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PENGHAMPIRAN FUNGSI MENGGUNAKAN RANGKAIAN WAVELET DAN 
FUNGSI ASAS RADIAL 

ABSTRAK 

Rangkaian Wavelet telah diperkenalkan sebagai proses suap depan bagi rangkaian 

neural yang disokong oleh teori wavelet. Rangkaian neural ini dapat digunakan secara 

langsung dalam penghampiran fungsi. Dalam disertasi ini, Rangkaian Wavelet 

dibuktikan sebagai salah satu sub-bahagian dalam kumpulan keturunan di mana 

rangkaian neural ini mempunyai sifat yang sama dengan kumpulan yang di namakan 

Fungsi Asas Radial Berpemberat. Hal ini juga berlaku bagi rangkaian neural yang 

mempunyai paradigma yang berlainan. Disertasi ini juga merangkumi pengkajian dalam 

Fungsi Asas Radial berperingkat 2.Fungsi ini juga dikenali sebagai Fungsi Asas Radial 

Piawai kerana mempunyai persamaan dimana fungsi ini akan bertindak sebagai Fungsi 

Asas Radial Piawai apabila fungsi exponent mempunyai sifat yang sarna dengan fungsi 

pengaktifan Gaussian apabila peringkat bagi eksponen n =2. Selain daripada itu, kita 

dapat melihat perbandingan diantara Wavelet dan Fungsi Asas Neural Berpemberat 

peringkat 2 bagi melakukan penghampiran fungsi.Hal ini dikaji bagi membolehkan kita 

membuat demostrasi bagi menyatakan bahawa pendekatan bagi penghampiran fungsi 

yang baik bergantung pada pemilihan yang dibuat dalam memilih fungsi pengaktifan 

bagi Rangkaian Fungsi Asas Radial dan ibu fungsi bagi Rangkaian Wavelet. Mexican 

Hat, Gaussian Wavelet dan Morlet digunalan sebagai fungsi ibu dalam Rangkaian 

Wavelet manakala Gaussian sebagai fungsi pengaktifan dalam Rangkaian Fungsi Asas 



• i!r 
~'C. Radial. Fungsi Kos Kuadratik digunakan bagi meminimakan ralat yang dinilai. 
';> 

perhitungan yang telah dibuat daripada semua rangkaian neural dinilai dengan 

mengambil Normalised Squre Root Mean Squared Error (NSRMSE). Empat fungsi 

digunakan bagi membuat simulasi dan dua daripada fungsi tersebut melibatkan satu 

pembolehubah. Selebihnya adalah fungsi dalam dua pembolehubah bagi membolehkan 

penghampiran fungsi dinilaikan melalui rangkaian neural yang telah dinyatakan di atas. 

Simulasi juga dilakukan dalam menaksir data sebenar iaitu dalam meramalkan harga 

rumah di pendalaman Boston. Simulasi dilakukan dengan menggunakan MA TLAB 

V6.5. 
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ABSTRACT 

The Wavelet Neural Network has been introduced as a special feedforward neural 

network supported by the wavelet theory. Such network can be directly used in function 

approximation problems. In this dissertation, wavelet networks are proven to be as well 

as many other neural paradigms, a specific case of generic paradigm named Weighted 

Radial Basis Functions Network. In this dissertation we will also investigate the WRBF-

2. 

WRBF-2 is standard RBF since the exponential function behaves as a Gaussian, due to 

the exponent n = 2.In addition a comparison between Wavelet and WRBF-2 networks 

for function approximation is attempted, in order to demonstrate that the performance 

depends only on how good the chosen mother function for the WNN and activation 

function for the RBFN "fits" the function itself. Mexican Hat, Gaussian Wavelet and 

Modet are used as the mother wavelet function in WNN and Gaussian activation 

function in RBFN. Quadratic cost function is used for error minimization. The 

performances of the networks are estimated by Normalised Square Root Mean Square 

Error (NSRMSE). Four functions have been used for the simulations. Two of the 

functions involved one variable function and the rest are two variable functions to be 

approximated by the networks. We also used the real word data for the simulations. 

Simulations are done by using Matlab V6.S. 



CHAPTER 1 

INTRODUCTION OF THE WAVELET NEURAL NETWORKS 

1.1 INTRODUCTION 

Wavelet Neural Networks (WNNs) are an implementation of Wavelet Decomposition, a 

technique which has recently emerged as a powerful tool for many applications in the 

field of signal processing, such as data compression and function approximation. The 

wavelet network is an approach for system identification in which nonlinear functions 

are approximated as the superposition of dilated and translated versions of a single 

function (Zhang, 1992). Wavelet network uses a wavelet like activation function. 

Families of wavelet functions especially wavelet frames are universal approximators for 

identification of nonlinear system. The parameters of wavelet networks are dilation (t), 

translation (e), bias (8) and weight (w). The parameters are optimized during the 

learning phase. 

The basic idea of Wavelet decomposition is to expand a generic signal fex) E L2(91N
) 

into a series of functions obtained by dilating and translating a single function <D (x), the 

so-called mother wavelet. 



The tenn mother wavelet gets its name from two important properties of the wavelet 

analysis. The tenn wavelet means a small wave. The tenn mother implies that the 

functions with different regions of support are used in the transfonnation process. They 

are derived from one main function, the mother wavelet. ln other words, the mother 

wavelet is a prototype for generating the other window function (Polikar, 2001). Mother 

wavelet function gives an efficient and useful description of the signal of interest. This 

function has universal property. 

In the following we shall consider only radial wavelets in L2(9{N), for which <l> (x) = 

g(lIx II) where g: 9{ -t 9{. Radial functions are characterized by a radial Fourier 

ool&(hw)1
2 

transfonn; a function is admissible as a wavelet if Ct> = (2n:)N Io h dh < 00 and 

Ct> is independent of ill.For the Discrete Wavelet Transfonn, the parameters which 

detennine the dilation and translation of the mother wavelet are discretised, namely a 

countable set is extracted, such that the corresponding wavelet family 

is a basis for the functions in L2(9{N). To this aim, additional conditions are required 

both on <l> an on the parameters discretisation. The obtained basis is not necessarily 

orthononnal and can be somehow redundant. In this latter case family (1.1) is more 

correctly referred to as frame. Frames of wavelet have been used extensively to 

approximate functions of one or two variables (Meyer, 1992), but as the number of 

variables increases, the required number of basis functions grows exponentially. In 



practice a signal g is approximated by the weighted sum of finite number of functions in 

(1.1) plus a bias which help the approximation of functions with nonzero mean value: 

K 

g(x) = Lak <D[DJx-tk )]+0 (1.2) 
k=l 

which is analogous to the output of a 2-layer network, provided that the activation 

function of the hidden neurons are wavelets (Zhang,1992). Such network has been 

named Wavelet Network (WN). WN with radial wavelets presents the main advantage 

of an efficient initialization procedure derived from the wavelet decomposition (Zhang, 

1997).Furthermore a fast procedure based on the Orthogonal Least Squares (OLS) 

algorithm, a method already applied to RBF networks (Chen, et aI., 1991), is provided 

for choosing among all the basis functions those which give the greatest contribution to 

the approximation. 

Depending on the form of the function to be approximated, the expansion of a signal 

into a wavelet series can be more efficient than other solutions, in the sense that fewer 

basis functions can be needed for achieving a fixed approximation error. This is due to 

the time-frequency local properties of most wavelets, which make them partiCUlarly 

suitable to represent short-time high-frequency signal features. Fewer basis functions 

and more efficient initialization lead to smaller networks and fast training. On the other 

hand some signal features are better represented by the linear combination of different 

function, thus WN are not suitable to fit any curve. 

The success of radial basis function (RBF) neural networks for function approximation 

was a good indicator of this yet another field of application on wavelets. A wavelet 



frame replaces the radial basis functions in a RBF network, the center and covariance 

matrix (spread) are replaced by the shifts and scales of the wavelets (Zhang, et al., 

1995). 

The architecture of wavelet network consists of three different layers: an input layer 

which is made of source nodes, a hidden layer in which each neuron computes its output 

using a wavelet basis function and an output layer which builds a linear weighted sum 

of the hidden layer. The input layer to the hidden layer transformation is nonlinear while 

from the hidden layer to the output layer, the transformation is linear. The structure of 

WNN for n-dimensional input and one output is shown as in Figure 1 (Sheng & Shu, 

1999). 

Figure 1: An Wavelet Neural Network structure with one output 



1.2 HISTORICAL BACKGROUND 

The origin of wavelet networks can be traced back to the work of Daugmann (1988) in 

which Gabor wavelets were used for image classification. Wavelet networks have 

become popular after the work by Pati (1991, 1992), Zhang (1992), and Szu, et al. 

(1992). Wavelet networks were introduced as a special feedforward neural networks. 

Zhang did apply wavelet networks for the problem of controlling a robot arm. As a 

mother wavelet, they used the function <l>(x) = (xT 
X - dim (x) ).e-

1I2XT 
x . 

Szu took a different function, <l>(x) =cos(1.75 t)exp(_t212
), as mother wavelet for 

classification of phonemes and speaker recognition. Simple combinations of sigmoids 

were chosen by Pati (1991). Fernando Marar, et al. (1996) have shown an effective 

procedure for generating polynomial forms of wavelet functions from successive 

powers of sigmoid functions. 

A motivation for using wavelet networks is that there are universal function estimators 

that may represent a function to some precision very compactly. This follows from the 

work by Hornik (1989) and Kreinovich, et al. (1994). Hornik has shown that an 

arbitrary continuous function on compact set can be approximated by a 3-layer neural 

network within a precisionE. 

Kreinovich has proven that wavelet neural networks are asymptotically optimal 

approximates for functions of one variable. Wavelet neural networks are optimal in the 

sense that they require the smallest number of bits to store, for reconstructing a function 

within a precision E. 



From the practical point of view, the detennination of the number of wavelets and their 

initialization represents a major problem with wavelet networks. A good initialization of 

wavelet neural networks is extremely important to obtain a fast convergence of the 

algorithm. A number of methods have been implemented (Thuillard, 2000). Zhang 

(1992) initializes the coefficient with the orthogonal least-squares procedure. As an 

alternative, the dyadic wavelet decomposition may be used to initialize the network. 

Echauz (1998) applies a clustering method to position the wavelets. The distribution of 

points about a cluster pennits to approximate the necessary dilation of the wavelet. 

Echauz (1996) also proposes an elegant method using trigonometric wavelets. He uses 

functions of the fonn: Cos trap(x) = cos(3nI2x).min {max {3/2(1-lxl),0}, I} as a transfer 

function. Trigonometric wavelets can be approximated by polynomials. Fitting of the 

polynomial is a linear problem that is solved more easily than fitting trigonometric 

wavelets. The fitting parameter of the polynomials can be used to approximate the 

initialization parameters of the corresponding wavelets. In Boubez and Peskin (1993), 

the network is initialized by positioning and approximating first low resolution 

wavelets. 

At present, supervised learning is probably the most frequently used. technique in the 

field of neural networks. A teacher provides training examples of an arbitrary mapping 

which the network start to learn. Learning in this context means an incremental 

adaptation of connecting weights that transport infonnation between simple processing 

units. In fact, this sort of learning can be expressed as a minimization problem over a 

many dimensional parameter space, namely the vector space spanned by the weights. A 

typical technique to perfonn this kind of optimization is gradient descent. The learning 

rule of the most popular supervised learning procedure is the backpropagation 



algorithm. Backpropagation algorithms, conjugate gradient method (Szu, et aI., 1992) 

stochastic gradient algorithm (Zhang & Beneviste, 1992) or genetic algorithms 

(Prochazka & Sys, 1994) are used for training the network. 

Wavelets networks were first mentioned by (Zhang & Benveniste, 1992) in the context 

of non-parametric regression of functions in L\m2
). In wavelet networks, the radial 

basis functions of RBF-networks are replaced by wavelets. During the training phase, 

the network weights as well as the degrees of freedom (position, scale, orientation) of 

the wavelet functions are optimized. Zhang and Benveniste realized that wavelet 

networks inherit the properties of wavelet decomposition and mention especially their 

universal approximation property, the availability of convergence rates and the explicit 

link between the network coefficients and the wavelet transform. 

However, since their introduction in 1992, wavelet networks (WN) have received little 

attention. (Szu, et al., 1992, Szu, et at., 1996) have used WN s for signal representation 

and classification. They have explained how a WN template, a superwavelet, can be 

generated and presented original ideas for how they can be used for pattern matching. In 

addition, they mention the large data compression achieved by such a WN 

representation. (Zhang, 1997) showed that WNs are able to handle nonlinear regression 

of moderately large input dimension with sparse training data. (Holmes & Mallick, 

2000), analyzed WNs in the context of a Bayesian framework. (Reyneri, 1999) lately 

analyzed the relations between artificial neural networks (ANNs), fuzzy systems and 

WNs have been discussed. In their pioneering 1996 paper, Bakshi and Stephanopoulus 

(1992) showed that neural networks using wavelets as basis functions are particularly 

efficient in learning from sparse data and is dense, and a lower resolution when data is 



sparse also fit naturally into multiresolution wavelet analysis scheme. More recently, 

Bernard, Mallat and Slotine proposed wavelet interpolation networks capable of real 

time learning of unknown functions. 

1.3 APPLICATIONS OF WAVELET NEURAL NETWORKS 

A number of interesting applications have taken advantage of the multiresolution 

properties of wavelet networks. Many manufacturing process monitoring systems have 

the function of detecting abnormal vibrations (Pittner, et aI., 1998). For vibration 

detection and classification, wavelet-based methods represent good alternatives to 

Fourier analysis. Engine knock detection systems have been developed by PSA

Peugeot-Citroen (Thomas, et ai., 1996) on the basis of wavelet networks. Another 

related application is detection of vibrations of detective circuit breakers in electric 

power (Lee, 1999). 

Wavelet networks have been implemented with success to identify and classify rapidly 

varying signals for instance to identify high risks patients in cardiology (Dickhaus & 

Heinvich, 1996) or for echo cancellation (Lixia, et ai., 1996). 

Studies on radar applications have dealt with aircraft velocity estimation (Sanchez

Redondo & Zufina, 1998) or rain forecasting (Yeung & K wok, 1996). 

Wavelet networks have been tested on a number of classical control problems, from the 

detection of small variations in a plant to the control of robotics arms (Katic & 

Vukobratovic, 1997). 

An interesting alternative to wavelet networks consists of using dictionary of dyadic 

wavelets and to optimize only the weights Wi. This approach is generally referred to as 

wave-net or wavenets. It was first proposed by Bakshi, et ai., (1994). 



1.4 GlJ(f)ES TO I>ISSERTATION 

The maIO purpose of this dissertation is to use Wavelet Network and Radial Basis 

Function Networks in function approximation and demonstrate that the performance 

depends on how good the chosen mother/activation/ transfer function "fits" the function 

itself. The investigation includes a fair comparison between WNs and Radial Basis 

Functions (RBFs) which are a specific case of Weighted Radial Basis Functions 

Networks (WRBF).So far WNs and RBFs have been seen as two rather different 

approaches to the task of function approximation, and most paper published on the 

subject are willing to prove that one method is far better than the other due to some hot 

point specific on the method. It has been proven (Reyneri, 1996) that many neural and 

fuzzy paradigms are nothing but specific cases of a generic paradigm called Weighted 

Radial Basis Functions (WRBFs), which therefore behaves as a neuro-fuzzy unification 

paradigm. In this dissertation we will show that also WNs are a specific case of 

WRBFs, therefore it can easily be shown that WNs and RBFs ca!l behave exactly alike 

when they are properly designed. In order to evaluate the perfonnance of chosen 

mother/activation function, we used four different functions. Two of the functions 

involve are one variable functions and the rest are two variables functions to be 

approximated by the proposed networks. We also used the real world data for the 

simulations. 

Literature survey on wavelet networks are presented in this chapter. In this chapter we 

introduce the wavelet networks that we use which are from continuous wavelet frames, 

their architectures, the history and the applications of wavelet network. Basic concepts 

and theory of wavelet networks in function approximation will be explained in Chapter 



I" 
~~!; and the wavelet neural network (WNN) along with an introduction to function 

approximation. The relationship between these neural networks and function 

approximation theory is also shown. In Chapter 3, we discussed wavelet and neural 

paradigms so that that we can implement wavelet network and radial basis function to 

look exactly alike and then we look at the similarities of the structure of their network 

by using this generic paradigm so that we can find the best of the chosen 

mother/activation function and how good it "fits" the function. We implement this 

concept in Chapter 5 using MATLAB version 6. In Chapter 4, we discussed various 

mother/activation functions that we used in this thesis to approximate the four functions 

and the benchmark problem that we used as an experiment. We also look at the learning 

and training algorithms for wavelet network and radial basis function network. We use 

the same initialization and learning rules for both types of networks because the aim of 

this dissertation is to compare WNs and RBFs fairly. The implementation of wavelet 

network algorithms using radial basis function network algorithms are analyzed in 

Chapter 5.We can do this because they have the same design structure and the only 

difference is the activation function. The simulations of functions approximation are 

given and the results of simulations are discussed in Chapter 6.We also implement our 

experiments on real word data from StatLib library which is obtained from Carnegie 

Mellon University and is discussed in the same chapter. 

Finally, a discussion and suggestions for future work related to this research will be 

presented in Chapter 7. 



CHAPTER 2 

BASIC CONCEPTS AND THEORY OF WAVELET NETWORKS 

IN FUNCTION APPROXIMATION 

2.1 FUNCTION APPROXIMATION 

Consider a function y = F(x), which maps an input vector x onto an output vector y. To 

be specific, let the set of input-output data available for approximation be described by 

Input signal: i = 1,2, ... ,N 

Desired response: di E 9t 1 , i = 1,2, ... ,N (2.1) 

Note that the output is assumed to be one dimensional. Let the approximating function 

be denoted by F(x).The goodness of fit of dion a set of samples is given by an error 

function. A commonly used measure is the standard error (distance) between the desired 

(target) response di and the actual response Yi for training example i = 1,2, .. . ,N. 

Specially, we define: 



1 N 2 

E(}) = - ~)di - yJ 
2 i=l 

1 N 2 

= - 2: [(d i -F(xJ)] 
2 i=l 

(2.2) 

How to find the good approximation dj • Usually dj is chosen to be a parametric function, 

where the parameters determine the exact shape of the hLflction. Then these parameters 

can be optimized, to minimize the error on the samples Mean Squared Error (MSE). In 

approximation theory this is called parameter estimation; in neural network terminology 

this is called learning. A large number of methods exist to find the optimal parameters 

for some given parametric function. 

2.1.1 SMOOTHNESS 

A large class of functions found in practice is the so called smooth functions. A smooth 

function has the following characteristics: 

• The function is continuous. 

• Input vectors close to each other in the input space are mapped onto output 

vectors close to each other in output space. Closeness can be measured for 

example by the Euclidean distance. 

The mapping di can be viewed as an (n + m) dimensional landscape, where nand mare 

the dimensions of input vector x and output vector y respectively. For example, a 2-

dimensional input and I-dimensional output mapping can be seen as a 3-dimensional 

landscape (surface). Using this analogy, a smooth mapping does not have sharp peaks 

and valley, and the slopes do not change suddenly. Of course, there is no sharp 



distinction between smooth and non-smooth functions: smoothness IS a matter of 

degree. 

2.1.2 APPROXIMATING SMOOTH FUNCTIONS 

Approximating a smooth function from a gIVen set of samples means creating a 

mapping with the following properties: 

• The error on the learning samples should be small as possible, since these 

samples are used to optimize the unknown parameters di. 

• The approximation should be as smooth as possible, since di is assumed to be 

smooth. 

These two properties are contradictory. A very smooth approximation cannot 

approximate the learning samples properly: it has a high bias. On the other hand, 

approximating the learning samples perfectly compromises smoothness, and is not 

needed because the samples are noisy anyway: the approximation has high variance. 

Having a small error on the learning set while the smoothness of the graph is bad (and 

therefore bad generalization) is called overfitting. We can observe this in Figure 2.1 

(Morozov, 1993). 

There is a tradeoff between having high bias and having high variance, which is 

commonly referred to as the bias versus variance dilemma. What the balance should be 

between these two aspects for one particular problem is not known beforehand 

(Bosman, 1996). 



(Demuth & Beale, 2000) states that it is difficult to know beforehand how large a 

network should be for a specific application. There are two other methods for improving 

generalization that are implemented in Neural Network Toolbox: regularization and 

early stopping. Note that if the number of parameters in the network is much smaller 

than the total number of points in the training set, then there is little or no chance of 

overfitting. Only the error on the test set can give feedback about the effect of a 

particular choice (after optimization though). 

2.2 ILL - POSED PROBLEMS AND WELL - POSED PROBLEMS 

To develop a deep understanding of the overfitting problem and how to cure it, we first 

go back to the viewpoint that the design of a neural network trained to retrieved an 

output pattern when presented with im input pattern is equivalent to learning a 

hypersurface that defines the output in terms of the input. According to Keller (1976), 

two related problems are said to be inverse of each other if the 
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Figure 2.1: Underfitting and overfitting on a smooth function: (a) underfitting 

(b) overfitting. 
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formulation of each of them requires partial or full knowledge of the other. However 

from mathematical perspective, there is another more important difference between a 

direct problem and inverse problem. Specifically, a problem of interest may be well

posed or ill-posed. 

Assume that we have domain X and a range Y taken to be metric spaces, and that are 

related by a fixed but unknown mapping F. The problem of reconstructing the mapping 

F is said to be well-posed if three conditions are satisfied (Tikhonov & Arsenin,1977 

;Morozov,1993): 

• Existence. For every input vector x E 91, there does exist an output y = F(x), where 

yE Y. 

• Uniqueness. For any pair of input vectors x, t E 91 we have F(x) = F(t) if, and only if, 

x= t. 

• Continuity. The mapping is continuous, that is for any E> 0 there exists 8 = 8(E) such 

that the condition pxCx,t) < 8 implies that py(F(x),F(t)) < E, where p(.,.) is the symbol 

for distance between the two arguments in their respective spaces. This property of 

continuity is also referred to as stability. 

If any of these conditions is not satisfied, the problem is said to be ill-posed. Basically, 

an ill-posed problem means that large data sets may contain a surprisingly small amount 

of information about the desired solution. 

1 co 



2.3 GENERALIZATION 

An approximation is not useful if it can remember the samples, but performs poorly on 

the rest of the input space. We want di to generalize over the samples, using the samples 

to create the plausible approximation of di for the complete input domain. In the general 

case, this is impossible. To make approximation possible on the complete input domain, 

the function di must be redundant in the sense that a limited set of samples contains 

information about the rest of the mapping (Bosman, 1996). The generalization 

performance of di can not be measured by the error on the samples used to optimize di's 

parameters. Therefore, the set of available samples is commonly split into two sets: a 

training set, used for optimizing the parameters, and a test set, used to get an indication 

of the generalization. Note that the error on the test set is just an estimate of the 

generalization performance, since it still does not measure the error on the complete 

input domain. 

2.4 THE REGULARIZATION APPROACH TO THE APPROXIMATION 

PROBLEM 

The approach regularizes the ill-posed problem of function approximation from sparse 

data by assuming an appropriate prior on the class of approximating functions. 

Regularization techniques (Tikhonov, 1963; Wahba, 1990) typically impose smoothness 

constraints on the approximating set of functions. 

Then according to Tikhonov regularization theory (Haykin, 1994) the function F can be 

obtained by minimizing an error functional given by 



E(F) == Es(F) + AEr (F) (2.3) 

where A is the regularization parameter, Es is the standard error between the desired 

output and the actual response y 

N 2 

Es == 1/2 :L(dj - yJ (2.4) 

And Er is the regularizing term that depends on the properties of F. If P is a linear 

pseudo differential operator embedding a smoothness constraint, 

(2.5) 

The resulting'solution is smooth and therefore, continuous. In order to find F that 

minimizes the total error, we differentiate E with respect to F using the Frechet 

differential and set it equal to zero. 

(2.6) 

where hex) is a fixed function of the vector x, ox; = 6(x- Xi), p* is the adjoint of P, and 

the symbol ( .. ')H denotes the inner product in H space. Since A E (0,00), the Frechet 

differential is zero for any hex) in H if an only if 



1 N 
p*PF= A :L(di -F)8(x- Xi) 

I 

(2.7) 

Equation (2.7) is referred as the Euler- Lagrange equation for the cost functional E(F) 

and its solution is given by 

(2.8) 

where e is the variable of integration and G(X,Xi) is the Green's function for the self-

adjoint operator P*P, for example 

(2.9) 

Integrating, we get· 

(2.10) 

which can be written in matrix-vector form as 

F=Gw (2.11) 

with 



1 
w== -Cd -F) 

A 

and 

G(xl'x1) 

G(X2,X1 ) 

G== 

G(xp'xl ) 

(2.12) 

G(xl'x2) G(xpxp) 

G(X2 ,x2 ) G(x2 , xp) 

(2.13) 

G(xp'xl ) G(xp,xp) 

Since the operator p*p is self-adjoint, the associated Green's function and consequently 

the matrix G will be symmetric. Further (Light, 1992) has proved that the matrix G is 

positive definite provided that the data points Xl, X2, ... , xp are distinct. In practice, A 

may be chosen sufficiently large so that the matrix G + AI is positive definite. This 

implies that the system of equations (2.12) has a unique solution given by 

(2.14) 

and the function F is given by 

N 

F(x) = LWP(x,x) (2.15) 

The number of Green's functions used in this expansion is equal to the number of data 

points. 



From equation (2.3), the first term is enforcing closeness to the data, and the second 

smoothness, while the regularization parameter controls the tradeoff between these two 

termS, and can be chosen according to cross-validation techniques (Cravend & 

Wahba,1979). We first need to give a more precise definition of what we mean by 

smoothness and define a class of suitable smoothness functional. We refer to 

smoothness as a measure of the "oscillatory" behavior of a function. Therefore, within a 

class of differentiable functions, one function will be said to be smoother than the other 

one if it oscillates less. 

2.5 RADIAL BASIS FUNCTION NEURAL NETWORKS 

The theory described above can be implemented as a radial basis function (RBF) neural 

network. Radial basis function (RBF) neural networks are a class of networks that are 

widely used for solving multivariate function approximation problems (Haykin, 1994). 

An RBF neural network consists of an input and output layer of nodes and a single 

hidden layer can be observed from Figure 2.2 (Ramuhalli, 2002). Each node in the 

hidden layer implements a basis function G(X,Xi) as the basis functions. The input-

output relation for the RBFNN is given by 

N 

y, = L wP(x,xJ 1= 1,2, ... ,M (2.16) 

where N is the number of basis functions used, y = (YI, Y2, ... , YM)T is the output of the 

RBFNN, x is the test input, Xj is the center of the basis function and wlj are the 

expansion coefficients or weights associated with each basis function. Each training 

data samples is selected as the center of a basis function. Basis functions G(X,Xi) that 



are radially symmetric are called radial basis functions. Commonly used radial basis 

functions include the Gaussian and inverse multiquadrics. In this dissertation, we only 

concentrate on Gaussian. 

input hidden output 
layer la\,i:T byer 

;;.... 
~ -..,... = "... ;:;;l ~ 

c.. -:: ;: r"'I - ...., 

M N 

Figure 2.2: The radial basis function neural network 

The network described above is called an exact RBF~~, since each training data point 

is used as a basis center. The storage costs of an exact RBFNN can be enormous, 

especially when the training database is large. An alternative to an exact RBFNN is a 

generalized RBFNN where the number of basis functions is less than the number of 

training data points. The problem then changes from strict interpolation (in exact 

RBFNN) to' an approximation, where certain error constraints are to be satisfied. We use 

the concept of generalized radial basis function neural network because from 

approximation Eq.(1.2) with a radial function, cD can be seen as a generalization of the 

"radial basis function" (Poggio & Girosi, 1990a). We will show the generalization in 

wavelet network in Chapter 4 where it involves mother wavelet function. 



CHAPTER 3 

WAVELET AND NEURAL PARADIGMS 

This section describes and compares the WNs and NNs used during the work and 

briefly describes the unification paradigm which proved to be very useful for training 

and initialization. So far WNs and RBFs have been considered as two rather different 

approaches to the task of function approximation. In practice, it has been proven 

(Reyneri, 1996) that many neural and fuzzy paradigms are nothing but specific cases of 

generic paradigm called Weighted Radial Basis Functions (WRBFs), which therefore 

behaves as a neuro-fuzzy unification paradigm. In this chapter, we will also show that 

WNs are a specific case of WRBFs, therefore it can easily be shown that WNs and 

RBFs can behave when properly designed exactly alike. 

3.1 DISTANCED BASED (OR, RADIAL) NEURAL NETWORKS 

Distanced-Based (or Radial) Neural Networks: include most neural paradigms which 

are not correlation-based such as radial basis functions (RBFs), Kohonen networks, self 

organizing maps (SOM's) and restricted Coulomb energy networks (RCEs).In this 

dissertation, we only discuss radial basis functions. 



Such networks are based on radial basis neurons (or, R-neurons), which have a model 

based on the nth order distance between the input vector X and a center vector C of 

identical dimensions 

(3.1) 

where" . II is the n-norm of the argument typically n E {1,2},that is, Hamming or 

Euclidean distance when n = 1 and n = 2 respectively, while G(z) is usually a nonlinear, 

monotonic decreasing for z ~ 0, and limited activation function [note that G(z) is 

always used only for z ~ 0 ]. In many cases, G(z) is a generalized exponential function 

see Figure 3. 1 (Reyneri, 1999). 

, O(z) = Gmin + (Gmax -Omin ) . e- izi cr I n 
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Figure 3.1: Generalized exponential function with Gmin= 0: a) n=l,Gmax= +1, () =1; 

(3.2) 

b) n=2, Gmax=+ 1, () = 1 ; c) n=2, Gmax=+ 1, () = 0.2; d) n=2, Omax=+ 1, () = 1. 



which coincides with the exponential and the Gaussian functions, for n = 1 and n = 2 

respectively, and Gmin = 0, Gmax = l.The parameter n is the order of the function and 

determines its steepness around Z = G, while G is the width factor. In most cases an R-

neuron has the input - output characteristic as shown in Figure 3.2 (plot b )(Reyneri, 

1996), 

5 

Figure 3.2: Input-output characteristic: (a) P-neuron; (b) R-neuron;( c) Mexican Hat 

wavelon. 

with a closed decision boundary II X - C lin = constant (spherical, for n = 2, from which 

the name of radial basis functions is given to a specific type of R-neurons). Some 

examples of the such decision boundaries for two inputs are given in Figure 3.3 (plot b, 

c, d e, f) (Reyneri, 1999), but we only consider (plot c)(Reyneri, 1999). R-neurons often 

suffer from dimensional problem, which arises when trying to sum up together, in 

Eq.(3.1), inputs with different physical dimensions. 
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Figure 3.3: Decision boundaries: (a) linear boundary ofP-neurons; (b) R-neurons 

WRBF-l; (c) R-neurons WRBF-2, wavelons. 

3.2 RADIAL WAVELET NETWORKS 

Radial Wavelet Networks are based on wavelet decomposition and use radial mother 

wavelet <D( IIXII ) E L2(~N) appropriately dilated and translated. Such networks are 

based on radial wavelons which have a model based on Euclidean distance between the 

input vector X and a translation vector E. where each distance component is 
. J 

weighted by a component of a dilation vector Tj 

(3.3) 

where the "vector division" in the right term is to be calculated "element-by-element". 

A commonly used function is the Mexican Hat: 



(3.4) 

A wavelon has the input-output characteristic shown in Figure 3.2 (plot 

c)(Reyneri, 1996), with the hyper-elliptical decision boundary D (1 )given by 

:L ((XI -e;{, ) ) , ~ ( <l> -1 (,l )') as shown in Figure 3.3 (plot c )(Reyneri, 1999). In this 

dissertation, we have chosen to simulate our experiment by using three different mother 

functions which are Mexican Hat, Mor1et and Gaussian Wavelet. 

In this dissertation we do not include the correlation based networks which are based on 

perceptron-like neurons (or, P-neurons) .We only use the unification paradigm. We only 

concentrate on distanced based neural networks (R-neurons) and radial wavelet 

networks (R-wavelons). 

3.3 NEURO-WAVELET UNIFICATION 

In Section 3.1 and Section 3.2, we have presented the mathematical models of the 

various neural paradigms, Formulae (3.1) and (3.3) have intentionally been written in 

such a form that their common "structures" become evident. Namely the output of each 

Wavelon (or Neuron) is a non-linear function of either the dot product or the distance 

between X. and one or two paramet((rs vectors (W, (7, E,T) associated with each 

Wavelon (respectively Neuron). The WRBF unification paradigm described in Section 

3.3.1 has been derived from this consideration (Reyneri, 1996). 



iJ2' 3.3.1 WEIGHTED RADIAL BASIS FUNCTIONS 

Each WRBF layer is a collection of M (possibly 1) neurons and is associated with the 

following parameters: 

• an order n E 91 ,defining the neuron's metric (mostly n E {O,1,2}) 

• a weight matrix W, deriving from the dilation vectors ofWavelons; 

• a center matrix C , deriving from either the center vectors of R -neurons or the 

translation vector of Wave Ions, 

• an optional bias vector e, deriving from P-neurons; 

• an activation function G(z) also called transfer function or basis function. 

These three terminologies are used interchangeably throughout this study. A 

WRBF neuron is associated with a set of parameters: an order n E 91, defining 

the neuron's metric; a weight vector w; a center c, a bias e and an activation 

function G(z).The mathematical model of a WRBF neuron of order n (or, 

WRBF-n) is then: 

(3.5) 

where 

(3.6) 



wherc w = [wJ' W2 , ... , W" r and An (Xi - eli) is a factor of~l1N whosc cntries arc: 

for n = 0; (3.7) 

for n :;: 0; (3.8) 

where A denotes n ~ infinity, G(z) can be any function, although in most 

cases monotonic functions or Wavelets (such as (3.2) and (3.4) or linear or 

polynomial functions are used. Note that the former functions are unbound, 

therefore they can approximate unbound functions, although they are more 

critical to train. 

The RBF neural paradigms can be reconduced to WRBF networks (Reyneri, 1996). 

Here we underline that Wavelet Network is a specific case ofWRBF, provided that we 

define: 

d - 122 2JT - ll1'J , W2 , ... , W" ' 

D = diag(d), 

<D (x) = F(II x II), 

n = 2 and 0 = 0, 

Under these hypotheses, we have: 

T T 
(f ( W . A2 (x - c)) = G(A2(d (x - c))) = <D (D(x - c)) (3.9) 



Table 3.1 :Summaties of all the unifications results. The layers of several network 

structures as particular instances ofWRBF layer 

Kind oflayer Parameters of the equivalent WRBF layer 

REF hidden n=2, 0=0, G(z) exponential 

WNNhidden n=2, 0=0, G(z) wavelet 

REF and WN output n=2, c=O, G(z) linear 

3.3.2 COMMENTS ON UNIFIED NEURO-W A VELET NETWORKS 

All the Neuro-Wavelet Networks (NWNs) paradigms used in this work have been re-

conduced to WRBF in order to have a common paradigm, methodology, initialization 

strategy and learning rule. In particular (from Eq.(3.1) and Eq.(3.3)): 

- Radial wavelons are WRBF-2 with Wij = (~J2 and C = E (namely, the 
t = = 
ij 

matrix made of one translation vector E per neuron), while the activation 

function comes from the radial Mother Wavelet G(z) = <D (.j;). 

-R-neuronsareWRBF-n(typically,n EO {1,2})with W=1 (namely, a matrix of 

all Wij = 1) and G(z) a generalized exponential with n = 1. With weight vector 

components equal to one, the input/output characteristic of the neuron is 

equivalent to that of a standard RBF (Wasserman, 1993), since the exponential 

fundiull behaves as the gaussian, due to the exponent n = 2 from equation(3.2) 

(ReyneIi, 1995). 



It is worth noting that introducing an additional vector W to R-neurons is 

equivalent to multiplying each individual distance component (Xj- Cj) by a 

factor Wj. This solves two major drawbacks of most R-neurons: one is the 

dimensional problem, which does not have the same physical dimension; using 

weights wi, each one with the proper physical dimension solves completely 

this problem. The other problem arises in classification and function 

approximation applications, when the optimal decision boundary may not be 

spherical, the weight vector W stretches the spherical boundary into a hyper-

elliptical surface. 

• Linear neurons (namely, linear combinations, weighted sums) are WRBF-O 

neurons with C = 0 and a linear activation function. 

• Function approximation: a generic function y = F(X) can be decomposed as 

two cascaded WRBF layer: 

(3.1 0) 

where the hidden layer is NWN, while the output layer is a linear layer. In 

other words, a linear combination (with W2 as weights) of a finite 

number of basis functions G(z), each one centered around a different point in 

the input space (CI , usually on a multi-dimensional lattice of points) and 

appropriately dilated (WI ). The bias e 2 helps the approximation of functions 

with non-zero mean. 



It is now clear that the various NWN paradigms mainly differ from each other for the 

order n and activation function G(z}.It is known (Daubechies,1992) that, in several 

cases, the expansion of a signal into a wavelet series can be more efficient than other 

solutions, in the sense that fewer basis functions can be needed to achieve a predefined 

approximation error. This is due to the time-frequency local properties of most 

Wavelets, which make them particularly suitable to present short-time high-frequency 

signal features. Yet it has been shown that other types of function are better 

approximated by non-Wavelet neural networks (Colla, 1998}, therefore the activation 

function should be chosen according to the "shape" of the function to be approximated. 

We will discuss this in Chapter 6, in our simulation problems using Matlab version 6. 

We use this concept of function approximation paradigms from this unification to 

approximate our functions. From the unifications we note that standard RBF and 

wavelet network can be seen as two cases ofWRBFs, which are WRBF-2 and WRBF-O 

(Reyneri, 1999). 

Table 3.2: Examples of two-layer networks expressed in terms of cascaded 

WRBF layers. Gi (z), Ci , Wi, e i are respectively, activation function, 

center, weight, bias vector in jth layer. 

Paradigm Layers Unified version 

Radial Basis Function 2 c'( C'~ (x-C'- Wl.o)O w'e'] o n '='=' ='=' 

Wavelet Neural Network 2 G Z
( G<D(Z)(X·C1'W 1·0)O w2 ·e2

) 
o 2 '='=' ='=' 



We can observe from the table above the structure of the networks between Radial Basis 

Function and Wavelet Neural Network design is similar except in the activation 

function. This has been proven (Zhang, et ai., 1995) when a wavelet frame replaces the 

radial basis function in an RBF network, the center and covariance matrix (spread) are 

replaced by the translations and dilations of the wavelets. 



CHAPTER 4 

TRANSFER FUNCTIONS, LEARNING AND TRAINING ALGORITHMS 

The choice of transfer functions in neural networks is of crucial importance to their 

performance. Transfer functions may be used in the input pre-processing stage or as an 

integral part of the network. In the last case, transfer functions contain adaptive 

parameters that are optimized. The simplest approach is to test several networks with 

different transfer functions and select the best one. Constructive methods may also be 

used in training several candidate nodes and selecting the one that is the best performer. 

4.1 TRANSFER FUNCTIONS AND THEIR PARAMETERIZATION 

Transfer functions should provide flexibility of their contours with a small number of 

adaptive parameters. Large networks with simple neurons may have the same power as 

small networks with more complex neurons. Two functions determine the way signals 

are processed by neurons. The activation function acting on the input vector lex) 

determines the total signal a neuron receives, and the output function 0(1), operating on 

scalar activation, determines the scalar output. The composition of the activation and the 

output function is called the transfer function o(1(x)). For some transfer function there is 

no natural division between activation and output functions. 



For neuron i connected to neuronsj (forj = 1, ... ,N) sending signals Xj with the strength 

of the connections Wj the total activation I(x;w) is 

N 

I(x;w) = I WjXj 

j=O 

i = 1, ... , N;j = 1, ... ,N (4.1) 

where Wo = e (threshold or bias) and Xo = 1. Three main choices for activation 

functions are: 

• The inner product I(x;w) oc wT.x (as in the MLP networks). 

• The similarity- based activation D(x;t) oc II x - t II, used to calculate 

similarity of x to a prototype vector t. 

• A combination of the two activations, A(x;w,t) oc a wT. x + ~II x - til. 

In each case, we may use either the final scalar value of activation, or use the vector 

components of this activation, for example using the distance from which we usually 

take the scalar D(x;t), but for some output functions we may also use the vector 

components Di (Xi; ti) oc (Xi - ti /, for example 

i= 1, ... ,N (4.2) 

The square of the activation function is a quadratic form. Treating all coefficients of this 

form as independent and transforming it into canonical form: 

N 

l (x;w) ~D2 (x; t; w) = Iwi(x; -fir i= 1, ... ,N (4.3) 
i=O 




