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The main problem is no GRA (local) to work on the project since the beginning of the project (May 2013). We have 
advertised on MyGrant's system to recruit & hire GRA post for the project. Through my co-supervisor, we have also 
broaden the recruitment advertisement to School of Mathematic, USM. While at the same time, in every new semester 
starting in September 2013 intake, I have personally invited new Master in CS students to be part of the project. 
Unfortunately, despite all these efforts we have not get GRA interested in the project. We have taken a "piecemeal" 
approach for over a period of time, to only partially address the project's objectives - refers to the past progress reports. 
We hired on honorarium monthly basis, existing PhD's students to work on the specific tasks of the project. The problem 
with this approach is no sustainability & continuity of the research work - several of these PhD students have then left, 
and furthermore, they are not trained with the specific knowledge required in the project. They were mainly employed to 
implement & deliver specific tasks that we've formulated and modelled as per module (Oi piece by piece) e.g. 
implementing specific task/module on Matlab/C for testing purposes. The transition period of hiring new student, once 
the last one left also quite substantials, often it takes months to get one good (and willing) candidate, case in point was 
the recent situation where we have not get any student assistant to work on the project from Feb 2015 till the end of the 
extended project's period - this explain why there was no real progress from Feb 2015 to Oct 2015. 

There are other related issues as well, for instance, we have failed to fully devise a comprehensive idea of the research 
problem in the midst and rush of preparing the proposal form. Upon further research in the specific area of spatial filter 
design, we have found extensive works in gradient filter design have be done, both in the area of spatial as well as in 
signal processing field (mainly in EE). Attempts were made to re-focus the work on a few other possibilities, this includes 
extending the gradient's filter into 3D domain and looking at the aspect of accelerating the gradient filter algorithm using 
GPU. All these efforts requires fulltime engagement of GRA, which as explained above this was not fully materialized. 
The other part of the problem is more of a personal issue. For a period of 5 months from April 2014 - August 2014, I 
have served my sabbatical leave locally and abroad (spent 3 months at NUS). This event of my personal development 
undoubtedly have affected the progress of the project. 

In general, we have achieved 55-65 % progress with the spending of 13% on the budget, the extension period seeked 
and granted (6 months) was part of the attempt to salvage and to address some if not all of the issues impeding the 
research project's progress. It is now clear, despite my efforts to complete phase 3 of the project, I may not be able to 
fulfil the originally stated research objectives, and the expected deliveries as agreed in the original proposal. 

1. It is clear, to fully deliver in a fundamental research project such as FRGS, first we need to secure a PhD/MSc 
student prior to applying for the grant. 

2. Second, with such student secured idea or plan in the problem to be researched is better conceived with prior 
thematic review of the research relevant works have been done 

3. Flexibility should be given to engage Non-Malaysian GRA in FRGS - in the earlier part of my project (circa 2013), 
we were not allowed to recruit Non-Malaysian GRA, but the rule has been "relaxed" since then. 

On personal basis, I will continue researching on this topic with the focus as highlighted in section E above. This is my 
first failure of completing a research project, and it is a first of it kind in "fundamental" research that I have headed. 
Certainly I have learnt some very good lessons including those issues that appear to be crucial for FRGS. 

Gradient is mostly used to approximate a quantity called normal vector, which is widely used in techniques such as ray
casting or shading to calculate the shade of a pixel. Central Different Equation (CDE), Forward Difference Equation 
(FDE) and Backward Difference Equation (BDE) [1] are examples of common finite-difference gradient filters to estimate 
gradient from discrete data. We observed that gradients estimated these ways are very sensitive to the method 
employed, and worse if the volumetric data exhibits some patterns (or noise) which is common in CT -scan and MRI, the 
results we obtained are unpredictable, as small perturbations in the dataset results in significant difference in the results. 

In this research we are nrnnn~:in the fundamental nrr)n",'rrl.'" and structures of finite-differences radient 



estimators for discrete volumetric data. This will enable us to discover causal relationships within the discrete volumetric 
data that are prone to uncertainties. We would also explore and carry out empirical research to discover key causal . 
relationships inherent on complex 3D data. Thus the main objective is to address the instability problem in Finite~ 
Difference (FD) method by proposing an alternative multi-scale approach. 

Extracting shape features from 3D volumetric data directly is crucial for certain critical applications e.g. performing 
surgery or laser cancer treatment on a patient's brain. With this FRGS grant, we hope to uncover the inherent limitations 
in existing finite difference methods to estimate gradients (the key component for feature extraction) and proposed a 
much robust methods to handle uncertainties in discrete volumetic data. 
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The Progress Report of Project (in April) 

Introduction 

Tasks for the month of April 2014 (21 Apr - 30 Apr) 

1. Perform 3D Gaussian filtering to estimate gradients on a set of 3D discrete data analytically generated from 
an ~ function: 

a. IdentifY the functions, you can have more than one functions with different level of complexities (they 
must be 3D functions) (in 5.1) 

b. Generate sample dataset for various resolutions, says start with a very coarse sampling, e.g. 10 x 10 x 10, 
than vary gradually to higher resolutions (inS.2) 

c. For each of the sample dataset generated above perform Gaussian kernel to estimate gradients from the 
scalar values: 

~ Vary the mil and sigma or determine them analytieally based from some theory (reason 
jli~eCtion4) 

~ Vary the kernel filter size i.e. the window, to capture the best estimate; typical sizes are 
3x3x3, 7x7x7 or 15x1Sx15, etc. 

d. Store or collect the results for further evaluations and analysis (see below) (in·$;'3) 

2. Calculate analytically from the chosen implicit function the gradient at each point for the various resolutions 
(see 1. (b) above). This is to establish the "ground-tmth" data for analysis & comparison with Gaussian's 
estimated gradient (in 5:1 & sj) 

3. Perform a 2 nd order deriyati't'e estimation for both diserete data (Gaussian) and analytieally on the imfllieit 

funetion. (Qr~i:(i~ritrefers~01hefir~tQrp-erpiU1'jaldQrlvaijv~) 

4. Perform the evaluation and analysis from the data collected in 1 and 2. You can do this in various ways, for 
instance you can evaluate the accuracy of Gaussian's estimated gradients with the ground-tmth data via errors 
analysis,.~tc: (~l~fjgn;.magn~ltde.iQf.gia~;Henfis ·computed.tij~ji;JytS~.itUeasurestfre.Gbliana 
GQJ;Y;~ili~lp~~Ga;vs~i~~lfIlter) . " . . .. .. . ....... .. . .. 

5. Prepare a technical report of your findings (similar to the one you've prepared earlier for the Finite 
Difference theoretical analysis). 

In addition, the contents related to the gradient and Gaussian smoothing have been prepared 

in the first four sections . 

../' section 1 introduce the gradient concept 

../' Section2 provides the computation algorithms of gradient for 2D discrete data 

../ Section3 provides the computation algorithms of gradient for 3D discrete data 

../ Section4 introduces centered Gaussian kernel (there is no mu), the algorithm of 

smoothing data using Gaussian filter 



1. Basic cOllcep. of gradicui 

For a two-variables function I = j'(;r, .Y), the gradient of funcliofi f is defined as 

. Df -:' Of -! ./ -:' / -: 
V t = -/ ..L - j = I 1 + f J . rh" dy' . ;; , . y. 

(1) 

U II h bb . d fi . [Of () f] [/./ 'f] I d . . sua y, tea revmte orm V J = -. -. -0', =." .1,/ IS emp oye . Pomts m (J:r ' !I . 

gradient direction have the most rapid change 

vI, .= [OiU] 
l f.!!J. 

Figurel Horizontal, vertical and general gradients 

The magnitude of gradient is 

II V III = U:Y + U~)2 
And the gradient direction is given by 

(J = tan-lU.~/ I:,) 

For three-variables function f = I(:r, y.;;), the gradient of function f is defined as 

uf -;' uf -: U f .... I -;' I -: ,-+ 
V I = -;)1 + -;).7 + -:-) k = Ix,t + Iy.] + I);; 

0;,(; uy (2 

Usually, the abbreviated form vI = Lf~. I~, f~l is employed. 

The magnitude of gradient is 

(2) 

(3) 

(4) 

(5) 

2. Calculation gradient based on centered difference equation (CDE) for 
discrete data generated by two-dimensional function 

Function [J.n f'l) = gl'ad£enJ(.f, h",. h!l) returns the numerical gradient of a matrix.f. fa; 

corresponds to ~~;' the differences in .1': (horizontal) direction. f1/ corresponds to X, the 

differences in '!I (vertical) direction. Where 1= f(:.r, y) is a 2D matrix, h"" hIJ are chosen as 

scalar to represent the spacing between points in each direction. The default value is set as 

h.,. = hy = 1. The calculation formulas of the first order partial derivatives are described as: 



[In, nl = si,-:;eU) 
When.i = 1 
I,.(i, 1) = i(i., 2) - f(i, 1) 
When.i = n 
fAi, n) = f(i, 71) - f(i,n - 1) 
When l<.i<n 

j
. ( .. ) f(i,) + 1) - f(i,j -1) 

Z ] - "--'--"----'--'--'----'-
.1' '. - 2h:

r 

The similar to the first order derivative for '!i 

When'! = 1 
f.1f(1,j) = f(2,j) - f(Lj) 
Wheni = 'In 

j~/(m,j) = f('IlI·,j) - f('1n - Lj) 
When l<i<m 

f. (i.;) = f(i + 1,)) - f(i - 1,j) 
y . .7 ')1' 

~ I. y 

Figure2 Calculation formulas of the first order partial derivatives for two-dimensional function 

Examplel 

[
896.92] 

A= 5 8 7 0 1 
454 G 9 
8 1 0 9 5 

Using [A1., Ay] = gradient(A), then we can obtain 

[ ~ -~ -~ =~ -~] 
A:c= 1 0 0.5 2.5 :3 

-7 -4 4 2.5 -4 

-2 -2 -1 -l.E) :3.5 
Ay = [

-3 -1 1 -9 -1] 
L45 -a.5 -:3.5 4.5 2 

-4 -4 3-4 

Next, we can draw the gradient of each point, at the same time, mark the original data 

value in the corresponding position. 
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Figure3 Gradient of matrix A 

The command of drawing Figure3 is recorded as: 

»figure 
»quivcr(Ax,Ayj 
»fbri=1:5 
»fbrj=I:4 
»tcxt(i,i,num2str(AU.i))) 

»end 
»end 

, 
/'/; 
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1 ji 
,1/ 
;' , 
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In Figure3, the values are marked in the corresponding coordinates, at the same time, the 

. gradient (using a vector) of each point is labelled. 

3. Calculation gradient based on centered difference equation (CDE) for 
discrete data generated by three-dimensional function 

Function [i.e, f y, fz] = gradieni(f, h:r;, hy, hz) returns the numerical gradient of a 3D 

matrix .f. Jz corresponds to ~L, the differences in the z direction. Here, suppose matrix.f. is 

Tn X n X p entries which is able to be viewed a piled up 2D matrix to form the thick 

(altitude). Based on this consideration, the calculation of the first order partial derivatives 

about ;'/:, 1/, z respectively is generalized from two-variable function. 



For k=]:p 
temp=f(:,:,k); 
Compute partial derivatives f{~': f~' of temp matrix according to 

he formulas described in Figure2 
Ir(:,:, k) = f;~: 
fll(:' :, k) = f~c 
End 
To calculate the partial derivative with respect to z 
When J,: = 1 
f,(:·:,1) = f(:,:· 2) - f(:· :.1) 

Whenk = p 

.fz(:, :.p) = it:. :,[1) - 1(:, :,p -1) 
When l<k<p 
f.(:.:.k) = f(:,:.k+ 1) - !(:,:,k-1) 
. - . . 2h2 

Figure4 Compute the first order partial derivatives for three-dimensional function 

Example2 Give 3D matrix v, the data is depicted as 

v(:,:,I) = 
-0.0600 -0.2107 -0.5531 -0.9835 -1.4334 -1.8742 -2.2994 -2.7122 -3.1205 -3.5362 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
0.2855 -0.0017 -0.5771 -1.2119 -1.8245 -2.4100 -2.9895 -3.6013 -4.3242 -5.4343 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
-0.0600 -0.2107 -0.5531 -0.9835 -1.4334 -1.8742 -2.2994 -2.7122 -3.1205 -3.5362 

v(:,:,2)= 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
0.6298 0.1032 -0.7809 -1.6442 -2.4647 -3.3258 -4.4676 -6.4575 -4.7292 -4.3451 
0.9720 0.0586 -1.1855 -2.3499 -3.7080 -5.6155 -4.1380 -3.8390 -3.7335 -3.6999 
0.6298 0.1032 -0.7809 -1.6442 -2.4647 -3.3258 -4.4676 -6.4575 -4.7292 -4.3451 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 

v(:,:,3) = 

0.2855 -0.0017 -0.5771 -1.2119 -1.8245 -2.4100 -2.9895 -3.6013 -4.3242 -5.4343 
0.9720 0.0586 -1.1855 -2.3499 -3.7080 -5.6155 -4.1380 -3.8390 -3.7335 -3.6999 
1.6094 -0.8755 -1.5261 -1.9169 -2.1972 -2.4159 -2.5953 -2.7473 -2.8792 -2.9957 
0.9720 0.0586 -1.1855 -2.3499 -3.7080 -5.6155 -4.1380 -3.8390 -3.7335 -3.6999 
0.2855 -0.0017 -0.5771 -1.2119 -1.8245 -2.4100 -2.9895 -3.6013 -4.3242 -5.4343 

v(:,:,4) = 

0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
0.6298 0.1032 -0.7809 -1.6442 -2.4647 -3.3258 -4.4676 -6.4575 -4.7292 -4.3451 
0.9720 0.0586 -1.1855 -2.3499 -3.7080 -5.6155 -4.1380 -3.8390 -3.7335 -3.6999 
0.6298 0.1032 -0.7809 -1.6442 -2.4647 -3.3258 -4.4676 -6.4575 -4.7292 -4.3451 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 

v(:,:,5)= 

-0.06 -0.2107 -0.5531 -0.9835 -1.4334 -1.8742 -2.2994 -2.7122 -3.1205 -3.5362 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
0.2855 -0.0017 -0.5771 -1.2119 -1.8245 -2.4100 -2.9895 -3.6013 -4.3242 -5.4343 
0.1743 -0.0598 -0.5511 -1.1171 -1.6754 -2.2094 -2.7276 -3.2498 -3.8085 -4.4695 
-0.0600 -0.2107 -0.5531 -0.9835 -1.4334 -1.8742 -2.2994 -2.7122 -3.1205 -3.5362 



**~*~*****~********~ :' .:. ';':;-';" ~: y: .:" * ;:: .~~:.~ ,; 't ;;. * * ~'. *- * ;i; !;' i;:; ':: ~~ * \; >~ . > ~~.~~'.;.~~~*:~~*~*** 

[f·.l .1'1 = " .• l-,. lj, "J "lIt(f), the defilUit spacing of c8ch direction is 1. The derivatives are 

achieved and listed in the following: 

dx(:,:,I)= 
-0.1507 -0.2466 -0.3864 -0.4401 -0.4454 -0.433 -0.419 -0.4106 -0.4120 -0.4157 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0.2871 -0.4313 -0.6051 -0.6237 -0.5991 -0.5825 -0.5957 -0.6674 -0.9165 -1.1101 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0. I 507 -0.2466 -0.3864 -0.4401 -0.4454 -0.4330 -0.4190 -0.4106 -0.4120 -0.4157 

dx(:,:,2)= 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0.5266 -0.7054 -0.8737 -0.8419 -0.8408 -1.0015 -1.5658 -0.1308 1.0562 0.3841 
-0.9133 -1.0787 -1.2043 -1.2613 -1.6328 -0.2150 0.8882 0.2022 0.0696 0.0336 
-0.5266 -0.7054 -0.8737 -0.8419 -0.8408 -1.0015 -1.5658 -0.1308 1.0562 0.3841 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 

dx(:,:,3)= 
-0.2871 -0.4313 -0.6051 -0.6237 -0.5991 -0.5825 -0.5957 -0.6674 -0.9165 -1.1101 
-0.9133 -1.0787 -1.2043 -1.2613 -1.6328 -0.2150 0.8882 0.2022 0.0696 0.0336 
-2.4849 -1.5677 -0.5207 -0.3356 -0.2495 -0.1990 -0.1657 -0.1420 -0.1242 -0.1165 
-0.9133 -1.0787 -1.2043 -1.2613 -1.6328 -0.2150 0.8882 0.2022 0.0696 0.0336 
-0.2871 -0.4313 -0.6051 -0.6237 -0.5991 -0.5825 -0.5957 -0.6674 -0.9165 -1.1101 

dx(:,:,4)= 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0.5266 -0.7054 -0.8737 -0.8419 -0.8408 -1.0015 -1.5658 -0.1308 1.0562 0.3841 
-0.9133 -1.0787 -1.2043 -1.2613 -1.6328 -0.2150 0.8882 0.2022 0.0696 0.0336 
-0.5266 -0.7054 -0.8737 -0.8419 -0.8408 -1.0015 -1.5658 -0.1308 1.0562 0.3841 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 

dx(:,:,5)= 
-0.1507 -0.2466 -0.3864 -0.4401 -0.4454 -0.4330 -0.4190 -0.4106 -0.4120 -0.4157 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0.2871 -0.4313 -0.6051 -0.6237 -0.5991 -0.5825 -0.5957 -0.6674 -0.9165 -1.1101 
-0.2341 -0.3627 -0.5287 -0.5622 -0.5461 -0.5261 -0.5202 -0.5405 -0.6099 -0.6610 
-0.1507 -0.2466 -0.3864 -0.4401 -0.4454 -0.4330 -0.4190 -0.4106 -0.4120 -0.4157 

************************************************************************* 

dy(:,:,I)= 
0.2343 0.1509 0.0020 -0.1336 -0.2420 -0.3351 -0.4282 -0.5376 -0.6880 -0.9333 
0.1727 0.1045 -0.0120 -0.1 142 -0.1956 -0.2679 -0.3451 -0.4446 -0.6019 -0.9490 

0 0 0 0 0 0 0 0 0 0 
-0.1727 -0.1045 0.0120 0.1142 0.1956 0.2679 0.3451 0.4446 0.6019 0.9490 
-0.2343 -0.1509 -0.0020 0.1336 0.2420 0.3351 0.4282 0.5376 0.6880 0.9333 

dy(:,:,2)= 
0.4555 0.1629 -0.2298 -0.5271 -0.7892 -1.1165 -1.7400 -3.2077 -0.9207 0.1244 
0.3988 0.0592 -0.3172 -0.6164 -1.0163 -1.7031 -0.7052 -0.2946 0.0375 0.3848 

0 0 0 0 0 0 0 0 0 0 
-0.3988 -0.0592 0.3172 0.6164 1.0163 1.7031 0.7052 0.2946 -0.0375 -0.3848 
-0.4555 -0.1629 0.2298 0.5271 0.7892 1.1165 1.7400 3.2077 0.9207 -0.1244 

dy(:,:,3)= 
0.6865 0.0603 -0.6084 -1.1380 -1.8835 -3.2055 -1.1485 -0.2377 0.5908 1.7345 
0.6620 -0.4369 -0.4745 -0.3525 -0.1864 -0.0029 0.1971 0.4270 0.7225 1.2193 

0 0 0 0 0 0 0 0 0 0 



-0.6620 0.4369 0.4745 0.3525 
-0.6865 -0.0603 0.6084 1.1380 

dy(:,:,4)= 
0.4555 0.1629 -0.2298 -0.5271 
0.3988 0.0592 -0.3172 -0.6164 

0 0 0 0 0 
-0.3988 -0.0592 0.3172 0.6164 

-0.4555 -0.1629 0.2298 0.5271 

dy(:,:,5)= 
0.2343 0.1509 0.0020 -0.1336 
0.1727 0.1045 -0.0120 -0.1142 

o 0 000 
-0.1727 -0.1045 0.0120 0.1142 
-0.2343 -0.1509 -0.0020 0.1336 

0.1864 0.0029 ·0,1971 -0.4270 -0.7225 -1.2193 
1.8835 3.2055 1.1485 0.2377 -0.5908 -1.7345 

-0.7892 -1.1165 -1.7400 -3.2077 -0.9207 0.1244 
-1.0163 -1.7031 -0.7052 -0.2946 0.0375 0.3848 
0 0 0 0 0 
1.0163 1.7031 0.7052 0.2946 -0.0375 -0.3848 
0.7892 1.1165 1.7400 3.2077 0.9207 -0.1244 

-0.2420 -0.3351 -0.4282 -0.5376 -0.6880 -0.9333 
-0.1956 -0.2679 -0.3451 -0.4446 -0.6019 -0.9490 
o 000 0 
0.1956 0.2679 0.3451 0.4446 0.6019 0.9490 
0.2420 0.3351 0.4282 0.5376 0.6880 0.9333 

***************************************************************** 

dz(:,:,I)= 
0.2343 0.1509 0.0020 -0.1336 -0.2420 -0.3351 -0.4282 -0.5376 -0.6880 -0.9333 
0.4555 0.1629 -0.2298 -0.5271 -0.7892 -1.1165 -1.7400 -3.2077 -0.9207 0.1244 
0.6865 0.0603 -0.6084 -1.1380 -1.8835 -3.2055 -1.1485 -0.2377 0.5908 1.7345 
0.4555 0.1629 -0.2298 -0.5271 -0.7892 -1.1165 -1.7400 -3.2077 -0.9207 0.1244 
0.2343 0.1509 0.0020 -0.1336 -0.2420 -0.3351 -0.4282 -0.5376 -0.6880 -0.9333 

dz(:,:,2)= 
0.1727 0.1045 -0.0120 -0.1142 -0.1956 -0.2679 -0.3451 -0.4446 -0.6019 -0.9490 
0.3988 0.0592 -0.3172 -0.6164 -1.0163 -1.7031 -0.7052 -0.2946 0.0375 0.3848 
0.6620 -0.4369 -0.4745 -0.3525 -0.1864 -0.0029 0.1971 0.4270 0.7225 1.2193 
0.3988 0.0592 -0.3172 -0.6164 -1.0163 -1.7031 -0.7052 -0.2946 0.0375 0.3848 
0.1727 0.1045 -0.0120 -0.1142 -0.1956 -0.2679 -0.3451 -0.4446 -0.6019 -0.9490 

dz(:,:,3)= 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

dz(:,:,4)= 
-0.1727 -0.1045 0.0120 0.1142 0.1956 0.2679 0.3451 0.4446 0.6019 0.9490 
-0.3988 -0.0592 0.3172 0.6164 1.0163 1.7031 0.7052 0.2946 -0.0375 -0.3848 
-0.6620 0.4369 0.4745 0.3525 0.1864 0.0029 -0.1971 -0.4270 -0.7225 -1.2193 
-0.3988 -0.0592 0.3172 0.6164 1.0163 1.7031 0.7052 0.2946 -0.0375 -0.3848 
-0.1727 -0.1045 0.0120 0.1142 0.1956 0.2679 0.3451 0.4446 0.6019 0.9490 

dz(;,;,5)= 
-0.2343 -0.1509 -0.0020 0.1336 0.2420 0.3351 0.4282 0.5376 0.6880 0.9333 
-0.4555 -0.1629 0.2298 0.5271 0.7892 1.1165 1.7400 3.2077 0.9207 -0.1244 
-0.6865 -0.0603 0.6084 1.1380 1.8835 3.2055 1.1485 0.2377 -0.5908 -1.7345 
-0.4555 -0.1629 0.2298 0.5271 0.7892 1.1165 1.7400 3.2077 0.9207 -0.1244 
-0.2343 -0.1509 -0.0020 0.1336 0.2420 0.3351 0.4282 0.5376 0.6880 0.9333 

Next, for [.fT' ill' fzJ = gnuiicnt(f, hx. hw hz), change h,., hy. h" value to verify the 

variations of partial derivatives. Three set scalars are employed 



,,' (1) h.e = fly = h: = 1 (The experimental resul~s :lIe rlisplayecl exhaustively in 

example2) 

• (2) h.1' = 1.1. lly = 1.5. h:; = 1.5 

• (3) h,. = hy = 11: = 0.8 

The comparisons are performed about three partial derivatives respectively shown in 

FigureS, Figure8 and Figure9. Firstly, a;) x 10 x 5 matrix is transferred to a column vector, 

hence the length of this vector is 2S0. In order to illustrate clearly, a factor lOis used to 

enlarge all the derivatives. 
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Figure5 First order partial derivatives with respect to x. The blue line 

In order to observe clearly the trend of FigureS, two local enlarged figures are illustrated 

in the following Figure6 and Figure7. 



Figure6 First part ofthe enlarged FigureS 
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Figure7 Middel part of the enlarged FigureS 
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Figure8 First order partial derivatives with respect to y for three cases 
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Figure9 First order partial derivatives with respect to z 
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Figure 1 0 Magnitudes of three cases 

Observation carefuliyFIg.ire5,;Figure8 and Fjgure9,we ;c·an easilyfound 

.:. The variation amplitude of the case of (2) is the smallest among three cases. That 

is to say, whenh,. = 1.1, hy = 1.5, h, = 1.5, the first order partial derivatives are 

the most accurate . 

• :. Furthermore, we calculate the magnitude of gradient for these three cases (shown 

in Figure 1 0). The means and standard variances are listed in Table1 

Table1. The mean and standard variance ofthree magnitudes 

(1) (2) (3) 

Mean 1.092 0.8338 1.56 

std 0.7061 0.4904 1.0087 

4. Gaussian kernel filtering 

1 '1'2 
.:. 1 D Gaussian kernel: f (:c) = ~. cxp( - ~ ) 

v2nO' 20' 
. 1 .1:2 + 1]2 

·z- 2D GaUSSlan kernel: ((:1.:. y) = - . e.:rp( - .) 
..- 2nO' 20'2 ' 

1 ;};2+y2+Z2 
.:. 3D Gaussian kernel: f(:c ... y. , z) = . c'cp(- ) 

( q-:::=)3' 20'2 V~KO' . 



·:. ial3 generates a 3D Gaussian filter, and then iill fiher. 

Next, we will introduce clearly these two ways 

CD smoolh3 function is used to smooth 3D data 

w = smooth3(v, method, size, arg) 

Inputs: 

OIl 3D data set v 

., Method option can be either of the filters 'gaussian' or 'box' (default) and 

determines the convolution kernel 

• Size option sets the size of the convolution kernel (default is [3, 3, 3]). If size is a 

scalar, the size is interpreted as [size, size, size]. 

• Arg option sets an attribute of the convolution kernel. When method is 'gaussian', 

arg is the standard deviation (default is .65). 

Outputs: 

• The smoothed data is returned in W 

(2) fspecial3 creates a 3-dimensional filter 

h = fspecial3('gaussian',size) 

• The default size is [5, 5, 5]. If size is a scalar then h is a 3D cubic filter of 

dimension size"'3. 

• Returns a centered Gaussian low pass filter of size 

• Standard deviations defined as ~ so that FWHM equals half filter size. 
4· 21og2 

Such a FWHM-dependent standard deviation yields a congruous Gaussian shape. 

5. Simulation experiments 

5.1 Two three-dimensional functions 

Firstly, we choose arbitrary two functions to generate the analytical data 

CD. f(:I:, y. z) = a:2 + y2 + Z2, J: E [0, :3], y E [0, :3] and Z E [0. :~] 

According to the definition of the first order partial derivatives, then we achieve: 



() f ./ .-- -- I - ')1' HI' - . ,/, - ~, ' 

of - /" _ .) 
-:-) -." - ~!J ( .II ., 

uf -.. -' = r = 2z (}z . ~ 

(6.1) 

(6.2) 

(6.3) 

Q) g(x, y. z) = ,7: • pxp(-:r2 
- ;112), :t E [0. :3], y E [0, :3] and ,c E [0. :3] 

Dg I . ') 'J, ' -;:) = .</, .. = -2:1:z· exp( -r - y-) = -2;t . g(:r,y, z) 
0:1: 

(7.1) 

oq , ? 2 
!l' = g" = -2;11Z • exp( -;c - y ) = -2y· g(:I;, lJ, z) uy ., 

(7.2) 

og I 2 2 1 ( -::) = g. = exp(-:I: - y ) = -.. g x,y,z) oz - , z· (7.3) 

5.2 3D analytical data 

In this section, we generate synthetic data based on the given functions and the domains 

ofthree independent variables .1;, ;Ij, z. The data descriptions are listed in the following tab1e2. 

T b12 D a e . ata generate db h . fu . ~t e given nctlOns 
Function Size Description 

Datal f(:r..1}, z) = :r.2 + l + z2 llxllxll The spacing of x, y, z respective is the same 
0.3 

Data2 f(.T,;tJ, z) = ,1,.2 + y2 + Z2 5lx51x51 The spacing of x, y, z respective is the same 
0.06 

Data3 ( 2 2) llxllxll The spacing of x, y, z respective is the same g;r.,y,z)=z·exp(-x -y 
0.3 

Data4 9(;r,;Il, z) = z· exp( _x2 -xl) 51 x51x51 The spacing of x, y, z respective is the same 
0.06 

Data5 f(:r, y, z} = :r2 + y2 + Z2 51x51x51 Add Gaussian noise into data2 

Data6 () 2 2) 9 ;t, y, Z = Z . exp( -:r. - y . 51x5lx51 Add Gaussian noise into data4 



Plot the isos!lr1,lC''-~S oJ' ,J,Jla2, da1,·4 alld their noisy data to indicate the difference 

between dean data and noisy data, 

Figure11 the isosurface of data2 and noisydata2 
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Figure12 the isosurface of data4 and noisydata4 

5.3 The measurement of gradient 

For a data, there are three methods to calculate the gradient denoting as 

methodl: The partial derivatives formulas (6) or (7); 

1,2 

method2: The centered difference formula described in Figure2 and Figure4; 

method3: The data is smoothed by Gaussian filter, and then method2 is employed to 

calculate the gradient. 

The magnitude of gradient is computed and to be compared. As we know, the gradients 

ofmethodl are the most precise, so they are considered as the ground-truth gradients and 

magnitudes. The magnitudes of gradients of the remainder two methods are expected to 



compare with ground-truth magnitude. The measurement is the mean squared error between 

the ground-truth magnitudes and the magnitudes 
y 

1 I:" .) Err = - (111(1(1; - truth;)-N " . 
;=1 

(8) 

where N = 8i;~e(mo.9, 1) * size(mafj, 2) * 8i:::e(mag, :3) 

The exhaustive experimental results are stored in junctional data. mat file. The mean squared 

errors are displayed in Table3 and Table4. 

Table3 Three errors on the data generated by the first function 

CDE Gaussian(size~r3,3,311 Gaussian(size~r5,5 51) 
Datal 0.01739 0.5059 0.5289 
Data2 l.3843e-04 0.0663 0.0694 
Data5 1.5868 0.1949 0.1878 

Table4 Three errors on the data generated by the second function 

CDE Gaussian(size~r3,3 31) Gaussian(size~r5,5 51) 
Data3 0.0062 0.0071 0.0074 
Data4 9.0421e-04 6.161le-04 6.1343e-04 
Data6 4.0676 0.3291 0.3038 

Conclusions: 

4- method2 (CDE is used individually) is superior to method3 (CDE based on 

Gaussian filter) for the clean data (datal,data2,data3 and data4) 

4- method3 can provide better results than method2 for the noisy data (data5 and 

data6) 

4- Gaussian filter can supply the slightly smaller MSE when window size is smaller. 

i.e., when size is 3, the smoothing is better than the smoothing of the case where 

size is 5 on clean data 

4 The opposite phenomenon is observed on noisy data. 



Tasks for the month of May 2014 (first 2 vveeks) 

The above exploratory tasks are the initial stage for designing a multi-scale Gaussian

based spatial kernel filter. It should give you some idea about the sensitivity ofthe parameters 

involved and more generally the performance issues of Gaussian's filter. Based on these 

findings, we can do further fine-tuning to calibrate and test the filter against real discrete 3 D 

data. So your task now are: 

1. Perform Gaussian gradient (1st order) and curvature (2nd order) estimations against 

temperature dataset - it is a small simulated data. Get some help from Pan about the coding 

either for Matlab or (if necessary) for OpenGL (I think it is not necessary at this stage) 

2. Evaluate and analyze the results, you can actually compare your findings against the 

results Pan's gathered for his thesis (not using Gaussian). 

3. Prepare a technical report to report your findings and conclusion. 

** This experiment is sort of a simple exposure of Gaussian to "real" dataset, where 

noise or errors are negligible. We should expect for Gaussian to perform quite well for this 

data - in fact I'm anticipating for Gaussian to address some of the limitations in Pan's work. 

... potential tasks for the remaining 2 weeks of May 2014 

At this stage, we should have a fairly good knowledge (verified by our experiment rather 

than based on theory) on how well Gaussian estimate gradient and curvature from discrete 

data. We are then at a position to decide what to do next ... 

1. If it performance is reasonably good, we can proceed with Gaussian multi-scale 

spatial filter to apply it to real data set as generated from CT or MR1 scan of a human skull. 

Note that in this case there are a fair number of noises in the dataset. Theoretically, Gaussian 

filter may not cope with these outliers very well, but we may have to proof it experimentally. 

2. Or if its performance is not encouraging (even for the simple temperature data), we 

may have to think for other alternatives, including considering Bilateral kernel or the filter 

framework as proposed by Moller - based on taylor series expansion on some polynomial 

function. We have to decide this later. 



[xpt:rimenH, smue experiments are conducted on 31) temperature data: 

CD The description ofthe data is 

Dataset structured yoints 

Dimensions: 18 x 18 x 1 ° 
Origin: {O, 0, O} 

Spacing: {l, 1, I} 

Point data: 3240 

~ Filtering the temperature data with a 3D Gaussian filter 

w = smooth3(v, method, size, arg), in here, 

a) Change the window size from 3 to 9 (3, 5, 7, 9); 

b) Vary the sigma from 0.7 to 2 (0.7, 1, 1.3, 1.5, 1.7,2). 

® Compute the gradient by [IJ' Iw j~J = y,'(ulicIIIU· h", , "". II;), h~, = It" = h;: = 1. 

The magnitude of gradient is II \l III = )(/:)2 + U~)2 + un'2 . Some magnitudes are 

shown in the following two figures. 
0 .• ,-----,--, 

Figl. The parts of magnitudes when window size=5. 

... ~ .. , .. -. magnitude on original data 

magnitude when sigma::O.7 
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magnitude when size=3 

.. magnitude when size=5 

magnitude when size=7 

magnitude when size=9 

Fig2. The parts of magnitudes when sigma= 1. 

Observations from Fig.l and Fig.2 : 

.:. In Fig.I, when window size is fixed, the magnitudes of gradients on the Gasussian 

filtered temperature data (colourful lines with cross marks) are smaller than those on 

original temperature data (red line with circle marks) . 

• :. In Fig. 1 , for the Gasussian filtered temperature data, the larger the sigma in Gaussian 

filter, the smaller magnitudes of gradients . 

• :. In Fig.2, when the sigma in Gaussian filter is fixed as 1, the magnitudes of gradients 

on the Gasussian filtered temperature data (colourful lines with cross marks) are 

smaller than those on original temperature data (red line with circle marks) . 

• :. In Fig.2, for the Gasussian filtered temperature data, window size in Gaussian filter 

are 5, 7 and 9, the magnitudes of gradients have slightly variation . 

• :. The magnitudes of gradient are stable without the sharply peak-valley-variation when 

sigma becomes larger. That is to say, the proper sigma value should be taken. 

From statistics viewpoint, the exhaustive mean magnitUdes are displayed in table! 



Tablel. The mean magnitudes on the Gaussian filtered temperature data. Note that the mean 

magnitudes on the temperature data is 0.2422 

Size=3 Size=5 Size=7 Size=9 

Sigma=0.7 0.1274 0.1220 0.1220 0.1220 

Sigma=1 0.1053 0.0810 0.0796 0.0796 

Sigma=I.3 0.0983 0.0608 0.0549 0.0545 

Sigma=1.5 0.0960 0.0548 0.0454 0.0442 

Sigma=1.7 0.0945 0.0520 0.0394 0.0373 

Sigma=2 0.0932 0.0503 0.0341 0.0309 

~ Table 1 indicates the mean magnitudes decrease with the sigma increase; 

~ When sigma is 0.7, the mean magnitudes keep the same when window size is 

larger than 5; 

.,*- The mean magnitudes decrease with the window size increase; 

.,... Due to the data size limitation, there are no apparent difference between the 

mean magnitudes of size=7 and those of size=9. 

Experiment 2, some experiments are conducted on 3D flow data: 

CD First create a 3D flow data and add some noise: 

»[x,y,z,V] = flow(60); 

»noisyV = V + 0.1 *randn(size(V»; 

@ Filter the flow data with a 3D Gaussian filter using f<:pecial3 and irnfilter: 

»h = fspecia13('gaussian',9); 

»filteredV = imfilter(noisyV,h); 

And display the result: 



Noisy datil 

G) Compute the gradients and magnitudes 

a) The gradients and magnitudes of clean data V as ground-truth; 

b) The gradients and magnitudes of noisy data noisyV; 

c) The gradients and magnitudes of filtered data filtered; 

Table2. The mean magnitudes on the Gaussian filtered temperature data. Note that the mean 

magnitudes on the temperature data is 0.2714 

Size=5 Size=9 Size=13 Size=19 Size=25 

S;6!'1a=0.65 0.1952 0.1952 0.1952 0.1952 0.1952 

Sigma=1 0.1736 0.1724 0.1724 0.1724 0.1724 

Sigma=1.5 0.1614 0.1532 0.1529 0.1529 0.1529 

Sigma=1.9 0.1575 0.1430 0.1411 0.1410 0.1410 

Sigma=2.4 0.1551 0.1350 0.1297 0.1289 0.1289 

Sigma=3 0.1537 0.1297 0.1203 0.1171 0.1169 

Sigma=3.4 0.1531 0.1276 0.1161 0.1108 0.1102 
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Fig3. The parts of magnitudes 

.. magnitude on noisy data 

magnitude on sigma=O.65 

magnitude on sigma=1 

... magnitude on slgma=1.5 

magnitude on sigma=1.9 

-+- magnitude on sigma=2.4 

magnitude on sigma=3 

... -.. magnitude on sigma=3 4 

The data in Fig.3 are obtained via the following 

for i=1:120 
v7(i)=surn(Vrnag29((i-I)*b+ 1 :i*b »/b; 
end 

Observations in this experiment are totally similarvvith the conclusion oflast experiment. 

Conclusion: 

.:. Gaussian filter has a positive influence for computing gradient by smoothing discrete 

data 

.:. Especially, it is efficient for noisy data 

Some thoughts: 

1. Gaussian filter is necessary for really generated discrete data. The fact is that can smooth 

efficiently the noisy data. Experimental results have been proven this conclusion. However, 

pay attention to the proper window size and sigma values to avoid the over-fitting smoothing. 



methods. lIere, magj.;wd.: of i\:u! i'> Illcr;:h il;I;·{ism:~\l'cuL Under statistical sense, mean 

magnitudes are used to com pare the experimental results. 

3. Some details about data should be known, for example, the spacing of data will influence 

greatly the accuracy of gradient. [Ir, I". f,] = .lJl'IldiCJd(f. Ii.,. liy. Ii,) 


