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SEGMENTASI HIPOKAMPUS MENGGUNAKAN SET PERINGKAT

BERASASKAN TERDAHULU BERSEPADU SETEMPAT BERPANDUKAN

PENDAFTARAN HANYUTAN TITIK KOHEREN TERHIMPUN DAN

BERWAJARAN

ABSTRAK

Segmentasi hipokampus daripada struktur-struktur subkortikal otak

bersebelahan merupakan satu tugas yang sangat mencabar, terutamanya akibat

sempadan pemisahan struktur-struktur ini adalah lemah atau kurang jelas, seterusnya

menyebabkan pendekatan berasaskan sempadan tidak berkesan untuk segmentasi

hipokampus yang betul. Disamping itu, kedudukan hipokampus yang hampir dengan

amygdala menyukarkan lagi isu segmentasi. Walau bagaimanapun, trend terkini

telah beralih dari bergantung semata-mata kepada ciri-ciri imej kepada penggunaan

model-model terdahulu dalam segmentasi. Secara amnya, model-model terdahulu

dibina menggunakan segmentasi berasaskan atlas. Walau bagaimanapun, pendekatan

ini sangat data intensif kerana ia menggunakan kaedah berasaskan volumetri untuk

pembinaan model terdahulu. Oleh yang demikian, tesis ini mencadangkan satu

pendekatan pembinaan model terdahulu yang bukan sahaja mampu mewakilkan

maklumat bentuk dan lokasi ruang secara berkesan, malah mempunyai keperluan

data intensif yang lebih rendah berbanding pendekatan berasaskan atlas. Secara

terperinci, satu kaedah pendaftaran set titik yang novel dicadangkan dan disahkan bagi

pembinaan model terdahulu. Pendaftaran set titik yang dicadangkan menggunakan
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satu set titik perwakilan dan bukannya keseluruhan isipadu imej dalam membina

model terdahulu. Ini membawa kepada sumbangan seterusnya dalam tesis ini, di

mana satu set peringkat berasaskan terdahulu bersepadu setempat diperkenalkan bagi

segmentasi hipokampus muktamad. Set peringkat berasaskan terdahulu bersepadu

setempat ini menggunakan model terdahulu hanya pada lokasi-lokasi yang kekurangan

maklumat sempadan bagi manghasilkan segmentasi yang tepat. Ini adalah ciri utama

berbanding dengan kaedah-kaedah yang dicadangkan sebelum ini yang melaksanakan

integrasi global maklumat terdahulu yang menggunakan model terdahulu pada seluruh

domain imej. Penilaian terhadap model terdahulu yang dibina ini telah dijalankan

menggunakan set data OASIS-MICCAI. Berbanding pendekatan Bentuk Purata dalam

Peta Jarak Bertanda yang lebih terkenal, pendekatan pembinaan model terdahulu

yang dicadangkan menunjukkan peningkatan dalam nilai ralat punca purata kuasa dua

sebanyak 1.59%, terutamanya bagi menganggarkan hipokampus sasaran yang tidak

jatuh dalam populasi latihan. Penilaian juga menunjukkan bahawa pembinaan model

terdahulu ini adalah kurang data intensif berbanding pendekatan berasaskan atlas,

dari segi bilangan titik data yang digunakan semasa pembinaan. Hasil segmentasi

muktamad menunjukkan bahawa prestasi set peringkat berasaskan terdahulu

bersepadu setempat yang dicadangkan adalah lebih baik berbanding set peringkat

berasaskan terdahulu bersepadu global, dengan peningkatan sebanyak 3.36% dalam

nilai pekali persamaan Dice. Perbandingan lanjut dengan pekali persamaan Dice

juga telah menunjukkan bahawa hasil segmentasi muktamad adalah setaraf dengan

teknik-teknik utama terkini, berprestasi lebih baik berbanding perisian segmentasi

hipokampus yang dikenali sebagai Freesurfer. Peningkatan yang menggalakkan yang

ditunjukkan oleh kaedah yang dicadangkan dalam tesis ini memberikan satu wawasan

xvi



terhadap kegunaan kaedah ini untuk segmentasi hipokampus.
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HIPPOCAMPUS SEGMENTATION USING LOCALLY INTEGRATED

PRIOR-BASED LEVEL SET GUIDED BY ASSEMBLED AND WEIGHTED

COHERENT POINT DRIFT REGISTRATION

ABSTRACT

Hippocampus segmentation from neighbouring brain subcortical structures is

a very challenging task mainly because boundaries separating these structures are

weak or unclear, rendering conventional edge-based approaches ineffective for proper

hippocampus segmentation. Besides that, close proximity of the hippocampus

with the amygdala further complicates the segmentation issue. Recent trends,

however have shifted from sole reliance on image features to utilization of prior

models in the segmentation. Predominantly, the prior models are constructed using

atlas-based segmentation. This approach however, is highly data intensive due to the

volumetric-based methods used for prior model construction. Consequently, this thesis

proposes a prior model construction method that not only effectively represents shape

and spatial location information, but also requires lower data intensiveness compared to

atlas-based approaches. Specifically, a novel point set registration method is proposed

and validated for prior model construction. Instead of using the whole image volume,

the proposed point set registration utilizes a set of representative points in constructing

the prior model. This leads to the next contribution of this thesis where a locally

integrated prior-based level set is introduced for final hippocampus segmentation. The

locally integrated prior-based level set used the prior model only at locations with
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insufficient boundary information for accurate segmentation. This is the main key

feature compared to previously proposed approaches that perform global integration

of the prior information, that employed prior model throughout the image domain.

Evaluations on the constructed prior model were carried out using the OASIS-MICCAI

dataset. Compared to the more popular Mean Shape in Signed Distance Map approach,

the proposed prior model construction approach showed improvement by 1.59% in

average Root Mean Square Error, especially in generalizing target hippocampus that

does not fall within a training population. It is also demonstrated that the prior model

construction is less data intensive compared to atlas-based approaches, in terms of

number of data points being used during the construction. Final segmentation results

indicate that the proposed locally integrated prior-based level set performs better

than the globally integrated prior-based level set, with a 3.36% improvement in Dice

similarity coefficient value. Further comparisons on Dice similarity coefficient have

also shown that the final segmentation results are at par with current state-of-the-art

techniques, outperforming a well known hippocampus segmentation software known

as Freesurfer. Promising improvement shown by the proposed work in this thesis

provide an insight on the applicability of this approach for hippocampus segmentation.
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CHAPTER 1

INTRODUCTION

1.1 Medical Image Segmentation

Research into the field of computer aided medical image segmentation has gained

much interest in the past decades. This has been motivated by the need for more

timely and accurate diagnosis of diseases. Being one of the critical components in

medical image processing and analysis, segmentation deals with the identification

and delineation of anatomical structure(s) of interest from a stack of medical images.

This stack of medical images is also referred to as three dimensional (3D) medical

image, or volumetric medical image. The huge proliferation of attention to the

segmentation field, as well as the many breakthroughs that have been achieved thus

far, demonstrate its relevance and importance to imaging researchers. Despite the

considerable successes, effective segmentation remains a very challenging task in

producing segmented regions that carry specific visual definitions similar to that of

human perception.

Observation of conventional clinical practices shows that medical experts are

often able to identify and delineate a target structure accurately based on the perceived

image information found explicitly from the medical image combined with the

medical knowledge about the structure. This information is illustrated in Figure 1.1.

The inherent explicit image information such as the intensity, texture, edge or any

second-order or higher-order image features may be procured from the 3D medical
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image, specifically via feature extraction techniques (Sonka et al., 1999). Medical

knowledge comprises of prior known information about a structure such as the size,

shape and its’ spatial location in a 3D medical image. Similar to manual expert

delineation, a key step in developing a robust automated image segmentation is to

enrich the segmentation process with prior information, especially shape and spatial

location of the target structure.

Figure 1.1: Information utilized by medical experts in performing manual delineation.

1.2 Trends in Medical Image Segmentation

The evolution in medical image segmentation projected a trend of three eras (Withey

and Koles, 2008), as illustrated in Figure 1.2. The first generation started off

with conventional segmentation methods that employed only image information.

These conventional methods ranged from thresholding (Rosenfeld and Smith, 1981),

edge-based (Canny, 1986) and region-based approaches (Chen et al., 2009; Hamarneh

and Li, 2009; Ng et al., 2008; Pan and Lu, 2007; Mancas and Gosselin, 2004; Pohle and

Toennies, 2001; Yi and Ra, 2001). However, these methods often fail when different

structures within an image exhibit almost similar intensity distributions. With closely

similar intensity characteristics, a distinctive image feature could not be established to

differentiate between the target and neighbouring structures. This has lead to inability
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Figure 1.2: The different eras of medical image segmentation.

to produce a complete segmentation.

As an initiative towards automatic segmentation, the second generation of

medical image segmentation explored fuzzy and mathematical optimization models

to formulate the segmentation problem. These methods use a learning approach

to determine a representative set of image features for the target structure. Then,

the segmentation finds the target structure having the characteristic of the learned

features. Some of the well-established second generation segmentation methods

included clustering (Mohamed et al., 1999), classification (Lei and Sewchand,

1992), deformable models (Kass et al., 1988; Osher and Sethian, 1988), graph cuts

(Boykov and Jolly, 2000) and neural networks (Cheng et al., 1996). These powerful

segmentation methods were able to eliminate heuristic assumption, and lead towards

advances in automatic segmentation. However, their robustness was still dependent
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upon the image information, which is impractical for segmenting structures with

overlapping intensity characteristics such as the brain subcortical structures that

exhibits almost identical image features.

Due to the above mentioned shortcomings of the second generation methods,

researchers in the third generation of segmentation methods utilized prior information.

This generation was perceived to mimic the procedure of medical experts, which

integrate image and prior information into the segmentation process. The prior

information is usually obtained through a single or a set of training labeled images

(manually prelabeled 3D images). Recent developments in inferring prior information

during segmentation shows atlas-based segmentation gaining prominence (Landman

et al., 2012). The atlas-based approach standardizes a set of training images, and their

corresponding training labeled images into a standard space and uses label fusion to

assemble the standardized training labeled images to produce the final segmentation.

Another category of well known segmentation methods known as deformable

models have also demonstrated the incorporation of prior information to assist

segmentation. These deformable models cover Active Shape Model (ASM) (Cootes

et al., 1995), Active Appearance Model (AAM) (Cootes et al., 2001), snake and

level set methods (Rousson and Paragios, 2002). These deformable models use prior

information in the form of a set of shape variations learned from a training population.

The deformable models then, iteratively deform in an energy minimization framework

to deform an initial model towards a target structure, constraining the deformation to

be within the specified shape variations.
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From the medical image segmentation literature, integration of prior information

with image information is the de-facto standard of current medical segmentation

methods. This integration takes advantage of the idea in clinical manual delineation

that uses the prior information, with the aim of accomplishing a more accurate

segmentation.

1.3 Hippocampus

The word Hippocampus, meaning Seahorse in Latin, was adapted to refer to the

brain hippocampus due to its similar appearance to the shape of a seahorse. The

hippocampus is a pair of mirrored structures found on the left and right hemisphere

of the brain. They are very small subcortical structures (structure beneath the

cerebral cortex) located inside the medial temporal lobe (Duvernoy, 2005). Figure 1.3

illustrates the location of the hippocampus in reference to the temporal lobe. The

curved shaped hippocampus is divided into three major parts, which are the head,

body and tail. The head appears to be larger compared to its narrower tail (as shown in

Figure 1.4). The amygdala is the most closely located subcortical structure at the head

of the hippocampus. Figure 1.5 provides an example of brain Magnetic Resonance

(MR) image, with the hippocampus being highlighted in axial, coronal and sagittal

views.

Associations between the hippocampus with human memory and emotion have

led to a multitude of clinical studies relating to diseases such as Alzheimer’s, mild

cognitive impairment, schizophrenia, and epilepsy (Mumoli et al., 2013; Maller et al.,

2012; Salmah et al., 2011; Shi et al., 2009; Gerardin et al., 2009). In these clinical
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Figure 1.3: (a) Anatomy of the brain, relating to the location of temporal lobe (Serendip
Studio, 2015). (b) The location of hippocampus in the brain (Human Illnesses and
Behavioral Health, 2015).

Figure 1.4: Overview of the hippocampus structure (IcoMetrix, 2015).

studies, researchers focus on establishing a correspondence between the hippocampus

volume and shape of normal subjects and subjects with pathological disorders. Most of

these researchers are still dependent on manual delineation on every two dimensional

(2D) image slices before the analysis of volume and shape can be performed.

Manual delineation is an intensive procedure, time consuming and difficult to

perform. In addition, it is also often associated with interrater and intrarater variability,
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Figure 1.5: Hippocampus being highlighted in green (right hippocampus) and red (left
hippocampus) in (a) axial, (b) coronal, and (c) sagittal views, respectively.

which may lead to the issue of reliability of the delineated hippocampus. Therefore,

the need for automated segmentation solutions arises as a precondition for accurate and

efficient morphometric analysis of the hippocampus. This can hence better illustrate

the relationship between the hippocampus and brain-related disorders (Nestor et al.,

2013; Lotjonen et al., 2011).

1.4 Problem Statement

Segmentation of the subcortical structures in the brain such as the hippocampus,

is known to be very challenging owing to its’ image characteristics. In brain MR

images, the hippocampus is observed as a gray matter structure that often times,

exhibit very weak or unclear boundary definitions at some fragments of its’ boundary.

This happens due to almost similar or overlapping intensity distribution between

hippocampus and other adjacent gray matter structures, such as the amygdala (Manjon

et al., 2007). Besides that, close proximity of the hippocampus with the amygdala

further complicates the segmentation issues (Boccardi et al., 2011; Sanchez-Benavides

et al., 2010; Morey et al., 2009). The close proximity between the hippocampus and
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the amygdala is shown in Figure 1.6.

Figure 1.6: An example of a brain MR image in the coronal view, highlighting the
hippocampus and the amygdala.

Generally, poorly visible hippocampus boundary has become a major deterrent

for effective segmentation. Even the medical experts tend to misjudge the

hippocampus boundary due to this problem, especially at the head and tail. A poorly

defined boundary usually causes the ambiguity on the exact location representing

the hippocampus boundary. With these main challenges being demonstrated by

hippocampus, relying on image information alone may not produce the desirable

segmentation results. Therefore, prior information such as shape and spatial

location need to be incorporated into existing segmentation methods to improve the

segmentation results. The shape information reflects the 3D geometric shape that may

be seen visually, and the spatial information should denote the spatial coordinate space

that a target structure occupies within an image.
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To propose a method that can effectively incorporate prior information for

hippocampus segmentation, the following questions need to be answered:

(i) How to automatically construct a model representing the required prior

information, that consists of both shape and spatial information?

There are two main sources for obtaining prior information of brain structures:

(i) Standard public atlases. (ii) Training dataset comprising of labeled images.

Among the two, a training dataset seems to be more suitable because it can

reflect the target image better, which is acquired with similar image acquisition

protocols. Currently, enormous research interest has focused on constructing

prior information from the training dataset, which in the literature is referred to

as atlas or model construction (Landman et al., 2012). The constructed atlas

or model is the statistical representation of prior information. The atlas-based

approaches are used to construct an atlas. The constructed atlas is a voxel-based

statistical model. This atlas gives the spatial distribution of probability for every

voxel belonging to a target structure (Cabezas et al., 2011). This atlas provides

the shape and spatial information. However, due to the use of 3D volumetric

labeled image during atlas construction, the atlas-based approaches are known to

face high data intensiveness. In the context of this thesis, this data intensiveness

refers to the number of data points (i.e. voxels as for 3D image) being used during

the construction of the final atlas or model. Another form of prior information

is given by the Statistical Shape Model (SSM), which can be built using only

landmark points on the surface of a structure (Heimann and Meinzer, 2009).

This SSM is mostly interested in constructing the mean shape and a range of

shape variations within a training population. Thus, SSM are usually computed
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in a coordinate space of a chosen reference image, and not on the coordinate

space of the target image. This causes the SSM to contain only the spatial

information of the reference image space, and not the actual target image space.

Hence, the SSM exhibits less accurate spatial information of a target structure.

A prior model would be most beneficial for segmentation if it contains both,

shape and spatial information. Besides that, the process of constructing the prior

information should also be less data intensive and automated.

(ii) How prior information is of assistance in segmentation?

It has been established in Section 1.1 that prior information is essential for

assisting the segmentation process. Therefore, the chosen segmentation method

must be able to utilize both image and prior information during segmentation.

By taking both criteria into consideration, it appears that the level set method

may be suitable for segmenting the hippocampus. Level set method allows the

integration of various types of image and anatomical features within a single

energy minimization framework. Each desired feature of a target structure can

be modeled as an energy term and incorporated into the level set evolution

function (Chan and Zhu, 2005; Vese and Chan, 2002). However, two main

issues exist in using level set for hippocampus segmentation. These issues are

the requirement of (i) proper initialization, and (ii) a stopping force for the

evolving level set. Incorrect initialization placed far away from or outside of

the hippocampus may lead the level set to be directed to segment other irrelevant

neighbouring structures, such as the amygdala which are located very closely

to hippocampus. Therefore, placement of initialization inside the hippocampus

region is very crucial in ensuring accurate segmentation. The hippocampus is also
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known to consists of fragments of strong, weak and missing boundary definitions.

The weak or missing boundaries happen especially at the head and tail portions.

A reliable stopping force is therefore imperative in order to stop the evolving

level set at these boundary fragments, so that leaking into adjacent structures

is avoided. In conventional manual delineation, experts refer to the image

features to identify the hippocampus. Whenever a clear distinction between

image features could not be established, then only the prior information involving

approximate spatial location and shape of the structure is used. Therefore, a

robust hippocampus segmentation method should not be fully dependent upon

prior information. The prior information should only be an assistance for the

segmentation in cases where the image features is not sufficient or missing at

certain fragment of the hippocampus boundary. The manner of utilizing either

image or prior information only at a particular fragment or portions in an image

is defined to be locally inferred image or prior information. This scenario is

illustrated in Figure 1.7, which shows a synthetic image with weak or missing

edge information at some part of its boundary. In such cases, prior information of

the object is only needed locally at the weak or missing edge fragments, whereas,

at the edge with strong edge information, the edge gradient may be useful.
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Figure 1.7: (a) A sample of synthetic image. (b) Edge gradient magnitude of the
synthetic image with the weak or missing edges highlighted.

1.5 Objectives

The major aim of this research is to propose a segmentation approach that is able to

utilize prior information locally to segment the hippocampus from brain MR images.

This work attempts to achieve the main objective through the following:

(i) To automatically construct a prior model, which is able to exhibit shape and

spatial information of the hippocampus with less data intensiveness.

(ii) To propose a 3D level set method, integrating prior information locally to

segment the hippocampus.

1.6 Scope

The scope of this thesis is limited to certain constraints, which are defined as follows:

• T1-weighted MR image is the preferred modality to view or delineate brain

anatomical structures. Hence, this study is limited to study T1-weighted brain

MR images.

• The dataset being used in this work only comprises of normal hippocampus
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studies without any pathological issues. This is because subjects with

pathological disorders may exhibit abnormal hippocampus shapes and sizes,

which is not the focus of this thesis.

1.7 Significance of the Study

The main significance of this research is its profound implications in clinical practice.

Traditionally, many standard protocols exist in clinical practice to ease the manual

delineation process. However, this process is still laborious and time consuming.

The proposed automated segmentation approach in this thesis will be able to facilitate

timely hippocampus morphometric analysis in clinical studies.

1.8 Overview of Methodology

The methodology applied in this thesis consists of two main phases. The first phase

involves the construction of prior model of hippocampus. This prior model shall

consists of both, shape and spatial information. In this phase, a new point set

registration approach that produces the prior model of hippocampus is proposed. This

phase is described in detail in Chapter 5.

The second phase proposes a level set method, assisted by the prior model

constructed in the first phase to segment the hippocampus. The prior model is used to

provide 3D initialization to the level set. In addition, the prior model is also formulated

as a stopping force in the level set method to prevent leakages into adjacent structures,

where the image features are unable to provide sufficient boundary definition. The

main contribution of the second phase is the integration of image and prior information
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in a local manner. The details pertaining to the proposed segmentation approach is

described in Chapter 6. Evaluations on the proposed phases are verified using two

widely known public brain datasets.

1.9 Contributions

This thesis has led to four main contributions, which are detailed as follows:

1. Establishing a new method to automatically construct the prior model of

hippocampus. The established method provides an alternative way of

constructing the prior model, against the widely used atlas-based approaches.

The proposed method is also less data intensive. Experimental results show that

the constructed prior model is able to provide shape and spatial information of a

target hippocampus.

2. Providing a new approach to enable automatic initialization for a 3D level

set using the constructed prior model. The automatic initialization inside the

hippocampus is very crucial because hippocampus is a very small structure, and

closely adjacent to other gray matter structure. Thus, it is very important to

initialize the level set inside the target hippocampus.

3. Proposing a new level set method that integrates prior information with image

information in a local manner. This locally integrated prior-based level set is

able to prevent leakages commonly faced in conventional level set methods,

and segment the hippocampus. Besides that, the proposed locally integrated

prior-based level set is also able to perform comparably better than globally

integrated prior-based level set.
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4. Proposing a full pipeline for hippocampus segmentation. The comparison

with state-of-the art hippocampus segmentation approaches has shown that

the proposed segmentation approach is at par with the state-of-the-art. This

comparison validates the main objective of this thesis, which is the segmentation

of the hippocampus.

1.10 Organization of the Thesis

This thesis is organized into seven chapters as follows:

Chapter 1 introduced the trends and issues in medical image segmentation. In

addition, this chapter provided an insight to hippocampus segmentation issues that will

be addressed in this thesis. Discussions on the objectives, scope, and contributions

have also been highlighted accordingly.

Chapter 2 presents the fundamental concepts relevant to the work in this

thesis. This chapter serves as the foundation for brain Magnetic Resonance Imaging

modalities, medical image registration and level set methods.

Chapter 3 provides a critical review of state-of-the-art methods in brain

structures segmentation and prior-based level set methods.

Chapter 4 delivers an overview of the methodology adapted in this thesis for

segmenting the hippocampus. This chapter also covers detailed information on the

brain datasets and evaluation measures used in this research.

Chapter 5 presents the first phase of this research, which is the Prior Model
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Construction. This phase constructs the prior model of the hippocampus. This chapters

covers detailed explanations on the proposed approach and is validated with supporting

experimental results.

Chapter 6 describes the second phase of this research on how the constructed

prior model is utilized to infer the initialization and stopping force for the level set

method. The proposed locally integrated prior-based level set is explained in detail.

Comparisons with state of the art segmentation approaches are also presented to

highlight the performance of the proposed segmentation approach.

Chapter 7 offers a summary of this research, and draws conclusions from

the results. A perspective into future direction coming out of this research is also

presented.
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CHAPTER 2

BACKGROUND

This chapter presents the fundamental background that are relevant to this research.

Section 2.1 firstly introduces Magnetic Resonance Imaging and its application in

acquiring the brain anatomy. Section 2.2 then proceeds to the topic of medical image

registration. Finally, Section 2.3 briefly gives an overview of deformable models

segmentation, focusing on important definitions and mathematical models of level set.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a noninvasive imaging technique used to

produce high quality mapping of internal anatomy and functions inside the body

(Adam and Dixon, 2008). Since its introduction in 1970s, MRI has revolutionized

the field of diagnostic medicine. MRI uses very low energy and non-ionizing

electromagnetic radiation, which frees subjects from harmful exposure (Adam and

Dixon, 2008). MRI basically absorbs and emits Radio Frequency (RF) waves with

magnetic field occurrences to form cross-sectional images of the body. The Magnetic

Resonance (MR) images are constructed based on the concept of capturing the Nuclear

Magnetic Resonance (NMR) signal of molecules in the human body. The human body

is primarily composed of water and fat, with hydrogen being its main molecule. The

emitted RF waves are absorbed by the hydrogen molecule, which causes the molecules

to move. These movements emit energy, which is captured as NMR signals by the MRI
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machine. Eventually, the captured signals are processed and generated as a 3D image

or volumetric image. Different tissues possess varying levels of hydrogen. Therefore,

the emitted energy also varies depending on the body tissue type. This results the

captured signals to project varying strength of 3D image feature, denoted by the image

intensity.

2.1.1 Imaging Characteristics

The main advantage of MRI is its ability to produce high resolution imaging of soft

tissue (Hornak, 2014). In addition, it allows tailoring of multiple contrast of image

in accordance to the case of study. Generally, the contrast variables are created by

varying the pulse sequences and imaging parameters. The pulse sequences comprises

of Proton Density (PD), spin-lattice relaxation time (T1), and spin-spin relaxation time

(T2). The imaging parameters on the other hand consist of repetition time, echo time,

inversion time and rotation angle. Readers can be directed to Adam and Dixon (2008)

for more detailed and technical explanations regarding the contrast parameter settings.

In MRI, an image data is referred according to the pulse sequences being utilized, i.e.

T1-weighted MR image denoting image captured using contrast based predominantly

on the T1 pulse sequence.

2.1.2 Imaging Coordinates and Planes

The 3D spatial coordinates in MRI is commonly referred to as the anatomical

coordinate system (Hornak, 2014). Figure 2.1 illustrates the imaging coordinates and

planes in MRI.
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Figure 2.1: The imaging coordinates and planes in MRI (3D Slicer, 2015).

This system references the body according to three axes which are:

(a) Left-Right (L-R)

(b) Superior-Inferior (S-I)

(c) Anterior-Posterior (A-P)

The anatomical coordinate system describes an anatomical position based on the

three planes that are perpendicular to the L-R, S-I and A-P axes. These planes are

termed as:

(a) Sagittal plane that bisects the left and right side of the body.

(b) Axial plane that is perpendicular to the S-I axes, separating the upper (S) and lower

(I) part of the body.

(c) Coronal plane that separates the front (A) from the back (P) of the body.
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An anatomical position in a MR image is referred to as a voxel (x,y,z coordinates

in the 3D space) if it is a volumetric image, or pixel (x,y coordinates in the 2D

Euclidean space) if it is only an image from the respective plane.

2.1.3 Brain Magnetic Resonance Imaging

The brain is a collective formation of soft tissues, which appears to be almost similar

in appearance. Hence, the capability of MRI at capturing small intensity variations

between tissues and producing it as high contrast imaging of soft tissues seems to be

very advantageous for brain imaging. The growing demand for brain MRI in clinical

applications proves that it is the state-of-the-art of current brain imaging technology

(van der Kolk et al., 2013). Brain MRI is primarily used to analyze the structure and

functionality of the human brain, which may assist in early detection of abnormalities

and disease progression (Schmidt et al., 2011; Nanjundaswamy et al., 2011; Jack et al.,

2008).

Clinical diagnosis is also made easier with the ability to visualize variety of

imaging contrasts during a single scanning procedure. This allows medical experts

to make more accurate clinical diagnosis based on complementing information from

multiple contrast modalities. As an example, Figure 2.2 compares a T1-weighted and

T2-weighted brain MR images. Here, the brain tumour appears to be more apparent

in the T2-weighted MR image, whereas it looks almost similar to normal tissue in

the T1-weighted MR image. Thus, having multiple contrasting images allows better

decision making by the medical experts.
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Figure 2.2: Comparison between (a) T1-weighted and (b) T2-weighted brain MR
images (BRATS: Multimodal Brain Tumor Segmentation Challenge, 2015).

2.2 Medical Image Registration

Medical images are susceptible to intersubject, intermodality, intertemporal (images

of the same subject taken at different time frames) and intersequence (images of an

anatomy taken for a sequence of time step) variability. In clinical decision making,

these images are very useful to be exploited for the information that may be gained

from plethora of high resolution images. However, fair comparisons between multiple

medical images may only be performed if all the images are within a common standard

space, and without any variations contributed due to the image acquisition process.

One solution to tackle such invariability among images is through medical image

registration. Image registration can be seen as a preprocessing stage, where all medical

images are standardized to be within a common standard space.

Medical image registration aligns a set of images into a standard space through an

optimal geometric transformation (Maintz and Viergever, 1998). This transformation

is found by maximizing or minimizing a similarity cost function, formulated based

on a similarity measure defined using either statistical or geometrical features of

21



the images. Classification of the enormous number of registration approaches that

have been proposed may follow different perspectives, and have led to several survey

papers focusing on these groupings (Oliveira and Tavares, 2014; Makela et al.,

2002; Maintz and Viergever, 1998). In this section, the registration approaches are

discussed based on two major viewpoints: (i) The type of transformation, and (ii) The

nature of registration algorithms. The following sections detail these two viewpoints

accordingly.

2.2.1 Type of Transformation

The commonly practiced transformation paradigms in medical image registration,

especially in brain imaging are rigid, affine and non-rigid transformations. Rigid

transformation allows only rotations and translations in aligning the images, where

it maintains the original shape and size of the target object. It is defined by six

transformation parameters, or degrees-of-freedom, comprising of three parameters

for rotation and three parameters for translation (Oliveira and Tavares, 2014). An

extension to rigid transformation that includes additional scaling and shearing is

referred to as affine transformation (Jenkinson and Smith, 2001). Rigid and affine

transformations are commonly treated as preprocessing procedures in aligning whole

brain images into a common coordinate system and principal axes (Ashburner and

Friston, 2004).

Non-rigid transformation allows local transformation or deformation by using

additional transformation parameters of local free form deformations (Crum et al.,

2004). Due to this local transformation, the original shape of the target object is
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usually deformed according to the transformation parameters being applied. Generally,

non-rigid transformation is applied in the literature to analyze changes or motion

of anatomical structures over a time (Carbayo et al., 2006; Tom et al., 1994), and

to standardize intersubject correspondences for model or atlas construction (Cabezas

et al., 2011; Cootes et al., 2010, 2004; Joshi et al., 2004; Collins et al., 1994).

2.2.2 Nature of Registration Algorithms

Review on registration algorithms show that medical image registration can be divided

into two main algorithmic categories, namely global and local (Oliveira and Tavares,

2014). Global registration, which is also known as volumetric registration, uses the

whole dataset (all voxels) in finding the correspondences during the transformation.

The global registration usually utilizes intensity or voxel’s statistical features in

matching the correspondences between two medical images (Reducindo et al., 2013;

Andersson et al., 2007; Rueckert et al., 1999; Collins et al., 1994).

On the contrary, the local registration only selects a subset of voxels in finding

the correspondences during the transformation (Hajnal et al., 2001). This subset may

comprises of fiducial markers or landmark points (Li and Kurihara, 2014; Chui and

Rangarajan, 2003; Hartkens et al., 2002; Rohr et al., 2001; Thirion, 1996), contour

or surfaces (Anticevic et al., 2012; Pantazis et al., 2010; Subsol et al., 1997), or

subvolumes (Riklin-Raviv et al., 2010; Ourselin et al., 2000).
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2.3 Deformable Models

Deformable models have been extensively researched and successfully applied for the

segmentation of anatomical structures. The deformable models allow the integration

of image and prior anatomical information through an optimization framework, which

enables any types of desired segmentation to be designed. This grants formulation of

the deformable models to be specifically tailored for the problem at hand.

Deformable models are curves (2D), surfaces or hypersurfaces (3D) defined

within an image domain, under the influence of external and internal energies (Xu

et al., 2000). The deformable models evolve based on the driving forces defined by

the external energy represented by image features such as edges or intensity towards

the target object, while retaining the shape and smoothness of the model (internal

energy). The idea of deformable model is pioneered in the 1970s by Widrow (1973)’s

rubber mask technique and Fischler and Elschlager (1973)’s spring-loaded templates

for modeling and representing objects. However, the deformable models only became

prominent after its introduction into the field of computer vision and graphics by the

seminal work of Terzopoulos et al. (1988). In the literature, the main techniques of

deformable models fall under two main categories, which are parametric and level

set. The following describes these methods detailing the important concepts and

characteristics.

2.3.1 Parametric Models

Parametric model evolves a curve or surface explicitly through displacement of a set

of control points on the curve or surface from an initial position. These control points
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