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PERJUMLAHAN TAK VARIAN OBJEK DI BAWAH
KUMPULAN TRANSFORMASI UNJURAN

DENGAN APLIKASI

ABSTRAK

Geometri tak varian adalah ciri geometri yang tidak berubah di bawah pel-

bagai jenis transformasi dan ia dapat digunakan dalam pemerihalan bentuk

untuk mengatasi ber bagai kesukaran dalam pemasalahan pengecaman objek

untuk visi komputer. Peranan parameter tak varian diiktiraf dalam bebera-

pa aplikasi seperti perwakilan bentuk, pemadanan bentuk, pengecaman objek

dan aplikasi robotik. Tesis ini mengetengahkan penyelesaian permasalahan

berkaitan terbitan tak varian objek dua dimensi untuk kumpulan transformasi

unjuran. Di dalam tesis ini, satu kaedah diberikan untuk menentukan perjum-

lahan tak varian objek planar pada kumpulan transformasi unjuran dan sa-

tu algoritma telah dibangunkan untuk menggunapakai tak varian yang diter-

bitkan sebagai penyelesaian beberapa permasalahan pengecaman objek pada

kumpulan transformasi. Kaedah Cartan dengan rangka bergerak digunakan

untuk menerbitkan tak varian ini. Kamiran potensi baru untuk lengkung 2D

dicadangkan untuk memperolehi kamiran tak varian di bawah tindakan su-

atu subkumpulan bagi transformasi unjuran dengan 6 darjah kebebasan. Da-

lam kes data diskret, penjumlahan tak varian baru dicadangkan di bawah sub-

kumpulan bagi transformasi unjuran objek planar dengan 6 darjah kebebasan.

Selain itu, analisis perbandingan telah dilaksanakan untuk tak varian yang

xv



diterbitkan dan tak varian sebelumnya untuk objek di bawah tindakan kum-

pulan Euclidean, afin dan unjuran. Disamping itu, prestasi kaedah ini telah

dibincangkan untuk objek di bawah aras hingar putih bertaburan Gaussian.

Ini dapat menyelesaikan permasalahan untuk menerbitkan tak varian untuk

objek-objek di dalam kumpulan transformasi unjuran setempat dengan darjah

enam kebebasan kerana adanya x dan y dalam penyebut pada ruangan Eucli-

dean. Applikasi tak varian ini terhadap data diskrit, yang diperolehi daripada

sampel bentuk geometri kereta, menghasilkan sesuatu corak yang diklasifi-

kasikan serupa di bawah transformasi unjuran. Tambahan lagi, satu kaedah

deduktif telah dicadangkan untuk menerbitkan tak varian transformasi unjur-

an dengan memecahkan kumpulan transformasi dengan 8 darjah kebebasan

kepada subkumpulan kecil transformasi unjuran kurang dari 6 darjah kebe-

basan dengan tak variannya boleh diterbitkan dengan merujuk kepada poten-

si pembolehubah yang bertindak terhadap kumpulan piawai pada R2. Oleh

sebab imej objek di bawah penjelmaan unjuran dalam beberapa pandangan

perspektif boleh cacat sebahagian besarnya, untuk menyelesaikan beberapa

masalah yang berkaitan dengan pencarian data yang hilang pada objek pla-

nar yang menjalani dua kumpulan transformasi yang berbeza unjuran adalah

diminati. Dengan itu suatu algoritma baru dibentangkan untuk mencari titik

data dalam objek planar yang tidak ada tanpa apa-apa sebab manakala dua

imej perspektif yang berbeza daripada objek adalah ada di bawah dua jenis

kumpulan transformasi unjuran yang berbeza. Kaedah ini digunakan untuk

menjana data yang hilang dari sempadan imej tomografi berkomputer teng-

korak dan magnet perwakilan pengimejan resonans otak. Kemantapan algori-

xvi



tma ini dikaji dengan keadaan bunyi Gaussian putih dalam data sampel yang

menunjukkan prestasi baik kaedah ini.

xvii



SUMMATION INVARIANTS OF OBJECTS
UNDER PROJECTIVE TRANSFORMATION

GROUP WITH APPLICATION

ABSTRACT

Geometric invariants are features which unchanged under a variety of trans-

formations and they can be used as the shape descriptors to overcome many of

problems of object recognition problems in computer vision. The role of invari-

ants in computer vision has been advocated for various applications such as

shape representation, shape matching, object recognition and robotic. This the-

sis solving problems associated with deriving invariants of two dimensional

objects under projective transformation groups in Euclidean space. In this the-

sis, a method is given to determine projective invariants for planar objects un-

der projective transformation groups and an algorithm is given to apply the

derived invariants in order to solve some issues of object recognition under

transformation groups. The Cartan’s method of moving frame is applied to

derive these invariants. Novel integral potentials for 2D curves are proposed

to derive integral invariants under the action of a subgroup of projective trans-

formation with 6 degrees of freedom. In case of discrete data, new summation

invariants are proposed under subgroup of projective transformation of pla-

nar objects with 6 degrees of freedom. Besides, comparison analysis has been

facilitated for the derived invariants and previous invariants for objects under

Euclidean, affine and projective group actions. Moreover, the performance of

xviii



the method has been discussed for objects under white Gaussian-distributed

noise levels. This can solve the problem of deriving invariants for objects un-

der local projective transformation groups happening because of the existing x

and y in the dominator of this action in Euclidean space. Application of these

invariants to discrete data, obtained from a sample of boundary of car contour,

generates a pattern of similar classification under projective transformation.

In addition, a deductive method is proposed to derive invariants for projec-

tive transformation by splitting this transformation group with 8 degrees of

freedom to subgroups of the projective transformation with lower 6 degrees

of freedom whose invariants can be derived based on the potential variables

for the standard actions of projective groups on R2. As image of an object un-

der projective transformation in some perspective view may largely deformed,

solving some problems associated with finding missing data in a planar object

which undergoing two different projective transformation groups is of inter-

est. Thereby a new algorithm is presented to find the data points in a planar

object which are not available to any reason while two different perspective

images of the object are available under two different types of projective trans-

formation group. The method is applied to generate missing data from the

boundary of a computed tomography image of a skull and a magnetic reso-

nance imaging representation of the brain. The robustness of the algorithm is

examined in the condition of white Gaussian noises to the sample data which

shows the good performance of the method.

xix



CHAPTER 1

INTRODUCTION

Geometric invariants have the most critical role in a wide variety of applica-

tions, especially in computer vision and object recognition. Given that geo-

metric invariants have the property of stability under a variety of transforma-

tions, these shape descriptors can be used to overcome several difficulties in

object recognition problems in computer vision. In fact, an invariant, which is

a property of a class of mathematical objects that are unchanged under trans-

formations applied to the object, arises in a wide variety of disciplines, such as

mathematics, physics, and computer science.

An approach to geometry is to describe it as the study of invariants under

certain allowed transformations which initially defined by Felix Klein. This

involves considering our space as a set S and a subgroup G of the bijections of

S. Two objects A, B ⊂ S are said to be equivalent if there is an f ∈ G such that

f (A) = B. A property P of subsets of S is said to be a geometric property if it

is invariant under the action of the group, which is to say that P(S) is true (or

false) if and only if P(g(S)) is true (or false) for every transformation g ∈ G.

For example, the property of being a straight line is a geometric property in

Euclidean geometry. Note that the question whether or not a certain property

is geometric depends on the choice of group.

A typical object recognition issue to address is when an object is observed from

different views, wherein the appearance of the same object varies. Another
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problem is when different images of the same object are taken from a mov-

ing camera, where one or more parts of the images have been corrupted and

thus an entire part is missing. Regarding the application of invariants in clas-

sical geometry, one issue of concern is equivalence problems in determining

whether or not two given sub-manifolds or two objects are congruent under a

group transformation. In other words, two objects are congruent if one can be

placed into the other by rotation, translation, or reflection. This determination

helps in classifying these objects under the same class of undergoing transfor-

mation.

In particular, for objects undergoing projective transformations as a linear frac-

tional action, the shape of the object may totally change in Cartesian coor-

dinates and the classification of these objects is required to identify specific

properties that do not change under these transformations. Invariant descrip-

tors are required to solve the typical problems in this area, including the classi-

fication of objects under a certain transformation group or to construct missing

data of the objects arising from different transformations.

The projective group plays an important role in computer vision and object

recognition. The importance of this group lies in its ability to describe all pos-

sible viewing transformations on objects because it is the upper set of interest

groups, including affine and Euclidean groups, in computer vision. Collinear-

ity of three or more points, concurrency of three or more lines, conic section,

and the cross ratio are examples of invariants of projective transformation as

the subset of projective groups. Meanwhile, finding appropriate invariants of

manifolds under transformation groups has created a large research space. The
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practical application of these invariants in solving different issues has recently

received much attention.

Among all the methods proposed to find invariants under transformations,

the moving frame method which firstly introduced by Gaston Darboux and

are closely associated to Eli Cartan in the mid-1930s, appears to be completely

simple, general, elegant, and applicable. This method has been modeled by

Cartan as an algorithmic tool for studying invariants of manifolds under the

action of a transformation group. Later, Fels and Olver (1998) formulated the

systematic approach of Cartan’s method for general transformation groups.

The last half of the 19th century witnessed the evolution in the domain of in-

variants, including algebraic and differential invariants. Previously, progress

was made in finding invariants of general parameterized curves and surfaces.

A differential invariant is an invariant for the action of the Lie group on a space,

which involves the derivatives of graphs of functions in the space. One of the

Euclidean invariants are curvatures which are most frequently used. Other dif-

ferential invariants obtained by the Cartan’s moving frame method have been

applied in computer vision problems (Calabi et al., 1998; Olver, 1999, 2001b).

These features are local to points on a shape, contrary to algebraic features that

are global and can be used for arbitrary shapes.

From the literature regarding to limitations of differential invariants, a novel

family of geometric invariants, also called summation invariants, has been in-

troduced. This family of invariants utilizes potentials composed of summation

of coordinates in a prolonged jet space. The generality and implementation of

these invariants are better than the differential and integral invariants avail-
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able in the literature. These invariants were derived for the Euclidean and

affine transformation groups. In computer vision, very limited types of invari-

ants have been used. For the case of projective transformation group, planar

projective invariants were derived by innovation of using homogenous coor-

dinates and applied for camera network.

1.1 Motivation

Summation potential of the Euclidean and affine group cannot be applied to

derive invariants for the case of the projective group. Although in the case

of projective transformation, planar projective invariants proposed for camera

network by using homogenous coordinates for the transformed potentials in-

stead of Cartesian Cartesian. However, derived invariants for objects in terms

of Cartesian coordinates under fractional action can not be applied. Hence, in

this thesis, it is motivated to derive invariant features for objects under action

of projective transformation group in terms of Cartesian coordinates without

using homogenous coordinates. Moreover, it is motivated to apply these in-

variants to solve the typical problems in the area of computer vision including

classification of objects under projective transformations group on which are

applied or to construct missing data of the objects arising from different view

of transformations. These are required to find descriptors which are invariant

due to the certain projective transformation group.
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1.2 Problem statement

The existence of the x and y terms in the dominator of the projective group

action causes problems in classically deriving invariants under the action of

projective groups. The goal is to introduce a proper potentials to allow the

derivation of the integral and summation invariants for the local action of pro-

jective group in terms of Cartesian coordinates based on the Cartan’s moving

frame method. These new potentials are in terms of integral for the continuous

curves and summation for discrete data of objects which allow to make a jet

space in terms of new variables for prolonged group action.

1.3 Objectives

In this thesis, a new method for deriving integral and summation invariants

of planar objects under projective transformation groups is proposed, and the

derived invariants are applied to solve certain issues in object recognition. The

following three objectives are considered.

1. Derive integral and summation invariants of two-dimensional (2D) objects

under projective transformation with six degree of freedom (6DF) and the new

split-transformation method to derive invariants under projective transforma-

tion with more than 6DF (maximum of 8DF).

2. Propose a new method for finding and reconstructing the data points of a

planar object undergoing two different projective transformation group.

3. Apply the proposed method to find data of the boundary of a computed to-

mography image of a skull and a magnetic resonance imaging representation

of the brain.
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1.4 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 presents the research

background, including previous works and a detailed explanation on the in-

tegral and summation invariants under group actions. Chapter 3 discusses

the method for deriving integral invariants under a special projective group

for 2D curves. Chapter 4 explains the method for deriving summation invari-

ants under a special projective group in the case of discrete data of 2D objects,

and then compares these invariants with the previous summation invariants.

Chapter 5 presents a deductive approach to derive the summation invariants

for 2D objects under a projective group with a maximum of 8DF, and applies

this method in the classification of objects for the sample of car contours from

a database. Chapter 6 proposes a novel method to generate the missing data of

objects arising from two different views of transformation, and applies the pro-

posed method for the boundary of a computed tomography image of a skull

and a magnetic resonance imaging representation of the brain. Moreover, ex-

perimental results are provided to assess the robustness of our invariants un-

der noise. Finally, Chapter 7 summarizes the drawn conclusions.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND
THEORIES

2.1 Introduction

This thesis proposes a classical method for deriving the integral and summa-

tion invariants under the projective group, and then some application applies

of these invariants will be presented including a new method for constructing

the missing data of 2D objects in a typical object recognition problem.

The following background material is presented to provide a context for the

remainder of the thesis. The group action and Cartan’s moving frame method

are first discussed, followed by the background of previous invariants, and

finally, the summation invariants.

2.2 History of geometric invariants

An extensive study on invariants was conducted in the last half of the 19th

century. Two types of invariants were developed, namely, algebraic and dif-

ferential invariants. The algebraic invariant is associated with invariants of

algebraic forms, namely, homogenous polynomials. Hilbert (1993) introduced

a famous set of theorems for polynomial invariants that has become the foun-

dation of algebraic geometry. Meanwhile, considerable research progress has

been achieved in finding invariants of general parameterized curves and sur-

face. Wilczynski (1906) and Weyl (1997) developed theories of invariants of
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general Lie group transformations. Among all the methods applied to derive

invariants, the moving frame method appears to be superior because of its sim-

plicity, integrity and generality (Faugeras, 1994). Theory of moving frame of

normalization was introduced by Eli Cartan in 1935 and was formalized as a

powerful framework by Fels and Olver (1998). This theory has good potential

for various applications.

Some basic concepts of a group action is presented to describe generalization

of Cartan’s method of moving frame (Fels and Olver, 1999) which provide a

powerful algorithm to construct a complete set of invariants that will be dis-

cussed through the following sections.

2.3 Transformation group and group action

In the 20th century, Felix Klein clarified the foundational role of groups in ge-

ometry, showed how each type of geometry such as Euclidean geometry, affine

geometry, and projective geometry can be completely characterized by an un-

derlying transformation group (Olver, 1999).

Definition 2.1. (Olver, 1999) A group is a set G admitting a binary multiplica-

tion operation (G, .), denoted g.h for group elements g, h ∈ G, which is subject

to the following axioms:

1. Associativity: g(hk) = (gh)k for g, h, k ∈ G.

2. Identity: The group contains a distinguished identity element, denoted e,

satisfying eg = ge = g for all g ∈ G.

3. Invertibility: Each group element g has an inverse g−1 ∈G satisfying g.g−1 =

g−1.g = e.

8



The simplest example of a group is the set R of real numbers, with addition

being the group operation.

The collection of all permutations of the set {1,2, ..., n} under the operation of

composition of functions is a group Sn called the symmetric group of degree n.

Definition 2.2. (Rose, 1978) If (G,∗) and (H,◦) are groups, then a function

f : G −→ H is a homomorphism if f (x ∗ y) = f (x) ◦ f (y) for all x, y ∈ G.

Definition 2.3. (Olver, 1999) A map ρ : G −→ H between groups G and H

is called a group homomorphism if it satisfies ρ(g.h) = ρ(g).ρ(h), ρ(e) = e,

ρ(g)−1 = ρ(g−1) for all g, h ∈ G.

As the fundamental concept of a manifold, which forms a differential geomet-

ric generalization of classical curves and surfaces, they look like open sub-

sets of Euclidean space Rn. The formal definition of an n-dimensional (The

number of local coordinates required to describe points thereon) manifold is

a Hausdorf topological space X which is covered by a collection of open sub-

sets Wα ⊂ X, called coordinate charts, and one-to-one local coordinate maps

xα : Wα −→ Vα ⊂ Rn and xβ : Wβ −→ Vβ ⊂ Rn; the standard coordinates xα =

(xα
1 , ..., xα

n) and xβ = (xβ
1 , ..., xβ

n) on Vα and Vβ provide coordinates for the points

on X. The maps χβα = χβ ◦ χ−1
α : Vα −→ Vβ, which must be continuous, define

the changes of local coordinates xβ = χβα(xα) on X. The manifold is smooth if

the overlap maps are smooth where defined, and analytic if they are analytic.

The simplest example of a manifold is an open subset X ⊂ Rn of Euclidean

space with dimension dimX.
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Definition 2.4. (Feng et al., 2006) An action of group G on a manifold M is a

map ϕ : G×M 7→ M which satisfies in the following two properties:

1. ϕ(e, x) = x where e is a identity element of G, ∀x ∈ M.

2.ϕ(g1, ϕ(g2, x)) = ϕ(g1g2, x), ∀g1, g2 ∈ G,∀ x ∈ M. In other words a permuta-

tion ϕg : M 7→ M satisfies in ϕe(x) = x and ϕg1 ◦ ϕg2 = ϕg1g2 .

Example 2.1. The group GL(n, R) of invertible n× n real matrices acts on Rn

by matrix multiplication: (M, x) 7→ Mx.

Example 2.2. The complex special linear group, SL(2, C) of 2× 2 complex ma-

trices with determinant 1, acts on the Rieman sphere by:

(

 a b

c d

 , z) 7→ az + b
cz + d

.

Definition 2.5. (Olver, 1999) A transformation group acting on a space M is

defined by a group homomorphism ρ : G 7→ G(M) (G(M) denotes the set of

all one-to-one maps from M to M) mapping a given group G to the group of

invertible maps on M. In other words for each g from G map ρ(g) : M 7→ M is

induced so that the require to define a group homomorphism is:

ρ(gh) = ρ(g) ◦ ρ(h), ρ(e) = 1M, ρ(g−1) = (ρ−1(g)), for each g, h ∈ G.

It is common to write g.x instead ρ(g)(x).

If ρ is an action of G on M, then, ∀g ∈ G, the map ρg : M 7→ M given by

ρg(x) = ρ(g, x) is a diffeomorphism of M, thus G is represented as a group

of diffeomorphisms or ransformations of M. For this reason the Lie group G is

also referred as a transformation group of the manifold M.
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Theorem 2.1. (Olver, 1999) Actions of the group G on the set M are the same

as group homomorphism from G to Sym(M), the group of permutation (rep-

resentation of G on M) of M.

Example 2.3. A transformation ϕ : Rn 7→ Rn is called an isometry if ||ϕ(x) −

ϕ(y)|| = ||x− y|| for all x, y ∈ Rn. It preserves Euclidean distances. The group

of linear isometries forms a subgroup O(n) ⊂ GL(n,R) of the general linear

group, known as orthogonal group O(n) = {A ∈ GL(n,R)|AT A = I}.

Example 2.4. An affine transformation of the linear space Rn is a combination

of a linear transformation and a translation, and hence has the general form

x 7→ Ax + a, where A ∈ GL(n,R) is an invertible matrix and a ∈ Rn a fixed

vector. The composition of two affine transformations is also affine, as is the

inverse. Therefore the set A(n) of all affine transformations forms a group. The

affine group often denoted by A(n) = GL(n, R)n Rn.

Example 2.5. The group of symmetries of the cube acts on a variety of sets

including: the set of eight vertices, the set of six faces, the set of twelve edges,

and the set of four principal diagonals.

Example 2.6. Take a regular n-sides polygon in the plane. All rigid motions

that send the polygon to itself form a dihedral group Dn. The group Dn ; n ≥

3 acts on a rigid motion of a regular n-gon in the plane, either rotation or a

reflection.

Example 2.7. The symmetric group Sn acts on Rn by permuting the coordinates

for σ ∈ Sn and v = (C1, ..., Cn) ∈ Rn ; σv = (Cσ(1), ..., Cσ(n)).
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2.4 Euclidean and affine transformation

Projective geometry is algebraically expressed by homogenous coordinates while

Euclidean geometry is expressed by the Cartesian coordinate system. Carte-

sian coordinates are convenient to explain angles and lengths. They are simply

transformed by matrix algebra to describe translations, rotations and change

of scale. However, in the case of projections it can not be expressed simply in

the algebraic form.

Some transformation that are non-linear on Euclidean space Rn, can be repre-

sented as linear transformation on the n+ 1-dimensional space Rn+1. Hence, it

is possible to map points from Cartesian coordinates in to homogenous coor-

dinates. The 2D point with Cartesian coordinates xc = (x y)T is mapped into

xh = (wx wy w)T in homogenous coordinates, where w is an arbitrary scalar

(Nixon, 2008).

Geometric transformation refers to the objects or the coordinate systems. affine,

Euclidean and projective transformation are three important groups of trans-

formations in computer vision. They are combination of translation, shearing,

rotation, and scaling of an object.

Definition 2.6. (Nixon, 2008) A Euclidean transformation is defined as

 x

y

 =

 cos(θ) −sin(θ)

sin(θ) cos(θ)


 sx

sy


 x

y

+

 νx

νy

 , (2.1)

where θ is rotation angle, S = (sx sy)T the scale and t = (νx νy)T the translation

along each axis.
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Definition 2.7. (Nixon, 2008) The standard affine transformation in 2D is de-

fined as the following equation which is viewed as a combination of a transla-

tion, a rotation, a scaling and a shearing:

 x

y

 =

 a11 a12

a21 a22


 x

y

+

 ν1

ν2

 , (2.2)

det

 a11 a12

a21 a22

 6= 0. An affine transformation is any transformation that pre-

serves collinearity and ratios of distances (the midpoint of a line segment re-

mains the midpoint after transformation). In this sense, affine indicates a spe-

cial class of projective transformations that do not move any objects from the

affine space R3 to the plane at infinity or conversely.

2.5 Projective transformation

In projective geometry, a homography is an isomorphism of projective spaces,

is a bijection that maps lines to lines, and thus a collineation. In general, some

collineations are not homographies, but the fundamental theorem of projective

geometry states that is not so on account of real projective spaces of dimension

at least two. Equivalent words incorporate projectivity, projective change, and

projective collineation. In projective space, transformations are called homo-

graphes and they are more broad than similarity and affine transformations.

Projective transformations are not defined on all of the plane, but only on the

complement of a line. Any plane projective transformation can be expressed

by an invertible 3 × 3 matrix in homogeneous coordinates. Conversely, any
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invertible 3× 3 matrix defines a projective transformation of the planes. Pro-

jective transformation generally is one-to-one mapping of an n-dimensional

projective space to m-dimensional space. In particular, an image plane is an

2D projective space P2 residing in the 3D projective space P3 such that a point

in an image plane can be represented in the homogenous coordinates.

Projective transformations under composition form a group called projective

linear group. In the projective plane P2, projective linear group is denoted as

PGL(3). The elements of PGL(3) is of the form

Hp =


a11 a12 tx

a21 a22 ty

v1 v2 ν

 . (2.3)

The block matrix form Hp will be

Hp =

 A t

vT ν

 , (2.4)

where A is a non-singular matrix, t is a translation 2-vector, and v = (v1 v2)
T.

This projective transformation has 8 degrees of freedom and can be computed

from 4 point correspondence. These transformation preserve collinearity and

cross ratio.

2.6 Lie group action and invariant

Sophus Lie introduced and developed the remarkable theory of continuous or

Lie groups whose elements depend analytically on parameters.
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Definition 2.8. (Gorbatsevich et al., 1994) A Lie group is a group G endowed

with a structure of a differentiable manifold over M so that the maps ϕ : G ×

G −→ G where ϕ : (x, y) 7→ xy and i : G −→ G where i : x 7→ x−1 are differen-

tiable over M.

For instance, Rn under addition and inverses given by negatives ϕ(g, h) =

g + h, i(g) = −g for g, h ∈ Rn is an n-dimensional Lie group.

A left action of the group G on the manifold M is a smooth mapping ϕ :

G × M 7−→ M, ϕ : (g; x) 7→ ϕ(g; x), such that ϕ(e; x) = x and ϕ(g′; ϕ(g; x)) =

ϕ(g′g; x). Similarly, a right action is defined by a smooth mapping ϕ : M×G 7→

M such that ϕ(x;e) = x and ϕ(ϕ(x; g); g′) = ϕ(x; gg′).

In both cases ϕ can define a mapping g 7→ ϕg by ϕg = ϕ(g, .) or ϕg = ϕ(., g).

If ϕ is the mapping ϕg : M 7→ M associated with the action of g on M, it is

seen that the left action satisfies the homomorphism property ϕg′ ◦ fg = ϕg′g

and the right action satisfies the anti-homomorphism relation ϕg′ ◦ ϕg = ϕgg′ .

Since ϕg−1 = (ϕg)−1, ϕg is a diffeomorphism of M, so ϕ is a homomorphism

ϕ : G 7→ Diff(M) of G in to the group of diffeomorphisms of M. If ϕg is a

right(left) action, ϕg−1 is a left(right) action. In general, a transformation group

is a symmetry group of an object if the object does not change under the action

of group.

Definition 2.9. (Olver, 1999) Let Y ⊂ M. A symmetry of Y is an invertible

transformation ϕ : M −→ M that leaves Y fixed, so ϕ(Y) = Y.

In fact, starting with a given transformation group ρ : G 7→ G(M), the sym-

metry subgroup of a subset Y ⊂ M is GY = ρ−1(S(Y)) = {g ∈ G|g.Y = Y}. A
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transformation group G acting on M is a symmetry group of the subset Y if

every group element is a symmetry, so that GY = G. In this case, Y is said to be

a G-invariant subset of M.

Example 2.8. The square with vertices S = {(1,0), (0,1), (−1,0), (0,−1)}, the

linear and affine symmetry groups coincide. They consist of eight linear isome-

tries: the identity; rotations through 90, 180, and 270 degree; reflections through

the two coordinate axes; and reflections through the two lines making 45 de-

gree angles with the axes. However, there are some nonlinear transformation

that fix two adjacent vertices and interchange the other two. For instance, the

projective transformation

(x, y) 7→
(

x− y + 1
2x + 2y

,
−x + y + 1

2x + 2y

)

fixes (1,0) and (0,1) while interchanging (−1,0) and (0,−1). Since the projec-

tive transformation preserve edge of square and collinearity (for example all

points lying on a line initially still lie on a line after transformation), so there

are 24 projective symmetries of a square form a group isomorphic to S4.

An orbit of a transformation group is a minimal nonempty invariant subset. In

particular, a fixed point is a G-invariant point x0 ∈ M, so that g.x0 = x0 for all

g ∈ G.

Proposition 2.1. (Olver, 1999) Given a transformation group acting on a space

M, the orbit Ox through a point x ∈M is just the set of all images of x under ar-

bitrary group transformation : Ox = {gx|g∈G}. A subset S⊂M is G-invariant

if and only if it is the union of orbits.
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Definition 2.10. (Olver, 1999) An invariant of a transformation group is a real

function µ : M 7→ R which satisfies:

µ(g ◦ x) = µ(x),∀x ∈M,∀g ∈ G. (2.5)

Invariant functions are constant along each orbit and can be used to find equiv-

alence classes of objets undergoing various types of transformations.

Example 2.9. In the case of rotation acting on R2, consider the standard action

(x, y) 7→ (x cos(θ)− ysin(θ), x sin(θ) + ycos(θ))

of the rotation group SO(2) = {A ∈ O(2)|det(A) = 1} on R2. The orbits are

circles centered at the origin for any point x = (0,0). Any circle {x2 + y2 = r2}

centered at the origin is a rotationally invariant subset of the plane. These

circles are the orbits of SO(2). The only fixed point is the origin. Every other

invariant subset,e.g., {a < x2 + y2 = r2 < b}, is a union of circles.

Also, an invariant function µ : R2→ R is µ(x, y) =
√

x2 + y2.

Definition 2.11. (Steeb and Steeb, 2007) The group G is called a Lie transforma-

tion group of differential manifold M if there is a differential map ϕ : G×M 7→

M ; ϕ(g, x) = gx such that

1. e.x = x for the identity element of G, x ∈ M.

2.(g1.g2)x = g1.(g2x), ∀g1, g2 ∈ G, x ∈ M. are satisfied. Note that x is trans-

formed to gx by the transformation ϕ.
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Definition 2.12. (Olver, 1999) The isotropy subgroup of a point x ∈ M is Gx =

{g|g.x = x} ⊂ G consisting of all group element g which fix x.

Definition 2.13. (Olver, 1999) The action is said to be free if the only element of

G that fixes any element of M be the identity, ϕ(g, x) = g.x = x for some x ∈M

implies g = e, or equivalently every isotropy group is trivial. If the action is

free, every point of M is transformed ( ϕg(x) 6= x if g 6= e) and the mapping

g 7→ ϕ(g, x) is bijective for each ( there is a one-to-one correspondence between

G and each orbit in M). Thus if the action is free, then any given two points

x′, x are either unrelated or connected by a unique g, ϕg(x) = x′.

A group acts semi-regularly if all its orbits have the same dimension. The

action is regular if each point x ∈M has arbitrarily small neighborhoods whose

intersection with each orbit is connected (Olver, 2003).

Theorem 2.2. (Olver, 1999) If G is an r-dimensional Lie group acting analyti-

cally on a manifold M, then each orbit is an analytic submanifold of M. More-

over, a point x ∈M belongs to an s-dimensional orbit if and only if its isotropy

subgroup GM is a closed Lie subgroup of dimension r− s.

Definition 2.14. (Olver, 1999) Let G be a Lie transformation group that acts

regularly on the m-dimensional manifold M with s-dimensional orbits. A (lo-

cal) cross-section is an (m − s)-dimensional submanifold K ⊂ M such that K

intersects each orbit transversally and at most once.

Proposition 2.2. (Olver, 1999) If a Lie group G acts regularly on a manifold

M, then one can construct a local cross-section K passing through any point

x ∈ M.
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Example 2.10. Consider the standard action x 7→ Rx of the rotation group

SO(3), which is regular on M = R3 − {0}. The orbits are the spheres ||x|| = r,

and hence any ray Ra = {ka|ka > 0}, a 6= 0, provides a (global) cross-section.

An open line segment parallel to one of the coordinate axes will be a coordinate

cross-section provided it is not tangent to any orbit sphere. For example, the

vertical half-lines L = {x = c1, y = c2, z > 0} are local cross-sections. The most

general local cross-section is given by a curve that transversally intersects each

orbit sphere at most once.

2.7 Moving frame

Due to Olver (1999), Cartan’s construction of moving frame through the nor-

malization process was interpreted with the choice of cross section to the group

orbits. The existence of a moving frame requires freeness of the underlying

group action according to the following theorem.

Definition 2.15. (Olver, 1999) A moving frame is a G-equivariant map ρ : M→

G which clearly depends on the choice of cross-section K ⊂ M.

The group G acts on itself by left or right multiplication. If ρ(z) is any right-

equivariant moving frame then ρ̃(z) = ρ(z)−1 is left-equivariant and conversely.

All classical moving frames are left equivalent, but, in many cases, the right

versions are easier to compute.

Theorem 2.3. (Olver, 2003) A moving frame exists in a neighborhood of a point

z ∈ M if and only if G acts freely and regularly near z.

Theorem 2.4. (Olver, 1999) Let G act freely and regularly on M, and let K ⊂M

be a cross section, given z ∈ M, let g = ρ(z) be the unique group element that
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maps z to the cross section: g.z = ρ(z).z ∈ K then ρ is a right moving frame for

the group action.

Given local coordinates z = (z1, ..., zm) on M, let ϕ(g, z) = g.z be the explicit

formulae for the group transformations. The right moving frame g = ρ(z) as-

sociated with a coordinate cross section k = {z1 = c1, ..., zr = cr} is obtained by

solving the normalization equations ϕ1(g, z) = c1, ..., ϕr(g, z) = cr for the group

parameters g = (g1, ..., gr) in terms of coordinates z = (z1, ..., zm).

2.8 Prolongation to jet space

Unfortunately, the dimension of an orbit is commonly greater than or equal

to the dimension of the manifold, so the way to fix this problem is to create

a larger space called jet space so that invariant function could be found there

and group actions are prolonged so that the coordinates of jet space are appro-

priately transformed.

Moreover, most interesting group actions are not free, and therefore do not ad-

mit moving frame. There are two common method for solving this problem.

The first is to look at the product action of G on several copies of M, leading

to joint invariants (Olver, 2001b). The second is to prolong the group action to

jet space, which is the natural setting for the traditional moving frame theory,

and leads to differential invariants (Olver, 2009). Combining the two methods

of prolongation and product lead to joint differential invariants (Olver, 2001a).

In differential geometry, the jet bundle is a specific construction that makes a

new fiber bundle out of a given smooth fiber bundle. It helps to write differen-

tial equations on sections of a fiber bundle in an invariant form. Jets may also
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be seen as the coordinate free versions of Taylor expansions.

Historically, jet bundles are attributed to Ehresmann, and were an extension on

the method of Elie Cartan, of dealing geometrically with higher derivatives, by

imposing differential form conditions on newly introduced formal variables.

Given an r-dimensional Lie group G acting on an m-dimensional manifold M,

for a sub-manifold S ⊂ M of a prescribed dimension p < m, the group action

is prolonged to the sub-manifold jet bundles Jn = Jn(M, p) of order n.

2.9 Differential invariant

Olver (1999) proposed the jet space to generating the differential invariants

which is coordinated as independent variables, dependent variables and deriva-

tives of dependent variables called the derivative jet space. The coordinate of

derivative jet space Jn for a smooth function u = f (x) involves p independent

variables x = (x1, ..., xp) and q dependent variables u = (u1, ..., uq) and all the

partial derivatives of order up to n. A point in the derivative jet space Jn is de-

noted by (x, u(n)), where u(n) contains dependent variables and partial deriva-

tives up to order n. The action of group G on Jn is called the nth prolongation

and is denoted by pr(n)G. This prolonged group action is defined so that the

derivatives of function u = f (x) are mapped to corresponding derivatives of

transformed function u = f (x).

Specifically, for any point (x0;u(n)
0 ) ∈ Jn, the prolonged group action is defined

by

pr(n)(x0;u(n)
0 ) = (x0;u(n)

0 ). (2.6)
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In other words, the transformed derivatives are found by evaluating the deriva-

tives of transformed function f (x) at point x0. Restriction of the prolonged

transformation action to coordinates cross section components of ωn will be

normalized according to Theorem 2.4 to

ω1(g, zn) = c1, ..., ωr(g, zn) = cr, (2.7)

where r = dimG. Solving the normalized equations for the group transforma-

tion leads to the right moving frame g = prn(zn).

Theorem 2.5. If g = ρ(z) is the moving frame from the solution of normalized

equation, then I1(z) = ωr+1(ρ(z), z), ..., Im−r(z) = ωm(ρ(z), z) forms a complete

system of functionally independent invariants.

Any finite dimensional Lie group action admits an infinite number of func-

tionally independent differential invariants of progressively higher and higher

order.

Example 2.11. (Olver and Sommer, 2005) Consider Euclidean group E(2) acts

on M = R2 by mapping a point z = (x, u) to

(y, v) = (x cos(θ)− usin(θ) + a, x sin(θ) + ucos(θ) + b). (2.8)

The first prolongation pr(1)G will act on the space coordinated by {x, u, ux}. By

equation (2.8) and the definition of prolongation, the transformed coordinates
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are given by

x = x cosθ − usinθ + a, (2.9)

u = x sinθ + ucosθ + b, (2.10)

ux =
du
dx

dx
dx

=
sinθ + ux cosθ

cosθ − ux sinθ
. (2.11)

In other words, the prolonged group action is

pr(1)g ◦ (x, u, ux) = (2.12)(
x cos(θ)− usin(θ) + a, x sin(θ) + ucos(θ) + b,

sin(θ) + ux cos(θ)
cos(θ)− ux sin(θ)

)

given cross section normalized by

y = 0, v = 0, vy = 0. (2.13)

The classical Euclidean moving frame is obtained by solving equations (2.13):

θ = − tan−1(
u̇
ẋ
), a =

xẋ + uu̇√
ẋ2 + u̇2

, b =
xu̇− uẋ√

ẋ2 + u̇2
, (2.14)

where u̇ = du
dθ and ẋ = dx

dθ . Substituting the moving frame {θ, a, b} in the pro-

longed transformation (2.12) gives us

vyy = κ =
ẋü− ẍu̇

(ẋ2 + u̇2)
3
2

, vyyy =
dκ

ds
, vyyyy =

d2κ

ds2 + 3κ3, (2.15)

where d/ds = ‖ż‖−1d/dt.
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Differential invariants are local so the occlusion problem will be less by choos-

ing other points. Moreover they are applicable for any kind of curves.

Olver (1999) in the classical differential invariants proposed Euclidean curva-

ture and torsion for space curves. However, the derivatives order of Euclidean

curvature torsion are up to 2 and 3 order, respectively, and their affine analogs

depended on derivatives of up to order 6.

The practical utilization of differential invariants is limited due to their high

sensitivity to noise. Since in the condition of noisy original data, the numerical

differentiation amplifies the effects of noise, This motivated the high interest

in other types of invariants such as semi-differential (Van Gool et al., 1991),

or joint invariants (Olver, 2001a) and various types of integral invariants (Sato

and Cipolla, 1997; Manay et al., 2004).

Van Gool et al. (1991) tried to reduce high order differential invariants by joint

invariant to lower order derivatives which was evaluated at several points on

a curve. Weiss (1993) developed semi differential invariants which are appli-

cable in matching shapes despite occlusion due locality of signature. However

the fundamental problem of this type invariants as difficult ones still remains

due to high order derivatives.

Statistical approach by using moment invariants was introduced (Hu, 1962).

Moment invariants under affine transformations were derived from the clas-

sical moment invariants in Flusser and Suk (1993). Their limitation go back

this fact that high order moments are sensitive to noise which results in high

variances. Moreover, the error analytic related to these invariants is accessible

in Liao and Pawlak (1996).

24


	Front Matter
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Abstrak
	Abstract

	Main Chapters
	1 INTRODUCTION
	1.1 Motivation
	1.2 Problem statement
	1.3 Objectives
	1.4 Organization of the thesis

	2 LITERATURE REVIEW AND BACKGROUND THEORIES
	2.1 Introduction
	2.2 History of geometric invariants
	2.3 Transformation group and group action
	2.4 Euclidean and affine transformation
	2.5 Projective transformation
	2.6 Lie group action and invariant
	2.7 Moving frame
	2.8 Prolongation to jet space
	2.9 Differential invariant
	2.10 Signature
	2.11 Integral invariants
	2.12 Affine integral invariant
	2.13 Summation invariants for curves in R2
	2.14 Summation invariant of affine transformation group
	2.15 Summation invariant of Euclidean transformation group

	3 INTEGRAL INVARIANT
	3.1 Introduction
	3.2 Integral invariants for curve under projective transformation
	3.3 Integral invariants
	3.4 Evaluation of integral invariants 
	3.5 Parameterization dependency
	3.6 Independency of potentials to cross section
	3.7 Conclusion

	4 SUMMATION INVARIANT
	4.1 Introduction
	4.2 Summation invariant for projective transformation with 6DF 
	4.2.1 First case
	4.2.1(a) Summation invariants of PGL(3) with 5DF

	4.2.2 Affine transformation
	4.2.2(a) First case of the affine subgroup 
	4.2.2(b) Second case of affine subgroup


	4.3 Implementation of invariants for image under projective transformation
	4.4 Analysis and comparison results
	4.4.1 Approximation error
	4.4.1(a) Robustness under noise

	4.4.2 Classification of car contour

	4.5 Conclusion

	5 SPLITTING APPROACH TO DERIVE SUMMATION INVARIANTS OF PROJECTIVE TRANSFORMATION GROUP
	5.1 Introduction
	5.2 Split-transformation group PGL(3) 
	5.2.1 Invariant under transformation T

	5.3 Experimental results
	5.4 Conclusion

	6 FINDING MISSING DATA OF OBJECT UNDER PROJECTIVE TRANSFORMATION
	6.1 Introduction
	6.2 The method of constructing missing data
	6.3 Framework
	6.4 Experimental result
	6.4.1 Test for skull
	6.4.2 Implementation method for skull under noise
	6.4.3 Algorithm for missing data of MRI image

	6.5 Conclusion

	7 CONCLUSION
	7.1 Contribution
	7.2 Future work

	References
	List of Publications


