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KAEDAH PENGOPTIMUMAN DALAM MELATIH RANG KAlAN NEURAL 

ABSTRAK 

Terdapat beberapa teknik pengekstremuman bagi menyelesaikan masalah aIjabar linear 

dan tak linear. Kaedah Newton mempunyai sifat yang dipanggil penamatan kuadratik 

yang bermaksud ia meminimumkan suatu fungsi kuadratik dalam bilangan le1aran yang 

terhingga. Walaubagaimanapun, kaedah ini memerlukan pengiraan dan pengstoran 

terbitan kedua bagi fungsi kuadratik yang terlibat. Apabila bilangan parameter n adalah 

besar, ianya mungkin tidak praktikat· untuk mengira semua terbitap kedua. Hal ini 

adalah benar bagi rangkaian neural di mana kebanyakan aplikasi praktikal memerlukan 

beberapa ratus atau ribu pemberat. Bagi masalah-masalah sedemikian, kaedah 

pengoptimuman yang hanya memerlukan terbitan pertama tetapi masih mempunyai sifat 

penamatan kuadratik lebih diutamakan. 

Dalam Kaedah Penurunan Tercuram (Steepest Descent Method) suatu fungsian dibina 

yang mana apabila fungsian ini diekstremkan, ianya akan memberi suatu penyelesaian. 

Fungsi tersebut akan mempunyai sifat-sifat konveks. supaya vektor yang 

mengekstremumkan fungsi tersebut merupakan penyelesaian bagi masalah aljabar yang 

dipertimbangkan. lni bermaksud pencarian untuk vektor yang kecerunan fungsinya ialah 

sifar dapat dilaksanakan secara lelaran. Suatu kaedah penurunan tercuram khas, yang 

sesuai bagi penyelesaian masalah aljabar linear ialah Kaedah Kecerunan Konjugat 

(Conjugate Gradient Method). 
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Prestasi Kaedah Kecerunan Konjugat umumnya sangat sensitif kepada pembundaran 

dalam pengiraan yang mungkin menjejaskan sifat saling konjugat. Tesis ini menumpu 

kepada Kaedah Kecerunan Konjugat Prasyarat (Preconditioned Conjugate Gradient 

Method). Prasyarat ini melibatkan pengubahsuaian bagi sistem linear sas~ran Ax=b 

melalui pengunaan suatu matriks prasyarat tentu positif M yang berhubung rapat dengan 

A melalui hubungan 

M-1Ax=M-1b 

Pentingnya, matriks koefisian baru ialah M -I A. Proses prasyarat ini bertujuan 

menghasilkan suatu struktur nilai eigen yang lebih berkelompok bagi M -I A dan 

pengurangan nombor syarat bagi A untuk memperbaiki nisbah penumpu?-p berkaitan. 

Kaedah Kecerunan Konjugat Prasyarat yang ditumpukan dalam tesis ini ialah kaedah­

kaedah yang berasal dari teori pengoptimuman iaitu Kaedah Kecerunan Konjugat 

Prasyarat Fletcher-Reeves (PCGF), Kaedah Kecerunan Konjugat Prasyarat Polak 

Ribiere (PCGP) dan Kaedah Kecerunan Konjugat Prasyarat Powell Beale (PCGB). 

Kelakuan kaedah-kaedah latihan ini terhadap beberapa masalah aplikasi dunia sebenar 

dilaporkan. Dengan yang demikian, ianya menjelaskan penumpuan dan kekukuhan 

kaedah-kaedah tersebut. Masalah-masalah dunia sebenar yang dipertimbangkan adalah 

masalah klasifikasi tumbuhan iris, masalah pengelasan jantina ketam, masalah 

pengecaman muka dan masalah pengekstrakan gula dari pokok Maple. Dengan 

menggunakan algoritma-algoritma ini, kadar penumpuan dapat diperbaiki dengan 

banyaknya dengan hanya pertambahan minimum dalam kompleksitinya. 
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ABSTRACT 

There are a number of extremizing techniques to solve linear and nonlinear algebraic • 

problems. Newton's method has a property called quadratic termination~ which 

means that it minimizes a quadratic function exactly in a finite number of iterations. 

Unfortunately, it requires calculation and storage of the second derivatives of the 

quadratic function involved. When the number of parameters, n, is large, it may be 

impractical to compute all the second derivatives. This is especially true for neural 

networks, where practical applications can require several hundred to many thousands 

weights. Eor these particular cases, methods that require ,only first derivatives bMt still 

have quadratic termination are preferred. 

In steepest descent methods, we construct a functional which when extremized will 

deliver a solution. The function will have convexity properties, so that the vector that 

extremizes the function is the solution of the algebraic problem in question. This 

means the search for the vector for which the gradient of the function is zero can be 

done in an iterative fashion. A special steepest descent method which is appropriate 

for the solution of the linear algebraic problem is the 'Conjugate Gradient Method'. 

Performance of the Conjugate Gradient method is generally very sensitive to roundoff 

in the comput~tions that may destroy the mutual conjugacy property. This thesis 

concentrates on Preconditioned Conjugate Gradient methods. Preconditioning 

involves moaification of the target linear system Ax = b through application of a 

positive-definite preconditioner M that is closely related to A through the relation 

M-'Ax= M-'b 
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Essentially the new coefficient matrix is M -\ A. Preconditioning aims to produce a 

more clustered eigenvalues structure for M -\ A and/or lower condition number than 

for A to improve the relevant convergence ratio. 

The Preconditioned Conjugate Gradient methods focused in this thesis are 

Preconditioned Fletcher-Reeves conjugate gradient (PCGF), Preconditioned Polak­

Ribiere conjugate gradient (PCGP) and Preconditioned Powell-Beale restart (PCGB) . 

The behaviour of these training methods on several real life application problems is 

reported, thereby illuminating convergence and robustness. The real world problems 

that have been considered include Classification of Iris Plant, Gender Classification of 

Crabs, Classification of Face Images and Pulping of Sugar Maple problem. By using 

these algorithms, the convergence rate can be improved immensely with only a 

minimal increase in the complexity. 
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CHAPTER 1 

INTRODUCTION 

1.1 WHAT IS A NEURAL NETWORK 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous system, such as the brain, process information. It 

is composed of a huge number of highly interconnected processing elements (neurons) 

working in unison to solve specific problems. ANNs, alike people, learn by example. 

An ANN is configured for a specific application, such as pattern recognition or data 

classification, through' a learning process. Learning in biological systems involves 

adjustment to the synaptic connections that exist between the neurons. This is true for 

ANNs as well. 

Some Other Definitions of a Neural Network includes: 

According to the DARPA Neural Network Study (1988), 

..... a neural network is a system composed of many simple processing elements 

operating in parallel whose function is determined by network structure, connection 

strengths, and the processing performed at computing elements or nodes. 

According to Haykin (1994), 

A neural network is a massively parallel distributed processor that has a natural 

propensity_30r storing experiential knowledge and making it available for use. It 

resembles the brain in two respects: 

1, Know~edge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are used to store the 

knowledge. 



ANNs have been applied to an increasing number of real world problems of 

considerable complexity. Their most important advantage is in matter of solving 

problems, which are too complex for conventional technologies-problems that d? not 

have an algorithmic solution or for which an algorithmic solution is top complex to be 

found. Generally, due to their abstraction from the biological brain, ANNs are well 

suited to problems that people are better at solving it rather than computers. These 

problems include pattern recognition and forecasting (which acquired the recognition of 

pattern in data). 

1.2 HISTORICAL BACKGROUND 

Neural network simulations seem to be a latest development for solving problems that 

are too complex for conventional technologies (example: problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complex to be found) 

and are often well suited to problems that people are good at solving, but for which 

traditional methods are not. Following an initial period of enthusiasm, the field survived 

a period of frustration and disrepute. During this period when funding and professional 

support was minimal, important advances were made by relatively a small number of 

researchers. These pioneers were able to develop convincing technology, which 

surpassed the limitations identified by Minsky and Papert (1969). They summed up a 

general feeling of frustration (against neural networks) among researchers, and it was 

accepted by most researchers without further analysis. Currently, the neural network 

field enjoys a resurgence of interest and a corresponding increase in funding. 
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The history of neural networks that has been illustrated above can be divided into 

several periods: 

1. First Attempts: There were some initial simulations using formal logic. 

McCulloch and Pitts (1943) developed models of neural networks-based on their 

understanding of neurology. These models made several assumptions about how 

neurons worked. Their networks were based on simple neurons, which were 

considered to be binary devices with fixed thresholds. The outcomes of their 

model were simple logic functions such as "a or b" and "a and b". Another 

attempt was by using computer simulations. There are two groups of researchers 

: Farley and Clark(1954.) and Rochester, Holland, Haibit and Ducia, (1956) use 

computer simulations. The first group (IBM researchers) maintained closed 

contact with neuroscientists at McGill University. So whenever their models fail 

to work, they consulted the neuroscientists. This interaction established a 

multidisciplinary trend that continues to the present day. 

2. Promising & Emerging Technology: Not only was neuroscience influential in 

the development of neural networks, but psychologists and engineers also played 

an important role in the progress of neural network simulations. Rosenblatt 

(1958) stirred considerable interest and activity in the field when he designed 

and developed the Perceptron. The Perceptron had three layers with the middle 

layer known as the association layer. This system could learn to connect or 

associate a given input to a random output unit. Another system was the 

ADALINE (ADAptive LInear Element) which was developed in 1960 by 

Widrow and Hoff (of Stanford University). The ADALINE was an analogue 

electronic device made from simple components. The method used for learning 
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was different to the Perceptron, it employed the Least-Mean-Squares (LMS) 

learning rule. 

3. Period of Frustration & Disrepute: In 1969, Minsky and Papert wrote a book in. 

which they generalized the limitations of single layer Perceptrons to .multilayer 

systems. In the book they said: " ... our intuitive judgment that the extension (to 

multilayer systems) is sterile". The significant result of their book was to 

eliminate funding for research with neural network simulations. The conclusions 

created various feedbacks from the researchers in the field. Due to this, 

considerable prejudice against this field was activated. 

4. Innovation: Although public interest and available funding were minimal, .J'" 

several researchers continued working to develop neuromorphically based 

computational methods for problems such as pattern recognition. During this 

period several paradigms were generated which modem work continues to 

enhance. Grossberg & Carpenter (1988) influence founded a school of thought, 

which explores resonating algorithms. They developed the ART (Adaptive 

Resonance Theory) networks based on biologically plausible models. Kohonen 

(1988) developed associative techniques independent of each other. Klopf 

(1972) developed a basis for learning in artificial neurons based on a biological 

principle for neuronal learning called heterostasis. Werbos (1974) developed 

and used the backpropagation learning method, however several years passed 

before this approach was recognized. Backpropagation nets are probably the 

most famous and widely applied of the neural networks today. In essence, the 
, 

backpropagation net is a Perceptron with multiple layers, a different threshold 

function in the artificial neuron, and a more robust and capable learning rule. 

Fukushima (1975) developed a step wise trained multilayer neural network for 
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interpretation of handwritten characters. The original network was published in 

1975 and was called the Cognitron. 

. 
5. Re-Emergence: Progress during the late 1970s and early 1980s was important to 

the re-emergence on interest in the neural network field. Several factors 

influenced this movement. For example, comprehensive books and conferences 

provided a forum for people in diverse fields with specialized technical 

languages, and the response to conferences and publications was quite positive. 

The news media picked up on the increased activity and tutorials helped 

disseminate the technology. Academic programs appeared and courses were 
.. ~ 

introduced at most major Universities (in United States and Europe). Attention 

is now focused on funding levels throughout Europe, Japan and the United 

States and as this funding becomes available, several new commercial with 

applications in industry and financial institutions are emerging. 

6. Today: Significant progress has been made in the field of neural networks 

enough to attract a great deal of attention and fund further research. 

Advancement beyond current commercial applications appears to be possible, 

and research is advancing the field on many fronts. Neurally based chips are 

emerging and applications to complex problems developing. Clearly, today is a 

period of transition for neural network technology. 

1.3 HUMANS AND ARTIFICIAL NEURONS 

Much is still unknown about how the brain trains itself to process information. In the 

human brain, a typical neuron will be collecting signals from others through a host of 
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fine stmctures called dendrites. The neuron sends out spikes of electrical activity 

through a long, thin stand known as an axon, which splits into thousands of branches. 

At the end of each branch, a structure called a synapse converts the activity from tl'le 

axon into electrical effects that inhibit or excite activity from the axon into electrical 

effects that inhibit or excite activity in the connected neurons. When a neuron receives 

excitatory input that is sufficiently large compared with its inhibitory input, it sends a 

spike of electrical activity down its axon. Learning occurs by changing the effectiveness 

of the synapses so that the influence of one neuron on another changes. 

t 
Axon 

Figure 1.1: Components of a neuron 

Figure 1.2: Structure of a synapse 
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We conduct these neural networks by first trying to deduce the essential features of 

neurons and their interconnections. We then typically program a computer to simulate 

these features. However because our knowledge of neurons is incomplete and pur 

computing power is limited, our models are necessarily gross idealisations of real 

networks of neurons. 

Cell body 

1 Th'eshold ___ -"T'""""_~ T 

~=~~-r ~~~---. 
t 

t Axon 
SUlT1mation 

Figure 1.3: The neuron model 

1.4 WHY USE NEURAL NETWORKS ? 

Remarkable ability and usage of neural networks, derive meaning from complicated or 

imprecise data, can be used to extract patterns and to detect trends that are too 

complicated to be notified by either humans or any other computer techniques. A 

trained neural network can be thought of as an "expert" in the category of information it 

has been given to analyse. Other advantages include: 

1. Adaptive learning: An ability to learn the proper way how to do tasks based on 

the data provided for training or initial experience. 
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2. Self-Organisation: An ANN can build its own organisation or representation of 

the infonnation it gathers during learning period. 

3. Real Time Operation: ANN computations might be carried out in parallel, "and 

special hardware devices are being designed and manufactured which take 

advantage of this capability. 

4. Fault Tolerance via Redundant Infonnation Coding: Partial destruction of a 

network leads to the corresponding degradation of perfonnance. In spite of this, 

some network capabilities may be retained even with major network damage. 

1.5 APPLICATIONS OF NEURAL NETWORKS 

Based on description of neural networks and how they work:the major question" what 

real world applications are they suited for?" has arised. Neural networks have extensive 

use in real world business problems. In fact, they have already successfully been applied 

in many industries. 

Since neural networks are best in locating patterns or trends in data, they are well suited 

for prediction or forecasting needs including: 

o sales forecasting 

o industrial process control 

o customer research 

o data validation 

o risk management 
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o target marketing 

To be more specific, ANN are also used in the following specific paradigms: 

recognition of speakers in communications, diagnosis of hepatitis, recovery" of 

telecommunications from faulty software, interpretation of multimeaning Chinese 

words, under sea mine detection, texture analysis, three-dimensional object recognition, 

hand-written word recognition, and facial recognition. 

1.6 THE FUTURE OF NEURAL NETWORKS 

Because gazing into the future is somewhat like gazing into a crystal ball, Sb it is better 

to quote some "predictions". Each prediction rests on some sort of evidence or 

established trend, which, with extrapolation, clearly takes us into a new realm. 

• Neural Networks will fascinate user-specific systems for education, information 

processing, and entertainment. Neural networks produced comprehensive 

environments, are attractive in terms of their potential for systems control, 

education, and entertainment. This is not just a far-out research trend, but is 

something that is becoming an increasingly important part of our daily 

existence, as witnessed by the growing interest in comprehensive "entertainment 

centers" in each home. This "programming" would require feedback from the 

user in order to be effective but simple and "passive" sensors (examples are 

fingertip sensors, gloves, or wristbands to sense pulse, blood pressure, skin 

ionisation, and others), could provide effective feedback into a neural control 

system. This could be achievp.d, for example, with sensors that would detect 

pulse, blood pressure, skin ionisation, and other variables, which the system 

could learn to correlate with a person's response state. 
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• Neural networks, integrated with other artificial intelligence technologies, 

methods for direct culture of nervous tissue, and other exotic technologies such 

as genetic engineering, will allow us to develop radical and exotic life-forms 

whether man, machine, or hybrid. 

• Neural !1etworks will allcw us to explore new realms of human capability realms 

previously available only with extensive training and personal discipline. So a 

specific state of consciously induced neurophysiologically observable awareness 

is necessary in order to facilitate a man machine system interface. 

1.7 GUIDE TO THESIS 

The main purpose of this thesis is to propose a new derivative methods- Preconditioned 

Conjugate Gradient methods (PCG) which will accelerate convergence in neural 

networks training. The investigation includes analyzing the theoretical part, which 

explains how PCG clustered the eigenvalues. The performance of PCG methods has 

been verified by implementing it on some real life problems. In order to evaluate the 

performance of PCG methods, four real world problems that have been considered 

includes- Gender Classification of Crabs, Classification of Iris Plant, Human Face 

Recognition problem and Pulping of Sugar Maple. 

Literature s!!rvey on neural networks are presented in this chapter. In this chapter, some 

basic ideas regarding neural networks have been discussed. Basic mathematical and 

neural networks concepts in training multilayer perceptrons (MLP) with the 

backpropagation algorithm will be explained in Chapter 2. In Chapter 3, a survey of 

methods for the optimization of the backpropagation algorithm will be presented. In 
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Chapter 4, CG and PCG algorithms will be analyzed. Fonnulation and derivation of the 

CG and PCG algorithms are mainly focused in this chapter. 

The implementation of CG and PCG methods in Neural Network toolbox in Matlat1 

R12 version 6 constitutes Chapter 5. This thesis would not be complete without real 

world problems. Four real world problems : Gender Classification of Crabs, 

Classification of his Plant, Human Face Recognition problem and Pulping of Sugar 

Maple have been considered. Firstly a description of the data set is given. Then, 

numerical results employing the CG and peG methods on convergence and 

generalization capabilities are given. 

Finally, a discussion and suggestions for future work related to this research will be 

presented in Chapter 7. 
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CHAPTER 2 

BASIC CONCEPTS AND THEORY OF MUL TILA YER PERCEPTRONS 

An important class of architecture of neural networks, namely, multilayer feedforward 

networks is discussed in this chapter. Overall, this network consists of a set of sensory 

units (source nodes) which constimte the 'input layer', one or more hidden layers of 

computational nodes. In a forward direction, the input signals propagates through the 

network, on a layer-by-Iayer basis. Commonly, these NNs are referred as a multilayer 

perceptrons (MLPs) , which represent a generalization of the single-layer perceptron. 

Multilayer perceptrons have successfully been applied to solve some difficult and 

diverse problems by training them in a supervised manner with a algorithm known as 

the error backpropagation (BP) algorithm. BP algorithm is based on the error-correction 

learning rule and hence, it might be viewed as a generalization of the least-mean-square 

algorithm for the special case of a single linear neuron model. 

There are three distinctive characteristics: 

1. The model of each neuron in the network involves a nonlinearty at the output 

end. In spite of the usage of hard-limiting in Rosenblatt's perceptron, the 

nonlinearty is smooth that is, differentiable everywhere. Sigmoidal nonlinearty 

defined by the logistic function is the most commonly used form: 

1 
y.=-----

J l+exp(-v j (n» 
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where v j is defined as the net internal activity level of neuron j and Y j is the output of 

the neuron. These nonlinearities make the input-output relation of the network different 

from a single-layer perceptron. 

2. The network consists of one or more layers of hidden neurons which are not part of 

the input or output of the network. These hidden neurons play an important role in 

providing the network the ability to learn complex tasks by successively extracting 

meaningful features from the input patterns. 

3. The networks display a high degree of cormectivity where this criteria is determined 

by the synapses of the network. A change in the connectivity of the networks requires a 

change in the population of synaptic weights or their connections. 

These three characteristics together with the ability to learn from experience endows the 

multilayer perceptron's computing power. On the other hand, these same characteristics 

are also responsible for the deficiencies in the behaviour of the network. Firstly, the 

presence of a distributed form of nonlinearty and the high connectivity of the network 

make the theoretical analysis of a multilayer perceptron difficult to undertake. Secondly, 

the usage of hidden neurons makes the learning process harder to visualize. The 

learning process must determine which features of the input pattern should be 

represented by the hidden neurons. The learning process becomes a difficult task due to 

the search which has to be conducted in a much larger space of possible functions, and a 

choice has to be made between alternative representations of the input pattern 

(Hinton,1987). 
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The development of the backpropagation algorithm represents a 'landmark' in neural 

networks. It is because it provides a computationally efficient method for the training of 

multilayer perceptrons. Even though it cannot be claimed that the backpropagation 

algorithm can provide a solution for all solvable problems, it is fair to say,.that it has put 

to rest the pessimism about learning in multilayer machines that may have been inferred 

from the book by Minsky and Papert (1969). 

2.1 DERIVATION OF THE BACKPROPAGATION LEARNING ALGORITHM 

Figure 2.1 indicates the architectural graph of a multilayer perceptron with two hidden 

layers. A neuron in a layer of the network is connected to all the nodes in the previous 

layer. The signal will be flowing through the network progresses in a forward direction 

from left to right and on a layer by layer basis. The first layer are the input nodes. The 

output nodes constitute the output layer while the remaining nodes constitute the hidden 

layer of the network. The input vector is presented to the input layer and the signals will 

be propagated forward to the first hidden layer; the resulting output of the first hidden 

layer are in turn applied to the next hidden layer and so on for the rest of the network. 

Each output neuron or hidden neuron of a multilayer perceptron is designed to perform 

two computations: 

1. The computation of the function signal appearing at the output of a neuron, which is 

expressed as a continuous nonlinear function of the input signals and synaptic weights 

associated with that neuron. 
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Figure 2.1 Architectural graph of a multilayer perceptron with two hidden layers. 

2. The computation of an instantaneous estimate of the gradient vector (example:the 

gradient of the error surface with respect to the weights connected to the inputs of a 

neuron), which is needed for the backward pass through the network. 

The error signal e j (n) at the output of neuron j at iteration n (example: presentation 

of the nth training pattern) is defined by 

(2.1) 

where dj(n) and Yj(n) is the desired and the actual response of neuron j at iteration 

n respectively. 
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Hence, the instantaneous value ~(n) of the sum of squared errors over all neurons can 

be written as 

1 
;(n) =-Le~ (n) 

2 jeC 

(2.2) 

where C indicates all the neurons in the output layer of the network. The average 

squared error over the total number of patterns N is given by 

(2.3) 

The main purpose of the learning process is to adjust the free parameters (Le. synaptic 

weights and thresholds) of the network so as to minimize ~av. The gradient descent 

method is being used to perform the minimization where the weights are updated 

(adjusted) accordingly to respective errors computed for each pattern to the network. By 

taking the arithmetic average of these independent weight changes over the training set 

would therefore depicts the true change that resulted from modifying the weights based 

on minimizing the cost function ~av over the training set. 

Figure 2.2 depicts neuron j being fed by a set of function signals produced by neurons 

in the previous layer. The net internal activity level vj(n) produced at the input of 

neuron j is 

p 

vj(n) = L. wji(n)Yi(n) (2.4) 
i=O 

where ~ is the total number of inputs (excluding the threshold) applied to neuron j 

and wji (n) indicates the synaptic weight connecting the output of neuron i to the input 
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Neuron i 

Yo =-1 "- ..... - ...... 

Figure 2.2: Signal-flow graph highlighting the details of output neuron j 

of neuron j at iteration n. The synaptic weight wjO (corresponding to the fixed input 

Yo = -1) equals the threshold 8 j applied to neuron j. 

Hence, the function signal Y j (n) appearing at the output of neuron j at iteration n is 

(2.5) 

where qJ /.) is the activation function describing the input-output functional 

relationship of the nonlinearty associated with neuron j. 

The correction ~wji(n) applied to the synaptic weight wj;(n) is proportional to the 

instantaneous gradient a;(n)ia (). By using the chain nile, the gradient can be jawji n 

expressed as follows: 
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(2.6) 

The gradient d~(raWji(n) determines the direction of search in weight space for t~e 

synaptic weight w ji . 

By differentiating both sides of Eq. (2.2) with respect to e j (n), we get 

and by differentiating both sides ofEq. (2.1) with respect to y/n), we get 

By differentiating Eq. (2.5) with respect to v j (n), we get 

dyj(n) . 
--=rp. (v.(n)) 
dv.(n) J J 

J 

Lastly, differentiating Eq. (2.4) with respect to w ji (n) yields 

Hence applying Eq. (2.7) to (2.10) in (2.6) yields 

d~(n) . 
--=--'-'- = -e· (n)rp. (v (n» y. (n) 
dwj;(n) J J J I 

Based on the delta rule, the correction .6.wji (n) applied to w j ; (n) is defined by 

d~(n) 
.6.W .. (n) = -1]---'--

JI dWjj(n) 

where 1] is learning rate parameter. 
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(2.10) 
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By using Eq. (2.11) in (2.12) yields 

(2.13) 

where the local gradient 8/n) is itself defined by 

(2.14) 

The local gradient shows the amount of changes required in synaptic weights. 

There are two distinct cases associated to the error signal e /n) at the output of neuron 

j: 

Case 1: Neuron j is an Output Node. 

When neuron j is located in the output layer of the network, it would be supplied with 

a desired response of its own. Hence, 

(2.15) 

Case 2: Neuron j is a Hidden Node 

When neuron j is located in a hidden layer, there is no exact target response for that 

neuron. Actually, the error signal for a hidden neural is determined recursively in terms 

of the error signals of all the neurons to which that hidden neuron is directly connected. 

Figure 2.3 'shows neuron j as a hidden node of the network. From Eq. (2.14), the local 

gradient <5 j (n) for hidden neuron j can also be written as 
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Neuron k Neuron j 
~r---------~----~r-------------~~ 

Yo= -1 

Figure 2.3: Signal-flow graph highlighting the details of output neuron k connected to 
hidden neuron j . 

a;(n) . 
=---qJ.(v.(n)) 

Oyj(n) 1 1 

(2.16) 

The partial derivative a;(n) can be calculated as follows. From Fig.2.3, we see that 
Oy/n) 

(2.17) 

where neuron k is an output node. 

By differentiating Eq. (2.17) with respect to the function signal y/n) , we get 

(2.18) 

aek(n) 
By imple~enting the chain rule for the partial derivative , Eq. (2.18) can be 

Oyj(n) 

rewritten in the equivalent form 

(2.19) 
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From Fig. (2.3), 

ex (n) = dk (n) - Yx (n) 

where neuron k is an output node. 

Hence, 

Referring to Figure 2.3, the net internal activity level for neuron k is given by 

-vk(n)= iWkj(n)y/n) 
j=O 

(2.20) 

(2.21) 

(2.2~~ 

where q present the total number of inputs (excluding the threshold) applied to neuron 

k. 

By differentiating Eq. (2.22) with respect to y j (n) yields 

(2.23) 

After that, by using Eq. (2.21) and (2.23) in (2.19), we get the desired partial derivative: 

(2.24) 

=- I.5k (n)wkj (n) 
x 

Lastly, by using Eq.(2.24) in (2.16), we obtain the local gradient t5 j(n) for hidden 

neuron j. as follows: 

5j (n) = q7~ (Vj (n)) I. 5k (n)wkj (n) (2.25) 
k 
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neuron j is hidden. 

2.1.1 THE TWO PASSES OF COMPUTATION 

The backpropagation algorithm involves two distinct passes of computation, the 

forward pass and backward pass. In the forward pass the synaptic weights remain 

unchanged throughout the network anci the function signals are computed on a neuron-

by-neuron basis. The output of neuron j, Y j (n), is computed as 

where vj(n) is the net internal activity level of neuron j stated as 

vj(n) = tW ji (n)Yi(n) 
i=O 

If neuron j is the first hidden layer, then 

(2.26) 

(2.27) 

(2.28) 

where Xi (n) is the i th element for the input vector. Meanwhile, if neuron j is in the 

output layer, 

Y ·(n)=o.(n) 
J J 

(2.29) 

where o/n) is the j th element for the output vector. When this output is been 

compared with desired response d j (n), the error signal ej (n) for the jth output 

neuron will be obtained. However the forward pass of computation begins at the first 

hidden layer by presenting it with the input vector, and terminates at the output layer by 

computing the error signa! for each neuron of this layer. 
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Meanwhile, the backward pass, begins at the output layer by passing the error signals 

leftward through the network, layer by layer, and recursively computing the t5 for each 

of the neuron. The synaptic weight will be changing according to the delta rule: 

(2.30) 

For a neuron in the output layer, t5 j (n) is given by 

(2.31) 

Given the delta values (t5 s) for the neuron of the output layer, the delta values for all 

the neurons in the penultimate layer is calculated by using: 

OJ(n)=<p~(v/n))L 0k(n)wk/n) (2.32) 
k 

and the changes in the weights of all connections feeding into it are made. This 

recursive computation is continued on a layer by layer basis. This is done by 

propagating the changes to all the synaptic weights. 

2.1.2 SIGMOIDAL NONLINEARTY 

To compute t5 for each neuron, the derivative of the activation q:;(.) is required. This 

function must be a continuous function. The most common continuously differentiable 

nonlinear activation function used in multilayer perceptrons is the sigmoidal nonlinearty 

given by 
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where v /n) is the net internal activity of neuron j. The range of this nonlinearty lies 

inside the interval of 0 ~ Y j ~ 1. The symmetric hyperbolic tangent is another type of 

sigmoidal nonlinearty. This function is continuous and the output lies inside the range 

-1~ Yj ~l. One of the advantages of the sigmoid nonlinearty is t~at it is dIfferentiable 

which made it possible to derive a gradient search learning algorithm for networks with 

multiple layers. Furthermore, a multilayer perceptron trained with the backpropagation 

algorithm learns faster when the sigmoidal activation function is symmetric than when it 

is nonsymmetric because of better numerical conditioning. 

By differentiating both sides of Eq. (2.33) with respect to v j (n) ;'we obtain 

(2.34) 

By using Eq. (2.33) to eliminate the exponential term exp(-v j (n» from Eq. (2.34), we 

obtain 

(2.35) 

There are two distinct cases depending on the location of neuron j. 

Case 1: Neuron j is an output node; hence Yj(n) = 0j(n): 

8.(n) = e.(n)rn·.(v.(n» 
J J 'f' J J 

(2.36) 

Case 2: Neuron j is a hidden node: 

8/n) = rp~(vj(n»L8k(n)wkj(n) (2.37) 
k 
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