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KAEDAH ANALISIS HAMPIRAN UNTUK MENYELESAIKAN PERSAMAAN 

KAMIRAN FREDHOLM 

ABSTRAK 

Persamaan kamiran memainkan peranan penting dalam banyak bidang sains seperti 

matematik, biologi, kimia, fizik, mekanik dan kejuruteraan. Oleh yang 

demikian,pelbagai  teknik berbeza telah digunakan untuk menyelesaikan persamaan 

jenis ini. Kajian ini, memfokus kepada analisis secara matematik dan berangka bagi 

beberapa kes persamaan kamiran Fredholm yang linear dan bukan linear. Kes-kes ini 

termasuklah persamaan kamiran Fredholm satu dimensi jenis pertama dan kedua, 

persamaan kamiran Fredholm dua dimensi jenis pertama dan kedua  dan sistem 

persamaan kamiran Fredholm satu dimensi dan dua dimensi.  Dalam tesis ini, kaedah 

analisis hampiran dicadangkan untuk mengkaji beberapa kes persamaan kamiran 

Fredholm yang linear dan bukan linear. Kaedah analisis hampiran ini termasuk: kaedah 

homotopi asimptotik optimum (OHAM)), kaedah usikan homotopi (HPM) and kaedah 

Dekomposisi Adomain (ADM). Melalui pendekatan pertama, keberkesanan OHAM 

untuk menyelesaikan beberapa kes dalam persamaan kamiran Fredholm dikaji. 

Penyelesaian secara analisis dan ralat mutlak yang diperoleh melalui kaedah OHAM 

akan dimasukkan ke dalam jadual dan dianalisiskan. Perbandingan dibuat dengan 

kaedah lain yang terdapat dalam literatur. Didapati bahawa penggunaan kaedah OHAM 

adalah lebih cepat, lebih mudah dilaksanakan dan lebih tepat jika dibandingkan dengan 

penggunaan kaedah lain. OHAM juga tidak memerlukan tekaan awal dan penggunaan 

memori komputer yang besar. Melalui pendekatan kedua dan ketiga, kaedah HPM dan 

ADM dirumuskan untuk menyelesaikan persamaan kamiran Fredholm-Hammerstein dan 

persamaan kamiran Fredholm dua dimensi. Keputusan yang diperoleh dibandingkan 
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dengan keputusan daripada kaedah OHAM dan kaedah lain dalam literatur. Secara jelas, 

teknik HPM dan ADM ialah teknik yang tepat dan berkesan,  HPM adalah sepadan 

dengan ADM dengan homotopi 0H   dan HPM dan ADM ialah kes OHAM yang khas 

untuk menyelesaikan  jenis persamaan ini. 
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APPROXIMATE ANALYTICAL METHODS FOR SOLVING FREDHOLM 

INTEGRAL EQUATIONS  

ABSTRACT 

Integral equations play an important role in many branches of sciences such as 

mathematics, biology, chemistry, physics, mechanics and engineering. Therefore, many 

different techniques are used to solve these types of equations. This study focuses on the 

mathematical and numerical analysis of some cases of linear and nonlinear Fredholm 

integral equations.  These cases are one-dimensional Fredholm integral equations of the 

first kind and second kind, two-dimensional Fredholm integral equations of the first kind 

and second kind and systems of one and two-dimensional Fredholm integral equations. 

In this thesis, approximate analytical methods are proposed to investigate some cases of 

linear and nonlinear Fredholm integral equations. Such approximate analytical methods 

include: optimal homotopy asymptotic method (OHAM), homotopy perturbation method 

(HPM) and Adomian decomposition method (ADM). In the first approach, the 

effectiveness of OHAM is investigated for solving some cases of Fredholm integral 

equations. The analytical solutions and absolute errors obtained by using this method are 

tabulated and analyzed and comparison is carried out by using other methods in 

literature. It was found that the OHAM is faster, easier to implement and more accurate 

compared to other methods and there is no need of initial guess and large computer 

memory. In the second and third approaches, HPM and ADM are formulated for solving 

Fredholm-Hammerstein integral equations and two-dimensional Fredholm integral 

equations. The results obtained by these methods are compared with OHAM and other 

methods in literature. It is clear that HPM and ADM are accurate and efficient 
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techniques, HPM is equivalent to ADM with the homotopy 0H   and these methods 

are special cases of the OHAM in solving these types of equations. 



1 

 

CHAPTER 1 

INTRODUCTION 

 

This thesis introduces new solution methods to one-dimensional Fredholm integral 

equations of the first kind and second kind, two-dimensional Fredholm integral 

equations of the first kind and second kind and systems of one and two-dimensional 

Fredholm integral equations. This chapter reviews the background, some cases of 

Fredholm integral equations and special kinds of kernels. Beside this, we provide 

objective of research, the methodology and structure of this thesis.       

 

1.1 Background 

In 1888, the integral equations were first used by Paul du Bois-Reymond; See (Kress, 

1999). These types of equations play an important role in many branches of sciences 

such as mathematics, biology, chemistry, physics, mechanics and engineering. In fact, 

many linear and nonlinear problems in sciences can be expressed in the form of integral 

equations. Examples include radiative heat transfer problems (Bednov, 1986), elasticity 

(Matsumoto, Tanaka and Hondoh, 1993), time series analysis (Zhukovskii, 2004), 

plasticity (Mashchenko and Churikov, 1980), potential theory and Dirichlet problems 

(Jiang and Rokhlin, 2004), problems of radiative equilibrium (Hopf, 1934), wave motion 

(Bandrowski, Karczewska and Rozmej, 2010), fluid and solid mechanics (Bonnet, 

1999), control (Park Kim, Park and Choi, 2005), diffusion problems (Bobula, 

Twardowska and Piskorek, 1987), biomechanics (Herrebrugh, 1968), economics 

(Boikov and Tynda, 2003), game theory (Carl and Heikkilä, 2011), electrostatics (Xie 
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and Scott, 2011), contact problems (Smetanin, 1991),  reactor theory (Kaper and 

Kellogg, 1977), acoustics (Yang, 1999), electrical engineering (Shore and Yaghjian, 

2005), medicine and queuing theory (Baker and Derakhshan, 1993). Many equations in 

sciences are obtained from experiments in the form of integral equations. Therefore, the 

treatments and exact solutions which are obtained by the different methods play an 

important role in these fields.  

In recent years, much work has been carried out by researchers in sciences and 

engineering on applying and analyzing novel numerical and approximate analytical 

methods for obtaining solutions of integral equations. Among these are the homotopy 

analysis method (Awawdeh et al., 2009; Adawi et al., 2009; Vahdati et al., 2010), 

variational iteration method (Xu, 2007; Saadati et al., 2009), monic Chebyshev 

approximations (El-Kady and Moussa, 2013),  Legendre-spectral method (Adibi and 

Rismani, 2010), rationalized Haar functions (Babolian, Bazm and Lima, 2011), 

traditional collocation method radial basis functions (Avazzadeh et al., 2011) and B-

spline scaling functions (Maleknejad and Aghazadeh, 2009). Other examples include the  

Spectral Galerkin method (Nadjafi, Samadi and Tohidi, 2011), a neural network 

approach (Effati and Buzhabadi, 2012), CAS wavelet (Barzkar et al., 2012), operational 

Tau method (Abadi and Shahmorad, 2002), quadrature rule (Mirzaee, 2012),  discrete 

Adomian decomposition  (Bakodah and Darwish, 2012), collocation and iterated 

collocation (Brunner and Kauthen, 1989), triangular functions method (Maleknejad and 

Mirzaee, 2010 ), quasi interpolation method (Muller and Varnhorn, 2011) and radial 

basis functions (Avazzadeha et al., 2011). Also, automatic augmented Galerkin 

algorithms (Abbasbandy and Babolian, 1995), a modified ADM (Vahidi and  

Damercheli, 2012), Sinc-collocation method (Rashidinia and Zarebnia, 2007), neural 
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network (Jafarian and Nia, 2013), a Chebyshev collocation method (Akyuz-Dascıoglu, 

2004), Block–Pulse functions (Maleknejad et al., 2005), radial basis function networks 

(Golbabai et al., 2008), resolvent method (Wang et al., 2008) and Taylor expansion 

method (Huang et al., 2009).   

This thesis focuses on one and two-dimensional Fredholm integral equations and 

systems of Fredholm integral equations which are essential in science and engineering.  

 

1.2 Fredholm Integral Equations (FIEs) 

The main founders of the integral equations are Fredholm (1903), Hammerstein (1930), 

Hilbert (1912), Volterra (1896), Schmidt (1907) and Lalescu (1908); see (Ben-

Menahem, 2009). There are several types of integral equations such as Fredholm 

integral equations, Volterra integral equations, Hammerstein integral equations, mixed 

integral equation and two-dimensional integral equations. This study focuses on 

Fredholm type of equations. The following some cases of Fredholm integral equations 

are discussed.  

 

1.2.1 One-Dimensional Fredholm Integral Equations (1D-FIEs) 

The general type of one-dimensional Fredholm integral equation can be written as 

(Wazwaz, 2011a) 

                                    , , ,

b

a

h s g s f s K s t L t g t dt      ,s a b                   (1.1) 

where a  and b are fixed, L is a known function called the appropriate integral operator, 

 h s  and  f s are known functions,  ,K s t is called the kernel function,  g s is 
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unknown function and  is a nonzero constant. Equation (1.1) is called a linear one-

dimensional Fredholm integral equaa tion if all the unknown functions terms are linear. 

Otherwise, it is called nonlinear one-dimensional Fredholm integral equation. These 

equations include either Urysohn or Hammerstein integral equations. 

       The first kind Fredholm integral equation (1
st
 FIE) is obtained by setting   0h s   

in the above equation (1.1) as (Wazwaz, 2011a)  

                                                , , 0.

b

a

f s K s t L t g t dt                                     (1.2) 

       The second kind Fredholm-Hammerstein integral equation (2
nd

 FHIE) is obtained by 

setting ( ) 1h s   in equation (1.1) as (Rashidinia, Khosravian Arabb, and Parsa, 2011) 

                                               , , .

b

a

g s f s K s t L t g t dt                                  (1.3)          

        The homogeneous Fredholm-Hammerstein integral equation is obtained by setting 

( ) 0f s   in equation (1.3) as (Wazwaz, 2011a) 

                                               , , .

b

a

g s K s t L t g t dt                                           (1.4) 

This is a special case of equation (1.3).  

         The Urysohn integral equation is (Saberi-Nadjafi and Heidari, 2010) 

                                                 , , .

b

a

g s f s K s t g t dt                                       (1.5) 
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1.2.2 Two-Dimensional Fredholm Integral Equations (2D-FIEs) 

The general type of two-dimensional Fredholm integral equation is as follows (Wazwaz, 

2011a) 

                                  , , , , , , , ,

b d

a c

h x t g x t f x t k x t s y L g s y dsdy              (1.6) 

where , ,a b c and d are constants, ( , )g x t  is unknown function, ( , ), ( , )h x t f x t  and L

are known functions, ( , , , )k x t s y  is the kernel function and  is a nonzero constant. 

If ( , )h x t  is identically zero, equation (1.6) is called first kind
 
two-dimensional 

Fredholm integral equation given in the form (Wazwaz, 2011)                  

                                             , , , , , 0.

b d

a c

f x t k x t s y L g s y dsdy                    (1.7) 

If ( , )h x t  is identically one, equation (1.6) is second kind two-dimensional 

Fredholm integral equation given in the form (Wazwaz, 2011a) 

                                       , , , , , , .

b d

a c

g x t f x t k x t s y L g s y dsdy                   (1.8) 

If b  or d is a variable, equation (1.6) is called mixed integral equation. 

Here, one can say the two-dimensional integral equation is linear, if all the terms of 

unknown functions are linear, otherwise called nonlinear. 
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1.3 Systems of the Second Kind Fredholm Integral Equations   

This section presents some cases of the systems of the second kind Fredholm integral 

equations. 

 

1.3.1 Systems of the Second Kind One-Dimensional Fredholm Integral Equations  

Consider the general system of the second kind one-dimensional Fredholm integral 

equation given in the form (Babolian et al., 2004) 

                                         , , ,

b

a

G x F x K x y G t dy                                           (1.9) 

where  

    , 1,2, , .iG x g x i n      

    , 1,2, , .iF x f x i n      

     ,, , , , , , 1,2, , .i jK x y G t k x y G t i j n      

In system (1.9), the functions ( )F x  and ( , , ( ))k x y G t are given and ( )G t  is to 

be determined. We shall assume that this system has unique solution, then we have the i 

th linear and nonlinear systems as (Babolian et al., 2004) 

                                                
1

, , ,

bn

i i i l l

l a

g x f x K x y g y dy


                        (1.10) 

                                                ,

1

, , ,

bn

i i i l l

l a

g x f x K x y g y dy


                       (1.11) 

respectively. The following system of nonlinear second kind one-dimensional Fredholm 

integral equation is special case of system (1.11)  
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                                         ,

1

, ,

bn
m

i i i l l

l a

g x f x K x y g y dy


  2,3,m               (1.12) 

 

1.3.2 Systems of the Second Kind Two-Dimensional Fredholm Integral Equations  

The system of the second kind two-dimensional Fredholm integral equation can be 

defined as (Saeed and Mahmud, 2009) 

                                           , , , , , , , ,

b d

a c

G x t F x t K x t s y G s y dsdy                 (1.13) 

where  

   , , , 1,2, , .iG x t g x t i n      

   , , , 1,2, , .iF x t f x t i n      

     ,, t,s, , , , t,s, , , , , 1,2, , .i jK x y G s y k x y G s y i j n      

From the system (1.13), one can obtain the linear and nonlinear systems as 

(Saeed and Mahmud, 2009) 

                                      ,

1

, , , , , , .

b dn

i i i l l

l a c

g x t f x t K x t s y g s y dsdy


              (1.14) 

                                    ,

1

, , , , , , , .

b dn

i i i l l

l a c

g x t f x t K x t s y g s y dsdy


              (1.15) 

respectively. Based on (1.14), a special case of the second kind two-dimensional 

Fredholm integral equation system can be defined as  

                    ,

1

, , , , , , ,

b dn
m

i i i l l

l a c

g x t f x t K x t s y g s y dsdy


    2,3,m      (1.16) 
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1.4 Special Kinds of Kernels (Kanwal, 1971) 

i. Separable kernel  

The kernel  ,K s t  is said separable if it is of finite rank, i.e.,  

                                      
1

, ,
n

i i

i

K s t u s v t


                                                (1.17) 

where  iu s and  iv t are linearly independent. 

ii. Symmetric kernel 

The kernel  ,K s t  is called symmetric if  

                                     , , .K s t K t s                                                         (1.18) 

iii. Skew symmetric kernel 

The skew symmetric kernel  ,K s t  is of the form  

                                       , , .K s t K t s                                                      (1.19) 

iv. Hilbert-Schmidt kernel 

The kernel  ,K s t  is to be Hilbert-Schmidt kernel if for each  

a. set of values of ,s t in a s b   and a t b   

                                    
2

, ,

b b

a a

K s t dsdt                                                    (1.20) 

b. value of s  in a s b   

                                     
2

, ,

b

a

K s t dt                                                         (1.21) 

c. value of t  in a t b             
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2

, .

b

a

K s t ds                                                         (1.22)   

 

1.5 Objective of Research  

The objectives of this research are 

 

1. To develop and apply the use of approximate analytical method called the 

optimal homotopy asymptotic method (OHAM) for solving both the linear and 

nonlinear one and two-dimensional Fredholm integral equations.  

2. To investigate the properties and ability of this method for these types of 

equations. 

3. To develop and apply the optimal homotopy asymptotic method for solving 

systems of linear and nonlinear one and two-dimensional Fredholm integral 

equations.      

4. To show that the homotopy perturbation method (HPM) and Adomian 

decomposition method (ADM) are equivalent for solving both second kind 

Fredholm-Hammerstein integral equations and two-dimensional Fredholm 

integral equations and a comparative study between these methods and OHAM. 

 

1.6 Scope and Methodology 

To begin with, the basics of methods for solving one and two-dimensional Fredholm 

integral equations and systems of one and two-dimensional integral equations will 
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be presented. The literature on methods for solving the Fredholm integral equations 

will be studied. Attention will be concentrated on the OHAM, HPM and ADM.   

Selected OHAM will be developed and applied to find the numerical 

solutions for both linear and nonlinear one and two-dimensional Fredholm integral 

equations. Further, it will be developed to solve the systems of linear and nonlinear 

one and two-dimensional Fredholm integral equations. Beside this, the selected 

HPM and ADM will be applied to solve both second kind Fredholm-Hammerstein 

integral equations and two-dimensional Fredholm integral equations. The equality 

of the two methods will be shown for solving these types of equations. 

The analytical solutions and absolute errors obtained by using these methods 

will be tabulated and analyzed and comparison will be carried with the analytical 

solutions and absolute errors obtained by using other methods in literature. Based on 

these results, the effectiveness and accuracy of the methods will be determined for 

solving these types of equations.  

Maple 14 software with long format and double accuracy will be used to 

carry out the computations.  

 

       1.7 Organization of Thesis 

This thesis describes the application of the OHAM to linear and nonlinear problems 

of Fredholm integral equations. It consists of eight chapters. Chapter 1 will cover 

the background of analytical methods, some types of Fredholm integral equations, 
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certain cases of systems of Fredholm integral equations, some special kinds of 

kernels, objective of research, scope and methodology and followed by organization 

of thesis. The basic idea of the methods will be discussed in Chapter 2. Chapter 3 

will cover the literature review, beginning with history and development of methods 

with application for solving linear and nonlinear integral equations problems in 

various fields of sciences.  

 

Chapter 4 will explain the application of the OHAM technique to first kind 

Fredholm integral equations and second kind Fredholm-Hammerstein integral 

equations. The proposed method is used to solve some numerical examples of these 

types of equations to show the effectiveness and validity of the method. A 

comparison between this method and other methods in literature is conducted.  

Application of OHAM for the solution of two-dimensional integral 

equations is presented in Chapter 5.  Two kinds of these equations are studied: 

linear and nonlinear first kind and second kind. This method is investigated to solve 

some different numerical examples and the analytical solutions obtained by this 

method is tabulated and analyzed. A comparison result by the OHAM with other 

methods literature is given.  

 

Chapter 6 will cover the application of HPM and ADM for solving both of 

the second kind Fredholm-Hammerstein integral equations and two-dimensional 

Fredholm integral equations.  The equivalence between the two methods to solve 

these types of equations is shown. A comparative study between these methods and 

OHAM is conducted.  
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The OHAM will be introduced for obtaining the solution of systems of one 

and two-dimensional Fredholm integral equations in Chapter 7. Some numerical 

examples of linear and nonlinear of these types of systems are tested to show that 

the proposed method can be applied to these types of systems. The results obtained 

by this method are compared with other methods which used in literature.   

 

Chapter 8 will cover a summary of the results obtained by application the 

methods.  
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CHAPTER 2 

REVIEW ON THE BASIC PRINCIPLES OF APPROXIMATE ANALYTICAL 

METHODS 

 

 

2.1 Introduction 

This chapter presents the basic approximate analytical methods. These methods are the 

optimal homotopy asymptotic method (OHAM), homotopy perturbation method (HPM) 

and Adomian decomposition method (ADM). In 1999, the homotopy perturbation 

method (HPM) was first introduced by He based on combination of topology and 

perturbation method.  In fact, many authors have been developing and applying the 

HPM in linear and nonlinear problems, see He (1999; 2004; 2006; 2010), Abbasbandy 

(2006; 2007), Chun (2010), Merdan (2007), Javidi and Golbabai (2007), Yusufoglu 

(2009), Jazbi and Moini (2008), Biazar and Ghazvini (2009), Mohyud-Din and Noor 

(2009), Hemeda (2009), Yıldırım and Öziş (2007), Aminsadrabad (2012) and Zedan and 

El Adrous (2012).   

The Adomian decomposition method (ADM) was suggested and developed by 

Adomian in 1980. This method has been used by authors in differential equations, 

algebraic equations and integral equations. Examples include Adomian and Rach (1985), 

Adomian (1994), Wazwaz (1999), Biazar, Babolian and Islam (2004), Abbasbandy 

(2006), Tatari, Dehghan and Razzaghi (2007), Pei, Yong and Zhi-Bin (2008), Wu, Shi 

and Wu (2011), Abassy (2010), Evirgen and Özdemir (2010), Abbaoui and Cherruault 

(1994), Kutafina (2011), Fadaei (2011), Cheniguel and Ayadi (2011) and Heidarzadeh, 

Joubari and Asghari (2012). 
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In recent years, Marinca and Herişanu (2008) suggested and developed a new 

technique called the optimal homotopy asymptotic method (OHAM). This method has 

been successfully applied by many researchers in sciences and engineering for solving 

linear and nonlinear problems. Examples include (Marinca and Herişanu, 2008), (Shah 

et al., 2010), (Iqbal et al., 2010), (Iqbal and Javed, 2011), (Temimi, Ansari and Siddiqui, 

2011), (Kaliji et al., 2010), (Ghoreishi, Ismail and Alomari, 2012), (Esmaeilpour and 

Ganji, 2010), (Islam, Shah and Ali, 2010), (Jafari and Gharbavy, 2012), (Ali, Khan and 

Shah, 2012) and (Idrees et al., 2012). The following Table 2.1 displays the history of 

development for coupling of homotopy with perturbation.   

Table 2.1:  History of the development of coupling of homotopy with perturbation 

(Idrees, 2011).  

Reference 
Type of Differential 

Equation 
Family of Homotopy 

 

Liao 

1992 

 

  0N u x     

 

       01 , , 0,p L U x p u x N U x p           
 

 

He 

1999 

 

     L u N u f x 

 

 

         01 ( ) [ ] 0,p L u L u P L u N u f x       

 

Liao 

1999 

 

  0N u x     

 

        0 01 , , ,B p L U x p u x c ApN U x p        

 

 

Marinca  

and 

Herişanu 

2008 

 

    L u x f x  

   0,N g x   

, 0
dg

B g
ds

 
 

   
 

          1 [ , ) ,p L u x p f x H p L u x p    

    , ,f x N g x p    

 

Liao 

2009 
  0N u x     

       2 3

0 0 1 21 , ( )B p L U x p u x c p c p c p      

 , .N U x p     
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In Table 2.1, the function U is defined as        , :Ω 0,1 ; Ω, p 0,1 ,U x p x    L

is linear, A and H are auxiliary functions, N is nonlinear, 0u is an initial guess, ic are 

constants,  f x  is known function and B is a boundary operator.  

 

2.2 Definition of the Homotopy (Aubry, 1995) 

Let X and Y be two topological spaces. If f and g are continuous map of the space 

,X Y it is called that f is called homotopic to ,g if there exists a continuous map 

 : 0,1 ,H X Y  such that x X   

   ,0 ,H x f x  

   ,1 .H x g x  

Then the map is called homotopy between f and .g  

 

2.3 Introduction of Least Squares Method of Residuals 

This method was first published by Legendre in 1805. The objective of this method is to 

find the minimum of the sum of the squares in the integral equations problem. In this 

section, will review this method based on the principles set out by Grandin (1991). 

Firstly, consider the differential equation as  

                                   ,D g x P x                                                                         (2.1) 

where D  is a differential operator with g  and P are known functions. 

Assume that the function g  is approximated by g  as 

                                     
1

,
n

i i

i

g x c xg


  F                                                             (2.2) 
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where ic  are coefficients and iF  a linearly independent set. 

By substituting equation (2.2) into equation (2.1), the result of the operations is not

 P x . Hence, the residual defined will exist as 

                                          0,R x D xg P x                                                    (2.3) 

Next, define function to make the residual to zero as follows 

                                          , 1,2, , ,i
X

S R x W dx i n                                            (2.4) 

where  iW  are called the weight function. 

Using least squares method, the sum of the squares of the residuals can be minimized by 

                                              2 ,
X X

S R x R x dx R x dx                                   (2.5) 

and then minimizing it, yields 

 

0
i

S

c





 

                                                                           2 .
X

i

R
R x dx

c




                               (2.6) 

 

2.3 Introduction of Galerkin Method 

This method may be identical to the least squares method. It was originally introduced 

by Galerkin (1915). Let us look at the differential equation as follows 

                                                           , , ,S g x t J x t                                            (2.7) 

where S is a differential operator and  , ,g x t   ,J x t are known functions. By expand 

function  ,g x t  to N  as a series of 
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1

, ,
N

iN i

i

x t c xg t


 F                                         (2.8) 

and substituting equation (2.8) into equation (2.7), the residual defined will exist as 

                                                  , , , t 0.N NR x t S x t J xg                                  (2.9) 

The goal of Weighted Residuals is to choose the coefficients ic  such that the residual 

NR  becomes small (in fact 0) over a chosen domain. In integral form this can be 

achieved with the condition  

                                            , , 1,2, , .N i
X

S R x t W dx i N                                 (2.10) 

By deriving the approximating function, function iW  can be obtained by 

                                                               N
i

i

g
W

c




                                                     (2.11) 

2.5 Definition of Taylor Series 

Taylor series was first introduced by Taylor in 1712 and published in 1715.  Application 

of Taylor series is in the field of calculus and ordinary differential equations. To explain 

this series, we let the function  f x as 

                                      
2 3

0 1 2 3 f x c c x a c x a c x a                         (2.12) 

Differentiating equation (2.12) gives 

                                        
2

1 2 32 3f x c c x a c x a                                    (2.13) 

Replacing x a in the equation (2.13), it holds that 

                                                   1f a c                                                                    (2.14) 

Differentiating equation (2.12) twice gives 
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                                         2 32 6f x c c x a                                                  (2.15) 

and then at x a  

                                                     22f a c                                                               (2.16) 

and continuing in this way. The Taylor series generated by  f x  at x a  is defined as 

follows 

                                         
 

 
0

.
!

n
n

n

f a
f x x a

n





                                                  (2.17) 

The following Table 2.2 displays some functions by Taylor’s series. 

 

 

 

Table 2.2: Some functions by Taylor’s series (Wazwaz, 2011a). 

Function Taylor’s series 

xe  
0 !

n

n

x

n





  

sin x  
 

 

2 1

0

1

2 1 !

n n

n

x

n








  

cosx  
 

 

2

0

1

2 !

n n

n

x

n






  

1

1 x
 

0

n

n

x




  

 ln x  
   

0

1 1
n n

n

x

n





 
  

1tan x  
 

 

2 1

0

1

2 1

n n

n

x

n








  

  1
k

x  
0

n

n

k
x

n
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2.6 Description of Optimal Homotopy Asymptotic Method (OHAM) 

This section describes OHAM which was proposed by Marinca and Herişanu (2008). 

Consider the differential equation as  

                                       0,L g s f s N g s     , 0,
dg

B g
ds

 
 

 
                    (2.18) 

where L  is known function called the linear operator,  f s  is known function, N is 

called the nonlinear operator,  g s is unknown function and B is called boundary              

operator.  

Using the OHAM, consider a family of equations for an embedding parameter  0,1p 

as below 

              1 , ) , , ,p L g s p f s H p L g s p f s N g s p            
, 0,
dg

B g
ds

 
 

 
   (2.19) 

where  H p denotes a non-zero auxiliary function for 0p   and   (0) 0.H  Obviously, 

when 0,p  it holds that                                         

                                              0,0 ,g s g s                                                              (2.20) 

and when 1,p  it holds that 

                                                 ,1 .g s g s                                                              (2.21) 

Assume that the auxiliary function  H p  can be expressed as 

                                             
1

,
m

j

j

j

H p c p


                                                             (2.22) 

where  , 1,2,...jc j   are constants. 

Setting 0p   in equation (2.19), it holds that 
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                                0   0,L g s f s     0
0 , 0.

dg
B g

ds

 
 

 
                                    (2.23) 

By Taylor’s series, the OHAM solution can be calculated as below 

                           0

1

, , , , 1,2,
m

m

j k j

k

g s p c g s g s c p j


                                    (2.24) 

When 1,p  the equation (2.24) becomes 

                            0

1

, , , , 1,2,
m

j k j

k

g s p c g s g s c j


                                        (2.25) 

Substituting equation (2.24) into equation (2.19) and equating the coefficients of like 

powers of p , yields  

                                1 1 0 ,L g s c N g s     1
1, 0,

dg
B g

ds

 
 

 
                                (2.26) 

               
1

1 0 0 1 1

1

( ( ,
m

m m m j m j m j m

j

L g s g s c N g s c L g s N g s g s g s


   



       

                                                   , 0, 2,3,m
m

dg
B g m

ds

 
   

 
                                    (2.27) 

where       0 1, , ,m mN g s g s g s are the coefficient of mp in the expansion of 

  ,N g s p  about p  

                         0 0 0 1

1

, , , , , .m

j m m

m

N g s p c N g s N g s g s g s p




           (2.28) 

The result of mth-order approximations are as follows   

                                        , 0

1

, , , 1,2, .
m

m

i j k j

k

g s c g s g s c j m


                       (2.29) 

Replacing equation (2.29) into equation (2.18), the following residual equation can be 

obtain 
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                                           , , , .m m

j j jR s c L g s c f s N g s c                    (2.30) 

If  , 0jR s c 
 
then  ,m

jg s c will be an exact solution. For finding the constants 

, 1,2,...jc j   using least squares method, at first consider    

                                         2 , ,

b

j j

a

J c R S c ds                                                          (2.31) 

or by using Galerkin’s method as below 

                                      , .

b

j

j ja

J R
R s c ds

c c

 


                                                            (2.32) 

Then the constants , 1,2,...jc j   can be identified as below 

                                  
1 2

   0.
m

J J J

c c c

  
  

  
                                                       (2.33) 

Knowing , 1,2,...jc j   the OHAM solution is determined. 

 

 

2.7 Description of Homotopy Perturbation Method (HPM) 

This section presents description of the HPM which was proposed by He (1997). First, 

let the operator equation as below 

                                               0,A g f s 
  

, 0,
g

B g
n

 
 

 
                                 (2.34) 

where Ω,s   A is an operator,  f s is a known function, g is the sought function and 

n




is differentiation the normal vector drawn outwards from .  

The operator A can be divided into L and N as 

                                                 0,L g N g f s                                                  (2.35) 
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where L is a linear and N is a non-linear operator. By using the HPM technique, a 

homotopy can be define      , : 0,1v s p R  for an embedding parameter  0,1p   

as  

                                     0, 1 ( ) ,H v p p L v L g p A v f s                              (2.36) 

where 0g  is the initial approximation of equation (2.34). 

From above equation (2.36), if 0p  and 1,p  it holds that    

                                                  0,0 ( ) 0,H v L v L g                                               (2.37) 

                                                    ,1 0,H v L v N v f s                                     (2.38) 

the changing process of p from zero to unity is just that of    ,v s p from  0 g s to  .g s  

Next step, consider the solution of equation (2.36) can be obtained in the form of power 

series 

                                                    
0

, .m

m

m

v s p v s p




                                              (2.39) 

When the series in equation (2.39) of  ,v s p  converges at 1,p  then  

                                           
1

0

lim , .m
p

m

g s v s p v s





                                       (2.40) 

Using equation (2.39) into equation (2.36), one can obtain  

          0

0 0

, 1 ( ) .m m

m m

m m

H v p p L v s p L g p A v s p f s
 

 

      
          

      
        (2.41) 

For simplicity, one can choose      0 0 ,v s g s f s   and replace  0v s into equation 

(2.39) and then equate the coefficients of powers of .p    
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2.8 Description of Adomian Decomposition Method (ADM) 

This section will discuss the idea of the ADM which was proposed by Adomian (1980). 

Consider the nonlinear differential equation as follows 

                                                      0,L g R g N g f s                                  (2.42) 

where L is the highest order derivative which assumed to be invertible, R is the 

remainder of the linear operator and N is a nonlinear differentiable operator. From 

equation (2.42), we obtain 

                                                           .L g f s R g N g                                 (2.43) 

By applying the inverse operator 1L
 to equation (2.43) with the initial condition 

  00 ,g g  it holds that 

                                       1 1 1 1  ,L L g L f s L R g L N g                                 (2.44) 

and gives 

                                                    1 1

0 ,g g L R g L N g                                  (2.45) 

where 1L  would represent an integration and with any given initial or boundary 

condition. 

The ADM defines the solution   ( )g s as below 

                                                          
0

.i

i

g s g s




                                                  (2.46) 

Next,   N g  will be decomposed by 

                                                            
0

,i

i

N g A




                                                  (2.47) 

where iA are the polynomials of 0 1, , , ig g g  given by 
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0

0

1
, 0,1,2,

!

i i
j

i ii
j

d
A N g s i

i d



 



  
     

   
                    (2.48) 

where  is a parameter introduced for convenience. 

Using equations (2.46) and (2.47) in to equation (2.45), we will have 

                                     1 1

0

0 0 0

.i i i

i i i

g s g L R g s L A
  

 

  

    
      

    
                      (2.49) 

Here,  ig s will be determined as follows 

 0 0 ,g s g  

                                          1 1

1 , 0,1,...ig s L R g L N g i 


                            (2.50) 

 

2.9 Definition of the Absolute Error  

To know whether the analytical calculations are accurate or inaccurate, the amount of 

error between the true and approximation must be calculated. In this study, the absolute 

error, which is the difference between the truth value and approximation value, is used 

to show the efficiency of the present methods in our problem. Let us define the absolute 

error as follows (Abramowitz and Stegun, 1972) 

                                                                      ,abs g g E                                         (2.51) 

where absE  denotes the absolute error, g  is the true value and g  its approximation.  

On the other hand, the absolute errors in each value can be defined as follows 

                                 1 1 1 2 2 2  , , , ,abs abs n abs n ng g g g g g      E E E              (2.52) 

where  n absE are absolute errors, n  is measurement values, ng  are the truth values and ng

denote the approximations.   




