
Final Report

-----tJSM-Short-Tenn Grant---
304IPKOMP/636009

15 March 2005 - 14 June 2007

Title:
A User-Defined Approach for Reverse Engineering Tool

to Visualize, Understand and Re-document Existing
Software Systems (UDARE)

Proj ect Leader:
Shahida Binti Sulaiman, PhD

Submission Date:
20.07.2007

•

LAPORAN AKHIR PROJEK PENYELIDlKAN JANGKA PENDEK
FINAL REPORT OF SHORT TERM RESEARCH PROJECT
Sila kemukakan laporan akhir ini melalui Jawatankuasa Penyelidikan di Pusat
Pengajian dan DekanlPengarahIKetua Jabatan kepada Pejabat Pelantar Penyelidikan

r 2. Pusat Tanggungjawab (PTJ): Pusat Pengajian Sains Komputer
School/Department

4. Tajuk Projek:
Title of Project A User-Defined Approach for Reverse Engineering Tool to Visualize, Understand and Re-

document Existing Software Systems (UDARE)

i) Pencapaian objektif projek:
Achievement of project objectives 00 o 00

ii) Kualiti output:
Quality of outputs 00 o 00

iii) Kualiti impak:
Quality of impacts 00 00

iv) Pemindahan teknologilpotensi pengkomersialan: 0 0 8] 0 0 Technology transfer/commercialization potential

~

• v) Kualiti dan usahasama : 0 0 8] 0 0 Quality and intensity of collaboration

vi) Penilaian kepentingan secara keseluruhan:
Overall assessment of benefits 00 o 00

Bahasa Malaysia:

Laporan Akhir Projek Penyelidikan Jangka Pendek
Final Report O/Short Term Research Project

.. Pemahaman sesuatu perisian sedia ad~khususnya sistem legasLialah satu tugas~rumit.-Pembangun-atau
pengemaskini perisian perlu mempelajari kod sumber sebelum menukar program terlibat dengan bantuan
mana-mana dokumen atau tanpa dokumen. Banyak produk CASE (Kejuruteraan Peri sian Berbantukan
Komputer) atau alat telah muncul untuk membantu pengemaskini perisian yang menghadapi ketiadaan
dokumentasi atau ia tidak terkemaskini terutamanya dokumen reka bentuk yang menyediakan maklumat
paling terperinci mengenai sistem perisian. Alat-alat seumpama ini kebanyakannya dikenali sebagai alat
kejuruteraan terbalik (RE). Alat-alat RE juga dipanggil sebagai alat visualisasi perisian (SV) dalam
sesetengah kaiian kerana ia bukan sahaja membolehkan pengguna menterbalikkan sistem peri sian sedia ada
untuk mengekstrak komponen-komponen peri sian tetapi ia juga membolehkan para pengguna untuk
menvisualisasi kebergantungan artifak atau komponen perisian. Alat-alat sedia ada menggunakan pelbagai
teknik RE dan pendekatan SV. Kebanyakan alat ditujukan khas untuk bahasa-bahasa tertentu dan proses RE
berhenti jika ia tidak memenuhi sesetengah peraturan RE yang ditentukan oleh alat teresebut. Dalam
penyelidikan ini kami mencadangkan pendekatan berdefinisi pengguna untuk persekitaran RE yang
membolehkan para pengguna menentukan sintaks bahasa pengaturcaraan berkenaan, jenis-jenis komponen
perlu diekstrak dan kebergantungan yang mereka hendak kaii atau visualkan serta panduan dokumen yang
diperlukan. Kemudiannya maklumat akan dikemaskini dalam pangkalan data untuk diguna semula atau
dikemaskini pada masa hadapan sekiranya pengguna-pengguna perlu mengkaii pelbagai jenis komponen dan
kebergantungannya atau bahasa pengaturcaraan yang berbeza. Maka penggunaan pendekatan tersebut
dipercayai boleh mengelakkan kelimpahan maklumat dan mampu membantu pemahaman pengemaskini
perisian dengan menyediakan persekitaran kejuruteraan terbalik yang lebih fleksibel. Pendekatan ini digelar
UDARE yang bermaksud pendekatan berdefinisi pengguna untuk alat kejuruteraan terbalik.

Bahasa Inggeris:
Understanding an existing software system particularly a legacy system is a tedious task. Software developers
or maintainers need to study the source codes prior to changing the affected programs with the aid of any
documents or even without any document. Many CASE (Computer-Aided Software Engineering) products or
tools have emerged to assist software maintainers who are confronted with absence of documentation or out
dated documentation particularly design document that provides the most detail information about a software
system. Such tools are dominantly known as reverse engineering (RE) tools. RE tools are also called software
visualization (SV) tools in some studies because they do not only enable users to reverse engineer existing
software systems to extract software components but they also enable users to visualize the dependencies of
software artifacts or components. Existing tools apply diverse RE techniques and SV approaches. Most tools
are dedicated for certain languages and the RE process halts if it does not meet some RE rules set by the
tools. In this research we propose a user-defined approach for the RE environment that enables users to
indicate the syntaxes of the concerned programming language, types of components to be extracted and the
dependencies they want to study or visualize and also the document template required. Then the information
will be updated in a database to be re-used or edited in the future in case users need to study different types of
components and their dependencies or even different programming languages. Hence by using this approach
it is believed that we can avoid information overload and is capable to better assist software maintainers'
software understanding by providing a more flexible reverse engineering environment. The approach is
called UDARE that stands for a User-Defined Approach for Reverse Engineering tool.

2

,.11 1\

I· ... ~ ,

UN!VIT<!~;rn ~;J\(NS MIUA YSIA

.1AtlATAN BENlJAHAHI
KUMPULAN WANG PENYEIJOIKAN USM (304)

PENYATA PERBElANJAAN PADA 3D JUN 2001

;1 !NI 111H'''I~OAUI nm f~EVFHSE ENGINEERING TOOL TO

. IINI I' !.r',I/\NI) ANU HF·OOCUMENT EXISTING SOFlWARE SYSTEM

:"\ '.111 I\IMAI\!

"', ~1\,IIAf\J ~'~AIN;'~ KOMPUTER

,-------_."., -----

)

09/07/2007

"I,' J 'HO.'EK OONOR PERUNTUKAN PERBElANJAAi'Ii! TERKUMPU~ PERUNTUKAN TANGGUNGAN BAYARAN: BElANJA OAK.
PI~OJEK SEHINGGA THN LAlU THN SE~JlASA SEMASA THN SEMA~ ThIN SEMASA PROJEK

{('1Mf' "i36009 1,594.80
(OMI) ~i36009 4,200.00

~()MI) 636009 1,193.20

(OMP 636009 2,400.00

tOMP 636009 0.00

r:.OMP 636009 .3,500.00

18,888.00

OIsrOtAKAN:

1,101,1: 1,V\il\PM1 :'liOHD AU
1\'IIIILp'" i.\dh., i,:·:·,,'ili,:.~,tli ('I'V1',)

hl •. iI<l1I Ikli!lllllilli

IltllVI" ~ill Slltll~ Mltlay:lI;!

6,152.45 1,442.35

1,542.40 2,657.60

CI.OO 1,193.20

1,291.50 1,108.50

2,249.20 -2,249.20

3,500.00 0.00
~-...... -----

14,135,55 4,152.45

DISEMAK: ~~ M!J .

0.00 3,331.00 3,33·t.00 -1,888.65

0.00 340.00 340.00 2,317.60

0.00 0.00 0.00 1,193.20
i

0.00 337.15 337.15 171.35

0.00 20.00 20.00 -2,269.20

0.00 0.00. 0.00 0.00

0.00 4,028.15 4,028.15 124.30

/

,

I

Lampiran A (disediakan dalam Bahasa Inggeris)

Technical Report

A User-Defined Approach for Reverse Engineering Tool to Visualize, Understand and
Re-document Existing Software Systems (UDARE)

1.0 Introduction

. Software systems evolve and need to be maintained or enhanced to satisfy new requirements.
Without proper documentation it would be difficult for software maintainers to update the
software. Hence reverse engineering technique may assist the understanding of existing source
codes by software maintainers by extracting software artifacts and represent it in a higher level of
abstractions. Most of the representations are in graphical views.

Existing tools apply diverse RE techniques and SV approaches. Most tools are dedicated for
certain languages and the RE process halts if it does not meet some RE rules set by the tools.
Besides documents generated are either too general that is they are useful only in the initial
approach of software understanding but they are ignored during implementation or they are too
detailed (Canfora et al., 1991).

In this project we propose a user-defined approach for the RE environment that enables users to
indicate the syntaxes of the concerned programming language, types of components to be
extracted and the dependencies they want to study or visualize and also the document template
required. Then the information will be updated in a database to be re-used or edited in the future
in case users need to study different types of components and their dependencies or even different
programming languages. Hence by using this approach it is believed that we can avoid
information overload and manage to better assist software maintainers' software understanding by
providing a more flexible reverse engineering environment. The project is called UDARE that
stands for a User-Defined Approach for Reverse Engineering Tool.

Objectives
The objectives of the project are:
(i) To build a reverse engineering prototype tool called UDARE that assists software engineers

particularly software maintainers who need to maintain existing software systems without
software documentation or with out-dated software documentation.

(ii) To improve the methods or approaches in analyzing, viewing and re-documenting existing
software systems employed by existing tools of reverse engineering environment.

(iii) To implement the proposed user-defined approach that provides a more flexible and
effective reverse engineering environment in the aspects of determining the syntaxes of
programming languages, the types of components and their dependencies, parameter
passing and also the document templates required.

Outcome
The outcomes of this project are listed as follows:
(i) A more flexible and effective reverse engineering tool and environment called UDARE.
(ii) Enhanced methods or approaches in analyzing, visualizing and re-documenting existing

software systems especially legacy systems.
(iii) A technical paper that has been submitted or published in an International journal or a

national conference proceeding.

Importance and Benefit
Maintaining existing software systems without proper documentation is costly. Thus this project
should eliminate the problem by providing a better environment to analyze, visualize, understand

and re-document existing software systems. Malaysian software engineers and any software
related departments or research groups in the university could gain the benefit of the outcomes.

In the following sections we will discuss the background, the methodology, and the proposed
approach called UDARE followed by its evaluation, conclusion and future work.

2.0 Background

Understanding an existing software system particularly a legacy system is a tedious task. This is
-due-to-some.ensons--sucrr-as-urrstructuredcode; maintenance programmers having insufficient

knowledge of the system or application domain, documentation being absent, out-of-date or at
best insufficient and software maintenance had a bad image (van Vliet, 2000). Thus in these
cases software maintainers need to study the source codes prior to changing the affected programs
with the aid of any documents or even without any document. According to Sulaiman et ai.
(2002b) the problem related to the absence of or out-dated documentation occurs in both software
development and maintenance process.

Many CASE (Computer-Aided Software Engineering) products or tools have emerged to assist
software maintainers who are confronted with absence of documentation or out-dated
documentation particularly design document that provides the most detail information about a
software system. Such tools are dominantly known as reverse engineering (RE) workbenches or
tools. Some examples are CIA (Chen et ai., 1990), Rigi (Rigi, 2004)(Muller et al., 1994),
SNiFF+ (Wind River, 2004) and CodeCrawler (Lanza, 2003). The RE technology is also
incorporated into some analysis and design tools such as Rational Rose (Rational, 2007).
However we focus on the former that is targeted to assist the understanding of existing software
systems particularly legacy systems. On the other hand, the latter focuses more on the analysis
and design aspect thus it is not within the scope of our interest. Reverse engineer an existing
software system using the tool will only produce the class diagram, which may not be so
informative to software maintainers. RE tools are also called software visualization (SV) tools in
some studies because they do not only enable users to reverse engineer existing software systems
to extract software components but they also enable users to visualize the dependencies of
software artifacts or components. In addition majority of the tools can also re-document existing
software systems therefore they are also known as document generators.

3.0 Methodology

The research methodology comprises the following components that is illustrated in Figure 1:
(i) Initiate project with the recruitment of a student assistant.
(ii) Conduct a thorough literature study on existing methods or approaches related to the 4 main

modules of Cl, CA, CV and DG. Each module should be improved in the related aspects
that should complement the proposed user-defined approach for the whole project. This
activity will verify the capability of the proposed approach in overall.

(iii) Select and compare existing tools of RE environment. Find their weaknesses and strengths
and then produce the analysis of the tools to be incorporated into the UDARE project.

(iv) Design the new modules ofCI and CA.
(v) Design the database that will be the software repository for the UDARE project.
(vi) Develop and test the CI and CA modules by employing their own enhanced methods and

also the user-defined approach.
(vii) Study DocLike Viewer prototype tool (the output of the applicant's PhD work) to be the

foundation of both CV and DG modules. Maintain the tool and integrate it with the other
new modules (CI and CA). Enhance the DMG method employed in DocLike Viewer to
reflect the proposed user-defined approach.

(viii) Integrate the whole modules of the project and conduct the integration testing.
(ix) Conduct a usability study of UDARE prototype tool among software engineers in USM or

other companies that maintain software systems in-house.

(x) Produce a paper to an international journal or a national conference proceeding.
(xi) Compile the documentation for the whole components ofUDARE project.
(xii) Close down project.

Design the new CI
&CAmodules

Develop CI &
CAmodules

o Start project

Analysis of the
proposed tool

Re-design DocLike Viewer to
serveCV &DG

Develop CV & RG modules
based on DocLike Viewer

Close down project

Figure 1: The flow chart of the research methodology

4.0 User-Defined Approach for Reverse Engineering (UDARE)

UDARE provides a more flexible approach that allows users to define the syntaxes of
programming language to be parsed before extracting the concerned source codes. Figure 2
depicts the four (4) main modules that should be incorporated into the reverse engineering
environment. They are: Components Identifier (CI), Components Analyzer (CA), Components
Viewer (CV) and Document Generator (DG). Once software maintainers or users have indicated
the syntaxes of programming languages, types of components and dependencies required via the
CI module, the information is updated into the repository. Then users need to input the source
codes files into the CA module in order to analyze the source codes and output the extracted
artifacts into the software repository as required and indicated by the users via the CI module.
From the data in the repository, the CV module should be able to generate the dependencies of
components to be viewed by the users while the DG module should generate the documentation
of the software artifacts extracted according to the template required by the users. For both CV
and DG modules, a part of the functionalities will be based on the previous PhD research
(Sulaiman, 2004a). The outcome of the research is a tool called DocLike Viewer that employs a
document-like and modularized SV method known as DMG to visualize the artifacts and
dependencies of a subject system using graph representations. DocLike Viewer and its method
have been discussed from different perspective in a number of papers including Sulaiman and
Idris (2002), Sulaiman et at. (2002a), Sulaiman et at. (2002b), Sulaiman et at. (2003), Sulaiman et

al. (2004) and Sulaiman (2004b). One of the journal papers on DMG and DocLike Viewer is
enclosed in Appendix B. Currently Doc Like Viewer depends on the existing parser of Rigi from
University Victoria of Canada (Rigi, 2007). Both CI and CA modules in UDARE is being
integrated with DMG method in CV and DG modules.

--,

Programming
syntaxes, types of
components and

dependencies

Software
maintainers/users

UDARE - a User-Defined approach for Reverse Engineering tool

Components
Identifier

(CI Module)

Components
Analyzer

(CA Module)

Components
dependencies

Software
Repository

Document template,
and components

Components
Viewer

(CV Module)

Document
Generator

(DG Module)

Figure 2: UDARE environment and the components to be incorporated into the tool

A user-defined approach is user-centered in which users need to determine the syntaxes of the
language they want to deal with before inputting the source codes to be analyzed. The approach
requires the following information from the users for the first time of parsing the specified
language:

(i) Programming language concerned: Let L is the language inputted.
(ii) Identifier type of the language specified: Let ID is the identifier.
(iii) Syntax to recognize the identifier: Let S is the syntax specified.
(iv) Parsing or RE rules: Let R is the rule specified.

Thus for L language concerned it will consist of a set of ID that corresponds to the specified S.
Based on the user-defined set of values for ID and S, the analysis of a program file P can be done.
In this project we apply parsing-based technique to analyze the program file or source codes.
Each P consists of a set of tokens T. While parsing each line, each Ti value is compared with each
Si value of set S. If they are equal, the corresponding 1Di value and other required details such as
modifier and type of concerned component would be retained based on the parsing rules R i •

For example consider the top segment of source code shown in Figure 3(a). Let L = java, P =

c1assA, 1Di = class, Si = class. To identify a class, a token value Ti must be equal to Si' Thus in
this case once the syntax value is parsed, the concerned token that is c1assA is the identifier name
to be retained under the class identifier. In order to identify a method the ID and S value should
be determined including the RE rules to extract the concerned artifacts.

For data, the users can specify whether to consider the variables that hold persistent data only or
any variables. For instance in classA the data is datal. In order to consider an association
between the two classes as shown by highlighted texts in Figure 3(a), the dot operator may be
used as the syntax in Java language. Then the corresponding object instantiation is traced to
determine the class associated with it. In this case myClass is the instantiation of c1assA hence
methodA belongs to c1assA. This relationship is retained in the repository as one of class
dependencies.

The extracted artifacts include package, import component, class, method, and attribute. The
sample of extracted artifacts is shown in Figure 5. In the sample given the package name is
javaWorld, while two import components are available named javax.swing.* and java.awt.*.
The class name is extracted that is MyApp together with the attribute strValue and method
main.

Figure 5: A list of extracted software artifacts

6.0 Conclusion and Future Work

UDARE provides an automatic environment that allows software maintainers to understand
written source codes faster and better before actually changing them. The users can define the
syntaxes of the source codes that they want to analyze. This provides more flexibility to the users.
More details of UDARE can be referred in the system document (Appendix C) and its user
manual (Appendix D). UDARE is currently being integrated with existing tool called SoVis that
will generate the graphical views and later re-document the extracted artifacts.

In future UDARE will be tested and compared with other existing reverse engineering tools to
measure the efficiency of the approach in parsing existing source codes.

References:
Canfora, G., Cimitile, A. and Carlini, U. (1991). A Logic-Based Approach to Reverse
Engineering Tools Production. IEEE Transactions on Software Engineering. 18(12): 1053-1064.

Chen, Y. -F., Nishimoto, M. Y. and Ramamoorthy, C. V. (1990). The C Information Abstraction
System. IEEE Transactions on Software Engineering. 16(3): 325-334.

Lanza, M. (2003). Lessons Learned in Building a Software Visualization Tool. Proceedings of the
7th European Conference On Software Maintenance and Reengineering (CSMR'03). USA: IEEE
Computer Society Press. 1-10.

Muller, H. A., Wong, K. and Tilley, S. R. (1994). Understanding Software Systems Using
Reverse Engineering Technology. Proceedings of 62nd Congress of L' Association Canadienne
Francaise pour L' Avancementdes des Sciences (ACFAS). In: Alagar, V. S. and Missaoui, R. eds.
(1995). Object-oriented Technology for Database and Software Systems. Singapore: World
Scientific. 240-252.

Rational (2007). Rational Software Corporation. http://www.rationa1.com/products/

Rigi (2007). Rigi Group Home Page. http://www.rigi.csc.uvic.ca/

van Vliet, H. (2000). Software Engineering Principles and Practice. England: John Wiley.

Wind River (2004). Wind River: IDE: SNiFF+. Wind River Systems Inc.
http://www.windriver.com/productslhtml/sniff.html

Sulaiman, S., Idris, N. B. and Sahibuddin, S. (2002a). A Comparative Study of Reverse
Engineering Tools for Software Maintenance. r d World Engineering Congress. Sarawak,
Malaysia. 22-25 July 2002. Malaysia: UPM Press. 478-483.

Sulaiman, S. and Idris, N. B. (2002). Software Visualization Tools for Software Maintenance.
National Conference on Computer Graphics and Multimedia. Melaka, Malaysia. 7-9 October
2002. Malaysia: UTM Press. 459-464.

Sulaiman, S., Idris, N. B. and Sahibuddin, S. (2002b). Production and Maintenance of System
Documentation: What, Why, When and How Tools Should Support the Practice. fjh Asia Pacific
Software Engineering Conference. Queensland, Australia. 4-6 December 2002. USA: IEEE
Computer Society Press. 558-567.

Sulaiman, S., Idris, N. B., Sahibuddin, S. and Sulaiman, S. (2003). Re-documenting, Visualizing
and Understanding Software Systems Using DocLike Viewer. J(jh Asia Pacific Software
Engineering Conference. Chiang Mai, Thailand. 10-12 December 2003. USA: IEEE Computer
Society Press. 154-163.

Sulaiman, S., Sarkan, H., Azmi, A. and Mahrin, N. (2004). Visualizing Software Systems Using
a Document-Like Software Visualization Method: a Case Study. International Conference on
Computer Graphics, Imaging and Visualization (CGiV04). Penang, Malaysia. 26-29 July 2004.
Malaysia: USM Press. 191-197.

Sulaiman, S. (2004a). A Document-Like Software Visualization Method for Effective Cognition
of C-Based Software Systems. PhD Thesis. Malaysia: UTM.

Sulaiman, S., Abdullah, R. and Sulaiman, S. (2004). Exploiting Software Visualization to Re
document Existing Software Systems. Malaysian Science and Technology Congress
(MSTC2004). Kuala Lumpur, Malaysia. 5-7 October 2004. Malaysia: COSTAM. 469-476.

Sulaiman, S. (2004b). Viewing Software Artifacts for Different Software Maintenance
Categories Using Graph Representations. Malaysian Journal of Computer Science (MJCS). Vol.
17, No.2, December 2004. Malaysia: UM. 55-67.

Lampiran B: Senarai Penerbitan

Shahida Sulaiman, Rosalina Abdul Salam, Sarina Sulaiman, "A User-Defined Approach for
Reverse Engineering to Support Software Understanding", Proceedings of The First
Malaysian Software Engineering Conference (MySEC '05), Penang, USM: Malaysia, 246-250,
2005.

Shahida Sulaiman, Norbik Bashah Idris, Shamsul Sahibuddin, "Enhancing cognitive aspects of
Software Visualization Using DocLike Modularized Graph", The International Arab Journal of
Information Technology, Vol. 2, No.1, ZarkaUniversity: Jordan, 1-9, January 2005.

Shah ida Sulaiman, Sarina Sulaiman, "A Tutor-Based Software Visualization Approach
(TubVis) for Novice Software Engineers", Proceedings of The Second Malaysian Software
Engineering Conference (MySEC '06), Kuala Lumpur, UTM: Malaysia, 323-328, 2006.

. . .' '.' ," '.Edited b~ .•......•..
AbaUII~b·Zawawl·.taUbjAharnadTajudiriKh~d~tafidSha'l:lida 'SUlairnan

. .' ' .. '.' qxgarirsed.by: .' . •
Sphoot:6f'CortlPJJtersciences,.U$M

.... '.(r <iril.se{JJi:f.:..'.
centt~;:fof'Aa~a6c~~:sQ' ·aref~p~lfleeriHg'{(};I~SI;) •. tjrM

.'. . .• ·..·:SiO<eU:1bi·...
··.!nv~~tPenaniah~f.·.&:SO':t'f~bn~~~d(Jihdf;Pena~g.:(Sb()pe)

The First Malaysian Software Engineering Conference (MySEC'05)

A User-Defined Approach for Reverse Engineering to Support
Software Understanding

Shahida Sulairnan, Rosalina Abdul Salam
School of Computer Sciences

Universiti Sains Malaysia
11800USM

Pulau Pinang
shahida@cs.usm.my, rosalina@cs.usm.my

ABSTRACT

Sarina Sulairnan
Faculty of Computer Science & Information

System
Universiti Teknologi Malaysia

81310 Skudai, Johor
sarina@fsksm.utm.my

Reverse engineering (RE) tools or workbenches have been developed to assist software maintainers who
are confronted with absence of documentation or out-dated documentation particularly design document
that provides the most detail information about a software system. RE tools are also called software
visualization (SV) tools because they faCilitate users to visualize the dependencies of software artifacts
besides the utility to re-document existing software systems. Such tools apply diverse RE techniques and SV
approaches. Most tools are dedicated for certain languages and the RE process halts if it does not meet
some RE rules set by the tools. In this paper we propose a user-defined approach for a RE environment
that enables users to indicate the syntaxes of the concerned programming language, the RE rules, types of
components to be extracted and the dependencies they want to study or visualize and also the document
template required. Then the information will be updated in a database to be re-used or edited in the foture
in case users need to study different types of components and their dependencies or even different
programming languages. Hence by using this approach it is believed that we can avoid information
overload and manage to better support software maintainers' software understanding by providing a more
flexible reverse engineering environment. The approach is called UDaRE that stands for a User-Defined
approach for Reverse Engineering Tool. We provide an example of how the approach may support
software understanding.

KEYWORDS
Software maintenance, software documentation, reverse engineering, software understanding.

1. Introduction

Software engineers or programmers perceive
software maintenance as uninteresting and
daunting tasks because they normally need to
study the programs written by previous
programmers prior to changing the source codes.
Without documentation or out-dated documents,
the process of software understanding can be
more cumbersome. According to Sulaiman et al.
[7] the problem related to the absence of or out
dated documentation occurs in both software
development and maintenance process. This
depicts that the first released version of newly
developed software systems might have
confronted with documentation problem.

Despite of the emerging commercialized or
prototypes of CASE (Computer-Aided Software
Engineering) tools that suppose to assist software
engineers particularly in documenting their
software design, software systems are still
produced without proper documentation. Hence
reverse engineering (RE) workbenches or tools
have become the alternative to solve the problem
by automating source code analysis and represent

the analyzed software artifacts into a highler
level of abstraction such as using graph
representation. Some examples are Rigi [3][5],
SNiFF+ [10] and Code Crawler [2]. The RE
technology is also incorporated into CASE tools
for analysis and design such as Rational Rose
[4]. Our work focuses on the tool that is targeted
to assist the understanding of existing software
systems. Such RE tools also provide
representations of software extracted to better
support software understanding and the utility to
re-document the extracted artifacts.

Existing tools are mostly dedicated for certain
languages and the RE process halts if it does not
meet some RE rules set by the tools. This causes
the tools to be too rigid and inflexible to meet
users' need in supporting software
understanding. Besides, such tools are strictly
set with predefined properties in generating the
representations of extracted artifacts causing the
graphical representations to be cluttered with
unnecessary information. Thus in this paper we
propose a user-dermed approach for the RE tool
that enables users to indicate the syntaxes of the
concerned programming language, the RE rules,

The First Malaysian Software Engineering O1nference (MySEC'05)

types of components to be extracted, the
dependencies they want to study or visualize and
also the document template required. Then the
information will be updated in a database to be
re-used or edited in the future in case the users
need to study different types of components and
their dependencies or to study software systems
of different programming languages. Hence by
using this approach it is believed that we can
avoid information overload and manage to better
assistsoftwaremaintainers '-- -software
understanding by providing a more flexible
reverse engineering environment. The project is
called UDaRE that stands for a User-Defined
approach for Reverse Engineering Tool. In
Section 2 we will discuss some related work,
followed by the description of UDaRE project in
Section 3 and the proposed user-defined
approach. Finally we conclude the work and
discuss some possible future work in Section 4.

2. Related Work

There are a number of related works that attempt
to produce a generic or more flexible RE tools or
workbenches. Tadonki [9] presents Universal
Report, a generic source code documentation tool
or RE tool. The tool applies heuristic and pattern
matching algorithms that can indicate standard
programming statements for a wide range of
programming languages. However this tool is
still limited to the most common programming
languages pre-defmed by the tool developers.

Another example is Moose [1], a language
independent reengineering environment for
object-oriented software systems. It can be
extended in order to allow language plugins for
tools that require specific information. Rigi [5]
is a RE research prototype tool that provides
quite a comprehensive level of software
abstraction from program level up to local
variables. The parsing components are pre
defmed based on the languages supported by the
tool such as C and COBOL. With this approach,
users can only choose the level of software
abstractions after the graphical representations
have been produced. This method can cause the
graphs become clutter and very difficult to
collapse the nodes of the graph. It also can lead
to information overload among the users.

SNiFF+ [10] is a commercial reverse engineering
tool that provides source code analysis
environment with code visualization and
navigation tool. Besides it provides graphical
views of include files, class hierarchy and cross
referencer. SNiFF+ can be integrated with other

tools and allows edition and compilation of
source codes in its working environment.
SNiFF+ is also an extensive tool. Yet it is not
flexible to be extended by the users since the tool
provides only specific and predefmed parsers.
Another ubiquitous commercial CASE tool is
Rational Rose [4] that is incorporated with a
utility to reverse engineer the written source
codes. However this type of CASE tool focuses
more on the forward engineering. Reverse

- --engineering -utility-carrunlybefuHybenefited if
software engineers have designed and developed
a software system using the tool and the
integrated software development environment.
This also promotes the round-trip engineering
using Rational Rose. Otherwise, reverse
engineering an exiting software system will only
produce a high level of abstraction such as a
class diagram of UML (Unified Modeling
Language) notation.

3. UDaRE Project

Figure 1 depicts the four main modules that
should be incorporated into the reverse
engineering environment. They are:
Components Identifier (CI), Components
Analyzer (CA), Components Viewer (CV) and
Document Generator (DG). Once software
maintainers or users have indicated the syntaxes
of programming languages, the RE rules, types
of components and dependencies required via the
CI module, the information is updated into the
repository. Then users need to input the source
codes files into the CA module in order to
analyze the source codes and output the extracted
artifacts into the software repository as required
and indicated by the users via the CI module.

From the data in the repository, the CV module
should be able to generate the dependencies of
components to be viewed by the users while the
DG module should generate the documentation
of the software artifacts extracted according to
the template required by the users. For both CV
and DG modules, a part of the functionalities will
be based on the previous work of Sulairnan et al.
[6][8]. The outcome of the research is a tool
called DocLike Viewer that employs a
document-like and modularized SV method
known as DMG to visualize the artifacts and
dependencies of a subject system using graph
representations. Currently DocLike Viewer
depends on the existing parser of Rigi from
University Victoria of Canada [5]. We are in the
process of integrating DocLike Viewer with the
CI and CA modules ofUDaRE project.

The First Malaysian Software Engineering Coriference (MySEC '05)

UDaRE - a User-Defined Approach for Reverse Engineering tool

I
I
I

Components
Identifier

(CI Module)

Components
Analyzer

(CAModule)

~ ••• l5(ocument template,
and components

Components
Viewer

(CV Module)

Document
Generator

(DGModule)

~--- ---------------

Figure 1: The proposed RE environment and the modules to be incorporated into the tool

3.1 A User-Defined Approach

A user-defined approach is user-centered in
which users need to detennine the syntaxes of
the language they want to deal with before
inputting the source codes to be analyzed. The
approach requires the following infonnation
from the users for the first time of parsing the
specified language:

(i) Programming language concerned: Let L is
the language inputted.

(ii) Identifier type ofthe language specified: Let
ID is the identifier.

(iii) Syntax to recognize the identifier: Let S is
the syntax specified.

(iv) Parsing or RE rules: Let R is the rule
specified.

Thus for L language concerned it will consist of a
set of ID that corresponds to the specified S.
Based on the user-defined set of values for ID
and S, the analysis of a program file P can be
done. In this project we apply parsing-based
technique to analyze the program file or source
codes. Each P consists of a set of tokens T.
While parsing each line, each T; value is
compared with each S; value of set S. If they are
equal, the corresponding ID; value and other
required details such as modifier and type of
concerned component would be retained based
on the parsing rules R;.

For example consider the top segment of source
code shown in Figure 2. Let L = java, P =

classA, ID; = class, S; = class. To identify a
class, a token value Ii must be equal to St. Thus
in this case once the syntax value is parsed, the

concerned token that is classA is the identifier
name to be retained under the class identifier. In
order to identify a method the ID and S value
should be detennined including the RE rules to
extract the concerned artifacts.

public class classA
{

private int datal;
methodA()
{

int datal;
}
methodA (String x) {}
private int methodB() {}

public class classB
{

int datal;
int data2;
lEI ' £I __
public methodA()
{

int data2;

}

methodC () { }
methodC(int x, int y) {}

Figure 2: Sample of two program files of Java
classes

For data, the users can specify whether to
consider the variables that hold persistent data
only or any variables. For instance in classA
the data is da tal. In order to consider an
association (see highlighted texts in Figure 2)
between the two classes, the dot operator may be
used as the syntax in Java language. Then the

The First Malaysian Software Engineering Conference (MySEC '05)

corresponding object instantiation is traced to
determine the class associated with it. In this
case myClass is the instantiation of classA
hence methodA belongs to classA. This
relationship is retained in the repository as one of
class dependencies.

In Figure 3 we illustrate two different languages,
which are C++ and Java. The figure depicts the
difference in the syntaxes used for the two
languages in implementing inheritance. From
this example it is observed that the reserved word
extends shows inheritance in Java while the
syntax double colon ':' after naming the
identifier of a class shows inheritance usage in
C++. In this case as long as users identify the
correct syntaxes and identifiers, the artifacts
required for any languages can be extracted
accordingly using the user-dermed approach.

__ '1iDIIMiJ&iiiSSiiiiii~<t~_
_~~iii1lmI

public:

);

MyClass(int x): BaseClass(x+l)

{)

public MyClass(int x) {

super(x+l);

Figure 3: Sample of two program files of C++
(top) and Java (bottom)

The initial prototype for CA module of UDaRE
project is shown in Figure 4. The users can
choose multiple of source code files to be parsed.
Furthermore users can also view the parsed
source codes.

qDUtle: <Ip>
"~,cdpt1crt.l</'fI)

't<p>C~CCP1'tight(CI200$(/p)

., (p)CoIpcxr= </'1)

t hutbot act 1t.tz:1INtablt
·~1Q111.0

'/

Figure 4: The interface to analyze and to
optionally view the source code

3.2 An Example

Figure 5 shows an example of a Java class that is
parsed and some of the extracted artifacts are
illustrated in Figure 6. The bold texts in Figure
5 highlight the concerned artifacts to be extracted
and to be considered for visualization.

package java World;

/* An example of java program */
import javax.swing. *;
import java.awt. *;

public class MyApp extends JFrame {
String strValue = "";
Container pane = getContentPaneO;
JLabei myLabell = new JLabelO;

public MyAppO { /Idefault constructor
setTitle("My First Application");
setSize(200, 100);
setDefaultCloseOperation(EXIT _ ON_CLOSE);
pane.setLayout(new GridLayout(l, 1 »;
pane.add(myLabell);
strValue = "Hello!";
myLabell.setText(strValue);
setVisible(true);

}
public static void main(StringD args) {
MyApp myApp = new MyAppO;

}

Figure 5: An example of source code to be
parsed

strFileName:

strPackageName:
strClassName:
strClassModifier:
strMethodName:
strMethodModifier:
strRetumType:
strDataName:
strDataType:
strDataName:
strDataType:
strMethodName:
strMethodModifier:
strRetumType:
strParamN ame:
strParamType:
strDataName:
strDataType:

MyApp.java

javaWorld
MyApp
public
MyApp
public
void
strValue
String
myLabell
Object
main
public static
void.
args
StringD
myApp
Object

Figure 6: The list of some extracted artifacts

The extracted artifacts in Figure 6 lists all the
concerned artifacts as dermed by users prior to
parsing the source codes. In this example users

The First Malaysian Software Engineering Conference (MySEC'05)

consider local variables as the required artifacts.
In future, the users can delete the syntaxes to
identify local variables in order to simplify the
scope of parsing results. The extracted artifacts
are retained in a database and will be accessed by
CV and DG modules of UDaRE environment
(see also Figure 1) to generate the graphical
view and to re-document the software artifacts
extracted. Thus this method is perceived to be
able to avoid information overload and generate
a simplified, less clutter graphical views of
software artifacts to support software
understanding.

4. Conclusion

Understanding existing software systems without
proper system or design documents is a
cumbersome task. Existing RE tools are quite
rigid and inflexible because they set predefmed
rules in the RE process. Thus the process will
halt if the rules are violated. Although there is
some tools attempt to be more flexible and
generic, they are still limited to certain common
programming languages. Most tools also do not
allow users determine their own level of
abstractions prior to RE process. Hence their
approaches are not able to simplify the graphical
and textual information generated.

Thus we propose a user-defmed approach that
allows users to set their own syntaxes rules of the
concerned programming languages and indicate
the level of abstraction required for the graphical
representation. This approach is expected to
avoid the view to be clutter and also to prevent
information overload. We believe a simple view
with sufficient information will be able to
support software understanding more effectively
among software engineers.

The future work may include the enhancement of
existing modules of CV and DG to enable them
to be integrated with CI and CA modules
developed. The whole integrated modules will
be further evaluated to determine the
effectiveness of the approach proposed in
UDaRE project to improve software engineers'
software understanding.

5. Acknowledgements

We would like to thank USM to support the
UDaRE research project under the USM Short
Term Grant (304IPKOMP/636009) and also the

student assistant, Shahriza Khairudin who has
been implementing the project using Java
language.

6. References
[1] Ducasse, S., Lanza, M. and Tichelaar, S.,

"Moose: An Extensible Language-Independent
Environment for Reengineering Object-Oriented
Systems", Proceedings Second International
Symposium Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[2] Lanza, M., "Lessons Learned in Building a
Software Visualization Tool", Proceedings of the
7th European Conference On Software
Maintenance and Reengineering (CSMR'03),
IEEE Computer Society Press, USA, 2003, pp. 1-
10.

[3] Muller, H. A., Wong, K. and Tilley, S. R.,
"Understanding Software Systems Using Reverse
Engineering Technology", Proceedings of 62nd

Congress of L' Association Canadienne Francaise
pour L'Avancementdes des Sciences (ACFAS),
in Alagar, V. S. and Missaoui, R. eds., Object
oriented Technology for Database and Software
Systems, World Scientific, Singapore, 1995, pp.
240-252.

[4] Rational, "Rational Software Corporation",
http://www.rational.com/productsi. 2005.

[5] Rigi, "Rigi Group Home Page",
http://www.rigi.csc.uvic.ca/. 2005.

[6] Sulaiman, S., Idris, N. B. and Sahibuddin, S.,
"Enhancing Cognitive Aspects of Software
Visualization Using DocLike Modularized Graph
(DMG)", International Arab Journal of
Information Technology (IAJIT), 2(1), 2005,
Zarka Private University, Jordan, pp. 1-9.

[7] Sulaiman, S., Idris, N. B. and Sahibuddin, S.,
"Production and Maintenance of System
Documentation: What, Why, When and How
Tools Should Support the Practice", Proceedings
of rjh Asia Pacific Software Engineering
Conference (APSEC 2002), IEEE Computer
Society Press, USA, 2002, pp. 558-567.

[8] Sulaiman, S., Idris, N. B., Sahibuddin, S. and
Sulaiman, S., "Re-documenting, Visualizing and
Understanding Software Systems Using DocLike
Viewer", 1r1h Asia Pacific Software Engineering
Conference, IEEE Computer Society Press, USA,
2003, pp. 154-163.

[9] Tadonki, C., "Universal Report: A Generic
Reverse Engineering Tool", Proceedings of the
12th IEEE International Workshop on Program
ComprehenSion (IWPC'04), IEEE Computer
Society Press, USA, 2004.

[10] Wind River, "Wind River: IDE: SNiFF+",
http://www.windriver.com/productslhtml/sniff.ht
mI,2005.

Contents
Enhancing Cognitive Aspects of Software Visualization Using
DocLike Modularized Graph
S. Sulaiman, N. B. Idris, and S. Sahibuddin

USER: A Software Experience Management Tool to Support
Organisational Learning in Software Development Organisations
A. Mohamed, S. P. Lee, and S. S. Salim

On the Routing of the OTIS-Cube Network in Presence of Faults
A. Awwad and l. Al-Sadi

Pure DDP-Based Cipher: Architecture Analysis, Hardware
Implementation Cost and Performance up to 6.5 Gbps
N. Moldovyan, N. Sklavos, and O. Koufopavlou

Frequency Domain Watermarking: An Overview
K. Mahmoud, S. Datta, and J. Flint

A Survey of Distributed Query Optimization
A. Alj anaby, E. Abuelrub, and M, Odeh

Using Probabilistic Unsupervised Neural Method for Lithofacies
Identification
S. Chikhi and M. Batouche

Object Modeling of Filter-Oriented Systems of Attention:
Possibilities of Integration
1. Chimir, W. Abu-Dawwas, and R. Alqawasmi

Fuzzy Inference Modeling Methodology for the Simulation of
PopUlation Growth
H. Diab and J. Saade

Automark++! A Case Tool to Automatically Mark Student Java
Programs
J. AI-la'afer and K. E. Sabri

IAJIT Vol. 2, No. 1
January 2005

10

17

24

33

48

58

67

75

87

The International Arab Journal of Information Technology, Vol. 2, No.1, January 2005

Enhancing Cognitive Aspects of Software
Visualization Using DocLike Modularized Graph

Shahida Sulaiman 1, Norbik Bashah Idris2, and Shamsul Sahibuddin3

1 Faculty of Computer Science, University Sains Malaysia, Malaysia
2Center for Advanced Software Engineering, University Technology Malaysia, Malaysia

3Faculty of Computer Science and Information System, University Technology Malaysia, Malaysia

Abstract: Understanding an existing software system to trace possible changes involved in a maintenance task can be time
consuming especially if its design document is absence or out-dated. In this case, visualizing the software artefacts graphically
may improve the cognition of the subject system by software maintainers. A number of tools have emerged and they generally
consist of a reverse engineering environment and a viewer to visualize software artefacts such as in the form of graphs. The
tools also grant structural re-documentation of existing software systems but they do not explicitly employ document-like
software visualization in their methods. This paper proposes DocLike Modularized Graph method that represents the software
artefacts of a reverse engineered subject system graphically, module-by-module in a document-like re-documentation
environment. The method is utilized in a prototype tool named DocLike viewer that generates graphical views of a C language
software system parsed by a selected C language parser. Two experiments were conducted to validate how much the proposed
method could improve cognition of a subject system by software maintainers without documentation, in terms of productivity
and quality. Both results deduce that the method has the potential to improve cognitive aspects of software visualization to
support software maintainers in finding solutions of assigned maintenance tasks.

Keywords: Software maintenance, software visualization, program comprehension.

Received July 21, 2003; accepted March 8, 2004

1. Introduction

Visualization for software, or Software Visualization
(SV), is a method in program comprehension, which
is vital in the costly software maintenance. SV is the
use of interactive computer graphics, typography,
graphic design, animation and cinematography to
enhance interface between the software engineers or
the computer science student and their programs [7].
The objective is to use graphics to enhance the
understanding of a program that has already been
written.

Computer-Aided Software Engineering (CASE)
workbench in the class of maintenance and reverse
engineering such as CIA [3], Rigi [8, 17], PBS [6]
and SNiFF+ [16] are normally incorporated with
editor window in which the extracted software
artifacts will be visualized graphically besides their
textual information. These tools aid and optimize
software engineers' program comprehension or
cognitive strategies, particularly when there is an
absence of design level documentation that is still a
major problem in software engineers' practice [14].
Existing methods of the tools focus on visualizing the
software artifacts whilst structural re-documentation
as another aspect provided. Nevertheless, they do not
explicitly grant the environment to re-document
software systems via their viewers.

Another type of CASE tool of class analysis and
design such as Rational Rose is also incorporated with
reverse engineering utility. However it should be
highlighted that this tool focuses more on forward
engineering, while reverse engineering as part of its
utilities. Thus reverse engineering an existing software
system using this tool without proper forward
engineering will only produce the relationships of
classes that might not be so meaningful to software
maintainers who are confronted with out-dated or
absence of documentation. Hence such tool is not within
the scope of our work.

This paper proposes Doc Like Modularized Graph
(DMG) method employed in DocLike viewer prototype
tool that represents the existing software architectures
graphically in a modularized and standardized
document-like manner. The discussion and evaluation of
our DMG method in DocLike viewer was based on
Storey's work [10] that provides the cognitive
framework to describe and evaluate software exploration
tools, or in our context we refer them as SV tools. The
method was also empirically evaluated based on
productivity and quality of program comprehension.

The remainder of the paper is organized as follows.
Sections 2 and 3 briefly discuss DocLike Modularized
Graph method and DocLike viewer prototype tool,
respectively. The tradeoff issues of the method and the
aspects of visualizing, understanding and re-

2 The International Arab Journal of Information Technology, Vol. 2, No. I, January 2005

documenting software systems can be found in our
previous work [15]. Section 4 includes the evaluation
conducted, in addition to illustrating the analysis and
inferring the findings. Section 5 discusses some
related work. Finally, section 6 draws the conclusion
and future work.

2. DocLike Modularized Graph Method

DMG method employs graph to visualize software
abstraction. A graph G = (V, E) consists of a set of
vertices V and a set of edges E, such that each edge
in E is a connection between a pair of vertices in V
[9]. DMG uses a directed graph described as directed
edge en = (Vj, Vj). A vertex in G can be of different
types. Currently DMG only considers the types as in
structured programming, which are symbolized as
module (M), program (P), procedure or function (F)
and data (D).

We provide five types of DMG representations,
defined as the follows:

1. Module decomposition: DMG1 = (Vj, Ej) where the
set Vj ~ M represents all modules in set M and Ej
represents relationship (calls, mI, m2).

2. Module mj description: DMG2 = (Vj, Ej) where the
set Vj ~ P represents all programs of set P
associated to module mj and Ej represents
relationship (calls, pI, P2) in module mj only.

3. Module mi interface: DMG3 = (Vi, Ei) where the
set Vi ~ F represents all procedures or functions
of set F associated to module mi and Ei represents
relationship (calls, fl, £2) in module mi only.

4. Module mi dependencies: DMG4 = (Vi, Ei) where the
set Vi ~ F represents all procedures or functions of
set F associated to module mi and Ei represents
relationship (calls, fl, f2) in module other than mi
including the compiler standard library.

5. Module mi data dependencies: DMGs = (Vi, Ei)
where the set Vi ~ F and Vi ~ D represent all
procedures or functions Fi of set F in program Pi of
module mi and all associated global data of set D
defined in program Pi or header file .h, while Ei
represents the use of data (either read or write or both
read and write) by Fi.

3. DocLike Viewer Prototype Tool

DocLike viewer is initially based on the C language
parser provided by Rigi tool [8]. We filter the software
artifacts extracted by selecting only the required artifacts
that are going to be visualized via DocLike viewer.
DocLike viewer consists of three main panels: Content
Panel, Graph Panel and Description Panel (see Figure 1).

Based on the cognitive framework of Storey [10], the
two major elements to describe and evaluate SV tools
such as DocLike viewer are:
1. Improve program comprehension (enhance bottom-up

comprehension: El to E3, enhance top-down
comprehension: E4 and E5, integrate bottom-up and
top-down approaches: E6 and E7)

2. Reduce the maintainer's cognitive overhead (facilitate
navigation: E8 and E9, provide orientation cues: EI0
to E12, reduce disorientation: E13 and EI4).

Figure 1. DocLike viewer consists of content panel, graph panel and description panel.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 3

Refer [l0] for the details of the activity code E1 to
E14 mentioned above. From Table 1, it is observed
that Doc Like viewer does not support any feature for
E4, Ell and E13 activity code. The rest of the
activities are supported at least by one feature in
DocLike viewer.

Table I. Formulation of criteria to be evaluated based on Storey's
cognitive framework.

Does DocLike

Criteria (CI to C12) IActivity Code Viewer
(refer (10)) Support?

. (YeslNo)
CI: Easy to identify affected components EI, E6, EID Yes
C2: Easy to identify dependencies in a

E3,E5 Yes module
C3: Easy to identify dependencies among

E3,E5 Yes modules

C4: Easy to navigate among windows E7, E12 Yes
C5: Easy to navigate the components link E8 Yes
C6: Easy to trace back previous navigation Ell No
C7: Easy to trace link between graphical

E2 Yes representation and source code
C8: Good tool to assist re-documenting - Yes system

C9: Information provided is well organized EI4 Yes
ClO: Graphical information provided is - Yes sufficient

CII: Textual information provided is - Yes sufficient

C12: Search utility provided is efficient E9 Yes

4. The Evaluation

Two controlled experiments were conducted to study
the significance of improvement in software
understanding or program comprehension. The
selected subjects who mostly had programming
experience studied the subject system using DocLike
Viewer (DV) and they were compared to those using
Rigi (RG) and Microsoft Visual e++ (MV).

4.1. Hypothesis and Goal! Question/ Metric

As described in section 1, SV has the objective to use
graphics in order to enhance the understanding of a
program that has already been written [7]. A number of
studies applied experiments to measure this factor such
as in [2, 4, 11], which measure program
comprehension by providing a list of maintenance
tasks to be solved by the selected SUbjects. Our
experiment used the same variables as in [2, 4]. The
null hypothesis can be described as:

Ho: The DMG method will not significantly improve
program comprehension or software understanding.
Based on the Goal! Question! Metric (GQM) paradigm
[1, 5], we indicate the goals, questions and metrics for
the study as the followings:

1. The goal: the main goal was to statistically analyze
how much the proposed DMG method could
improve program comprehension in order to solve
maintenance tasks. From the main goal, two sub-

goals derived involving productivity and quality as
shown in Table 2.

2. The questions: the questionnaire had three sections:

• Section A: Expertise-related questions that can
determine the expertise of the subjects.

• Section B: Program comprehension
improvement-related questions comprised 6
maintenance task questions that were formulated
in such a way to simulate a change (corrective or
adaptive) or a new requirement (perfective),
which may need different levels of information
abstraction [13] including system hierarchy view,
call graphs and data flow graphs.

• Section C: Usefulness-related questions that were
usefulness of the tool used in overall and also by
criteria as formulated within the cognitive
framework (see Table 1). Refer Table 3 for the
list of questions.

3. The metrics: The metrics used in our study are
shown in Table 4.

Table 2. The goal of study.

Goal of Purpose: Analyze Perspective: with Perspective: from
Study for the Purpose of Re~ectto the Point of View

Improvement of
Programmers'

Goal program cognition
Programmers

comprehension

Sub-goal I:
Productivity of Programmers'
program speed to solve Software manager

Productivity comprehension maintenance tasks
Sub-goal 2: Quality of program The correctness of

Software manager
Quality cOI11J>Tehension solution given
Sub-goal 3: Usefulness of the Programmers'

Programmers
Usefulness tool and its criteria needs

Table 3. The questions formulated.

Section A: Expertise-Related Questions.

A I: Last job before joining Master program e.g. programmer.

A2: Software development or maintenance experience in previous
companies (if any) e.g. less I year.

A3: Grade in C language module e.g. grade A.

Section B: Program Comprehension Improvement-Related Questions.

I. System hierarchy view (high level of abstraction).

B I: Which module might have no change if the MMIMS module in GI
system needs to be maintained?

B2: Which program has the highest number of procedures or functions?

2. Call graph (low level of abstraction).

B3: List the procedures or functions in other module that are called by
index_Record not including those from standard library (if any).

B4: What procedure or function calls processWordToIndex?

3. Data flow graph (low level of abstraction).

B5: Which procedure accumulates the value of data from
AtMarker Tmarker?

B6: Identify the function that checks whether a word exists in dictionary
or not.

Section C: Usefulness-Related Questions.

CI: Specify the usefulness of the tool provided to understand GI system.

C2: Specify your opinion on the criteria of the tool. The 12 criteria given
shown in Table I. The evaluation based on Likert scale I. Strongly
Disagree. 2. Disagree, 3. Normal, 4. Agree. 5. Strongly Agree.

4 The International Arab Journal of Information Technology, Vol. 2, No.1, January 2005

The three tools are the independent variables or
factors whilst the dependent variables are time taken
(T) and number of correct answers (S). The attribute
variables are related to expertise of programmers and
usefulness of tools (see Table 4).

Table 4: The metrics used.

Related to Expertise of Programmers.
M 1.1: Last job before doing Master program.
M 1.2: Year of exoerience in software development or maintenance.
MI.3: Grade ofC language.
Related to Productivity - Based on Time (T).
M2.1: Time taken to answer each question regardless of correctness

(TI).
M2.2: Time taken to answer each question correctly (T2).
Related to Qualitv.
M3.1: Score or sum of correct answers (S) for question (8 I to 86 - see

Table 3).
Related to Usefulness of Tool Used.
M4.l: Mean of the usefulness of the tool used in overall (MI).
M4.2: Mean of the usefulness of the tool used for each criteria (Cl to

C12 - see Table I) provided (M2)'

4.2. Experiment

We chose Rigi, the latest version available [8] and
Microsoft Visual C++ 6.0 programming editor as the
controls of our experiment. Rigi was chosen because it
is quite a representative tool within the scope of our
study and has the most criteria needed to compare with
our tool. We believed in some ways using program
editors with the search text utility could be sufficient
enough to understand a subject system but in some
ways these tools might not be able to challenge SV
tools. Thus we chose the most unanimous
programming editor Microsoft Visual C++ as another
control of our experiment. Although Visual C# is the
latest technology of Visual.net, the tool is still new and
not widely used compared to its predecessor.

4.2.1. Subjects and Subject System

The subjects of the first and second experiment
involved 33 and 27 of Master students in Software
Engineering, respectively. Both experiments were
conducted after a Maintenance Module taught. In
consequence, subjects were exposed with the issues in
software maintenance including the tools that can
assist static analysis during program comprehension
and the concepts of maintenance tasks and ripple
effects.

The subject system used in the experiment was
Generate Index (GI) system written in C language
consisted of approximately 900 lines of codes (not
including comments). The GI was a word processing
system that could generate the index of the text file
created and edited by a user. The system was
introduced to the subjects to perform their minor
proj ect assignment and they also had taken C language
module in the previous semester. Consequently, the
subjects had some ideas of what the system all about
and the C language itself. Their previous experience

could eliminate our effort to brief on subject system
because they already had some domain and application
knowledge. This enabled us to focus on training the
subjects to use the tools.

4.2.2. Procedures

The subjects were divided into 3 groups consisted of
11 individuals in the first experiment and 9 individuals
in the second experiment. The grouping was
supervised in such a way that all the groups had a
fairly equal level of expertise, which were based on
their previous job (if any), experience in software line
and also grade in C language module. Each group was
required to use different tool that was DocLike viewer,
Microsoft Visual C++ or Rigi and each group was
identified as DV, MV and RG respectively. All
subjects were briefed for 5 to 10 minutes on the use of
the dedicated tool to find solutions for the maintenance
tasks given (see section B in Table 3) without changing
the source codes. For the second experiment, the
subjects were given a brief user manual handout of the
dedicated tool and a better training. They were
provided with stopwatch to indicate the time taken for
each question. They were allowed to answer all
questions without any time limit. Then they' were
required to evaluate the tool used by answering section
C (see Table 3).

4.2.3. Possible Threats

There were a few factors that could be possible threats
to our study. The level of expertise might be a threat;
hence we studied subjects' experience and expertise
via section A of the questionnaire (see Table 3). When
grouping the subjects we considered all the three
attributes: last job position, years of experience in
previous job and grade in C language module. During
the analysis of the two experiments, we tested the
correlation of subjects' expertise with time and score.
We found no significant correlation between the
expertise factor and the two dependent variables. Thus
this factor was not a threat.

Another factor could be the leak of questions on
maintenance tasks among the subjects. Due to lack of
computers, the subjects took turns to perform the
experiment. Besides, they were not quarantined and sat
next to each other in the lab. Therefore some subjects
might have some hints from their friends and when
their tum came for the experiment they most probably
had prepared with some answers and cues, which
indirectly could affect the time taken to answer and
correctness of the answers given. We attempted to
eliminate the threat by reminding the tested subjects
not to leak the questions because they were going to be
evaluated individually for 5% assessment of
Maintenance Module taught earlier without informing
them that Doc Like viewer was a tool of the researcher
to avoid any Hawthorne effect.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 5

There could be a bias on the actual capabilities of
Rigi and Microsoft Visual C++ tools that might have
been hindered during the two experiments. For
example for Rigi, we did not manage to link the node
clicked with Notepad source codes editor as what Rigi
claimed. Due to time constraint we could not verify the
problem with Rigi developers hence we just trained
RG group to open existing Notepad tool to view the
source codes we attempted to eradicate the threat by
opening Notepad application by the side of Rigi tool
and-openingal'TogramfromGI system from the
physical folder. We projected this alternative could
minimize the threat particularly on time factor. But for
the second experiment we managed to overcome the
problem and this matter was not a threat anymore.
Better training was also provided in the second
experiment.

4.3. Analysis

The analysis of the experiment was based on the
metrics and variables described in Table 4. Using the
first metric of M2.1 that was related to productivity
(see Table 4), we found that the DV group took the
shortest time T\ to answer question 1 (128 seconds) but
the longest in 50% of the questions (see Figure 2),
which the results were not so conclusive. Nevertheless
after the speed of DocLike viewer was improved, the
DV group was the fastest in answering all the six
questions in the second experiment (see Figure 3).

We performed Oneway Anova to test the
significance on the time consumed T \ by all the groups
based on a/2 (two-tailed) that is 0.025. In the fir,st
experiment, the probability for the phenomena to occur
was only significant for the time taken to answer
question 3 with the difference 0.016. We used Post
Hoc Anova Tukey and LSD to test the significance of
difference among the three groups. Only the pair of the
DV versus RG group had significant time mean
difference to answer question 3 with the value 0.013
(Tukey) and 0.005 (LSD) at the 0.05 level.

~400~------~~~----------~

~ 350
~ 300
3 250
e 200
;:: 150
o 100
~ 50

::E 0

2 3 4

Question number

5 6

E1DV

.MV

[JRG

Figure 2. Mean of time taken (regardless of correctness) Tl in the
first experiment. The asterisk (Ii<) shows the significant mean
difference.

For the second experiment, by using Oneway Anova
test, we found half of the questions had significant

difference of T \ value. Based on Post-Hoc Anova
Tukey and LSD test, the time taken by the DV group
was significant in question 1,2 and 5 compared to the
other two groups. For question 1, both pair of DV
versus MV group and pair of DV versus RG group had
significant mean difference of time T \ with the values
0.023 (Tukey) and 0.009 (LSD); 0.024 (Tukey) and
0.009 (LSD) respectively. For question 2, only the pair
of DV versus RG group had the significant mean
difference of time with the value 0.000 for both tests.
Finally, for question 5, the significant mean difference
was only for the pair of DV and MV group with the
value 0.021 (Tukey) and 0.008 (LSD).

500

g 400
~ E1DV

1300
.MV

E 200 [JRG
';::
o 100
fa
~ 0

1 2 3 4 5 6

Question number

Figure 3. Mean of time taken (regardless of correctness) Tl in the
second experiment. The asterisk (Ii<) shows the significant mean
difference.

The metric M3.1 that was related to quality (see
Table 4) indicated the sum of score S for each
question. In the first experiment Figure 4 illustrates
that the value of S is the highest by the DV group in
question 1, 4 and 5 (half of the questions). The DV
group scored the least for question 2 and 3. Using the
same test of Oneway Anova, we identified that only
the score for question 2 and 4 were significant i.e.
0.019 and 0.001 respectively « 0.025). While
comparing the difference of scores among pairs of
groups at 0.05 level, we discovered that the difference
was significant in question 2 for the DV versus MV
group by 0.016 (Tukey) and 0.006 (LSD). For question
4 we found all the pairs had significant score
difference DV versus RG by 0.002 (Tukey) and MV
versus RG by 0.008 (Tukey) while 0.001 and 0.003
respectively in LSD test. Comparing Figure 2 and
Figure 4, we discovered that for question 2 and 3, the
RG group took the longest time but the least score.

On the other hand, the results were more
encouraging in the second experiment. Although the
DV group scored the highest in question 4 only, the
rest of the questions were scored well (see Figure 5).
Based on Oneway Anova and Post-Hoc Anova Tukey
and LSD test, we indicated the significant score
difference was in question 4 only for the pair DV
versus RG (0.000 for both tests) and MV versus RG
(0.001 for Tukey and 0.000 for LSD). Regarding the
total of S for the whole six questions, in the first

6 The International Arab Journal of Information Technology, Vol. 2, No. I, January 2005

experiment it was scored the highest by the MY group
(48 out of 66 i. e. 73%) followed by the DV group
(65%) and the RG group (61 %). However, for the
second experiment, the total of S was scored the
highest by the DV group (47 out of 54 i. e. 87%)
followed by the MY group (81 %) and the RG group
(80%).

12~----~------~----------~
~ 10
§ 8

6
4
2

o
2 3 4

Question number

5 6

[!Jov

liMY

eRG

Figure 4. Score S in the first experiment. The asterisk (*) indicates
the significant score difference.

10

~ 8
~

IIDV ta 6
13 .MV .,
54

ORG 0
o 2 e
:>
<flO

2 3 4 5 6

Question number

Figure 5. Score S in the second experiment. The asterisk (*) shows
the significant score difference.

By measuring using the metric M2.2 related to
productivity, the mean of time T2 consumed by DV
group to answer correctly in the first experiment was
the shortest for question 1, 4 and 6 (135, 171 and 80
seconds respectively) compared to the control groups
(see Figure 6). By comparing to the values in Figure 2,
we observed that for the first four questions the values
of T 2 were more than T 1 but for the last two questions
the values of T2 were less than T1• Using Univariate
Analysis of Variance test, we indicated that only the
time taken to answer question 3 correctly had
significant difference for the pair of DV and RG
group with the value 0.015 (Tukey) and 0.005 (LSD).

For the second experiment, Figure 7 deduces that
the DV group took slightly longer time to answer
correctly compared to the MY group in question 4.
Thus the DV group did not take the shortest time in all
questions in order to answer correctly compared to
Figure 3 in which the group took the shortest time for
all questions. However, in overall the values of T 1 and
T2 for the DV group in the second experiment had very
little difference.

450
400

'U 350 .,
~

300 = IIlIDV

~ 250
.MV

~ 200
'': 150 ORG
0 100
ta ., 50

::;E
0

2 3 4 5 6

Question number

Figure 6. Mean of time taken to answer correctly T2 in the first
experiment. The asterisk (*) indicates the significant mean

difference.

'U
500

.,
~ 400 = IIlIDV

~ 300 .,
.g 200 ORG
0

ta 100 .,
::;E

2 3 4 5 6
Question number

Figure 7. Mean of time taken to answer correctly T2 in the second
experiment. The asterisk (*) indicates the significant mean
difference.

For the value of variable Ml of metric M4.1,
usefulness of the tools in overall, Figure 8 depicts that
the DV group gave the most positive opinion towards
the tool in the first and second experiment (4.27 and
4.44 respectively) followed by RG group (4.00) and
MY group (3.45) in the first experiment. However, in
the second experiment, the MY group had more
positive opinion (3.33) compared to the RG group
(3.22). The mean values given were based on Likert
scale:

1. Strongly disagree.
2. Disagree.
3. Normal.
4. Agree.
5. Strongly agree.
Based on the metric M4.2 (see Table 4), Figure 9
portrays that DocLike viewer derived the most positive
opinion or mean value M2 towards each criterion (CI
to C12) provided by the tool compared to the other two
groups in both experiments. But the MY group gave
more positive opinion towards the criteria in the
second experiment compared to that of the first
experiment. Whereas, the RG group gave more
positive opinion in the first experiment but not that of
second experiment.

8 The International Arab Journal of Information Technology, Vol. 2, No.1, January 2005

view of software artifacts. Some studies evaluated how
SV method used could enhance software understanding
of an existing software system in some aspects such as
programmers' cognition strategies [11, 18] or program
comprehension [2, 4]. Our previous work had
identified the drawbacks and strengths of the graph
methods used by SV tools (Rigi, PBS, SNiFF+ and
Logiscope) [12] and also a comparative study on the
features and analysis aspects of the four tools [13].
Based on the study we found that most SV methods
~used~bythe~tools-need-userinterventimrto-cul1apse~the

nodes into subsystems after software abstraction
visualized except for PBS that optionally allow users to
collapse components prior to generating of views.
Even if source codes parsed are not very large in size,
the graph presented will be quite complicated, with
crossing of arcs except for SNiFF+ (because graph
drawn column-by column). Besides, none of the tools
employ an explicit document-like re-documentation
environment in their SV methods.

Our work differs from existing methods by
improving program comprehension and reducing
cognitive overhead using DMG method that proposes a
standardized, modularized and document-like SV.

6. Conclusion and Future Work

SV can improve cognition of an existing software
system particularly when software engineers are
confronted with out-dated or absence of design
documents. However, current approaches in graph
drawing of SV methods tend to produce overcrowded
or confined graph even if source codes parsed are not
very large and they do not provide better environment
to structural re-documentation of the subject system.
Hence we propose a document-like SV method called
Doc Like Modularized Graph that provides graph
representation modu1e-by-modu1e in a document-like
re-documentation environment. We realized the
method in DocLike viewer tool and conducted two
experiments to evaluate how much our DMG method
can improve program comprehension in solving
different types of maintenance tasks. Although in some
maintenance tasks DocLike viewer could not
significantly improve productivity and quality,
generally programmers who used DocLike viewer
could find solutions of maintenance tasks much faster
thus enhancing the productivity and they could obtain
more correct solutions or fewer errors thus enhancing
the quality. On the other hand, the most positive
opinions given by the users towards the usefulness of
DocLike viewer in overall and each criterion provided
by the tool reflect that DMG method has enhanced
cognitive aspects of existing SV methods.

Future work should include the finding of
weaknesses in the criteria with less positive opinions
and then improve the criteria towards the maximum. fu
addition the future work should also consider the

testing ofDMG method of DocLike viewer on a larger
software system.

Acknowledgement

We would like to thank the reviewers, participants of
the experiment, Rigi researchers and also other
individuals who indirectly contributed to this research.

References

[1] Basili V. R., "Software Modeling and
Measurement: The Goall Question! Metric
Paradigm," University of Maryland Technical
Report, UMIACS-TR -92-96, 1992.

[2] Binkley D., "An Empirical Study of the Effect of
Semantic Differences on Programmer
Comprehension," in Proceedings of the 1 rJ"
International Workshop on Program
Comprehension, IEEE Computer Society Press,
USA, pp. 97-106,2002.

[3] Chen Y. F., Nishimoto M. Y., and Ramamoorthy
C. V., "The C fuformation Abstraction System,"
IEEE Transactions on Software Engineering, vol.
16,no.3,pp.325-334,1990.

[4] Hendrix T. D., Cross J. H. IT, and Maghsoodloo
S., "The Effectiveness of Control Structure
Diagrams in Code Comprehension Activities,"
IEEE Transactions on Software Engineering, vol.
28,no. 5,pp.463-477, 2002.

[5] Mashiko Y. and Basili V. R., "Using the GQM
Paradigm to hwestigate Influential Factors for
Software Process Improvement," Journal of
Systems and Software, vol. 36, pp. 17-32, 1997.

[6] Parry T. III, Lee H. S., and Tran J. B., "PBS Tool
Demonstration Report on Xfig," in Proceedings
of the i h Working Conference on Reverse
Engineering, IEEE Computer Society Press,
USA, pp. 200-202, 2000.

[7] Price B. A., Baecker R. M., and Small I. S., "A
Principled Taxonomy of Software Visualization,"
Journal of Visual Languages and Computing,
vol. 4, pp. 211-266, 1993.

[8] Rigi, "Rigi Group Home Page," http://www.rigi.
csc.uvic.ca, 2004.

[9] Shaffer C. A., A Practical Introduction to Data
Structures and Algorithm Analysis, Prentice-Hall,
New Jersey, pp. 12-21, 1997.

[10] Storey M. A. D., Fracchia F. D., and Muller H.
A., "Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Exploration," Journal of Systems and Software,
vol. 44, pp. 171-185, 1999.

[11] Storey M. A. D., Wong K., and Muller H. A.,
"How Do Program Understanding Tools Affect
How Programmers Understand Programs?," in
Proceedings of the lh Working Conference on

Organised by : Jointly Organised:

PrucE!lltling$ at Tho 2'" Malaysian Software EngirmGring ConfCtlll)Ce (MySEC1J6)

A Tutor-Based Software Visualization Approach (TubVis) for
Novice Software Engineers

Shahida Snlaiman
School Q/' Computer Sciences.

Universiti Sains Malavsia,
11800 US.W, Penang, Malaysia

shahida@cs,lIsm,my

Abstract

A miff/bel' of softwal'e visualization fOols either'
resem'ch prolOOpes or cmrmrel'cial romputcr-oid(!d '
software eIIgineerillg (CASE) products aI'e available.
Be.fid(~v. c;risting /1lIegrafed Df-'V(dopmellt EJtvironmcnts
(IDEs) mos'" prOl';de vislIali::afirJII IIlilitv to view '
software artefacts being dew/oped. In' order fo
l'isIWlise sofiware arrejilcrs il1 SII('h tooh, reverse'
":lIgiJ/(iE.'1'ing is re.quire4. Existing rools employ mriollS
methods alld approaches for software visualization with
the main goaf fO improve program comprehension of C

I1'liffen software systems. However. existing meth(1d~ or '
approaches (Ire limited to generating the views or .
componellt dependencies thaI ;s focusing on 'what' the .
OII1pllt of revc?/:ye engil1eering process. 11Ie online help .
provided lry the tools on~y indicate 'how' to lise Ihe '
tools to genemte the l1f!M.~. Since existillg tools m(}Stly .
ta"get for experienced software engineers. fJnJY tend to .
owl'look file need of explaining 'why' the Ollfput is '
recommended or not recommended. Hel1"e a llIlol'

based software 11sualizatia/l approach (TlIbVL~) is
proposed that (lI1(1~J'Se software artefacts pertaining 10
software t'1lgiul!erfng best pmcfices and generate a set .
of l'ecommendatiolls regarding design oud codil1g for a
/lovice software engineer or a compllter science '
stude,llf. The W01* i5 allticip",,,d fa improve bette.r '
quality (lnd understanding of software l~v combining .
both prua;ca/ 011£1 theoretical aspects of software
engineerillg education ill a softl1'trre visualiZlllion tool.

1. Introduction

A lot of software visualization tools either research
prototypes such as Rigi (11) or conllDcrcial computer
aided software engineering (CASE) products such as
Rational Rose [IOJ are avaiI.1ble. Be~ides. existing
Integrated Development Environments (IDEs) for
instance Borland JBuilder [21 mostly provide
visualization utility to view software artefacts that are
being developed. In order TO visualise software
artefacts in slich tools. reverse engineering is req11ired.

Reverse engineering is the process of analysing a
subject system to idcntify the system's components and

Sarina Sulaiman
Faclllt)' (?l ('ompllter Science & Injortnalion

S:vstem, Universifi Tekno!ogi MalaYSia.
81310 Sjwdai. Johor. MaJaysia

s(lrina(c]"jsksm,lltm.my

their interrelationships, and create representations of the
system in another fonn or at a higher level of
abstraction [4). By having a software visualization tool
in a reverse engineering environment, extracted
s~ftw~ a:tefllcts and their interrelationships can be
Visualised III a more meaningful way to aid software
engineers' program comprehenSion.

Existing tools employ various methods and
approaches [3, 7, 151 for softwllre visualization with the
main goal to improve program comprehension of
\vritten software systems, However existing methods or
approaches are limited to generating the views or
component dependencies that is focusing on 'what' the
outP~t ofrcverse engineering process. The online help
provlded by the tools only indicate 'bow' to use the
tools to generate the views. Since existing tools mostly
target for experienced software engineers, they tend to
overlook the need of explaining 'why' the output is
recommellded or not recommended.

For instance computer science students or novice
software engineers need to be guided whether the
programs they have written are well designed or not.
Existing tools provide the automaiioll of software
visualization in prdctical but they are lack of theoretical
aspects, Normally, computer science students learn
~heories. of software engineering during their sllldy. By
lIltegratmg the theoretic.al aspects in a tutor-based
approach of software visualization, the students will be
able to balance practical and theoretical aspects during
software developmem and maintenance. TItis
integration vvillmake the tool more beneficial and vital
in giving them theoretical guidance even to novice
software ~llgineers. However it is crucial to highlight
tllut expenenced or expert software engineers may find
tllis approach relatively useful if they want to ensure
their software designs are confol1llcd to sofTware
engineering best practices all the time.

Novice software engineers described in this paper
refer to both computer science students and software
practitiollers who develop software systems but do not
fully practise software engineering discipline. No
specific definition given by existing work because most
of them refer their su~iects as either computer science
students or sofMare engineers. However in our study,
novice softW',ue engineers do not only refer to compuler

MySEC'Il6 [323 J

Proceedings ij! The 2""Malaysian Softw~rn Engineering ConferCilce iMyS£C'OS)

science students but also practitioners who do not fhlly includes: (i) Examine the best practices in software
adhere to software engineering practices and disciplines engineering specifically for design and coding stage,
while developing software. (ii) archive the output of (i) into a dambase that will be

Based 011 the observations and evaluations of the niles to be checked, (iii) develop a software
repons produced by undergraduates' or even post visualization tool that will employ the tutor-based
graduates' software development projects. the problems approach (TubVis), (iv) integrate TubVis tool with the
faced by computer science students or novice software existing UDaRE environment and (v) evaluate the tool
engineers including how to create a good requirement on the subjects of computer science students who have
analysis. how to transform the requirement into a studied software engineering. The evaluation will
proper design uSing cel1ain modelling nOlation. bow to apply the empiri\.-al study used by Shull [12]. For lhe

--- conVert me aesign imo sourcecooesa-ndJrow-ro-rehrte- ---srope -of,hjs--pllperwe--wiH-discuss the -prepesed
the diagrams produced during different stages of TubVis approach and an example of how the prototype
software development or maintenance with the sonrce works.
codes. In addition. they can hardly understand the The variables involved include software engineers
smooth transition among different diagrams generated. or computer science students who develop a software
Hence tbe diagrams produced mostly do not correspond system. the software systenl to be reverse engineered,
with what they code during implementation phase. the extracted software artefacts. rules of best practices
This problem has been scrutinised by some work in software engineering, rceounnelldutions produced
focusing on the ability of students Of novice designers and progmm comprehension. Attributes of the
to understand object-oriented software [5. 6, 12. 13], variables include the novice's level of expertise. the
comprehend programs using animation [8, 9] and size of software systems, the quality of software
understand software for maintenance [I. 14.18]. Based developed. The main research question is: How fo
on the literature study conducted so fur, none of produce a software vi.muliz£1fioll tool thai can provide
existing work attempts to provide a tutor-based both practical (1m/theoretical gUidance while desigTling
approach as the guidance for the novice while and coding software systems? The null hypothesis to be
developing software system through out the phases. reJected is No: A tutor-based approach for software

In the following sections we win discuss the visualization 1001 does 1I0t Significontly improve the
proposed tutor-based visualization approach. the quality of software writtell by novice software
prototype tool. related work and conclllsion. engineers. The proposed TubVis \Yi1l be integrated

2. Tutor-based visualization approach
(TubVis)

We propose a tutor-based approach for software
visualization tool (fubVis) to support lIovice sofrware
engineers. The methodology employed ill this research

Software engineers

Source Codes

..-,..
Graphical view and
recommendations

with existing reverse engineering envirorunem
(UDaRE) that is being developed by the researchers
(refer Figure 1). UDaRE is currently lmder the process
of finaliSing the implementation and integration with
the enhancement of researchers' existing method of
software visuali7~1tioll [16. 17].

Existing UDaRE
Environment

Propo~ed TubVis:
Analyse and

generate tutor
guide

Figure 1: The proposed tutor-based al1lJrOach for software visualization in lJDaRE environment

UDaRE allows a software system to be inputted
and thcn software llrt.efacls will bc extracted. Based 011

the extracted artefacts. the proposed TubVis will

I 324 1 MySEC'OIl

analyse software dependencies and Slate sorre
recommendations. Then a graphical view using
graphical notation will be generated together with the

The tool will indicate 'why' the
not recollUllended. For instance a circular

is not a good design. A good design
follow high cohesion and low coupling

Tlms TubVis will be able to detect any un:
features to be highlighted to the users.

tor-based approach will indicate best practices
llware anaiysisand design hence it indirectly

better coding of software systems. The
this research limited to providing guidance or
to novice software engineers involving the

work.

of views in design stage to source
vice versa. Other stages of software
or maintenance will be considered in the

t S is the source code parsed by UDaRE that
a set of X artefacts. X consists of Xl '" X" that

be packages, classes, methods or data. Let R is a
of rules archived by software engineering experts
specific stages of software· ·development. Upon
• selections on type of checking required, TubVis

make an analysis of the relevant artefacts of set X
_ order to generate a tutor guide or experts'
mKocnmendarions. Finally the graphical view

is accompanied with a set of
mKmnmendations or guidance G. Software engineers
lIIired to decide whether to change their design as
equired or proceed. If tbey proceed, the "defects"
will be further accumulated in the next stage of
decking in order to highlight their design or coding
&eficiencies.

3. TubVis prototype tool

In this section we give an example of how TubVis
%;·ilI generate tutor guide to a particular source code
.and design after UDaRE has parsed and generate the
\iew via a visualization tool.

In order to start checking the design, software
engineers or users need to feed in the source codes
into UDaRE parser such as in Figure 2. This is C
language source code derived from Rigi [II] web site.

Once the source codes have been parsed, the
artifacts will be visualized as in Figure 3. In this
example the 3 modules are interconnected with each
ether. Based 011 the rules, circular relationsllip occurs
when A calls 8, B calls C and C calls A. Circular
d.esign is not a good practice in software engineerillcr

discipline. Looking at the navigability among til:
modules, it is Observed that MAIN calls LIST, LIST
calls ELT and MAIN calls ELr. Hence this is an
accepted design.

Praceedil1Us of The '''' Malaysian Softw8le EfIllil1eedflll Conl8fElllce fMySEC'06j

,itt- OtrtWn

·~-LiiJ·····
"; !~:~i~":Z;~~:';--:~:
~ ;ti1W:'J.~ <~Utlc.l~

i ~:'l~lUM "lift. fl"

; ~(into i4:
;; IUlUEft~ W/An.'.,:

't)~ II!;l~t.·t1.I''''f.1 ","

:~ A
:1 ;t"l4'I1' ... li,sU'J;uwtn) :"f;i

11' ::;',. 'l"'·'"''~(o1 ''''''''' ~
iit1,::"~: ... ,'~~;..;...,.,;...~ .. -, . ~7'~,,~",; . iWk~f~;;;~¥.~(·
·i;~·~·~~ot~~sQ;;c~rt------:-it

Figure 2: An interface to e.'dract II particular
source code in UDaRE

Figure 3: Software artifacts parsed are
visualized

After aU the 1111es set by software engineering
experts in the repository have been checked, TubVis
tool will be able to prompt message of
recommendation or !,'Uidance based on the current
design viewed (see Figure 4). Hence users need to
edit their source codes in order to ensure 110 more
circular desi!.,'11 produced when they generate the
grnphicaJ view of the changed source codes. In order
to give a flexible approach to the users,. they may be
allowed to proceed with the design. However the
TtlbVis tool may be set to be mandatory by the
experts in order to avoid novice software engineers to
ignore the recommendations nnd correct their design.
Using this approach. users nre forced to rectifY their
design before dley proceed to the next stage. Hence
this will ensure software engineering discipline is
practiced at the very beginning of software
developmellt or maintenance.

MySEC'UIi I 32.5 1

Proceedings o! TIle 2"'Malaysian Soltware Engineering Conlerente tMystC'OS}

Figure 4: A message box displays the releyant
recommendation or guidance

4. Related work

As we discussed earlier ill the introduction,
commercial CASE tools and IDEs provide a
comprehellsive cnVirOl11UClll for softl.varc engineers or
computer science students to draw diagrams during
una1ysis and design stage and then tnlllsfonn the
design into corresponding source codes. Rational
Rose (10] is a ubiquitous commercial tool that
provides both forward and reverse engineering so
called roundtrip engineering. However the tool is very
expensive causing the academic institutions or small
software departments opt to employ open source tools
available Of do not even use such tools at all. In this
case novice software engineers will use drawing tool
to design their software and then transform manual1y
into source codes using any available IDEs for the
software languages tlleY use. For instance they might
draw a class diagram using Microsoft Word and then
implement the coding using Borland JBuilder to
develop a Java-based software system.

In addition, commercial tools like Rational Rose
[101 are quire complicmed to be used by novice
software engineers pal1icularly snldents. Such tools
are morc appropriate to be uscd by experienced or
expert software engineers if they arc fully equipped
with best pmctices ill software engineering in
parti<.:ulur sofiware design and coding. Users of the
tools will be able to generate diagrams stich as use
elise diagram for analysis and then creute the sequence
diagram during the design stage. The tool allows
generation of source codes' skeleton from the
sequence diagmm. However the tool does not check
whether the diagrams in both analysis and design
stage are correct or conform to software engineering
discipline or best practices. They do uot provide
direct guidance or tutoring tool to suggest to novice
software engineers or computer science students how
to analyze, design and write source codes confonn to
the best pntctices in order to produce a high qualiiy
software.

Hcncc this has motivated us to integrate tutor
based approach to visualise software systems in
reverse engineering environment and then the
extracted software artefacts will be analysed by
comparing [hem with the imalysis, design and codi1lg
rules. A set of recommendations will be generated

[326 I MySl:C'Il!l

once the nIles have been checked. For instance, the
rule of cohesion and coupling of classes can be
archived in the database and then the rule is checked
when analysing extracted artefacts consist of a
number of illlen-elated classes.

Referring to the main research question indicated
carlier: Holl' to product? a s(?/i11'ore visualization TOol
(hal can provide hpth praCTical lIlId '/leore/iced
g1/idmK~' while designing auJ coding sOJhmre
.m;fems? The main issues TO be considered include
\~llat aspects [0 be considered iu order to provide a
so'flware visualizatioll tool that not only generate
graphical views and provide the on-line help or user
manual 011 how to use the tool but it should also
provide a theoretical guidallce to software engineers
particularly novice such as students. This problem
partly has been pondered by some research focusing
on the ability of students to understand objec;~
oriellted software [6, 12, 13], comprehend programs
using anim<'ltion [8, 9) and understand software for
maintenance [1, 14, 18].

Jimenez-Diaz et al. [6J proposed the use of
virtual ro1e-p41Y by computer science studelliS in 11

virtual 3D environment. Role-play is claimed to be Jilt

active learning approach in which the tool IndicalO
the behaviour pcrfonucd by the role-play il1cl~
name. goal, actors and description. During me
simulation .. the students can observe tlle partic~
objects, tlieif run-tUne classes, active objects, _
their scope, control flow and method caUs. TIm;
approach ulrgets to assist understanding of ~
oriented software system but it does not provide JIIIIIj![

recommendation or guidauce whether the safnfl~
written corresponds to the design and analyse R
correctness of the design.

Shulll!/ al. [12] reported how all objecl~
framework employing example-based techni~ ~
more suitable to beginners compared to hi~
based tech1liques, which the leaming cune 1$

buge. The work indicated tl1at ex~
tcclll1ique that guide students to explore an ~
by understanding a particular object in the
code is more effective for beginners oflbe fraj~_~.
On the oilier hand, hierarchy-based techu.i
guide students starting to nuderstand .
broad classes of fimctionality towards a
of classes and sped fie instantiation, are
for beginners to understand software .
object-orienled framework. This study
reading technique to be employed by
does not suggest any tntoring elemem w
novice's understanding in designing ~j
object-orientcd software.

The work of McWhirter [8] suggesre-t _
an animation system to assist students Ie

behaviour of pro~rmms. For instance
students' understanding regarding
search algoritbm, the tool cillled
produces a graph-based animation thm

10 input values to the program and observe the
dlanges via the animated gmph. Another work of
Ollki and Hosak:! [9] promoted PA VI (Program
Action Visualization Interpreter) that interprets and
,isualises program behaviour. The tool represents
'';}fiables. arrays, and pointers as lhree-dimensional
otjccts. Then it unimates the actions of an object
when there is an assignment opermion. Both
. AlgorithmExplorer I'll! and PAVI (9) focus on the
:mderstJndillg of source codes via animation witham
;my checking element for the design and coding best
practices.
. More related work like lilat of Lowry [19) has
proposed a computer-based tutorial resource to
support students to understand complex commercial
CASE tools in order to dClllonstmte software
eu..,!tineerlng concept. Wood and Danielson [20)
suggest a web-based tutorial resol1Ice for introductory
logic design course that enable smdents to learn the
available topics and then discuss and review text
interactively. Hacker and Sitte [21] developed
WinLogicLab te.,ching suite thaI not only provide
materials of digital logic design course but also allow
students toiUleractively produce the design. However
such work target more on educational aspects which
differ from our proposed work that integrates both
theoretical and practical aspects of softw'are
engineering into a CASE tool using both reverse
engineering and software visualisation method ill
old.er to ~\de. tI.(.)\'ice. wttwaT.e. e.\\¥,in.eetS OT. COT.\\~\\tet
science students.

Based on the Iitemture study conducted so far,
none of existing work has proposed a rotor-based
approach as the guidance for the novice while
developing software system using a CASE tool.

5. Conclusion and future work

We have proposed a tutor-based soilware
visuali7.lltion approach that is integrated with a reverse
engineering environment. The software anifacts are
extracted and ... isualized together with the
recommendation of how good the artifacts produced
compared with the rules or best practices archived by
software engineering expclts. The approach focuses
011 novice or beginners in software engineering
including computer science students who need both
theoretical and practical guidance while developing
software system. Hence the integration of the
proposed approach in CASE tool is anticipated to bc
able to improve quality of software process. Hence
the end software product will probably have bettcr
quality too.

Our fhtnrc wOIk will bc to stlldy more extensively
design metTics to be covered by TubVis and also to
further expand the proposed lIpprollch to other sta!,"Cs
such as analysiS alld testing. Currellt work focuses on
design and coding stage only. Then we will further
evaluate the significance of the proposed approach.

6. Acknowledgements
We would like to thank USM to support this

study as pall of UDaRE research project under the
USM Short Term Grant (304iPKOMP/636009).

7. References

-[lJ A\lSlin_ M. A., -III, and -Sallladzadch, M. H. (2005) .
SoftwuIe ComprehensionfMuintcllum;e: all
IntromlCl\)ry Coucsc. Uf" 111"".,wtiulla/ Conference (m
~lwfems t,'ngi/J(!eri/lg,lCSEIIg 20(}5. 414-419.

[2J Borland (2001). Borhllld JBlliidel' 5 Elllerpl'ise
5.0.194.0. Borland Software Corporati"l1 (19%-2001).

[3) Buchsbaulll, A., Chen. Y -F., Huang. H .• KOlltsofios, E.,
Mocenigo, J., Rogers, A.. Jank(lwsky. M. and
Mancoridls, S. (2001). Visualizing and Analyzing
Software Infms\nlclures. IEEE So/I ·{wo.
September/October 2001. 62-70.

(41 Cbikofsky. E. J. and Cross II, 1. 1I. (1990). Reverse
Engineering and Desigll Recovery: A Taxonomy.
IEEE SOjiwarf!. January 1990: 13-17.

[5] Din, J. Ali, N. M .• Mohd Noah. S. A. and ldris, S. A
Conceptual Fr.ullcwork of Object-Oriented Design for
Novke Designers. The First MalaysiaJl Softy;al'e
Engineering Crmff!l'Cnce rM,H'>EC'05j. USM, Malaysia.
83-88.

[61 Jimenez-Diaz, G., Gomez-AlbaIDlO. M. CJOlllCZ
Martin, M. A. and Gonzalez-Calero, P. A.
Understanding Object-Otiented Software through
Virtllal Rok Play. IEEE' in/emational Conference 011
Adwmced [edl11ing TechnolOgies, ICALT 2005. 875-
~11.

[7J Lanza, M. (2003). Lessons Learned in Building a
Software Vi~ualizatjon Tool. Proceedings 0/ the 7'1.
EW'opean COI1/erel1ce 011 Sojiwore Maillletlltllce and
Reellgillcerillg (CSMR'03). I- 10.

[8] Mc\Vhirter, J. D. (1996). AlgmitIul1Explorer: a Student
Centered Algorithm Animation System. IEEf.:
Symposium on Visllal Languages. 174-181.

[91 Ohki, M. and lIosaka, Y. (2003). .A Program
Visualization Tool for Program Comprehensi,)n. lEEE
S}1"posiUIII Oil Ibmwn Centric Compllfil/g Lcmgllagej'
and Em'il'olllnems. 263-265.

I: JO) Rational (2006). Rational Sojiware Carport/lion.
http://www.mtional.convproducts/

[11] Rigi (2006). Rigi Group Home Page.
http:i.'www.rigLcsc.uvic.caJ

[12) ShIlll, F., Lanubile, 1'. and Basili, V. R. (2000)
Investigating Readillg Techniques for ~ect-Oriented
Framework teaming. IEEE Transactions on SV/fWaJ'e
Engineering. 26(11) Nov. 2000. 1101-I1J8.

[D} Soga, M .• Kashihnri, A. and Toyoda. J. -1. (1996).
DeSigning: n Self·Explanation Envimnmellt fi~r
Multilayer Understanding. In Case of Program
llnder~lalldillg. IEEE Imenlllfiallal C(I/!(".rmce 011

Multi Media Engineering Hducatioll. 49-57.
[14] Stitllick, J. (1997)_ An Umlergradm\te Course in

Software MaintenaJlce nnel Enhancement. remit
Conference (II/ Sq[rware El/giHllt!l'il/g l:"dumtion &
1i·oinillg.61-73.

(ISJ St(lfCY, M. -A. D .. Fnlcchia, F. D. and Muller. H. A.
(1999). C<'!lnilive Design Elements (,) Suppurt lht!
Cllllstniction of u Mental Model during S~)ftw!lrc
Exploration. Ilia Joul1Ia/ v/Synems all<1 SojiWUI<'.

MySEC'06 I 327)

Proceedings nllha 2~ Malaysian Soltwara EngtnP,l)I~llI COilierenw. IMySfC'OS}

[16J Sulaimnn, S., ldris, N. B. and Sahibuddin, S. (2(K)S).
'Enhancing Cognitive Aspects of Softwnre
ViStlllli71ttion Using DocLikc Modulnriz<.'Il Graph
(DMG). Inte/1larionaf Amb JOImraJ of h!liJl'lfillfion
TechI/%s)' (IAJIT). 2(1). Zurka Private University,
Jordan. 1-9.

(17J Sulnimnn. S., Idris. N. B., S.'l.bibllddin, S. (Iud
Sulaim8n, S. t2(03). Re-doClllllenting. Visualizing and
Ullderslanding Software Systems lOsing DocLik~
Viewer. 11ft, Asia Pacific So.tiwCI/'tt Engillet'17llg
Cor[ference, IEEE Computer 51,ciefy Press. tlSA. 154-
163.

(18J van Deursem. A. .• Fu.",.e, 1. -M. Koschke, R. and
Rilling, J. (2003). E.xperiences in Teaching SoftwlIre
Evolulion and Program Comprehension. 11,h IEEE

ll11em(lfional WOlk~iwp Ott H'Ogrom Comprehellsioll.
283·284.

[l9J Lowry. G. R. (1996). CAL SUPPOf! for COU1pk:X
CASE Tutorials. Demonstrating Snftware Engineering
Concepts through CASE. /fI(CJ'IIatioIlCl/ Conference Oil

SQ,(Mat';? Ellgilleering: Edllcation <lIltj Pmclice. IEEE
Computer Society Press. USA. 292-299.

(20) Wood, S. lind Danielson, R. (2000). Java-Based
InstmctiotlaI Materials lor Introductory Logic Design
Courses. 3(jh AJlllual Frontiers ill Edllca/i'l/l
COIlI(!rellc,~ 1000. S2Dii O-S2Di 16 v{)1.2

[21 J Hacker. C. and Siue, R. (2004). Interdctive Teaching of
E!ementmy Digital Logk Design with WinLogiLall.
IEEE Tnmsaclions 0/1 Edllcanol1. Vol. 47, Issue 2,
May 2004. 1%-203.

Lampiran C:
Dokumentasi Sistem (dalam Bahasa Inggeris)

A User-Defined Approach for
Reverse Engineering

(UDARE) Tool

Project

System Document
USM Short Term Grant: 304/PKOMP/636009

15 March 2005 -14 June 2007

Compiled By:

UDARE Project Team

Dr Shahida Sulaiman (Client/Project Leader)

Shahriza Khairuddin (Developer)

Md Yamin Md Yusoff (Developer)

Software Engineering Research Group (SERG)
School of Computer Sciences

Universiti Sains Malaysia
11800 USM

Penang, Malaysia

20/07/2007

U DARE-SystemDocument-20070720-V2

USM Short Term Grant: 304/PKOMP/636009 UDARE

Document Revision History
Revision Date Updated by Description

U DARE-SystemDocument-20070720-V2
ii

USM Short Term Grant: 304/PKOMP/636009 UDARE

Table of Contents

1. Software Project Management Plan (SPMP) ... 8

1.1. System Overview .. 8

1.1.1. System Description and Function ... 8

1.1.2. Development Methodology ... 8

1.1.3. Software Development Lifecycle (SDLC) .. 8

1.1.4. Modeling Notation ... 8

1.1.5. Coding Standard ... 9

1.2. Team Structure and Roles .. 9

1.2.1. Role Assignments ... 9

1.2.2. Development Responsibilities ... 9

1.3. Facilities and Computer Resources .. 9

1.3.1. Workspace Requirements and Allocation ... 9

1.3.2. Computer and other Hardware Resources ... 9

1.3.3. Software and Operating System Resource Specifications 9

1.4. Risk Management ... 10

1.4.1. Areas of Risk .. 10

1.4.2. Monitoring Procedure and Contingency Plan .. 10

1.5. Reviews .. 10

1.5.1. Formal Reviews .. 10

1.5.2. Informal Reviews .. 10

1.5.3. Review Progress ... 10

1.6. Project Schedule and Milestones ... 11

1.7. CosUBenefit Analysis .. 12

2. Software Requirements Specifications (SRS) .. 13

2.1. Engineering Requirements ... 13

2.2. Top Level Representation ... 13

U DARE-SystemDocument-20070720-V2
iii

USM Short Term Grant: 304/PKOMP/636009 UDARE

2.3. External Interfaces Requirements ... 14

2.3.1. Interface User I UDARE System ... 14

2.4. Internal Interfaces Requirements for compidentifier .. 15

2.4 .1. Use-Case Input Syntax: SRS-0001 .. 15

2.4.2. System Sequence Diagram: Input Syntax .. 15

2.5. Internal Interfaces Requirements for companalyzer .. 15

2.5.1. Use-Case Input Source Code: SRS-0002 .. 15

2.5.2. System Sequence Diagram: Input Source Code .. 16

Use-Case Extract Artifacts: SRS-0003 ... 16

System Sequence Diagram: Extract Artifacts ... 16

2.5.3.

2.5.4.

2.6.

2.6.1.

Internal Interfaces Requirements for databasemanager ... 17

Use-Case UpdateDatabase: SRS-0004 .. " 17

2.6.2. Use-Case ConnectionDown: SRS-0005 ... 17

3. Software Design Description (SDD) ... 18

3.1. System Architecture .. 18

3.1.1. System Packages ... 18

3.2.

3.2.1.

Integration Interfaces .. 19

[compidentifier - databasemanager] 1/0 Interfaces .. 19

3.2.2. [companalyzer - databasemanager] 1/0 Interfaces ... 19

3.3. Detailed Design for compidentifier .. 20

3.3.1. Detailed Sequence Diagram: Input Syntax [SRS-0001] 20

3.3.2. Class Design: Syntaxldentifier .. 20

3.4. Detailed Design for companalyzer .. 21

3.4.t.

3.4.2.

Detailed Sequence Diagram: Input Source Code [SRS-0002] 21

Detailed Sequence Diagram: Extract Artifacts [SRS-0003] 21

3.4.3. Class Design: SyntaxAnalyzer .. 22

3.4.4. Class Design: CharacterAnalyzer ... 22

3.4.5. Class Design: ExtractResult ... 23 .

U DARE-System Docu ment-20070720-V2
iv

USM Short Term Grant: 304/PKOMP/636009 UDARE

List of Figures

Figure 1.1 : Complete System Module Breakdown .. 8

Figure 1.2: GANTT Chart shows the schedule for UDARE project... .. 11

Figure 2.1: Overall Use Case Diagram for UDARE .. 13

Figure 2.2: Overall Domain Model Class Diagram for UDARE ... 14

Figure 3.1: Design Class Diagram for UDARE ... 18

Figure 3.2: Package Diagram ... 18

Figure 3.3: Inter-Package Interface .. 19

U DARE-SystemDocument-20070720-V2
vi

USM Short Term Grant: 304/PKOMP/636009 UDARE

List of Tables

Table 1.1: Project Team Role Assignments .. 9

Table 1.2: Module Development Responsibilities ... 9

Table 1.3: Areas of Risk ... 10

Table 1.4: Monitoring Procedure and Contingency Plan for Risks .. 10

Table 1.5: Review Progress .. 10

Table 1.6: Task Assignments ... 11

UDARE-SystemDocument-20070720-V2
vii

USM Short Term Grant: 304/PKOMP/636009

1. Software Project Management Plan (SPMP)

1.1. System Overview

1.1.1. System Description and Function

Figure 1.1: Complete System Module Breakdown

1.1.2. Development Methodology

UDARE

We will be using OOAD as our development methodology for this project. Moreover, the
existing system that will be integrated with our system used the same methodology.

1.1.3. Software Development Lifecycle (SOLe)

Client Requirements
M mg An sis

Vall tion

Operating System

Installation & Maintenance

Working System

Te ng

1.1.4. Modeling Notation
The project uses UML as the modeling notation, with emphasis on Use Cases, Class Diagram
and Sequence Diagram.

UDARE-SystemDocument-20070720-V2
8

USM Short T errn Grant: 304/PKOMP/636009 UDARE

1.1.5. Coding Standard
This project uses JA VA2 as the programming language and Borland JBuilder 2006 as the
development environment.

1.2. Team Structure and Roles
This project is led by Dr. Shahida Sulaiman with support by Md Yamin bin Md Yusoff and
Shahriza. Both Md Yamin and Shahriza will carry task as developer and each assigned with
different module to work on.

1.2.1. Role Assignments
Each team member is a Developer. In addition, the following roles are assigned to the
respective team members.

Table 1.1: Project Team Role Assignments

Role Team Member
Project Leader Dr Shah ida Sulaiman
Quality Assurance Dr Shah ida Sulaiman
Developer Md Yamin bin Md YusoffJ1 Aug. 2005 - 31 July 2006)
Developer Shahriza bin Khairudin (1 Sept. 2006 - 29 Feb. 2007)

1.2.2. Development Responsibilities
The following team members have been assigned to the given Modules for the project.

Table 1.2: Module Development Responsibilities

Module Team Member
udareapplication Md Yamin bin Md Yusoff and Shahriza bin Khairudin
companalyzer Md Yamin bin Md Yusoff and Shahriza bin Khairudin
databasemanager Md Yamin bin Md Yusoff and Shahriza bin Khairudin
compidentifier Md Yamin bin Md Yusoff and Shahriza bin Khairudin

1.3. Facilities and Computer Resources

1.3.1. Workspace Requirements and Allocation
This project was developed at the Artificial Intelligence Lab (410), Level 4, School of Computer
Sciences, Universiti Sains Malaysia.

1.3.2. Computer and other Hardware Resources
This project will be developed using two computers, each of which is belongs to respective
group members. Both computers run on Pentium 4 3.0 GHz, with the speed of RAM of 512Mb.
Projected hard disk space are up to 10Gb for this project.

1.3.3. Software and Operating System Resource Specifications
This project runs under Microsoft Windows XP Professional Edition Service Pack 2
environment. Borland JBuilder 2006 is chosen as the software development tools. The edition
of Java the we will be using is Java Standard Edition (J2SE).

U DARE-SystemDocument-20070720-V2
9

USM Short Term Grant: 304/PKOMP/636009

1.4. Risk Management

1.4.1. Areas of Risk
Table 1.3: Areas of Risk

Area of Risk Constituents
Resource Software are too expensive to acquire
Client Client keeps changing requirements too often
Communication Meeting with client might difficult to arrange

UDARE

Technical The skills available might not be sufficient to develop the system
Security Computer might vulnerable to theft attack

1.4.2. Monitoring Procedure and Contingency Plan
Table 1.4: Monitoring Procedure and Contingency Plan for Risks

Risk Priority
(1=high risk,
2=medium risk,
3=low risk)

Developer 2
communication

Inexperience 2
developer
System resist by 1
end users

Hardware failure 1

1.5. Reviews

1.5.1. Formal Reviews

Not applicable

1.5.2. Informal Reviews

Monitoring Procedure Contingency Plan

Meeting and discuss Conduct a meeting
regularly depending on
needs

Training Schedule time for training
purpose

Make interview and Have a prototype review
discussion session before with end user
develop the system
Backup Make a backup regularly.

Provide a server

Informal reviews were conducted between the Project Team and the Client.

1.5.3. Review Progress
To be defined.

Table 1.5: Review Progress

U DARE-SystemDocument-20070720-V2
10

USM Short Term Grant: 304/PKOMP/636009 UDARE

1.6. Project Schedule and Milestones

Task

Recruit a student assistant 21

Initiation of project •
2 42

3 28

4 49

5

•
6 77

7 Study and maintain DocLike Viewer to serve 84
and DG

Task 6

8 the whole modules and test 84

Completion of the first prototype •
9 42

10 28

11 Preparation of a technical paper 14

Submission of a paper work •
12 Close down

Figure 1.2: GANTT Chart shows the schedule for UDARE project

Table 1.6: Task Assignments

Th f II 'bl f th f II T k . Ph b e 0 owmg eam mem ers are responsl e or e oowmg as s m ase
Task 10 # Responsibility Remarks
1 Project leader
2 All Project leader consolidates research papers
3 All
4 Project leader
5 All Project leader initiates and then refined by developers
6 Developers Project leader leads reviews
7 Developers
8 Developers
9 All Project leader guides developers
10 All Project leader consolidates all reports
11 Project leader
12 Project leader

U DARE-SystemDocument-20070720-V2
11

USM Short Term Grant: 304/PKOMP/636009

2.4. Internal Interfaces Requirements for compidentifier

2.4.1. Use-Case Input Syntax: SRS-0001

Use-case name: Input Syntax
Summary: User input the syntax such as Java or C++ syntax.
Dependency
Actor: Software User
Pre-Condition : User need to input the syntax for analyzer,
Description :

1, Go to the "Tools" at the toolbar, select "Input Syntax",
2. User has to fill the form according to what system needs.
3, Press "add" if user done with it.
4, Include "UpdateDatabase" use-case.

Alternatives:

UDARE

Post-condition: There are syntax that analyzer can use for analyzing the source code.

2.4.2. System Sequence Diagram: Input Syntax

A UDARE

, , ,
:<
, ,
I<

S Y n tax Id e ntifie r()

InputSyntax Window

SetS yntax()

Show MsgDialog

, ,
)'

I ,
I

)1

2.5. Internal Interfaces Requirements for companalyzer

2.5.1. Use-Case Input Source Code: SRS-0002

Use-case name: Input Source Code
Summary: User input the source code that they want to analyze
Dependency
Actor: Software User
Pre-Condition: User want to upload source code into the system.
Description: [SRS-0002-A 1]

1. User press open file button and select the file from local drive
2, Press "Link" button and all the file that user selected earlier will appear in

combo box,
3, If user wants to know details, then include "ExtractArtifacts" use-case,

Alternatives:
1 a) User may select more than one file. [SRS-0002-A2]
4. Press "Show Code" button and the source code will appear in Text Area, [SRS-

0OO2-A3]
Post-condition: Source code has been appeared in the system.

UDARE-SystemDocument-20070720-V2
15

USM Short Term Grant: 304/PKOMP/636009

2.5.2. System Sequence Diagram: Input Source Code

I
I
I

tE

I
I

K

OpenFile()

add Item

ShowCode()

Show Source Code

2.5.3. Use-Case Extract Artifacts: SRS-0003

Use-case name: Extract artifacts

UDARE

I
I

:>:

I
I
I

)l

SummaFY : User want to know the details about syntax that they added earlier.
Dependency
Actor: Software User
Pre-Condition: Syntaxes updated.
Description :

1. Press "Extract" button then the analyzer will produce the details.
2. If analyzer finished analyzing, then include "UpdateOatabase" use·case.

Alternatives:
Post-condition: Details of the extracted artifacts shown.

2.5.4. System Sequence Diagram: Extract Artifacts

I
I
I

{c

UDARE-SystemDocument-20070720-V2

ExtractO

Show Result

16

UDARE

I
I
I
I
I
I
I

>1

UDARE

USM Short Term Grant: 304/PKOMP/636009 UDARE

2.6. Internal Interfaces Requirements for databasemanager

2.6.1. Use-Case UpdateOatabase: SRS-0004
Use-case name: UpdateDatabase
Summary: All the details that been analyze earlier will be store in database.
Dependency
Actor: Software (automatically)
Pre-Condition: All the extracted artifacts have been produced by the analyzer.
Description : __

----- --------

1. The artifacts analyzed earlier will be stored in the database automatically.
2. Then extend "ConnectionDown" use-case.

Alternatives:
Post-condition: Data stored in database.

2.6.2. Use-Case ConnectionOown: SRS-0005
Use-case name: Connection Down
Summary: Close the connection to the database
Dependency
Actor: Software (automatically)
Pre-Condition: Open for connection.
Description :

1. If all the details stored into the database, connection will be closed
automatically.

Alternatives :
Post-condition: Close the connection.

U DARE-SystemDocument-20070720-V2
17

USM Short Term Grant: 304/PKOMP/636009

3. Software Design Description (SOD)

3.1. System Architecture

Legend:

----...
Syntaxldentlfier

-strSyntax1 : String
-strSyntax2: Siring
-strSyntax3: String
-strSyntax4: String
-strSyntax5: String
-strLabel : String
-strldentifierName: String
-strLange String
-strlndentifierCode: String

+setSyntaxO , , , ,
-strUrl

+

--

Application

+main()

--_---I
J

SyntaxAnalyzer ExtractResuit

-strFilelD String
-strFileName String
-strPackageList : String ~

-strResultString' String
___ -7 -objResult: String

-strClassLisl , String
-strMethodList: String
-strDataList ' String
+GetSyntax()
+AnalyzeTextO
+ReadFilesO
+RetrieveLinkO
+SetOptionSyntaxAnalyzer()
+CheckResult()

Qoc1Io\., .. '!f
-Ch!lpter ,: String
-eecUoo: Strlng

- - - - -SLl\SecUon: String
+AddSection()
+Removesectlon()
+Renarne5aCtibr()

+ExtractResultO

CharacterAnalyzer

-charac : Char
-strlflJUlToken: String

-7 -strNewToken: String

+ ExtractC haracter ' Boolean
+ProcessToken/\ ' Sirina
+ : Boolean

I TableVIewW I
----i-tableTytJe: String I

I+GenerIll\lT£d$() I

~;kl-

~+=~~;:~WIrin>J - - - - -7 v'ewerid: Strhig
:lnsertClassval ' Stri ":Gener~eVi6w(5:k1L ___ -t7;G;;rap~Ii~;r.;:;;;:;:;r;1

+ DeleteS ax ,Slri

I I .Giaplff,yPII
+lnsertDataVal : Stri +GenerateGr,aph()

SoVis Class (visualization and documenter tool to be integrated)

o UDARE Class

Figure 3.1: Design Class Diagram for UDARE

3.1.1. System Packages

compidentifier

+ Syntaxldentifier

I
companalyzer

I +SyntaxAnalyzer
~CharacterAnalyzer

! +ExtractResult

DatabaseManager

+ DataManager

Figure 3.2: Package Diagram

U DARE-SystemDocument-20070720-V2
18

UDARE

USM Short Term Grant: 304/PKOMP/636009 UDARE

3.3. Detailed Design for compidentifier

3.3.1. Detailed Sequence Diagram: Input Syntax [SRS-0001]

I Syntaxldentifier I DataManager

I I
: SyntaxldentifierO I

I ~
I I

: InputSyntax Window :
~ I
: SetSyntaxO :
~I ----------------------~):
I I ConnectDBO I I I II __________________ ~)I

: Show MsgDialog I :
~K------------~~~-----: I
I I I
I I I
I I I
I I I

3.3.2. Class Design: Syntaxldentifier

Syntaxldentifier

-strSyntax1 : String
-strSyntax2 : String
-strSyntax3 : String
-strSyntax4: String
-strSyntax5 : String
-strLabel : String
-strldentifierName: String
-strLange: String
-strlndentifierCode: String

+setSyntaxO

Stereotype:
Entity

Responsibility:

This class is responsible to manage the syntax input setup by the user.

Attributes:
• strldentifierName - name to identify to artifacts
• strLang - name of the language
• strldentifierCode - code for the artifact
• strLabel -label name
• strSyntax1 - the first syntax
• strSyntax2 - the second syntax
• strSyntax3 - the third syntax
• strSyntax4 - the fourth syntax
• strSyntax5 - the fifth syntax

UDARE-SystemDocument-20070720-V2
20

USM Short Term Grant: 304/PKOMP/636009

Operations/Methods:

• setSyntaxO

3.4. Detailed Design for companalyzer

UDARE

3.4.1. Detailed Sequence Diagram: Input Source Code [SRS-0002]

, , ,
~

, , , , , ,
r

OpenFileO

add Item

ShowCodeO

Show Source Code

SyntaxAnalyzer

,
)'

, , ,
)1

ConnectDBO

RetrieveLinkO

ReadFilesO

, , , , , ,
)' , ,
~

3.4.2. Detailed Sequence Diagram: Extract Artifacts [SRS-0003]

I
I
I
I
I

(

ExtractO

Show Result

UDARE-SystemDocument-20070720-V2

I
I
I
I
I
I

>l SearchDBanalyzer()

21

DataManager

I
I
I
I
I
I
I
I
I

)

USM Short Term Grant: 304/PKOMP/636009 UDARE

3.4.3. Class Design: SyntaxAnalyzer

SyntaxAnalyzer

-strFilelD : String
-strFileName: String
-strPackageUst: String
-strClassList : String
-strMethodList: String
-strDataList : String
+ GetSyntaxO
+AnalyzeTextO
+ReadFilesO
+ RetrieveLinkO
+SetOptionSyntaxAnalyzer()
+CheckResultO

Stereotype:
Entity

Responsibility:
This class is responsible in extracting artifacts from the source code.

Attributes:
• strFilelD - unique Id of the input file
• strFileName - name of the input file
• strPackageList - the package name extracted from the input source code
• strClassList - the class name extracted from the input source code
• strMethodList - the method name extracted from the input source code
• strDataList - the attribute name extracted from the input source code

Operations/Methods:

• GetSyntaxO
• AnalyzeTextO
• ReadFilesO
• RetrieveLinkO
• SetOptionSyntaxAnalyzerO
• CheckResultO

3.4.4. Class Design: CharacterAnalyzer

CharacterAnalyzer

-charac : Char
-strlnputT oken : String
-strNewToken: String
+ ExtractCharacter() : Boolean
+e[QC!lSsTokenO . St[iog
+CheckBracket{\ : Boolean

Stereotype:
Entity

Responsibility:
This class is responsible in processing the extracted artifacts character by character to remove
unneeded characters.

UDARE-SystemDocument-20070720-V2
22

USM Short Term Grant: 304/PKOMP/636009

Attributes:

• charac - character of the artifact
• strlnputToken - input artifact
• strNewToken - output artifact

Operations/Methods:
• ExtractCharacterO
• ProcessTokenO
• CheckBracketO

3.4.5. Class Design: ExtractResult

ExtractResult

-strResultString : String
-objResult: String

+ ExtractR esultO

Stereotype:
Entity

Responsibility:
This class is responsible in to produce output to be presented to the user.

Attributes:

• strResultString
• objResult

Operations/Methods:
• ExtractResultO

- result item
- list of result item

UDARE-SystemDocument-20070720-V2
23

UDARE

USM Short Term Grant: 304/PKOMP/636009

4. Software Test Documentation (STD)

4.1. Test Cases for compidentifier

4.1.1. Test Case Input Syntax: STD-0001

Requirement Traceability Reference: SRS·0001

Use Casel
~ ~ ~

TesfCase ~ Initializalion ~ Test rnput ~)(pectea Result
Scenario
SRS-0001 STO-0001 Syntaxes Syntaxes updated

4.2. Test Cases for companalyzer

4.2.1. Test Case Input Source Code: STD-0002

Requirement Traceability Reference: SRS·0002

Use Casel Test Case Initialization Test Input Expected
Scenario Result
SRS-0002-A 1 STO-0002-A 1 Select a file Open a File is linked

file
SRS-0002-A2 STO-0002-A2 Select Open 2 Files are

multiple files linked
files

SRS-0002-A3 STO-0002-A3 Click 'show - Source codes
code' viewed

4.2.2. Test Case Extract Artifacts: STD-0003

Requirement Traceability Reference: SRS·0003
Use Casel Test Case Initialization Test Input Expected Result
Scenario
SRS-0003 STO-0003 Click File(s) Source codes

'Extract' selected extracted

4.3. Test Cases for databasemanager

4.3.1. Test Case UpdateDatabase: STD-0004

Requirement Traceability Reference: SRS·0004
Use Casel Test Case Initialization Test Input Expected Result
Scenario
SRS-0004 STO-0004 - File(s) Oata updated

extracted

UDARE-SystemDocument-20070720-V2
25

UDARE

iesfProcedure

• Input syntax
• Click 'add'
• View syntax

Test Procedure

• Select a file
• Click 'link'
• Select multiple

files
• Click 'link'
• Click 'show

code'

Test Procedure

• Click 'Extract'

Test Procedure

• Check database

USM Short Term Grant: 304/PKOMP/636009

5. Software Test Report (STR)

5.1. Test Reports

5.1.1. Test Report Input Syntax: STR-0001

Test Case Traceability Reference: STD·0001

Result:
Test Case Success Failure/Error
STO-0001 Yes None

5.1.2. Test Report Input Source Code: STR-0002

Test Case Traceability Reference: STD·0002

Result:
Test Case Success
STO-0002-A 1 Yes
STO-OOO2-A2 Yes
STO-OOO2-A3 Yes

Failure/Error
None
None
None

5.1.3. Test Report Extract Artifacts: STR-0003

Test Case Traceability Reference: STD·0003

Result:
Test Case Success Failure/Error
STO-0003 Yes None

5.1.4. Test Report UpdateDatabase: STR-0004

Test Case Traceability Reference: STD·0004

Result:
Test Case Success
STD-0004 Yes

Failure/Error
None

5.1.5. Test Report ConnectionDown: STR-0005

Test Case Traceability Reference: STD·0005

Result:
Test Case Success Failure/Error
STD-0005 Yes None

UDARE-SystemDocument-20070720-V2
27

UDARE

Remark

Remark
-
-
-

Remark

Remark

Remark

USM Short Term Grant: 304/PKOMP/636009 UDARE

APPENDIX C: SOFTWARE DEVELOPMENT FILES (FINAL VERSION)

:File:n$.~t','&'~0' ,'.t;~rlotmi.' S"ft1 ' " '·"·'~'l:l.tlQih.iRu)m#lk,!f,!: :".0 . IIIIIUlliililli'1 0. " '." ,'....:, \,;
·jb.Y •• drJ,J'i,· ~ ~ < I.Y.m::

UDARE- System C:\Shahida\UDaRE- - Softcopy
System Document- Document ShortT ermProject20070504 \Documents
20070720-V2 (NEC VERSA E120 notebook)
UDARE - Room 627 - Hardcopy
System Document
UdareApplication JBuilder C:\Shahida\UDaRE- - Softcopy

Project file ShortTermProject20070504\UDARE
src Source C:\Shahida\UDaRE- - Softcopy

codes ShortT ermProject20070504 \UDARE
UDaRE Microsoft C:\Shahida\UDaRE- - Softcopy

Access file ShortT ermProject20070504\UDARE

U DARE-SystemDocument-20070720-V2
31

Lampiran D:
Manual Pengguna (dalam Bahasa Inggeris)

1.0 Introduction

1.1 Overview of the Window

Figure 1.1, "Overview of the UDARE window" shows the main UDARE

window.

File Edit View Reports Tools Help

Figure 1.1: Overview of the UDARE window.

At the top of screen is a menu bar, which is described in 2.0, "The Menu

Bar".

1

2.0 The Menu bar

2.1 Introduction

The menu bar in UDARE window allows user to point and click to access

window function. Figure 2.1 shows the menu bar consists in UDARE

window.

File tclit Vi~w Repcrrts Tool} Hel,p

Figure 2.1: Menu bar in UDARE window.

• The File menu contains operations relating to the handling of files that

affect on the whole project.

• The Edit, View and Reports menu are not functioning yet.

• The Tools menu is for input syntax and analyzing syntax.

• The Help menu contains about UDARE.

2.2 The File Menu

These are actions concerned on overall management of a project.

Open

Exit

Figure 2.2: SUb-menus in File menu for UDARE window.

2.2.1 Open

This operation opens an existing document from a file.

2.2.2 Exit

This operation closes down UDARE.

2

2.3 The Tools Menu

This menu is used for input syntax and analyzes syntax.

Figure 2.3: Sub-menus in Tools menu for UDARE window.

2.3.1 Input Syntax

This sUb-menu provides for input syntax. A pop-up window (Figure 2.4)

appears when you click at Input Syntax.

ldentifietcocte f'iI fleIowto GenernlD

Language IJava iJ
Identifier Name I
Syntax (1 keyword per boX)

I ~------

Label I

Figure 2.4: Window for Input Syntax.

This section describes the operations for these buttons.

Add
•

Send record to the database.

Edit
•

Update records in the database.

3

Delete
•

Delete records in the database.

Search
•

Search records in the database to perform update or delete.

Input Syntax is used for identifying syntax. You have to choose the

language of the programming language whether Java or C++. Then type

in Identifier Name which is name used to identify the component that has

been extracted in the database. Identifier Code will be generates

automatically when you input both Language and Identifier Name.

At the Syntax field, you are allowed to input up to 5 words as the syntax

check. If the input contains the access modifier ('public', 'private' and

'protected'), you need to type in the software reserved word '<access

modifier>'. If the input contains the data ('int' , 'String' and etc.), you

need to type in the software reserved word '<data type>'. If the input

contains the name of the component to be extracted, you need to type in

the software reserved word '<name>'.

At the Label field, it is used as the label name in the output of the

Add I
Extracted Result window. Then click Add button to

send record to the database.

4

2.3.2 Analyze Syntax

This sUb-menu provides for syntax analyzer. A pop-up window (Figure

2.5) appears when you click at Analyze Syntax.

* An example of java program -,
javax.swing.*;
java.awe.-:

class HVApp extends JFrame
String strValue = n";
Container pane = getContentPane();
JLabel myLabell - new JLabel():

public HyApp() { //default constructor
setTitle("Hy First Application"):

etSize(200, 100); setDefaultCloseOperation(EXIT_ON_CLOSE);
pane.setLavout(new Gr1dLayout(1,1»;
pane.add(myLabell);

IO:\.lava\TestCodes\MYTeam,java

Figure 2.5: Window for syntax analyzer.

5

This section describes the operations for these buttons .

. ~ !\iIP
• Open.

This operation opens a window for you to select the specific code

file.

~'i
• Extract Result.

•

•

This operation extracts results from code that has been analyzed

by analyzer.

This operation shows the code in jTextArea frame.

This operation extracts results from code that has been analyzed

by analyzer.

Syntax analyzer is used for extracting code. Before extracting code, you

have to show the code first by typing it at the space given or open it

using

.s;:w -
in this frame.

open button. Default system will catch code from jTextArea

6

Figure 2.6 shows the result for extracting code. This operation performs

after you click ____ fi:_,)!_tr ... ·.at_,t ____ I Extract button.

[

'Result:

ackage Name : javaWorld
j avax • swing. '*

I Import Component : java.awt.
lass Name : ByApp

ttribute : strValue
ethod Name : 1'l'Iain

Figure 2.6: Result window for extracting code.

7

2.4 Th~elP Menu

This menu provides About UDARE.

Figure 2.7: SUb-menu in Help menu for UDARE window.

2.4.1 About UDARE

This menu entry brings up the About window for UDARE. It tells the

version and copyright of UDARE.

UOARE
Version 2.0
Copyright (c)2001

Figure 2.8: About window for UDARE.

8

