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KAEDAH TANPA BENIH DIBANTU ULTRASOND TERHADAP MODIFIKASI 

PERMUKAAN PARTIKEL BESI TEROKSIDA SUPERPARAMAGNETIK 

UNTUK PROB PENGIMEJAN MAGNETIK RESONAN 

ABSTRAK 

Dalam tesis ini, satu kaedah baru tanpa benih dan ultrasonik mudah untuk 

menggabungkan SPION ke dalam silica telah dibangunkan dan dianalisa. Campuran 

kedua-dua nanopartikel SPION dan silika yang di sintesis secara berasingan oleh kaedah 

mendakan-bersama dan sol-gel, masing-masing telah dikenakan pancaran secara-

ultrasonik pada julat pH yang berbeza antara 3 dan 5. Daya besar yang dijana daripada 

peronggaan akustik (pembentukan, pertumbuhan dan keruntuhan buih) dan gelombang-

kejut pancaran ultrasonik telah diguna untuk menyebabkan perlanggaran tak kenyal dan 

pemerbadanan SPION ke dalam nanopartikel silika. Pengukuran elektroforesis pada 

produk menunjukkan bahawa pada pH yang lebih rendah, SPION ditemui tertanam ke 

dalam silika. Walau bagaimanapun, pada pH lebih daripada 4, SPION adalah tidak stabil 

dan tidak dapat menahan aliran gelora dari medan ultrasonik. Keputusan mencadangkan 

bahawa pembentukan nanopartikel komposit SPION/silika berkait-rapat dengan 

perlanggaran tak kenyal yang disebabkan oleh pancaran ultrasonik. Tambahan pula, 

pembentukan nanopartikel komposit bergantung ke pada potensi-zeta dan kestabilan 

koloid zarah. Pembentukan nanopartikel komposit telah dikaji menggunakan TEM, ESI, 

XRD, FTIR, XPS, BET, Zeta Sizer dan VSM. Nanopartikel komposit yang dihasilkan 

oleh kaedah ini dapat mengekalkan hampir 70% dari ketepuan pemagnetan awalannya. 

Kereaktifan permukaan silika dibuktikan melalui pengikatan lapisan-mono dekanatiol 
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pada nanopartikel komposit. Nanopartikel komposit SPION/silika kemudiannya telah 

diuji sebagai ejen kontras MRI. Nanopartikel magnet menunjukkan keupayaan untuk 

memendekkan masa santaian T2 dan T1 lebih dari 99% dan 95%. 
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ULTRASOUND ASSISTED NON-SEEDED METHOD ON SURFACE 

MODIFICATION OF SUPERPARAMAGNETIC IRON OXIDE 

NANOPARTICLES FOR MAGNETIC RESONANCE IMAGING PROBE 

ABSTRACT 

In this thesis, a new non-seeded and facile ultrasonic method of incorporating 

SPION into silica was developed and analysed. Mixture of both SPION and silica 

nanoparticles synthesized separately by co-precipitation and sol-gel method, respectively 

was ultrasonically irradiated at different pH ranges between 3 and 5. The tremendous 

force generated from the acoustic cavitation (formation, growth and collapse of bubbles) 

and shockwave of the ultrasonic irradiation was employed to induce inelastic collision 

and incorporation of SPION into the silica nanoparticles. Electrophoresis measurement 

of the as-synthesized SPION/silica demonstrated that at lower pH, SPION was found 

embedded into the silica. However, at pH greater than 4, SPION was unstable and 

unable to withstand the turbulence flow from the ultrasonic field. The results suggested 

that the formation of the SPION/silica composite nanoparticles is strongly related to the 

inelastic collision induced by ultrasonic irradiation. More so, the formation the 

composite nanoparticles are dependent on the zeta potential and colloidal stability of the 

particles. The formation of the composite nanoparticles was analysed using TEM, ESI, 

XRD, FTIR, XPS, BET, Zeta-Sizer and VSM. The composite nanoparticles developed 

by this method were able to retain nearly 70% of its initial saturation magnetization. The 

reactivity of the SPION/silica was demonstrated via binding of decanethiol monolayer 

on the composite nanoparticles. The SPION/silica nanoparticles were then tested for 
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MRI contrast agent. The magnetic nanoparticles demonstrate ability to shorten T2 and T1 

relaxation time by more than 99% and 95% respectively. Importantly, the results 

demonstrate that all the set objectives of this thesis were achieved.    
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Chapter 1: Introduction 

1.1 Nanotechnology 

The history of nanotechnology can be traced back to December 29, 1959 when 

Nobel Prize winning physicist Richard Feynman gave the lecture "There's Plenty of 

Room at the Bottom" at an American Physical Society meeting at Caltech (Feynman, 

1960).  He considered the possibility of direct manipulation of individual atoms as a 

more powerful tool in the synthetic chemistry than those used at the time. However, it 

was Norio Taniguchi a Japanese scientist who first used the word “Nanotechnology” 

(Taniguchi, 1974). Modern nanotechnology began with the development of scanning 

tunnelling microscope that could see individual atoms. According to the Oxford 

dictionary nanotechnology can be defined as follows: 

“Nanotechnology is defined as the branch of technology that deals with 

dimensions and tolerances of less than 100 nanometres, especially the manipulation of 

individual atoms and molecules”. 

One of the most interesting facts in nanotechnology is that the physicochemical 

properties of materials in the nanometric scale are highly differs from those of the same 

bulk materials. For example bulk gold material is known to be inert and non-active as a 

catalyst. However, gold nanoparticles exhibit a surprisingly high catalytic reactivity 

regarding various reactions such as carbon monoxide and alcohol oxidation in the gas 

phase (Haruta, Kobayashi, Sano, & Yamada, 1987). Another example of nanomaterials 

showing variation in their physicochemical properties from their bulk materials is the 

non-magnetic bulk materials such as Au, Pd or Pt nanomaterials embedded in polymer 
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demonstrated magnetic moments at nanometric size (Nakae et al., 2000; Yamamoto et 

al., 2003). 

The reasons why nanomaterials show much variation in their physicochemical 

properties from their bulk materials can be related to two reasons: (1) surface effect, the 

fraction of atoms at the surface have fewer neighbour compare to their bulk material and 

(2) quantum effects which show discontinuous behaviour due to completion of shells in 

systems with delocalised electron (Roduner, 2006). Owing to these unique properties, 

nanomaterials have got wide applications in several fields like electronics, energy, 

telecommunication and biomedical. The nanomaterials used for biomedical research and 

development applications include liposomes, polymeric micelles, block ionomer 

complexes, dendrimers, quantum dots and inorganic nanoparticles such as silica, gold 

and superparamagnetic iron oxide nanoparticles (Hofmann-Amtenbrink, von 

Rechenberg, & Hofmann, 2009).    

1.2 Superparamagnetic Iron Oxide Nanoparticles 

Superparamagnetic iron oxide nanoparticles (SPION) are inorganic 

nanomaterials of ferromagnetic substances with sizes between 1 – 100 nm. SPION are 

superparamagnetic (ability to have zero magnetism in the absence of external magnetic 

field) owing to their small sizes which enable them to have large magnetic susceptibility 

and single magnetic domain (Di Marco et al., 2007). Superparamagnetism occurs when 

the size of a ferromagnetic material is so small that the ambient thermal energy is 

sufficient to induce free rotation of the entire crystallite (Qiao, Yang, & Gao, 2009). 
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SPION are further classified into SPION with hydrodynamics sizes greater than 50 nm 

(coating included) and those with sizes less than 50 nm which are called ultra-small 

superparamagnetic iron oxide nanoparticles (USPION). SPION has got widespread 

applications in several areas including magnetic fluids, catalysis, data storage, 

environmental remediation, biotechnology and biomedical (Lu, Salabas, & Schüth, 

2007) due to easy synthesis and magnetically controllable behaviour.  

1.3 Biomedical applications of SPION 

The interplay of nanotechnology with biology and medical sciences has led to the 

emergence of interdisciplinary field such as nanobiotechnology, nanobiology and 

nanomedicine. Nanotechnology offers biology and medical sciences new tools while 

biology and medical sciences offer nanotechnology access to new functional nanosystem 

(Qiao, Yang, & Gao, 2009). SPION offers several properties that allow its biomedical 

applications. First, the controllable size (1-100 nm) of SPION, places its dimensions that 

is smaller than or comparable to biomedical system such as cell (10–100 µm), virus (20–

450 nm), protein (5–50 nm) and gene (2 nm wide and 10–100 nm long).  

Second, SPION contains single magnetic domain and due to its 

superparamagnetic features, it can be manipulated and driven by an external magnetic 

field gradient to a desired body area and target biological entities (Chapa Gonzalez et al., 

2014). These properties have enabled SPION to be applied in labelling, sensing, and 

separation of biomolecules, drug and gene delivery (Gupta, Naregalkar, Vaidya, & 

Gupta, 2007).  
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Third, due to the single-domain property of SPION, it possess magnetic moment 

which can undergo orientational thermal fluctuations because of either Brownian 

fluctuations or Ne´el fluctuations in the presence of an external alternating magnetic 

field to generate localized temperature up to 45-47 ℃ (Chastellain, Petri, Gupta, Rao, & 

Hofmann, 2004; Fortin et al., 2007). This heat is employed in hyperthermia therapy to 

kill cancer cells (Salas, Veintemillas-Verdaguer, & Morales, 2013).  

Fourth, SPION’s superparamagnetic behaviour plus its large magnetic 

susceptibility cause microscopic field inhomogeneity and activate the dephasing of 

protons in the presence of external magnetic field. Therefore, SPION can be used as 

MRI probe (contrast agent) to shorten T2 and T2* relaxation times of the neighbouring 

regions, and produce a decreased signal intensity in T2- and T2*-weighted MR images 

(Na, Song, & Hyeon, 2009).  

1.4 Limitations of SPION as a Biomedical Probe 

The successful biomedical application of SPION depends mainly on the stability 

of the magnetic nanoparticles under the biological environments. The main drawbacks 

of SPION are agglomeration and lack of affinity for biomolecules. Agglomeration of the 

magnetic nanoparticles is caused by the high surface area of the nanoparticles, Van der 

Waals forces of attraction and dipole to dipole interactions between the particles 

(Mørup, Hansen, & Frandsen, 2010). Surface modification of SPION with 

biocompatible materials is one the main strategies used to control or prevent all 

problems related to the biomedical application of the magnetic nanoparticles.   
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1.4.1 Surface Modification of SPION 

Several materials such as chitosan, dextran, liposome, polymer, hydrogel and 

inorganic nanoparticles such as gold and silica nanoparticles can be used to modify the 

surface of the SPION (Kumar & Mohammad, 2011). Silica nanoparticles are one of the 

inorganic materials used to encapsulate SPION. Silica nanoparticles are biocompatible 

and dielectric material which can screen the dipole-dipole interactions, and prevent 

agglomeration of the core SPION. Silica is a hydrophilic material that improves 

stability, biocompatibility and functionality of the SPION. The silanol (Si-OH) 

functional group of silica nanoparticles allows the composite nanoparticles to disperse in 

water or polar solvents. More so, Si-OH can be modified with other functional groups or 

provide binding site for bio-conjugation. Therefore, this work is aimed at synthesizing 

surface modified SPION using silica (SPION/silica) through a new novel approach.  

1.5 Problem statement 

Recently, several wet chemical methods like reverse-micelle (Yang et al., 2004), 

modified Stöber (Sun et al., 2005), microemulsion (Vogt et al., 2010), Stöber (Gao et al., 

2011), in-situ formation of SPION inside mesoporous silica (Zhang et al., 2011) and 

electro-oxidation (Setyawan et al., 2012) have been deployed to synthesize 

SPION/silica. However, as shown in Table 1, the saturation magnetization of the SPION 

is greatly reduced after its surface modification with silica nanoparticles using the 

conventional method. Due to decrease in the magnetic moment, the silica coated SPION 

produced from these processes is less sensitivity as MRI probe (Tanaka, et al, 201). 
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Table 1.1: Magnetization of wet chemical synthesizing of SPION/silica nanoparticles 

Methods 
 Saturation magnetization Ms (emu/g) 

    SPION    SPION/Silica  

Ref 

Reverse-micelle - 3.2   (Yang et al., 2004) 

Stöber             - 12.7 (Gao et al., 2011) 

Modified Stöber  46.3 13.9 (Sun et al., 2005) 

Microemulsion  81 17.6 (Vogt et al., 2010) 

Mesoporous silica - 2.7                                         (Zhang et al., 2011) 

Electro-oxidation - 22.0  (Setyawan et al., 2012) 

 

Most of the conventional wet chemical routes of synthesizing SPION/silica 

nanoparticles are based on seed growth mediated process. The reasons for decrease in 

the magnetization of the SPION/silica synthesized by the conventional procedures 

method can be related to two reasons. First, surface effect, the process of using SPION 

as template or seed in the production of silica shell can cause surface spin disorder of the 

core SPION (Yuan et al., 2012). Second, thickness effect, the silica shell produced from 

the conventional methods is not thin enough. Magnetisation per unit weight of SPION 

decreases with increase in the thickness of the silica shell (Vogt et al., 2010).  

1.6 Aims and Objectives  

The aims of this thesis are to conduct a fundamental research on the development 

of a new and non-seeded protocol of synthesizing highly magnetic SPION/silica 

nanoparticles which can be highly sensitive for MRI application. Unlike the 
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conventional seed mediated growth method which is based on coating SPION with silica 

shell, this new non-seeded method is based on incorporating SPION into the framework 

of silica nanoparticles via in-elastic collision induced by ultrasonic irradiation. To 

achieve the aforementioned aims of this work, the objectives of this thesis are as 

follows: 

1. To develop an ultrasonic irradiation assisted non-seeded and reproducible 

process of incorporating SPION into silica nanoparticles.   

2. To produce SPION/silica nanoparticles that can retain at least 70% of the 

initial SPION’s saturation magnetization. 

3. To evaluate reactivity of the SPION/silica nanoparticles by functionalizing a 

monolayer molecule such as decanethiol on the SPION/silica composite 

nanoparticles.  

4. To evaluate the sensitivity of the as-synthesized SPION/silica nanoparticles 

for MRI probe (contrast agent). 

5.  To show that the unique conditions from the ultrasonic irradiation can also 

be used to functionalize or modify the surface of SPION directly with 

organo-silane compound. 

1.7 Thesis Outline 

This thesis consists of six chapters. The introduction, problem statement, aims 

and objectives of this thesis are presented in Chapter 1.  Literature review on synthesis 

of SPION and surface modification of SPION with silica nanoparticles using seed 

mediated methods are presented in Chapter 2.  The various theories used to support this 

research are presented in Chapter 3. The whole experimental procedures, 
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characterisation techniques and application of the as-synthesized SPION/silica 

nanoparticles for MRI probe are described in chapter 4.  Details of the various results 

observed in this work are highlighted and discussed in Chapter 5. Conclusion and future 

work of this thesis are presented in Chapter 6.   
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Chapter 2: Literature Review 

The two common forms of SPION are Magnetite (Fe3O4) and Maghemite (γ-

Fe2O3). However, ferrites materials which are mixed oxides of iron and other transition 

metal ions such as Cu, Co, Mn, and Ni have also been reported to be superparamagnetic 

(Mahmoudi, Sant, Wang, Laurent, & Sen, 2011). Nevertheless, the scope of this thesis 

focused only on the superparamagnetic properties of iron oxide nanoparticles and its 

surface modification with silica nanoparticles. 

2.1 Magnetite 

Magnetite (Fe3O4) is a ferromagnetic material and black in colour. It is a member 

of spinel group with general formulation A
2+

B
3+

2O
2-

4. The oxide anions are arranged in a 

cubic close-packed lattice while the cations A and B occupied some or all the octahedral 

and tetrahedral sites in the lattice, respectively (Spiers & Cashion, 2012). Magnetite 

(Fe
2+

Fe
3+

2O
2-

4), sublattices A and B contains Fe
2+

 and Fe
3+

, respectively at the ratio of 1 

to 2. Magnetite unit cell of can be represented as:  Fe8
3+  Fe8

2+ Fe8
3+ O32

2−.  
 

2.2 Maghemite 

Maghemite, γ-Fe2O3, has a spinel structure, and it is closely related to magnetite. 

Unlike magnetite, maghemite has a vacancy of Fe
2+

 in its structure. It contains only Fe
3+

 

O
2-

. The unit cell of Maghemite can be represented as:  Fe8
3+  Fe40

3 
3+ ₣8

3

 O32
2−, where 

₣ represents vacancy of the Fe
2+

 in maghemite structure and is accepted to be in the 

octahedral sites (Spiers & Cashion, 2012). 
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2.3 Magnetic property of SPION 

Magnetic moments of a material originated from the orbital and spin motion of 

the electron. In every atom, orbital and spin moments of electron pairs cancel each other. 

Therefore, the net magnetic moment for an atom is the sum of the magnetic moments of 

each of the electron’s component. Based on the response to external magnetic field, 

materials can be classified into three major groups: diamagnetism, paramagnetism and 

ferromagnetism. Antiferromagnetism and ferrimagnetism are subclasses of 

ferromagnetism. However, nanoparticles of ferromagnetic and ferrimagnetic materials 

display superparamagnetic behaviour. Superparamagnetism occurs in nanoparticles with 

single domain (region whereby the magnetic fields of atoms are grouped together and 

aligned). Importantly, SPION displayed magnetic anisotropy (show preference to the 

direction along which their magnetization aligned). Therefore, SPION can randomly flip 

to the direction of their magnetization. 

 In the presence of external magnetic field the total magnetic moment of SPION 

aligned parallel to the field, like a single giant magnetic moment (Kodama, 1999). Due 

to the magnetic anisotropy of the superparamagnetic nanoparticles they randomly flip to 

the direction of their magnetization. The average time of flip is termed Relaxation Time 

( ) and is given by the Neel Brown’s expression (Lu et al., 2007) as equation 2.1: 

















Veff

o exp         (2.1) 
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o  
is the initial time of flip, eff represents the anisotropy constant, and V is the 

particle volume. KB is the Boltzmann constant and T is the temperature. However, a 

superparamagnetic state is observed when the system flips at a time shorter than the 

measured experimental time. Otherwise, a blocked state is observed when the magnetic 

moment flips at a time greater than the experimental time. The behaviour of all classes 

of magnetic materials can be summarized with the plot of M against H. As shown in 

Figure 2.1.  

 
Figure 2.1: Schematic illustration of M-H curves (a) Diamagnetic material, where 

magnetic moment (M) decreases with increase in external magnetic field (H). (b) 

Paramagnetic material, M increases with increase in H. (C) Ferromagnetic material, 

hysteresis loop is observed with remanance (Mr) and coercivity (Mc). (d) 

Superparamagnetic material which shows similar sigmoid shape with ferromagnetic 

substance but with the absence of hysteresis loop, remanance and coercivity (Sung & 

Rudowicz, 2002). 
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2.4 Synthesis of SPION 

Recently, due to superparamagnetic properties and various applications of 

SPION, extensive research has been focused on preparation and on understanding the 

magnetic behaviour of SPION. Several methods of synthesizing SPION have been 

reported. These various synthetic routes can be classified into three: (1) physical (2) 

chemical and (3) biological methods (Mahmoudi et al., 2011). However, the chemical 

method is the most adopted method of producing SPION. It involves condensation of 

atoms or molecular entities of the material components in solution (wet chemical 

method) or gas phase such as thermal decomposition method. In this thesis SPION is 

synthesized by a wet chemical method. The wet chemical method of synthesizing 

SPION includes: (I) co-precipitation, (II) sol-gel, (III) microemulsion, (IV) 

hydrothermal, (V) solvothermal, (VI) sonochemical and (VII) electrochemical method. 

I. Co-precipitation Method 

This method of SPION synthesis is one of the most widely used methods. It 

involves precipitation of SPION by addition of a strong base to a solution of Fe
3+

 and 

Fe
2+

 salts at ratio of 2 to 1 in water under vigorous stirring (Kang, Risbud, Rabolt, & 

Stroeve, 1996; Massart, 1981). Several protocols have reported use of strong inorganic 

and organic base such as NaOH, KOH or NH4OH and 1,6-hexanediamine, respectively 

for effective and rapid precipitation of SPION (Chatterjee, Haik, & Chen, 2003; Hong, 

Li, Wang, & Li, 2007; Iida, Takayanagi, Nakanishi, & Osaka, 2007; Jolivet, Belleville, 

Tronc, & Livage, 1992). However, when a weak base such sodium carbonate is used as 

precipitating agent, the reaction proceed sufficiently at a very slow rate (Blanco-

Andujar, Ortega, Pankhurst, & Thanh, 2012). Basically, the synthesis of magnetite 
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nanoparticles via this route is carried out in inert gas such as nitrogen environment to 

prevent oxidation of Fe
2+

. Nevertheless, synthesis of SPION in air environment where 

the ratio of Fe
2+

 to Fe
3+

 is less than 2 to 1 has also been reported (Karaagac, Kockar, 

Beyaz, & Tanrisever, 2010; Maity & Agrawal, 2007). SPION with various size range of 

1.5-50 nm can be synthesized by controlling the reaction conditions such as temperature, 

pH, stirring speed, aging time, and ionic strength of the precipitation medium (Blanco-

Andujar et al., 2012; Lee, Jeong, Shin, Kim, & Kim, 2004; Martínez-Mera, Espinosa-

Pesqueira, Pérez-Hernández, & Arenas-Alatorre, 2007; Vayssieres, Chanéac, Tronc, & 

Jolivet, 1998; Zhu & Wu, 1999). 

The saturation magnetization of the SPION produced via precipitation decreases 

with decrease in size of the particles (Gnanaprakash, Philip, Jayakumar, & Raj, 2007). In 

addition, Goethite ( FeO(OH)) is a common impurity (non-magnetic Fe compound) 

noticed in SPION synthesized via co-precipitation technique. Their presence can be 

related to the use of strong alkaline media such as NaOH, KOH and LiOH as 

hydrolyzing agent and virtually absent when ammonia is used as the precipitating agent 

(Gribanov, Bibik, Buzunov, & Naumov, 1990). Consequently, the presence of this 

impurity contributes to a variation drop in the saturation magnetization of the SPION 

(Gnanaprakash, Mahadevan, et al., 2007). As such, aggregation of the particles is 

normally observed using this method. Nonetheless, the agglomeration can be controlled 

via the use of surfactant or surface modification of the SPION. For a complete 

precipitation of iron oxide, the reaction is normally carried out as demonstrated in 

equation 2.2. 

Fe2+ +  2Fe3+  + 8OH− → Fe3O4 +  4𝐻2𝑂.                                                      (2.2)  
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Magnetite is highly sensitive to oxygen; it can oxidize and form maghemite, γ-

Fe2O3 according to equation 2.3: 

Fe3O4 +  2H+ → γFe2O3 + Fe2+ + H2O    (2.3) 

II. Sol-Gel Method 

This is also known as chemical solution deposition method. Sol-gel process is 

defined to be the conversion of a precursor solution into an inorganic solid by chemical 

means (Niederberger, 2007). Sol-gel synthesis of SPION occurs in several steps such as: 

(1) hydrolysis and polycondensation of iron precursor in a solvent to form a colloidal 

suspension of the particles (sol), (2) gelation of the sol to form gel, (3) aging and (4) 

drying of the particles through a process called sintering. Several ironic precursors such 

as iron alkoxide, iron nitrate, iron chloride and metallorganic compounds have been 

reportedly used to synthesized SPION via sol-gel method (Gun'ko, Pillai, & McInerney, 

2001; Kimata, Nakagawa, & Hasegawa, 2003; Qi, Yan, & Lu, 2014; Qi, Yan, Lu, Li, & 

Yang, 2011). However, based on the solvent used in this route of synthesizing SPION 

and other metallic oxide nanoparticles, sol-gel can be classified into aqueous and non-

aqueous (Akbar, Hasanain, Azmat, & Nadeem, 2004; Bagheri, Chandrappa, & Hamid, 

2013; Pinna et al., 2005; X. Zhang, Ren, & Cui, 2011). The former involves the use of 

water solvent while in the latter, organic solvent is used. The size and saturation 

magnetization of SPION synthesized by this method increases with increase in the 

annealing temperature (J. Xu et al., 2007). However, SPION synthesize via wet 

chemistry are often faced with agglomeration during the washing process. To minimise 

this effect, Dong et al., used ethylene oxide (EO) with iron precursor as starting 
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materials to prevent agglomeration during washing of the SPION produced by sol-gel 

process (Dong & Zhu, 2002). 

III. Microemulsion Method 

Microemulsion is thermodynamically stable systems that consist of two 

immiscible liquids, usually water and oil plus a surfactant. The surfactant is used to 

stabilize the droplets of water-in-oil (W/O) or oil-in-water (O/W) when small amounts 

of water or oil are used, respectively. The microemulsion method is classified into four 

stages in the work of López-Quintela et al., (2003) as: (1) microemulsion mixing, (2) 

interchange of reactant among the nanodroplets, (3) reaction nucleation and (4) reaction 

growth.  The microemulsion method of synthesising SPION involves preparation of iron 

oxide dispersion (microemulsion) and dispersion of a reducing agent. More so, the work 

of Okoli et al., has shown that SPION can be prepared through either W/O or O/W 

emulsion process (Okoli et al., 2012). The emulsions are stabilized with a surfactant. 

Subsequently, the two dispersions are mixed together for the interchange and 

intermicellar exchange of the reactants. The mixing process can be done in two ways: 

(1) mixing two microemusions containing the reactants or (2) adding one of the reactants 

to microemulsion containing the other reactant. The morphology and magnetic property 

of SPION produced via this route depend mainly on the emulsion (Chin & Yaacob, 

2007).  
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IV. Hydrothermal Method 

Hydrothermal method is an environmental friendly route of producing SPION. It 

is a rapid and simple method which involves heats up of aqueous acidified iron salt 

precursor solution to a supercritical state of water with temperature and pressure of 400 

o
C and 35 MPa, respectively. The particles are synthesized in an apparatus consisting of 

steel pressure vessel (autoclave). Basically, the solubility of the precipitating cations 

plays a critical role in attaining the correct product (Cote, Teja, Wilkinson, & Zhang, 

2002). The supercritical water (SCW) serves as the reaction medium. In addition to the 

SCW, a reducing agent is required. Several materials like glycerol, ammonia have been 

used as reducing agent (Kim et al., 2014; J. Li et al., 2014). The mixture of water and 

surfactants works as a reaction medium for both hydrothermal synthesis and surface 

modification (Takami et al., 2007). The presence of surfactant during synthesis hinders 

particle aggregation, and thereby results in uniform particles and narrow particle size 

distributions (Xu & Teja, 2008). The magnetic property, morphology and sizes of the 

SPION formed via this route, is influenced by the concentration of the iron precursor 

and the composition of the solvent. The higher initial precursor concentration led to 

smaller particles size. This is due to the formation of a large number of seed nuclei, 

which provide high particle concentration and yield smaller particles (Ge et al., 2009). 

However, one of the major limitations of this hydrothermal method is the slow reaction 

kinetics. Therefore, the use of microwaves for heating during the synthesis of SPION 

which increase the kinetics of crystallization has been reported (Sreeja & Joy, 2007).  
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V. Solvothermal Method 

Unlike, hydrothermal method, this involves uses of solvent other than water to 

synthesize iron oxide nanoparticles at moderate to high pressure and temperature of 1-

10,000 atm and 100-1000 °C, respectively. Solvents such as methanol, ethylenediamine 

and hydrazine solution have been reportedly used for the synthesis of SPION (Liu & 

Kim, 2009; J. Lu, Jiao, Chen, & Li, 2009; Veriansyah, Kim, Min, & Kim, 2010). The 

complex formation between the surfactant molecules and ferrites leads to the uniformity 

of crystallite size and morphology of the particles formed by this route (Hou, Yu, & 

Gao, 2003). Therefore, nucleation, growth and size distribution of the nanoparticles via 

this method depends on the dispersion of the precursor in suitable solvents, solvothermal 

temperature and aging time (Si et al., 2005; Thimmaiah et al., 2001). 

VI. Sonochemical Method 

This is a facile method of synthesising nanostructures. It involves decomposition 

of organometallic or inorganic iron precursor in double deoxygenated water via 

ultrasonic irradiation. The irradiation produces acoustic cavitation process (formation, 

growth and collapse of bubbles). The process generates huge temperature and pressure 

plus enormous cooling rates of 5000 K, 2000 atm and 10
10

 K/s (Suslick, 1994), 

respectively. However, for biological application and to synthesize a well dispersed 

SPION, the ultrasonic irradiation of the ironic solution is carried out in the presence of a 

suitable stabilizer (Abu Mukh-Qasem & Gedanken, 2005; Shafi et al., 2001). The results 

of a sonochemical synthesis involving inorganic or organometallic solute are always 

amorphous nanoparticles (Abu Mukh-Qasem & Gedanken, 2005; Cao et al., 1997). The 
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unique conditions generated from the acoustic cavitation process prevent the 

crystallization of the nanomaterial during particle formation. Therefore, heat-treatment 

(sintering) after the synthesis is required to obtain crystalline iron oxide nanoparticles 

(Hassanjani-Roshan, Vaezi, Shokuhfar, & Rajabali, 2011). However, few works have 

demonstrated that crystalline SPION can be synthesized at low temperature 

(Vijayakumar, Koltypin, Felner, & Gedanken, 2000; Zhang et al., 2007). More so, the 

use of ultrasonic irradiation in the synthesis of SPION has been reported to improve the 

mono-dispersibility and hydrophilic properties of the magnetic particles (Dang, 

Enomoto, Hojo, & Enpuku, 2009; Marchegiani et al., 2012). The morphology and size 

distribution of the particles synthesized via the sonochemical method depends on the 

ultrasonic irradiation parameters such as temperature and intensity of the ultrasound 

(Hassanjani-Roshan et al., 2011).  

VII. Electrochemical Method 

Electrochemical method is a reduction and oxidation reaction with an iron-based 

electrode in an electrolyte. The anode can be oxidized to metal ion species in the 

electrolyte and the metal ion is further reduced to metal at the cathode with the 

assistance of stabilizers. The SPION formed is normally deposited on the electrode in 

the form of a coating or a thin film (Ramimoghadam, Bagheri, & Hamid, 2014). Several 

electrolytes such as LiCl solution in de-aerated mixture of water, ethanol and Me4NCl 

have been reported (Cabrera, Gutierrez, Menendez, Morales, & Herrasti, 2008; 

Starowicz et al., 2011). However, amine or other surfactant can be used as supporting 

electrolytes to produce functionalized and stabilized SPION. The particle size can be 

controlled by adjusting the imposed current density (Pascal, Pascal, Favier, Elidrissi 



 

19 

Moubtassim, & Payen, 1999). More so, progress related to electrochemical synthesis of 

SPION has recently been reported (Ramimoghadam et al., 2014). 

2.5 Surface Modification of SPION with Silica Nanoparticles 

Several, strategies have been reported to modify surface of SPION with silica 

nanoparticles. Based on their approach, the various methods can be categorized into wet 

phase and gas phase or flame method. However, the scope of this work only covers wet 

chemical methods.  

2.5.1 Wet Chemical Synthesis of Silica Coated SPION 

This involves the synthesis of SPION/silica nanoparticles in liquid phase. Based 

on the various wet chemical approaches used to produce silica coated SPION, this 

methods can be classified as seed growth mediated approach. It involves the initial 

synthesis of SPION and subsequently the SPION is used as a seed or template for the 

growth of silica coating. From literature the various wet chemical methods used to 

synthesize SPION/silica nanoparticles are as follows: (1) sol-gel method and (2) 

microemulsion or reverse micelles method (3) modification of sol-gel and 

microemulsion method and (4) magnetic mesoporous method.  

I. Sol-Gel Synthesis of Silica Coated SPION 

This is one of the most adopted methods of coating SPION with silica. This 

could be due to relatively mild reaction condition, low cost and surfactant-free (Reddy, 

Arias, Nicolas, & Couvreur, 2012). One of the most cited sol-gel route is known as 

Stöber method (Barnakov, Yu, & Rosenzweig, 2005). However, other sol-gel methods 

have been reported by Philipse et al. (Philipse, Van Bruggen, & Pathmamanoharan, 
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1994, Y. Lu, Yin, Mayers, & Xia, 2002, Andrade, Souza, Pereira, Fabris, & Domingues, 

2009 and Im et al., 2005).  

The Stöber method involves the hydrolysis and condensation of an alkoxysilane 

in an alcoholic solution while ammonia is used as a catalyst in the presence of SPION as 

seed (template). This procedure is normally carried out under mechanical stirring. 

However, the use of ultrasonic irradiation has also been reported (Dang, Enomoto, Hojo, 

& Enpuku, 2010; Morel et al., 2008). The ultrasound improves the dispersibility, the rate 

of hydrolysis and condensation reaction, and prevents agglomeration of the core SPION 

during the coating procedure (Dang et al., 2010).The size of silica shell generated by this 

process can be controlled by varying the amount of silica precursor (Deng, Wang, Hu, 

Yang, & Fu, 2005). Nevertheless, the silica shell is not thin enough. Therefore, drastic 

reduction in the saturation magnetization (Ms) of the core SPION is recorded. More so, 

due to direct coating of the silica on the SPION and modality of this procedure (seed 

mediated), the core SPION might have experienced surface or spin disorder (Yuan et al., 

2012).  

II. Microemulsion Synthesis of Silica Coated SPION 

This involves the preparation of dispersion or emulsion of SPION in water or oil 

and then the addition of silica precursor under continuous stirring. The core SPION is 

often disperse in water, oil, and surfactant. The surfactant molecule is used to lower the 

interfacial tension between water and oil resulting in the formation of a transparent 

solution (Santra et al., 2001).The initial dispersion or emulsion of SPION in cyclohexane 

with Triton-X100 or Igepal CO-520, hexanol, water, and NH3.H2O have been reported 
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(Carmen Vogt et al., 2010; Zhang, Cushing, & O’Connor, 2008). Subsequently, silica 

shell is coated on the SPION via interaction of the SPION’s emulsion and silica source. 

The thickness of the silica can be controlled by regulating the ratio of water to silica 

precursor (Caruana et al., 2012). Similar to sol-gel process, this approach also led to 

drastic reduction in the saturation magnetization of the core SPION. 

III. Modification of Sol-Gel and Microemulsion Method 

Recently, modifications of the seed growth mediated approach have been 

reported to produce thin silica shell and highly magnetic silica coated SPION. In other to 

preserve the spin order, control the thickness of the silica shell and retain the high Ms 

Property of the core SPION barriers such as polymer and ligand are introduced in-

between the shell and core (Arizaga, Millán, Schubert, & Palacio, 2013; Wang, Guo, Li, 

Sun, & He, 2008). Therefore, the barrier enhanced the production of ultra-thin and 

highly magnetic silica coated SPION nanoparticles (Kralj, Makovec, Čampelj, & 

Drofenik, 2010; H. Xu, Cui, Tong, & Gu, 2006). However, this procedure led to high 

increase in the final size of the composite nanoparticles (He et al., 2009). Consequently, 

it can limit the in vivo applications of the magnetic core-shell nanoparticles. 

IV. Magnetic Mesoporous Silica Nanoparticles 

This process involves the coating of SPION with mesoporous MCM-41 silica 

nanoparticles. This procedure involves different routes such as: the deposition of an iron 

precursor or nanoparticles within the mesopores of MCM-41 followed by other 

reduction reaction such solvothermal conversion, aerosol-assisted route, sol-gel that 

produces the encapsulated nanoparticles (Arruebo et al., 2008; Y. Deng, Qi, Deng, 
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Zhang, & Zhao, 2007; J. Kim et al., 2005). Alternatively, core/shell magnetic 

mesoporous silica nanoparticles can be synthesized via co-condensation of magnetite 

nanoparticles with silica precursors in basic aqueous solution of surfactant and pore 

swelling agent like CTAB and mesithylene, respectively (Knežević, 2014). Similarly, 

the use of 1,3,5-triisopropylbenzene (TMB)/decane has also been used as a pore 

swelling agents (Zhang et al., 2011). The CTAB serves as both surfactant which 

stabilized the SPION and also as organic template for the formation of the mesoporous 

silica nanoparticles (Kim et al., 2008). Consequently, via calcined process at high 

temperature the CTAB is removed from the composite nanoparticles. Detail on the 

synthesis and biomedical application of magnetic mesoporous silica-based core/shell 

nanoparticles has been reported (Knezevic, Ruiz-Hernandez, Hennink, & Vallet-Regi, 

2013). However, due to large thickness of the mesoporous silica shell, there is drastic 

reduction in the saturation magnetization of the composites nanoparticles developed via 

this routes magnetization.  

2.6  Summary 

Research on synthesis of SPION is of intense interest due to its 

superparamagnetic properties. However, its major drawback is agglomeration. The use 

of silica to coat surface of SPION has not only prevented agglomeration but also 

enhanced the applications of the magnetic nanoparticles. Although, several wet chemical 

routes based on seed mediated growth approach have been employed to synthesize silica 

coated SPION, preservation of saturation magnetization of the core SPION is still a big 

challenge.  
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Chapter 3: Theory 

3.1 Theory of Sonochemistry 

Sonochemistry is the use of ultrasonic field (sound with a frequency above 

human hearing threshold) in chemical reactions and processes. As illustrated in Figure 

3.1, ultrasonic field (~20 kHz – 10 MHz) can be classified into three main regions: (1) 

ultrasonic frequency from 20 kHz – 100 kH are ultrasound with low frequency and high 

power, (2) 100 kHz – 1 MHz are ultrasound with high frequency and medium power, 

and (3) frequency between 1 – 10 MHz are ultrasound with high frequency and low 

power. However, only sound wave in the range of 20 kHz to 1 MHz is used in 

sonochemistry. Ultrasonic frequencies above 1 MHz are normally used for medical 

purposes (diagnostic ultrasound).  

 

Figure 3.1: Illustrating sound frequency ranges and their importance. 
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The fundamental of sonochemistry is known as Acoustic Cavitation Process. The 

term “cavitation” is from a Latin word “cavus”, which means hollow. Cavitation is the 

formation of cavities (compressed gasses) inside a liquid, as a result of abrupt decrease 

in the cohesive or intramolecular forces between the liquid, due to rapid pressure drop 

(Stricker, 2013).  

Ultrasonic irradiation of liquid generates oscillatory motion in the molecules 

which are transmitted through the liquid via pressure waves. Therefore, it induces 

rarefaction and compression waves to the molecular structure of the liquid. This causes 

the liquid molecules to vibrate around their position. Increased in the ultrasonic intensity 

within the liquid can cause increase in the distances between the molecules and lost of 

intramolecular forces within the molecular structures. The liquid molecules break down 

and cavity known as Cavitation Bubble is formed. These bubbles respond to the 

ultrasonic field within the liquid via expansion and contraction, and finally collapse. 

This process of formation, growth and collapse of bubbles are known as Acoustic 

Cavitation.  

The cavitation can be classified as Stable and Transient. In the stable cavitation, a 

bubble can vibrate for many refraction and compression cycles before collapse. While in 

the transient cavitation, bubbles grow double its size in one complete acoustic cycle and 

eventually collapse. As illustrated in Figure 3.2, the collapse of bubbles are often violent 

with the generation of hot spot of temperature, pressure and cooling rate of  ~5000 K, 

1000 atmosphere and 10
10

 Ks
-1

, respectively (Suslick & Price, 1999). However, transient 

cavitation is more energetic than the stable cavitation (Flynn, 1964). The dynamics of 




