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ABSTRAK 

 

Peningkatan kepekatan karbon dioksida (CO2) yang disebabkan oleh aktiviti 

antropogenik telah menjadi tumpuan banyak kajian kerana kesan buruk pemanasan 

global dan perubahan iklim terhadap alam sekitar. Sebagai sebahagian daripada 

langkah-langkah penting untuk mencapai persekitaran yang sihat, kajian 

pengangkutan, pengagihan dan kawasan sumber CO2 ke negara ini adalah 

diperlukan. Tujuan utama kajian ini adalah untuk membangunkan satu algoritma 

untuk mengira “Column-Averaged Dry Air Mole Fraction of Carbon Dioxide” 

(XCO2) di Semenanjung Malaysia. Empat algoritma regresi ditandakan sebagai 

XCO2 NEM, XCO2 SWM, PCA1 (XCO2 musim NEM) dan PCA2 (XCO2 musim 

SWM) telah dibangunkan dengan menggunakan kaedah statistik berdasarkan 

Greenhouse Gases Observing Satellite (GOSAT) data. Di samping itu, kajian ini 

bertujuan untuk menganalisis dan mengkaji kesan pembolehubah atmosfera terpilih 

dengan data XCO2.  Kaedah analisis yang berbeza termasuk Regresi Linear 

Berganda (MLR) dan Komponen Regresi Utama (PCR) telah digunakan untuk set 

data GOSAT. Analisis selanjutnya telah dijalankan pada musim tengkujuh yang 

berbeza untuk mencapai objektif kajian. Perisian SPSS telah dijalankan untuk 

menguji prestasi kaedah MLR dan kaedah PCR dari segi sisihan punca kuasa dua 

min (RMSE). Keputusan menunjukkan bahawa persamaan regresi XCO2 

menggunakan kaedah MLR mempunyai korelasi yang tinggi dengan pembolehubah 

atmosfera untuk musim NEM (R = 0.826, R2 = 0.682) dan SWM (R = 0.802, R2 = 

0.643). Keputusan pengesahan, R bagi musim NEM dan SWM masing-masing 



xvi 

menunjukkan pekali korelasi yang tinggi, iaitu 0.8035-0.8156 dan 0.8093-0.8178. 

Juga, untuk kaedah PCR, keputusan penyesuaian terbaik untuk data XCO2 

memberikan nilai pekali penentuan terlaras yang tinggi,  iaitu 0.898 dan 0.868 bagi 

musim NEM dan SWM. Pembolehubah sepunya yang wujud dalam kedua-dua 

persamaan PCA1 dan PCA2 adalah AOT dan Suhu. Keputusan pengesahan yang 

diperolehi masing-masing menunjukkan pekali korelasi yang tinggi untuk musim 

NEM dan SWM,  iaitu 0.8584-0.9149 dan 0.8832-0.8944. Nilai RMSE bagi XCO2 

yang diramal menggunakan kaedah MLR untuk kedua-dua musim masing-masing 

adalah 1.56208 dan 1.71421. Manakala, nilai RMSE bagi XCO2 yang diramalkan 

didapati masing masing 0.84924 dan 1.01879 dengan menggunakan kaedah PCR. 

Nilai statistik diramal and diperolehi dari XCO2 memiliki kesepakatan yang sangat 

baik dari segi konsisten dan kebolehpercayaan model ramalan. Daripada keputusan 

yang diperolehi, kaedah PCR mencapai prestasi yang lebih baik berbanding dengan 

kaedah MLR untuk meramal nilai XCO2 di Semenanjung Malaysia. Secara 

keseluruhan, keputusan ini jelas menunjukkan kelebihan menggunakan data GOSAT 

satelit dan analisis korelasi untuk mengkaji kesan pembolehubah- pembolehubah 

atmosfera terhadap XCO2 di semenanjung Malaysia. Dengan demikian, kita 

menyimpulkan pendekatan pemodelan ini mempunyai potensi yang besar di kawasan 

yang lain. 
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A NEW ALGORITHM FOR ASSESSING THE XCO2 OVER PENINSULAR 
MALAYSIA BASED ON GOSAT DATA 

 

ABSTRACT 

 

The increasing carbon dioxide (CO2) concentration induced by anthropogenic 

activities has been the focal point of many studies due to the adverse effects of global 

warming and climate change on the environment. To achieve a healthy environment, 

studying the transport, distributions and source regions of CO2 in Malaysia is 

necessary. The main purpose of this research is to develop an algorithm for 

calculating the column-averaged dry air mole fraction of carbon dioxide (XCO2) 

over Peninsular Malaysia. Four regression algorithms, which are denoted as XCO2 

NEM, XCO2 SWM, PCA1 (XCO2 NEM season) and PCA2 (XCO2 SWM season), 

were developed using Greenhouse Gases Observing Satellite (GOSAT) data and 

statistical methods. In addition, this study seeks to analyse and investigate the 

impacts of selected atmospheric variables with the XCO2 data. Different statistical 

analysis methods, including multiple linear regression (MLR) and principal 

component regression (PCR), were applied to the GOSAT datasets. Additional 

analysis was conducted in different monsoon seasons to achieve this study’s 

objective. SPSS software was used to test the performance of the MLR and PCR 

methods in terms of the root-mean-square-error (RMSE). The results showed that the 

XCO2 regression equations using the MLR method were highly correlated with 

atmospheric variables in the NEM (R= 0.826, R2 = 0.682) and SWM (R= 0.802, R2 = 

0.643) seasons. The validation results showed that XCO2 yielded a strong R2
 for the 

NEM and SWM seasons, i.e., 0.8035 to 0.8156 and 0.8093 to 0.8178, respectively. 

Additionally, for the PCR method, the best fit results for the XCO2 data gave the 
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high adjusted R2 coefficients, i.e., 0.898 dan 0.868 for both the NEM and SWM 

seasons. The common variables that appeared in both the PCA1 and PCA2 equations 

were the AOT and temperature. The obtained validation results exhibited high 

coefficients of determination for the NEM and SWM seasons, i.e., 0.8584 to 0.9149 

and 0.8832 to 0.8944, respectively. The RMSE for the predicted XCO2 values using 

the MLR method were 1.56208 and 1.71421 for the NEM and SWM, respectively, 

and the corresponding RMSEs were 0.84924 and 1.01879, respectively with PCR 

method. The predicted and observed XCO2 values exhibited very good agreement in 

term of consistency and reliability of the prediction model. The PCR method resulted 

in better predicted XCO2 values over peninsular Malaysia than the MLR method. 

Overall, these results clearly indicate the advantage of using GOSAT data and a 

correlation analysis to investigate the impact of atmospheric variables on XCO2 over 

peninsular Malaysia. Therefore, this modelling approach has great potential in other 

areas. 
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 CHAPTER 1 

INTRODUCTION 

 

1.0   Overview 

Since the start of the industrial revolution and economic and social development in 

the 19th century, the concentration of carbon dioxide (CO2), which is an atmospheric 

greenhouse gas, has been steadily rising in the atmosphere primarily due to fossil 

fuel combustion, land use change, cement production, biomass burning and 

deforestation, thus perturbing the natural carbon cycle (American Meteorological 

Society, 2012, Solomon et al., 2007). A greenhouse gas is a gas in an atmosphere 

that absorbs and emits radiation within the thermal infrared range. This process is the 

fundamental cause of the greenhouse effect. The primary greenhouse gases in Earth's 

atmosphere are water vapor, carbon dioxide, methane, nitrous oxide, and ozone. CO2 

has also been recognized as the most important anthropogenic greenhouse gas 

(GHG), receiving significant attention in the literature (Olivier et al., 2012; Peters et 

al., 2011).  

 

 The increases in CO2 are leading to a warmer climate with adverse 

consequences, such as more numerous droughts, storms and floods, melting glaciers 

and an increase in extreme weather conditions (IPCC 2001, 2007). Statistics have 

shown that the CO2 concentration has increased 30% globally, while the temperature 

has increased by 0.3 – 0.6 °C in recent years (Chakraborty et al., 2000). It is of 

primary political and scientific concern to estimate the natural and anthropogenic 

sources and sinks at various spatial and temporal scales. Currently, CO2 

concentrations are mainly measured from ground-based observation platforms 

https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Absorption_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Emission_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Thermal_infrared
https://en.wikipedia.org/wiki/Greenhouse_effect
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Water_vapor
https://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/Methane
https://en.wikipedia.org/wiki/Nitrous_oxide
https://en.wikipedia.org/wiki/Ozone
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distributed in different areas of the world. Mauna Loa station, which is located on a 

high volcano in the Hawaii islands, began collection of atmospheric CO2 

concentration observations in 1957 and has revealed evidence of increasing CO2 

(Keeling et al. 1976). However, there are significant gaps and large uncertainties in 

the sources and sinks of CO2 (Stephens et al., 2007). The limited spatial coverage 

and the proximity to local sources and sinks make model estimates susceptible to 

transport errors, especially for continental regions (Marquis and Tans, 2008). In 

addition, surface networks are limited in their capability of representing complex 

atmospheric mixing in the mid- to high troposphere, where the surface signal is 

diluted (Huntzinger et al., 2012).  

 

 Increased attention has been devoted to the application of remote sensing 

observations for estimating atmospheric CO2 concentration (Zhang, 2010), and such 

observations can contain information that is not available from ground-based stations. 

In addition, the increase spatiotemporal resolution and accuracy of satellite 

measurements makes remote sensing a practical tool for monitoring CO2 emissions 

at regional scales. Currently, the Thermal and Near-infrared Sensor for Carbon 

Observation Fourier Transform Spectrometer (TANSO-FTS) on board the 

Greenhouse Gases Observing Satellite (GOSAT), which was launched in January 

2009 by the Japan Aerospace Exploration Agency (JAXA), may enhance our 

understanding of the dynamic processes that influence atmospheric CO2 

concentrations (Rayner and O’Brien, 2001, Houweling et al., 2004). In addition, 

existing satellites are the only orbiting instruments measuring near-infrared (NIR) 

radiation with sufficient spectral resolution to retrieve the column-averaged dry air 

molar fraction of CO2 (Reuter et al., 2010). These observations offer the possibility 
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of closing these gaps (Miller et al., 2007, Chevallier et al., 2007). Moreover, prior to 

2002, GHG concentrations could not be measured directly using remote sensing 

techniques. 

 

In Malaysia, industrialization, urbanization and rapid traffic growth have 

contributed significantly to economic growth. Pockets of heavy pollution are being 

created by emissions from major industrial zones, increases in the number of motor 

vehicles and trans-boundary pollution. In addition, Malaysia is located in a humid 

equatorial region with high temperatures and heavy rainfall (Tangang et al., 2007). 

Thus, cloudy conditions are an obstacle for acquiring high-resolution and high-

quality satellite data. The high resolution that is associated with special satellite 

specifications is required to study how atmospheric variables affect atmospheric CO2.  

 

1.1   Problem Statement 

Carbon dioxide is the primary anthropogenic GHG and contributes up to 70% of 

global warming. The increased presence of GHGs in the atmosphere cause major 

problems and threaten the livelihood of our society. These gases have been 

associated with climate change, which has influenced land and water resources and 

food and pasture availability and has caused the disappearance of plants and animal 

species and loss of habitat. 

 

Over the past few decades, the atmospheric gas abundances have been 

measured using balloons, aircraft and sparsely distributed measurement sites. These 

observations have produced important insights into flux variability. However, they 

lack high-frequency surface observations. In situ measurements from the ground, tall 



4 

towers and airplanes are very accurate and precise. However, large parts of the Earth, 

e.g., Southern America, East Asia, Australia and Africa, remain unobserved. 

 

Considering the development of specialized remote sensing CO2 observations 

and common research interests, very few long-term studies have been conducted. 

CO2 seasonality studies, e.g., the northeast monsoon (NEM) and southwest monsoon 

(SWM), have primarily encompassed a single year. These monsoons will affect the 

climate and have different impacts on atmospheric parameters. 

 

Malaysia has very limited atmospheric data from ground stations. Therefore, 

satellite remote sensing instruments are effective for monitoring the global 

distributions of atmospheric gases with high spatial and temporal resolutions (Baker 

et al., 2010). The advantages of constant and real-time observations by remote 

sensing instruments have been largely ignored, possibly due to the lack of reference 

data. The TANSO instrument on-board the GOSAT satellite has a high sensitivity 

down to the Earth’s surface, where the sources and sinks of CO2 are located. This is 

important for improving our understanding of the sources and sinks of CO2.  

 

1.2   Scope of the Study   

This study mainly focuses on the development of new algorithms for retrieving 

XCO2 in peninsular Malaysia. The algorithms were determined via regression 

analysis using GOSAT satellite data for the period 2009-2012. Multiple linear 

regression (MLR) and principal component regression (PCR) were utilized to 

evaluate the effectiveness of the algorithm. In addition, this investigation was also 

conducted to analyse the effects of atmospheric variables on XCO2 using various 
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statistical methods. Finally, a validation was performed for the newly generated 

XCO2 algorithm with observed GOSAT and AIRS satellite data.  

 

1.3 Research Objectives 

The objectives of this study are as follows: 

1. To develop an algorithm of the column-averaged dry air mole fraction of 

carbon dioxide (XCO2) over peninsular Malaysia using GOSAT satellite 

data. 

2. To evaluate the effectiveness of the MLR and PCR methods for predicting 

XCO2. 

3. To investigate and analyse the effects of the atmospheric variables on XCO2 

using various statistical methods. 

4. To validate the newly generated XCO2 algorithm with GOSAT satellite data 

and AIRS instrument data.   

 

1.4   Novelty of this study 

There  is  no  ground truth  station  for  collecting  CO2  data  in  peninsular  

Malaysia. Obtaining continuous CO2 measurements is a very difficult task over the 

study area. A GOSAT satellite having the capabilities to do CO2 and CH4 

observations remotely at a good resolution has provided a unique opportunity to 

understand their distribution. These two gases contribute up to 80% of the 

anthropogenic global warming. Therefore, information is retrieved from GOSAT and 

employed to develop an algorithm for predicting XCO2 via multiple linear regression 

(MLR). Statistical methods were utilized to analyse the atmospheric data and 

generate new algorithm for XCO2. This research work is the first study to use 
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GOSAT data to analyse the effects of atmospheric parameter’s consisting of the 

aerosol asymmetry factor (AAF), aerosol optical thickness (AOT), temperature 

(Temperature), water vapor (H2O vapor) and aerosol single scattering albedo (SSA) 

on XCO2 in this region. In addition, a comparative evaluation of XCO2 modelling 

using the MLR and PCR methods with the same data has not been conducted in 

peninsular Malaysia. 

 

1.5   Structure of the Thesis 

This thesis consists of five chapters. The first chapter provides the scientific 

background relevant for the topic of this thesis. A literatures review on detailed 

descriptions of the GOSAT instrument information and AIRS instrument, the 

atmosphere, the natural greenhouse effect, global warming and climate change, 

aerosol optical properties, greenhouse gases and an application of statistical analysis 

in atmospheric remote sensing were used in this research are presented in chapter 

two. Chapter three describes the study areas, research materials, software, tools and 

methodology used for this research. Chapter four presents all of the results of this 

research and provides a discussion of the processing analyses. This chapter also 

focuses on the comparison and validation of the XCO2 algorithms. In addition, 

statistical methods were used to compare the performance of the MLR method and 

principal component regression method in predicting XCO2. Chapter five 

summarizes the results of this research. Recommendations for future studies are also 

included in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0   Introduction      

This chapter discusses the descriptions of the GOSAT instrument information and 

AIRS instrument, the atmosphere, natural greenhouse effect, global warming and 

climate change, aerosol optical properties and atmospheric GHGs from GOSAT data 

and a statistical analysis published in a previous work, including their results and 

how their studies relate to the current study. In addition, the GOSAT instrument is 

discussed in detail, and a comparison of different retrieval algorithms based on 

GOSAT spectral data is also provided. The reliability of GOSAT XCO2 observations 

is examined based on the calibration and validation work in the literature. 

 

2.1   Introduction to GOSAT 

GOSAT was successfully launched on January 23, 2009, from Tanegashima Island, 

Japan. The spacecraft is the world’s only satellite developed jointly by the Japan 

Aerospace Exploration Agency (JAXA), the Ministry of the Environment, Japan 

(MOE) and the National Institute for Environmental Studies, Japan (NIES) to 

measure both the column-averaged dry air mole fraction of CO2 (XCO2) and the 

column-averaged dry air mole fraction of CH4 (XCH4), which are the two major 

anthropogenic greenhouse gases (GHGs). 
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 The objectives of the GOSAT mission are to estimate emissions and 

absorptions of GHGs on a sub-continental scale with increased accuracy and assist 

environmental administrations verify the reduced carbon balance of the land 

ecosystem and make assessments of regional emissions and absorptions (JAXA, 

2015). By examining the GOSAT observational data, scientists will be able to 

improve our understanding of the global composition of greenhouse gases and the 

effects on global climate change. These new findings will enhance future climate 

change predictions and can be used to evaluate the impacts. 

 

2.2   GOSAT Instrument and Observation Method 

GOSAT, i.e., TANSO’s platform, is in a sun-synchronous orbit with a local overpass 

time of 13:00 and an inclination angle of 98°; thus, the platform can take 

measurements of the ocean, land, ice, and atmosphere. This environmental satellite 

flies at an altitude of approximately 666 km and completes one orbital period in 

approximately 100 minutes (Kuze et al., 2009). The satellite has a three-day repeat 

cycle and operates on global basis. The schematic diagram of GOSAT is shown in 

Figure 2.1. 
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Figure 2.1 Schematic diagram of GOSAT (JAXA, 2015). 

The nadir-looking Thermal And Near-infrared Sensor for carbon Observation 

(TANSO) is the main instrument onboard GOSAT. TANSO consists of two subunits: 

a Fourier Transform Spectrometer (FTS) and a Cloud and Aerosol Imager (CAI) 

(Guo et. al, 2012b). TANSO measures surface-reflected sunlight and emitted thermal 

infrared radiation at wavelengths from 0.76 to 14.3 mm. Tables 2.1 and 2.2 

summarize the characteristics and specifications of these two instruments. 

 

       Table 2.1 Characteristics and specifications of the TANSO-FTS 

  Band 1 Band 2 Band 3 Band 4 
Spectral coverage 
(μm) 

0.758-0.775 
 

1.56-1.72 
 

1.92-2.08 
 

5.56-14.3 
 

Spectral resolution 
(cm-1) 

0.2 
 

0.2 
 

0.2 
 

0.2 
 

Polarized light 
observation 

Performed 
 

Performed 
 

Performed 
 

Not 
Performed 

Targeted gases O2 CO2,CH4 CO2,H2O CO2,CH4 
Angle of 
instantaneous 
field of view 

15.8 mrad (corresponds to 10.5 km when projected 
on the Earth’s surface) 
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     Tables 2.2 Characteristics and specifications of the TANSO-CAI 

  Band 1 Band 2 Band 3 Band 4 
Spectral coverage 
(μm) 

0.370-0.390 
 

0.664-0.684 
 

0.860-0.880 
 

1.56-1.65 
 

Targeted 
substances 

Cloud and aerosol 
 

Swath (km) 1000 1000 1000 750 
Spatial resolution 
at nadir (km) 

0.5 
 

0.5 
 

0.5 
 

1.5 
 

  

The TANSO-FTS is an optical interference instrument. The TANSO-FTS has 

three spectral bands (band 1, band 2 and band 3) in the shortwave infrared (SWIR) 

region that are used to retrieve the XCO2 and photon path length probability density 

function (PPDF) (Andrey et al., 2012). For the SWIR bands, solar light is split into 

two orthogonally polarized beams (P and S components) with different optical paths. 

The solar light in band 4 is not split. The TANSO-FTS instantaneous field of view is 

15.8 m rad, which corresponds to a nadir footprint diameter of approximately 10.5 

km. The pointing mechanism of the TANSO-FTS enables off-nadir observations. 

Because of the limited driving angles of the pointing mirror (±35° in the cross-track 

direction and ±20° in the along-track direction), GOSAT performs sun-glint 

measurements within narrow (~30°) near-equator latitude ranges. Fourier transforms 

are performed to obtain the spectral information. More details on the TANSO-FTS 

can be found in Kuze et al. (2009). 

 

The TANSO-CAI is designed not only to determine whether images are 

cloud/aerosol free but also to estimate and correct for the effects of clouds and 

aerosols on the spectra obtained by the FTS. The image data from the CAI are used 

to examine the existence of clouds over extended areas that encompass the FTS’s 
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field of view (FOV). Because the FOV detects both clouds and aerosols, the 

characteristics of cloud and aerosol amounts can be measured. The CAI is a great 

tool to map the state of the Earth’s surface and the atmosphere during the daytime. 

The sensor is also designed with 4 bands at wavelengths of 0.37-0.39 μm, 0.664-

0.684 μm, 0.86-0.88 μm and 1.56-1.65 μm, respectively. The spatial resolution of the 

CAI is up to 0.5 km for the first 3 bands and 1.5 km for band 4. 

 

The FTS takes three day to cover the entire globe, capturing fifty-six thousand 

measurements in the process. However, only two to five per cent of the collected 

data are usable for calculating column abundances of CO2 and CH4 due to limited 

areas under clear sky conditions. Despite this fact, the number of data points 

significantly surpasses the current number of ground monitoring stations, which are 

approximately 200. GOSAT aids in filling in the ground observation network gaps. 

 

2.3   GOSAT Data Products  

The satellite data from GOSAT are obtained from the National Institute for 

Environmental Studies (NIES) of Japan. GOSAT data products contain level 1, level 

2, level 3, and level 4. The Level 1 data (FTS Level 1B, CAI Level 1B, and CAI 

Level 1B+ data) contain spectra and radiances acquired by the satellite. The higher-

level data products (FTS Level 2, CAI Level 2, FTS Level 3, CAI Level 3, Level 4A, 

and Level 4B data products) store the column abundances of CO2 and CH4 retrieved 

from the radiance spectra in band 1, band 2 and band 3 of the FTS.  

 

 The Japan Aerospace eXploration Agency (JAXA) is responsible for 

processing Level 1A/1B data obtained by the FTS and Level 1A from the CAI; they 
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transfer these products to the GOSAT Data Handling Facility (GOSAT DHF) at the 

National Institute for Environmental Studies (NIES). There are three types of 

GOSAT products, i.e., “Standard” for general users, “Research” for registered 

researchers and “Internal” for restricted users (Masataka et al., 2014). Table 2.3 lists 

all GOSAT data product types. All of these data are distributed through the GOSAT 

User Interface Gateway (GUIG), which is the GOSAT data product distribution site 

(Watanabe et al., 2011). 

 

 

 

 

Table 2.3 List of GOSAT data products (Masataka et al., 2014) 
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The FTS Level 1B data contain the radiance spectra, which are obtained during 

1/60 of an orbital revolution using a Fourier transformation. The CAI Level 1B data 

are pixel-scale radiances, which are converted from the digital counts of the CAI by 

multiplying by the given calibration factors. The CAI Level 1B+ data use the same 

Level 1B radiance data from the FTS; the geographical locations of individual pixel 

images are corrected for skewness induced by topographical roughness of the ground 

surface and are projected using an interpolation method to produce a map. The FTS 

Level 1B data contain the radiance spectra, which are obtained during 1/60 of an 

orbital revolution using a Fourier transformation. The CAI Level 1B data are pixel-

scale radiances, which are converted from the digital counts of the CAI by 

multiplying by the given calibration factors. The CAI Level 1B+ data use the same 

Level 1B radiance data from the FTS; the geographical locations of individual pixel 

images are corrected for skewness induced by topographical roughness of the ground 

surface and are projected using an interpolation method to produce a map. 

 

The FTS SWIR Level 2 data products store the column abundances of CO2 and 

CH4 retrieved from the radiance spectra in bands 1 through 3 of the FTS. There are 

three types of FTS SWIR Level 2 products, i.e., “L2 CO2 column amount (SWIR)” 

and “L2 CH4 column amount (SWIR)”, which are categorized as “Standard” and “L2 

H2O column amount (SWIR)” in research projects. The FTS TIR Level 2 data 

products are vertical concentration profiles of CO2 and CH4 derived from the 

radiance spectra in band 4 of the FTS. There are two types of FTS TIR L2 products, 

i.e., “L2 CO2 profile (TIR)” and “L2 CH4 profile (TIR)”, which are stored as HDF 

files. The CO2 or CH4 concentration data are stored at the average pressure level of 
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each retrieval grid layer. There are 27 and 22 retrieval grid layers for CO2 and CH4, 

respectively. The Level 2 cloud flag data product stores the clear-sky confidence 

levels calculated from the CAI Level 1B data. 

 

The FTS SWIR Level 3 data products store the monthly global distributions of 

CO2 and CH4 obtained from the FTS SWIR Level 2 column-averaged dry air mole 

fraction of CO2 and CH4. A geostatistical calculation technique called ordinary 

kriging method is applied to estimate values in blank regions of the FTS SWIR Level 

2 distributions. The ordinary kriging method predicts the observed value of an 

arbitrary point on this random field, the characteristics of which are a function of the 

statistical properties of the observational data. The Level 3 product can be generated 

on a monthly basis by estimating global semi-variogram curves from the Level 2 

products for each month and interpolating spatially within a region with a radius of 

1000 km from existing Level 2 data locations.  All values are gridded into 2.5º cells. 

The FTS TIR Level 3 data products are global maps of CO2 and CH4 at different 

pressure levels and are processed following the same procedures discussed above. 

These data products can be used to illustrate the global spatial variations of 

greenhouse gases.The CAI Level 3 radiance distribution data products collected 

during the three-day cycle are assemble to provide a global cloud distribution map. 

The CAI Level 3 global reflectance distribution data product includes global ground 

surface characteristics. These data are processed by choosing the clear-sky images 

from the CAI data compiled over a month and synthesizing them on a global 

distribution map. The Level 3 normalized difference vegetation index (NDVI) data 

are generated via the divergence of the CAI radiances in band 3, which are sensitive 

to vegetation, whereas band 2 is less sensitive to vegetation. 
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The Level 4A data product includes monthly CO2 fluxes in 64 global regions 

that are inversely determined from the FTS SWIR Level 2 column-averaged mixing 

ratios and ground-based observational data using a global atmospheric transport 

model provided by the US NOAA Earth System Research Laboratory. Details of the 

data processing algorithms and descriptions of the a priori flux datasets are presented 

in Maksyutov et al., (2013). The Level 4B data product includes three-dimensional 

global CO2 concentrations in three dimensions calculated from the Level 4A data 

product using the atmospheric transport model. The data product has a horizontal 

resolution of 2.5°×2.5° and six-hour intervals. 

 

2.4   Validation of the GOSAT Data Products 

For the GOSAT data products to be used in the science community, the precision and 

bias of the data products must be clarified and validated. The GOSAT data validation 

team uses high-precision reference data acquired by ground-based high-resolution 

Fourier transform spectrometers in the Total Carbon Column Observing Network, 

(TCCON), which operate independently, and airborne measurements to validate the 

GOSAT FTS SWIR Level 2 data products. The bias and standard deviation for 

XCO2 and XCH4 are less than 1%. The period of validation was from June 2009 to 

November 2012 (Masataka et al., 2013). Cloud and aerosol properties are also 

validated using the data obtained by remote sensing instruments, such as ground-

based sky radiometers and lidars.  

 

 Data collected by aircraft from Japan Airlines that participate in the 

Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) 
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project and the US National Oceanic and Atmospheric Administration’s airborne 

measurement program are used. The results of the comparison indicate that the 

retrieved Level 2 CO2 and CH4 column abundances are broadly consistent with the 

reference values (JAXA, 2015). 

 

2.5   Atmospheric Infrared Sounder (AIRS) 

The Atmospheric Infrared Sounder (AIRS) is one of several instruments onboard the 

Earth Observing System (EOS) Aqua satellite, which was launched on 4 May 2002 

(Figure 2.2). The Aqua satellite is in polar sun-synchronous orbit, flying at an 

altitude of approximately 705 km and completing an orbital cycle in 98.8 minutes. 

The platform’s equatorial crossing is at 13:30 local time; the cycle period is 16 days 

(Aumann et al., 2003).  

 

 

Figure 2.2 Schematic diagram of Aqua satellite (NASA, 2015). 
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The AIRS instrument includes two companion microwave instruments, i.e., the 

Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil 

(HSB). The AIRS/AMSU/HSB combination provides coincident observations of the 

Earth’s atmospheric, land and ocean surface temperatures, and greenhouse gases for 

analysing several interdisciplinary issues in the earth sciences. The AIRS channels 

consist of spectral features that indicate several anthropogenic greenhouse gases, 

including CO2, CH4, and CO (Haskins and Kaplan, 1992). Table 2.4 shows the AIRS 

technological specifications. 

 

 

Table 2.4 AIRS technology specifications (Fishbein et al., 2007) 
 

Instrument  AIRS  
Size Stowed: 116.5 × 80 × 95.3 cm 

Earth shade deployed: 116.5 × 158.7 × 95.3 cm 
Spectral Range IR: 3.74 – 15.4 µm, 2378 channels with λ∕∆λ= 1200 

resolution 
VIS/NIR: 0.4 – 1.1 µm with 4 channels 

Instrument Field of View IR: 1.1 º (13.5 km at nadir from 705 km altitude) 
VIS/NIR: 0.2 degree (2.3 km from 705 km altitude) 

Mass / Power 177 kg / 22o Watt 
Aperture IR: 10 cm;  VIS/NIR: 0.2 to 1 cm 
Swath Width 99 degree (1650 km from 705 orbit altitude) 
Scan Sampling IR: 90 × 1× 1.1 º;  VIS/NIR: 720 × 8 × 0.2 º 
Spatial Coverage Scan Angle: +/- 49.5 around nadir IFOV: 0.185 
Ground Coverage +/- 49.5 degrees around nadir 
Ground Footprint 90 per scan, 22.4 ms footprint 
Temporal Coverage Global, twice daily swath (daytime and night-time) 
Spectral Resolution 13.5 × 13.5 km in the nadir 
Radiometric Calibration +/- 3% absolute error 

 
 

2.6   The Atmosphere 

The atmosphere is a gaseous shell surrounding the planet that is retained by 

gravitational attraction. The atmosphere protects life on Earth by interacting with 
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incoming ultraviolet solar radiation. In these processes, the constituents and the 

structure of the atmosphere play an essential role. For more detailed information can 

be found in Roedel (2000) and Burrows et al. (2011). 

 

2.6.1   Constituents of Atmosphere 

The Earth’s atmosphere is mainly composed of nitrogen (N2) and oxygen (O2), 

which constitute 78% and 21% of the volume of air, respectively. The remaining 1% 

is composed of trace gases, including argon (Ar), helium (He), carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), water vapor (H2O vapor), and ozone (O3) 

(Lutgens et al., 2006). The main components, chemical notations and their 

concentrations in dry air are listed in Table 2.5. The concentrations are given in 

percentage (%), ppmv (parts per million by volume) and ppbv (parts per billion by 

volume). Almost all of these gases are involved in important chemical and physical 

processes that occur in the atmosphere. 

 

Table 2.5 Main atmospheric components and their concentration in dry air (Burrows    
                et al., 2011). 
 

Component Chemical 
Notation 

Volume Fraction in 
Air 

Nitrogen N2 78.084 % 
Oxygen O2 20.948 % 
Argon Ar 0.923 % 
Carbon Dioxide CO2 390 ppmv 
Helium He 5.24 ppmv 
Methane CH4 1.9 ppmv 

Molecular Hydrogen H2 0.55 ppmv 
Nitrous Oxide N2O 0.31 ppmv 
Carbon Monoxide CO 50-250 ppbv 

Ozone 
(Tropospheric) 

O3 10-500 ppbv 
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Ozone 
(Stratospheric) 

O3 0.5-10 ppmv 

 
   

2.6.2   Structure of the Atmosphere 

The atmosphere is divided into four distinct layers based on substantial changes in 

temperature (Figure 2.3). These layers are characterized in terms of their specific 

vertical temperature gradients (Dubin et al., 1976). The troposphere is the lowest 

layer of atmosphere, extending from the Earth’s surface to a height of approximately 

18 km in the tropics, 12 km at mid-latitudes and 6 – 8 km near the poles. The 

temperature decreases by 6.5 °C for every kilometre above the Earth’s surface. This 

temperature is achieved by the greenhouse effect, which is described in the next 

section. Thus, the lowest part of the troposphere, the planetary boundary layer, is 

typically the warmest section of the troposphere. Most of the atmospheric water 

vapor is located in this layer; thus, it is the layer where most of Earth’s weather 

occurs. The tropopause is located at the top of the troposphere and separates the 

troposphere from the stratosphere at a height of approximately 50 km. The 

temperature remains fairly constant over this region. 
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Figure 2.3 Temperature (red) and pressure (blue) profile according to the U.S.  
                  standard atmosphere (Dubin et al., 1976). 
   

The stratosphere is located at a height of 12-50 km. Approximately 90% of the 

ozone in Earth’s atmosphere is contained in the stratosphere. The temperature 

increases with height due to the absorption of ultraviolet (UV) radiation from the sun. 

The stratopause is the upper boundary of the stratosphere. The mesosphere, or the 

middle layer, exists above the stratosphere. This is the coldest region of the 

atmosphere. This layer protects the Earth from meteoroids. At approximately 50 km 

above the mesosphere, the thermosphere begins. The temperature is very high in this 

layer due to the absorption of high-energy radiation, which is converted into heat. 

The change to interplanetary space is called the exosphere and is located at a height 

of approximately 1,000 km. 

 

2.6.3 The Natural Greenhouse Effect 
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The greenhouse effect, which is responsible for a warming of the Earth’s surface and 

the lower atmosphere, is a natural process and makes life possible on Earth. The first 

step in the initiation of the greenhouse effect is a heating of the Earth’s surface by the 

sun. This heating is achieved by the incoming solar energy, which can be 

characterized by the solar constant. This constant is the amount of solar energy 

reaching the top of the Earth’s atmosphere each second on an area of one square 

meter perpendicular to the sun direction and is about 1,368 W/m2. The average of 

this value over the entire earth is 342 W/m2 (considering the curvature of the Earth’s 

surface).  

 

As shown in Figure 2.4, two-thirds of the incoming solar energy is absorbed 

by the surface and the atmosphere. The remaining one-third is reflected back to space. 

To achieve an energy balance, the absorbed incoming energy is re-emitted back to 

space. The maximum amount of re-emitted radiation is in longer wavelengths, 

primarily the infrared spectral region, because the Earth is much colder than the Sun. 

Both the land and ocean emit plenty of thermal radiation that is absorbed by the 

greenhouse gases and clouds; some of this radiation is re-radiated back toward the 

Earth’s surface, warming it. The most important greenhouse gas is H2O vapor, CO2 

is the second most important greenhouse gas. 
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Figure 2.4 Earth’s estimated energy balance; all values are given in watts per square   
                  meter (Solomon et al., 2007). 

 
 

  The GHGs include O3, N2O and CH4 also contribute to the greenhouse effect 

(Roedel, 2000). Other important contributors to the greenhouse effect are clouds and 

aerosols. Without the natural greenhouse effect, the average temperature at the 

Earth’s surface would be below the freezing point of water. Thus, Earth’s natural 

greenhouse effect preserves life on Earth. However, human activities, primarily the 

burning of fossil fuels and the clearing of forests, causes an amplification of the 

natural greenhouse effect and leads to global warming with adverse consequences for 

the Earth (Solomon et al., 2007). More details on the anthropogenic greenhouse 

effect, global warming and the resulting climate change are given in the next section. 

2.7   Global Warming and Climate Change 
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Global warming and climate change have been occurring for years, and this issue is 

the focus of public interest. The influence of humans on global warming and climate 

change is clear; anthropogenic greenhouse gases have reached their highest 

concentrations in history. As reported by the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC), “natural and anthropogenic 

substances and processes that alter the Earth’s energy budget are the drivers of 

climate change” (IPCC 2013). 

 

In this context, the term “climate change” is the change in climate over time, 

which can be due to natural variability or human activities (American Meteorological 

Society, 2012, Denman et al., 2007). The global temperature of the Earth has 

increased by 0.8 degrees in the last century, with more than half of the increase 

occurring in the last thirty years (Blunden and Arndt, 2012). Analysis has shown that 

there is a 95% probability that this warming is attributed to an enhanced greenhouse 

effect caused by increased greenhouse gas concentrations within the atmosphere 

(Berger, 2000).  

 

The increasing concentrations of greenhouse gases have a positive impact on 

radiative forcing, which warms the climate. Radiative forcing is a measure of the 

effect that a factor has on the balance of outgoing and incoming energy in the Earth’s 

atmosphere system and indicates the significance of a particular factor as a potential 

climate change mechanism. A positive radiative forcing causes a warming of the 

Earth’s atmosphere, whereas a negative radiative forcing results in a cooling effect. 

Figure 2.5 shows the major radiative forcings for the period 1750–2011. In this 

report, a level of confidence is expressed using five qualifiers: very low, low, 
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medium, high, and very high. For given evidence and agreement statement, different 

confidence levels can be assigned, but increasing levels of evidence and degrees of 

agreement are correlated with increasing confidence. 

 

 
 
Figure 2.5: Radiative forcing and their uncertainty estimates in 2011 relative to 1750.                   
                  The forcing are divided into anthropogenic and natural forcing with the     
                  Level of confidence (IPCC, 2013)                   
 
 

The radiative forcing for well-mixed greenhouse gases (CO2, CH4, N2O, and 

halocarbons) from 1750 to 2011 is 3.00 [2.22 to 3.78] Wm–2. The primary 

anthropogenic greenhouse gas (CO2) exhibits the largest radiative forcing, i.e., 1.68 

[1.33 to 2.03] Wm–2. The increased atmospheric CO2 concentration has been mainly 

due to fossil fuel combustion, cement production and deforestation. CH4 contributes 

a forcing of 0.97 [0.74 to 1.20] Wm–2, primarily due to agriculture, natural gas 
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