic framework of rigid point

sets registration for determining unknown correspondences and unknown Euclidean

transformation. Given two point sets X = {x1,x2, . . . ,xM}, and Y = {y1,y2, . . . ,yN},

where x j,yi ∈Rd , the main idea of ICP is that for each point in set Y , the closest point in
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set X is searched to form a correspondence set. Based on set Y and the correspondence

set, an orthogonal rotation matrix R and translation vector t are then updated iteratively

until the terminal conditions are satisfied. The three basic steps of ICP are as follows:

Step 1: Search a closest point x j for yi ∈ Y , then define a correspondences set as

NY (X) =
{

x j|d(yi,x j) = argminx∈X d(yi,x)
}

;

Step 2: Compute rotation matrix Rk and translation vector tk using the Singular Value

Decomposition (SVD) technique based on sets NY (X) and Y ; and

Step 3: Updates Y using transformation (Rk, tk) and accumulates R and t as:

Y = RkY + tk. (2.1)

R = RkR. (2.2)

t = Rkt + tk. (2.3)

In each iteration, correspondences can be computed using the nearest-neighbour

scheme and transformation parameters can be determined by either SVD or quaternion

technique (Horn, 1987). Though effective, ICP is an expensive computational algo-

rithm with O(MN) because correspondences must be computed for each point of set

X in each iteration. Furthermore, its convergence relies heavily on better initialization

and tends toward the local minimum.

2.3.1(b) Variant ICP Registration Algorithms

In an effort to remedy disadvantages in the original ICP, later researchers attempted to

reduce the computational cost of establishing correspondences. Obviously, the fewer
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the number of points to be registered, the faster the ICP registration works. A coarse-

to-fine selection point scheme was used in Picky ICP to decrease the number of points

to be registered (Zinsser et al., 2003). Other researchers have adopted local search

strategies, such as the neighbourhood search algorithm (see Figure 2.2) (Jost and Hügli,

2002a, 2003) and k-d tree nearest-neighbour search algorithm (Zhang, 1994; Zinsser

et al., 2003), in an effort to shrink the search space of the closest points. Utilizing a lo-

cal instead of global search to obtain correspondence pairs may neglect some coherent

information, however; basically forming a tradeoff between computational complexity

and registration accuracy. Existing correspondences establishment methods are com-

pared briefly in Table 2.1.

Table 2.1: Techniques used to establish correspondences in ICP and its extensions.

Algorithm Techniques Feature
ICP and accelerated ICP Nearest neighbours global
Multi-resolution ICP Neighbourhood local
Picky ICP k-d tree local

Figure 2.2: Neighbourhood search scheme used by Jost and Hügli (2003).

Another relevant study employed a coarse-to-fine, multi-resolution scheme to im-

prove registration accuracy, in which the coarser solution is improved successively by

the next finer representation (Jost and Hügli, 2002b, 2003). The number of hierar-

chical iterations essentially affects the computational complexity of the coarse-to-fine
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strategy. A comprehensive look-up matrix used was introduced to ICP to denote the

CICP algorithm, which establishes correspondences (Almhdie et al., 2007). In CICP, a

line-by-line followed by a column-by-column method (instead of only line-by-line em-

ployed in Picky ICP) was used to search corresponding pairs. This method guarantees

that the correspondences form a bijection, however, it may mistake good correspon-

dence pairs for noisy data and mistakenly reject them.

In an effort to improve the convergence rate of ICP, a linear approximation and

parabolic interpolant were used to accelerate the updating of registration parameters

by Besl and McKay (1992). Similarly, an extrapolation method was applied to transfor-

mation parameters to speed up the convergence of Picky ICP by Zinsser et al. (2003).

Researchers highlighted the fact that the number of iterations of ICP has a polynomial

relationship to the number of input points under the root mean squared (RMS) distance

and one-sided Hausdorff distance (Ezra et al., 2008). Another study introduced a uni-

form sampling scheme to ICP for the normals on nearly-flat meshes to improve the

convergence of range image registration (Rusinkiewicz and Levoy, 2001). To speed up

the convergence of standard ICP registration, gradient-based optimization strategies

such as nonlinear Levenberg-Marquardt have been utilized (called LM-ICP algorithm)

to update transformation parameters by Fitzgibbon (2001). In addition, LM-ICP is

tuned by a robust Huber kernel to improve robustness to noise and outliers. Any en-

hanced initialization of ICP variants implies that two required point sets are closer

at the time they begin to be registered. Evolutionary computation has been used to

optimize the initial Euclidean transformation parameters by Santamaría et al. (2011).

Branch-and-bound (BnB) searching, which minimizes the risk of trapping into lo-
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cal minima, is a method commonly used to search global solutions (Olsson et al.,

2009; Pfeuffer et al., 2012; Yang et al., 2013). A notable example, the BnB global

search algorithm, was proposed to determine rotation transformation and correspon-

dences simultaneously by Li and Hartley (2007). When correspondences are given,

Euclidean or similarity transformation is computed via branch-and-bound algorithm

to solve a global, non-convex optimization problem (Olsson et al., 2009). An innova-

tive study proposed a globally optimal ICP, Go-ICP, with branch-and-bound (BnB) for

3D Euclidean registration where in subcubes of solution space, the rotation and trans-

lation provided by a nested BnB search algorithm provide the initialization of local

ICP registration (Yang et al., 2013). This method assists ICP to escape local minima

(Figure 2.3). The BnB search algorithm can afford accurate solutions with high com-

putational cost and without convergence dependent on initialization. However, the do-

main of unknown transformation parameters are given in closed-form, which limits the

transformations to Euclidean, similarity, and affine cases. It is worth mentioning that

similarity transformations with isotropic scaling (s 6= 1) are an extension of Euclidean

transformation and that similarity transformations with anisotropic scaling (Chen et al.,

2015) are affine transformations.

It is necessary to consider the robustness of ICP-based algorithms to noise and

outliers, because both are unavoidable during data collection. Researchers have used

predefined distance thresholds to remove outlier candidates when points find their clos-

est neighbours (Besl and McKay, 1992; Zinsser et al., 2003; Jost and Hügli, 2003;

Almhdie et al., 2007). However, most of the related algorithms can not guarantee con-

vergence. When the ratio of outliers is known, trimmed ICP can determine the optimal

alignment; when the alignment is given, RANSAC-based methods or nonlinear esti-
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