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MENINGKATKAN MUTU PRIMITIF KRIPTOGRAFI PETA CAMUK 

BERDASARKAN KERUMITAN DAN TEMPOH PANJANG PETA 

 

ABSTRAK 

 

Peta camuk berkentuan menghasilkan ciri-ciri seperti determinisme, ergodisiti, perlakuan 

seperti rawak, ketidaklineran, aperiodisiti, entropi yang tinggi, imbangan, ketak kemerostan, 

korelasi maklumat yang amat rendah, dan kepekaan/kesensitifan yang amat tinggi terhadap 

perubahan yang amat kecil daripada keadaan awal dan parameter kawalan. Ciri-ciri ini amat sesuai 

untuk bidang kriptografi dan menjadikan peta camuk menarik bagi mereka bentuk primitif 

kriprografi. Berdasarkan ciri-ciri tersebut, sejak beberapa tahun kebelakangan ini, banyak peta 

camuk berdasarkan primitif kriptografi dicadangkan. Namun demikian, kebanyakannya didapati 

tidak begitu memuaskan atau mempunyai kekurangan seperti ruang kunci yang amat pendek, 

keberkesanan dan kelajuan yang rendah, kekuatannya yang tidak begitu baik serta sekuriti yang 

rendah. Justeru, kajian ini cuba mengkaji kekurangan tersebut dan keadaan awal, parameter 

kawalan dan trajektori sistem camuk digunakan dalam algoritma kriptografi berasaskan peta 

camuk dianalisis. Daripada hasil analisis, tiga kaedah baru bagi mereka bentuk primitif kriptografi 

berdasarkan peta camuk dicadangkan. Dalam usaha mengkaji kecekapan kaedah ini, satu set 

primitif kriptografi berasaskan peta camuk dicadangkan dengan menggunakan setiap kaedah 

tersebut. Kaedah pertama adalah aplikasi peta camuk berdimensi tinggi, di mana dimensinya 

adalah tiga dan ke atas. Kaedah kedua adalah berdasarkan kepada gabungan dua atau lebih peta 

camuk. Kaedah ini memanipulasi komposisi dua peta camuk untuk menjana satu peta camuk baru 

dengan ciri-ciri fizikal yang lebih baik dengan kerumitan statistik yang lebih tinggi. Dalam kaedah 

ketiga, merealisasikan peta camuk dalam ketepatan yang lebih tinggi adalah dicadangkan. Pada 

kebiasaanya, peta camuk direalisasikan dengan menggunakan ketepatan 32-bit hingga 64-bit, 

tetapi kaedah ini menggunakan ketepatan yang lebih tinggi (1024-bit hingga 2048-bit). Dalam 

usaha untuk menyiasat keselamatan dan kecekapan kaedah ketiga, primitif kriptografi berasaskan 

peta camuk (fungsi cincang, penyulitan imej dan penjanaan nombor pseudo-rawak) direka 



 

 

xx 

 

berdasarkan ketepatan yang lebih tinggi pada peta camuk yang digunakan. Sekuriti algoritma yang 

dicadangkan dikaji menggunakan pelbagai jenis tekanan dan ujian sekuriti statistik biasa. Dapatan 

menunjukkan bahawa algoritma yang terhasil boleh memenuhi keperluan tahap sekuriti yang 

tinggi dengan halaju yang tinggi dan kos pengiraan yang rendah. Oleh itu, hasil kajian tesis ini 

menunjukkan bahawa peta serabut dengan cadangan penambahbaikan yang diutarakan boleh 

digunakan untuk aplikasi kriptografi dalam kehidupan sebenar.  
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IMPROVING CHAOTIC CRYPTOGRAPHIC PRIMITIVES BASED ON MAP’S 

COMPLEXITY AND PERIOD LENGTH OF THE CHAOTIC MAPS 

 

 

 

ABSTRACT 

 

Deterministic chaotic maps possess profound characteristics such as determinism, 

ergodicity, random-like behavior, nonlinearity, aperiodicity, high entropy, balance, 

nondegeneracy, incredibly low correlation of information and extreme sensitivity to very small 

changes of the initial condition and control-parameters. These characteristics are very favorable 

for cryptography and make deterministic chaos an interesting candidate in designing of 

cryptographic primitives. Based on these characteristics, during the recent years many chaos-based 

cryptographic primitives have been proposed. Unfortunately, a vast portion of them had 

encountered drawbacks such as shortened key space, low speed, lack of robustness and low 

security. In this study, these drawbacks are studied and the initial conditions, control-parameters 

and trajectories of the chaotic systems used in the chaos-based cryptography algorithms are 

analyzed. Three new methods for the design of chaos-based cryptographic primitives are 

suggested based on the results of the analysis. In order to study the efficiency of these methods, a 

set of chaos-based cryptographic primitives are proposed. The first method is the application of 

higher dimensional chaotic maps, the dimension can be three and above. The second method is 

based on the combination of two or more chaotic maps. It manipulates the composition of two 

chaotic maps to achieve to a new chaotic map with physically better characteristics and higher 

statistical complexity. In the third method, realization of the chaotic maps in higher precision is 

proposed. Regularly, the chaotic maps are realized using 32-bit to 64-bit precision, whereas this 

method takes advantage of higher precision (1024-bit to 2048-bit). In order to investigate the 

security and efficiency of the third method, chaos-based cryptographic primitives (hash function, 

image encryption and pseudo random number generator) are designed based on the higher 

precision realization of the chaotic maps. The security of the proposed algorithms is examined 
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using different types of attacks and common statistical security tests. The results of the 

cryptanalysis indicate that the presented algorithms satisfy the requirements for a secure system. 

Therefore, the findings in this thesis indicate that chaotic maps with suggested improvements can 

be used for real life cryptography applications. 
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 INTRODUCTION 

The study of chaotic systems and their application in cryptography has been an interesting 

subject for the researchers in computer science and physics. In the past two decades plenty of new 

algorithms, based on different sorts of chaotic maps have been proposed. Most of the algorithms 

rely on the sensitivity of the chaotic systems to their initial condition and control-parameters. 

Meanwhile, many of the presented algorithms had been cryptanalyzed and found to be vulnerable 

against different attacks, either because of dynamical behavior of the chaotic systems used in their 

structure or because of inefficient utilization of the dynamical system. Besides security problems, 

many of these algorithms suffer from low speed, high cost of computation and are difficult to 

implement in real life application.  

In this study, the main goal is to find subtle points in the design of a chaos-based 

cryptographic algorithm using the existing literature and by trying to propose efficient strategies 

in order to achieve secure and practical algorithms. The study of the literature, suggested three 

different approaches in designing of secure chaos-based crypto-primitives. The proposed 

strategies in this work should be studied from both dynamics and security point of view. In order 

to study dynamical behaviors of chaotic systems, along with regular methods (such as Lyapunov 

exponent, phase space control, and Bifurcation diagram) an alternative test such as complexity, 

period length and transient effect analysis are applied. The new cryptographic primitives are 

designed based on each of these approaches, and the security of the new proposed algorithms are 

tested against known attacks. The test results are compared with the existing cryptographic 

algorithms, from security, speed and applicability aspects.  
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1.1 Motivation 

With the fast growth of the Internet in the early years of twenty-first millennium, majority 

of the people started using internet in their daily lives. The demand for the new image encryption 

algorithms, with better performance on the bulk data lead to several studies on the design of more 

secure and flexible image encryption algorithms. Nonetheless, Chaos based image encryption 

algorithms provide good confusion and diffusion on the bulk data. Therefore, they became an 

interesting alternatives option for the image encryption purposes. The similarities between 

nonlinear dynamical systems, namely chaos, and the cryptographic systems have made chaos a 

natural candidate for designing cryptographic algorithms [1]. During the past few decades dozens 

of new chaos-based both symmetric [2]–[39] and asymmetric [40]–[54] algorithms have been 

proposed and several novel view points towards the issue has been suggested. However, there has 

been plenty of failures and drawbacks in the proposed chaos-based designs [55]–[79]. 

Moreover, bibliometric statistics, along with a review of the literature imply that there have 

been many chaos-based algorithms, either symmetric or asymmetric found to be weak against 

different types of attacks. Security of the chaos-based cryptographic systems, mostly rely on the 

possibility of recovering initial condition or control-parameters and consequently the information 

available from the ongoing chaotic orbit. In deterministic chaotic systems, discovering the current 

state of the system can help finding all the following states.  

In many of the cryptanalyzed cases, there exist particular repeated patterns in the design 

and implementation of chaos-based cryptographic algorithm that are responsible for the security 

flaws. If these patterns refrained, cryptographic algorithms would be more secure against different 

types of known attacks. The modified Baptista type algorithm [80] is a good example, which was 

proposed in order to improve the security of the original Baptista type cryptosystem [81]. Thus, 
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by identifying the common problems and the corresponding reinforcement it is feasible that chaos 

cryptography remain as one of the main parts in modern cryptography. 

1.2 Problem Statement 

Since the mid-nineties, application of chaos in cryptography has attracted many researchers. 

The similarities between chaos and cryptography such as sensitivity to initial conditions and 

control-parameters have made chaos a good choice for designing new cryptographic primitives. 

Nonetheless, many of the presented chaos-based cryptographic algorithms have been 

cryptanalyzed and proved weak against different types of differential and statistical attacks [39], 

[55]–[77], [82]–[110]. The main weaknesses of these algorithms were consequence of several 

issues such as: 

 Unexpected short period length of the digitalized discrete nonlinear chaotic systems  

in finite space [85]. 

 Low sensitivity of the chaotic maps to the changes of initial conditions and control-

parameters in some areas of the phase space and control-parameter chaotic range [76]. 

 Unsecure and inefficient design of the existing chaos-based cryptographic algorithms 

[67], including careless implementation [39], lack of knowledge about the strange 

attractor’s behavior [69] and slow speed of the chaos-based algorithms [111]. 

In order to resolve these issues, several strategies are proposed in the past decade, but most 

of these strategies were only suggestions and prescriptions and have rarely been applied in practice 

on cryptographic primitives, thus it is very hard to provide any comparison between them. In this 

study, in order to tackle the problems mentioned above, three strategies based on appropriate 

chaotic systems are suggested and their dynamical characteristics are carefully analyzed under the 

finite precision implementation. Based on each of these strategies, three chaos-based 

cryptographic primitives are carefully designed. Moreover, the security of each of the algorithms 
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is analyzed against statistical and differential attacks. The security analysis, speed and flexibility 

of each of the algorithms are compared to conclude the effectiveness study of each of the 

algorithms. 

 

1.3 Research Objectives 

According to the problem statement, the security, flexibility and speed of the chaos-based 

algorithms need to be improved. However, the proposed strategies and prescriptions in the past 

have not been applied in the newly proposed algorithms [4], [33], [39], [94], [112].  The main 

objective of this research is to propose strategies and design new cryptographic primitives based 

on each of the proposed strategies to improve the effectiveness, security, speed and flexibility of 

the chaos-based cryptographic algorithms. The objectives of this thesis can be categorized as 

below (Figure 1.1): 

 To identify strategies to address the periodicity issue in digital chaotic maps. 

 To design secure, flexible and fast cryptographic algorithms based on the proposed 

strategies. 

 To evaluate security and efficiency of the proposed chaos-based algorithms.  

 

 
Figure 1.1:  Sub-problems and Research Objectives 
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1.4 Research Scope 

The main scope of this study is to suggest strategies to improve the security of symmetric 

chaos-based cryptographic algorithms. In order to achieve this initial step is to find and investigate 

cryptanalyzed chaos-based cryptographic algorithms proposed in the past two decades. The 

investigation in this study mainly focuses on the discrete chaotic maps (unimodal, one 

dimensional, coupled map lattice and hyperchaotic maps, higher dimensional maps and finally 

quantum chaotic maps).  

In order to investigate adequacy and efficiency of the proposed strategies, new chaos-based 

cryptographic primitives following the suggested strategies are designed. The proposed 

algorithms are under the category of hierarchy of polynomial chaotic maps (one dimensional, 

coupled map and 3D chaotic maps). The asymmetric cryptographic algorithms, stream ciphers, 

watermarking and steganography are not in the scope of this study. Meanwhile only Tent map and 

a class of hierarchy of polynomial chaotic maps are used in the structure of the proposed 

algorithms and other chaotic maps are not in the scope of this research. 

1.5 Research Methodology 

The methodology used in this research is conducted by finding the evidence available in 

the literature and analyzing the existing data in order to achieve the expected results such as design 

of new cryptographic algorithms with higher capabilities and faster operation time. The literature 

review consists of few major sections, such as identifying major literature from the main 

publishers and famous authors, tracking down, storing and reviewing all the closely related 

documents to the topic/scope.   

According to the reviewed literature, groups and categories from the chaos-based 

cryptographic algorithms with the same concepts are categorized. Moreover, the problems and 

drawbacks of each category is listed. In order to overcome the problems and eliminate the 
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drawbacks, new strategies are proposed. According to the objectives of this study, the proposed 

methods are applied in order to design new chaos-based cryptographic algorithms. Finally, the 

security and efficiency of the proposed chaos-based cryptosystems are analyzed and the results of 

the analysis are compared with other chaotic and conventional cryptographic algorithms. 

Figure 1.2 provides an overview of the steps of the research. The major steps in deciding the 

strategies are based on the following issues: 

 Selecting and modifying chaotic maps to fit the requirements of a highly sensitive 

chaotic map with long period length. 

 Study the effect of realization of the chaotic maps in finite precision. 

 Analyze the dynamical behaviour of the chaotic maps with respect to the evolution of 

the trajectories. 

 Design new algorithms based on the structure and characteristic of the chaotic maps. 

 Design experiments to investigate statistical characteristics and speed of the proposed 

algorithms. 

 Design experiments to analyze security of the algorithms against different types of 

attacks. 
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Figure 1.2:  Framework of the study 

 

1.6 Research Contribution 

In the process to achieve the objectives of the thesis, three major contributions are made. 

The main contribution of this thesis is design of new chaos-based cryptographic primitive based 

on the suggested strategies. The algorithms can be categorized as below: 

1) Application of higher dimensional chaotic maps in cryptography: 
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 Parallel hash function on application of higher dimensional chaotic maps 

 Image encryption algorithm based on application of higher dimensional chaotic maps 

 Pseudo random number generator (PRNG) based on application of higher dimensional 

chaotic maps 

2) Application of combinational chaotic maps in cryptography: 

 Hash function based on application of combinational chaotic maps 

 Image encryption algorithm based on application of combinational chaotic maps 

 PRNG based on application of combinational chaotic maps 

3) High precision realization of one-dimensional polynomial chaotic maps: 

 Parallel hash function based on application of higher precision realization of chaotic maps 

 Image encryption algorithm based on application of higher precision realization of chaotic 

maps 

 PRNG based on application of higher precision realization of chaotic maps 

There are new original methods applied in each of the algorithms in order to achieve speed 

and flexibility along with the security, which will be described in detail in the following chapters.  

 

1.7 Outline of the Thesis 

The presented thesis is organized in seven chapters. The outline of each of the chapters can 

be described as below: 

 Chapter 1 provides a brief decription about the concepts, problems, objectives and the 

contributions of the research. Chapter 2 reviews the related literature and presents a description 

about the concepts and tools used in this research. Chapter 3 provides a review of methods used 

in designing of the cryptographic algorithms. Chapter 4 studies the characteristics of the chaotic 
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maps applied in this study. Meanwhile, in this chapter the following issues are discussed: the 

transient effect, precision change effect and sensitivity to intial conditions and also contorl 

parameters. In addition, a new combinational chaotic map is proposed in this chapter. Chapter 5 

discusses the application of higher dimensional chaotic maps, newly generated combinational 

chaotic map and higher precision implementation of the hierarchy of polynomial chaotic maps. 

This chapter also provides details about designing and analysis of three cryptographic primitives 

based on each strategy. Moreover, several tests and details are presented for the security and speed 

analysis of each of the proposed algorithms. Chapter 6 provides a discussion on the research 

results. In this chapter the security and speed of the proposed algorithms in the previous chapters 

are pointed out. Chapter 7 presents the summary, conclusion and future work of this study. 
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 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

Cryptography has an ancient history, which can go as far as Ancient Egypt [113]. This 

offers the idea that the desire for concealing writings has been a demand for thousands of years. 

With the fast improvement in the information technology and emergence and rapid growth of the 

internet, the demand for secure communication increased dramatically. Thus, design of faster and 

more secure algorithms gained extra importance. Therefore, numerous new algorithms were 

developed in a short span and chaos-based cryptography was one of the most controversial 

methods suggested in the meantime. 

Chaos-based cryptography is a relatively new field of study. However, it has been a very 

active field during the past two decades according to the bibliometric information. Chaos and 

cryptography are very similar to each other. Both conventional methods of cryptography and 

chaos-based cryptographic algorithms are in favor of the maximum possible entropy [114]. 

Chaotic maps in most of the scenarios of chaos-based cryptography algorithms are considered as 

means of providing confusion and diffusion [115]. The unpredictable and random like behavior 

of the chaotic systems along with their strong sensitivity to changes in the control-parameters and 

initial conditions makes them very interesting candidates for the purpose of cryptography.   

2.2 Cryptographic Algorithms 

In general, in order to provide a secure communication between two parties on two sides of 

a channel (usually called as Alice and Bob), the message has to be converted, concealed or 

modified (i.e.: scrambled, transformed or permutated). This operation should be carried out in 

such a way that a third party in the middle (Eve or Eavesdropper) cannot find access to the content 

of the information or modify it without receiver noticing it. According to the Kerckhoffs's 
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principle, the man in the middle should not be able to recover the message even if he has access 

to the ciphering and deciphering algorithms [116]. 

 Cryptology, on the other hand, is the science of information security and privacy. It deals 

with both selection of the tools and methods for concealing information and also evaluation of the 

achieved encryption systems [114]. The first stage of cryptology, which deals with selecting 

suitable methods and frameworks, is called cryptography. The term cryptography is taken from 

the Greek language, meaning “secret writing” and the second stage concentrates on the security 

of the proposed methods (the cryptanalysis).  

Cryptographic algorithms can also be divided into several groups based on their concept of 

the work and demands. The first group and perhaps most used method is encryption algorithm, 

which are designed to cipher message in one side so that the other party can decipher it. The 

second group is called one-way hash function. Hash function, practically acts like a compression 

algorithm, while the compressed information cannot be retrieved anymore. In this study, the term 

hash function is used as MAC (Message Authentication Code).  

2.2.1 Hash Functions 

Hash functions are commonly used for information integrity, message authentication and 

storing sensitive information in databases such as usernames and passwords. A hash function 

should have several key characteristics, while weakness in any of them can lead to an unsecure 

design and as a result can be broken. A hash function has to be strongly sensitive to the message, 

irreversible, collision resistant and it has to be infeasible to find a message with the same 

corresponding hash value [117]. The terms “digest” and “checksum” are sometimes used 

alternatively for the hash value of a message. Size of the hash value may vary between 64 to 512-

bit for different hash functions based on their structure and purpose, whereas the message size is 
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arbitrary. Amongst all the conventional hash functions, SHA-1 is the most famous hash function 

with 160 bits digest size.  

Hash functions are unkeyed and if they come with keys they are usually called MAC 

(Message Authentication Code) [118], and are used both in cryptography and other fields of 

computer science such as data mining, genetic algorithms and neural networks. A keyed hash 

function (MAC) can be defined as below: 

 𝐻𝑘:𝑀 → 𝐷 2.1 

where 𝐾 = {𝑘1, 𝑘2, . . 𝑘𝑙} is the set of the keys,  𝑀 = {𝑚1,𝑚2, . . 𝑚𝑛} is the set messages to be 

digested using the hash function 𝐻𝑘 and the key for the hash function 𝑘 ∈ 𝐾 and the resulting hash 

value 𝐷 = {𝑑1, 𝑑2, . . 𝑑𝑚}. 𝑙 = |𝐷| is cardinality of the digest size, which is normally a fixed value 

between 64 to 512-bits and 𝑛 = |𝑀| is the cardinality of the arbitrary message size. 

Cryptographic hash functions are frequently used in the structure of more complicated 

algorithms such as digital signatures, fragile watermarking algorithms and secure network layers, 

therefore their security is of great importance. Almost all of the secure transactions and 

communications on the internet rely on the security and correlation resistance of the hash 

functions. SHA1 and MD5 are the most commonly used hash functions in the structure of internet 

protocols and it can be claimed that they have been the two of the most used algorithms in history 

of online transactions. Although SHA1 and MD5 have been cryptanalyzed by Wang et al. [119], 

[120] and found weak against collision attack but they are still widely used in different types of 

protocols. However, SHA1 and MD5 should be replaced and therefore design of new hash 

functions with larger digest size and stronger correlation resistance for higher security has been 

of great importance. During the last decade numerous conventional and chaotic cryptographic 

hash functions have been proposed [11], [27], [94], [108], [118], [121]–[134]. 
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2.2.2 Encryption Algorithm 

While hash functions are one-way operations, encryption algorithms are designed to work 

two sided, meaning that an encrypted message with a key “Ke” can be decrypted by a decryption 

algorithm and key “Kd”. In the case that the encryption and decryption keys are the same, the 

encryption algorithm is symmetric otherwise it is asymmetric. Until the mid-seventies and the 

invention of public key cryptography by Diffie and Hellman in their famous paper “New directions 

in cryptography” [135] all the encryption algorithms were symmetric and the sender and the 

receiver had to share a secret key through a secure channel. After that many other public key 

cryptographic algorithms such as Knapsack, RSA and El-Gamal [40] are introduced, however 

most of them rely on the idea of infeasibility of solving a hard problem to access private key. 

Based on this idea, several chaos-based cryptographic public key algorithms using semi-group 

characteristics of the Chebyshev polynomial based chaotic maps are suggested that most of them 

have been cryptanalyzed [40]–[54], [136]. An encryption algorithm can be defined as below: 

 𝐸𝑘𝑒: 𝑃 → 𝐶, 2.2 

𝐸𝑘𝑒 is an encryption function, 𝑘𝑒 ∈ 𝐾𝑒 and 𝐾𝑒 is the key space for this mapping. Key space 

defines all the possible keys for this particular mapping, which maps plaintext 𝑃 = {𝑝1, 𝑝2, . . 𝑝𝑛} 

to 𝐶 = {𝑐1, 𝑐2, . . 𝑐𝑚}, 𝑛 = |𝑃|,𝑚 = |𝐶|. 𝑃 and 𝐶 are the plaintext space and ciphertext space 

respectively. 

Recovering message can be carried out using following function: 

 𝐷𝑘𝑑: 𝐶 → 𝑃, 2.3 

𝐷𝑘𝑑 is the decryption function, 𝑘𝑑 ∈ 𝐾𝑑 and 𝐾𝑑 is the key space for this mapping. In symmetric 

encryption both encryption and decryption keys are the same. A symmetric cryptosystem can be 
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either block cipher or stream cipher. One of the main differences between a block cipher and a 

stream cipher cryptosystem is the size of the data chunks encrypted in each round, usually if the 

size of the data chunk is larger than 64 bits; it is considered as block cipher. In many cases size of 

the processes chunk by the stream ciphers are as small as one byte [114]. 

2.2.3 Pseudo Random Number Generator 

Pseudo random number generators (PRNG) are used in many of the research fields. A 

PRNG is a deterministic algorithm, which generates deterministic sequences of numbers. A close 

relative of PRNGs are the pseudo random bit generators (PRBG). A PRNG can be defined with 

five tuples {𝑆, 𝑅, 𝜑, 𝜓, 𝑃𝐴} involving a finite set of generator states S, a set of possible outputs R, 

a state function (𝜑: 𝑆 → 𝑆), an output function (𝜓: 𝑆 → 𝑅), and probability metric of random 

distribution of the seed (𝑃𝐴) [137].  

A cryptographically secure pseudo random number generator is a type of random number 

generator that the attacker cannot guess the next random number having access to a long stream 

of previously generated numbers. Such an algorithm can be used in the cryptographic applications 

such as stream ciphers. Several statistical tests such as Runs test, Parking lot test and Crabs test 

can be applied to investigate the randomness of a PRNG. Some randomness test batteries such as 

NIST SP800-22 [137], Diehard [138], TestU01 [139] and ENT tests are designed to perform set 

of several statistical tests on the random numbers generated by the PRNG. In between these 

batteries, TestU01 has a larger set of statistical tests with three major tests (Small Crush, Crush 

and Big Crush) [139]. 

2.3 Nonlinear Dynamic Systems and Chaos 

Dynamics as an interdisciplinary subject was originally a branch of Physics [140] and began 

in the seventeenth century with Newton’s invention of differential equation, discovery of laws of 
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motion and universal gravitation and their combination with Kepler’s law of planetary motion 

[141]. Newton also could solve the two-body diagram, motion of the earth and sun. Later many 

mathematicians and physicists tried applying the same idea for three-body problem. However, it 

turned out to be more difficult until late nineteen century that Poincare introduced a new viewpoint 

and suggested a geometric approach towards analyzing the idea. Consequently, the modern 

approach towards dynamics came into existence. In his work, he also mentioned the concept of 

chaos, in which a deterministic system is aperiodic and very sensitive to initial conditions and 

control-parameters and therefore it is almost impossible to predict the state of the system in the 

long term. In the geometric way of studying the nonlinear dynamics, pictures are usually more 

helpful than the formulas [140]. Poincare also suggested a new method of drawing phase space 

diagram and bifurcations for cases with higher than three dimension using a sectioning method, 

which was later called Poincare sectioning [142]. This method is very useful while studying a 

chaotic system of more than one dimension as the phase space exceeds three dimensions and 

makes it very hard to visualize the geometric diagrams for the phase space. 

Field of nonlinear dynamics has a very wide scope and there are many chaotic systems 

which some of them have been modeled from the nature. The neglected points in the design of the 

chaos-based symmetric cryptographic primitives are the concern of this study. In order to come 

up with a secure cryptosystem, during this research, complexity of the chaotic systems used in the 

field of discrete chaos-based symmetric cryptography is analyzed and the results are used as to 

refrain from faulty implementations. Nonlinear dynamics tries to simulate aperiodic nonlinear 

dynamical systems in the real world in different fields such as population growth, mechanical 

systems, biology, chemistry, weather forecast, planetary motions and several others subjects, also 

the mathematical equations suggested based on differential equation modeling of the systems can 

be considered as a source of high entropy information [143]. 
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It is almost two decades that chaotic systems have been used for designing secure 

communication methods and cryptography algorithms and based on the literature review, there 

exist many chaos-based algorithms that have been proved to be either unsecure, slow, hard to 

implement or in general inefficient [55]–[79], [82]–[104], [106]–[110], [144]. The behavior of 

chaotic maps is very appealing for researchers in the field of cryptography and that might be 

because cryptographic algorithms, especially the symmetric algorithms with nonlinear 

characteristics, are actually chaotic deterministic systems without a particular differential equation 

describing their chaotic behavior. It can be claimed that all the nonlinear systems in the real world 

are algorithmic pseudo chaotic systems [140].  

Until the last few decades that computer realization of the chaotic systems became possible, 

the field of nonlinear dynamics was not very active [145]. Lorenz in 1963 proposed a model for 

the thermal convection, which were three ordinary differential equations (Equation 2.4) [146]. In 

the same document, he has mentioned, “lack of periodicity is very common in natural systems”. 

This sentence, eventually points to existence of chaotic non-periodic characteristics of natural 

systems. Furthermore, in an interview, Lorenz mentioned the metaphor of the “Butterfly effect”, 

a flap of butterfly’s wing in Brazil, could influence a hurricane several weeks later in Texas. 

 �̇� = 𝜎(𝑦 − 𝑥), 
�̇� = 𝑟𝑥 − 𝑥𝑧 − 𝑦, 

�̇� = 𝑥𝑦 − 𝛽𝑧. 

 

2.4 

 

The phase space for the Equation 2.4 if drawn, the famous Lorenz attractor (the Lorenz 

Butterfly) would be generated. The parameters (r, σ and β) are the control-parameters and the 

values for the (x, y and z) are the initial conditions. Figure 2.1 demonstrates Lorentz attractor for 

initial conditions (x=8, y=3, z=33) with the time frame of 100 and precision of 10-5 and control-

parameters (σ =10, r =28, β =2.66666666). 
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The Lorenz map, (Equation 2.4) was first used for generating chaotic signals using a circuit 

(Figure 2.1) and a message, non-chaotic containing meaningful information, was masked by the 

chaotic signal and unmasked by an identical system which was synchronized and the message was 

retrieved in the receiver side [140].  

2.4 Chaos-Based Cryptography 

Although the main factors attracting researchers to chaos-based cryptography algorithms 

were almost the same and limited to few mutual characteristics, but there has been numerous 

different efforts and approaches towards this field [4], [9], [11], [16], [17], [19], [20], [23]–[26], 

[28], [33], [34], [36], [37], [39], [122], [126], [147]–[156]. These approaches can be categorized 

as chaos-based symmetric [2], [4], [5], [9], [15], [16], [20], [26], [27], [29], [30], [37], [118], 

[147], [150], [157], [158] and chaos-based asymmetric cryptographic algorithms [40]–[54], [136].  

  
Figure 2.1:  Lorenz attractor (using the Lorenz map) 
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Analog chaos-based secure communication method was first introduced in the mid-1980s 

and in 1990 it was developed by Pecora and Carrol [159]. Their method was mostly based on 

chaos masking, the data as analog signals were masked under a very high frequency of chaotic 

signals generated by a circuit [140], [160]. In [160] the Lorenz map chaotic circuit was represented 

and used to generate chaotic mask for the wave carrying information.  

 
Figure 2.2:  Lorenz based chaotic circuit [160] 

 

Most of the analog chaotic cryptosystems, apart from masking mostly are based on chaos 

synchronization [102], [140], [160]. The basic idea of analog synchronization secure 

communication methods rely on synchronization of two or more chaotic systems in the transmitter 

and the receiver side [161]. However, the digital chaotic cryptosystems usually concentrate on the 

deterministic characteristics of the chaotic systems. In the other words, analog chaotic secure 

communication schemes and digital chaotic cryptosystems are based on two different techniques 

[102], while both of them depend on sensitivity to initial condition, control-parameters, complex 

behavior, unpredictability and determinism of chaotic systems. The first one uses the 

synchronization methods whereas the second one relies on the deterministic sensitivity of the 

chaotic trajectories to the initial conditions and control parameters. 
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The digital chaotic cryptosystems are mostly based on the discrete chaotic systems. They 

generally try to utilize discrete dynamical systems and encrypt the messages using the generated 

chaotic trajectories. Just few years after the emergence of analog secure communication methods 

based on chaotic systems, the idea of using discrete chaotic maps for encryption of digital data or 

as mentioned in [162], digital communication was developed. The idea was very simple and 

straightforward, both chaos and cryptography have mutual counterparts, such as sensitivity to 

initial conditions, control-parameters in chaos, random like behavior, unpredictability and finally 

determinism, which are very favorable for cryptographists and researchers in physics community.  

2.4.1 Symmetric Chaos-Based Cryptographic Algorithms 

Cryptography can in large scale be divided into two major categories, symmetric and 

asymmetric [163]. Chaos-based cryptographic schemes can be categorized as asymmetric and 

symmetric systems. Habutsu [164] was the first to introduce the chaos-based asymmetric 

cryptographic algorithm. His method was cryptanalyzed at the same conference by Biham [89].  

In the last two decades a lot of research has been conducted on the symmetric chaos-based 

cryptographic algorithms and many new algorithms are proposed [2]–[39], [118], [122], [147]–

[150], [157], [158], [165]–[169]. Figure 2.3 and Figure 2.4 demonstrate the number of articles 

found on the Scopus and Web of Science databases that are directly related to chaos and 

cryptography. The solid line represents all articles (both cryptography and cryptanalysis 

documents) and the hashed line demonstrated the cryptanalysis related documents. It can be seen 

that there has been a sudden increase in the number of publication from mid-nineties.  
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Unfortunately, a large portion of these algorithms are cryptanalyzed and are proved to be 

unsecure [57], [59]–[62], [65], [67], [69]–[72], [74], [78], [82]–[84], [86], [87], [89]–[104], [106], 

 
Figure 2.3:  Number of publication on the Scopus database related to chaos and cryptography 

 
Figure 2.4:  Documents on Web of Science database related to chaos and cryptography 
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[110], [144]. The big amount of attention, accompanied with plenty of number of cryptanalyzed 

algorithms, suggests that, there exist some typical problems in the algorithms. This common 

problem makes them weak against different types of attacks. On the other hand, some of these 

algorithms not only are unsecure but also are very slow and inefficient. Most of the mentioned 

algorithms are image encryption algorithms and the rest are one-way hash functions and pseudo 

random number generators. Without loss of generality, it can be said that, just like symmetric 

cryptography, chaos-based symmetric cryptography can be technically categorized into two 

categories: block cipher algorithms and stream cipher.  

The available chaos-based symmetric algorithms can be divided into five major categories: 

First category of algorithms, which are more primitive, manage to apply the random like behavior 

of nonlinear dynamic systems (namely chaotic systems) to shuffle the position of the data blocks 

(either as small as one bit or as large as several bytes). Most of the early image encryption 

algorithms that are proposed as premiers in the field follow the same idea. Their main strategy is 

shuffling or permuting the pixels (of a grayscale image) or the bits (of a black and white image) 

position to reach a scrambled output [170].  

The second category of algorithms are the image encryption algorithms that are based on 

skewing the image files in several rounds with Arnold or Cat map. The second type algorithms 

are very famous for their direct connection between the image pixels and nonlinear systems. 

Besides security issues, most of the algorithms in this category have slow speed of encryption and 

need several rounds of encryption to provide a random output without any visible patterns in it. 

One of the famous algorithms of the second type is the Fridrich type algorithms, mainly based on 

Fridrich method proposed in his paper in 1998 [171]. In this method a two dimensional chaotic 

map (the Baker map) is applied to generate a block cipher algorithm mainly for image encryption. 

Later this type of algorithms were cryptanalyzed by Solak et al. [59].   
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The algorithms in third category are usually referred as Baptista type, which are mostly 

inspired by the creative encryption algorithm first proposed by Baptista [81]. The main concern 

in this algorithm is the number of iteration. Therefore, encryption of each block of data needs 

several iterations and consequently the encryption speed decreases dramatically. Many modified 

methods were presented based on Baptista method [55], [66], [107]–[109], [172] and most of them 

were also cryptanalyzed [67], [82], [173]–[175].  

The forth type of the chaos-based cryptosystems possesses more complex structure and are 

stronger from the security point of view and clearly try to reconstruct the traditional cryptographic 

algorithm by the aid of chaotic maps. Xiang et al. [176] proposed a new chaos-based cryptographic 

algorithm, which applies a two dimensional chaotic map in order to generate S-Box for the 

cryptosystem [176]–[179], meanwhile some of these algorithms found to be not secure enough 

and were cryptanalyzed [79], [144].  

The fifth type and the final type are the image encryption algorithms and one-way 

cryptographically secure hash functions based on a hybrid combination of control-parameters 

initial conditions and the plaintext. These methods provide more security because of their nature. 

They possess a complex structure and take advantage from the ergodic characteristics of the 

chaotic maps along with the mixing property and sensitivity to initial conditions in several 

directions [35], [37], [147], [166]. Some of the algorithms designed on this strategy were 

cryptanalyzed because of the problems in the applied chaotic maps in their structure [62], [65]. 

 𝑥𝑛+1 = α𝑥𝑛(1 − 𝑥𝑛) 2.5 

Chaos-based stream cipher cryptosystems and also chaos-based pseudo random number 

generators as other classes of symmetric chaos-based cryptographic algorithms have also been 

discussed a lot in the last couple of decades [14], [72], [92], [149], [180]–[193]. Most chaotic 

stream cipher algorithms directly depend on the pseudo-random number/bit generators based on 
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chaotic maps. One of the most famous methods of generating a chaos-based sequence of random 

bits is the symbolic dynamic representation of the Logistic map. In this particular method, a 

threshold is chosen (usually xt=0.5) and the chaotic Logistic maps is iterated while in order to 

avoid attractors, the values of the initial conditions are normalized to stay in the safe zone, apart 

from 0.0, 0.5 and 1.0. The initial condition (x0) and control-parameter (α) are typically taken as 

the secret key and in the simplest condition, the Logistic map (Equation 2.4) the generated bits 

are XORed with the plaintext values to generate the ciphertext. In more advanced stream cipher 

methods, a set of several chaotic maps are manipulated in order to generate higher complexity and 

reduce the possibility of predicting the bits.  

2.4.2 Asymmetric Chaos Based Cryptographic Algorithms 

Asymmetric cryptography has fundamental differences with the symmetric cryptography 

and therefore chaos-based asymmetric cryptographic algorithms also manipulate different 

characteristics of the chaotic maps [64].  First time in 1976, Diffie and Hellman proposed “New 

Directions in Cryptography” [135], which gave the revolutionary idea of key exchanging method. 

Later on 1977 Ron Rivest, Adi Shamir and Leonard Adleman proposed the RSA public key 

cryptography algorithm based on difficulty of factoring large integers. 

Most of the asymmetric chaotic cryptography schemes, try to get advantage from the semi-

group characteristics of the Chaotic-Chebyshev polynomial maps [41], [44], [45], [47], [48], [53] 

while most of the algorithms base the traditional asymmetric cryptographic schemes are based on 

the hard mathematical problems [114]. Some of the asymmetric chaos-based cryptographic 

algorithms have tried to take advantage of both the hard mathematical problems and semi-group 

characteristics of the Chaotic-Chebyshev polynomial maps simultaneously. In 1993, a chaos-

based public key algorithm based on a method similar to ElGamal asymmetric encryption 

algorithm was presented [194]. But there was a problem in making it practical, as there is no 
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practically efficient fast method to iterate up to the n-th  value of the chaotic map presented in it 

while the value of n is extremely large [64]. Later on, Kocarev et al [41] established a new method 

based on the commutative characteristics of Chaotic-Chebyshev polynomials over real numbers. 

But very soon was cryptanalyzed by Bergamo et al. [63]. It was proved unsecure as an adversary 

can find the plaintext from a given ciphertext. The main problem in asymmetric chaos-based 

cryptographic algorithms arises from in appropriate use of the real number implementation [63]. 

In order to improve the cryptosystem against the suggested attack, in another research, 

Kocarev et al. [48] modified the algorithm and manipulated the Chebyshev polynomials over the 

finite field ZN, also Lima et al. [48] with another modification proposed the a new algorithm with 

prime finite field [48], [195]. In 2005, Xiao et al. proposed a new key agreement protocol based 

on chaotic maps [43]. This protocol was supposed to resist the known attacks, which were earlier 

suggested by Bergamo et al. [63]. Nevertheless, very soon Xiang et al. [68] and Han et al. [77] 

suggested a new attack which proved protocol proposed by Xiao et al. is unsecure[43]. In 2011, 

Lee et al. proposed a new extension to chaotic maps-based key agreement protocol. It took 

advantage of the semi-group characteristics of the Chebyshev polynomials to overcome all the 

attacks presented for the previous chaos-based public key cryptosystems [51].  

2.5 Drawbacks and Limitations of Chaos-Based Cryptography 

There have been many attempts in the field of cryptography with chaos in the last two 

decades, some of the methods and ideas although very brilliant and innovative have been 

successfully cryptanalyzed and their security has been proved to be practically inefficient [55]–

[79], [82]–[104], [106]–[110], [144]. Nonetheless, the similarities between chaos and 

cryptography, such as ergodicity, aperiodic system evolution, sensitivity to initial conditions and 

control-parameters together with easy and quick implementation capabilities have been so strong 
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