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NANOPROB SPION-C595 UNTUK PENINGKATAN KONTRAS IMEJ 

RESONANS MAGNET BAGI SEL KANSER PAYUDARA BERSANDAR 

HORMON 

 

ABSTRAK 

Kini pengimejan diagnostik berkesan dan khusus kanser payudara pada peringkat 

awal merupakan suatu cabaran yang besar. Nanoperubatan memainkan peranan penting 

dengan cara menyampaikan agen kontras disasarkan kepada sel-sel tumor tertentu yang 

membawa kepada penambahbaikan dalam ketepatan diagnostik dengan visualisasi yang 

baik dan demonstrasi tertentu sel-sel tumor. Kajian ini menyelidiki fabrikasi, pencirian 

dan penggunaan (in vitro dan in vivo) agen kontras magnetic resonan kanser payudara 

tertentu. Nanozarah C595 ferum oksida superparamagnetik antibodi terkonjugat 

monoklonal telah dihasilkan melalui kaedah EDC, untuk mengesan tumor payudara 

peringkat awal dengan ungkapan MUC1 yang melebih. Selain itu, antibodi terkonjugat 

monoklonal ke atas ferum oksida superparamagnetik monoklonal telah disahkan 

menggunakan teknik FTIR, XRD, TEM, SEM-EDAX serta zetasizer. Lebih daripada 

84% dan 98% peningkatan isyarat diperhatikan untuk imej wajaran T1 dan T2, masing-

masing pada dos 100 μg Fe/ml Spion-C595. Untuk menilai keberkesanan SPION-C595, 

beberapa kajian in vitro telah dijalankan. Kajian saitotoksisiti sel in vitro telah 

dijalankan ke atas sebilangan sel MCF 7, mendapati bahawa SPION-C595 tidak 

menunjukkan ketoksikan yang ketara. Tambahan pula, inkubasi berpanjangan sel MCF 7 

dengan SPION-C595 tidak menjejaskan morfologi sel serta keupayaan percambahanya. 



xxi 

Pemilihan nanoprob untuk jenis kanser payudara ini telah diperhatikan pada sel MCF 7 

dengan biru Prusia dan AAS. Lebih-lebih lagi, kaedah novel 3D ketul barah Prusia biru, 

telah dibangunkan untuk menunjukkan pengikatan nanoprob pada ketul barah in vitro. 

Keputusan menunjukkan  pengikatan signifikan nanoprob 200 μg Fe/ml terhadap tumor 

payudara MCF 7. Pengimejan in vitro MR menunjukkan perubahan yang jelas imej T2-

ditimbang pada pengurangan 76% berbanding dengan sel-sel yang tidak dirawat pada 

dos 200 μg Fe/ml. Selain itu, imej in vivo MR menunjukkan peningkatan signifikan 

masa relaksasi T1 dan T2 tumor payudara selepas administrasi SPION-C595. 

Peningkatan kontras yang signifikan kanser payudara masih boleh dilihat dengan jelas 

walaupun 24 jam selepas suntikan. Serapan tumor yang signifikan telah diperhatikan 

pada pepejal payudara dalam haiwan yang diuji. Dengan demikian dapat disimpulkan 

bahawa nanopartikel magnetik terkonjugat dengan C595 mempamerkan keupayaan 

kontras MR yang tinggi (T1 dan T2), dan dapat digunakan sebagai agen kontras kanser 

payudara tertentu. 
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SPION-C595 NANOPROBE FOR MAGNETIC RESONANCE IMAGE 

CONTRAST ENHANCEMENT OF HORMONE DEPENDENT BREAST 

CANCER CELLS 

 

ABSTRACT 

Currently, effective and specific diagnostic imaging of breast cancer in early 

stages is a major challenge. Nanomedicine plays an essential role by delivering the 

contrast agent in a targeted manner to specific tumor cells, leading to improvement in 

accurate diagnostic by good visualization and specific demonstration of tumor cells. 

This study investigated the fabrication, characterization and application (in vitro and in 

vivo) of a specific breast cancer MR contrast agent. C595 monoclonal antibody-

conjugated superparamagnetic iron oxide nanoparticles (SPION-C595) was developed 

by EDC method, for early stage breast tumor detection with MUC1 over-expression. 

Moreover, monoclonal antibody conjugation on superparamagnetic iron oxide was 

confirmed using FTIR, XRD, TEM, SEM-EDAX and zetasizer techniques. More than 

84% and 98% signal enhancement was observed for T1 and T2 weighted images, 

respectively at doses of 100 µg Fe/ml of SPION-C595. To evaluate the efficacy of 

SPION-C595 several in vitro studies were conducted. In vitro cell cytotoxicity studies 

were conducted on the number of viable MCF 7 cells. It was found that SPION-C595 

did not exhibit significant toxicity. Furthermore, prolonged incubation of the MCF 7 

cells with SPION-C595 did not affect the cell morphology and its proliferation ability. 

Selectivity of the nanoprobe for this type of breast cancer is observed on MCF 7 cells by 
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Prussian blue and AAS. Moreover, 3D solid tumor Prussian blue, a novel method was 

established to demonstrate the binding of the nanoprobe on solid tumor in vitro. The 

results show significant binding of 200 µg Fe/ml nanoprobe towards MCF 7 breast 

tumor. The MR in vitro imaging shows the obvious change of T2-weighed images at a 

76% reduction compared with untreated cells at doses of 200 µg Fe/ml. Moreover, MR 

in vivo images shows significant enhancement of T1 and T2 relaxation times of breast 

tumor after administration of SPION-C595. Significant contrast enhancement of breast 

cancer could still be clearly seen even 24 hours post-injection. A significant tumor 

uptake was observed in solid breast in the tested animals. It thus can be concluded that 

the magnetic nanoparticles conjugated with C595 exhibit high dual (T1 and T2) MR 

contrast potential, and can be applied as specific breast cancer contrast agent. 
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1 CHAPTER ONE:  INTRODUCTION 

1.1 Background of the Study 

Breast cancer is a major global health problem and the leading cause of death 

among women of all ethnic backgrounds. In Malaysia, breast cancer is the most common 

form of cancer where one in 19 Malaysian women will be diagnosed with cancer at the 

age of 85 ("Facts & Figures about Breast Cancer," 2014).  The commonest cancer 

among females in Penang was reported to be breast cancer with 912 cases from 1994 till 

1998. The Chinese had highest incidence of 648 cases, followed by Indians and Malays 

with 89 and 171 cases, respectively (Zarihah et al., 2003). The number of cases 

increased to 1087 cases among females during the period 1999 to 2003, when breast 

cancer was again mentioned as the most common form of cancer type among females. 

At that time, Malays had the lowest age standard rate (ASR) 25.8 in comparison with the 

Chinese and Indians  rate (ASR 45.6 and 32.4), respectively ( Rai et al., 2005).  During 

the period 2004-2008, 1699 cases (ASR 48) were reported. Chinese females had the 

highest incidence compared to Indians and Malays, who had 612 more cases compared 

to the period 1999 to 2003 (Manan et al., 2010). 

Breast cancer mortality has decreased due to hormone replacement therapy, 

mammography screening, and complete axillary lymph node dissection (ALND) 

(Giuliano et al., 2011; Njor et al., 2012; Olsen et al., 2005; and Zahl et al., 2005). 

Nevertheless, new diagnostic methods and treatments are needed. The surgical 

procedure normally performed is the removal of the whole breast or that part of the 

breast which contains cancer cells. This is followed removal of the lymph nodes 
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(positive cancer receptors), lining over the chest muscle or part of this section. After 

surgery the oncologist decides whether the patient will be given radiotherapy, 

chemotherapy or both to kill any remaining cancer cells. Chemotherapy and 

radiotherapy will decrease the chance of mortality, but they are damaging normal tissues 

and putting organs at risk. It has been suggested to dose the normal tissues with 

antibody-nanoparticle conjugates to minimize off-target effects (Brannon-Peppas et al., 

2012; Fay et al., 2011). 

Imaging has actually been preferred in scientific and technological applications 

due to its visual as well as intuitional interface. Biological imaging has been used in 

fundamental biology and medical sciences. Therefore, advanced techniques are 

continuously being launched to meet a wide range of biomedical requirerments when 

there are many types of imaging devices available. Thus, by enhancing imaging 

techniques, causes exceeding the conditions of current techniques. Developing new 

imaging tools, or even upgrading the current tools, requires a lot of effort and resources 

before launching to the laboratories and the hospitals (Safriel, 2003).  Due to this fact, 

with the development of imaging equipment, many researchers were trying to fabricate 

probs and contrast agents to increase the detectability and sensitivity of imaging 

instruments. Therefore, the interrelation of biological systems and contrast imaging is 

producing remarkable biological information in visual forms. Without applying contrast 

agents, achieving these detailed images is difficult. Thus, imaging probes and the 

contrast agents are important inquiries in biological and medical sciences that provide an 

imaginative and farsighted vision for the analysis of biological information and the 

diagnosis of diseases. Recently, molecular imaging enhanced the capability of 
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biomedical images with diagnostic tools at the cellular and molecular levels, attracting 

much attention. Molecular imaging combines the molecular and in vivo studies (Park et 

al., 2009). 

As the number of cancer cases increases, it is necessary to find a way to detect 

cancer in early stages. According to Radermacher et al., (2009), early diagnosis has 

become easier with genetic testing and radiologic approaches such as mammography, 

thermography, computerized tomography scan (CT scan), ultrasound, magnetic 

resonance imaging (MRI) and positron emission tomography (PET) as well as biopsy. 

Although all of these diagnostic techniques have been utilized, still breast cancer was 

only diagnosed years later. Despite different types of imaging, molecular imaging has 

recently emerged enabling the discovery and identification of new molecular pathways 

of living organisms in a non-invasive fashion. This has opened up new horizons into 

diagnosis, which has attracted the attention of many researchers. Molecular imaging is 

useful for the early detection of cancer. It can also help accelerate research and 

development of new drug delivery techniques for better therapeutic agents. 

Diagnostic tools have been useful to detect and distinguish various different 

types of diseases. Despite their useful applications, they have acted as impediments as 

well. For instance, ultrasound has been used for detecting cancer in patients, however, 

for patients at higher risk, this tool is not suitable due to the many false-positive and also 

false-negative data produced. The CT scan is now commonly used to diagnose the inner 

mammary node and to examine the chest and axilla after mastectomy. However, the use 

of the CT scan can be harmful due to the high intensity of ionising radiation which can 

lead to cancer. The dye utilized in the CT scan can also cause allergic reactions in 
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certain individuals. The PET scan is another effective tool to diagnose and detect cancer. 

This imaging tool provides an anatomical and functional view of the tested cells. 

However, it is not able to detect tumors which are less than 5-10 mm. Furthermore, 

sensitivity of the mammography is inversely proportional to the breast density. Increase 

in breast density will reduce the sensitivity of detection. However, Kolb et al., (2002) 

reported that mammography is also not successful in young women who do not have 

breast density. It is noteworthy to mention that, the MRI is a non-invasive and very 

highly sensitive imaging instrument which can identify the primary site of breast cancer 

with a painless examination, by producing cross-sectional images of internal organs and 

full body inner structures just by using external magnetic fields and radio waves. Based 

upon the water content of each tissue and the magnetic properties of a certain lesion, 

various tissues or even organs of the body can be distinguished from each other by 

detecting different signals from images. The MRI has characteristics, but this can be 

compensated by using a special contrast agent with great relaxivity. Generally, a 

magnetically active material, which is known as a contrast agent, is applied to obtain 

clear images of internal structures or abnormalities. The MRI technique does not deal 

with ionizing radiation however, unlike other diagnosis tools such as CT, PET, and 

single-photon emission computed tomography (SPECT) which depend on ionizing 

radiations. The high energy radiations can damage the deoxyribonucleic acid (DNA). 

Besides the diagnosis tools and techniques, antibodies and monoclonal 

antibodies are widely used in cancer diagnosis in vitro and in vivo. One of the targets of 

the breast tumor is the breast specific membrane antigen (MUC1). The capability of 

MUC1 for causing a tumour is related to cellular transformation, which is used as a 
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diagnostic marker in cancer that is accompanied with antibodies against the tumor 

associated antigen (TAA). The epithelial mucin generated by the MUC1 gene is present 

in ductal epithelial cells and is more than 90% due to the presence of estrogen receptors 

in breast cancers. The expression of the MUC1 protein is considerably unregulated on 

tumors, which undergoes alteration in glycosylation as well as distribution, leading to 

exposure of the core protein of the tandem repeat region. Overexpressions of mucin 

together with distribution on the cell surface are believed to affect the biological 

behavior of the tumor cells at the time of malignant transformation. MUC1 in cancerous 

cells are different from the one in normal cells in terms of light O- linked glycosylation. 

Moreover, mucins are found at the epithelial surface of the mammary gland, kidney, 

uterus, prostate and testis (Hollingsworth et al., 2004, and Mcguckin et al., 1995). 

Therefore, the MUC1 antigen may be a useful diagnostic target to minimize the growth 

of incurable cancers (Hattrup & Gendler, 2006 ; Wang et al., 2007). 

Bon et al., (1999) and Rahn et al., (2001) actually found that the presence of any 

MUC1 in most of the tumor cells is associated with an improved prognosis. However, a 

significant relationship between expanding amounts of positivity and improved 

recurrence free survival or overall survival has been reported. 

Previous studies showed that several methods in MR imaging have been carried 

out in the form of non-contrast enhancing techniques as well as enhancing techniques. In 

1988, Gd-DTPA, the first MRI contrast agent was developed, and it opened a door into 

an exciting research area that focuses on the contrast-enhanced method. The MRI 

contrast agents consist of two categories; T1 and T2 contrast agents. They differ in their 

magnetic properties as well as relaxation mechanism (Hengerer et al., 2006; Wang, 
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2011; Zhou et al., 2013). MR imaging methods are, (a) T1-weighted, which improves the 

image contrast, (b) T2-weighted contrast agent, mainly used for identifying the early 

stage tumors and malignancy, (c) diffusion-weighted magnetic resonance imaging, 

which  has the potential to detect a malignant tumor by mapping the diffusion process of 

water molecules in a tumor, in vivo (Kuhl et al., 1999; Kuroki et al., 2004; and Sinha et 

al., 2002). The accuracy and reliability of MR imaging, using contrast agents is 

significantly better in high risk cancer women, because the contrast of the specific 

region in the tissue will be enhanced due to the affect the signal has on the surrounding 

tissue (Group., 2005; Kriege et al., 2004; and Kuhl et al., 2000). These contrast agents 

are used primarily to increase the sensitivity of the MRI to detect and characterise 

several pathologies. Therefore, they continue to be used as a new series of contrast agent 

or probes for clinical indications (Wang et al., 2001). 

1.2 Statement of the Problem 

The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as 

a contrast agent may facilitate their accumulation in cancer cells and enhance the 

sensitivity of MR imaging. The MRI contrast media may perhaps improve its application 

for imaging of highly soft tissue interms of safty (Brannon & Blanchette, 2012). 

Early detection of breast cancer is the key to designing effective treatment 

strategies and prolonging life span. By considering the usefulness of the MR imaging 

tecchnique, MRI techniques can be used to detect breast cancer through fabricated 

SPION-C595 nanopribe using a simplifed method. This might improve the sensitivity of 

the MRI for detecting early stage breast cancer tumors. The nanoprobe will be in the 
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category of MR contrast agents. Moreover, it must be noted that much research in 

nanotechnology and molecular imaging field have been done using different types of 

nanoparticles and antibodies which were conjugated. With regard to existing researches, 

the SPION-C595 fabricated nanoprobe will target MUC1 expression on the MCF 7 cells. 

However, the MR in vivo imaging study has not yet succeeded. 

1.3 Research Objectives 

The aim of this research is to develop a nanoprobe that consist of 

superparamagnetic iron oxide (SPIO) conjugated to a C595 Monoclonal antibody for 

early detection of breast cancer. The research objectives are as follows: 

1. To functionalize and characterize SPION-C595 nanoprobe. 

2. To determine the sinsitivity and selectivity of the nanoparobe to breast cancer 

cells (MCF 7). 

3. To determine T1 and T2 relaxation times of a SPION-C595 in magnetic 

resonance imaging. 

4. To characterize the biological distribution of the nanoprobe (SPION-C595) at 

optimal dose in xenograft tumor model. 

1.4 Scope of Research 

In this study, the nanomag-D-spio (20 nm) and the MUC1(C595) monoclonal 

antibody were used as the main compounds for the nanoprobe fabrication. Following 

physical and chemical characterization, in vitro and in vivo studies were performed to 

assess the effectiveness of the nanoprobe. The breast cancer cells (MCF 7) and 
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endothelial cells (EAhy.926) utilised throughout the study. To determine the properties 

of the nanoprobe in vivo, NCR NU/NU nude mice transplanted with the MCF 7 breast 

cancer were used. To determine the enhancement of T1 and T2 relaxation times, 1.5 T 

MRI machine was used. The T1 and T2 relaxation enhancement was optimized in 

digested breast tumors (MCF 7). The images of the samples were obtainted using spin-

echo sequences. T2
* relaxation is seen only with gradient-echo (GRE) imaging, 

nevertheless, the scop of MR imaging of this thesis focused on the spin-echo sequences. 

The SPION-C595 is designed to target overexpression of MUC1 receptor on breast 

cancer as the nanoparticle will be conjugate with the MUC1 antigen (C595 monoclonal 

antibody). Moreover, the biodistribution of new nanoprobe will be checked for liver, 

kidney, and spleen together with the breast tumor. One of the limitations in this study is 

the lack of accessibility to the MR imaging for in vivo studies. To overcome this 

problem, disgested tumor samples were sent for MR imaging. For distribution in 

addition to the tumor tissues, spleen, kidney and liver were also analyzed. 

1.5 Significance of the Study 

MRI has an important role in cancer prediction as well as diagnosis. 

Paramagnetic contrast agents are actually used to enhance the image contrast for better 

cancer detection as well as for the evaluation of treatment efficacy. Numerous efforts 

have already been made to fabricate better contrast agents with significant relaxivity, 

low toxicity, and also tumor specificity. This achievement helps to attain biological and 

functional details in an image as a result of the composition of the biological system 

coupled with the contrast agent. The ultimate goal of using SPIONs in diagnosis is to 

reduce patient suffering by applying selective treatments where efficiency is increased 
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through local concentrations, and general side effects are avoided. Targeted SPIONs 

might enhance the signal intensity as specific breast cancer contrast agents to recognize 

the breast cancer lesion in MR imaging. In addition, the metastasis of breast cancer cells 

will be limited. Early stage cancer diagnosis, that is, before it spread is more likely to be 

treated successfully. In cases where the cancer has spread, treatment becomes 

increasingly difficult, and generally a person’s chance of survival decreases. Early 

detection means using an approach that enables breast cancer to be diagnosed before it 

occurrs. In contrast, breast cancer found during screening exams is more likely to be 

smaller and still confined to the breast. Doctors believe that early detection examination 

for breast cancer will save thousands of lives every year and that many more lifetimes 

could be saved in case if more, women and their health providers will take advantage of 

these types of tests. 

1.6 Thesis Organization 

This thesis consists of five chapters, starting with the introduction in Chapter one 

which consists of a review of breast cancer rate in Penang and Malaysia, the statement 

of the problem, research objectives, scope of the study, significance of study, and thesis 

organization. Chapter Two covers the theoretical background and literature review. It 

reviews the magnetization, classification of contrast agents, drug delivery, USPIO and 

antibody conjugation, molecular imaging, MUC1 and introduces breast cancer and the 

nanoprobe for breast cancer detection. In Chapter three, materials and equipment, 

characterization, in vitro and in vivo methods are explained. Chapter Four, displays all 

results in this study are reported followed by the discussion section. Chapter Five will 

summarizes the work followed by the conclusions and give suggestion for future work. 
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2 CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Two well-known forms of superparamagetic iron oxide (SPION) are magnetit 

(Fe3O4) and maghmetite (γ-Fe2O3). Ferrit substances that are mixed oxides of iron with 

other types of transition metal ions, for example Cu, Co, and Mn, are considered to be 

superparamagnetic. However, the scope of this research is just focused on the 

superparamagnetic properties of conjugated iron oxide nanoparticles with monoclonal 

antibodies. This chapter will cover the literature review on this subject and discuss 

topics such as magnetization, contrast agents and their classifications, 

superparamagnetic iron oxide nanoparticles that have been conjugated with different 

types of monoclonal antibodies as targeted nanoprobes and contrast agents, molecular 

imaging and drug delivery, breast cancer, and the chapter concludes with a summary. 

2.2 Magnetism 

The movement of an electron induces magnetism, which includes orbital motions 

and the spin of an electron. The electron is like a spinning sphere of charge, and its 

rotation causes a magnetic field around the spin. The orbital motion of the electron 

creates flow of charge, with a magnetic dipole generated by the flow. Then, all the 

magnetic dipoles in the molecular orbitals assemble into a net magnetization that 

generates currents loops around atoms. Virtually all materials naturally possess magnetic 

fields, where their magnetic properties are controlled by either spin or orbital motion 

(Beiser, 1986; Kittel et al., 1976). 

https://www.google.com.my/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLiterature_review&ei=eGsiUf-5L8uJrAfw9IBY&usg=AFQjCNGyfP0TYLL27dq337re6XA6ayXkqw&bvm=bv.42553238,d.bmk


11 

 Magnetization 

The homogeneous magnetic properties of ferri and ferro magnetic substances are 

noticeable. The alignment of ferromagnetic materials is similar to that of anti-

ferromagnetic materials, which is in an anti-parallel order. Their unequal magnitude 

causes an impulse magnetic-field, where more than two interpenetrating sublattices are 

present. Ferrimagnetism occurs in ionic substances, for example, in magnetite (Fe3O4) 

which has two sublattices. The sublattices are an octahedral and a tetrahedral which are 

divided by oxygen. 

To magnetize a substance, the substance should be placed in an external 

magnetic field (H). The intensity of the substance per unit volume is termed 

magnetization (M). The flux of the magnetic lines of forces exerted on the substance in a 

magnetic field is called magnetic induction (B), which is represented by as; 

B= H + 4πM                                                                                                      (2.1) 

The 4 π factor originates from the unit field generated by a unit polar on the 

surface of a sphere with 1 cm radius, which surrounds the pole with a surface area of 4 

π2 (Trout, 2000).  The magnetism of a material is controlled by the various arrangements 

of magnetic moments and also their responses to an external magnetic field. The 

magnetic materials are classified into four groups as shown in Figure 2.1, which includes 

paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism. 

Faraday’s law of induction, due to 19th century physicist Michael Faraday. He 

explained electromagnetic induction using a concept he called lines of force. This is a 
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basic law of electromagnetism predicting how an electric current produces a magnetic 

field and, conversely, how a changing magnetic field generates an electric current in a 

conductor. The equation that expresses Faraday’s law is defined as below, 

             Ԑ = −
𝑑𝐹

𝑑𝑡
                                                                                                      (2.2) 

Where Ԑ is the electromotive force (EMF), that refers to the potential difference 

across the unloaded loop, and 

𝐹(𝑡) = ∫ 𝐵(𝑥, 𝑡). 𝑑𝑆.                                                                                        (2.3) 

In the magnetic flux through a surface S bonded by a contour C.  

 Magnetization units 

There are diverse sets of unit systems which have been used in magnetization 

measurement. They consist of the CGS (centimetres, grams, and seconds) system and 

the SI (system international) unit systems. In the Gussian system, magnetization (M) is 

represented as electromagnetic units per volume (emu/cm3) or (emu/g). However, in SI 

units, magnetization (M) is defined as Tesla (T). Magnetic field (H) is measured in 

Oersted (Oe), while, in SI, magnetic field is measured in amper per meters (A/m). 

2.3 Pinciple of Magnetic Resonance Imaging (MRI) 

MRI is a non-invasive medical technique used to scan human body (soft tissue). 

The MRI phenomenon was discovered independently by Felix Block and Edward 

Purcell in 1946. Basically an MR device consists of (a) a big magnetc to generate the 

applied magnetic field B, (b) coils to make the magnetic field homogeneous, (c) 
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radiofrequency (RF) coil for transmission of a radio signal, (d) a receiver coil to sense 

the emitted RFsignals, (e) gradient coils for spatial localization of the signals, and (f) a 

computer for reconstruction of the received RF signals into image. 

MRI images signal from atomic nuclie with a net spin. Spin is a vector quantity 

which comes in multiples of ½ and can be positively (+) or negatively (-) charge. 

Moreover, spin is an intrinsic property of materials which can be observed in the form of 

angular momentum in elementary particles, composite particles, electron and atomic 

nuclei. Atomic nucleus consists of nucleons (proton and neutron). Two or more nucleons 

with spins of opposite signs can pair up to eliminate the presence of a spin. However, 

unpaired nuclear with a net spin has intrinsic magnetic dipole moment µ which is the 

source of MRI signal. There are manu nuclei with net spin such as 13C, 19F, 31P, 23Na and 

1H where MRI signal can be imaged. However, Hydrogen nuclei are abundant in the 

body tissue as water, fat, protein and macromolecules. Therefore, in MRI, the signal 

from Hydrogen nuclei which consists of a single positively charge proton is imaged. 

During MRI procedure the free hydrogen nuclei (proton) in human body align to the 

direction of the magnetic field with a net magnetic moment M which is parallel to B0. 

Similar to gyroscopes, the nuclei precess by a phenomenon called Larmore precession 

about the magnetic field direction. The nuclei precess with a frequency known as 

Larmore frequency ω0 which is defined as follows: 

ω0 = γ B0                                                                                                                   (2.4) 

where γ is gyration ratio which equal to 42.58 MHz/T for hydrogen, and B0 is the 

applied magnetic field strength. In a typical medical clinical application, the B0 used is 
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between 1.5 or 3 T. at 1.5 T, the Larmore frequencies ω0 for Hydrogen nuclei are 63.9 

MHz. altening the B0 strength affects the Larmore frequency at which the protons 

precess. Consequently, increase the imaging period. Alignment of M (hydrogen proton) 

to B0, a radio-frequency (RF) pulse with Larmor frequency value is introduced 

perpendicular to B0. This pulse causes proton turns over to the high energy state. The 

total M flipes away from B0 (Mz orientation) with a flip agnle to Mxy axis. The longer the 

applied RF pulse the stronger and bigger the deflection of M and higher the angle (90 or 

180 degrees). Therefore, when the frequency is turned off, the high energy hydrogen 

nuclei emitted is absorbed RF energy and turn to their low energy (ground) state. Thus, 

M realign themselves again and parallel to B0. The return of net magnetization to the 

equilibrium state is called relaxation. During relaxation, the emitted RF energy from the 

protons as they move to realign with the magnetic field, and fall out of phase with each 

other is picked up as MRI signal by RF COIL in the MRI system. The signal is 

measured as function of time. 

However, not all the RF energy given off by the proton is detected as signal; 

some are observed as thermal energy which heat up the immediate tissue called lattice. 

Relaxation process in two forms, longitudinal (parallel) and transverse (perpendicular) to 

B0. The time constants which describe how the relaxation processes take place are called 

T1 and T2 respectively. 

Intracranial calcification refers to the deposition of crystalline calcium in the 

parenchyma in the brain. Calcification could appear in physiological as well as 

pathological conditions. However, calcium deposits can be associated with several 

intracranial pathologies including tumors. For diagnosing, the location and 
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characteristics of the calcification in these lesions plays an important role. In MRI, 

calcification appears with various signal intensities on T1 or T2-weighted images (Nu et 

al., 2009), which makes it difficult to identify definitively as calcium. However, in 

gradient-echo acquisitions, calcifications appear as hypointense. It has been recognized 

that using phase helps to discriminate between calcium and iron because calcifications 

tend to be diamagnetic and iron paramagnetic. Therefore, they appear with the opposite 

signal intensity in filtered phase images (Zhu et al., 2008). Dou et al., (2016) studied the 

diagnostic capabilities of susceptibility-weighted imaging (SWI) to detect prostate 

cancer and prostatic calcifications. According to the results, susceptibility-weighted 

imaging showed more sensitive and specific in compare to conventional magnetic 

resonance imaging, diffusion-weighted imaging, and computed tomography in detecting 

prostate cancer. Moreover, susceptibility-weighted imaging identified the prostatic 

calcifications similar to computed tomography. Bai et al., (2013) investigated on 

prostate cancer patient as well as the patients with benign prostatic hyperplasia by using 

3 T MR and a 16-row CT scanner. CT demonstrated calcifications in 22 patients which 

were all detected by SWI whereas only 3 were detected by conventional MRI. 

Compared to CT, SWI demonstrated 100% in the diagnostic sensitivity, specificity, 

accuracy in detecting calcifications in prostate but conventional MRI demonstrated 

13.6% in sensitivity, 100% in specificity, 75% in accuracy. 

2.3.1 T1 relaxation time 

T1 relaxation time measures how net magnetisation vector M recovers to its 

ground state (Mz orientation) in the direction of B0. It’s also known as spin-lattice 

relaxation time, due to the process whereby the excited protons (spins) released its 
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absorbed energy back into the surrounding lattice. Thus, thermal equilibrium is created 

between the spin (hydrogen proton) and the lattice. T1 values are longer at higher field 

strengths. T1 relaxation is an exponential process; the equation governing this behaviour 

is as follows: 

Mz (t) = Mmax [ 1- e -t/T1]                                                                                    (2.5) 

Where Mz (t) is the magnetization at time equal t, Mmax is the maximum 

magnetization at full recovery along the z orientation. The spins are completely relaxaed 

after t is 3-5 T1 times. This recovery rate is a function of T1 which is unique to every 

tissue. The Mz recovery rates ineach tissue permit MRI to differentiate between different 

types of tissue. Signial in MRI images is high or low (bright or dark). Therefore, fat 

appear bright in T1 weighted image because it has long T1. While water such as 

cerebrospinal fluid (CSF) is dark owning to its low T1. 

2.3.2 T2 relaxation time 

Immediately after a 90 ͦ RF pulsed is applied the net magnetization M0 flipped 

onto the XY plane. Thereby, there is gradual lost in phase movement of the spins. 

Consequently, there is a rapid decrease (decay) of the net magnetization between the 

spins in XY plane. This spin-spin relaxation time is termed T2 which is an exponentioal 

function and its defined as follow: 

Mxy = M0e -t/T2                                                                                                   (2.6) 

Similar to radioactive decay, MXY is the amount of magnetization that decayed at 

a time t and M0 is the initial net magnetization. Both T1 and T2 processes occure 
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simultaneously. T2 is less than or equal to T1, the net magnetization in XY plane decay 

to zero and then the longitudinal magnetization recovers until there is no M0 along Z 

plane. Due to short T2 time in semi-solid tissues and tendons their image appears dark on 

T2-weighted images. T2 is long in water therefore urine and CFS appears bright on T2-

weighted images. However, there is a phenomenon called T2
* which is due to magnetic 

inhomogeneity (non-uniformity in the scanner magnet itself) and magnetic susceptibility 

effects from the patient inside the field. T2
* decay has greater magnitude than T2 in 

tissues and this causes rapid signal loss. Moreover, in a perfectly uniform magnetic field 

and the patient without susceptibility effects, the T2 and T2
* would be equal. 

2.4 MRI contrast agents and principels 

Imaging has been widley used in scientific and technological application due to 

its visual ans intuitional interface. In particular, biological imaging has been a rapidly 

growing field, nor only in fundamental biology but also in medical science. An image 

must have the proper brightness and contrast for easy viewing. Brightness refers to the 

overall lightness or darkness of the image. Contrast is the difference in brightness 

between objects or regions (Na et al., 2009). Image consists of a collection discrete cells, 

that known as pixels (picture elements). Each of the pixels has a pixel value which 

describes how bright that pixel is, and/or what color it should be. For a grayscale 

images, the pixel value is a single number that represents the brightness of the pixel. 

Where for a particular portion of the image, if the pixel is a small block, it represents the 

amount of gray intensity to be displayed. For most images, pixel values are integers that 

range from 0 to 255 (black to white). 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixel.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
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MRI is currently one of the most powerful diagnostic tools in medical science. It 

has been the preferred tool for imaging the brain and the central nerve systems, for 

assessing the cardiac function, and for detecting tumors. Because it can give anatomic 

images of soft tissued with high resolution, it is expected to become a very important 

tool for molecular and cellular imaging. Although MRI can give detailes images, making 

a diagnosis based purely on the resulting images may not b accurate, since normal 

tissues often show only small differences in relaxation time. MRI contrast agents, which 

can help clarify images, allow better interpretation in such cases (Caravan et al., 1999; 

Semelka et al., 2001) 

The MRI contrast enhancement occurs as a result of the interaction between the 

contrast agents and neighboring water protons, which can be affected by many intrinsic 

and extrinsic factors such as proton density and MRI pulse sequences. The basic 

principale of MRI is based on nuclear magnetic resonance (NMR) together with the 

relaxation of proton spins in a magnetic field. When the nuclei of protons are exposed to 

a strong magnetic field, their spins align either parallel or antiparallel to the magnetic 

field. There are two different relaxation pathways (Fang & Zhang, 2009). 

The first, called longitudinal or T1 relaxation, involves the decreased net 

magnetization (Mz) recovering to the initial state. The second, called transverse or T2 

relaxation, involves the induced magnetization on the perpendicular plane (MXY) 

disappearing by the dephasing of the spins. Based on their relaxation processes, the 

contrast agents are classified as T1 and T2 contrast agents. Commercially available T1 

contarst agents are usually paramagnetic complexes, while T2 contrast agents are based 
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on iron oxide nanoparticles, which are most representative nanoparticle agents (Kim et 

al., 2009; Shokouhimehr, 2010). 

2.5 Classification of contrast agents in MRI 

Current diagnostic tools in the industry are as follows: CT, optical imaging (OI), 

MRI, PET, SPECT, fluoroscopy and, ultrasound. The purpose of utilizing these imaging 

tools is to study the cellular functions of living organisms with related diseases, by 

obtaining biological details as well as functionality statuses at an early clinical stage. 

Imaging techniques have been commonly applied in science and technology due to their 

visual and inherent interface. They are widely used in fundamental biology as well as in 

medical science, especially in cases of biological imaging. However, there are many 

imaging tools available and researchers are trying to improve and advance techniques 

for a variety of biomedical applications. Usually, new imaging tools are required to be 

tested through in vitro and in vivo experiments before being applied clinically (Brown et 

al., 2011). 

The MRI is currently the most effective diagnostic tool in medical imaging. It 

has been the preferred tool for imaging the human brain along with the central nervous 

system, for assessing cardiac function, and for detecting tumor malignancy. It provides 

anatomical images of the soft tissues with higher resolution. Moreover, it has become an 

essential tool for molecular as well as cellular imaging. The MRI is based on assessing 

water molecules or the relaxation time of protons. The proton relaxation rate differs 

from others in different environments, because the property of water molecules vary 

according to the physical environment (Na et al., 2009; Park et al., 2009). 
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Accordingly, through the use of innovative imaging technologies, several studies 

have been carried out to design contrast agents to improve the sensitivity and 

detectability of such specific materials. Contrast agents help in obtaining biological and 

functional details in images through the composition of biological system compositions 

with the contrast agents (Koo et al., 2011). Such information from images would not be 

obtainable without the use of contrast agents. Imaging probes and contrast agents are 

important research tools in the field of disease diagnosis. Nowadays, among other non-

invasive techniques, MR imaging has been launched in clinical diagnosis applications. 

To enhance this tool, innovative materials such as magneto-pharmaceuticals products are 

needed known as contrast agents. Contrast agents increase the contrast between normal 

and abnormal tissues in targeted body organs as well as the blood flow rate (Coroiu, 

1999). Currently, biomedical imaging attracts the attention of researchers as a result of 

its enormous analytical and diagnostic capability at the molecular or cellular level. 

Hence, a cross of molecular biology and in vivo imaging which is a field called 

molecular imaging has emerged (Kumar, 2007). Paramagnetic contrast agents were 

categorized into two groups, which consists of gadolinium (III) chelates, representative 

of the T1 (longitudinal relaxation time) agent and the SPIO nanoparticle, representative 

of the T2 (transversal relaxation time) agent. T1 agents are extremely toxic, while T2 

agents are nontoxic. 

The SPIOs contrast agents (nanoprobes) are normally composed of one 

superparamagnetic iron oxide core and a shell (Babes et al., 1999). The characteristics of 

nanoprobes that can be used as contrast agents are: (a) the surface of nanoparticles must 

be modified for efficient attachment to biological materials; (b) the cellular uptake must 
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be easy; (c) there must be great distribution and function of the nanoparticles for cellular 

imaging; (d) they must cause very few side effects, and (e) they must be easy to deliver 

to the target (Kuo et al., 2006). 

It was highlighted that dextran-coated iron oxides are safe for the body, and can 

be circulated in the blood and sequestered by phagocytic kupffer cells in the normal 

reticuloendothelial system (RES) of the liver to clear from the blood. Therefore, nano-

sized iron oxide coated with dextran, has been utilized for liver contrasting (Wang &Yi-

Xiang, 2011). The classification of SPIO contrast agents is done according to their size, 

as well as their physiochemical and pharmacokinetic properties. A nanoparticle (NP) is 

considered to be SPIO if it has a size greater than 50 nm and an USPIO if the 

nanoparticle is smaller than 50 nm (Berry, 2009, Bonnemain, 1998, and Pankhurst et al., 

2003). 

2.5.1 Positive contrast agents 

When the nuclei of protons are exposed to a strong magnetic field, their spins 

alignment will either be parallel or antiparallel to the magnetic field. There are two 

relaxation pathways. The first one is called the T1 longitudinal relaxation, which 

involves the decreased net magnetization recovering to the primary state (Zarihah et al., 

2003). The second one, identified as transverse or T2 relaxation, comes with the 

magnetization produced on the perpendicular plane (Mxy) which disappears by the 

dephasing of the spins. According to their relaxation procedures, the contrast agents are 

categorized as T1 and T2 contrast agents. Commercially existing T1 contrast agents are 
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generally paramagnetic complexes, since T2 contrast agents are based on iron oxide 

nanoparticles agents (Schwert et al., 2002). 

A net magnetization (M) vector which is composed of Mz and Mxy, causes the 

spins to interrelate. When the spins receive an RF pulse, a transverse magnetization 

(Mxy) is generated on their xy-plane due to the RF pulse flipping exactly 90 degrees in 

the direction of the magnetic field. According to the theory, by transferring energy, Mz 

changes, and this causes Mxy to also change, leading to spin dephasing. This 

phenomenon occurs and directly after applying the RF pulse and randomizing the 

magnetization of excited spins with the same phase coherence. The spin phase starts to 

vanish in the xy-plane as a result of the various magnetic fields that the protons 

experience. The magnetic field difference is produced by the system’s overall 

performance in shimming and the magnetic properties of the imaging materials. 

However, the inhomogeneity of the static magnetic field caused by the system’s 

imperfections is typically decreased by a variety of applications. These include 

shimming coils and shimming algorithms, or the usage of the spin echo sequence which 

opposes this effect and impacts on the decay of transverse magnetization. Since they are 

of another source of field inhomogeneity, the magnetic properties of imaging physical 

objects can cause phase incoherence. The spin-spin interaction between the hydrogen 

nuclei and electrons results in a loss of transverse coherence, which creates the T2-

weighted images of body tissues (Hayat, 2007). 

The first category of a particular T1 contrast agent is based on its nano-structured 

frames that consist of many anchoring sites for paramagnetic ions. Those particles can 

carry a large number of paramagnetic payloads and produce a strong T1 contest. T1 
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relaxation is a method of equilibration of the net magnetization after applying a radio 

frequency pulse (Zarihah et al., 2003). This change of Mz is caused by the energy 

transfer between the proton spin system and the neighboring molecules. Almost all 

biological systems consist of various molecules and organisms in which their water 

protons have different relaxation characteristics and different T1 relaxation times. The 

presence of the paramagnetic iron, an ion near the tissue, increases its own relaxation 

and shortens the T1 relaxation time. Transition and lanthanide and metallic ions in 

particular, with a large number of unpaired electrons, such as Gd3+, Mn2+ and Fe3+ 

(Shanehsazzadeh et al., 2014), have been confirmed to induce effective relaxation 

enhancement. Gadolinium (III) complexes are the most typical MRI contrast agents. 

They have seven unpaired electrons that result in a large magnetic moment. It has a 

substantially prolonged relaxation time if the toxicity of the Gd3+ ions is not considered. 

These metal ions are known as coordinated complexes or chelating ligands (Shellock & 

Spinazzi, 2008).Various surface modification, such as silicas, dendrimers, 

perfluorocarbons, and nanotubes, have been used to increase the application of the 

mentioned ions. 

T1 contrast agents are light compounds in terms of molecular weight and contain 

a single Lanthanide chelate, due to their long lifetime, to produce contrast. The 

concentration of these contrast agents for imaging is greater than iron oxide when 

molecular quantity is measutred in mmolar. It has been estimated that the T1 relaxivity 

value is in the range of 5-80 (mMs)-1. As such, a T1 contrast agent would seem to have 

the potential to be active by target-mediated methods to increase relaxivity. 
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T1 contrast agents enhance T1 relaxation, which causes signal-increasing imaging 

effects. The most significant advantage of T1 contrast agents compared to T2 contrast 

agents is that they improve imaging by signal enhancing, which can maximize the 

results of MR imaging and produces anatomic imaging with higher spatial resolution. 

Furthermore, their bright signals are typically recognized clearly from some other 

pathogenic or biological conditions. Whereas with T2 contrast agents are essentially 

paramagnetic they will not effect the magnetic homogeneity over considerable 

dimensions, which usually have the capability to disturb other anatomic backgrounds. 

Despite the fact that contrast agents, formulated with gadolinium (III) increase 

longitudinal relaxations, there exist absolutely no natural Gd (III) ion-based 

biochemistry components in humans. Moreover, manganese, iron, iron (III), and copper 

have different magnetic moments and applications due to less unpaired electrons. 

Contrast agents have short life spins inside the body and work in a nonspecific manner. 

Approximately all of the T1 contrast agents will be within the extracellular space and 

usually interact with the blood, which is a disadvantage of molecular probes due to their 

short tracing time. The representative of the T2 MR contrast agent category is SPIO. The 

synthesized nanoparticles are in general coated with hydrophilic polymers and improved 

to be much more stable inside the body (Cheon & Lee, 2008; Xu & Sun, 2013). 

2.5.2 Negative contrast agent 

The magnetization of paramagnetic components, for example, gadolinium 

complexes, is specifically dependent on the variety of ions, and they do not have 

magnetization in the absence of an external magnetic field. However, ferromagnetic iron 

oxide possesses a very large magnetic susceptibility, which might persist even upon the 




