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ALGORITMA TITISAN AIR CERDAS TERUBAH
SUAI DAN GABUNGAN SERTA APLIKASINYA

ABSTRAK

Algoritma Titisan Air Cerdas (TAC) ialah model berasaskan kawanan yang sememang-
nya berguna untuk mengatasi masalah-masalah pengoptimuman. Tujuan utama kajian
ini adalah untuk meningkatkan keupayaan algoritma TAC dan mengatasi keterbatas-
an algoritma tersebut, yang berkaitan dengan kepelbagaian populasi serta mengim-
bangangi penerokaan dan pengeksploitasian dalam menangani masalah-masalah pe-
ngoptimuman. Pertama, algoritma TAC yang diubahsuai, diperkenalkan. Dua kaedah
pemilihan berdasarkan kedudukan, iaitu kedudukan linear dan kedudukan eksponen,
dicadangkan untuk menggantikan kaedah pemilihan kelekapan yang seimbang. Ke-
dua, algoritma Titisan Air Cerdas yang berdasarkan Sungai Induk Pelbagai Caruk Alir
Sungai (SICAS-TAC) dicadangkan untuk mengeksploitasikan keupayaan penerokaan
algoritma TAC yang diubahsuai. Di samping itu, model hibrid SICAS-TAC juga di-
bentangkan. Model hibrid ini menggabungkan algoritma SICAS-TAC dengan pening-
katan lelaran carian setempat, untuk meningkatkan keupayaan penjelajahan kepada
algoritma SICAS-TAC. Keberkesanan model-model yang dicadangkan dinilai secara
sistematik dan menyeluruh dengan menggunakan tiga masalah pengoptimuman kom-
binatorik iaitu, masalah pemilihan ciri subset berdasarkan set kasar, masalah beg galas
berbilang, dan masalah jurujual kembara. Kesesuaian dan keberkesanan model hibrid

SICAS-TAC disiasat dengan menyelesaikan masalah pengoptimuman dunia sebenar

XVviii



yang berkaitan dengan pemilihan ciri dan klasifikasi. Beberapa set data tanda aras
umum dan dua masalah dunia sebenar, iaitu masalah pengesanan pergerakan manusia
dan masalah pengesanan kerosakan motor, telah dikaji. Keputusan kajian telah me-
nunjukkan keberkesanan model-model yang dicadangkan dalam meningkatkan presta-
st algoritma TAC yang asal dan juga menyelesaikan masalah-masalah pengoptimuman

dunia sebenar.
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MODIFIED AND ENSEMBLE INTELLIGENT
WATER DROP ALGORITHMS AND THEIR
APPLICATIONS

ABSTRACT

The Intelligent Water Drop (IWD) algorithm is a swarm-based model that is useful for
undertaking optimization problems. The main aim of this research is to enhance the
IWD algorithm and overcome its limitations pertaining to population diversity, as well
as balanced exploration and exploitation in handling optimization problems. Firstly,
a modified IWD algorithm is introduced. Two ranking-based selection methods, i.e.
linear ranking and exponential ranking, are proposed to replace the fitness proportion-
ate selection method. Secondly, the Master River Multiple Creeks Intelligent Water
Drops (MRMC-IWD) algorithm is proposed in an attempt to exploit the exploration
capability of the modified IWD algorithm. In addition, the hybrid MRMC-IWD model
is proposed. It combines MRMC-IWD with the iterated improvement local search
method, to empower MRMC-IWD with the exploitation capability. The usefulness
of the proposed models is evaluated systematically and comprehensively using three
combinatorial optimization problems, i.e., rough set feature subset selection, multi-
ple knapsack problem, and travelling salesman problem. The applicability of the hy-
brid MRMC-IWD model is investigated to solving real-world optimization problems
related to feature selection and classification tasks. A number of publicly available
benchmark data sets and two real-world problems, namely human motion detection

and motor fault detection, are studied. The results ascertain the effectiveness of the

XX



proposed models in improving the performance of the original IWD algorithm as well

as undertaking real-world optimization problems.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Optimization is a process that concerns with finding the best solution of a given
problem from among the possible solutions within an affordable time and cost (Weise
et al., 2009). The first step in the optimization process is formulating the optimization
problem through an objective function and a set of constrains that encompass the prob-
lem search space (i.e., regions of feasible solutions). Every alternative (i.e., solution) is
represented by a set of decision variables. Each decision variable has a domain, which
is a representation of the set of all possible values that the decision variable can take.
The second step in optimization starts by utilizing an optimization method (i.e., search
method) to find the best candidate solutions. Candidate solution has a configuration
of decision variables that satisfies the set of problem constrains, and that maximizes
or minimizes the objective function (Boussaid et al., 2013). It converges to the opti-
mal solution (i.e., local or global optimal solution) by reaching the optimal values of
the decision variables. Figure depicts a 3D-fitness landscape of an optimization
problem. It shows the concept of the local and global optima, where the local optimal
solution is not necessarily the same as the global one (Weise et al., 2009). Optimiza-
tion can be applied to many real-world problems in various domains. As an example,
mathematicians apply optimization methods to identify the best outcome pertaining to
some mathematical functions within a range of variables (Vesterstrom and Thomsen,

2004). In the presence of conflicting criteria, engineers use optimization methods to
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Figure 1.1: A 3D-fitness landscape of an optimization problem (Coppin, 2004).

find the best performance of a model subject to certain criteria, e.g. cost, profit, and

quality (Machado et al., 2001; Marler and Arora, [2004; Yildiz, 2009).

In general, optimization problems can be categorized into several categories, de-
pending on whether they are discrete or continuous, single objective or multi-objectives,
and constrained or unconstrained (Boussaid et al.| [2013). They can be classified into
discrete or continuous based on the domain of encoding the solution. Solutions of con-
tinuous problems are encoded with real-valued variables, while solutions of discrete
problems are encoded with discrete variables. In this light, discrete optimization prob-
lems, which are known as combinatorial optimization problems (COPs), include prob-
lems that have a finite set of solutions (Blum and Roli, [2003)). Optimization problems
can be categorized into constrained and unconstrained based on whether the decision
variables are restricted to some limitations (i.e., constrains) or otherwise. The num-
ber of objective function is the distinctive property that differentiates between single-

objective and multi-objectives optimization problems (Marler and Arora, |2004).



Numerous optimization methods have been devised and successfully applied to
solving optimization problems. Generally, they can be classified into two main cat-
egories: deterministic (exact) and non-deterministic (stochastic) methods (Lin et al.,
2012). Deterministic methods such as linear programming and dynamic programming
exhaustively employ the analytical properties of a problem to search for the optimal
solution. However, no method can be guaranteed to find the optimal solution especially
for NP-hard problems (i.e. problems that have no known solution in polynomial time)
(Lin et al., |2012)). Non-deterministic methods search with some randomness to solve
NP-hard problems to achieve good (near-optimal) solutions in polynomial time. In this
regards, meta-heuristic methods play a major role in tackling optimization problems.
They utilize heuristic information within a high-level problem-agonistic framework to
solve optimization problems. In this context, a branch of meta-heuristic optimization
methods that has attracted much attention of researchers is emulating the natural be-
haviors of real systems in solving optimization problems. These methods are known
as nature-inspired meta-heuristics (Yang,[2010). As an example, the genetic algorithm
(GA) (Holland, |1975; |Goldberg and Holland, 1988) is inspired by biological evolution
of organisms, such as inheritance, mutation, crossover, and selection, to solve opti-
mization problems. An innovative family of nature-inspired models known as swarm
intelligence (SI) has emerged (Blum and Li, 2008)). SI methods are based on the phe-
nomena of different natural swarms, e.g. ant colony optimization (ACO) inspired by
the foraging behavior of real ants (Dorigo and D1 Caro, 1999;|Dorigo and Blum, [2005),
particle swarm optimization (PSO) inspired by the social behavior of bird flocking or
fish schooling (Shi, 2001; Kennedyl, [2010), artificial bee colony (ABC) inspired by

the foraging behavior of honey bees in their colony (Karaboga, 2005). A variety of SI-



based methods have been successfully used in solving different optimization problems.
They are characterized by collaborative learning, i.e., a population of agents collabo-
rates and cooperates among themselves within their environment to solve a problem
(Blum and L1, [2008). Furthermore, the interactions among agents enable the model to
explore several regions of the search space simultaneously, in order to converge to the

global optimum solution in an effective manner (Blum and L1, 2008).

The Intelligent Water Drop (IWD) algorithm (Shah-Hosseini, [2007) is a relatively
recent SI model. It is inspired by the natural phenomenon of water drops flowing with
soil and velocity along a river. It imitates a number of natural phenomena pertaining to
the water drops flowing through an easier path in a river, i.e., a path with less barriers
and obstacles. Technically, the IWD algorithm is a constructive-based meta-heuristic
algorithm (Shah-Hosseini, 2007) that comprises a set of cooperative computational
agents (water drops) iteratively constructing the solution of a problem. The water drop
constructs a solution by traversing a path with a finite set of discrete movements. It
begins the process with an initial state. Thereafter, it iteratively moves step-by-step
passing through several intermediate states (partial solutions) until a final sate (com-
plete solution) is reached. A probabilistic approach is used to control the movements of
the water drops. At every iteration of the IWD algorithm, a new complete population
(i.e., a set of solutions) is generated. The new generation of solutions benefits from the
previous generation through the environment attributes, i.e., soil and velocity. They
are used to control the probability distribution of selecting the candidate movements,
and to extend the partial solution. The soil level indicates the cumulative proficiency
of a particular movement. It represents the communication mechanism that enables the

water drops to cooperate among themselves. The velocity is an attribute that influences



the dynamics updating process of the soil level based on heuristic information, which

is related to the problem under scrutiny.

Although the IWD algorithm has been successfully employed to solve numerous
optimization problems (i.e., combinatorial, continuous, and multi-objectives) from dif-
ferent application fields (Siddique and Adeli, 2014), little efforts have been made by
researchers in investigating the fundamental algorithmic aspects of IWD. Many re-
searchers focus on the application field of IWD as an optimization method. This re-
search is focused on investigating the algorithmic aspects of the IWD algorithm to
tackle optimization problems, i.e., how to preserve population diversity and balance

exploration and exploitation of the search process.

The rest of this chapter is organized as follows. Section [I.2] provides the research
motivation and problem statement. Sections [[.3]and respectively, present the re-
search objectives and contributions. An overview of the research methodology is pre-
sented in Section[I.5] Section [I.6]introduces the research scope. Section explains

thesis structure with indication to the contents of each chapter.

1.2 Motivation and Problem Statement

The IWD algorithm was proposed by Shah-Hosseini|(2007), adding a new SI-based
nature-inspired optimization method to the literature. It has been shown to be effective
in solving COPs, such as travelling salesman problem (TSP), multiple knapsack prob-
lem (MKP), and n-queen puzzle problem (Shah-Hosseini, 2007, 2008, 2012a)b)). As
a new meta-heuristic optimization method, IWD has also been successfully applied to

solving numerous optimization problems in different fields (Siddique and Adeli, [2014).



However, research to enhance the performance of IWD in solving COPs is still active.
In Niu et al. (2012), five modified schemes that explore three IWD operators (i.e., soil
and velocity values, transition rule, and soil update mechanism) were proposed to en-
hance the IWD performance. These schemes could overcome the early convergence
and population diversity problems in IWD. Therefore, the key motivation of this re-
search is to investigate the fundamental algorithmic aspects (i.e., population diversity
as well as balance in exploration and exploitation) to enhance the performance of IWD

for undertaking optimization problems.

IWD is a constructive-based meta-heuristic algorithm that iteratively constructs
new solutions at every iteration. The process of solution construction is influenced
by a probabilistic procedure, i.e., fitness proportionate selection (FPS), which is based
on two parameters i.e., soil and velocity. They are updated throughout the solution
construction process at every iteration, in order to guide the search process toward the

optimal solution

The published results by [Shah-Hosseini (2007) indicated that good results could
be achieved at the early stage of the IWD optimization process ( i.e., the first few
iterations ). However, all the water drops could stuck at a local solution, and unable
to achieve further improvements. This problem is known as search stagnation (Stiitzle
and Dorigo, 1999)). It is a common problem in constructive, swarm-based optimization

methods, which include IWD (Niu et al., 2012).

Swarm-based optimization methods depend on global optimal solutions found thus

far to generate new solutions. While this technique could lead to good solutions, other



sub-optimal solutions could also contribute towards generating better solutions. As
the swarm-based methods inject a strong selection pressure to the global-optimal so-
lutions found thus far, the search process could converge prematurely at a rapid pace.
Conversely, a weak selection pressure could diverse the search to unfavorable regions,
resulting in a slow convergence. Therefore, the Darwinian’s survival of the fittest prin-
ciple should be observed to control the balance between diversification and intensifi-

cation during the search process.

The soil update mechanism and FPS are the main factors affecting the selection
pressure in IWD (Niu et al.l 2012). After certain number of IWD iterations, it is
possible for lower soil levels to be assigned to the components of the local optimal
solutions. As such, in successive iterations, the water drops are likely to combine
these components in the solution, causing the water drops to be stuck in local optima,

therefore unable to escape and explore another region of the search space.

Furthermore, IWD works with single large population of water drops. Many find-
ings in the literature indicate that re-running IWD with different random initialization
and using the best solution found among all runs could allow IWD to escape from
stagnation (Ahmed and Glasgow, [2012). Splitting the large population into several
small sub-populations and running IWD in an asynchronous way could also maintain
diversity in a good way (Reimann et al., 2004). In addition, the divide-and-conquer

technique can be considered to maintain interaction among the sub-populations.



1.3 Research Objectives

The aim of this research is to develop enhanced IWD algorithms, which can be
used to tackle combinatorial optimization problems effectively. The ultimate goal is to
show that enhanced IWD algorithms perform better than the original IWD algorithm
and other state-of-the-art methods in solving COPs.

The primary objectives of this research are as follows:

* to utilize a suitable selection mechanism in the solution construction phase of

the IWD algorithm to enhance its population diversity;

* to modify the IWD algorithm by utilizing the divide-and-conquer and multi-

population strategies to empowering its exploration capability;

* to hybridize the modified IWD algorithm with a local based search method to

enhance its exploitation capability;

* to assess the usefulness of the enhanced IWD algorithms using benchmark COPs

and demonstrating its applicability to real-world problems.

1.4 Research Contributions

In this research, the objectives mentioned in Section [[.3]1ead to the following tan-

gible contributions.

* The original IWD algorithm is modified by replacing the fitness proportionate se-
lection method (FPS) in the solution construction phase with two ranking-based

selection methods i.e. the exponential and linear ranking selection methods. This



proposed modification results in a model called Modified IWD. It is proposed to

avoid the search stagnation problem by enhancing population diversity.

* An ensemble model of the Modified IWD algorithm is proposed to improve the
exploration capability of the Modified IWD algorithm. The resulting model
is known as the Master River Multiple Creeks IWD model, and is denoted as

MRMC-IWD.

* The MRMC-IWD model is hybridized with a local search algorithm, which en-
hances local exploitation of the search space; therefore achieving a balance be-
tween exploration and exploitation in the resulting model, which known as hy-

brid MRMC-IWD.

* The applicability of the hybrid MRMC-IWD model is comprehensively assessed
using benchmark and real-world optimization problems. The problems include
UCT (University of California Irvine machine learning repository) benchmark
data sets (Bache and Lichman, 2013) and two real-world problems, namely hu-

man motion detection and motor fault detection.

1.5 Research Methodology

Figure[I.2]depicts a three-stage methodology, which has been employed to achieve
the research objectives mentioned in Section The first stage modifies the orig-
inal IWD algorithm to improve its performance for solving COPs. It includes two
subsequent steps: (i) modifies the original IWD algorithm by replacing the original
selection (i.e., FPS) method in the solution construction phase by two ranking-based

selection methods ( i.e., linear and exponential ranking); (ii) modifies the fundamental



algorithmic aspect (i.e., exploration) of the IWD by proposing an ensemble model of
the modified IWD algorithms called MRMC-IWD. In each step, benchmark data sets
are used in the experimental study to evaluate the usefulness of the proposed modifica-
tion. The second stage combines the MRMC-IWD model with a local based method.
Again, evaluation is conducted to assess the effectiveness of the proposed models. The
last stage assess the applicability of the proposed model (i.e., Hybrid MRMC-IWD) to

real-world problems.

[ Investigates the theoretical and practical aspects
. of the IWD algorithm

Modify the original IWD algorithm l— —_ == — —

J

/ ( Replaces the original selection method with ) \
ranking-based selection methods

| ......................................................................................................
o
» ¢ |

:Conducts experiments pertaining to benchmark :

| | loptimization tasks (ie., RSFS, MKP, and TSP) | | |
| lModified IWD algorithm |
| Ensemble model of the modified IWD algorithm

..........................................................................................................

..................................................................................................

N — - - — O = — — — —
Hybridize MRMC-IWD algorithm — "o WD model

Enhances the performance of the MRMC-IWD
model with a local search algorithm

.........................................................................................................

Hybrid MRMC-IWD model
Assess the applicability — —_ —_— — —_— —_ =

| Assess the applicability of the Hybrid MRMC-IWD |
model to real-world problems J

— — — — —— e e——— e e—— e—— —— — —

Figure 1.2: The main stages of the research methodology.
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To evaluate the proposed models (i.e. MRMC-IWD and hybrid MRMC-IWD) and
to facilitate performance comparison with other state-of-the-art methods, three case
studies are carried out, namely TSP, MKP, and rough set features subset selection
(RSFES) that are widely used in the literature (Chu and Beasley, 1998} Yu and Liu,
2004} Matthias et al., [2007; Shah-Hosseini, 2008} (Xie and Liul [2009; Smith-Miles and
Lopes, [2012; Azad et al., 2014). These problems are selected because they are NP-
hard, and have different level of difficulties. The problem complexity (i.e., the number
of alternatives) grows exponentially with respect to the size of the problem (Helsgaun,
2000). Since TSP and MKP have known bounds, they are useful to ascertain the effec-
tiveness of the solutions produced by the proposed models. On the other hand, RSFS
is crucial in pattern recognition applications. Contrary to TSP, RSFS presents strong
inter-dependency among the decision variables (i.e., features). The feature sequences
within the subset are not important, and the optimal solutions are normally unknown
(Yu and Liul [2004). Contrarily to both TSP and RSFS, the MKP is a constrain based
optimization problem (Shah-Hosseini, [2008; Azad et al., 2014)). Therefore, TSP, MKP,
and RSFS problems are selected as case studies to evaluate the usefulness of the pro-
posed models and to benchmark the results against those published in the literature. As
aresult, the effectiveness of the proposed models for undertaking general optimization

problems can be validated.
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1.6 Research Scope

This research focuses on enhancing the performance of the IWD algorithm to tackle
COPs. Three main approaches, namely the selection mechanism in the solution con-
struction phase of the IWD algorithm, the ensemble model of the IWD algorithm with
a novel problem decomposition technique, and the hybrid IWD model have been inves-
tigated to overcome the search stagnation problem; therefore improving original IWD
performance. In this context, this research is limited to the use ranking-based selection
methods (i.e., linear and exponential), as well as it is limited to k-means clustering al-
gorithm to decompose the entire problem into few simple sub-problems. To assess the
effectiveness of the proposed models, a series of experiments pertaining to three COPs
(i.e., TSP, RSFS, and MKP) with performance comparison against other state-of-the-
art methods is conducted. In this regards, this research is limited to the combinatorial
single-objective optimization problems. The applicability of the proposed models to
two real-world problems related to feature selection and classification task, namely

human motion detection and motor fault detection, is investigated.
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1.7 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 (Background and Literature Review): In this chapter, a detailed de-
scriptions of the IWD algorithm, including learning mechanisms, fundamental steps
and mathematical formulation. A review pertaining to optimization and the associated
approaches (i.e., selection methods, multi-populations, and hybridization), which are
used to enhance the performance of the IWD algorithm in solving COPs is presented.
An overview of the evaluation problems (i.e., RSFS, TSP, and MKP) and the associated

data sets used in the experiments are also presented.

Chapter 3 (Modified Intelligent Water Drops Algorithm): This chapter introduces
the first contribution, i.e., the modified IWD algorithm. The effectiveness of the se-
lection mechanism in the solution construction phase of the IWD algorithm is inves-
tigated. Two ranking-based methods are proposed to replace the FPS method in the
solutions construction phase of the original IWD algorithm. The experimental results
pertaining to benchmark COPs and evaluation of the proposed ranking-based selection

methods are presented.

Chapter 4 (An Ensemble of Intelligent Water Drops Algorithms): In this chapter
two new contributions are presented. Firstly, the Master-River Multiple-Creek IWD
(MRMC-IWD) model is introduced. The proposed model is motivated by a multi-
population scheme with the divide-and-conquer strategy to simplify the search pro-
cess, and to exploit the exploration capability of the modified IWD algorithm. Sec-

ondly, the hybrid MRMC-IWD model is proposed by hybridizing MRMC-IWD with

13



a local search method, i.e., Iterative Improvement Local search (IILS). The aim is to
empower MRMC-IWD with local exploitation capabilities, therefore achieving a bal-
ance between exploration and exploitation. The effectiveness of the proposed models

is investigated using a series of experiments pertaining to the benchmark COPs.

Chapter 5 (Applications of the hybrid MRMC-IWD model): The hybrid MRMC-
IWD model devised in Chapter 5 is applied to UCI benchmark feature selection and
classification problems. Comparative studies against other state-of-the-art methods are
presented. In addition, two real-world problems, namely human motion detection as

well as motor fault detection are examined, to assess and demonstrate the applicability

of the hybrid MRMC-IWD model.

Chapter 6 (Conclusion): Concluding remarks and a summary of the key findings
are presented in this chapter. A discussion of future researches that can be carried
out to further investigate the enhanced IWD models to handle different optimization

problems is presented.

Appendices (Appendix A): A detail description to feature selection methods is pre-
sented. It is mainly organized into two part, First part provides a succinct review of
categories of feature selection methods. In the second part, a detailed description of
rough set and fuzzy rough set for subset feature selection and illustrative example are

provided.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The main focus of this research is to enhance the performance of the IWD algo-
rithm to tackle COPs. This chapter is mainly organized into three sections. In section
[2.2]a detailed description on the IWD algorithm is presented. Section [2.3|reviews op-
timization methods and literatures related to the IWD method to solve COPs. Section
presents an overview of the three COPs (i.e., RSFS, TSP, MKP) as well as the char-
acteristics of the data sets, which are employed in the experimental studies to evaluate
and validate the usefulness of the proposed model and to benchmark the results against

those published in the literature.

2.2 Background to the Intelligent Water Drops Algorithm

In nature, water in a river follows an easier path with fewer barriers and obstacles.
Water flows with a particular speed. Water stream changes the environmental prop-
erties of the river, and subsequently changes the direction of water flow to create an
optimal path between the upstream and downstream of a river. The IWD algorithm is
a constructive-based SI optimization method introduced by Shah-Hosseini (2007). It
is inspired by the natural phenomena of water drops moving along the river bed. The
IWD algorithm computationally realizes some of the natural phenomena and uses them

as a computational mechanism to solve COPs. It comprises a number of computational
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agents (i.e., water drops). At each iteration, water drops construct a solution based on
a finite set of discrete movements. Two key properties of natural water drops are imi-
tated by the IWD algorithm, i.e. velocity and soil, which are changed during a series
of transitions pertaining to the movement of water drops. Each water drop iteratively
moves step-by-step from one location to the next until a complete solution is produced.

It begins with an initial state, i.e. an initial velocity, and carries zero amount of soil.

Water drops cooperate with each other to update the environmental properties, i.e.
soil and velocity. Changes in the soil and velocity parameters have an influential role
on the selection probability of the flow direction. When a water drop moves from one
location to the next, its velocity and soil level are updated. The velocity is changed non-
linearly, and is proportional to the inverse of the amount of soil between two locations.
Therefore, water drops in a path with less soil move faster. The water drop carries an
amount of soil in each movement, which is non-linearly proportional to the inverse of
the time needed by the water drop to move from the current location to the next. On
the other hand, the time taken by a water drop to move from one location to another
is proportional to its velocity and inversely proportional to the distance between two

locations.

Figure [2.1] depicts a flowchart of the fundamental of the IWD algorithm, as pre-
sented in Algorithm 2.1} In the following sub-sections, a detailed description of the
problem formulation as well as the main phases of the IWD algorithm i.e. initializa-

tion, solution construction, reinforcement, and termination are presented.
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Figure 2.1: A flowchart shows the fundamental of the IWD algorithm (Aljjla et al.,
2014).
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Algorithm 2.1 : The main steps of the IWD algorithm (Aljjla et al., 2014).

1:

b

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24

Input: Data instances.

2: Output: Subset of features.
3:
4: Initialize the static parameters i.e. parameters are not changed during the search

Formulate the optimization problem as fully connected graph.

process.
while algorithm termination condition is not met do
Initialize the dynamic parameters i.e. parameters changed during the search
process.
Spread iwd number of water drops randomly on a construction graph.
Update the list of visited vertex (V,sireq ), to include the source vertex.
while construction termination condition is not met do
for k =1toiwd do
i = the current vertex for drop k.
J = selected next vertex, which does not violate problem constrains.
move drop k from vertex i to vertex j.
update the following parameters.
(a). Velocity of the drop k.
(b). Soil value within the drop k.
(c). Soil value within the edge e(i,j).
end for
end while
Select the best solution in the iteration population (775)
Update the soil value of all edges included in the (T75)
Update the global best solution (775)
if quality of 778 < quality of 772 then
TTB _ TIB
end if
end while
return 775
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2.2.1 Problem formulation

As shown in Algorithm [2.1] (line 3), formulating an appropriate problem is a pre-
liminary step for solving any optimization problem using the IWD algorithm. The
IWD algorithm uses a fully connected weighted graph called the construction graph
i.e. G(V, E), to represent an optimization problem, where V = {v;|i = 1...N} denotes
the set of vertices in the graph, E = {(i, j)|(i,j) € V x V,i # j, i,j = 1...N}. denotes
a set of edges, and N is the total number of decision variables. Consider a solution,
M = {axjlk = 1...iwd, j = 1...|Dy|}, where k denotes the index of a solution within
the population, iwd is the total number of solutions in the population (i.e., the number
of water drops), and a;; € A is a set of all possible components of the solution. As
an example, solution 7, = {ay,az, ey g Dk|}’ where |Di| < N is the dimension of the
solution k, which is one of the possible permutations constructed from the possible

components of A.

2.2.2 Initialization phase

As show in Algorithm [2.1| (line 4), the initialization phase is used to initialize a set
of static and dynamic parameters of the IWD algorithm. Thereafter, the water drops

are spread randomly.

2.2.2(a) Static parameters

The static parameters are initialized with static values, and they remain unchanged

during the search process. They are:
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* iwd: is the number of water drops, which denotes a set of agents that forms the

solution population.

* Velocity updating parameters (a,, b,, c,): a set of parameters used to control

the velocity update function, as defined in Eq. (2.4)

* Soil updating parameters (a;, bs, c5): a set of parameters used to control the

soil update function, as defined in Eq. (2.7)

* Max_iter: the maximum number of iterations before terminating the IWD algo-

rithm.

* jnitSoil: the initial value of the local soil.

2.2.2(b) Dynamic parameters

The dynamic parameters are initialized before search begins, and are updated dur-
ing the search process. They are reverted to their initial values at the beginning of each
iteration. The dynamic parameters are:

e VK

visitea: @ list of vertices visited by water drop k.

« intiVel*: the initial velocity of water drop k.

« Soil*: the initial soil loaded on water drop k.

At the beginning, water drops are spread randomly at the vertices of the construction

k
visite

graph, and Vj;;.q 1 updated to include the initial state (i.e., vertex).
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2.2.3 Solution construction phase
The main aim of this phase is to construct a population of iwd solutions. A solu-

tion comprises a finite set of components, m; = {akj|k = l...iwd, j = 1...|D¢|}, Dy is

the dimension of solution k. Water drop k starts with an empty set of solution compo-
nents, m; = {}. The first vertex of the tour is added to m; whenever the water drop is
spread. Then, at each step of the construction phase, the water drop extends the partial
solution by traversing a new vertex, i.e., a feasible component that does not violate any
constraints of the problem. The construction phase is completed by the transition of all
water drops through the graph until the stopping criteria for constructing a complete
population is met (see Algorithm [2.1] lines 9-16). The construction phase is composed

of the following steps:

2.2.3(a) Edge selection mechanism

Consider water drop k residing at the current vertex i intends to move to the next
vertex j through an edge, e(i, j), where e € E. The probability of selecting e(i, j) is
determined by pi-‘ (j), as defined in Eqgs. li and . Then, the water drop visits

vertex j by adding it to VX

visited*

con_ Flsoil(i,j) -

P = e i) @b
vl ¢ V{fi.vited

f(soil(i,j)) = ——— 22)

€+ g(soil(i,j))

where € is a small positive number used to prevent division by zero in function f(.)
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soil(i,j) if m%(n soil(i, 1) > 0,
VIgVE
visite (2.3)

soil(i,j) — min soil(i,l) Otherwise.
Vig¢ vk

visited

g(s0il(i,j)) =

where soil(i, ) refers to the amount of soil within the local path between vertices i,

and j.

2.2.3(b) Velocity and local soil Update

The velocity of water drop k at time ¢ + 1 is denoted by vel*(¢ + 1). It is updated
every time it moves from vertex i to vertex j using Eq. (2.4).

ay

vel*(t+1) = ve ()+bv+cv*soilz(i>j)

(2.4)

where a,, b,, and ¢, are the static parameters used to represent the non-linear rela-
tionship between the velocity of water drop k (i.e., vel¥) and the inverse of the amount
of soil in the local path (i.e., soil(i, j)). When water drop k moves from vertex i to

vertex j, both soil* (i.e., the soil within water drop k)and soil(i, j) are updated using

Egs. and (2.3) respectively.

soil* = soil* + Asoil(i, j) (2.5

s0il(i,j) = (1 — py) *s0il(i,j) — pn * Asoil (i, j) (2.6)
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where p,, is a small positive constant between zero and one, (i.e., 0 < p, <1 );
Asoil (i, j) is the amount of soil removed from the local path and carried by the water
drop. Note that Asoil (i, j) is non-linearly proportional to the inverse of the time needed
for a water drop to travel from the current vertex to the next, as defined in Eq. (2.7).

As
by +cg xtime? (i,j : velk(t+ 1))

Asoil(i, j) = 2.7)

where ag, by, and c; are the static parameters used to represent the non-linear rela-
tionship between Asoil (i, j) and the inverse of the time. Note that time(i, j : vel*(t +1))
refers to the time needed for water drop k to transit from vertex i to vertex j at time
t+ 1. It is proportional to the distance between the two vertices as well as is propor-

tional to the inverse of the vel*( 4 1) as is defined as shown in Eq. (2.8).

HUD(, j
time(i,j : vel*(t41)) = W(j—]l)) (2.8)

where HUD(i, j) refers to a heuristic desirability degree between vertices i and j.

The processes of selecting a vertex to visit as well as updating the velocity and

local soil are iterated subject to the stopping criteria for obtaining a complete solution.
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2.2.4 Reinforcement phase

As shown in Algorithm [2.T] (lines 17-21), the fittest solution of each population is

known as the iteration-best solution, and is denoted as T'Z. It is determined using Eq.

(2.9).

T8 = ar¢g min g(x) (2.9)

VIeTWB
where ¢(.) is the fitness function which is used to evaluate the quality of the solu-
tions, and 7/ is the population of the solutions. To reinforce the water drops in the
subsequent iterations to follow T'B and achieve the fittest solution over the iterations,
the soil of all edges in 778 is updated using Eq. . This update process is known
as global soil update.

50il(i, j) = (1 + Piwa) * SOIl(1,]) — Piwd * ﬁ (2.10)

where p;,q 1s a small positive constant between zero and one, (i.e., 0 < pjg < 1).

In each iteration, the best solution (global best), (i.e.,TTB), is either replaced by

T'B or maintained, as defined in Eq. (2.11).

T ifq(T") < q(T")
T8 — (2.11)

TTB Otherwise.
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