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A B S T R A C T

Auditory categorisation involves the grouping of acoustic events along one

or more shared perceptual dimensions which can relate to both semantic and

physical attributes. Whilst previous work has established certain categories (for

example living and non-living, mechanical, natural and sounds) and identified

the importance of perceptions concerning the sound producing event (object

and action) the research domain is still to be fully understood.

The process of categorising sounds also involves both high level cognitive

processes and low-level perceptual encoding of the acoustical signal, both of

which are affected by the use of a cochlear implant (CI), such that auditory

abilities are often severely diminished in comparison to normal hearing listeners

(NHL).Existing studies have shown that CI users perform better at identifying

the auditory category compared to a specific sound, however these studies have

used a fixed and limited number of categories. A Free-Sorting-Task (FST) is used

in the current work to test categorisation performance in a more real-world

manner, whereby participants may categorise sounds however they choose.

Subsequent analysis consisted of Multiple Correspondence Analysis (MCA)

and HCPC to determine the categories and strategies used by participants.

The FST was used to determine how CI users duration of implantation

(from 0 to more than 14 months) would affect the categorisation of everyday

sounds. Results showed that experienced listeners performed similarly to NHL,

separating vocal, musical and environmental sounds. Experienced CI also

showed ability to separate a set of vocal sounds by emotional content.

NHL were also tested with only environmental sounds and demonstrated

categorisation based on the sound producing object or action even when sounds

were vocoded with only 4 channels. However context information was not

strongly perceived and did not aid the identification of sounds.

The presented work adds important research to the study of auditory cate-

gorisation and is in agreement with previous works. Results of CI users show

the potential of using the FST for further research and contains the possibility

of using categorical perception as a useful tool in rehabilitation and assessment

techniques.
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1
I N T R O D U C T I O N

In everyday life we encounter many different sounds on a daily basis, and often

are situated in busy auditory environments, for example a sunday market, that

involves many different sound sources. Paying attention to each individual

sound, whether it be a nearby person talking, a passing car, coins rattling in

your own pocket, would require a large amount of cognitive effort and as a

result the auditory system makes use of certain processes to attain to only the

most important/relevant information. One process that helps in this manner is

auditory categorisation. By identifying or perceiving the category a particular

sound belongs to, information about the sound ca be more efficiently extracted

from the category knowledge. This also means that the effort required to iden-

tify the specific sound is also removed.

This process has been studied in the perception of phonemes, to understand

perceptual boundaries, for example when a //ba// sound becomes a //ga//

sound and what acoustical properties are important for this change in percep-

tion. Work has also been done to show how sounds can be categorises based on

the material, size and shape of the sound producing object (references). Regard-

ing the categorysation of more everyday sounds common results have shown

categories corresponding to living and non-living objects, for example human

and animal vocalisations, human action sounds, mechanical (including too and

transport), nature sounds and electronic or synthesised sounds (references).

Studies have even shown specific areas of the brain responsible for processing

these different types of sounds [78, 42, 79].

The way in which sounds are grouped together to form these categories is

based on perceptual similarities. In general it is considered that similarities

concern information that is related to the perception of the sound producing

event/object in terms of its size, material, action etc. or action, cited as causal

similarities by Lemaitre. Another form of similarity is the semantic associations

to the sound, for example concepts such as events (parties, sports events) or

1



introduction 2

emotional content (e.g. happy vs sad).

Perceptions of the physical sound signal are also of course important, for ex-

ample the spectral content, harmonicity, frequency, sound power level, temporal

modulations. However these appear to be useful/used in categorisation only

when judging the quality or musicality of sounds, and this act of listening to

the physical acoustical signal has subsequently been termed musical listening

(Gaver) whilst the previous perceptions of causal and semantic information are

perceived when a listener enters into everyday listening mode.

It seems that in general categories are based on causal information, which

would make sense as often we may hear a sound before seeing it and want to

use the information within the sound to inform us about the object/event that

produced the sound. This may further be related or include how we may be

able to interact with the object.

However the existing research of auditory categorisation is not exhaustive,

there is for example no full classification system proposed beyond that of Gaver.

And whilst certain broad categories have been demonstrated, there also lies

the opportunity to study both sub and super category membership to more

fully understand how we perceive auditory information. Finally the relatively

small number of studies have also not dealt with how sounds are perceived in

the real world, in different environments and under different task requierments.

Auditory categorisation also involves both high level cognitive processes

and low-level perceptual encoding of the acoustical signal, both of which are

affected by the use of a cochlear implant (CI). Used to rehabilitate people with

severe (or complete) hearing impairments, these devices deliver a degraded

auditory signal via electric impulses directly to the auditory nerve within the

inner ear. Such patients also often have cortical brain reorganisation as a result

of their hearing impairment.

It is known that patients with such devices can develop very good perception

of speech sounds and the majority of work, both research and rehabilitation is

targeted around restoring speech abilities. However, although the perception of

environmental sounds is often cited as a benefit to CI users, the accurate percep-

tion of these sounds is often lacking. Research is far behind that of speech, one
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of the main reasons being that environmental sounds encompass a vast range

of sound sources all with different acoustical characteristics. This makes it diffi-

cult to study exactly which acoustic variables are important for environmental

sound perception, and therefore difficult to make specific improvements within

the CI device itself. it has also been shown that CI users ability to discrimi-

nate vocal from environmental sounds is poor in comparison to NHL (massida).

So how does auditory categorisation function with CI users? Some studies of

CI categorical perception have been conducted, and shown that categorical per-

ception is more accurate than the identification of individual sounds. However

these studies used fixed categories, therefore leaving the question of how CI

users may use categorical perceptions of sounds in the real-world.

The presented work therefore seeks to combine the fields of auditory categori-

sation with that of CI users auditory perceptions in order to further understand

how the two domains of research overlap. It aims to investigate categorical

perception in order to advance the understanding of CI users auditory abilities

especially in dealing with different kinds of sounds. At the same time adding

to the existing research to move forward with the understanding of auditory

categorisation in in general. The following chapter introduces the theory and

background information associated to the topics presented above in a more

detailed manner for the reader to fully comprehend the context of the current

work.

1.1 auditory categorisation

1.1.1 What is Categorisation?

Categorisation as a process is one of the ways in which we as humans try to

simplify our lives and make things easier. It allows us to deal with the vast

amount of sensory input that is encountered on a day by day basis such that

we can make quick and efficient judgements about the world around us - the

objects we are seeing or the sounds we are hearing. For example by categorising

an object as a car we are able to understand that it is likely an object with four

wheels, an engine that runs on fuel and something that carries people from

position A to position B. We do not need to analyse in detail the specific object

to know if all of these things are true. So instead of treating every stimulus,
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every object as brand new we place it into a category of our own making

in order infer knowledge about the category to the object without having to

analyse in detail the object or stimulus in question.

Within the study of categorisation there are two commonly held theories of

how we as humans go about categorising objects.

Prototype theory: which uses the idea of scaled category membership, for

example for the category of birds, how “bird” or bird-esque is a particular bird?

There exists a single representative or prototype of a particular stimulus inside

your brain that is used to compare new stimuli. Such that if the new stimuli

matches, then it is deemed to belong to the category. For example imagine a

cow, you may form an image in your mind in which to describe certain qualities,

that is your prototype. The prototype is therefore a mix of all the previously

encountered stimuli in that category. When studying prototype theory it is very

easy to obtain an idea of the strength of category membership or the proximity

to the prototype by measuring reaction times of people asked to categorise

certain objects. The faster the reaction time the stronger the category member-

ship (or family resemblance as it is called) for example“violin” may be a more

typical example of “music” than “bassoon” and therefore categorised more

quickly. Prototype theory is often cited as being efficient due to the comparison

of new stimuli with a single prototype and does not require the memorising or

learning of many different category members - in difference to the exemplar

theory.

Exemplar theory: the idea that categorising is based on comparing a new

stimulus to previously encountered known examples.So for example the cate-

gory of "fish” may be created by a person holding the memory of all the fish

they have encountered in their life. By comparing a new new object to this

category it is then possible to see if it has enough similarities in common with

the category exemplars to be classified as a fish as well. Exemplar is useful as it

can explain variability amongst category items. For example if the prototype of

the category dog includes the requirements of an animal that has four legs and

barks - what will be made of a three legged silent dog? Exemplar theory can

also (to some extent) explain the creation of abstract (e.g. "beliefs” or "fears")

and ad hoc (e.g. "things to take on holiday") categories through the combination
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of previous experiences, which is not possible with prototype theory.

Overall it is most likely that a combination of the two processes working

together is used in daily life as sometimes one works better than another. This

allows for the efficiency of prototype theory but also the flexibility of exemplar

theory. Most likely this involves using exemplars that are encountered in order

to modify or update the currently held prototype of a category.

However although there has been a large amount of research on categorisa-

tion it is still not fully understood how the categories we use in daily life come

to be created as we are likely influenced by a number of wide ranging aspects.

Not only will the frequency of encountering a specific stimuli modify the exem-

plars and the prototype but the recency of encountering a certain stimuli will

also affect the category recognition such that if you were to encounter a bird

singing and then immediately afterwards hear an ambiguous yet melodious

sounds you might categorise this as birdsong, when in fact it was a flute or

recorder being played.

Finally there are a number of things that affect the individuals categories

such that one persons categories can be completely different to another persons.

This of course will depend on culture, language and of experience - exactly

what exemplars has the person witness and learned in their life? This allows

categorises amongst people to be different, to be broader or more narrow, to

have different subcategories and to have different exemplars and prototypes.The

experiences of people can also be influenced by expertise which may give them

an ability to create different levels of subcategories and more easily distinguish

the borders between two categories. For example a professional musician may

have many subcategories of different kinds of instruments and be able to easily

distinguish between them all where as a laymen may have broader categories

of “brass”, “woodwind” and “percussion” or maybe even simply a category of

"musical instruments".

This aspect of familiarity and the experiences that people have had in their

lives which govern their use of different categories is a very important as-

pect.Especially for this manuscript which has tested participants with many

years of hearing impairment, such that their familiarity and experiences with

auditory stimuli is vastly different to normal hearing listeners (NHL). In addition
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to this the hearing impaired participants tested are users of cochlear implant (CI)

devices which further alters the experience with the auditory environment. Ex-

actly how and to what extent hearing impairment and use of a CI may affect

listeners categorisation of sounds is not at all known and will be an important

question throughout this work.

1.1.2 Similarity as a basis for categorisation

The two proposed theories of categorisation, exemplar and prototype, share one

common aspect that they both work on the basis of comparing a certain stimu-

lus to a pre-defined representation of that stimuli in the persons knowledge - be

it a single prototype or a collection of exemplars. It would therefore appear that

categorisation is based on similarity judgements, but whilst similarity plays

a role in categorisation they are two different processes. In general similarity

judgements are more strongly based on the perception of a stimulus where as

categorisation involves a persons theories, goals and other higher level cognitive

processes. The process of judging similarity has also been described as being

too flexible, too reliant on perception and does not fit alongside explanations

of categories based on theories or objectives. If similarity can be influenced

by abstract or alternate theories it must therefore become unconstrained. Or if

similarity is restricted to only the direct perceptions of a stimulus then it does

not meet the necessary requirements to act as the basis of categorisation.

1.1.3 Why is auditory categorisation important?

As mentioned before the process of categorising stimuli allows us as humans

to more easily cope with the barrage of sensual information that surrounds us

in every day life. This of course applies to the auditory domain where we are

nearly constantly aware of the sounds that are going on around us. Being able

to categorise these sounds enables us to infer information about the sound and

the sound producing object from its category membership. Categories that have

been found amongst tests of auditory categorisation have taken the presumption

to define four broad categories of sound - being speech, music, environmental

(referring to any sounds that are not speech or music) and finally artificial
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sounds, for example those of a computer or synthesiser [6]. Within specific

studies of environmental sounds categories have also been found corresponding

to warnings, water, vocalisations (both human and animal) [49, 119, 14, 33, 15].

Further studies have also identified that categories can be created based on the

type of action or material that causes a sound for example hitting vs scraping

or wood vs metal [57, 77, 79].

Figure 1.1: Hierarchical description of sound producing events taken from [37]. The first
level describes simple interactions of materials, the second level examples
of these interactions split into solids, gasses and liquids, and the final level
examples of actions within each class of material

Regarding environmental sounds, Gaver [37] initially proposed a mapping

related to the interaction of materials, see figure 1.1. At the first level it describes

the cateogirsation of sounds in terms of “materials” which are split up into

into vibrating objects (solids), liquids and aerodynamic sounds (gasses). The

model then describes the interaction of materials at the second level. Thirdly

comes the interactions of these materials and basic level interactions within

each material set, which for solid sounds include hitting, scraping, for liquids

splashing or dripping and for gasses motion caused by pressure changes, for

example gusts of wind. More complex interactions are described at a higher

level in terms of patterned events - i.e. the repetitive action of basic level events,

also compound events which include the combination of basic level events and

finally hybrid events that are made up from various materials and actions. These

can be seen in figure 1.2 which gives a much more detailed look at Gaver’s Hi-

erarchy. This has also been further developed in other studies [57, 77, 91, 75, 79].

Within his ecological approach to auditory perception, Gaver also described

two different “modes” of listening. The first, termed Everyday listening refers

to the perception of the properties of the specific sound generating source, i.e.

how big the object may be, how fast it may be moving. In general everyday

listening relies on the identification of a sound, be it correct or incorrect and
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Figure 1.2: Gaver’s map of everyday sounds [37]. An more detailed expansion on
figure 1.1 whereby interactions of SOLIDS, LIQUIDS and GASSES are firstly
divided up into three large sections corresponding the separate materials.
Within each section examples of different basic sound producing actions
are shown with their underlying attributes, for example how the size and
viscosity of a liquid dripping will affect the sound produced. Examples of
sounds that are created via the interaction of basic actions are given, for
example a bursting tyre and fire. Where material sections overlap examples of
sounds that are produced via two or three materials are given, for example
rain on a surface, which involves both liquid and solid actions.

does not appear reliant on acoustic qualities.

The second listening mode, Musical listening, refers to the perception of quali-

tative aspects of the sound itself i.e.“what the sound sounds like”. This not only

refers to acoustic characteristics of the sound, but also the sense of emotion or

quality of the sound - e.g. the roughness or smoothness. More concerned with

the perception of the raw acoustic signal rather than the sound producing object

it has been seen to be encouraged by similarity judgements when directing par-

ticipants to judge specifically similarity rather than simply categorise a sound.

Musical listening and the focus on qualitative information about the sound

also becomes important when identification fails, when there is no association

of the sound to a specific object. In this sense it could be said that the per-
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ception of the listener falls back to the most salient information about the sound.

As a conclusion, from the small amount of studies that have looked at audi-

tory categorisation It would appear that categorisation is predominantly based

on the properties of the sound-producing object or event ([49, 52, 76, 6]). Rarely

does it appear that the properties of the sound signal are used and when they

are it is a result of identification being difficult or failing entirely.

1.2 human auditory system

1.2.1 Overview

The human auditory system is responsible for turning the oscillations of air

pressure (that constitute sound) into electronic pulses which are then delivered

via the auditory nerve to the brain where, depending on the signal different

regions of the brain extract different information - for example speech or music

and give a a subjective perception of the original sound. Figure 1.3 shows the

auditory system which consists of three main areas- outer ear, middle ear and

inner ear, each of which are separately described below.

Figure 1.3: Graphic of the human auditory system taken from [26].

Outer ear: the visible part of the auditory system which consists of the pinna,

ear canal and ear drum. Vibrations of air pressure are captured in the pinna,
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which acts like a kind of funnel for the sound, then transmitted along the ear

canal before hitting the ear drum (aka tympanic membrane). The ear drum is a

membrane stretch across the ear canal, much like a drum skin stretched over

the top of the drum. When the vibrations of air pressure hit the ear drum it

causes it to physically vibrate and these physical vibrations are then passed on

to . . . . . . . . the middle ear.

Middle ear: contains the ossicles - three three tiny bones known as the

malleus, incus and stapes.These bones form chain of levers connected by the

malleus to the ear drum and the stapes to cochlear and their job is to transform

the relatively large vibrations at the ear drum into smaller vibrations delivered

to the cochlear/inner ear.

Inner ear: apart from the cochlear, a coiled tubular structure that resembles

a snails shell, the inner ear also houses the balance organs - the semicircular

canals and the vestibule which are responsible for the sense of balance and

spatial position experienced by humans. This of course is not essential to the

auditory system but performs essential functions. The cochlear itself deserves

special attention as it involves a complicated arrangement of anatomy that turns

physical vibrations into neural pulses and it is here where the electrode of a

cochlear implant (CI) is inserted.

Physically the cochlear divided into three fluid filled sections, as seen in the

cross section of figure 1.4. As the upper section, Scala vestibuli is sealed at the

oval window (which is connected to the stapes) it is here where vibrations first

enter the cochlear and as vibrations travel through the cochlear they are able to

traverse the two membranes (Reisnerr and Basilar membranes) that separate

the three cochlear sections. The most important of these two membranes is the

Basilar membrane.

Basilar Membrane Stretching the entire length of the cochlear the membrane

changes in form, at the ape (the beginning) the membrane is narrow and stiff,

whilst at its end wider and more flexible. When vibrations pass through the

cochlear the basilar membrane is set into motion in the form of a wave - imag-

ine shaking out a bed sheet or the waves along a still lake. Depending on the
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Figure 1.4: Cross section of the cochlear, showing the three fluid channels - scala vestibuli,
scala media and scala timpani. The organ of corti (in pink) is shown sitting
on top of the basilar membrane. Inner and outer hair cells are situated
between the organ of corti and the tectorial membrane. Image taken from
https://commons.wikimedia.org/wiki/File:Cochlea-crosssection.png

frequency of the sound/vibrations and due to the physical characteristics of

the membrane the peak of this wave occurs at different positions. For example

high frequency sounds peak at the beginning of the basilar membrane where

it is stiff, and low frequency sounds peak at the end where the membrane is

loose and more flexible. This arrangement of responses is described as being

“tonotopic” and is illustrated in figure 1.5. The final piece of the auditory system

process concerns the creation of electric pulses which happens in the . . . . . .

organ of corti.

Organ of Corti: sitting on top of the basilar membrane (see figure 1.4) this is

the sensory organ at the heart (excuse the pun) of the auditory system. Within

the organ, and again stretching the length of the basilar membrane are tiny

hair cells that respond to the motion of the membrane. For example when the

motion is large enough, the tiny hairs on the tops of the cells are displaced

causing the release of neural impulses that are carried by the auditory nerve to

the central auditory system in the brain.

It is here that a very important theoretical point should be made that will

have implications on the functionality of cochlear implants and discussion of

results in later passages of this manuscript, and that is the theory concerning
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Figure 1.5: Tonotopic arrangement of Basilar membrane. Image shows the basilar
memrbanem that is narrow and stiff at its base whilst being wide and
flexible at the apex. This infers a tonotopic property to the structure such
that high frequencies (limit approx 20, 000 HZ) cause maximum response
at the base and lower frequenceis (limit approx 20 Hz) at the apex. Image
Taken from Berne and Levy Physiology 6th edition.

how the basilar membrane peaks and subsequent neural impulses are able to

code or describe the properties of a sound. Whereas it is relatively to simple to

imagine the strength of the neural response coding the intensity of a sound and

the time at which a neural response occurs coding the temporal aspects of a

sound, when it comes to spectral information there are two different (although

complementing) theories that are briefly explained below.

In the coding of spectral information (the frequency content of a sound)

there are two different theories that describe how this information is transmit-

ted from the cochlear to the brain. In describing these two theories it is easier

to imagine the most simple scenario of using a pure tone (i.e. a single frequency)

PLACE theory: as mentioned before the basilar membrane is tonotopic. Us-

ing this idea place theory suggests that frequency information is extracted from

the place at which peaks occur on the basilar membrane i.e. the location of the

neurons that fire in response to a specific frequency. Complication with this

theory is that regarding complex sounds the sensation of pitch (i.e. F0) may be

induced by frequency components.
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TIME theory: which suggests the pitch of a sound is related to the “pattern”

of neural impulses.These impulses often occur at a particular phase of the sound

(known as phase locking) such that the intervals between impulses correspond

to the frequency of the sound. The pattern of these intervals can then be used to

code the frequency. One problem with this theory is that phase locking is only

possible for frequencies up to 5 kHz, although in the real world most everyday

sounds (including musical instruments and the human voice) have fundamental

frequencies much lower than this, so there that the Time theory is still capable

of accounting for many aspects of frequency coding / pitch perception.

Whilst it is not within the scope of this research to pursue these two theo-

ries in extravagant detail readers should be aware that recent research often

concludes that the auditory system likely uses both of these processes in the

coding of frequency information.
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1.3 cochlear implants

The goal of a cochlear implant (CI) is therefore to transfer the acoustic vibra-

tions of a sound into electric pulses that can be sent to the auditory nerve and

subsequently the auditory cortex, enabling what may be called a “synthetic ”

or electric auditory perception to be realised. In a sense the implant replaces

the auditory system shown in figure 1.3, as shown in figure 1.6.

Figure 1.6: Labelled Diagram of a Cochlear Implant. Photographs/Images by courtesy
of Advanced Bionics.

The CI itself can be broken down into several different components as indi-

cated in figure 1.6. The function of each element is listed below:

1. Microphone: turns the analogue acoustic signal of a sound into a digital

electrical signal fed to the sound processor.

2. Sound Processor: Here different coding strategies (discussed further be-

low) are used to electric signal into a digital stimulus for activating the

electrode array.

3. Transmitter / Receiver: The digital stimulus is then passed through from

the transmitter to the receiver that is embedded below the scalp of the user.
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Figure 1.7: Images of CI transmitter and electrode array for Advanced Bionic CI device.
Photographs/Images by courtesy of Advanced Bionics.

At this point the digital signal consists of an arrangement of electrical

pulses, shown in the left panel of figure 1.7.

4. Electrode Array: a thin plastic element inserted into the cochlear on which

sit a number of electrodes. Electric pulses stimulate directly the auditory

nerve based on the coding strategy used by the processor, shown in the

right panel of figure 1.7.

1.3.1 Speech processing with a Cochlear Implant

The cochlear implant was itself designed specifically to restore speech pro-

cessing abilities in both pre and post-lingually deaf humans. Speech has also

been found to be considerably robust to spectral degradation and vocoding

amongst NHL [125]. It is generally considered that most recipients are able to

achieve the best improvements which often result in good speech perception in

quiet conditions [108] however there are numerous difficulties when listening to

competing sound sources, for example multiple talkers, or in complicated/noisy

listening environments [35, 100, 129].

The biggest improvement amongst pre-lingually deaf CI users comes from

implanting during infancy. It is generally held that earlier implantation leads

to the best restoration of speech abilities and that the upper cut-off for this

improvement lies between implantation at 4 and 12 years of age [106]. Implan-

tation before 12 months old has also been recommended, for example [29]

showed that infants implanted between 12-36 months were delayed by one year

in their development of speech in comparison to infants implanted before 12

months old and [56] found that early implantation lead to faster development.
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However development is also linked/affected by a range of socio-economic

values such that whilst the age at implantation is important it is not the only

factor in the restoration of speech abilities [104].

Improvement of auditory abilities are also seen in adult and elderly popula-

tions (Dillon et al 2013) and amongst the pre-lingually deaf population most

recipients show a benefit from receiving a CI [142]. However even after many

years of being implanted these improvements in speech understanding are not

as large as compared to those seen in post-lingually deafened populations [145].

Post-lingually deaf adults also benefit greatly from receiving a CI however

they require a certain amount of rehabilitation in order to associate the newly

perception of sounds to the original representations stored in memory [17].

Within this population the success of CI devices has also been linked to the du-

ration of deafness as a result of the age at onset of deafness. For example Moon

et al (2014) found that subjects who became deaf during adolescence had poorer

speech performance. They also concluded that while the age at implantation

can affect the success of rehabilitation post-implantation, as a result of cog-

nitive abilities, it is not as strong a factor in predicting the success of the implant.

Overall the previous literature shows that CI can be a very successful tool

in restoring speech abilities.For pre-lingually deafened CI users the biggest

improvements are seen when implantation occurs at the earliest possible stage

with benefits drastically reduced if implantation occurs after 12 years old. For

post-lingually deafened CI users the age of deafness onset (and subsequent

duration of deafness) is seen as a key factor in determining the success of

implantation more so than the age of implantation.

Whilst CI may give significant benefits in speech perception there are certain

aspects of voice perception that remain difficult for nearly all CI users. Firstly

the perception of prosodic information is reduced in CI users, for example

intonation [92] and also emotion [89, 99]. [89] showed that CI users correctly

recognized emotionally content in half the stimulus presentation whilst NHL

performed at 100%. However when reducing the amount of spectral information

via vocoding the performance of both NHL and CI users was seen to reduce.

The perception of emotion has been linked to the changes in the fundamental

frequency of a speaker and also intensity cues [58].
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Secondly CI suffer from deficits in recognising the identity and gender of

talkers [94, 65, 27, 81]. Gender related information is linked to the anatomy of

the human vocal anatomy, for example the size of the vocal tract and vocal

folds which on average are larger for males compared to females.This in turn

generates differences in the fundamental frequency (F0) and arrangement of

formants in the voice which are used by NHL to accurately discriminate gender

[128]. However these cues are often unavailable to CI users whom therefore

struggle with gender discrimination, however when the difference in F0 is large

CI users perform significantly better [81, 93].

Considering all of the above it must be noted that there is a considerable

amount of variation in CI performance within all the studies undertaken. This

variability is a result of many different mitigating factors concerning; the pa-

tients existing auditory abilities - for example residual hearing, duration of

deafness, age at implant ion, the use of sign language and lip-reading abilities;

the CI itself - including insertion depth, the number of active electrodes (often

only 4-7 are used by the user); and finally socio-economic status and home life

of CI users [104].

1.3.2 Musical processing

For many CI users an expectation of receiving an implant is improved perception

of music (cited as second most important acoustic stimulus to their lives[41])

, however many CI users actually avoid music due to it being too noisy, and

post implantation listening of music is reduced compared to pre-implantation

with CI users often stating their enjoyment of music has been reduced (Gfeller,

LEa et al 2003, Feldmann and Kumpf , Leek et al.). Mizra et al (2003) reported

similar findings and that the enjoyment of music rated from 1 to 10 (where 10

is like very much) also reduced from 8.7 to 2.6, therefore enjoyment is reduced

(Tyler et al 2000). It is often cited that the main reason for difficulties with

musical sounds and the reduction in enjoyment is linked to problems with

the perception of pitch and recognition of timbre, attributes associated to the

processing of the spectral fine structure. On the other side of the coin CI users

are reported to have temporal processing abilities similar to those of NHL and

therefore have little or no problems in the perception of rhythm (REFERENCES).
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Pitch

It is generally held that CI users perform much worse than NHL in pitch related

tasks. For example in pitch-ranking i.e. placing in order a series of differently

pitched tones, CI users have been shown to be unable to rank pitches that

are 3 semitones apart and are only able to perform the task at roughly 65%

accuracy for pitch intervals of 6 and 12 semitones (Looi 2008), although other

data reports pitch ranking thresholds in the wide range of 4-24 semitones [36]

or 1 to 12 semitones [41, 102, 60]. Not only are the pitch discrimination abilities

of CI variable, but they are worse than NHL whom often performed at 81% in

discrimination intervals of only 1 semitone [132]. Pitch perception is not simply

the ability to distinguish different pitches and so has been tested in other ways.

For example [30] tested the ability of CI users to discriminate between two

short melodies, where in one melody the F0 of a note was altered for half its

occurrences.This represents a level of pitch perception within the context of a

melody and is therefore more similar to real-world situations of musical pitch

perception. The results again showed that CI users performance was around

chance.

The CI works by extracting the envelope of a sounds and delivering this signal

via electrical stimulation/pulses into the cochlear subsequently the auditory

nerve. In doing so most of the fine temporal information is lost such that CI

can only perceive repetition rates up to 300 HZ [32] which is much lower than

the 2-5kHz limit imposed on NH by the natural auditory system. So without

the ability to access the fine temporal information it leaves the perception of

pitch in complex tones/sounds difficult.Further complications/hinderences are

added when considering the variability in the anatomy of CI users, the survival

of auditory nerve, cause of deafness/hearing impairment. Although CI’s aim to

deliver a large number of frequency information ranging from 16-22 channels,

the placement of electrodes and large stimulation given by the electrodes often

leads to a greatly reduced number of channels being functional, sometimes

as low as 3. This of course has implications to CI users ability to use place

coding model of pitch perception, as the spatial resolution of stimulation is

much poorer in comparison to a NHL.

Timbre

Timbre is often a difficult quality of musical perception to describe and to quan-

tify. Most simply it can be thought of as the qualities of the sound produced
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by different musical instrument. More complete it is the combination of the

acoustic qualities of a musical or vocal sound that are separate/independent

from the frequency and intensity (pitch and loudness) and yet which enable the

sound to be perceived/recognised. In measuring the accuracy of timbre percep-

tion studies often test musical instrument identification, finding that NHL score

close to 100% where as CI users perform at best 54% or less [39, 95, 102]. [86]

compared the ability of 15 CI and 15 HA participants in their ability to identify

single musical instruments, solo instruments with background accompaniment,

and musical ensembles.The mean percent-correct scores for the three respec-

tive subtest were: CI group - 61%, 45%, and 43%; HA group - 69%, 52%, and 47%.

Melody

From the findings that pitch and timbre perception are poor in CI it is not sur-

prising that the perception of melodies is less than for NHL, ranging from 17%

to 60% for familiar songs in comparison to [41, 64]. This can be improved with

the addition of lyrics and rhythmic passages.For example in [39] identification of

rhythmic melodies was 20% compared to only 10% for non-rhythmic melodies

with identification 90% and 77% for NHL respectively. When sequences are

formed of complex tones that contain resolvable harmonics, a pitch sequence

advantage is observed, If there are no resolved harmonics, because of bandpass

filtering or noise-vocoding , the pitch sequence advantage disappears [31].

Rhythm

In contrast to the processing of spectral aspects of musical perception (pitch

and timbre), rhythmic cues are commonly well perceived by CI users whose

performance is similar to NHL [32, 88]. [64] showed that CI users also report

similar performance in a tempo discrimination task, although when tasked

with identify complex rhythms CI users performed 20% lower than NHL. [40]

also showed that NHL could detect changes in rhythm at shorter duration of

beat (607ms) compared to CI users (1070ms). Therefore in certain “difficult”

situations the temporal processing abilities of the implant are not capable of

competing with NHL. CI users have also shown to perform similarly to NHL

in perceiving temporal gaps (silence) and amplitude modulations. Therefore it

appears that the perception of non-complex rhythms does not pose significant

issues for CI users . Rhythmic information poses less problems for listeners,

mainly because temporal cues are more easily coded by the implant. This could

therefore lead to a preference for listening to the rhythm (temporal information)



1.3 cochlear implants 20

within music making rhythm more enjoyable for CI users and therefore widen

the gap between ease of rhythmic perception and difficulties with pitch and

timbre perception.

It would appear that the perception of music is not a trivial task for CI users,

with common difficulties in the access to fine spectral information meaning that

pitch and timbre are difficult to perceive. This is especially true for complex

sounds however there is a range of performance of CI users with some showing

significant musical abilities (see cochlear implanted kids playing the piano).

Studies have also shown that gross-temporal processing abilities similar to those

of NHL especially in the detection of gaps and amplitude modulation leading

to often good levels of rhythm perception.

1.3.3 Environmental sounds

Studies with CIL

Another reported benefit of a cochlear implant is in the perception of en-

vironmental sounds (ES). Often classed as any non-linguistic or non-musical

sound, certain es’s are amongst the first sounds that CI users report as hearing

[137]. In a questionnaire of 22 CI users [146] also reported 77% CI users found

the main benefit of receiving their implant to be the perception/awareness of

ES.[138]reported similar findings in a questionnaire of 53 experienced CI users.

These sounds are important and of benefit for a number of reasons. Firstly

certain ES are important for warning or signalling purposes e.g. alarm sounds,

telephones, doorbells. Secondly they can just be aesthetically pleasing, e.g.

birdsong and waterfalls. Finally and possibly most importantly they contribute

the awareness of a listener to give an improved sensation of the surrounding

environment as well as aiding the interaction with objects. For example back-

ground noises (e.g. air conditioning) are often the first sounds reported by CI

users after switching on their implants. environmental sound perception (ESP)

is therefore an important part of the quality of life for CI users [146].

However due to the focus of research on understanding and improving

speech perception for CI users ESP has only recently, and with limited scope,

started to gain attention. The following text outlines these studies in terms of

the CI users that were tested, their performance and the testing method used.
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In a general study on outcomes of receiving an implant [108] tested 40 pa-

tients on the recognition of 40 ES presented at 70 dB(A). The average score of

participants at both 9 and 18 months post implantation was 57%. [136] also

tested 21 post lingually deaf CI patients at 1,9 1nd 18 months post-implantation.

Testing was done using two lists of 18 ES and result de in average scores of 30%

correct after 1 month, 35% at 9 months and 37% at 18 months.

[111] tested 11 CI patients (mix of post & pre lingually deaf) who had at

least one year of experience with their implant. The test consisted of identify-

ing 40 sounds divide equally amongst 4 different auditory contexts/settings

(home, office, kitchen and outside). Testing used a closed-set 10-alternate choice

paradigm such that for each context/setting participants were presented with

each sound and had to chose from the 10 alternative possibilities, without

feedback. Identification was found to be on average 79% (ranging from 87% for

office to 78% for kitchen) but with individual participant performance ranging

from 45% to 94%

.

[87] looked at ESP with two implant groups, firstly four subjects with 3

months experience (whom they also tested pre-implantation) and secondly 10

experienced CI users with at least 10 months implant experience. They tested

45 sounds (2 tokens for each sound = 90 total) that were subdivided into 9

categories Arriving Home, Bathroom, Household Appliances, Human, Kitchen,

Nature, Office, Traffic, Other (included examples of music). Participants were

played the sound and asked to identify it from a list of the 45 sounds. Experi-

enced group performed at 59%. Pre-implant with hearing-aid was 40%, post

implantation (3 months) 57%.

[59] tested non-linguistic sound perception with 22 post lingually deaf CI

users with more than one year of experience. They were tasked with identi-

fying 50 sounds and then categorise it in one of 5 a priori categories (nature,

animal/insect, mechanical/alerting, human non-linguistic, musical) there were

10 sounds from each category presented. Participants verbal responses were

recorded and later interpreted by testers giving average Identification accuracy

was 49% with categorisation accuracy higher at 71% correct.

[122] tested 17 CI users with average experience of 3.2 years whom were

mixed post and pre lingually deaf. Participants were presented with 160 envi-
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ronmental sounds (40 different sounds of 4 tokens/examples), one at a time

and asked to identify it from a list of 60 possible responses listed on a computer

screen from which the participant could choose. Results showed identifica-

tion performance of 45% correct ranging from 16-69%. Using the same test

paradigm Shafiro (2015) tested the effects of training on another group of 14

post-industrial deaf CI users with average experience of 5 years implantation.

Pretest results were 47% and post-training results were 62%.

The first obvious conclusion from these studies is that the performance of CI

users in identifying ES is low, especially in comparison to NH studies where

ESP is nearly always close to 100 % . This remains true even for experienced

CI users who have been implanted for a long time [119] and for whom it

would be expected to improve on ESP in similarity to improvements seen for

speech perception with time. There is however evidence that training effects

can improve ESP for CI users. [124] reported an improvement of 15.8 % points

following 4 training sessions performed by participants at their homes over

the period of one week. This is the only study to concretely test the effect of

training and showed a positive effect of 46 % points for trained sounds and 50

% points for un-trained examples of the same sounds. However improvements

to non-trained stimuli were small and non-significant (only 6% points). So

although training effects generalised to non-trained examples of the trained

sounds, training effects did not generalise to non-trained sounds.

Whilst identification performance was always seen to be low [111] did show

that when presented with four pre-defined categories based on context (au-

ditory environment) categorisation accuracy of the sounds was much higher.

Indicating that CI users are able perceive certain information form the sounds

and link this to the context in a fairly successful manner even if specific identifi-

cation of the sound is not always possible.

Within these studies it is also possible to see the wide range of identification

score, one of the issues with testing ESP. Highest identification was seen for

sounds described as being temporally or spectrally distinct (examples) whilst

those with lowest identification are sounds with a uniform envelope. This pro-

vides some initial clues as to how future studies could pursue ESP in CI users

and how rehabilitation schemes could be best designed. However no study has

yet identified specific acoustic variables that account for the identification of ES,
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most likely again because of the huge variance in the types of sound and the

acoustic characteristics that are present when considering ES.

The perception of ES is said to be similar to speech in that both types of sound

rely on a common ability of sound recognition [61], and also involve processing

of both acoustic and lexical information [69]. [59] recorded a correlation of ES

identification and speech performance, whilst [111] also concluded that iden-

tification ability was loosely related to monosyllabic word recognition (NU-6

test). However [124] reported only non-significant improvements of speech

performance (CNC and SPIN-R tests) during the ES training study. Overall

whilst a link between speech and ES performance may make sense these effects

are minimal and not conclusive. However the hypothesis has been tested to a

greater degree in CI simulation studies and is discussed in more detail below.

There are some issues with the above studies. Firstly and of great significance

is the fact that in testing ESP there are almost an infinite number of sounds

that fall into this description and it cannot be possible to test them all. [87]

also include examples of linguistic sounds, soundscapes and full musical ex-

tracts in their study, which do not fall into the definition of ES used by many

other studies. Some also only test a small number of sounds which makes

it difficult to expand conclusions to all ES. Secondly in testing identification

performance there is a variety of methods employed. In testing that used an

open-set paradigm, whereby subjects are asked to identify a sound without any

options, it is difficult to know what schema was employed by the experimenters

for interpreting the descriptions given by subjects. There could be a case that the

schema used by one study would give different results when compared to that

of another study, and therefore be over or under-estimating the performance

of CI users. Other studies use a closed-set paradigm, where a fixed number of

options are presented to subjects which mean there is not need to interpret

comments, however in doing so this presents subjects with options to choose

from and may not allow the assessment of the subjects true perception. Finally

the study of [111] provided subjects with categorical information about the

sounds which could have helped subjects to identify the sounds.

It is therefore possible to conclude that from the the existing studies that have

been conducted on ESP, many have used different paradigms, combined with

the variety and amount of ES makes it difficult to make detailed conclusions.
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However it does appear that ESP is poor even after training and with experi-

enced CI users. Also although no specific acoustic variables have been identified

that can account for ES identification (again influenced by variability of ES) it

appears that more easily identified sounds are spectrally or temporally distinct,

with sounds that have a uniform envelope structure being more difficult to

identify.

CI Simulation studies

Another way of testing for the perception of sounds and also with regards

to training effects is to test the more readily available normal-hearing subjects

by using vocoder techniques to spectrally degrade sounds and simulate the

hearing of a CI. IN similarity to studies concerning speech perception there is

still much less known about the perception of environmental sounds in such

tests. These studies have been used to assess training effects and also to try and

find specific acoustic variables that may be able to explain the perception (both

identification and categorised) of ES.

[84] tested training effects and perceptual learning with normal hearing

subjects using spectrally degraded sounds that had been passed through an

eight-channel sine wave vocoder. 5 groups of NH subjects (155 in total) were

trained on different sounds, words (simple & complex), sentences (meaningful &

anomalous/nonsense) or environmental sounds and then tested in an open-set

identification task. 99 ES were tested covering a range of sounds: vehicles, ani-

mals, insects, NLHS, musical instruments, tools, liquids, others. Pre-post gains

for all stimuli conditions but generalisation was less uniform, training gener-

alised toward “easier” tasks. For ES sounds generalised to ALL speech materials.

[51] tested the identification of 70 ES under different spectral degradations.

Identification was quite robust under High/Low pass filtering (cut-off 300-8000

Hz) especially for high pass where ID never dropped below 70%. Also used

octave band filters (fc 212 - 6788 Hz) and noted that performance with higher

band cf’s was still good 70-80%. Using EMS (vocoder technique) the more

channels added the better the ID. Also linked performance in EMN conditions

of 1 & 6 channels to the number autocorrelation peaks, burst ratio and cross-

correlation. They study also found that the most informative frequency region
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for categorising the sounds was between 1200-2400 Hz.

[119] tested the ESP of 60 sounds with 60 NHL under six different spectral-

resolution conditions - 2, 4, 6, 8, 16, 24 and 32 channel envelope vocoding. ID

improved with increasing number of channels i.e. increasing spectral resolution,

but plateaued from 8 channels up, although was still not as good as original

sound condition even at 32 channels. Some sounds train whistle and water

draining also never reached above 70%. Shafiro 2008 also investigated the per-

ception of ES by NH (seven) in CI simulated conditions (4 channel vocoding)

in a pre-post test training paradigm with 5 training sessions. Identification

of non-vocoded sounds was 98% correct. In vocoding condition pre-test 33%

rising to 63%. The biggest rise was for difficult-trained sounds (61% points

)and within this group there was a difference seen for the trained sound tokens

(86%) whilst non-trained exemplars rose 36% - showing the effects of specific

stimulus training and/or familiarity with sounds.

These studies show that under spectral degradation the identification of ES

is reduced for NH subjects and that with an increase in spectral information

(the number of frequency channels) identification is seen to increase. Again the

variability and range of ESP is demonstrated in similarity to studies of CI users.

[51] shows that some sounds were robust to spectral degradation and only

required one channel of frequency information (helicopter, galloping horse)

whilst others were poorly identified whatever the number of channels / spectral

resolution used (flute, electric saw). [119] also reported that sounds could be

divided into those which could be correctly identified (at 70%) with 8 channels

or less, and those with 16 channels or more. Sounds also be divided into one of

these two groups based only on two acoustic variables, the number of bursts

in the envelope and the std of the spectral centroid velocity. This suggests that

clear temporal events within a sound and the speed of spectral dynamics are

factors in deciding the amount of spectral resolution that is required for correct

identification for vocoded stimuli and therefore are also possibly important for

CI users as well. Finally Shafiro 2004 (doctoral thesis) showed increasing spectral

channels only helped ES which were more strongly spectral and those more

temporal sounds actually decreased in identification. Along with increased

spectral resolution being linked to increased identification performance the

frequency region of 1200-24000 Hz was also identified as being important for
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ESP [51], and this is also an important region for speech perception.

It is likely that the perception/identification of ES and speech sounds shares

some common processing, for example both involve low level processing of

acoustic information as well as higher order processing linking the attachment

of semantic information to sounds [85, 69]. [61] also identified a specific “fa-

miliar sound recognition” ability important for the perception of both speech

and ES, especially in the case of degraded sound, whilst there is also evidence

that the processing of both sound-types shares cortical areas [78]. [22] reported

that training on anomalous speech sentences generalised to both meaningful

sentences and ES.However a more recent study by [84] did not find this, and

instead found only that training on ES generalised to speech stimuli. They

concluded that by training on stimuli with a syntactic structure but no semantic

structure reduces the impact of top-down processes and forces the listener

to focus on the acoustics of the sound and use bottom-up processes.Training

on ES (non-speech) stimuli may therefore improve a listeners access to the

spectro-temporal characteristics of stimuli and help when identifying vocoded

speech. In similarity to studies on CI users training effects for ES were also

reported by [84] and [120] whilst [51] found listeners who had heard sounds

once more than naive listeners had improved identification score, with the

largest improvements seen for temporally distinct sounds (footsteps, axe chop,

scissors).

Overall the existing literature concerning the perception of environmental

sounds for CI users (also including CI simulation studies) is informative for a

number of things. Training with ES greatly improves the identification ES with

large improvements seen for trained sounds and other examples of such sounds.

There is a possible link between the perception of ES and speech performance of

CI users and that training with ES may also generalise to speech stimuli, however

this is not conclusive. Although the identification of ES is reduced by the use of

a CI or CI simulations there is a variability amongst ES such that some sounds

remain well identified under all forms of spectral degradation whilst others

never reach high levels of correct identification. This has regularly been linked

to the complexity of the spectral-temporal information of a sound such where

spectrally or temporally distinct sounds are often correctly identified where

as those with more generic or uniform envelope shapes are poorly identified
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likely as a result of the confusion between sounds that share these qualities.

However, more detailed conclusions are hard to make due to the difficulty in

testing ES. As mentioned there are a large number of different ES with widely

ranging acoustic information and the studies, whilst using similar sounds, all

use stimuli-sets and test-paradigms that are different. In addition to this none of

the studies take into account real-world effects of ESP that may be important for

listeners in identifying ES.For example the location of where different sounds

are heard can affect its identifiability [52]. Also important is the familiarity of

listeners to the sound stimuli ([6]) where one listener may be more familiar

with a test stimulus than another listener and therefore have a better chance at

identifying it. Finally the manner in which sounds are listened to could be very

important. Most ES are part of a sound scape, occurring in the background and

not often the focus of listeners attention, which is of course different to the way

in which speech is commonly listened to. Finally the use of CI simulations is

informative and useful for the progression of research, however whilst this can

give clues as to the functioning of ESP in human listeners there is still a large

difference on the way NHL and CI users perceiver sounds, both from a low level

perceptual manner to a high order cognitive level. For example most CI users

are often elderly where as NHL used for studies are often much younger and

not often age-matched. [61] identified a number of things important for sound

recognition, problem solving strategies to constrain/limit possible response

options, the ability to focus attention on spectral and temporal information

int eh signal, how efficiently a subject can locate stored information (semantic)

about an auditory stimulus. These cognitive processes may be very different

between listeners of differing age and add another element into the study of ESP.
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1.4 clustering analysis

Within this manuscript the main topic of analysis focusses on how different

sounds are categorised when they are placed into different groups or clusters.

Presented here is a brief introduction to how the data generated by such tasks

has been analysed. It should enable the reader to better understand the specific

analyses that have been performed throughout the manuscript and which are

described in further detail in chapter 2.

Sorting and categorisation tasks have mainly been used in order to study

sensory analysis as an efficient way for investigating the similarities between

certain kinds of stimuli, for example how a set of perfumes or wines may be

grouped based on their odour and taste [23, 1, 109]. Whilst a range of analysis

techniques can be employed within the study of categorisation, the present

research has used a dual-analysis combining MultiCorrespondence Analy-

sis (MCA) and Heirarchical Clustering based on Principal Components (HCPC)

based on the FAST model described in [23]. The goals of using these analyses

are threefold and described in more detail below:

1. To understand which stimuli (sounds) are being grouped together in

order to see what kinds of categories are being created. (HCPC gives us

this most easily/simply).

2. To understand HOW the sounds are being grouped together. What strate-

gies (factors) are being used by participants (MCA)

3. The comparison of different groups of participants.

1.4.1 MultiCorrespondence Analysis (MCA)

From the results of a sorting/categorisation task MCA is used to uncover the

underlying relationships between a data set. This data set is taken either as an

indicator/disjunctive matrix (as shown in figure 1.8). For the purposes of the

following research the rows (i) represent the sounds to be categorised and the

columns (j) the participants. Within each participant column there is a subset

array of k element, where K is the total number of categories created by a single

participant. This K array is made up of 1’s and 0’s such that when a sound i
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falls into category k it is marked with a 1, therefore indicating which sounds

were grouped into which category for each participant.

The total number of stimuli/sounds is given by I, and for a single participant

the total number of sounds in a particular category is given by Ik.

Figure 1.8: Graphic display of an Indicator Matrix. Image taken from [23].

MCA itself uses Correspondence Analysis (CA) in order to analyse the relation-

ships between a number of categorically dependent variables. i.e. the fruitiness

of wine, or the saltiness of cheese. Practically speaking the process performs CA

on an indicator matrix as shown in figure 1.8. The principal is that MCA seeks

to represent these relationships as points within an N-dimensional Euclidean

space. For example we can imagine a 3−D space with points positioned in

groups within this space. Concerning the relationship of stimuli, two stimuli

may be superimposed upon each other if all participants placed them in the

same category, and the distance between them increases as the number of

categorisations decreases.

The dimensions that are created/outputted by the analysis are then ordered

in terms of the amount of variance within the data (disjunctive matrix) for

which they can account. Whereby the first dimension would accounts for the

most variance and reflects a categorisation strategy that is used by the majority
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of participants.

It is important to note when undertaking a sorting task involving fixed stim-

uli attributes - for example rating wines on their fruitiness, alcoholic percentage,

colour etc - participants are aware of criteria for categorising and the subse-

quent dimensions reflect either a singular attribute or a mix of. However when

conducting a Free Sorting Task (FST) as has been undertaken throughout the

present research, the outputted dimensions cannot initially be directly related

to any specific aspect of the stimuli, be it physical or cognitive. It has therefore

been a large part of the current work to interpret these dimensions using addi-

tional information, for example descriptions of the sounds and the categories.

This is more fully discussed in the following chapters.

The FAST approach (see [23] for details) it is also possible to view an arrange-

ment of the participants (categorical variables). Referred to in the current work

as participant maps these figures display the distribution of participants across

each dimension on a scale of 0− 1 and can be used to interpret how strongly

each dimension is used by each participant. An example taken from [23] of MCA

output is shown in figure 1.9 in order to demonstrate the distribution of stimuli

on the factor map (panel A) and the participants on the participant map (panel B).

1.4.2 Heirarchical Clustering based on Principal Components (HCPC)

Following on from theMCA a complementary analysis of Heirarchical Cluster-

ing based on Principal Components (HCPC) has also been used throughout

the current study. HCPC enables a simplified view of the overall categories as

a dendrogram or tree and an example is given in figure 1.10. The height on

the dendrogram displays a measure of similarity between the stimuli, with a

greater height representing a greater dissimilarity. The final categories/clusters

are given by the HCPC are determined by cutting the dendrogram at a specific

height, where this height is calculated based on the change in inertia (variance).

Secondly a Hierarchical Clustering based on Principal Components (HCPC)

was performed on the results of the MCA analysis in order to view a simplified

version of the categories of sounds in the form of dendrograms. When using

this analysis it is not possible to account for all of the variance (inertia) within
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Figure 1.9: Example of the factor map output generated by MCA analysis. The arrange-
ment of a series of perfumes are shown displayed in a 2D euclidean space.
Image taken from [23].

the data, i.e. the variability of participant responses, and so a certain amount

remains unaccounted for.

By increasing the number of desired categories the inertia can however be

reduced and it is using this process that the we can choose a final number

of categories: if the number of categories is Q then the optimal number of

categories is found when the change in inertia is greater when moving from

Q-1 to Q than from Q to Q+1 (François et al., 2010). This can also be defined as

the value for Q which minimizes equation 1.1.

Q−QQ+1

Q−1 −Q
(1.1)
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Figure 1.10: Example of a dendrogram / tree as generated by HCPC analysis. Cate-
gorised stimuli are represented along the bottom of the tree, with rectangles
representing overall categories that were outputted by analysis. The height
ordinate represents the degree of similarity between stimuli, where a large
height is equivalent to a greater DIS-similarity.

1.4.3 Comparing Clusterings

Categorical analysis was concluded by finding the Cophenetic Correlation Co-

efficient (CCC) [118] which gives a measure of how accurately the distances

between items in the raw data are preserved in the dendrogram [25]. CCC

has been computed in R’ using the functions dist - to calculate the euclidean

distance between sounds within the n-dimensional space as computed using

MCA; cophenetic - to find the cophenetic distances between the stimuli com-

puted using HCPC; cor - to correlate the two distance matrices and give a final

coefficient.

Participants’ category descriptions were also evaluated as to whether or not

the categorization was based on semantic information concerning the sound

source or on qualitative information linked with the acoustic signal. For each

participant group the number of descriptions that made reference to either

semantic or qualitative acoustic aspects of the sound were totalled across all
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sounds and all participants and then turned into an overall percentage. Exam-

ples of descriptions relating to semantic information were “domestic noise”;

“voice, laughter, someone talking”; “musical instruments”. Whilst examples

of descriptions referring to qualitative acoustic aspects included “melodies”;

“noise”; “ringing tones”; “disagreeable sounds”. In order to further understand

the performance of participants in how they categorized the sounds an esti-

mation of “Categorization Identification” was inferred from the participants’

category descriptions. For each sound the associated category descriptions

were evaluated as to whether they referenced musical, vocal or environmental

sounds. These were then compared to the predefined categories and the per-

centage of comments in agreement was calculated across all participants for

each sound. In some cases participants did not give any specific description

and this is reflected in Table 3 by the “% No comment”. In addition a value

for “Categorisation Accuracy” was found based on the stimuli that were paired

together by participants. This was calculated as the percentage of stimuli-pairs

present in each participant’s category choices compared to the stimuli-pairs

contained in the predefined categories, of which there are forty possible pairs,

(Table 2).
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1.5 aims of the thesis

It should be apparent that the theory of auditory categorisation is not firmly

established, for example neither a hierarchy of categories or specific categories

have been et-out. However agreement is found in that categories are commonly

based on the identification of the sound producing object and action, whilst

the acoustic information and such similarities become more important when

identification fails. This has been described as musical and everyday listening

by Gaver, along with his classification of sounds based on material water, gas or

liquid (see figure 1.1). Whilst this forms an intuitive base for the classification

sounds, these theories probably should be updated somewhat in the face of

more recent categorisation studies and as this field of research continues to

advance. For example many studies have found similar things, such as cate-

gorisation of vocalisations (both animal and human), alarm/warning sounds,

transport sounds and action sounds involving different objects.

Categorical perception of sounds also provides an interesting method to test

the perception of listeners, whether in how acoustic or semantic properties of

the sound (source) are used to categorise stimuli. Rather than identification it

offers a broader level of perception, that still shares similar processing mech-

anism and provides another way of studying how human listeners perceive

the auditory world. This may also prove useful when assessing the auditory

performance of listeners with hearing impairments, specifically in this case

Cochlear Implanted Listener. As stated, some research has been conducted

on this topic and has delivered interesting and positive results, however there

is still much room to pursue the topic, most notably as a FST has never been

tested with a population of CIL, which offers a somewhat more “real-world”

opportunity for testing.

In the following chapter we look at how 16 common sounds are categorised

amongst NHL. Chapter 1 looks at how the sounds were categorised by NHL

and how vocoding the sounds (in order to simulate CI processing) affected the

perception and categorisation. Chapter 2 looks spe CIically at CI users, how they

categorised the sounds and how the duration of implantation, and therefore

the level of experience with a CI, affects the perception and categorisation of

the sounds. Finally Chapter 2 conduces by discussing the results of Chapters 1

and 2 to compare the results and give an overall picture. Free-categorisation
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task of 16 common sounds.The following section describes testing that was

undertaken on sixteen common sounds using an Free Sorting Task (FST). The

sections below describe the testing that was done involving NHL with natural

and vocoded sounds. Testing using sixteen common sounds that were chosen

to cover vocal, musical and environmental sounds. NH and vocoded sounds

(both 8C and 16C) in order to simulate CI processing. Next is presented the

results CI users with duration of implantation greater than 12 months who are

hereafter referred to as “experienced” CI users.

Henceforth the following manuscript aims to add further understanding to

the topic of auditory categorisation by using a FST and focussing on specific

types of environmental and vocal processing to uncover possible sub categories

and the kinds of perceptions that are used when categorising these stimuli. The

main body of work concerns how CIL perform in a test of free-categorisation

concerning environmental, musical and vocal sounds and lays the first step in

using this kind of test and/or categorical perception for future research.



2
A U D I T O RY C AT E G O R I S AT I O N W I T H N O R M A L H E A R I N G

L I S T E N E R S - W I T H N AT U R A L A N D C I S I M U L AT E D

S O U N D S

The following chapter looks at how 16 everyday sounds were categorised by normal

hearing listeners (NHL) in a FST across three different conditions of spectral degradation.

Vocoder techniques were applied to the sounds using both 16 and 8 frequency channels

in order to simulate CI processing and were compared to a control condition where

sounds were presented naturally (NS). As mentioned the 16 sounds were chosen to

constitute three overall categories of musical, speech and ES. Results show that in all

three stimuli conditions that the participants used similar categorisation strategies

which on some level corresponded to the the pre-defined choices and included robust

categories of human sounds and machine/motor sounds. Results of 16 and 8 channel

vocoded sounds were more similar than compared to the unmodified condition and the

increase in vocoding appeared to affect the strength of categorisation of linguistic sounds

i.e. speech vs. non-speech sounds.

36



auditory categorisation with normal hearing listeners - with natural and ci simulated sounds 37

Chapter Aims

1. Establish how a set of 16 everyday sounds are categorised by NHL

in the Natural sounds (NS) condition. The chapter will investigate

whether participants categorise the sounds according to the prede-

fined categories of environmental, musical and vocal sounds or by

other means. Analysis shall also seek to understand the perceptual

similarities that are used to form categorisation strategies. The re-

sults and analysis will then form the basis for comparisons with

other stimuli conditions in this chapter and then be used again in

chapter 4.

2. Acoustic analysis of sounds shall also be used in order to help

uncover whether any physical attributes of the sounds are impor-

tant to the categorisation strategies used by NHL or whether results

agree strongly with previous theory that auditory categories are

based on semantic information associated to the sound producing

event, object or action.

3. To investigate how the categorisation performance and relevant

strategies change when reducing the spectral information of sounds.

This is done using 16 and 8 channel vocoder techniques in order

to simulate CI users auditory abilities. In this way not only is it

the goal to investigate auditory categorisation in difficult listen-

ing conditions, when identification of sounds is likely reduced,

but also provides predictive and comparative results for auditory

categorisation performed by CI users (see chapter ??).
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2.1 general method

The following section describes the experimental method and procedure that

was common in all testing and is the same used for chapter 3.

2.1.1 Stimuli & Procedure

Sounds were taken from a database owned by the PETRA group at the Uni-

versity of Toulouse Le Mirail (http://petra.univ-tlse2.fr) and were chosen in

order to cover as best as possible the broad range of acoustic information that

is possible amongst the three predefined categories of sounds - environmental,

vocal (both linguistic and non-linguistic extracts featuring male and female

voices) and musical (single tones and simple melodies). Sounds were 2-3 sec-

onds in duration and are listed with the predefined categories in Table 2.1

alongside the abbreviated labels used later in the manuscript.. All stimuli were

monophonic and recorded in .wav format with a sampling frequency of 44,100

Hz. A limit of sixteen stimuli was used to insure that the test would not be too

difficult for CI users to complete. The two participant groups were tested in

quiet listening rooms, NHL were tested at the CerCo laboratory and CI users

at the Purpan Hospital. Both groups were seated in front of a PC monitor

positioned at eye-level with two Roline Digital loudspeakers located on each

side at a distance of 1m. Stimuli were presented in stereo at a level of 65 dB SPL

(measured with a Sound Level Meter at a distance of 1m) via the loudspeakers

in free-field listening conditions. Testing itself was carried out using the open-

source TCL-LabX software (http://petra.univ-tlse2.fr/tcllabx/) which acted as

the interface for the FST. The sixteen sounds were represented on the computer

by sixteen numbered and coloured buttons which were positioned in the same

order for all participants. An example of the screen at the beginning of testing

is shown in figure 2.1.

The task for participants was to listen to the sixteen sounds and place them

into groups i.e. create categories by any means they chose. The exact instruction

delivered by the experimenter was:

“ Please group together the sounds that you think belong together.

You may do this by any means you choose”
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Sound ID Description Predefined Category

ALRM alarm clock ringing
CAR car engine starting
DR door opening

FSTP footsteps
GLS glass breaking
HELI helicopter flying overhead
WTR running water
BEL church bells outside

Environmental

GTR arpeggiated notes on an acoustic guitar
OBOE single note from an oboe
VLN short 7 note melody on a violin
XLY single note from a xylophone

Musical

CGH male voice coughing
FEM female voice speaking

MALE male voice speaking
LGH female voice laughing

Vocal

Table 2.1: 16 common everyday sounds used in the FST. Sounds are divided into three
different types of sounds - Environmental, Musical and Vocal sounds. Finally
an short identification label (ID) is stated as subsequent figures have been
plotted using these labels.

Only minimal feedback was given by the experimenter in order to facilitate

the completion of the experiment. Sounds were played by using the PC mouse

to double click on the numbered boxes which were positioned numerically in

the same order for all participants and groups were created by dragging and

positioning boxes together on screen. This was always done by the participants

themselves, including the CI users. Once participants had finished positioning

the boxes into groups they were asked to provide a brief description for each of

the groups they had created.

The experiment was designed in order to test the free-categorization ap-

proaches of the participants. There was no limit on the amount of time given to

complete the test or on the number of times a specific sound could be listened to.

Participants were also given no instruction as to how they should complete the

task and were allowed to create as many or as few groups as they wished. Thus

a group could contain only a single stimulus or all sixteen. Each participant‘s

choice of groups was saved as an indicator matrix in a .txt file whilst a separate
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Figure 2.1: Screen-shot of the FST at the beginning of each test. Orange squares represent
each of the 16 sounds which could be heard when participants double-
clicked on each square with the PC mouse.

.txt file was created for participant‘s group descriptions and most typical stimuli.

The TCL-LabX software also recorded performance data and statistics for all

participants including the number of categories created, the number of times

each sound was listened to and the duration of the experiment.

2.1.2 Analysis

2.1.2.1 Categorical Analysis

To analyse the categories that participants created two different functions were

used in R’. Firstly Multiple Correspondence Analysis (MCA) was applied to the

indicator matrix outputted by the TCL LabX software. The indicator matrix

itself represents the results as an array of categorical variables (participants) as

columns and categorical items (sound stimuli) as rows, with each cell containing

a number defining the category membership of each sound for each participant.

MCA uses Correspondence Analysis (CA) in order to represent each sound as a

data point in an n-dimensional Euclidean space based on the categorical values

i.e. the categories made by participants. Each dimension is chosen to account for

the largest amount of variance possible within the data-set and dimensions are

outputted in descending order of variance covered. MCA also performs analysis



2.1 general method 41

on the participants (categorical variables) and is able to show how strongly each

participant’s results can be explained by each dimension This is done using

based on co-occurrence matrices of the participants [23].

A total of fifteen dimensions were used in the analysis with the first five

selected for use in the HCPC calculations based on the amount of variance being

equal to or greater than 8%. The two most significant dimensions (Dim 1 &

Dim 2) were also focused on as they account for the most amount of variance

in the data and also show the most significant correlations to acoustic variables

measured for the sounds (see Table 6). Importantly dimensions are calculated

only to account for variability within the data and are not directly related to

any perceptual or physical characteristic of the sounds or ecological data of the

participants. There is no a-priori knowledge that can be used to automatically

make such a relation and so a certain amount of interpretation is used when

commenting on what characteristics the dimensions may represent [23].

RV coefficient (RVc) values were also calculated using the function coeffRV.

The RVc is a variation on the squared Pearson correlation coefficient that calcu-

lates the correlation between two sets of coordinates represented in a matrix

[112, 109]. In the case of this study the RVc was used to find the correlation

between the coordinate matrices for the first five MCA dimensions of the two

participant groups.

Secondly a Hierarchical Clustering based on Principal Components (HCPC)

was performed on the results of the MCA analysis in order to view a simplified

version of the categories of sounds in the form of dendrograms. When using

this analysis it is not possible to account for all of the variance (inertia) within

the data, i.e. the variability of participant responses, and so a certain amount

remains unaccounted for. By increasing the number of desired categories the

inertia can however be reduced and it is using this process that the we can

choose a final number of categories: if the number of categories is Q then the

optimal number of categories is found when the change in inertia is greater

when moving from Q-1 to Q than from Q to Q+1 (François et al., 2010). This
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can also be defined as the value for Q which minimizes equation 2.1.

Q−QQ+1

Q−1 −Q
(2.1)

2.1.2.2 Comparing Clusterings

Categorical analysis was concluded by finding the CCC [118] which gives a

measure of how accurately the distances between items in the raw data are

preserved in the dendrogram [25]. CCC has been computed in R’ using the

functions dist - to calculate the euclidean distance between sounds within the

n-dimensional space as computed using MCA; cophenetic - to find the cophe-

netic distances between the stimuli computed using HCPC; cor - to correlate the

two distance matrices and give a final coefficient.

2.1.2.3 Category Identification

In order to further understand the performance of participants in how they

categorized the sounds an estimation of “Categorization Identification” was

inferred from the participants’ category descriptions. For each sound the as-

sociated category descriptions were evaluated as to whether they referenced

musical, vocal or environmental sounds. These were then compared to the

predefined categories and the percentage of comments in agreement was cal-

culated across all participants for each sound. In some cases participants did

not give any specific description and this is reflected in Table 3 by the “% No

comment”. In addition a value for “Categorisation Accuracy” was found based

on the stimuli that were paired together by participants. This was calculated as

the percentage of stimuli-pairs present in each participant’s category choices

compared to the stimuli-pairs contained in the predefined categories, of which

there are forty possible pairs, (Table 2).

2.1.2.4 Acoustic analysis

Alongside categorical analysis of participants responses, the sounds themselves

were analysed for a range of acoustic variables [51]. To evaluate the func-

tional significance of the MCA dimensions the acoustical values obtained for

each sound were correlated using a Pearson correlation to the coordinates of
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each MCA dimension of the two participant groups. Correlations with MCA

dimensions were performed for several acoustic variables in order to reveal

the acoustic properties important for categorizing the stimuli as well as any

differences in strategy or ability between the participant groups (see section

2.3). Six different acoustical domains were explored and are detailed below.

1. Pitch measures - Including the mean and median frequency, standard

deviation of frequency, max frequency, mean pitch salience, max pitch

salience. Pitch values are calculated using Slaneys Correlogram model

of pitch perception [127] using a temporal windows of 16 ms correlated

at different time lags. pitch Salience, which can be assumed to be the

perceptual strength of the pitch, is calculated by dividing the maximum

value of a sounds correlogram (which occurs at zero time lag) by the

estimated pitch taken from the sounds correlogram. Values range from 0

to 1 where 1 indicates a periodic sound with easily perceivable pitch.

2. Spectral measures- Analysis was made on individual sounds to compute

the centroid, skew, kurtosis, mean centroid, spectral centroid velocity,

spectral centroid uniformity and spectral centroid standard deviation.

Centroid, skew and kurtosis are measures of the moments of the spec-

trum where the centroid is the central mass of the spectrum linked to

the brightness of sound. The skew correspond to the asymmetry of the

probability distribution of frequencies while the kurtosis is a descriptor

of the shape of a probability distribution. The remaining variables related

to the centroid values are measures of spectral movements within the

sounds.

3. Envelope measures - Including the number of peaks, mean peak, number

of bursts, mean burst, total burst duration, duration ratio computed from

the wave envelope of each sound. Peaks are defined as fast transient

changes in the envelope. Bursts are continuous increases in amplitude

of 4dB held for at least 20ms [6], whilst the duration ratio provides an

evaluation of the "roughness" of the envelope.

4. Periodicity measures - Values were obtained on the number of autocor-

relation peaks, the maximum autocorrelation peak, mean and standard

deviation of autocorrelation peaks, range of data. Periodicity is obtained

by firstly computing the autocorrelation of each sound (using the function

xcorr in MatLab) then calculating the previously stated variables to give
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an indication of the frequency, strength and uniformity of periodicities. Pe-

riodicity is uncovered by analysing the autocorrelation of each sound. The

stated variables then give an indication towards the frequency, strength

and uniformity of these periodicities.

5. Cross-Channel correlation - an average value of the correlations between

frequency bands of the envelope was calculated for each sound giving an

indicator of signal uniformity.

6. RMS values - The RMS power was measured across different frequency

bands centred at frequencies of the Bark scale [147].

2.1.2.5 Statistical analysis on Participant performance

As previously mentioned the TCL-LabX software recorded performance data

and statistics for all participants including the number of categories created,

the number of times each sound was listened to and the duration of the

experiment. Statistical testing using ANOVA, t-test and kruskall wallis tests

were was performed on this data to reveal if participant groups differed in

their performance of the FST and also whether this data could add to the

interpretation of participants categorisation strategies. For example trying to

see if any of the sounds were listened to significantly more or less than others in

order to understand more about how the sounds were perceived and whether

this was a factor in participants categorisation strategies.
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2.2 nhl with natural and vocoded sounds

2.2.1 Method - stimuli, subjects and process

The method and stimuli described above in subsection 2.1 were used to test

three groups of NHL. One group was tested with the original natural stimuli

(seen in table 2.1) and will here on in be referred to as NHL and will be used as

the control group for comparisons both here and in later sections. The other two

groups of participants were tested with vocoded versions of the same sounds,

using either eight channels or sixteen channels and are referred to as 8C and

16C respectively. Vocoding was done using a noise vocoder in order to simulate

the perception of sounds with a CI. A summary of the participants tested is also

given in table 2.2.

Stimuli condition ID Number of Participants Stimuli description

NS 20 unprocessed natural sound
8C 20 vocoded with 8 channels
16C 21 vocoded with 16 channels

Table 2.2: Table showing the number participants for stimuli condition, NS, 16C and
8C, and a description of how the stimuli were treated in each condition.

2.3 results

2.3.1 FST performance

Performance of the three participant groups in the FST appears similar from

figure 2.2. Whilst values for vocoded conditions (8C & 16C) are greater these

differences are not significant. Neither for the number of categories created

by participants (kwp = 0.306), nor the average number of times each partici-

pant listened to the sounds (kwp = 0.5437). Also the amount of time taken to

complete the task seems greater for the 8C condition but is also not significant

(kwp = 0.063). It should also be noted that one participant in the 8C group took

6405 seconds to complete the task. This result has been regarded a measurement

error and has been excluded from the calculations of the average value (shown

in figure 2.2) as well as statistical analysis as it greater than the bootstrapped

average (425.62s).
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Figure 2.2: Figure showing the FST performance statistics for the three stimuli conditions
tested with NHL - NS in dark blue, 16 channel vocoding (16C) in Royal Blue
and the 8 channel vocoding condition (8C) in light blue .

Categorical analysis also shows more similarities between the participant

groups. From a purely numerical perspective figure 2.3 shows that the amount

of variance covered by each of the five dimensions is nearly exactly the same

for all three stimuli conditions and values of unaccounted variance are also

similar. The percentage of subjects with coordinates greater than 0.8 (see figure

2.10) is also similar although reduced across all dimensions for the 8C condition.

Taken overall figure 2.3 and 2.2 show that within each stimuli condition par-

ticipants were in agreement and performed the task in a very similar manner

to each other showing little variation. Across the three stimuli conditions there

also did not appear to be significant differences in performance when vocoding

the sounds.
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Figure 2.3: Bar plot of the variance covered by each of the five retained MCA dimensions
for NHL in NS, 16C or 8C testing conditions. Unaccounted variance is the
variance covered by dimensions 6− 15 from the analysis.
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2.3.2 HCPC analysis - dendrograms

Using the retained dimensions a simplified categorisation for each participant

group can be seen as dendrograms in figure 2.5. In order to validate these

figures Cophenetic correlation coefficients (CpCC) have been calculated for

NS = 0.78, 16C = 0.74 and 8C = 0.84. These values show how accurately the

dendrograms (figure 2.5) represent the original data. Being close to 1 it means

the data are well represented and shows that for each stimuli condition par-

ticipants performed likely in a uniform way. Interestingly the value for 8C is

highest meaning the dendrogram in figure 2.5 is more representative of the 8C

participant group than that for 16C and NS.

The ordinate of the dendrograms represents the distance or similarity be-

tween stimuli, with a larger distance being indicative of a greater dissimilarity.

Average values of the Intra- and inter-category distances are shown in figure

2.4 where the Intra-category distance is significantly different only between

NS and 16C (kw, chisq = 7.72,p < 0.05) and the inter-category distance is

greater for NS compared to both 8C and 16 C(kw, chisq = 14.48,p < 0.001). It

means that for NS sounds within the same category are perceived as being more

similar and that categories themselves are more dissimilar or further separated

from each other. It is also interesting that values for the two vocoded stimuli

conditions are similar and is further evidence for similar performance in these

two conditions. One difference however is seen for the separation of linguistic

sounds (MALE and FEM) which occurs at a height of 0.737 for 8C but only0.614

for 16C. It is therefore likely that in the 8C condition these sounds are more

strongly distinguished from the others than in the 16C condition. Finally the

category of BEL, WTR, GLS is repeated for both 8C and 16C and does not cor-

respond to any results seen for NH. As NS categorise the BEL sounds amongst

musical sounds it is likely that it is not considered as an environmental sounds,

such that the categorisation with WTR and GLS is likely due to a change in the

perception of this sound when vocoded.
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Figure 2.4: Boxplot of Inter & Intra category distances calculated from the heights of
dendrograms in figure 2.5.
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Figure 2.5: HCPC Dendrogram for NHL across three stimuli conditions. Categories
outputted by HCPC are indicated by coloured rectangles whilst the upper
limit of these rectangles indicates where the tree has been cut (as described
in the main text). The height axis gives the perceptual distance between
each stimulus Finally stimuli are labelled using the abbreviated sound IDs
from Table 2.1.
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2.3.3 Similarity comparison - co-occurrence matrices

Aside from the similar pairing of linguistic sounds MALE and FEM, there are

also other noteworthy similarities in all stimuli conditions which can be shown

in figure 2.6. This figures represent the co-occurrence (similarity) matrices

which are a measure of how often a certain sound was paired with another

i.e the number of participants that created this pair, where 1 (maroon) would

represent a pair created by ALL participants and 0 (blue) a pair never made.

In the NS stimuli condition there is stronger agreement amongst participants

in pairing together; musical sounds, especially for the sounds GTR and VLN;

vocal sounds (MALE with FEM and LGH with CGH) and; between the sounds

FSTP, GLS and DR. The pattern of results also shows that participants in the NS

condition are more uniform categorisation strategy as there are many sounds

either strongly paired together or not at all paired together. Compared to this

the results for 8C and 16C demonstrate less agreement between participants

such that the figures are more uniform in colour.

Similar pairs do also exist across all three stimuli conditions - MALE-FEM,

HELI-CAR, GTR-VLN, GTR-XLY and FSTP-DR.. These pairs likely represent

certain kinds of sounds - linguistic, transport/mechanical, musical and finally

action sounds. Within the plots for 8C and 16C there is also a shared pair of

WTR-GLS that is not strongly represented in the plot for NH. The sound BEL is

also linked with these two sounds (as mentioned above) on the plot for 8C, but

not for 16C. It is possible that with an decrease in spectral information (moving

from sixteen to eight channels) that the sound BEL therefore becomes more

perceptually similar to the sounds of WTR and GLS.

2.3.4 MCA analysis - factor maps

Figures 2.7, 2.8 and 2.9 show how the sounds are displayed across the various

dimensions outputted by MCA analysis. It is clear to see that many of the

dimensions can also be interpreted in the same way for all stimuli conditions

and they are discussed below:

1. Dimension 1: shows a separation of the speech related vocal sounds in

comparison to all others. However the non-linguistic vocal sounds (cgh
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and lgh) are only grouped alongside the speech sounds (male and fem) in

the NS condition and not for either of the vocoded conditions.

2. Dimension 2: in NS there is a clear separation of musical and environmen-

tal sounds but this does not seem to be repeated for 8C and 16C. Instead

the two vocoding conditions are more similar to each other in that Dim 2

separates the same two groups of sound (water, glass, bell, heli, car, alarm,

oboe) vs. (guitar, xylophone, violin, cough, laugh), which almost, but

not quite corresponds to categories of musical vs. environmental sounds.

It is interesting to note that when looking at Dim 1 & Dim 2, although

the grouping of sounds may not be the same there are many pairs or

subgroups of sounds often plotted very close to each other - e.g. ftstp &

door, guitar & xylophone, cough & laugh. The interpretation of Dim 2

is likely different for 8C and 16C however, because of the sounds which

most strongly contribute to the dimension. For 8C this is car & heli vs

guitar, xly & violin whilst for 16C it is water & glass vs. door, guitar, fstp

& xly.

3. Dimension 3 & 4: figure 2.7 shows that Dimension 3 and 4 are used to

distinguish the environmental sounds in the natural sound condition.

Vocal and musical sounds are located on/around the zero line eof both

dimensions such that they are not heavily important to either dimension

and interestingly vocal sounds are also positioned similarly for 8C and

16C. There is a clear separation of the car & heli sounds on dimension 4,

as well as the water sound. Figure 2.8 also shows that for the 16 channel

vocoded condition the car and helicopter sounds are again distinguished

along dimension 4 and for 8C it may be seen on Dim 2. Rather for the 8C

condition dimension 3 & 4 separate glass, water & bell (dim 3) and then

footstep & door (dim 4).

4. Dimension 5: the weakest dimension retained in the analysis is difficult

to interpret for 16C, but shows similarities between NS and 8C in the

separation of coughing and laughing sounds. Interestingly for NS this is

a direct 2-way choice between the linguistic and non-linguistic sounds,

where as for 8C it is only the preference of the non-linguistic vocal sounds,

suggesting that in the 8C condition these two sounds are perceived as

similar, different to the others, but not strongly associated with the other
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vocal sounds as is the case in 16C and NS.

This pattern of similarities is also evidenced by calculations of the RV co-

efficient. Correlations of NS with vocoded conditions show high correlations,

with 16C RV = 0.73;p = 1.8e−6 and 8C RV = 0.709;p = 5.57e−6. A higher

correlation is also seen between 8C and 16C, RV = 0.85;p = 5.95e−8. These

correlations may help show that whilst the results of the vocoded conditions

are very similar to those in the NS condition but are more similar to each

other, suggesting that the perception of sounds is different with the use of any

vocoding independent of the number of channels used.
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Figure 2.6: Co-occurrence (similarity) matrices for the three testing groups NS, 16C and
8C. Each cell corresponds to the number of participants who paired two
stimuli together, with low similarity indicated by blueand high similarity by
red. Stimuli are arranged by their predefined category, where the red dotted
line separates the three categories of vocal, environmental and musical
sounds.
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Figure 2.7: MCA Factor maps for NHL in the NS stimuli condition. Dimensions 1-5
are shown across the three panels with percentage of variance covered
also shown. Colours correspond to the categories shown in the HCPC
dendrograms of figure 2.5 (upper panel).
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Figure 2.8: MCA Factor maps for NHL in the 16C vocoded stimuli condition. Dimen-
sions 1-5 are shown across the three panels with percentage of variance
covered also shown. Colours correspond to the categories shown in the
HCPC dendrogram of figure 2.5 (middle panel).
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2.3.5 MCA analysis - subject maps

The pattern of results displayed by the subject maps in figure 2.10 can also

be used to evaluate the level of agreement by participants. Across all three

stimuli conditions the coordinates of Dim 1 & Dim 2 show most participants

are grouped together toward the top right hand corner of the subject maps

indicating strong agreement in the use of these dimensions. For Dim 3-5 (not

plotted) the pattern of values is much more dispersed showing less agreement.

Although this is a result of the analysis it can be interpreted that the these latter

dimensions are only important to certain participants.
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Figure 2.9: MCA Factor maps for NHL in the 8C vocoded stimuli condition. Dimensions
1-5 are shown across the three panels with percentage of variance covered
also shown. Colours correspond to the categories shown in the HCPC
dendrogram of figure 2.5 (lower panel).
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Figure 2.10: Figures showing the distribution of NHL in all 3 stimuli conditions Dim
1 & 2. Results are plotted from 0− 1 and can be interpreted as showing
how strongly the results of each participant are matched to each stated
dimension, where a value of 1 would show a strong match. The mean
value of each dimension is also represented by the Eigenvalues in table 2.3.
Finally Dim 1 & 2 are plotted in the top panel, Dim 3 & 4 in the middle
panel and Dim 1& Dim 5 in the bottom.
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2.3.6 Categorisation Identification

Categorisation Identification was also calculated by comparing the participants

comments to the originally pre-defined category for each sound. Results are

shown in table 2.11 and show that the most correctly categorised sounds were

speech sounds and the melodic musical sounds (GTR and VLN). Whist the

results for NS are greater there is not a significant difference between the two

vocoding conditions.

Figure 2.11: Categorisation identification for NHL, where NS is represented by ×, 16C
by + and 8C by 3. Results for individual sounds are plotted in the left
hand scatter plot in order of mean category identification across all three
stimuli conditions, whilst results for each stimuli condition are plotted as
boxplots in the right hand panel.
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2.3.7 Acoustic Analysis

As mentioned in the methods section acoustic analysis was undertaken on

the sounds. These values were then correlated to the coordinates of the MCA

dimensions and table 2.3 list the significant correlations that were found in each

stimuli condition.

Acoustic Variable NS 16C 8C

Autocorr Mean Peak D2 D3

Autocorr std Peak D2 D3 D2

Autocorr No Peaks D2 & D3 D4

Autocorr Range D1

No Bursts D5 Te
m

po
ra

lly
re

la
te

d

std Frq D4

Mean Salience D2 D1

Max Salience D2 D1 D2

Spectral kurt D5 D5

Spectral STD D5

Mean BPF D1 D2
Sp

ec
tr

al
ly

re
la

te
d

Table 2.3: Table of MCA coordinates along each of the five dimensions (listed by D1 ....5)
that showed significant correlations ( p < 0.05) to acoustic variables for each
NHL stimuli conditions (NS, 16C and 8C). For example, in the NS condition
there was a correlation between MCA Dimension 5 (D5) with measure of
the No. Bursts and Spectral Kurtosis of the sound stimuli. Acoustic variables
are also divided between those that are related to temporal and spectral
measures.

The correlation of the number of peaks in the autocorrelation function to 8C

Dim 4 and 16C Dim 3 can be linked to the sounds being periodic and is a result

of the fact that the sound footstep (fstp) has the highest number of peaks (4).

This however results in it having a low average peak in comparison to sounds

with only one large peak, resulting in the negative correlation to the mean and

std peak. Which in the same way explains the negative correlation for Dim 3

16C - because the sound footstep has low mean autocorr peak value.

Pitch Salience associaated to Dim1 of 16C, cos there is a different pattern of

results in comparison to NS and 8C. More gradual dispersion for 16C.
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Max salience on Dim 2 for 8C is due to extremities again, with musical

sounds (high pitch salience at the lower extremity) and car and heli with low

pitch saline at the top. Spectral measures (std and kurtosis) linked with the

Dim 5 split of bel and gtr at the extremity, which have low spectral std as they

are musical notes, and kurtosis which described the shape of the probability

distribution of frequencies such that the frequency distribution for bel and gtr

is toward the higher frequencies.

2.4 discussion

A FST of 16 everyday sounds was performed by three groups of NHL. For each

group different levels of vocoding were applied to the sounds, using either

8 channels (8C), 16 channels (16C) or using the natural (unmodified) sounds

(NS). Results show strong similarities across all three stimuli conditions in

terms of the primary strategies used for categorising the sounds, especially

regarding linguistic and musical sounds. Although the exact manner in which

the strategies are used may be somewhat different in the face of vocoding which

causes altered perceptions. Certain pairs of stimuli are also present in all three

stimuli conditions indicating further potentially shared strategies of categori-

sation. Finally the NS condition shows differences to 8C and 16C with a more

distinct separation of categories, a higher agreement between participants and

a more uniform performance. Overall results show underlying similarities for

the categorisation of sounds by NHL even with vocoded sounds. Differences in

vocoding conditions may also may also help to understand how the perception

and subsequent categorisation of sounds changes when spectral information is

reduced.

For all stimuli conditions vocal sounds seem very important in that they are

they first and most distinct category made by participants. Linguistic vocal

sounds especially seem robust to the effects of vocoding and the reduction of

spectral information, which is somewhat expected knowing that speech sounds

can be well identified with as little as four channels in comparison to only 66%

for environmental sounds [126, 93]. Non-linguistic vocal sounds, although often

paired together were however affected by vocoding in that they were no longer

categorised alongside the linguistic sounds, even in the 16C condition.It appears

that with decreasing spectral information the similarity between speech and
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non-speech sounds became much weaker. Inferring from category descriptions

some participants from both 8C and 16C conditions did indeed perceive the

coughing and laughing sounds as human vocal sounds. However there is greater

variability in perception and more often these sounds are perceived as musical,

quite probably due to the strong temporal nature. Certainly for the sound of

coughing it carries very little spectral cues that may be used in the identification

of the human voice. Why the perceptions differed is not clear although in

other studies training effects have played a role in the identification of vocoded

sounds [123]. This is somewhat similar to the results of [93] who also found that

performance was better for speech vs non-speech sounds when discriminating

against environmental sounds.

The robustness of linguistic stimuli (and non-linguistic in the case of natural

sounds) is likely related to two factors. Firstly the human vocal system does

not vary wildly (especially in comparison to environmental sounds) amongst

different people. In this manner it represents a singular source with “fixed”

size and smaller variability in the acoustics that it can generate. Compared

to non-speech, speech stimuli are also affected differently by vocoding such

that certain cues are well preserved in vocoding for example temporal mod-

ulations specific to the speech signal and articulation cues [93]. Secondly the

addition of linguistic information may aid the listener in providing semantic

information i.e. words, phonemes, grammatical and semantic context, which

enables top-down processes to aid the discrimination of sounds. This so called

“grammar” [8, 51] may help in limiting the choices that participants have when

perceiving/identifying a sound.

In contrast to vocal sounds, environmental sounds constitute a huge range of

sources which vary wildly in acoustic nature. As such it is incredibly difficult to

define a set of acoustic information that can account for environmental sound

identification. There is also the additional factor that different environmental

sounds are affected in different ways when vocoded. For example in a test of ESP

[119] found that identification did not improve significantly beyond 8 channels

and even with 32 channels identification accuracy was only at 70%. However

some sounds were correctly identified with only 4 channels, thus demonstrating

the difference in perception of environmental sounds. using band-limiting the

same study also demonstrated the importance of higher frequencies in the

perception of environmental sounds in similarity to the finding of [51] who
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noted the importance of information within the 1.2− 2.4 kHz frequency band.

Whilst identification of sounds was not tested, results of category identification

are significantly lower in both vocoded conditions compared to the natural

sounds, showing that this process is reduces the perceptual accuracy of auditory

information for naive listeners.

Apart from aiding the understanding of auditory categorisation vocoding

tests are highly useful in understanding the perception of sounds by CIL. Testing

actual CIL has shown variable results, for example [111] found environmental

sound identification of 79% (range 45− 94%) amongst, however in similar non-

linguistic sound test (NLST) [59] found scores of 49± 14% for 11 CIL. Notably

testing in [111] was done by presenting stimuli from a specific setting/con-

text (home, kitchen, office or outside) in a 10-alternate force choice procedure.

whereas [59] used an open-set procedure. The closed-set nature of testing in

the first study and the addition of context information may have helped to

raise performance levels beyond the norm. Whilst It is clear that performance

amongst CIL varies highly in similarity to results of CI simulations, the success

of using such simulations is not clear (discussed further in chapter 4).

Commenting specifically on the manner in which NHL categorise auditory

information the current study would agree with previous work that suggests

auditory categories are based on the perception of semantic attributes of the

sound producing object or action rather than qualitative acoustically related

perceptions associated to the sound signal [52, 57, 91, 6, 120, 37]. For exam-

ple categories of human action sounds, mechanical/transport, human voice

and musical sounds appear common to all stimuli conditions and therefore

also show robustness to vocoding. Musical listening as stated by [37] does

not appear to be strongly influencing the results so strongly, which suggests

participants are able to identify some or all the sounds to a suitable level to

extract semantic meaning from them. For example a similarity shared across all

stimuli conditions is the categorising of DOOR and FSTP together. Category

descriptions associated to these two sounds are also very similar describing ei-

thereveryday noise or action sounds. A similar pattern is also observed regarding

the categorisation of CAR and HELI sounds, which are robustly categorised as

mechanical sounds in all conditions. This may be another important category

as the number of comments referring to mechanic/motor sounds increases as the

number of channels is reduced. This could also be because the car and heli
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sounds are more easily identified even when vocoded such that subjects simply

place ambiguous sounds alongside them, for example the sounds of ALRM

and OBO. Whilst descriptions of the individual sounds were not recorded, the

change in category descriptions mirrors what is already known, that vocoding

can have very different effects on the perception of different environmental

sounds [54, 122].

Importantly it also seems that categorisation is being made on the basis of

semantic information concerning the sound producing object even with the low-

est amount of spectral information available. Whilst identification performance

was not measured it may be that participants are still able to identify sounds

to a level where they are able to extract some form of semantic meaning. This

definitely seems to be happening with regards to vocal, mechanical/transport

and melodic musical sounds.

2.5 conclusions

The current chapter tested three groups of NHL with a Free Sorting Task (FST)

of 16 everyday sounds that were divided into three predefined categories of

environmental, musical and vocal sounds. Two groups of NHL participants lis-

tened to sounds that had been passed through either a 16 or 8 channel vocoder

in order to simulate a Cochlear Implant (CI) device. Results showed that on a

broad level categorisation strategies in each participant group divided stimuli

into the three predefined categories with vocal sounds (especially linguistic

sounds) strongly separated from others. Across testing conditions similar cate-

gories or stimuli pairings were found for mechanical/transport, human action

and musical sounds and demonstrated that participants perceptions of sounds

were grounded in semantic or causal information associated with the sound

producing object and/or action, even when spectral information was reduced

the most (8C).
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Key Points

• Across all stimuli conditions, Natural sounds (NS) and CI simulated

conditions of 16 and 8 channel vocoding the three groups of NHL

show very similar performance in categorising the stimuli. On

a broad level the sounds are categorised in agreement with the

predefined categories of vocal, environmental and musical sounds.

• The most dominant categorisation strategy corresponds to the

contrast of vocal sounds with other sounds. This is in keeping

with previous research that observes the strong categorisation of

vocalisations, as these sounds represent one sound source - the

human vocal tract, and are highly familiar to human listeners.

However, with increased vocoding this appears to apply only to

linguistic vocal sounds as have a speech shaped envelope.

• Musical sounds with a sense of melody also seem to be more

strongly categorised together in comparison to sounds of only a

single tone, which are more often categorised amongst environmen-

tal sounds. This is most likely due to causal uncertainty of such

sounds along with the idea that sounds are categorised predomi-

nantly based on causal similarities. Rather than being identified as

musical simply because a sound contains a strong pitch, unless it

is identified as originating from a musical instrument it appears

that it will be categorised based on other semantic information, for

example originating from a non-musical sound source possibly as

a warning sound.

• Human sounds (both vocal and action) as well as machine/trans-

port sounds are robustly categorised even in the 8C condition. This

suggests that the perception of these sounds is affected not by

the reduction in spectral information and may instead rely more

strongly on temporal information. For example a characteristic of

engine sounds is their repetitive and broad spectral nature, whilst

action sounds often involve short temporal events such as a result

of impacts.

• The main impact of vocoding techniques seems to be in altering

the perceptions of non-linguistic vocal sounds and single tone

musical sounds. Whilst the main categories are preserved, and the

first two MCA dimensions are consisted in all stimuli conditions,

categorisation performance in later dimensions changes slightly.
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A U D I T O RY C AT E G O R I S AT I O N W I T H C O C H L E A R

I M P L A N T E D L I S T E N E R S - H O W D O E S I M P L A N TAT I O N

D U R AT I O N A F F E C T P E R C E P T I O N

Three groups of CIL who had different durations of implantation ranging from 0− 6,

7− 14 and 14+ months, were tested with the same FST as previously described in

chapter 2. Results show that the more experienced CIL were capable of separating vocal,

musical and environmental sounds. This was especially true for linguistic vocal sounds,

musical sounds and transport/mechanical sounds and somewhat disagree with previous

research that showed CIL struggling in related tasks. The least experienced group of

CIL showed some similarities to the other two groups but overall were different in both

performance of the task and the categorisation strategies employed. This may indicate

that the region of adaptation to a FST lies around 6 months post implantation.

3.1 introduction

The following chapter looks at the performance of auditory categorisation

performed by three different groups of CIL who differed in their duration of

implantation. They consisted of Experienced cochlear implant listeners (EXP)

with more than 14 months of implantation, Intermediate cochlear implant

listeners (INT) - from 6− 14 months implantation and New cochlear implant

listeners (NEW) with duration less than 6 months. CIL again performed the same

FST of 16 common sounds as described in chapter 2 with results analysed using

the same MCA and HCPC techniques. This was done primarily in order to find

the categorisation strategies in the auditory domain that may be used by CIL and

how they compare to the results of NHL in from chapter 2. However this is not

discussed in the current chapter but rather explored in greater detail in chapter

4, where the results using vocoded stimuli (8C & 16C) are used for comparisons

with CIL results and to evaluate the suitability of vocoding techniques for CI

simulations. Chapter ?? will therefore focus on understanding the categorisation

strategies of the three CIL groups and how they evolve with increasing duration

of implantation. It is known that with increased adaptation to the implant CIL

show improved speech abilities that plateau around 6 months post-implantation

67
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and reach maximum scores of approximately 80% after 12 months [139, 103, 18].

Speech perception has also been linked with ESP in CIL [121, 79, 111, 51, 59]

which suggests that there are similar perceptual and cognitive aspects involved

in the perception of both kinds of sounds. However, although some studies have

shown improvements with training [121, 85], ESP in CIL is generally considered

to be poor. For example in a test of vocal-environmental sound discrimination

CIL showed no improvement even after 18 months of implantation [94]. ESP is

therefore a complex process for CIL.

Importantly this is the first study to test the performance of CIL in a FST of

common sounds, especially mixing vocal, musical and environmental sounds.

Whilst closely similar studies do not exist the previous research can help to

make predictions. With differences in implantation duration CIL accumulate

different amounts of experience with their implants which will therefore likely

create different categorisation strategies. These differences are likely to manifest

in one of two ways, based on the everyday and musical listening modes suggested

by Gaver [37]. Considering everyday listening, the perception of a sound is

related to the semantic information associated with the sound producing event.

This relies on identifying the sound source (either correctly or incorrectly) such

that categorisation strategies employed by CIL may be based on semantic infor-

mation, however associated to mis-identified sounds. Alternatively if CIL are

completely unable to identify sounds, then musical listening may be employed

resulting in categorisation strategies based on the qualitative perception of the

sounds that are associated with acoustical characteristics. Of course the easiest

way of analysing the effect of implantation duration is to compare the results

to those of the NHL tested in the NS condition in chapter 2. Considering this

comparison it is likely that the results of EXP will provide a closer match than for

INT and even weaker match for NEW - as mentioned this is explored in chapter 4.

Finally it is hoped that by mixing vocal, environmental and musical sounds

and posing almost no restrictions on participants that the FST represents a task

more similar to “real-world” interactions with the auditory environment for CIL.
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Chapter Aims

1. Establish how a set of 16 everyday sounds are categorised by three

groups of CIL differing in duration of implantation. The chapter

will investigate whether CIL participants categorise the sounds

according to the predefined categories of environmental, musical

and vocal sounds or by other means. Analysis shall also seek

to understand the perceptual similarities that are used to form

categorisation strategies. The perception of the different types of

sound, especially environmental sounds may also help to further

the understanding of CIL auditory abilities within the more real-

world FST paradigm.

2. To use a Free Sorting Task (FST) for the first time with CIL and take

the first steps to see whether such a test can be used for future

research to efficiently test auditory abilities of CIL

3. Within the chapter results will be compared across the three CIL

groups in order to understand how categorical perceptions of the

sounds change with increased implantation duration and increased

listening experience. The results will then be used for comparison

with those of NHL from chapter 2.

4. Identification accuracy of auditory categories and individual

sounds will be assessed in order to add to the existing research and

further understand how the different levels of perception change

with implantation duration. Whilst the identification of individual

environmental sounds is predicted to be poor the categorical per-

ception of these sounds may be informative to how they can be

further studied. For example it will be interesting to see If a link

between the identification of individual sounds and categories of

environmental sounds can be found.

5. Acoustic analysis of sounds shall also be used in order to help

uncover whether any physical attributes of the sounds are impor-

tant to the categorisation strategies used by CIL or whether results

agree strongly with previous theory that auditory categories are

based on semantic information associated to the sound producing

event, object or action. Acoustic analysis will also be important in

uncovering cues that used by CIL for the perception of different

auditory categories and individual sounds.
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3.2 method & materials

The same method and materials were used here as in chapter 2 however for

3 groups of CIL which are based on duration of implantation and described

further below.

3.2.1 Stimuli & Procedure

The same stimuli as used in chapter 2 were again used for collecting results

with the CIL and are re-stated in table 3.1. The same test procedure was also

used as is described in chapter 2 section 2.1. CIL were however tested at the

Hospital Purpan

Sound ID Description Predefined Category

ALRM alarm clock ringing
CAR car engine starting
DR door opening

FSTP footsteps
GLS glass breaking
HELI helicopter flying overhead
WTR running water
BEL church bells outside

Environmental

GTR arpeggiated notes on an acoustic guitar
OBOE single note from an oboe
VLN short 7 note melody on a violin
XLY single note from a xylophone

Musical

CGH male voice coughing
FEM female voice speaking

MALE male voice speaking
LGH female voice laughing

Vocal

Table 3.1: 16 common sounds used in the FST. Sounds are divided into three different
types of sounds - Environmental, Musical and Vocal sounds. For each sound
an abbreviated identification label (ID) is stated and is used to label stimuli
on subsequent figures.
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3.2.2 Analysis of identification performance

As part of the theory on auditory categorisation it is often stated that categori-

sation relies (or is strongly based) on identification of a sound-producing object.

Therefore understanding how participants perceived the sounds was important

and aided the interpretation of the categorisation results and strategies used by

participants. For the INT and NEW CI participant groups a measure of identifi-

cation performance was calculated. This was not however done for the original

group EXP and so a representative sample of 5 experienced CIL was tested in

order to provide comparative results.

Sound identification is not a trivial thing to analyse and there already exists

literature covering this topic with CIL (see [124, 83, 111, 5]. As such whilst an

in-depth test of identification was not performed it was important to under-

stand how (accurately) participants were perceiving the sounds and to have a

measure that could be used to better understand the link between identifica-

tion/perception and categorisation, as well as aiding the interpretation of MCA

and HCPC analysis. In order to do so participants were asked to identify each

sound once the FST had been completed.

Participants were allowed to listen to the sounds again as many times as they

chose and were then asked to simply describe what they heard for each sound.

Responses that were easily interpreted were immediately scored as correct

or incorrect. More complicated responses, including unknown french words,

were written down and later evaluated with the aid of a native French speaker.

Results were calculated as percentages and correlated with the coordinates of

Dimensions outputted by the MCA analysis in order to see if any aspect of

the categorisation strategy could be explained by the identification ability of

individual subjects or the ease of identification for each sound. Analysis of

identification performance can be viewed alongside the categorisation accuracy

results in section 3.3.

3.2.3 CIL participants

As previously mentioned three groups of CIL were chosen based on the duration

of implantation; EXP with duration of implantation greater than 14 months; INT

from 6− 14 months and NEW less than 6 months. Table 3.2 gives a summary
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of all etiological and performance data of the three groups with individual

data for participants (including the participant ID’s and implant manufacturer)

in tables 3.3 - 3.5. Duration of implantation was taken as a rounded number

from the date of surgery to the date when the FST was performed, as such

participants with duration of 6.5 months or more were placed in the INT group.

Duration of deafness was taken from medical records as the first date when

participants were diagnosed with a “severe hearing loss” The threshold of the

non-implanted ear was taken from the participants audio-gram taken prior to

implantation and calculated as the average threshold (using headphones) across

frequencies 0.25, 0.5, 1, 2, 4 and 8 kHz. Word recognition and Sentence in noise

scores were recorded by the OLR audiologists as part of regular appointments

with participants and were recorded either on the same date as the FST or

within a few weeks but never exceeded the limits of implantation duration used

to define the three CIL groups.

CIL that were tested were not age matched as this was a difficult task to

achieve alongside the requirement of having a minimum of 15 participants

in each group - as required by the MCA analysis technique. Statistics of table

3.2 however show that there is no significant difference between the three CIL

groups in terms of the distribution of age (kruskal-wallis, p =0.0815), nor dura-

tion of deafness (kruskal-wallis, p =0.386), nor hearing threshold (of available

measures, excluding “deaf” patients) (kruskal-wallis, p =0.2822). Paired com-

parisons using rank sum tests also showed no significant difference between

any two participant groups. This is true even though there exists variability of

patient data and differences in the mean values between the three CIL groups.

Auditory performance measures also show no difference using kruskal wallis -

disyllabic word recog (kruskal-wallis, p =0.144), nor sentence in noise (kruskal-

wallis, p =0.388). However there are difference between EXP and NEW for word

recognition (rank sum, p =0.0154, corrected value = 0.0462). So whilst NEW have

worse mean scores than both INT and EXP, this is only significant for the word

recognition in comparison to EXP.
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3.3 results

3.3.1 Global performance

The TCL Lab-X software used to carry out the FST also recorded certain data

about how the participants completed the task and this is shown for each CIL

group in figure 3.1. “Playbacks per participant” is the average number of times

that participants listened to all sounds, whilst this number is divided by the

number of sounds (16) to calculate the ”Playbacks per participant per sound”.

For example, on average each member of EXP participants listened to the sounds

86 times during a test, and each sound was listened to 5.4 times.

Statistical analysis (kruskal-wallis) showed no difference in the number of

categories made by each participant group, nor the number of playbacks (p >

0.05). There was however a difference in the duration of test, such that NEW

were greater than both EXP and INT (p = 0.0192). This could be evidence

that NEW participants find the task more difficult and which might have been

expected knowing that this participant group have the lowest amount of hearing

experience with their implants. It also noteworthy that there are no significant

differences between the groups of EXP and INT who show similar performance.

ANOVA analysis was also performed on the individual participant data and

showed that for the participants within each group there was no difference,

such that each participant group was uniform in performance.

Figure 3.1: FST performance statistics. Statistics for the performance of CIL in performing
the FST. Bars represent the average value with error bars showing the
standard error. Playbacks per participant per sound is taken as an average of
the number of playbacks across both stimuli and participants.
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3.3.2 HCPC analysis

The simplest representation of the categorisation strategies employed by the

participant groups is represented by the dendrograms in figure 3.2 where the

different coloured rectangles represent the final categories. Importantly this

is only a representation based on the categories created by all participants,

such that some participants may only weakly follow this representation and

some not at all. As a measure of how well the trees reflect the original data

(indicator matrix) CCC values are located in table 3.6 and show that the least

representative dendrogram is that created for NEW (lower panel of figure 3.2).

The height (or distance) indicated on the dendrograms (figure 3.2) is a rep-

resentation of how perceptually similar the sounds are deemed to be - with a

greater distance indicating that two sounds (or categories) are very dissimilar.

The intra category distance is calculated as the average distance between sounds

within each category (rectangle) and inter(or between) category distance the

average distance between each category. Distances are similar across all partici-

pant groups (kruskal-wallis, p > 0.05) and therefore do not show any group to

be particular more uniform or varied concerning the categorisation strategies

used.

Whilst the same number of categories (six) are seen on the dendrograms

for all participant groups, this is somewhat dependent on the number of di-

mensions retained on the MCA analysis and does not suggest evidence for

similarities or differences amongst the participant groups.

Participant Group INTRA cat. dist. INTER cat. dist. CCC

EXP 0.047 0.59 0.80
INT 0.041 0.55 0.83
NEW 0.048 0.56 0.69

Table 3.6: Statistical measures of the dendrogram structures. INTER cat. dist. (category
distance) calculated as the average height between items located within the
same category, whilst INTRA cat. dist. is calculated as the mean distance
between the specific categories/clusters as noted by the coloured rectangles.
Cophenetic Correlation Coefficient (CCC) is used to calculate how accurately
the dendrogram represents the original data (the indicator matrix).
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The dendrograms show that HCPC analysis produces a category of vocal

sounds containing male, fem & lgh for all three participant groups. However

whilst this is seen to be the first category for EXP and INT groups this is not

the case for NEW and may highlight a difference in categorisation strategy,

where the more experienced CIL are able to separate the vocal sounds more

distinctly. Another similarity shared by the two experienced CIL groups is

that when cutting the dendrograms to produce only three large categories the

results correspond to the three predefined categories of musical, vocal and

environmental sounds, the only anomalies countering this being:

• for EXP alrm alongside musical sounds and cgh amongst environmental

sounds.

• for INT gls and cgh amongst the musical sounds.

The results for NEW also correspond to the predefined categories, however

only when cutting the dendrogram to create four categories, such that the

sounds dr and fstp are distinct from other environmental sounds.

Overall the global performance statistics and HCPC analysis show that the

three CIL groups performed very similarly in the FST, with only the duration

of testing and Cophenetic Correlation Coefficient (CCC) being significantly

different for NEW. Results are however more similar for EXP and INT whom

show a stronger tendency to separate the vocal sounds. Finally the sounds dr

and fstp may be perceived differently by NEW or simply form part of a different

categorisation strategy.
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Figure 3.2: Dendrogram for EXP, INT and NEW participants - the overall categories
outputted by HCPC are indicated by coloured rectangles whilst the upper
limit of these rectangles indicates the point at the dendrogram has been cut
(as described in the main text). The height axis gives the perceptual distance
between each stimulus whereby a large height indicates that participants
deemed those two stimuli to be highly dissimilar and vice versa. Finally
stimuli are labelled using the abbreviated sound IDs from Table 3.1.
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3.3.3 MCA analysis

A more detailed breakdown of the categorisation performance can be given

with MCA analysis. In this analysis the original data is represented in an n-

dimension euclidean space. Interpreting the dimensions can then give insights

into the categorisation strategy of participants, although importantly the gener-

ated dimensions are only an output of the analysis and are not directly related

to any physical measure of the sounds or the participants.

Whilst the analysis outputs a total of 15 dimensions only those which cover

above 8% of the total variance have been retained for interpretation and com-

mentary. This has given 5 dimensions for each participant group, and the

variance accounted for by each is shown in panel a. of figure 3.3. Dimen-

sions are ordered in descending order such that D1 covers more variance than

than D5. There is no difference between the participant groups for any of the

dimensions(kruskal-wallis, p > 0.05) nor the unaccounted variance - although

this slightly lower for the INT group (40.7 %).

Eigen values shown in panel b. of figure 3.3 are caluculated as the average

coordinate from subject maps (figure 3.4) and again show no difference between

the participant groups (kruskal-wallis, p > 0.05). Alongside the number of par-

ticipants who have a coordinate greater than 0.8 the eigen values give an idea of

how strongly a particular dimension is used. High values would indicate that a

large amount of participants are strongly adhering to a particular dimension

and strongly using the corresponding categorisation strategy. As can be seen

the values are highest for the first two dimension (D1 & D2) whilst the latter

dimensions (D3-D5) show lower values, especially in the % participants above

0.8. This is again visualised in figure 3.4 where the majority of participants

are located in the top right corner of each panel and demonstrates the general

agreement of participants in using D1 & D2. The pattern is similar across all CIL

and along with similar values from figure 3.3 suggests that there is a similar

amount of variance within the performance of each CIL group.

It should be noted that the dendrograms of figures 3.2, were created using

the 5 retained dimensions. Had the full 15 been used more variance would

have been included and the resulting dendrograms would be different, with

more categories and many sounds individually separated rather than grouped
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together.

Figure 3.3: The retained dimensions as outputted by MCA analysis for each CIL group.
Dimensions covering 8% or more of variance are retained, leading to 5

dimensions for all three CIL groups.The individual and cumulative variance
covered for each dimension are given, with the remaining unaccounted
variance relating to the non-retained dimensions. Mean eigen value is given
where eigen values represent the average eigen value of participants for
a given dimension whilst % participants >0.8 refers to the percentage of
participants who had individual eigen values greater than 0.8. Both values
which can be seen in figure 3.4.

initial MCA statistics would suggest further similarities amongst the three

CIL participant groups.

Overall based on the figures 3.3 & 3.4 there are similarities in the results

of the categorisation performance between the three groups of CIL. Certainly,

and against expectations, it is NOT the case that the results for EXP show more

agreement between participants in comparison to either INT or NEW. Results

also suggest that within each participant group there are likely 2-3 aspects of

the categorisation strategy that are commonly shared followed by sub-strategies

that used by a smaller number of participants. This does not however explain

how each dimension may be interpreted, to better understand this, figures 3.5

to 3.8 display the layout of the sounds across the five dimensions.
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Figure 3.4: Figures showing the distribution of all 3 CIL groups across Dim 1 & 2. Results
are plotted from 0− 1 and can be interpreted as showing how strongly the
results of each participant are matched to each stated dimension, where a
value of 1 would show a strong match. The mean value of each dimension
is also represented by the Eigenvalues in table ??. Finally Dim 1 & 2 are
plotted in the top panel, Dim 3 & 4 in the middle panel and Dim 1& Dim 5
in the bottom. Participants are plotted using the ID labels from table 3.3.
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Experienced cochlear implant listeners (EXP)

Focussing first on the results for the EXP group (figure 3.5) it would appear that

the first two dimensions divide the sounds into three clusters corresponding to

vocal, environmental and musical sounds - much like the predefined categories

(see table 3.1). Dim 1 would appear to strongly separate the vocal sounds,

although interestingly the sound cgh is not located with other vocal sounds.

Dim 2 is seen to separate the musical sounds from the other groups of vocal

and environmental sounds, with the sounds vln and gtr particularly distinct.

This could be a result of these sounds containing multiple frequencies (musical

notes) and a sense of melody in comparison to the sounds of xly and obo which

are only single tones. Finally the sound alrm is located close to the zero-line of

Dim 2, between the musical and environmental clusters which could indicate an

ambiguity in the perception of this sound. Participants use of Dim 1 & 2 can be

seen in figure 3.4 and shows that whilst there may be only 4 participants who

are above 0.8 and therefore strongly using both dimensions, there are only four

participants who are outside the limits of 0.6, (ESCPAT, BERCAT, MAMSOL

and MATARL). Of these, three remain strong users of Dim 1 such that only

participant MATARL would seem to be performing, or have a categorisation

strategy different from the other participants.

Dim 4 separates the group of xly, obo and alrm from other sounds. These

sounds were commonly identified as telephone ringing, door-bell or simply ring-

ing sounds and they are also sounds that constitute sustained single pitches.

Therefore the grouping together of these three sound on Dim 4 may be based

on similar acoustic information or semantic information - these sounds can be

described as “warning” or “’alarming” sounds. However only 2 participants

strongly adhere to Dim 4 meaning that it may not be of high importance to the

overall categorisation strategy. Finally Dim 3 and Dim 5 are concerned with

separating individual sounds (heli and fstp respectively) from the others.

Overall the results for EXP show that the majority of participants create

categories corresponding to the pre-defined categories of vocal, environmen-

tal and musical sounds. Categories of human action and warning/alarming

sounds may also be important in the overall categorisation strategy used by

EXP although not all the participants show this.
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Figure 3.5: Figures showing the distribution of SOUND STIMULI across the 5 retained
dimensions, with Dim 1 & 2 in the top panel, Dim 3 & 4 in the middle panel
and Dim 1 & Dim 5 in the bottom. Stimuli are plotted using the ID labels
from table 3.1 whilst colours are the same as used for the dendrograms in
figure 3.2 in order to show the link between the MCA and HCPC analyses.
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Intermediate cochlear implant listeners (INT)

The factor maps for the INT participant group (figure 3.6 ) show similarities

to that of EXP. Noticeably the first two dimensions again create three clusters

of environmental, musical and vocal sounds. Dim 1 contrasts vocal sounds

from other stimuli, although the sound cgh appears further separated from

vocal sounds, possibly indicative of a difference in perception of the cgh sound

between the INT and EXP participants.

Again in similarity to EXP results, Dim 2 separates the musical and environ-

mental sounds. However the arrangement is different as the main contributors

fstp and dr rather than gtr, xly and vln as for EXP. Comments in Appendix (???)

show that the sounds of fstp and dr were often described as human action

sounds and this is important to interpreting this dimensions and the categori-

sation strategy. Therefore although Dim 2 is performing the same function for

both EXP and INT in separating musical and environmental sounds, it appears

that the method of doing this is different.

Interestingly Dim 3 for INT is again similar to EXP as it separates fstp from

the other sounds, therefore suggesting that human action sounds may be a

robust categorisation strategy. However, data from table ?? shows that fewer

INT participants are using this strategy. Dim 4 is also comparable with EXP as it

it shows the grouping of heliand car is repeating the categorisation of mechani-

cal/transport sounds. Finally the sounds which contribute to Dim 5 are wtr, xly,

gtr and obo. This does not correspond to any of the dimensions for EXP and it is

not easily interpreted from only the factor map. It could therefore simply be a

result of the MCA analysis and not correspond to a “real” categorisation strategy.

Results for INT show strong similarity to those of EXP, especially for Dim 1 &

2 which again separate the stimuli into three rough groups of environmental,

musical and vocal sounds. There is again evidence for human action sounds be-

ing important as well as a sub-category of transport/mechanical sounds. There

is however slightly less subject agreement when comparing the eigenvalues and

% of participants above 0.8 which may point towards more variation amongst

INT.
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Figure 3.6: Figures showing the distribution of stimuli across the 5 retained dimensions,
with Dim 1 & 2 in the top panel, Dim 3 & 4 in the middle panel and Dim
1 & Dim 5 in the bottom. Values of variance located in table ?? are also
displayed for each dimension. Stimuli are plotted using the ID labels from
table 3.1 whilst colours are the same as used for the dendrograms in figure
3.2 in order to show the link between the MCA and HCPC analyses.
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New cochlear implant listeners (NEW)

MCA results for NEW, figure 3.8, immediately stand out as being different to

both EXP and INT. Most notably it is not possible to identify three clusters of

environmental, musical and vocal sounds using only Dim 1 & Dim 2. Instead

Dim 1 separates environmental sounds, to the right, from the musical and

vocal sounds and Dim 2 separates the sounds of fstp and dr from the other

environmental sounds. Although dr and fstp are not grouped together in exactly

the same way for EXP and INT there could be a link between the Dim 2 for NEW

and the strategy of grouping together human action sounds as seen for EXP and

INT.

Dim 3 may also show some similarity to the Dim 1 of EXP and INT in that

it involves the distinction of the sound male and could therefore relate to a

separation of vocal sounds. Although from figure 3.8 panel b the other vocal

sounds are not in close proximity to the sound male and therefore the categori-

sation of vocal sounds may be more weakly employed by NEW. Also the cgh

sound is again not closely grouped with other vocal sounds, suggesting that

the perception of this sound amongst NEW is similar. Dim 4 separates only the

sound obo and again demonstrates latter dimensions involve only individual

sounds rather than groups or categories. Finally the extremes of Dim 5 show the

sounds cgh & heli versus fspt & bel. This is however not particularly informative

and Dim 5 may again be simply a result of the MCA analysis.

The results of MCA analysis for NEW are initially quite different compared

to EXP and INT. Most striking is that the predominant categorisation strategy

involving vocal stimuli is only weakly represented by Dim 3. Rather the domi-

nant categorisation strategies involve environmental sounds and human action

sounds.

3.3.4 Combined Analysis

Results of all three CIL participant groups were also combined in order to assess

in more detail if there effect was of the duration of implantation. Previous anal-

ysis had shown that the duration of implantation was correlated with Dim 1 &

2 for NEW, which were interpreted as separating of environmental sounds from

other stimuli. A tendency for this correlation was seen for EXP with regards to
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Dim 1 - the separation of voice vs. other sounds.

Combining all three CIL participant groups and performing the same HCPC

and MCA analysis gives rise to the results shown in figure 3.9. IN the mid-

dle panel, the factor map again shows 3 broad groupings of sounds which

correspond to the vocal (far left), environmental (to the right) and musical

sounds (below). Whilst the exact pattern of results is different to the separate

factor maps, it is not surprising that both dimensions can be interpreted as

previously. In that Dim 1 corresponds to voice vs. non-voice sounds and Dim

2 the separation of musical vs non-musical sounds. The overall categorisation

described by the middle and upper panels of figure 3.9 is however somewhat

different to that previously described in separate results and actually acts as a

method of concluding the most salient features found in the results so far. I.e.

the separation of vocal sounds; the pairing of fstp and dr which are separated

from other environmental sounds; the categorising musical sounds into melodic

and single-note stimuli (xly & obo); the weaker categorisation of obo as a musical

sound; finally the very weak categorising of cgh as a vocal sounds, which is

instead grouped alongside musical sounds.

The lower panel of figure 3.9 is very important in understanding the effect of

implantation duration (level of experience). An initial observation is that the

coordinates for Dim 1 are correlated with those of Dim 2, (r = 0.76,p < 0.001)

which shows that those participants strongly using the categorisation strategy

described by Dim 1 are also using that of Dim 2. Correlations between the

the retained MCA dimensions and implantation duration, do not show any

significance for the combined results. Taking subsets of participants within the

combined results there is a positive correlation between implantation duration

and Dim 1 for both EXP (r = 0.53p < 0.05) and NEW (r = 0.63,p < 0.05),

although not for INT participants.

This could therefore suggest that CIL improve agreement to vocal vs envi-

ronmental sound discrimination (as categories) in a short space of time, 0-6

months for NEW, and also over a longer period of implantation 14 - 126 months

for EXP. So for these two groups as duration of implantation increases, so does

the adherence to Dim 1 of figure 3.9. This would also fit with research that

shows improvements in auditory abilities over first 6 months of implantation,

before plateauing between 6-14 months and then further improvements with



3.3 results 90

significant implantation duration and listening experience. It is not clear to

which auditory abilities this may be linked, it could be speech processing, envi-

ronmental sound perception abilities, or also with familiarity and experience of

auditory stimuli.

Figure 3.7: Scatter plot of CI user Implantation duration vs. MCA Dim 1 for the
combined analysis on ALL CIL participants. Separate groups of CI users are
shown by � for EXP, INT by • and NEW by N. Duration of implantation in
months is plotted on the Y-axis and Dim 1 coordinate from the subject map
is plotted on the X-axis. Dim 1 coordinates are taken from the lower panel
of figure 3.9.
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Figure 3.8: Figures showing the distribution of stimuli across the 5 retained dimensions,
with Dim 1 & 2 in the top panel, Dim 3 & 4 in the middle panel and Dim
1 & Dim 5 in the bottom. Values of variance located in table ?? are also
displayed for each dimension. Stimuli are plotted using the ID labels from
table 3.1 whilst colours are the same as used for the dendrograms in figure
3.2 in order to show the link between the MCA and HCPC analyses.
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Figure 3.9: Categorisation results for ALL combined CIL. In the participant map, lower
panel, E = Experienced cochlear implant listeners, I = INT and N = New
cochlear implant listeners. HCPC dendrogram is shown in the upper panel,
MCA factor map covering Dimensions 1 & 2 in the middle panel and MCA
subject map in the lower panel.
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3.3.5 Acoustic Analysis

In order to further interpret the dimensions outputted by MCA coordinates of

factor maps were correlated, using spearman rank, to acoustic measurements

of the sounds. Acoustic variables were calculated in similarity to [49]. The

significant correlations (p < 0.05) are given in table 3.7 for the three CIL groups.

Correlations for EXP show that Dim 2 is positively correlated to the mean and

standard deviation values of peaks in the autocorrelation function - which re-

flects the uniformity of repetitions within the sound. Dim 2 is also correlated to

the mean salience - a measure of the strength of pitch within the sound. Figure

3.10 shows the values of pitch salience plotted against mean autocorrelation

peak and demonstrates how these two cues may be used in order to categorise

the musical sounds together. Along with the sounds BEL and ALRM they have

high values of both mean pitch salience and mean autocorrelation peak. The

pattern of autocorrelation function is similar for all musical sounds and is

displayed for the sound OBO in the right panel of figure 3.10. As can be seen

there is only one large peak at the beginning of the sound which could indicate

that information at the beginning of the sound is important in the perception

of these sounds.

In contrast to the results for EXP the results of INT and NEW show correlations

to a wider selection of acoustic cues. Interestingly the two participant groups

show similarities with regards to the max and mean waveform peaks (transient

increases in amplitude of at least 80% the amplitude range). Both D2 for INT

and D1 for NEW are correlated to these variables and both dimensions reflect a

separation of environmental sounds vs. vocal and musical sounds (figures 3.6

& 3.8). Figure 3.11 plots the values of mean waveform peak against the MCA

coordinates for INT and NEW and shows that in general environmental sounds

have low mean peak values. VLN and ALRM sounds have also been plotted

in order to visually demonstrate the differences in peak values and also the

waveforms of different sounds. It is clear to see that VLN not only has higher

peak values but the amplitude varies much more over time in comparison to

ALRM. Most environmental sounds surrounding ALRM also share a similar

flat waveform pattern. FSTP and DR are however more temporally distinct and

similar to the waveform of VLN. This could therefore be a reason why they are

better identified (figure 3.14) compared to other environmental sounds. The

mean Burst value is also correlated with D3 for INT and further evidences the
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Acoustic Variables EXP INT NEW

Frq max D2 D1

Frq mean D3

Centroid D4 D1

Pitch Salience max D4

Pitch Salience mean D2

Spectral std D3 D1

Spectral skew D3

BPF mean D1 D2 D1
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Autocorr Peak mean D2

Autocorr Peak std D2

Peak max D2 D1

Peak mean D2 D1

Burst mean D3

Duration ratio D3

Wav range D2 D1
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Table 3.7: Table of acoustic correlations between coordinates of MCA dimensions and
acoustic measurements of sound stimuli. For each CI user group (EXP, INT
& NEW) significant correlations (p < 0.05) are shown for the corresponding
acoustic variable for the dimensions, which are listed as D1 to D5.

possibility that distinct changes in the amplitude are used by CI users as part

of their perception of sounds.

Max frequency values are also correlated to the same two dimensions. This is

a result of high frequency values in musical and vocal sounds, and low values

in environmental sounds and suggests that the ability to discriminate high

and low frequencies is part of the categorisation strategies used by the two CI

participant groups.

The only acoustic variable shared by all CI users groups is the mean BPF,

which reflects the mean correlation between octave frequency bands of the

sound envelope. A high value therefore corresponds to sounds that are more

uniform in their envelope response, for example the sounds OBO and HELI. In

contrast sounds that have low values are MALE and FEM, as can be seen in

figure ?? which also illustrates the envelopes of HELI and MALE across the 6

octave band frequencies used to calculate the mean BPF. Mean BPF is negatively

correlated to EXP-Dim 1 and NEW-Dim 1 and positively correlated to INT-Dim 2.
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Figure 3.10: Values of Mean Pitch Salience vs. Mean Autocorrelation Peak for the 16
sound stimuli are plotted in the top panel. The plot shows how these two
cues may be used to distinguish the musical sounds (obo, vln, gtr, xly)
as they have higher values of mean autocorrelation peak and mean pitch
salience. A significant correlation (r = 0.7) is also drawn with a line of best
fit, in green. The lower panel shows an example autocorrelation function
plotted for the sound oboe, with peaks highlighted by orange circles.

All three of these dimensions can be seen to contrast environmental from vocal

sounds, see figures 3.5-a, 3.6b and 3.8-a.
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Figure 3.11: Correlations of Peak values in the waveform vs coordinates for MCA
dimensions for INT and NEW. Left panel is for INT CI user and plots the
correlation between the MCA Dim 2 (x axis) and mean peak (y-axis). Right
panel shows the correlation between MCA Dim 1 and mean peak for NEW
CI users. It should be noted that MCA dimension coordinates have been
normalised from 0− 1 rather than the original data points shown in figures
3.6 & 3.8.
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Figure 3.12: Mean BPF values for all sounds, also plotted for individual sounds HELI
and MALE to give examples of sounds with high and low mean BPF
values, and uniform or non uniform envelope patterns across the six
octave frequency bands, which are listed in the legend at 212, 424, 848,
1697, 3394 and 6788 Hz respectively.
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3.3.6 Identification of Categories and Sounds

In order to aid the interpretation of the outputted MCA dimensions and there-

fore help to explore the categorisation strategies used by participants a measure

of category identification was calculated. Category descriptions given by par-

ticipants were evaluated as to whether or not they matched the pre-defined

categories of environmental, musical and vocal sounds - a full explanation of

this process is located in section 3.2.2 and participant category descriptions can

be found in appendix APPENDIX B.

Figure 3.13 shows a difference between the three CIL groups concerning

category identification, (kruskal-wallis, p < 0.05) where the mean value is

lower for NEW (42.6%correct) compared to INT (55%) and EXP (60%). Sounds

are arranged along the x-axis by according to the data of EXP (blue squares).

In general the results for INT and NEW follow a similar pattern. At the upper

end of the graph are melodious musical sounds (vln and gtr), human action

sounds (dr & fstp) and vocal sounds (male & lgh) Interestingly the sound fem has

a lower identification score. Comments from the sound identification task (see

figure 3.14) related to this sound often described it as musical, someone singing

or a musical instrument which might explain the lower category identification

scores in comparison to lgh and male sounds.

At the lower end of the scale the poor category identification scores of obo

and xly are a result of these sounds being categorised more often as envi-

ronmental sounds. This is most likely due to participants perception of these

sounds referring to telephones, ringing, doorbells combined with CIL difficulties

in perceiving the timbre of musical instruments. An additional factor may be

that environmental noises such as doorbells and telephones carry important

semantic information (warning people about an event) and that they are more

familiar to participants rather than the sound of an actual oboe or xylophone.

Category identification is also low for the sound cgh, which was categorised

as a musical sound and was often described as “drums”. This likely reflects

the ability of CIL to accurately perceive rhythmic sounds combined with poor

identification of timbre. Finally the sound bel was categorised as musical rather

than environmental. Whilst this sound is highly musical in nature this result

highlights the importance of how the pre-defined categories were chosen and
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this point is explored later in the discussion as part of the methodological

considerations.

Results in table 3.8 also show the category identification scores for the pre-

defined categories - environmental (E), musical (M) and vocal sounds (V). The

pattern of results is somewhat different across the three participant groups.

For EXP the highest category identification is, as might be expected, for vocal

sounds (70%), where as for INT it is the musical sounds (62%) and NEW show no

difference across the three types of sound. This would suggest better recogni-

tion of vocal sounds related that improves with longer duration of implantation.

Category Identification (% correct)

CIL group EXP INT NEW

Predefined Categories E 59 53 45

(see table 3.1) M 55 62 41

V 70 52 41

Table 3.8: Table of categorisation identification values (as percentages) calculated for
individual sounds and predefined categories of environmental (E), musical
(M) and vocal (V) sounds, see table 3.1. Values for the mean and standard
deviation (std) are caluculated over individual sounds.

Category identification values were also correlated with the coordinates of the

factor map dimensions in figures 3.5 - 3.8 and also patient data from tables 3.3,

3.4 & 3.5. No significant results were found. On first glance this would suggest

that the ease of categorising a sound is not part of participants categorisation

strategy. Also that there is no aspect of the patient data that can account for

the correct/incorrect perception of a sounds category. However the lack of

significant correlations could be because category identification was calculated

on the basis of only three broad categories where as there may have been

more detail/subtlety to the real categories perceived by participants. Perhaps

using different categories to reflect this may lead to significant correlations and

evidence that the correct perception of a sounds auditory category is linked to

the categorisation performance and strategies employed.
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Figure 3.13: Scatter plot of category identification for CIL, where EXP are represented
by �, INT by • and NEW by N.Results for individual sounds are plotted in
the left hand scatter plot in order of mean category identification across
all three stimuli conditions, whilst results for each stimuli condition are
plotted as boxplots in the right hand panel.

Figure 3.14: Scatter plot of sound identification, given as a percentage of participant
comments that were interpreted as correctly identified. INT represented
by • and NEW by N. Results are also plotted for a representative group of 4
additional EXP participants that were not part of the original testing, these
are plotted with �

.
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Alongside analysing the identification of categories INT and NEW were also

tested for identifying the individual sounds. Unfortunately this data was not

recorded for original group of 16 Experienced cochlear implant listeners (EXP)

and so a separate group of four Experienced cochlear implant listeners (EXP),

referred to as EXP* were also tested in order to provide representative data.

No difference is seen between three sets of data, either for the identification

of sounds shown in figure 3.14 kruskal-wallis, chisq = 0.04,p = 0.85, nor for

the identification performance of individual participants, p = 0.581. Assuming

that the EXP* are representative of Experienced cochlear implant listeners (EXP)

then it would appear that there is not difference in identification performance

across the three groups of CIL nor across the three different kinds of sound.

Interestingly for vocal sounds the results appear rather low considering that CIL

normally perform around 80% . However it should be noted that the average

value for vocal sounds includes that value for cgh which is much lower than the

other three vocal sounds - lgh, male and fem. When discluding the sound cgh,

the identification of vocal sounds rise to 71% for INT and NEW whilst remaining

similar for EXP* at 67%. The identification of musical sounds is poor (0− 18%)

as participants struggled in identifying the kind of instrument, often simply

describing them all as piano. This contrasts with the much higher category

identification (41− 62%) as participants were still able to perceive that these

sounds were “musical”. Identification of environmental sounds is also less

than 50% for all CIL groups, which is not a surprise given the theory that even

experienced CIL have poor environmental sound perception (ESP) [87, 82, 5, 124].

For the participant groups INT and NEW it was also possible to compare

identification of sounds with the identification of categories. Data plotted in

figure 3.15 shows that there is a correlation for both participant groups, al-

though this is only significant for INT (r = 0.58,p < 0.05) compared to NEW

(r = 0.38,p = 0.14). This would make sense as there should be a relationship

between the correct identification of a sound and its subsequently successful

categorisation. In both panels the majority of sounds lie below the dotted line

suggesting that identifying the category of these sounds is easier than identi-

fying the actual sound. There are also some sounds which are above or very

close to the dotted line and are therefore more easily identified than they are

categorise. Interestingly these seem to be the same sounds for both participant

groups - male, fem, fstp, lgh and car.
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Finally correlations were made between the sound identification data of figure

3.14 the coordinates of the MCA dimensions. Significant correlations were found

for the results of INT with respect to Dim 1 (see figure 3.16) and also for NEW

with respect to Dim 3 (see figure 3.16). As can be seen from the figures and

also from the previously mentioned interpretations of the dimensions, the same

four sounds (male, fem, lgh & fstp) are largely responsible for this correlation.

These are of course four of the most correctly identified sounds and at the same

time sounds generated by humans (either vocal or human action). Of course the

interpretation of the dimensions involved is that they are focussed on grouping

together human vocal sounds and the strong correlations presented here may

suggest that part of the reason for this is that they are easily identified by CIL.
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Figure 3.15: Scatter plots for results of Category Identification vs. Sound identification
for INT plotted with • in the upper panel and NEWplotted with N in the
lower pane. The figures are useful for showing that there is a correlation
(as shown by the green line) between CI users ability to identify individual
sounds and their ability to identify the predefined categories of musical,
environmental and vocal sounds.
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Figure 3.16: Scatter plots for MCA Dimension coordinates vs. Sound identification
accuracy (%) (as shown in figure 3.14. Upper panel shows the results
for INT CI Users plotted with • with Dim 1 coordinates on the x-axis an.
Lower panel shows for INT, plotted N with Dim 3 coordinates along x-axis.
Significant correlations between the data are shown with green lines, where
the strength of correlation is also noted.
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3.4 discussion

The same methodology as described in chapter 2 was again used to test the categori-

sation performance of three groups of CIL differing in the duration of implantation.

They consisted of Experienced cochlear implant listeners (EXP) with more than 14

months of implantation., Intermediate cochlear implant listeners (INT) - from 6− 14

months implantation and New cochlear implant listeners (NEW) with duration less

than 6 months. It was predicted that categorisation strategy would change based on

the duration of implantation with the perception of sounds improving with greater

experience. It was also predicted that due to poor ESP results for all CILwould be different

to those for NHL although the relation of chapters 2 3 is explored in chapter 4 and not

here. Results showed that the least experienced group (NEW) was different to both of

the other groups although similarities were noted across all groups, especially in the

categorising of vocal linguistic stimuli and the identification of sounds. There was no

difference in the identification performance of NEW, INT and a representative group of

EXP participants such that identification of vocal sounds was good but the perception of

environmental sounds remained poor even for experienced CIL.

3.4.1 Human sounds

Some of the strongest categories formed for CIL are those that involve human

sounds. This is most clearly seen in the strong categorisation of vocal sounds

for the more experienced CIL and concerns those sounds which most closely

resemble speech (male, fem & lgh). The speech-like sounds are also some of the

most easily identified sounds for all CIL and this may present a reason as to why

they constitute a strong strategy for categorisation. It is however interesting

that the vocal category is less dominant in the strategy employed by NEW even

though they appear to be successfully identifying the sounds. It is possible

that the reason for this difference is because NEW participants found the FST

more cognitively demanding than the more experienced CIL. The task required

a certain amount of memory when comparing the sounds and so whilst NEW

were able to perform adequately at identifying the sounds, the memorisation

and comparison of the 16 sounds was more difficult and contributed to the

different categorisation strategy shown in the results. In addition scores of word

and sentence perception are lower for New cochlear implant listeners (NEW).
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Whilst they may be able to successfully identify the vocal sounds as voices,

they may find it difficult to perceive other information (such as words) within

the sounds and therefore find the task of categorising more difficult compared

to EXP and INT. Previous studies in post-lingually deaf CIL have also shown

that performance in speech tasks shows large improvements after 3 months

implantation and then steady improvement up to 12 months before plateauing

[20, 97, 144]. Concerning purely the perception of vocal sounds our results

would appear to fit with this pattern such that both INT and EXP groups appear

create strong categories of vocal sounds and EXP having slightly higher category

identification of vocal sounds compared to NEW. Also whilst all three groups

pair the vocal stimuli together, the categorisation strategy is different for NEW

suggesting that this group did not distinguish the vocal sounds from non-vocal

sounds to the same degree as INT and EXP, results which agree with [93] who

showed vocal-environmental sound discrimination improved (slightly) with

implantation duration.

Human action sounds also appear to be a robust category shared by the three

CIL groups with the fspt categorised either separately or together with dr and

comments related to these sounds referencing the inclusion of a human body

in the act of generating the sound i.e. “somebody walking” or “a person opening

a door”. Again the sound fstp is successfully identified by all CIL and this again

likely contributes to why this is a common strategy. Identification of fstp may

also high due to the repetitive nature of the sound [59]. Regarding the sound

dr identified as a door other descriptions referred to “human steps” , “hitting”

and “grating” such that even though identification was not particular high par-

ticipants were still able to correctly perceive an action and use this information

as part of their categorisation strategy. It remains to be seen how CIL would

perform in a paradigm involving ONLY action sounds and but none-the less it

is interesting that NEW performed well in this manner.

Of course all of these human sounds share another factor in common in

that they are likely to be highly familiar to listeners. Not only will a listener

generate these sounds for themselves but they will be regularly heard from

other sources in daily life, building up a high familiarity and making them

more easily perceived [6].
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3.4.2 Categorisation and Identification

Whilst the identification of human voice seems relatively adequate for all CIL the

identification of other (environmental) sounds remains quite poor. This is not

surprising given that even experienced CIL have difficulties with such sounds

[93, 122, 111]. However the results of INT bring up an interesting question. If

INT and NEW are poor at identifying the sounds how is is that the categorisation

performance of INT more closely resembles that of the EXP.

When categorising there are not the same level of requirements for recogni-

tion of a stimulus category as for specific stimulus identification, for example

the results of [59] show higher categorisation scores compared to identification.

This is one of the underlying reasons why categorisation is used as a cogni-

tive process in daily lives. It requires more knowledge, attention, processing

power of the fine details to identify the exact source compared to assigning

category membership (identifying the category). For example whilst describing

the sound of a guitar as “musical” may not correctly identify it, it does correctly

categorise the sound and allow the listener to understand certain characteristics.

It is also likely that INT have better access to acoustical information of the

sounds that results in different categorisation compared to NEW. This is cer-

tainly true for vocal sounds and is evidenced by the known improvement in

speech perception by CIL over time. Whist the same improvement is not seen

with identification of environmental sounds [87, 108] perhaps we show here

evidence that it exists for a broader level of perception i.e. categorisation. As

mentioned above the affect of familiarity cannot be ignored not only will CIL

access to acoustic information improve as they adapt to using their implant but

their familiarity with their auditory environment and to individual sounds will

also improve. Neither can the possibility that NEW find the task more cognitively

demanding than the more experienced CIL as evidenced by the longer durations

taken to complete the experiment and lower word recognition score.
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3.4.3 The effect of Implantation Duration

The main aim of the research described in this chapter was to test the affect of

implantation duration on the categorisation of 16 common sounds. No previous

study has tested CIL in such a paradigm before and so there is not any available

data for direct comparison. The results do however fit with previous findings

that for post-lingually implanted CIL the perception of vocal and musical sounds

improves over time and that the perception of environmental sounds remains

difficult even after significant amounts of experience.

Most interesting is the difference in categorisation strategy seen for NEW

compared to INT and EXP. With increased duration of implantation the category

identification is seen to rise and results become more and more similar to those

of NHL (see chapter ?? for more detailed commentary on this). However it is

not simple to say why this change in performance occurs as it is likely a result

of both improved access to acoustic information within the signal as well as

increased familiarity with the auditory world post-implantation. Results of task

performance also show that increased task difficulty is likely a factor in why

NEW perform differently. Whilst the identification of categories would appear

to improve with CIL there is no evidence that the identification of individual

sounds is changing. Of course the experimental method must be addressed for

two particularly reasons that could have affects.

Firstly although category identification values can be used to comment on

the improvement across CIL groups the measure has been calculated with re-

gards to the pre-defined categories which are quite broad and may not be

fully representative of the real-world categories that human beings use - this

point is discussed in more detail in chapter 4. Secondly the manner in which

identification of individual sounds has been measured relies on the schema of

the experimenter when reading and interpreting the comments that participants

used to describe the sounds. There are of course more controlled methods for

analysing identification of sounds, however they do not allow the true percep-

tion of the sound to be recorded and this was deemed important information

for the current study especially in determining how the perception informed

participants categorisation strategies. For example whether or not NEW were

using “musical” listening more often than the more experienced CIL. Regarding

the use of listening modes results would indicate that categorisation strategies
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for all CIL groups are based on semantic information associated with the sounds,

such that participants are still using a more “everyday” listening mode when

undertaking the FST. This tells us that independent of implantation duration CIL

are still able to extract a certain amount of semantic information from the sound

on which categorisation strategies are built. Rather than forming categorisation

strategies on more qualitative aspects, such as the emotional content of a sound

(whether its pleasant / unpleasant), or the acoustical information (being rough

/ smooth, high frequency low frequency). Of course that is not to say that these

strategies are not used by certain participants. It is likely that very few of the

participants follow every one of the strategies detailed above, but rather the

results reflect the dominant strategies employed by the overall population and

do not detail every specific strategy used by each participant. Instead the results

show that is no difference in the amount of variability accounted for by the

MCA analysis and this would suggest that there is similar amounts of variation

within each CIL group and would discount the possible hypothesis that the

more experienced CIL are more uniform in performance. The presence of a large

amount of variability amongst each CIL group is also further evidence of the

variation in categorisation strategies that are likely used.

3.4.4 Importance of Acoustic information

Along with finding that semantic information is responsible for forming cat-

egories, the present results suggest that certain acoustical characteristics may

also be linked with categorisation strategies. These mainly center around cues

related to perceptions of frequency or rhythm / temporal structure of the

sound and reflect CIL abilities in perceiving spectral and temporal information.

Certainly the inclusion of variables associated to peaks or bursts in the sound

envelop are not so surprising given that cochlear implants process temporal

cues better than spectral ones [111, 141, 59]. Spectral variables that come out

of the results also reflect cues associated with slower spectral dynamics e.g.

centroid and pitch salience. Certainly some of the most salient stimuli are ones

with clear temporal structure and defined pitch e.g. guitar. There are aspects of

the acoustic analysis which show processing of slow spectral dynamics and the

possibility that CIL are able to perceive the slower spectral dynamics and then

use this is as part of categorisation strategies.
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Interestingly the acoustic variables linked to CIL categorisation strategy are

different across the three participants groups suggesting an effect of the du-

ration of implantation. It is difficult / impossible to state concretely whether

this is a result of improved access to acoustic features or increased familiarity

and knowledge of the auditory world, however likely both of these aspects of

perception improve with increased duration of implantation. The difference is

still present though and purely based on acoustical features shows a change

/ an evolution from strict acoustical features used by less experienced CIL to

features that reflect a perception of the sound for more experienced CIL. For ex-

ample, where as measures of maximum or mean frequency are direct measures

of the spectral content within a sound, the pitch salience reflects the “perceptual

strength of pitch/harmonicity”. In a similar vein it could be said that measures

of “peaks” and “bursts” correspond to direct measure of temporal fluctua-

tions that can be more or less “detected”, peaks in the autocorrelation function

are related to the periodicity of the sound and reflect a more perceptual quantity.

Finally A common element across all CIL is the contrasting of environmental

sounds (notably, car, heli & wtr) versus vocal and musical sounds with links

to the the uniformity of the sounds envelope (the mean correlation of band-

pass-filtered rms). Even with the influence of semantic information i.e. that car

and heli are both transport sounds it shows that characteristically “uniform”

sounds may be easily/strongly perceivable for CIL no matter the experience

with the implant.

Overall there is likely an association of certain acoustic variables to the per-

ceptions of the CIL participants and the resulting categorisation strategies, for

example relating frequency information to the categorisation of musical sounds.

The results also reflect previous studies highlighting the importance of temporal

structure and slow-spectral dynamics as being important to the categorisation

of sounds by CIL. A difference in the associated acoustic cues used by different

participants groups could also highlight that more experience CIL use more

perceptual based measures as part of their categorisation strategies. However it

is vital to remember that the perception of purely acoustic information cannot

be easily separated from the perception and use of semantic information. This

makes conclusions difficult to arrive at and requires further work to uncover

finer details and the specific roles that the different perceptions play in auditory
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categorisation.

3.5 conclusions

The current chapter tested a Free Sorting Task (FST) of common everyday sounds

with three groups of CIL with different durations of implantation ranging from

1 - 14 months. Group results showed that the more experienced CIL categorised

the sounds in close similarity to the three pre-defined categories of musical,

environmental and especially vocal sounds. Whilst the most inexperienced CIL

(implantation duration less than 6 months) demonstrated similar strategies

by grouping together musical sounds and temporally distinct (and familiar)

environmental sounds, results were overall strikingly different. This was shown

for example by a poorer category identification ability, even though identifi-

cation of individual sounds did not differ across the groups of CIL. Acoustic

analysis showed that different acoustic cues were linked to the categorisation

strategies of different CIL groups possibly highlighting an additional effect of

the implantation duration. Overall these results show that the development of

auditory abilities post implantation - the ability to access both acoustical and

semantic information associated with the perception of auditory objects, is seen

be significantly differ for CIL below 6 months implantation. Whilst identification

of specific sounds shows no difference with duration of implantation, category

identification does and may hint towards future perceptions of categorisation

as being important to the study of auditory perception with CIL.
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Key Points

• CIL with duration of implantation greater than 6 months (EXP & INT)

show categorisation on a broad level of vocal, environmental and

musical sounds in agreement with the pre-defined categories. Cat-

egorisation strategies as expressed by MCA analysis show strong

separation of vocal sounds, not including that of the coughing sound

which is more often categorised amongst musical sounds due to

its rhythmic nature. Clear strategies also exist in the contrasting

of musical and environmental sounds, which are in turn centred

around melodic sounds and mechanical/transport sounds.

• New cochlear implant listeners (NEW) with less than 6 months im-

plantation differ in their categorisation strategies compared to more

experienced CIL (INT & EXP). Categorisation strategies of NEW are

predominantly related to human action sounds, which are also tem-

porally distinct and rhythmic. Similarities do exist in the grouping

together of vocal sounds, however this is seen as a much weaker

categorisation strategy appearing on MCA dimension 3 compared

to Dim 1 for more experienced CIL. It also involves mainly only

the sound male -adult male talking. Therefore suggesting that the

perception of vocal sounds is weaker for the most inexperienced

CIL and in keeping with the known development of CIL auditory

abilities. However whilst category accuracy was similar, identi-

fication accuracy of individual vocal sounds did not differ with

implantation duration suggesting categorical perception as a way

of distinguishing the least experienced CIL.
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Key Points

• Interestingly there was no difference in identification performance

of environmental sounds for , INT, NEWnor EXP* (representative

sample). This is again in keeping with previous research that sug-

gests CIL perception of environmental sounds remains poor even

after many months of implantation.

• Acoustic analysis showed correlations of certain cues to the categori-

sation strategies of CIL. These mainly related to temporal aspects

of the sounds, for example the mean value of peak values within

the autocorrelation function i.e. a value related to the periodicity of

the sound, which was linked to the separation of musical sounds.

Correlations also showed that a more limited number of variables

were correlated to the results of EXP, which may be evidence for

more selective auditory abilities amongst the most experienced CIL.

• When all three groups of CIL were analysed as one single group

the duration of implantation was found to be correlated to the

categorisation of vocal sounds for subsets of CIL. This was true

for EXP and NEW suggesting that the strategy of grouing together

vocal sounds and likely the perception of vocal sounds improves

from 0− 6 months implantation and then from 14 months onwards.

However no correlation was found for the subset of INT suggesting

a slower level of improvement.

• Categorisation performance is likely influenced by a combination of

adaptation to the implant and familiarity with the auditory world

although it is difficult to distinguish the influence of each on the

final results and difficult to evaluate the familiarity of individual

CIL with the stimuli used.



4
C O M PA R I S O N O F A U D I T O RY C AT E G O R I S AT I O N B Y N H L

A N D C I L

In the previous two chapter the results of a FST of 16 everyday sounds have been

presented for NHL and CIL. Three sets of NHL participants were tested with differing

levels of spectral degradation (vocoding) applied to the stimuli in order to simulate CIL

processing. Three different sets of CIL users who had different durations of implantation

were also tested. One group of experienced listeners with implantation greater than

14 months (EXP), another group of intermediate CIL users with duration between 6

and 14 months (INT) and finally an newly implanted group with duration less than

6 months (NEW). Result from chapter 2 show robustness of certain categorisation

strategies when sounds were spectrally degraded and results from chapter ?? show

that similar categorisation strategies may also be used by the more experienced CIL.

The following chapter will compare the results of the two previous chapter in order to

evaluate the performance of CIL users vs. NHL and to see how accurately the results of

categorisation with vocoded sounds represent CIL.

114
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Chapter Aims

1. The main aim of this chapter is to compare the results of chapters

2 and 3 and the performance of NHL and CIL in categorising 16

everyday sounds. The chapter aims to analyse the similarities in

the categories that are created, the strategies used to do so and

the perceptions/similarities that these strategies are based on. The

performance of the Free Sorting Task (FST) will also be compared

to see how the different groups of participants carried out the task.

2. The chapter aims to see how closely, if at all CIL results reflect those

of NHL. The three groups of CIL are compared separately as it is

predicted that the EXP will show the closest relation to NHL category

performance.

3. Results of CI simulated sounds (16C and 8C conditions) are used

in comparison to CIL results to evaluate if and how accurately

the CI simulated studies mimic those of actual CIL and whether

these simulations represent a suitable manner for future testing of

auditory categorisation.

4.1 results

4.1.1 Global performance - TCL statistics

Analysis has been performed across all 6 participant groups in order to assess

the manner in which the FST was completed and results are summarised in fig-

ure 4.1. Concerning the number of playbacks all groups are similar (5.07− 5.93)

expect for the NEW group (7.46) which is significantly different, kruskal-wallis

p < 0.001. NEW also create more categories (7.2) than NHL participant groups

(4.8− 5.4), kw, p < 0.05, and take the longest to complete the task (871 seconds

on average). This shows that the CIL users with the least experience require

more time and more attempts at listening to the sounds in order to complete

the task. This is not so surprising given this group has had the least amount of

experience with their implants. That the results for INT are more related to EXP

and NS participant groups suggest categorisation performance likely begins to
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plateau somewhere between 6-14 months of implant experience.

Figure 4.1: Statistics of FST performance for all six participant groups. Panel (a) - the
average number of categories created by each participant group. Panel (b)
the average duration taken to complete the FST, in seconds (s). Panel (c) -
the average number of times that a single participant listened to the sounds.
Panel (d) - the average number of times a single participant listened to a
single sound.

4.1.2 HCPC analysis (Dendrogram) summary

Although the dendrograms in the previous chapters are only simplified repre-

sentations of the final categorisation of stimuli they are useful for comparative

purposes. Figure 4.3 displays the dendrograms for all six participant groups

for this purpose. Similarities that occur across all groups are the grouping

of vocal stimuli together, although this is strongest for male & fem, sounds

which contain speech, and also lgh. The last vocal sound cgh is only grouped

amongst the other vocal sounds by NS participants and based on comments

from multiple participants is perceived often as a musical sound (e.g. drums)

due to its rhythmic nature. Other pairs/groups of sounds are also common in

all dendrograms for example car & heli, both transport/machine sounds.



4.1 results 117

It also appears that many musical sounds are also commonly grouped to-

gether by most if not all participant groups. There is however a clear difference

between those sounds which contain multiple tones and a sense of melody

being more often perceived as musical sounds, in comparison to sounds that

contain only a single sustained pitch (xly & obo) which were often referred to

as household alarm sounds or simply “ringing”.

Finally the sounds dr & fstp, which constitute examples of “action sounds in-

volving a human operator” appear paired together in every dendrogram apart

from that of the Experienced cochlear implant listeners (EXP). These sounds also

seem especially important in the case of New cochlear implant listeners (NEW),

forming the most strongly separated category of sounds.

Figure 4.2: Bar chart of Cophenetic Correlation Coefficient (CCC) values calculated for
the dendrograms (see figure 4.3 of each participant group
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Figure 4.3: Dendrograms showing the final categorisation of sounds by all six participant groups
including; NHL participant groups tested with Natural sounds (NS), 16 channel
vocoded sounds (16C) and 8 channel vocoded sounds (8C); CI user participant
groups - Experienced cochlear implant listeners (EXP), Intermediate cochlear implant
listeners (INT) and New cochlear implant listeners (NEW). The height axis gives the
perceptual distance between each stimulus whereby a large height indicates that
participants deemed those two stimuli to be highly dissimilar and vice versa. Finally
stimuli are labelled using the abbreviated sound IDs.
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Also CCC values in figure 4.2 give an indication of how representative each

dendrogram is. Unsurprisingly in the case of CIL ! (CIL !)the lowest value is

seen for NEW which most likely reflects a higher variability in categorisation

strategies amongst these participants that is difficult to represent in the final

dendrogram. However in the case of NHL, the condition where perception is

most difficult , 8C, has the highest CCC value. This could be because partici-

pants found identification of sounds easier in these first two conditions and

allows participants more possibilities for categorising sounds rather than in

the conditions where identification is more difficult such that certain (more

identifiable) sounds act as anchors to other sounds.

The distance within (INTRA) and between (INTER) the categories shown

on the dendrograms was also analysed, and these values are summarised in

figure 4.4. ANOVA analysis shows that regarding the INTER category distance

(left panel), the value for NH (mean = 0.63) is greater than all other partici-

pant groups (p < 0.05), whilst all other participant groups are of near equal

value. For the INTRA category distance (right panel) the lowest value, show

the strongest level of categories within categories is seen for NH (mean 0.0162),

however this is only significant compared to 16C and EXP (p < 0.05). The most

concise categories that are also more separate from each other are therefore

made by NHL in the natural sound condition (NH). Other participant groups

are much more varied

Figure 4.4: INTER (left panel) and INTRA (right panel) category distances calculated
from the dendrograms in figure 4.3. Boxplots are plotted to show the overall
data for each of the six participant groups.
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4.1.3 Co-occurrence matrices

Based on the construction of co-occurrence matrices it is possible to make

certain analyses to compare the perception of stimuli by the participant groups.

Values of RV coefficients in table 4.1 (shown as a colour map in figure 4.5) are

all above 0.8 and show that in general the co-occurrence matrices are quite

similar. Highest values are seen between the vocoded conditions 16C and 8C

and also between the three CIL user conditions (NEW, INT, EXP) indicating these

participant groups as highly similar. The lowest value between NS and NEW is

somewhat expected as these are the “best” and “worst” performing groups i.e.

with most natural and most degraded auditory abilities.

Interestingly figure 4.5 shows that whilst all of the CIL groups (NEW, INT

and EXP) are similar, the results for NHL show that the two vocoding conditions

are more strongly different to the NS condition (labelled NH). This would

suggest that whilst CIL share similarities in perception, the degradation of

sound induced by vocoding creates results and perception that are different

than the NS condition. Possibly this is a results of participants being un-used

to listening to vocoded sounds and results may change if participants were

able to become more familiar with vocoded sounds. Previous studies have also

found environmental sound identification with vocoded sounds to improve

with training with NHL.

RV coefficient NH 16C 8C CIL INT NEW

NH -
16C 0.866 -
8C 0.838 0.947 -
CI 0.885 0.895 0.881 -
INT 0.886 0.900 0.888 0.917 -
NEW 0.811 0.896 0.873 0.911 0.916 -

Table 4.1: RV coefficients compared between all pairs of results.

Co-occurrence matrices have also been used to calculate the average distance

between pairs of stimuli contained in the original pre-defined categories. Table

4.2 shows that all numbers are on the low side of expectations, especially for NS

participants. This issue is discussed later on in section 4.2.2.1 which explains

why the choice of stimuli and predefined categories may have been mis-judged.
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Figure 4.5: Colour map showing the RV coefficients for all six participant groups. RV
coefficient calculated as a correlation between two co-occurence matrices,
where each cell represents the overall correlation. Values vary from 0.8 (in
blue) to the highest correlation 1 (in red).

These results do still however prove useful in showing the highest similarity to

the predefined categories being for NS and the lowest similarity for NEW, again

as possibly expected based on auditory performance. Values for EXP and INT

are the same and may point towards these groups performing similarly and not

differing greatly in the ability to complete the task. That 8C has a higher value

than 16C would suggest that in the condition of LESS spectral information NHL

were able to more accurately categorise the sounds. However this may may

simply be a result of the choice of predefined categories, such that more by

chance than design the stimuli pairs in the 8C condition more strongly resemble

those of the predefined categories.

NS 16C 8C EXP INT NEW
Mean Pairwise Similarity

0.29 0.22 0.25 0.21 0.21 0.16

Table 4.2: Pairwise distance average for all participants groups based on the predefined
categories

4.1.4 MCA analysis summary - interpreting the dimensions

For the results of each participant group a total of 5 MCA dimensions were

retained for further analysis. Dimensions were retained on the criteria that
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each should cover a minimum of 8% of the total variance of results. Figure 4.6

shows the total variance accounted for by the 5 dimensions for each participant

group. Values are highest for the three NHL groups (NH, 16C and 8C), with

the highest value as may be expected being in the natural sound condition

(NH) at 72%. Lower values for CIL groups suggest that compared to NHL, CIL

participants show that there is a greater amount of variance unaccounted for by

the retained dimensions and suggests weaker agreement to the categorisation

strategies used.

Eigen values shown in figure 4.7 would also give evidence that NHL in

the NS condition more strongly use the categorisation strategies described by

Dimension 1 and 2. Other participant groups have lower eigen values and thus

less participants show agreement. That the values for CIL (especiallyNEW) are

high in the latter Dimensions shows that there is a greater number of partic-

ipants using these latter dimensions and evidences the assumption that CIL

are using multiple and varied categorisation strategies compared to NHL, even

those in the 16C and 8C vocoded conditions.

Figure 4.6: % Variance covered by retained MCA dimensions. In each case 5 dimensions
retained for each participant group.

A large part of the analysis revolved around the successful interpretations of

the dimensions generated by the MCA analysis. Multiple aspects of the data

were used to aid interpretations, including the finding the sounds which most
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Figure 4.7: Eigen values for retained 5 dimensions across all NHL and CIL participant
groups

strongly contributed to each dimension, participants descriptions of categories

and sounds (APPENDICES A & B), and also correlations to acoustic charac-

teristics which are summarised in table 4.4. Interpretations are described in

fuller detail in the two preceding chapters concerning NHL and CIL separately,

however for the purposes of comparison table 4.3 briefly summarises the find-

ings. As can be seen Dim 1 is associated with contrasting the vocal sounds from

other stimuli. Specifically this contrast is associated with the speech-related

vocal sounds (fem & male) however NHL-NS also include the sound of laughter

and coughing in this strategy. Experienced CIL (INT & EXP) also include the

sound of laughter, however as figure 4.3 shows there is confusion of the sound

of coughing grouped alongside musical sounds. This Dim1 strategy is not

common to NEW however, although it is seen to a weaker degree on Dim 3. Dim

2 is associated with the separation of musical or environmental sounds from

the other stimuli. Whilst this manifests as similar results, the exact strategies for

doing this likely differ slightly. Strategies that involve the separation of singular

sounds are shared in common by all groups except that of NHL-NS. This hints

toward the differing categorisation techniques undertaken by CIL and NHL in

adverse listening conditions and likely reflects the fact that strong similarities

between sounds cannot be identified. Therefore sounds that somehow “stand-
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out” are categorised on their own. These include the sound of footsteps, the

oboe (often perceived as a warning sound) and helicopter. These sounds also

related to other shared strategies notably the grouping together of; human action

sounds, the footstep and door closing; transport - sounds of car and helicopter;

musical single tone - sounds of xylophone, alarm and oboe.

As mentioned above acoustic characteristics were also correlated with the

coordinates of MCA dimensions. Perason correlations were conducted using

MatLab and those of significant (p < 0.05) are summarised in table 4.4.

4.1.5 Identification of Categories and Sounds

Comparing categorisation identification scores across all six participant groups

also shows similar patterns to the previous analysis. KW and ANOVA analysis

show that NS have a significantly higher categorisation identification score (73%

correct category identification) compared to 16C (28%), 8C (42%) and NEW (45

%), whilst both EXP (59%) and INT (53%) are higher than 8C, kw p < 0.001.

These results are plotted as boxplots in figure 4.8.

Figure 4.8: Box plot of category identification accuracy (% correct) across all six NHL
and CIL participant groups.
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Summary table of Correlations between MCA Dimensions and Acoustic characteristics of sounds

Participant group Dim 1 Dim 2 Dim 3 Dim 4 Dim 5

Autocorr Mean Peak Max Salience No Bursts
Autocorr std Peak Spectral kurt

Mean Salience
NH

Max Salience

Autocorr Range Autocorr No Peaks Autocorr No Peaks
Mean bpf Autocorr Mean Peak

Mean Salience Autocorr std Peak
16C

Max Salience

Autocorr Range Autocorr std Peak Autocorr No Peaks Spectral STD
Mean bpf Frq std Spectral kurt8C

Max Salience

Pitch Salience mean
Autocorr Peak meanEXP

Autocorr Peak std

Frq max
BPF mean
Peak max

Env Peak mean
Env Peak std

INT

Wav range

Frq max Frq mean Centroid
Centroid Env Peaks NO. Pitch Salience max

Spectral std
BPF mean
Peak max

Peak mean
Env Peak mean

Env Peak std

NEW

Wav range

Table 4.4: Summary of correlated acoustic variables for each participant group.
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4.2 discussion

In the present study a Free-Sorting Task (FST) of every-day sounds was devel-

oped and tested with groups of normal hearing listeners (NHL) and CIL. Whilst

previous studies have tested auditory categorization amongst similar popula-

tions this study is the first to directly compare them as well as the first to test

the effect of implantation duration on categorisation performance. Analysis of

the categorization has been carried out using MCA and HCPC and is supported

by correlations with acoustic analysis and CIL user data to provide more details

to the categorization strategies used. Overall the more experienced CIL show

comparable levels of discrimination to NHL regarding the three pre-defined

categories however with more variation between individual participants. Corre-

lations also showed that certain spectral and temporal information within the

raw acoustic signal can be used as predictors of the cues used by CIL users to

discriminate between different categories of sounds. This includes information

within the lower frequency channels used to categorize vocal sounds, spectral

information (pitch saliency) for categorizing musical sounds and temporal

information (measures of periodicity) used for categorizing repetitive sounds.

4.2.0.1 Similarities of categorization processes between NHL and CIL users

There are obvious similarities when comparing the results of the more expe-

rienced CIL participant groups (EXP and INT) and the NHL participants, most

notably in the separation of the vocal, environmental and musical sounds.

Interpretations of Dimensions 1 & 2 strongly suggest that more experienced CIL

are following similar strategies to NHL in contrasting vocal stimuli against all

other sounds (Dim 1) and also separating musical and environmental sounds

(Dim 2). It could be argued that NEW also show tendencies to use the same

strategies, especially regarding vocal stimuli, however overall the categorisation

is rather different. Most strikingly Dim 1 for NEW is concerned with contrasting

environmental sounds against all others, rather than contrasting vocal sounds

as is seen in the cases of all other participant groups. Although NHL and CIL

results are similar, the strategies used by the two participant groups to arrive

at these results may be different. Firstly the implant delivers a poorer quality

stimulus with less spectral information that CIL can use in their perception of

sounds. And secondly, due to periods of deafness and adaptation to hearing

with an implant, cortical reorganization experienced by CI users could affect

their subjective experience of sounds, for example their degree of familiarity
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with previously encountered sounds and the development of familiarity with

new sounds [84, 6].

Previous studies suggest that auditory categories are primarily based on the

semantic information of a sound producing object or action, which follows from

identification [37, 52, 80, 57]. Less important are the acoustical characteristics

of the sound which determine the qualitative perceptions of a listener, for

example the pitch, the roughness or the emotional content of a sound. Indeed,

the descriptions provided by participants mostly refer to source properties (e.g.

vehicle noise, noise in the house) rather than qualitative aspects of the sounds

(e.g. “treble tones that crescendo” or“complementing rhythm”). However the

acoustical bias observed by [43], whereby sounds preceded by non-living sounds

were categorized more strongly by acoustical means, suggests that in certain

conditions the preference for using semantic information is altered. This could

be down to identifiably, as non-living sounds were less well identified, which

could therefore have lead to stronger use of the “musical listening mode” and

the concentration on acoustical rather than semantic similarities. The current

study would support the initial theory that listeners focus predominantly on

the semantic source information and then secondly the qualitative acoustic

information. In addition the similarity in results for categorization accuracy

and category identification suggests that at a category level CI users perceive

the sounds in a similar way to NHL. This means that the link between hearing

the sound and the semantic representation is still strong for CI users in spite of

the reduced auditory input. However, the differences in category descriptions

would suggest that NHL have a greater ability to identify the sounds. CI users

more often describe the qualitative acoustic characteristics, a process which

happens when sound-source identification fails.

4.2.0.2 Variability of categorization in CIL users

Compared to NHL, CIL participants show less agreement to the categorisation

strategies outputted by MCA and the associated results cover less of the overall

variance. Whilst it may be true that some CIL participants use the same strate-

gies slightly differently, the level of agreement is still not as high as for NHL

even in the case of vocoded sounds. This suggests that participant variation is

not due to the difficulty in perceiving stimuli per se, but more likely due to vari-

ability within the perceptions of the CIL participants. There is also consistent
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variation across all three groups of CIL, suggesting that even participants with

greater experience of CI hearing varied in their performance. Regarding the

separating vocal sounds, the previous chapter showed that duration of implan-

tation was linked with the adherence to this specific categorisation strategy and

also possibly to the strategy separating musical stimuli as well. Therefore the im-

plantation duration can be established as a source of the variance amongst CIL

concerning these two aspects of the categorisation. Other factors have also been

loosely associated with categorisation results; for example hearing threshold

of non-implanted ear and to a lesser extent speech performance scores, which

can again explain the variance in agreement towards certain categorisation

strategies - discrimination of melodic music sounds and human action sounds.

However, the fact that multiple strategies appear to be used by CIL is likely a

result of variations in perceptions of the sounds and cannot be explained by

any of the participant variables, for example duration of deafness, duration of

implantation etc. More likely this variation comes from differences in day-to-

day listening habits, the familiarity of participants with the sounds used and

other higher cognitive processes, such as listening expertise and musical ability

[6, 66, 77, 54, 90]. Of course even with similar levels of implantation duration

different participants will have differ in their levels of adaptation to hearing

with the CI device and the development / reorganisation of cortical structures

and could be cause for much inter-participant variability of CIL results. In

comparison, even though when struggling to identifying vocoded sounds, the

NHL auditory system is much more stable and less varying than that of CIL.

4.2.0.3 The importance of vocal sounds (Dimension 1)

MCA analysis has shown for ALL participant groups, except for NEW, the

CIL user group with lowest duration of implantation, that Dim 1 is related to

a distinction of vocal vs. non-vocal sounds. The correlation of Dim 1 values

for EXP and NS to the RMS of certain vocal related frequency bands and the

distinction of vocal sounds supports this idea and is therefore most likely the

first and most important distinction that participants are making.

A similar free-sorting approach in NHL [52] found a separation of sounds

corresponding to vocal vs. non-vocal sounds as well as clear categories of ani-

mal vocalizations and transport/mechanical sounds. In the present study the

same vocal non-vocal discrimination can be made for the more experienced CIL

as well, which appears to contradict previous studies that showed difficulties
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in distinguishing these sounds [34, 96, 45, 65, 89]. [93] also showed that when

spectral information is reduced both NHL and CIL users present a strong im-

pairment in discriminating vocal from environmental sounds. Although our

results show CIL users perform similarly to NHL previous protocols used a

two-alternative forced choice paradigm involving much shorter stimuli whereas

in the present study sounds were 2-3 seconds long and participants could listen

multiple times such that identifying some stimuli was likely easier.

Dim 1 coordinates (for CIL and NS are also correlated to values of RMS within

the frequency band centred at 150 Hz, which overlaps the range of human voice

fundamental frequencies - 85-180 Hz for males and 165-255 Hz for females [55].

The highest values for RMS at 150 Hz are seen for vocal sounds (fem and male)

and therefore these cues, important to the perception of vocal sounds, give

further evidence that Dim 1 is related to vocal perception. Of course the human

voice is also special due to its importance for social communication such that

most humans hear speech frequently in their everyday lives and familiarity

with vocal sounds is very high [12]. In addition speech and other vocal sounds

are produced by a single unique source, the human vocal tract, which reduces

the variability of spectra compared to environmental and musical sounds. Such

particularity might confer to vocal sounds a specific familiarity feature set

used to build-up perceptual strategies and leading to more efficient recognition

compared to environmental sounds [61]. Finally with regards to CIL users most

research is conducted with the aim of improving speech perception such that

implants are designed to deal with these vocal sounds better than musical or

environmental sounds.

4.2.0.4 Pitch and Periodicity cues (Dimension 2)

Dimension 2 contrasts the musical and environmental sounds for NHL (includ-

ing vocoded conditions) and the more experienced CIL (INT & EXP). Values

of coordinates for NS and EXP participant groups are also correlated with the

Max Pitch Salience and Autocorrelation peak, suggesting an importance of

specific spectral-temporal information in discriminating these sounds. Similar

results have also been found by [52] and [59], whilst [110] concluded that the

categorization of environmental sounds was linked to the variation in rate of

spectral dynamics. High values of pitch salience correspond to slowly changing

spectral cues [134] and may therefore be more easily perceived by CI users

who normally perform poorly in pitch related tasks [107, 38, 92]. CI users also
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retain a certain amount of musical perception when presented with simple

rhythms of notes [70, 86]. Musical sounds with temporal movement and a sense

of melody may therefore have a stronger sense of musicality than singular

tones. This may explain why the violin, guitar and bell sounds are grouped

together separately from the oboe and xylophone. In addition difficulties in

timbre perception [59] and increased causal uncertainty may contribute to the

categorization of the oboe and xylophone as environmental sounds. Finally

[111]reported a link between temporal and spectral cues used for both speech

and environmental sound perception. Although Dim 2 for EXP is linked with

certain spectro-temporal variables there is no correlation to the speech per-

ception scores suggesting that different spectro-temporal information may be

important for speech and environmental sound perception. This would suggest

that although the perceptual differences originate from low level processing

abilities, the effect of higher order cognitive processes cannot be dismissed

[121].

Although separating the same types of sounds, dimension 2 for INT is likely

based on different information. Rather the types of sound associated with this

dimension are human action, and the acoustic information is temporal (ampli-

tude changes) rather than spectral. This mix of information is also associated

to Dim 1 for NEW. As discussed in chapter ??it would therefore spear that

lesser experienced CIL do not make use of the pitch salience cues in the same

way as experienced CIL, an aspect of auditory perception that improves with

time (REFERENCES). However they are able to make use of sounds amplitude

changes and information of human action sounds in order to separate these

kinds of sounds from others.

4.2.1 Does vocoding predict CIL performance?

As previously stated experienced CIL show many similar categorisation strate-

gies to NHS in the natural sound condition. Therefore it is not so surprising

that in CI-simulated conditions using 16 and 8 channel vocoder techniques,

these similar strategies are again found. For example separating vocal sounds,

transport sounds and human action sounds. The agreement of participants

to the dimensions is similar between CI-simulated conditions and CIL, how-

ever CIL are still more varied in their performance. Results also show that the

performance of experienced CIL more closely resemble those in the natural
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sound condition and show that there is still a difference in the perception of

natural sounds by CIL compared to the perception of simulated sounds by

NHL. This is possibly due to the fact that NHL in these two conditions were

naive to hearing vocoded sounds where as experienced CIL are more familiar

to the poorer sound quality delivered by the CI device. It has also been shown

that when training NHL on vocoded sounds identification scores are seen to

increase, therefore with repeated testing or possibly a paradigm that included a

period of habituation for NHL to vocoded sounds, the results of the FST would

be more similar to NS. So whilst results in vocoding conditions may look similar

to CIL, it may not be a fair comparison and this is especially true for the 16C

conditions when considering that CIL often only make use of a limited number

(4-7) of frequency channels.

Vocoding studies are useful in assessing how the auditory systems of NHL

and CIL compare assuming that the signal passed on from the inner ear to the

higher levels of the auditory system is the same. In this manner the fact that

results for CIL closely resemble those of both NS and 8C (vocoded condition with

least amount of spectral information) likely means that there is accurate func-

tioning of higher order processes concerning categorical knowledge semantic

association and familiarity with the sound stimuli. This may not be entirely un-

expected when considering that the population of CIL consists of post-lingually

deaf adults who have most regained built up these higher order processes

(to differing degrees) before their hearing impairment manifested. Similarities

between CIL simulations and CIL results show that CIL likely maintain higher

order processing used in auditory categorisation of everyday sounds. However

there are two issues that limit the extent of this conclusion; 1) NHL listening

to CI-simulated sounds does not perfectly simulate the perception of natural

sounds by CIL and 2) it is not fully understood how adaptation to CI device

may change these higher order process. This broad conclusion is still important

especially when exploring the why whilst sound identification is poor for CI,

the categorisation identification does not seem to be as strongly deteriorated.

Of course the categorisation task may be described as being “easier” than that

of an identification task but part of the reason may also be be that higher or-

der processes remain to link the perception of a sound to its associated category.

Whether these processes undergo any changes for CIL during deafness and

what these changes may be is difficult/impossible to say. Previous studies have
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reported the time scale for the restoration of a number of auditory processing

abilities ([9, 73, 124]) and so it could well be the same for processes concerning

the categorisation of sounds that come “on-line” as the brain adapts to receiving

auditory signals again. What is more clear is that the development of auditory

categorisation abilities would seem to plateau somewhere between 6-12 months

implantation, although this is of course based only on our study which is the

first to test CIL using a FST and the first to test the effect of implantation duration.

4.2.2 Influence of Cortical effects as a result of Deafness

So far the comparison of NHL and CIL users has only concerned the differences

in the perceptual abilities of the participants and how CIL users receive a poorer

quality stimulus as a result of the implant processing. In addition another

important factor to consider is the influence of brain plasticity and the fact

that periods of deafness and subsequent adaptation to using a CIL can lead

to differences in brain activation and the roles of different cortical structures

[130, 72, 73, 21]. For example in post-lingually deaf persons periods of deafness

cause areas of auditory processing to be re-purposed to aid visual processing,

must often concerning lip-reading and which leads to better abilities for CIL

users than NHL in visio-auditory processing concerning speech-reading tasks

[116]. And even after long periods of using an implant, in which auditory perfor-

mance is recovered, CIL patients retain better visio-auditory processing abilities

[116]. This cross-modal reorganisation also results in weak activation of the

temporal brain area, which is involved in human voice processing [11, 10, 28].

Whilst this reorganisation is helpful in aiding processing of lip-reading for

example, it can also be detrimental to the recovery and adaptation to hearing

with a CIL [117]. For example [131] show that minimal reorganisation of the au-

ditory superior temporal gyrus (STG)/superior temporal sulcus (STS) is linked to

better outcomes of CIL implantation. Inversely [72] showed that with increased

durations of deafness, alternative methods for phonological processing are

employed by CIL which results in increased activation of the right posterior

superior temporal region and is predictive of poor CIL performance.

A final change that is noted in many studies concerns a change in auditory

processing abilities, noted as the dorso-ventral dissociation related to the dura-
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tion of deafness [44, 72]. Dorsal regions associated to the planning and control

of language production are seen to be more activated in CIL users with recent

deafness, decreasing in activity with duration of hearing loss. Alternatively

activity in ventral areas involved in semantic processing and memory retrieval

was positively correlated to the duration of deafness. It therefore appears that

when processing speech the increased deafness the dorsal/phonological route

of processing is not maintained and becomes unused, this then results in an al-

most “fall-back” strategy involving ventral areas and the use of lexical-semantic

processing.

Interestingly [71] also found a similar dorso-ventral dissociation concerning

an imagery task of non-speech sounds. They conclude that the dorsal route

of processing is also used to maintain representations of non-speech sounds,

and is seen to reduce in activation with longer periods of hearing loss where

cognitive resources are also likely reallocated to speech processing. Applying

this to the current projects’ results it may be another reason why the processing

of speech sounds seems more accurate/dominant than other everyday sounds

as they are maintained to a better level of processing. It would therefore be

recommended to maintain the dorsal route of processing for non-speech sounds

during periods of deafness/hearing loss to help in the restoration of environ-

mental sounds processing post-post-implantation.

Whilst no study has looked at the cortical changes directly involved the

categorisation of sounds it is clear that as a result of deafness there are certain

cortical reorganisations or changes in processing strategies that affect the per-

ception of the auditory stimuli used in this study. As explored in chapter ??

this is most likely a factor in the different performance of NEW alongside the

adaptation to hearing with the implant.

4.2.2.1 Methodological Considerations

Using a Free-Sorting Task and based on solid MCA and HCPC analysis, our

results provide evidences that CIL and NHS present categorization strategies

that are much closer to normal that what would be expected from the tech-

nical limitation of a cochlear implant. However, several limitations prevent

to make general conclusions on the capacities of CIL to discriminate natural

sounds. Firstly our conclusions are based on a choice of 16 sounds that belong
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to 3 pre-defined categories (environmental, musical and vocal). The limited

number of stimuli was chosen such that the FST could be completed in a short

time frame and not be fatiguing for the elderly CIL . However this made it

somewhat difficult to equally represent all of the environmental, musical and

vocal sounds that exist in everyday life and may have made it easier for CIL

to produce results that resemble those of NHL. Testing more sounds in a FST

would also be possible but would however take a longer amount of time and

constitute a higher cognitive load for CIL participants especially. Apart from

testing more examples of environmental, musical and vocal sounds another

goal of future testing would be also to diversify the categories of sound to

be studied. For example no examples of animal vocalization have been used

and the results for NHL also show that categories of linguistic, non-linguistic

and transport/mechanical sounds likely exist. Such broader investigation of

natural sounds would require either using a different data collection method,

raising the difficulty of the FST or informing participants of the categories prior

to testing, in similarity to [59].

Secondly the FST was chosen over other methods of data collection in order

to minimize the complexity of the test protocol for the participants. However in

a recent comparative article on different methods of categorical data collection.

Giordano (2010) shows that in comparison to hierarchical sorting and similarity

ratings the results of a FST have low reliability (repeatability) when applied

to different groups of subjects. It is also claimed that FST is inaccurate in

representing the raw performance of individuals. Further the use of MDS

models may also not cover all of the variance present in the data and may hide

some of the similarities and differences between NHL and CIL . However, we

present converging results using additional and complementary methods such

as HCPC and the more in-depth MCA. Whilst HCPC is able to display the

overall categories in a simple manner MCA allows us to more precisely view the

possible strategies of categorization as well as the agreement to these strategies

amongst the individual participants. Further, we used the raw co-occurrence

(similarity) matrices to perform a model-free analysis. Again, this revealed

performance values comparable between NHL and CIL , a result which supports

the conclusions made using MCA. Finally the results of categorization accuracy

and identification have highlighted that the sound BEL was categorized by

most participants as a musical rather than environmental sound. In contrary

this sound was initially considered by the researchers to belong to the category
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of environmental sounds as church bells are often heard outside as part of a

complex sound environment. This is an important example to remember when

considering the possible sounds and pre-defined categories that may be used

in future testing.

4.3 conclusion

The current chapter focussed on the comparison of NHL and CIL in the categori-

sation of sixteen everyday sounds. NHL were divided into three groups who

undertook the task either with natural sounds (NS), or CI simulated sounds

using 16 and 8 channel vocoder (16C & 8C). CIL were also divided into three

groups based on patients implantation duration, either New cochlear implant

listeners (NEW) 0 − 6 months, INT 6 − 14 months and Experienced cochlear

implant listeners (EXP) 14+ months.

The more experienced CIL (INT and EXP) showed similar performance to

NHL-NS in the strong separation of vocal stimuli from other sounds, however

EXP were the only group of CIL who made use of spectral cues (pitch salience)

when categorising melodic musical sounds together,and temporal cues (mean

autocorrelation function peak) when categorising environmental sounds to-

gether, again in similarity to NHL-NS. The least experienced CIL group, NEW,

showed weaker ability when separating vocal sounds and more prominent was

the focus on human action sounds that contained fast changes in amplitude

(peaks). All results suggest that categorisation is based predominantly on the

semantic information associated to the sound producing event, object or action.

It appears that CIL also rely on semantic perceptions, however certain acoustic

variables (mentioned above) shed light on certain types of sounds that may be

more easily perceivable for CIL. NHL in CI-simulations however maintained

categorisation based on semantic information even at the poorest quality sig-

nal using 8 channels. In comparison to CI simulations, CIL performance was

more varied suggesting the use of more categorisation strategies. However the

dominant categorisation strategies were closely related indicated that in the

more experienced groups of pre-lingually deafened CIL’s, the higher cognitive

functions associated with auditory categorisation were maintained. Overall

results show that experienced CIL are categorise sounds in the same manner as

NHL, however with more inter-participant variation that appears linked to the

duration of implantation.
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Key Points

• Similar strategies shared by ALL NHL groups and more experienced

CIL user groups with implantation greater than 6 months. These

include dominant strategies based on the separation of vocal sounds

for all cases bar that of New cochlear implant listeners (NEW).

However the importance of vocal stimuli is still present for these

participants.

• Categorisation strategies are based on semantic or causal percep-

tions of sounds for all participants. It does not appear that any

participant group is making categories based on perceptions of the

physical characteristics of the sounds, even though these character-

istics may be important for the perception of sounds. For example

certain temporal (autocorrelation function peak, and amplitude

peaks) and spectral (pitch salience) are of importance for sounds

that are more easily perceived by CIL

• There is much more inter-participant variability in the results of all

CIL groups and is independent of implantation duration. In contrast

NHL, NHL tested with CI simulated sounds, show stronger inter-

participant agreement to the use of categorisation strategies. This is

likely a result of the varying auditory abilities of CIL participants

and possibly the greater variation in age found with CIL.

• Similarities of results between CI-simulations and CIL show that

higher order cognitive functions associated with auditory categori-

sation are maintained in experienced post-lingually deafened CIL.



5
C AT E G O R I S AT I O N O F E N V I R O N M E N TA L S O U N D S A N D

T H E E F F E C T S O F C O N T E X T

Previous chapters looked at the categorisation of a set of everyday sounds that included

vocal, musical and environmental sounds. Whilst significant literature exists on the

study of musical and vocal sounds, especially regarding the abilities of CIL, environmen-

tal sounds have been focussed upon less. These sounds, which are important in the daily

lives of listeners, are also normally heard in specific locations or contexts and this aspect

of environmental sound perception (ESP) has also not received the attention it probably

deserves. The following chapter therefore seeks to add to the existing research on the

perception of ES by using a FST of 20 sounds which were chosen to reflect different

contexts - Bathroom, Kitchen, Exterior and Office. Not only is ESP assessed, but the

hypothesis of whether categories can be based on purely the context is also tested. Addi-

tional testing steps using CI simulated sounds (4-channel vocoder) also look at whether

the absence/addition of context information can aid the identification performance of the

same 20 sounds. Results will show that categories appear to be based on some contexts,

however this may actually reflect the type of activity associated with the context. Other

strategies used in categorisation reflect previous theory and are based on water sounds,

machine/transport sounds as well as the perception of the sound producing action.

Analysis of identification performance shows that in the natural sound condition the

addition of context information improves identification performance. In the CI simulated

condition this effect was not seen, although this may be heavily influenced by the high

task difficulty of perceiving the sounds with only 4 frequency channels.

5.1 introduction

Whilst the previous chapter looked at a mix of vocal, musical and environmen-

tal sounds, an additional goal of the current work was to aid the understanding

of the perception of only environmental sounds (ES). As discussed in chapter

1 the study of environmental sound perception (ESP) has fallen behind that

of speech and music sounds, for example auditory categorisation has mainly

focussed on speech processing and phoneme categorisation. In addition ESP

studies have often looked at single details of perception, for example the size,

138
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shape or material of simple objects [68, 62, 46, 43] or the identification of simple

sound-producing actions [143].

As previously stated in chapter 1 identification and categorisation are two

processes very closely linked when it comes to auditory stimuli. Identification of

a sound source leads to the ability to associate an auditory stimulus with higher

forms of conceptual knowledge often used in categorisation. Understanding

the categorisation of ES also suffers from lack of research however some studies

have used tasks involving categorisation/sorting and similarity in order to

study ESP using different sounds.

In a free-classification test of 60 environmental sounds, [57] found that partic-

ipants classified the sounds very differently without a clear consensus. Lexical

analysis did however reveal four broad categories of solids, liquids, gasses and

machines, which the authors concluded corresponded to Gavers original hier-

archy [37], although differed to other models [33]. Sounds were also classified

based on the sound source first and secondly the sound-producing action.

Another free-classification task [91] of 120 sounds included environmental,

human (vocal and other) and musical sounds. Judges evaluated participants

responses and arrived at a total of 23 similar categories which overall corre-

sponded to sources (e.g. transport, animals, humans) locations (household,

kitchen) or abstract themes (warning/alarm, hygiene). Source categories also

included some based on the material of the source (paper, water). There were

also clear categories of musical sounds and human sounds, which included

such sub-categories as sleeping and sickness sounds.

[113] performed two categorisation tasks looking at the specific difference

of task instruction. Using the same xxx sounds subjects were first asked to

group them based on “sounds that are together in the environment” then secondly,

a different set of participants were asked to categorise the sounds based on

“sounds that were acoustically similar”. Categories that appeared in the first test

showed corresponded to sounds inside a house, transportation and animal

sounds. Based on the acoustic experiment categories were based on similarities

in rhythm, pitch and amplitude modulations. In similarity, [140] found that

participants subjects categorised 20 environmental sounds based on similarities

of the sound-producing event or of acoustic similarity. Finally when categoris-
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ing soundscapes (not individual sounds) [48] found that they were categorised

based on the activity present - cafés, markets and parks.

Clearly these studies show that there are multiple categories that can exist

within the encompassing title of environmental sounds. Whilst participants

may use many different descriptions for naming these categories there exist

overlapping similarities in the kinds of categories that are formed. These include

machines, transport, kitchen/house, animal sounds, human sounds. It seems

therefore that above these category titles important perceptions concern the

sound-producing object, sound-producing action, location (and attached activity)

as well as emotional content (i.e. warning sounds).

Therefore these studies show that the categorisation of ES can be based on

different information and different perceptions. Gaver eluded to this when

he described two different listening modes which he defined as musical and

environmental listening. [77] offered a slightly different way of thinking that

may be more applicable, in that three different kinds of similarities are used

when grouping environmental sounds together:

1. Acoustical: relating to the perception of physical acoustical attributes of a

sound, for example the pitch, temporal patterning or loudness.

2. Causal: similarities associated with the sound producing event i.e. the

object or action that generates the sound, for example the kind of impact,

the material (water, metal, wood).

3. Semantic: similarities of associated meaning with the sound. This could

involve similarities in the associated location, event or activity, emotion or

even other more abstract information.

Apart from helping to inform the grouping of sounds, the location or context

within which sounds are heard or associated can also affect the identification

of sounds [75, 8, 91, 50, 101]. Most studies of ESP do not take this into consid-

eration, which is odd when considering that may ES’s only occur in specific

contexts (locations or events), or simply that auditory events in the real world

always take place within an auditory environment that can affect perception,

for example via masking (Gygi 2007).
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The addition of context information has been seen to have differing effects.

In a test where context was created by a sequence of sounds, target stimuli

that were congruent with the sequence were not identified any greater than

in an isolated condition [8]. [50] however showed a 5% increase in detection

for sounds incongruent with an auditory scene, suggesting that incongruent

contexts can help listeners perceive sounds. The authors described this as a

“pop-out” effect such that incgonruent sounds appeared to pop-out or stand out

from the simultaneous auditory context, where as congruent sounds became

part of the surrounding context and therefore more difficult to detect. The

addition of context has not however been tested with CI simulations in order to

clarify whether or not it could be of help for Cochlear Implanted Listener (CIL),

for whom it is known suffer from deficits in ESP. Therefore (as listed in the

box below) one aim of the current chapter is to see if the addition of context

information could aid the identification of environmental sounds under CI

simulation using a 4 channel vocoder. In similarity to categories chosen by [111]

four categories corresponding to Bathroom, Kitchen, Exterior and Office were

chosen for testing.

Information concerning the auditory context (location or environment) can

also be used to form categories of sounds, as mentioned above. However it

is not known if different contexts form categories more strongly than others.

The use of the four different contexts as mentioned above, therefore provided

an opportunity to test whether participants would choose to categorise a set

of environmental sounds based on the context information whilst providing

additional information in the study of environmental sound perception. A

summary of the chapter aims is written below in the shaded box.
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Chapter Aims

1. To further the understanding of auditory categorisation concerning

ONLY environmental sounds. Whilst research has been carried

out on this topic, the field is still not vast and could benefit from

additional studies. For example how strongly are auditory cate-

gorisation strategies based on the environmental context in which

sounds are heard? Sounds are therefore taken from four specific

contexts (Bathroom, Kitchen, Office and Exterior) in order to see

whether this information is used by listeners as part of their cate-

gorisation strategies.

2. To test the categorisation performance of NHL with CI simulated

environmental sounds to investigate I) how NHL perform in adverse

listening conditions i.e. what kinds of perceptions are possible

and how do these perceptions then form the basis for forming

categories II) how CI users may perform in such a task. To study the

categorical perceptions of NHL to understand whether or not they

might prove useful in improving the perception of environmental

sounds by CI users.

3. To test whether or not the addition of environmental context infor-

mation can help listeners to more accurately identify environmental

sounds. In the real-world sounds are always heard within a specific

context, which can affect the ability of a listener to detect or identify

sounds, for example in aiding the detection of incongruent sounds

[53]. Most studies of environmental sound perception do not take

into account the influence of the environmental context and so it is

important to try and make steps to understanding this. This is es-

pecially important for understanding whether context information

can help the identification of CI simulated sounds and therefore

be used to aid CI users environmental sound perception in future

research.
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5.2 method & materials

In order to test the above hypotheses, four separate testing steps were estab-

lished and are described in section 5.2.2. In each Step a separate group of normal

hearing participants was recruited, summarised in table 5.1 and the same 20

environmental sounds were used throughout all testing and are described in

table 5.2. The four testing steps are also listed directly below such that the

reader is informed before reading ahead.

• Step1-Typ-Typ - typicality ratings of the stimuli as to whether they were

typical of the designated context.

• Step2-FST-NS - Free Sorting Task (FST) of stimuli in Natural sounds (NS)

condition to test categorisation strategies of environmental sounds.

• Step3-FST-SIM - again a FST however sounds were passed through a 4

channel vocoder in order to simulate listening with a CI

• Step4-FC-SIM - Forced categorisation of CI simulated sounds as used in

Step3-FST-SIM

5.2.1 Participants

For each Testing step a different group of participants were tested so that there

was no overlap between testing. Table ?? details the the four different groups of

participants:

5.2.2 Stimuli & Procedure

For all four testing steps the same 20 everyday/environmental sounds were

used and are listed in table 5.2, with abbreviated ID used throughout the results

and discussion, a small description of the sound and also the corresponding

Environmental Context that each sound was chosen to represent. Stimuli were

taken from the database of sounds owned by PETRA at Université of Toulouse

III - (Mirail). Stimuli were selected to represent four different contexts that

would be common to participants daily lives with the choice also inspired from
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Testing stage Task N (n males) Age (mean ± std) No. French native

Step-1-Typ-NS Typicality Rating,
NS

9 (4) 29 ± 5 7

Step-2-FST-NS FST with NS 16 (9) 27 ± 4 13

Step-3-FST-SIM
FST with

CI-simulated
sounds

18 (8) 30 ± 6 12

Step-4-FC-SIM

Forced
Categorisation

with
CI-simulated

sounds

17 (3) 28 ± 7 12

Table 5.1: Participant information for Chapter 5 showing the number of participants,
with the number of males shown in brackets, age (mean and standard
deviation) and the number of french natives.

[111] who used four categories of General Home, Kitchen, Office and Outside.

Based on the stimuli available it was decided to alter the General Home to

Bathroom. This also eliminated any ambiguity that could arise from Kitchen

sounds also being associated to General Home sounds. For each testing step a a

slightly altered procedure was used, and they are subsequently described below:

Step1-Typ-NS: Typicality ratings

In order to judge if the chosen sounds were typical of the corresponding con-

texts (see table 5.2) 9 NHL rated the typicality of each sound. Participants were

asked to judge whether each stimuli sounded as if it belonged to the corre-

sponding context on a scale of 1-10, where 1 was rated as not at all typical and 10

highly typical. Sounds were listed by context as in table 5.2 such that participants

knew directly the which sounds came from which context.

Step2-FST-NS: FST in Natural Sound (NS) condition

Using the same FST as described above participants were asked to group sounds

together on the basis of their personal preferences. With the only instruction that

they should group together those sounds which sounded as if they belonged

together. Following completion of the categorisation, participants were asked

to verify choices by listening to each sound once again. Once this had been

accomplished and any final changes made, participants were asked to describe

each of their categories before finally being asked to identify each sound. Whilst

undertaking this they were permitted to listen to the sounds multiple times
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again.

Step3-FST-SIM: FST in CI simulated condition

Using exactly the same procedure as described for Step2-FST-NS, however

this time the 20 sounds were passed through a 4-channel vocoder in order

to simulate CIL perceptions. Only 4 channels were used for vocoding based

on [93] - where vocal-environmental sound discrimination was found to be

comparable between experienced Cochlear Implanted Listener (CIL) and NHL

listening to sounds that had been vocoded with 4 frequency channels. Following

completion of the categorisation task participants were asked to describe both

their categories and sounds as in Step2-FST-NS.

Step4-FC-SIM: Forced categorisation in CI simulated condition

Instead of using the FST paradigm, participants were presented with a written

list of the four contexts and asked to categorise the sounds into these four cate-

gories i.e. Bathroom, Kitchen, Exterior and Office. Following the categorisation

task they were asked to identify each category and provide a short description

of the sounds as in the previous two testing steps.

5.3 results

Results and analysis of the four testing steps are detailed below. Typicality

measures are briefly covered and show variance across the stimuli, which re-

flects real world perceptions of sounds and means that categorisation strategies

are not strongly biased in favour of the context information. MultiCorrespon-

dence Analysis (MCA) and Heirarchical Clustering based on Principal Com-

ponents (HCPC) analyses are again used as in previous chapters to assess the

categorisation strategies used by participants in Step2-FST-NS and Step3-FST-

SIM. Results show similarities to previous work regarding categories that reflect

water sounds, machine/transport sounds and categories related to the percep-

tion of the sound-producing action. Perceptions of the sound producing action

also remain robust in the CI simulated condition. Identification performance is

assessed across all conditions as the percentage of participants that correctly

identified each sound, and this is analysed for vocoded vs natural sounds as

well as the presence or absence of context information. Finally correlations are

made between the results of MCA with - acoustic measurements of sounds, iden-
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ID Sound description Environmental Context

shv Shaving
shwr Shower
crt Shower curtain
snk Sink
tth Toothbrush
tub Bathtub

Bathroom

cer Cereal
brd Bread
egg Egg beating
ovn Oven
plt Plate

Kitchen

bskt Basketball
rain Rain
tctr Tractor
svl Shovel
lght Lightning

Exterior

ppr Paper folding
cpy Photocopier
scsr Scissors
tpe Tape

Office

Table 5.2: Description of 20 environmental sounds used to test the effect of context in
Chapter 5. Stimuli are arranged into four auditory contexts. ID tags are also
provided and are used throughout the following chapter to reference the
stimuli.

tification performance, participant information (age) and typicality measures.

5.3.1 Typicality

The results of Step-1-Typ-NS are shown in figure 5.1 and were recorded with

9 participants. Error bars display the Standard Deviation and show that some

sounds were not perceived as being very typical for their corresponding context

- these sounds, shv, crt and ovn all have mean values lower than 5.
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Figure 5.1: Typicality measurements for the 20 environmental sounds (detailed in table
5.2 for the 4 different contexts; Bathroom, Kitchen,Exterior,Office. Standard
error is shown by red error bars.

5.3.2 Step2-FST-NS - Free-Sorting-Task of Natural sounds

In order to analyse the categorisation performance the same analyses conducted

in the previous two chapters was again carried out. Beginning with the aim

of establishing how the 20 environmental sounds were categorised figure 5.2

shows the dendrogram output of HCPC for Step2-FST-NS. As can be seen partic-

ipants put together all kitchen sounds apart from the oven, rain and lght are

grouped with the bathroom sounds apart from crt, the remaining exterior and

office sounds are mixed into two categories whilst bskt is separated individually.

This initially suggests that categories may be created based on the contexts of

kitchen and bathroom, but not for the exterior or office. That these latter two

contexts are not clearly represented may arise because; unfamiliarity of partici-

pants with office sounds; the likelihood that the exterior context incorporates

many more sounds and is not as narrowly defined as other contexts.

MultiCorrespondence Analysis (MCA) was also used to analyse the potential

categorisation strategies in more detail. For Step2-FST-NS, a total of 5 dimen-
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Figure 5.2: Dendrogram for Step2-FST-NS, the overall categories outputted by HCPC
are indicated by coloured rectangles whilst the upper limit of these rect-
angles indicates the point at the dendrogram has been cut (as described
in the main text). The height axis gives the perceptual distance between
each stimulus whereby a large height indicates that participants deemed
those two stimuli to be highly dissimilar and vice versa. Finally stimuli are
labelled using the abbreviated sound IDs from Table 5.2.

sions were retained in the MCA following the criteria that dimensions should

cover 8% or more of the total variance. Figure 5.3 displays these 5 dimensions

and from interpretations each can be explained as the following:

• Dim 1: would appear to contrast the sounds belonging to the bathroom

context with all other sounds. However the stimuli at the extreme far

left all involve water as a sound producing medium, which may be more

important to the perception of participants.

• Dim 2: Contrasts sounds belonging to the kitchen context, with the sounds

of the photocopier (cpy) and tractor (trct).

• Dim 3: Separates specifically basketball sound from all others, suggesting

something different/important with regards to this sound.

• Dim 4: Contrasts trct and cpy with sounds involving the manipulation of

an object.
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• Dim 5: Contrasts the lighting sound (lght), which is very isolated, with

sounds generated by manipulating an object, for example the toothbrush

(tth)and basketball (bskt) sounds.

MCA results therefore agree with those of the dendrogram in figure 5.2

in that they suggest participants may indeed categorise some sounds on the

basis of the context in which they are often heard, which appears true for the

Bathroom and Kitchen sounds. However this is not conclusive and is discussed

in more detail in section 5.4. The sounds cpy and trct seem strongly grouped

together along with ovn (shown in fig 5.2). These sounds all come from different

context suggesting a different strategy of categorisation. As they are also the

only mechanical sounds in the stimuli set this may therefore be a more likely

reason why they are grouped together.

The pattern of results on figure 5.4 show that 75 % of participants have

coordinate greater than 0.8 for Dim 1, and 41% for Dim 2. A large majority of

participants are therefore following the strategy described by Dim 1, such that

either Bathroom or Water sounds are quite easily grouped together.
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Figure 5.3: Distribution of sounds across the 5 retained dimensions, with Dim 1 & 2

in the top panel, Dim 3 & 4 in the middle panel and Dim 1 & Dim 5 in the
bottom. Stimuli are plotted using the ID labels from table 5.2 whilst colours
are the same as used for the dendrograms in figure 5.2 in order to show the
link between the MCA and HCPC analyses.
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Figure 5.4: Distribution of participants across the retained dimensions for Step2-FST-
NS, with Dim 1 & 2 in the top panel, Dim 3 & 4 in the lower panel.
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5.3.3 Step3-FST-SIM - Free Sorting Task of CI simulated (Vocoded) sounds

Step3-FST-SIM involved the same process as Step2-FST-NS, however using

sounds that had been vocoded with 4 frequency channels. The dendrogram

for Step3-FST-SIM (figure 5.5) does not show categories that resemble any

of the the four contexts (Bathroom, Kitchen, Exterior or Office), which is in

contrast to the results of Step2-FST-NS, figure 5.2. However the dendrogram

does show water-related sounds strongly separated from other sounds at a

height of 0.712 on the ordinate. A similar category of water sounds is also seen

in figure 5.2 however this separates at a lower height of 0.661 on the ordinate.

Within these categories of water-related sounds the INTRA category distance

is also smaller in Step-3-FST-SIM (0.0036) than in Step2 (0.18). This means that

sounds perceived as water related are more similar in the vocoded condition.

This is most likely because in the natural sound condition participants were

able to more easily distinguish the different kinds of sounds. However it is still

very interesting that water sounds remain a robust category even after vocoding.

The remaining sounds seem to be randomly categorised together and are

note easily interpreted from only the dendrogram, although the grouping of

cpy and trct together is again evident and may again represent a category of

mechanical sounds in similarity to Step-2-FST-NS results. Figure ?? also shows

a large majority (66%) of participants are strongly using Dim 1, where as follow-

ing dimensions are much lower, for example only 17% for Dim 2. This would

suggest that whilst Dim 1 is commonly shared categorisation strategy, following

this there are no other strategies held by a large number of participants, who

instead likely use multiple strategies based on the difficulty and poor agreement

in perceiving the vocoded sounds.

Results of MCA analysis for Step-3-FST-SIM are shown in figure 5.6

• Dim 1: separates water based sounds from others, especially the group

of sounds that involve human actions. For example brd, tth and plt all

described as rubbing/scratching/cutting.

• Dim 2: separates the mechanical sounds from all others. Also included

here, but to a lesser degree are snk and ovn which were described as a

door, something opening. Whilst the perception is not 100% mechanical,

it gives an idea that there was a level of perception similar to trct and cpy.
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Figure 5.5: Dendrogram for Step3-FST-SIM, the overall categories outputted by HCPC
are indicated by coloured rectangles whilst the upper limit of these rect-
angles indicates the point at the dendrogram has been cut (as described
in the main text). The height axis gives the perceptual distance between
each stimulus whereby a large height indicates that participants deemed
those two stimuli to be highly dissimilar and vice versa. Finally stimuli are
labelled using the abbreviated sound IDs from Table 5.2.

• Dim 3: contrasting shv & tpe vs. bskt & egg. From comments may be con-

trasting two different types of action sound - hitting/cutting vs. scratch-

ing/rubbing.

• Dim 4: separating crt, scsr & ppr from the rest. Again comments indicate

that these sounds referred to shared properties such as paper, branches,

turning a page/curtain

Whilst initial interpretations are difficult only using figures 5.5 & 5.6, the

use of participants comments helps greatly. They can give an insight into what

participants were perceiving, which perceptions are shared between sounds and

ultimately what shared information might be being used to form categories.
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Figure 5.6: Distribution of sounds across the 5 retained dimensions, with Dim 1 & 2

in the top panel, Dim 3 & 4 in the middle panel and Dim 1 & Dim 5 in the
bottom. Stimuli are plotted using the ID labels from table 5.2 whilst colours
are the same as used for the dendrograms in figure 5.2 in order to show the
link between the MCA and HCPC analyses.
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5.3.4 Step4-FC-SIM - Fixed Categorisation of CI simulated (Vocoded) sounds

Results for Step-4-FC-SIM must be handled differently due to the difference

in testing methodology that was used, whereby participants were asked to

categorise the sounds into 4 categorises titled Bathroom, Kitchen, Exterior and

Office. Hence the results show 4 categories in both the dendrogram and factor

maps of figures ?? & 5.7. Also the latter MCA dimension are insignificant to the

analysis as Dim 1 & Dim 2 suitably divide the stimuli into the 4 categories. The

interesting point concerning these results is to analyse how participants choices

correspond to the original categories and how the perception of the vocoded

sounds was changed from Step-3-FST-SIM to Step-4-FC-SIM.

The following text summarises the results of HCPC and MCA analysis in terms

of the original four contexts of Bathroom, Kitchen, Office and Exterior to deter-

mine how accurately each is represented.

Bathroom: consisting of the sounds rain and shwr. Interestingly only two

sounds have been grouped together as Bathroom sounds, both of which were

categorised by 67% of participants as such. Obviously both of these sounds

reflect very similar events - droplets of water falling and impacting on a hard

surface. Also interesting is that the second most used category for shwr was

Kitchen, whilst for rain it was Exterior - so even in the case where sounds are

severely degraded by the vocoding there is still a difference in perception (for

some participants) relating to whether or not the sounds take place inside or

outside.

Regarding the categorisation of the other original Bathroom sounds, the lower

panel of figure 5.8 shows that that correct categorisation for all the Bathroom

sound was only 32% and only the sound shwr was correctly categorised above

50%.

Kitchen: the created Kitchen category contains the sounds cer, brd, tth, egg,

shv and plt. The original Kitchen sounds are all located in this group, except for

ovn - which was correctly categorised by 0% of participants and was instead

split roughly 50− 50 between Bathroom and Office. Overall the original Kitchen

sounds were on average correctly categorised by 51% participants. Concerning

the created category of Kitchen sounds, the perception of cer, brd & egg are quite
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stable, citing “cutting, pouring grains, bread, egg beating”. However egg was

also perceived numerous times as the sound of a keyboard being tapped and

therefore had lower category identification of 50% compared to over 80% for

the other two sounds. The results for tth & shv are more varied with category

identification of Kitchen only at 33 & 28% and perceptions of these sounds are

also very varied (see Appendix C). Although perceptions linked to Kitchen

include“peeling, cut, grains, bread, seeds”.

Office: the sounds ppr, scsr and tpe constitute the created category of Office

sounds and all have high category identification (67, 83 & 83% respectively).

This also leads to the original Office sounds being correctly categorised by a

large percentage of participants, 65% from figure 5.8. Only the original Office

sound of cpy is poorly categorised, most commonly as an Exterior sound (39%)

which is likely due to its perception as a mechanical/car sound. The percep-

tions of ppr & scsr are associated with paper or the manipulation thereof, which

makes sense as to why they should be categorised as Office rather than any of

the other three categories. The soundtpe is also often identified as “scotch” with

other perceptions detailing the sound producing action e.g. “sharpen” or “pull”.

Exterior: this category holds the most sounds - tub, ovn, crt, cpy, bst, lght, trct,

snk and shvl. A likely reason for this is that the category of Exterior is much

broader than the other three and encompasses many more sounds. Bathroom,

Kitchen and Office might generate very specific and limited options of sounds,

such that when encountered with ambiguous sounds it is more simple for par-

ticipants to dismiss these three categorise and instead place sounds into a group

of Exterior sounds. Figure 5.8 also shows that the original Exterior sounds

were correctly categorised on average by 66% participants. With the sounds

bskt, lght and trct all being correctly categorised by above 80% of participants.

Interestingly for these three sounds, the perceptions recorded by participant

descriptions remain quite stable over the three testing conditions (see Appendix

???). Figure 5.8 also shows that the average category identification is greatest

for Exterior sounds - 65%.

The discussion of results above is however true only for the results of the

entire group of 17 participants. There is in fact no one single participant who

follows exactly the categorisation detailed by the dendrogram in figure 5.7.

With regards to the original categories detailed in table 5.2, the lower panel
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of figure ?? details the percentage of sounds that were correctly categorised

by each of the 18 participants was on average 50± 12%, with maximum and

minimum performance values of 75 and 30% respectively. In comparison to

the categories described by figure 5.7 the agreement of participants to this are

roughly the same - 56± 9%.

The subject map of figure 5.7 (lower panel) also highlights the fact that these

categorisation strategies are a result of the category choices of all participants.

Only one participant has coordinate above 0.8 for Dim-1, and there are none for

Dim -2. This would suggest that categorising these sounds, bearing in mind they

are vocoded, on the basis of context is not easily intuitive for the participants in

Step-4-FC-SIM. Rather some sounds.
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Figure 5.7: MCA and HCPC analysis for Step-4-FC-SIM: upper panel shows the HCPC
dendrogram output of results, with coloured rectangles representing the
final categories; middle panel shows the MCA factor map output covering
Dimensions 1 & 2; lower panel MCA subject map across Dimensions 1 & 2.
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5.3.5 Identification of Categories and Sounds

The second aim of this chapter 5 was to investigate whether the addition of the

context information could aid the identification of the 20 environmental sounds.

At each testing step participants were asked to give a description of each sound

that was later evaluated by the experimenter as to whether or not it correctly

identified the sound. Results are shown in figure 5.9 in three different panels.

In Step-1-Typ-NS, rating the typicality of sounds, participants were aware of

the association of each sound to the 4 contexts. In this way the results represent

a baseline performance when context information is present, and it is of no

surprise therefore that the average identification performance is highest for

Step-1-Typ-NS, 72% correct , in the lower panel of figure 5.9. ANOVA testing

shows this difference to be significant in comparison to all other testing Steps

(p < 0.05) whilst the results of Step-2-FST-NS (mean 51%correct) are also sig-

nificantly greater (p < 0.05) than those of Step-3-FST-SIM (16% correct) and

Step-4-FC-SIM (20% correct). This is of course not totally surprising that the

sounds in natural condition were better identified than when vocoded using

4 channels. The results of upper panel of figure 5.9 therefore shows that the

addition of context information helps the identification of the sounds, that is

except for the sounds shwr, lght and ppr where performance is greater in Step-2-

FST-NS. The biggest difference is for the sound shwr which in Step-1-Typ-NS

was also alternatively described as “water from a tap” or “running water”,

both of which were deemed incorrect due to not being specific enough. It may

simply be that causal uncertainty of this sound is the reason for the difference.
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Figure 5.8: Category Identification accuracy for Step-4-FC-SIM: Upper panel shows the
correct category identification of each individual sound, where the corre-
sponding category is represented by B-Bathroom, K-Kitchen, E-Exterior
and O-Outside. Middle panel shows the category identification of each envi-
ronmental context Bathroom, Kitchen,Exterior,Office. Lower panel shows the
correct category identification of each overall environmental context i.e. the
correct responses from the middle panel.
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Middle panel of figure 5.8 shows the effect of adding context information to

the vocoded sounds. On average there is an increase in identification perfor-

mance of 4± 19 percentage points. A total of 11 of the 20 sounds also show an

increase in identification whilst 6 show a decrease. However multiple ANOVA

testing shows that this small increase is not significant (p > 0.05), meaning

that the addition of the four contexts does not appear to help participants

with their identification. In the case of Natural sounds, comparing Step1-Typ &

Step2-FST-NS (top panel of figure 5.9, the difference is significant such that the

addition of context information in Step1-Typ increases the average identification

of sounds by 21± 26 percentage points.

The results would therefore suggest that in the case of natural sounds the

addition of context information helps improve the identification of sounds.

However this effect is not seen for vocoded sounds. Three possible ideas on

why this might be are listed below:

1. Step-1-Typ-NS gives participants the direct relation of context to sound,

where as in Step-4-FC-SIM the sounds were given separately to a sheet of

paper with the four contexts written down. So in Step-4-FC-SIM, partici-

pants still had to make to the correct relation from sound to category and

maybe this induced variability and error to their perceptions.

2. The addition of context could make identification MORE difficult if it

limits participants ability to identify the sound.

3. Vocoding simply makes the identification of the sounds too difficult. The

resulting difference in Step-3-FST-SIM to Step-4-FC-SIM is simply a results

of variability in performance.

Whilst the identification results do not show a difference, and it is not possible

to compare the category identification due to the differences in methodology

between the different steps, co-occurrence (similarity) matrices can be analysed

to compare the participants performance. Figure 5.11 shows co-occurrence

matrices for Step-2-FST-NS to Step-4-FC-SIM where each cell corresponds to the

percentage of participants that paired each stimulus together with every other

sound. Cells have been arranged to reflect the predefined categories in table 5.2,

and are divided by the dotted red line, such that the upper triangle of results

outlined by the red line represents the similarity of Bathroom sounds, and the

lower triangle the Office sounds. By comparing the average results of cells that
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correspond to the pre-defined categories it is possible to get an idea of the

agreement between the categorisation results of participants in each test-step

and categorisation based on contexts. The results are summarised in table 5.3.

All values are low, below 0.5, which shows that participants are not strongly

categorising sounds based on the context, however value of Step-3-FST-SIM

is lower than for the other two test conditions. That the value of pair-wise

comparison for Step-4-FC-SIM is higher than Step-3-FST-SIM suggests that the

addition of context has an effect on the perception of the sounds such that par-

ticipants are able to more accurately pair stimuli from the same context together.

Test step Step-2-FST-NS-FST-NS Step3-FST-SIM Step4-FC-SIM

PW value 0.389 0.225 0.367

Table 5.3: Pairwise comparison of similarity matrices for each testing step to the pre-
defined categories described in table 5.2. Similarity matrices or co-occurrence
matrices are displayed for Step3-FST-SIM and Step4-FC-SIM in figure 5.11.
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Figure 5.9: Identification performance across the 4 testing steps. Upper panel shows iden-
tification of sounds in the Natural sound condition for the typicality ratings
(Step1-Typ-NS) and free-sorting-task (Step2-FS-NS). Middle panel shows
sound identification in the CI simulated (4 channel vocoded) conditions for
free-sorting (Step3-FS-SIM) and fixed categorisation (Step4-FC-SIM).Lower
panel shows the effect of informing participants of the four environmen-
tal contexts, i.e. the difference between Step-2-FST-NS to Step1 and from
Step-3-FST-SIM to Step-4-FC-SIM.
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Figure 5.10: Co-occurrence (similarity) matrices calculated for Step2-FST-NS, Step3-
FST-SIM & Step4-FC-SIM. Each cell corresponds to the number of partic-
ipants who paired two stimuli together, with low similarity indicated by
blueand high similarity by red. Stimuli are arranged by the four environ-
mental contexts, which are separated by the red dotted line.
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5.3.6 Acoustic Analysis

In keeping with the acoustical analysis of previous chapters the same mea-

surements were carried out for both the natural and CI simulated sounds.

Acoustic measurements were subsequently correlated, using Pearson corre-

lation, with the results of MCA (coordinates of factor maps) as well as the

sound-identification scores of all four testing steps to try and understand if

any acoustic variables were of importance to the perception of the sounds.

Whilst no significant correlations (p > 0.05) were found with the identification

scores, the MCA results of Step3-FST-SIM were correlated (p < 0.05) with the

RMS in multiple frequency bands. Specifically the coordinates of Dim2 (as

shown in figure 5.6) were positively correlated with the RMS in lower frequency

bands from 350− 1850 Hz AND also negatively correlated with the RMS in

higher frequency bands from 2150− 4000 Hz. Figure ?? displays the sounds

plotted against the average RMS in each range of frequency bands, RMS in

lower frequency bands along the X-axis, and higher frequency bands along the

Y-axis. By plotting the figure in this way it is possible to see how sounds are

displayed / separated and when comparing to the MCA results (upper panel of

figure 5.6) it the pattern shows similarities, for example the group of sounds

trct, sink & cpy are separated along Dim2 of the factor map and also have high

RMS in the lower frequency bands compared to other sounds. That the sound

bskt also shares similar RMS values, but is not grouped with the same sounds

on the factor map indicates that the RMS is not only way sounds are categorised.
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Figure 5.11: RMS in high frequency (2.15− 4kHz) plotted along the the y-axis and low
frequency (350− 1850 Hz) bands, plotted on the x-axis for CI simulated
sounds (4 channel vocoding). The 4 environmental contexts are again
indicated by colours: Bathroom, Kitchen, Exterior, Office. Whilst individual
sound labels (see table 5.2) indicate the different sounds used.
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5.4 discussion

The current chapter aimed to firstly test how a collection of environmental sounds

were categorised in a Free Sorting Task (FST) and whether or not the information that

related to shared context would be used as part of participants categorisation strategies.

Results showed that context information was used to create a category of Kitchen sounds

alongside other categories of water, paper, machine/mechanical and action sounds. Thus

suggesting that for the tested stimuli the context/location was not the most salient or

important information that participants used. When testing the categorisation of CI sim-

ulated sounds with a 4-channel vocoder identification of the sounds was poor, however

perceptions relating to the material and action of the sound-producing event remained

robust and central to categorisation strategies. In the case of a fixed-categorisation task,

the association/link between the context and perceived material or action was used as

the basis to categorise sounds. The addition of context information was seen to help

participants identify sounds in the Natural sounds (NS) condition, however not in the

case of CI simulated sounds. However the task difficulty may have been too high for

participants to make use of the additional information when listing to CI simulated

sounds with only 4-frequency channels.

Secondly, consecutive testing steps (described below) were used to see if the addition

of auditory context could aid the identification of the same 20 sounds following vocoding.

Vocoding was done with 4-channels in order to simulate CIL ESP as identified by [93].

Results did not show any significant effect of additional context information in aiding

the identification of sounds.

• Step1-Typ-Typ: Rating of typicality to establish how suitable the sounds were

in relation to the chosen context

• Step2-FST-NS: Categorisation of the natural sounds in a FST

• Step3-FST-SIM: Categorisation of vocoded sounds (using 4 channels) in a FST

• Step4-FC-SIM: Fixed categorisation of vocoded sounds (using 4 channels) into

4 categories relating to Bathroom, Kitchen, Exterior and Office.

5.4.1 Categorisation of (Natural) Environmental sounds

The results of the current chapter demonstrate that auditory categories can be

formed using different information. In the case of natural un-processed sounds
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(Step-2-FST-NS) categories mainly reflect attributes of the sound-producing

event as specific objects (bouncing ball, machine/transport) or as a certain

material (water, paper) [75]. Categories also seemed based on perception of

the sound producing action (manipulations of paper sounds, cutting, chop-

ping) [76, 91, 57]. However, it does not appear that categorisation strategies are

based upon the identification of specific contexts. There is some evidence to

suggest that a category of Kitchen sounds is perceived as in similarity with

[91], however these sounds also share a common activity - cooking. [48] found

that the level and type of activity within a soundscape was responsible for how

different soundscapes were categorised. It is possible therefore that categories

reflecting a context (or location) are actually formed based on the activity that

takes places within a certain context, rather than simply the idea of a context

as simply a location. This argument may also explain the category of Office

sounds, which are grouped together based on the activity of “sorting papers”

rather than specifically because they belong to the category of “office”. [91] for

example found a category referencing “paper” sounds but no specific mention

of “office”. This is also in similarity to the category of water sounds, which

may be presumed to represent the context of bathroom, however perceptions

are associated to many different objects and include both bathroom and exte-

rior sounds such that the common perception is that of the material - water, [57].

5.4.2 Categorisation of Vocoded sounds

The results of CI simulations using a 4 channel vocoder should be first discus-

sion on the basis of what they show about the categorisation of sounds. Specific

discussion on how this relates to the auditory perceptions and abilities of CIL is

discussed in the following section and not here. Whilst existing studies have

looked the identification of vocoded, or spectrally degraded environmental

sounds [51] there does not appear to be any significant insights into the cat-

egorisation of these sounds. The results hereby constitute the first attempt at

doing so and are therefore of interest in aiding the understanding of auditory

categorisation.

Identification performance of the CI simulated sounds is, as expected, much

less than in the case of natural sounds. Theory of Gaver would suggest that in

such cases, where identification is difficult, that musical listening would be em-
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ployed by participants to compare sounds based on their acoustical similarities

of the sound signal. However the majority of descriptions used by participants

refer to semantic qualities related to the sound-producing event, object or action.

This is more in keeping with a continued used/reliance of “everyday listening”

mode [37], or the “Causal” and “Semantic” listening modes described by [76]

and suggests that the way environmental sounds are perceived requires further

understanding.

As mentioned above, they study of [51] also tested the identification of

spectrally degraded sounds. Results found that the most easily identifiable

sounds were those with salient temporal patterning and certain sounds within

the current study reflect this - e.g. cutting bread and tearing tape. The frequency

region of 1200− 2400 Hz was also identified as important to the identification

of environmental sounds by [51] and whilst identification performance of the

current study showed no correlation to the RMS in any frequency region, the

correlation with Dim 2 shows that the current stimuli may be categorised based

on the RMS in (2150− 4000 Hz) and lower (350− 1850 Hz) frequency regions.

There are similarities to the categorisation of natural environmental sounds

(Step-2-FST-NS) in the categorisation of water, machine/transport and action

sounds together. This is very surprising that even with the difficulty identifying

sounds, the perception of these categories appears quite robust. As explained

above this is based on the perception of the semantic properties associated

with the sound producing event. Understanding that information related to

the sound-producing object and action is still perceived when identification is

poor is important as it shows that participants are still processing sounds in

a more everyday listening way. This result could also provide a step towards

understanding if a possible hierarchy of categories exists.

Categorisation and identification can be thought of in the same way in that

they are both processes that seek to attach specific information to the per-

ception of an auditory stimulus, however they differ in that identification is

more specific or detailed [105, 91, 76]. At a level of category perception the

current results suggest a perceptual space that involves categories of water,

machine and action sounds. This is important for two reason, firstly it shows the

kinds of information listeners are able to perceive when spectral information

is severely degraded, also secondly the categories that may exist at a broader
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level of perception above those categories found with natural sounds. Of course

there is the possibility that other categories exist at this level of perception,

as the current study only used 20 sounds. It should also be noted that in the

discussion of action sounds, these are specifically sounds that hint towards

the involvement of a human carrying out the action - for example bouncing a

basketball or chopping bread, rather than a non-human action sound such as

helicopter blades, a photocopier, waves breaking or a tree falling.

The addition of context information does not seem to aid the direct identifi-

cation of sounds and would therefore seem to disprove the initial hypothesis.

However, in forcing participants to categorise the sounds based on only the

4 contexts, perceptions of the sounds appear to change. Also using only 4

frequency channels may have increased the task to a point where participants

were unable to utilise the context information. For example results in the natural

sounds condition show an effect of context agreeing with [8]. The task difficulty

may also have been raised beyond that representative of CIL environmental

sound perception. Studies have shown that ESP for CIL is in the range of XXX -

XXX, which is higher than the results of Step3-FST-SIM & Step4-FC-SIM, which

over both conditions is only 18± 21% correct. With an increased number of

channels, identification of the sounds would likely increase, as evidenced in

chapter 2. In this case it would be more likely to note an effect of the context on

identification as noted in natural sound condition (Step1-Typ and Step2-FST-

NS). In other words, in order for the context to make be of use to participants,

they must be able to identify sounds accurately enough to enable them to

establish/create a link between the sounds and the context.

Previous works have also highlighted the acoustic complexity and speed

of spectral dynamics as being important to the categorisation of environmen-

tal sounds [110, 111]. The present study does not demonstrate any results

to counter or agree with this. One reason may be that in comparison to ex-

amples of simple and complex sounds used in [110], the stimuli used in the

current work would all fall into the category of simple sounds. These simple

sounds are defined as by slowly varying spectral dynamics and had value of

SSV! (SSV!) less than 1. Complex sounds included examples of vocalisation

(both animal and human) and musically related sounds, which were absent

from the stimuli tested in this chapter. Acoustic properties of the stimuli also

beomce more important to categorisation strategy when identification fails and
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when listeners adopt the “musical-listening” mode as proposed by [37]. In the

case acse of vocoded sounds, identification is poor and so it would therefore

be presumed that participants strategies would be more strongly based on

the acoustical characteristics of the sounds. However participants comments

related to identification still refer almost exclusively to qualitative aspects of

the sound producing event (material, object or action) and comments describ-

ing participants categories rarely refer to acoustical characteristics, such as

similarities in frequency, smoothness/roughness, complexity or loudness. This

would suggest that Gavers theory is not so distinct as initially laid out and that

ideas proposed by [75] pose a good direction in which to continue researching

auditory categorisation i.e. that categories are based on causal, semantic and

also acoustic perceptions of the sound. This also reflects the sentiment shared

in [7] that “the recognition of environmental sounds is directed to produce

semantic interpretations of the sound” rather than reflect the perceptions of

acoustical information concerning the sound signal.

5.4.3 Methodological Considerations

Similar considerations as described in previous chapters must also be men-

tioned again here. Firstly, the categories that are outputted from the HCPC

and MCA analysis represent the “overall” performance of all participants. It is

also possible that very few participants completely follow the categorisation

strategies described above. And participants may actually categorise the same

stimuli in different ways as found in previous research [57, 91]. Secondly, the

results and categories produced by participants are dependent on the stimuli

that are used in testing. As an example [57] found categories of solids, liquids,

gasses and machine sounds, however when testing only solid sounds results

showed a difference between impact and continuous sounds not found in the

first experiment. In the current study a limited number of 20 sounds were used

in order that testing could be completed in a short time frame. However this

of course again limited the possible categories that could be created and made

it more possible for certain sounds to drive/dominate the categorisation in

comparison to a test of many stimuli [57].

Regarding the four different contexts that were chosen, Bathroom, Kitchen,

Office and Exterior, typicality ratings of individual sounds are not equal. The
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most typical sounds are likely to be more familiar to listeners and could there-

fore affect the categorisation strategies used [6]. For example, within the Kitchen

sounds, the sound ovn has the lowest typicality rating and is categorised apart

from the other Kitchen sounds. On the other hand all stimuli are common

to the given contexts and variability in typicality and familiarity represents a

real world scenario whereby sounds do not share the same level of familiarity

amongst different listeners. The method of testing may also have influenced the

results, whereby had participants been given written labels for the sounds they

would have recorded much higher typicality ratings for all stimuli. However

if all sounds were of equal and high typicality this may have actually biassed

the results to drive a categorisation strategy more strongly based on context,

although it is the opinion of the experimenter that this is unlikely due to the

hypothesis that categorisation based on context is actually driven by the activi-

ties linked to certain contexts. Therefore to drive a categorisation strategy of

context it would be more easily done with sounds that shared related activities

common to specific contexts.

5.5 conclusion

The current chapter delved into auditory categorisation looking at specifically

environmental sounds divided between four specific contexts/locations. It

was hypothesised that these contexts may firstly form the basis of auditory

categories, however findings suggest that information related to the sound-

producing object and action are more important/salient to auditory categori-

sation processes. CI simulated sounds also showed that perceptions of the

sound-producing object (potential the material) and sound-producing action

remain robust and useful for categorisation even when identification of sounds

is reduced by degraded sound quality. This may provide a step towards un-

derstanding a possible hierarchy of environmental sound categorisation which

may extend to all the categorisation of all auditory stimuli. It is important for

understanding what auditory categories exist or that we create to deal with the

world, but also gives big clues on how we listen to sounds and the information

that is perceived or used in higher order cognitive processes. However this

requires much further study. Although the understanding of auditory categori-

sation is starting to be formed, it still seems quite variable, participant & test

dependent and also no classification system has yet been established beyond
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what has been laid out by [37, 77].

Key Points

• The categorisation of a set of 20 environmental sounds is based pre-

dominantly on information concerning the sound producing object.

With regards to sounds in the Natural sounds (NS) condition this re-

sults in categories found in previous research - machine/transport

and water/nature sounds.

• The same 20 sounds were vocoded with 4 frequency channels to

simulate CI users discrimination of vocal vs environmental sounds.

Even in this condition where spectral information was severely

degraded, and participants struggled to identify sounds, categorisa-

tion strategies were based on the perception of the sound producing

object and sound producing action. This again resulted in percep-

tions associated to machine/transport and water sounds as well

as perceptions of the material e.g. water, metal and wood; and the

sound producing action e.g. cutting, chopping, scratching. This is

an important observation that even in difficult listening conditions,

NHL are still aiming to identify information associated to the sound

producing object/event, whether it be causal or semantic [57], rather

than focussing on the acoustic characteristics of the physical sound

signal.

• However, perceptions of the sound producing action may also

be related to the temporal structure of the sounds. Whereby the

rhythmic nature of some sounds (e.g. basketball and shovel) helps

participants to perceive actions like chopping/scraping in the CI

simulated condition.
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Key Points

• Categorisation strategies do not appear to be strongly based on

the environmental context. From the initial choice of Bathroom,

Kitchen, Office and Exterior sounds, the only apparent categories

seen in the results was for Kitchen. However this may be based

on the activity of preparing food rather than the perception of the

kitchen as a specific location. In this way it reflects the findings of

[74] who found that soundscapes were categorised based on the

events, or activities that were perceived in each soundscape. Certain

Office sounds were also categorised together, however this is again

more likely based on the shared perception of manipulating paper,

rather than the perception of the Office as a semantic category.

• The addition of environmental context appeared to help identifi-

cation of sounds in the Natural sounds (NS) condition, with an

average improvement of 20% points. This was seen between from

Step2-FST-NS to Step-1-Typ-NS. However in Step1-Typ-NS partic-

ipants were given the direct association between the sounds and

their corresponding context. Context information did not however

aid the identification of sounds in the CI simulated condition i.e. the

different in results between Step3-FST-SIM and Step4-FC-SIM. In

this case it may that using a 4 channel vocoder makes it too difficult

to make use of the context information, or that in the FST paradigm

participants could not make use of the additional environmental

context information because the direct link between the sounds and

corresponding context was NOT given.

• Results therefore suggest that the environmental context may

not hugely important to participants perception of environmental

sounds. It may make more sense to focus on the kinds of informa-

tion that are perceived by listeners in adverse listening conditions as

a way of enhancing the understanding of CI users auditory abilities,

especially concerning the perception of environmental sounds.
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C AT E G O R I S AT I O N O F H U M A N V O I C E - T H E

I M P O RTA N C E O F A G E , G E N D E R A N D E M O T I O N

6.1 introduction

Much work on the perception and categorisation of vocal stimuli has concen-

trated on the gender of voices, prosodic processing, vocal discrimination/recog-

nition [133, 4, 63, 135, 47] and concluded that the categorisation of voices is

determined by the age and gender of a speaker [47]. This would indicate that

the age and gender are important features of a speakers voice. [47] used a

Multidimensional Scaling (MDS) analysis to show that in a test of categorising

syllables stimuli were categorised first on the basis of age and then gender (see

figure ??).

Of course there are other features of voice stimuli that may be used to identify

and categorise individuals, for example sexual orientation, ethnicity, accent,

personality [133]. Emotion is also an incredibly important feature of vocal

sounds vital to human communication. As a first step to further understanding

how human voices are categorised it was therefore decided to test vocal stimuli

that varied across three different vocal characteristics the talker, these were

Age, Gender and Emotion. This also enabled the chance to see how results

would differ from those of [48] and give possible clues as to the importance (or

hierarchy) of the the three characteristics stated. In order to test for a possible

hierarchy it was decided to limit construct each vocal characteristic with only

two options. Of course for gender this is already decided between male and

female. Regarding age, voices of adults and children were chosen whereby

adult voices existed in the age range of approximately 25-50 years old and

child voices between the ages of 5-10. This was done to reduce the chances of

voices being perceived as generated by babies, adolescents, or elderly voices.

For Emotion, happy and sad emotions were chosen to be clearly different and

175
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this was achieved using the emotional actions of laughter and crying sounds.

This testing was also deemed relevant to the study of vocal perception by

Cochlear Implanted Listener (CIL), who have difficulties wither speaker dis-

crimination and gender discrimination in comparison to NHL [94]. Studies of

emotional perception with CIL have also found that CIL do not perceive the

emotional content of voice stimuli as well as NHL [98]. The most easily perceived

emotions have also been found to be anger and sadness due to specific acoustic

cues which aid CIL’s perceptions [98] (Banse & Scherer, 1996; Most, Wiesel, &

Zaychik, 1993; Pereira, 2000).

The following chapter therefore looks at the NHL categorisation of voices

based on age, gender, emotion to see if the same or different hierarchy exists as

previously hinted at. Preliminary (but not conclusive) results are also presented

for a group of 11 CIL in order to see how performance compares to NHL and

if CIL are capable of perceiving and utilising all forms information within the

vocal stimuli.

Chapter Aims

1. To test the categorisation performance of a set of 16 vocal sounds

that differ in age (child or adult), gender (male or female) and

emotional content (laugher or crying). Stimuli have been created

so that each variable (age, gender, emotion) is clearly distinct and

identifiable. In this way it is hoped to find which aspect of the

stimuli is most important to categorisation.

2. It is known that CIL have difficulties identifying speakers and dis-

criminating voices. This has been seen with regards to gender and

also age, it has also been seen that CIL users perceive different

emotions with more ease/difficulty. However which of these vocal

characteristics is more or less important and how they are distin-

guished when presented together has not been tested. It is hoped

to better understand this by testing the categorisation performance

of CILand to find a relative hierarchy that may indicate the saliency

of each stimulus characteristics for CIL
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6.2 method & materials

6.2.1 Participants

Two groups of participants were recruited for testing the categorisation of

human voices in this chapter. The first group consisted of 25 normal hearing

listeners (NHL) who were native French speaking adults (16 males age 29± 9

years). The second group were 11 Cochlear Implanted Listener (CIL), also native

French speaking adults (6 males, age 46± 19 years). Full details of the CIL are

listed in table 6.1.

6.2.2 Stimuli

As mentioned above the goal was to test the how voices would be categorised as

a novel way of testing the perception of voice and associated attributes. As this

testing constituted a first step towards fully understanding the categorisation of

voices it was decided to test stimuli with a limited number of three salient vocal

characteristics. These were chosen to be the age, gender and emotion of the voice

and for each characteristic two extremes were chosen so that participants would,

hypothetically, be able to easily distinguish the stimuli. Thus, for age child

and adult voices were chosen, for gender male and female and for emotional

voicing laughter and crying. This was done so that each vocal characteristic

was of equal perceptual salience and therefore would not create bias in the

goal to evaluate the categorisation strategies of participants. The construction of

stimuli based on these characteristics is shown in table 6.2 and for each stimuli

construction there are two examples present.

Stimuli in table 6.2 were chosen from a selection of 48 stimuli that were

evaluated for their typicality to each of the three vocal characteristics. Typicality

were carried out by with 30 NHL, divided into three groups and where each

group listened to and evaluated 16 of the 48 overall sounds. The 16 sounds with

the highest overall typicality, i.e. that best represented each of the age, gender

and emotion characteristics were then used for the categorisation testing and

the results for these sounds are shown in figure 6.1.

Importantly to note, throughout the chapter the following ID tags have been

used to identify stimuli, whereby B = boy (i.e. male child), G = girl (female
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child), M = Man (adult male) and W = woman (adult female).
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ID Age Gender Emotion

BC-1
BC-2
BL-1

Crying

BL-2

Male
Laughing

GC-1
GC-2

Crying

GL-1
GL-2

Child

Female
Laughing

MC-1
MC-2

Crying

ML-1
ML-2

Male
Laughing

WC-1
WC-2

Crying

WL-1
WL-2

Adult

Female
Laughing

Table 6.2: Stimuli description for Voice-categorisation. Stimuli ID are listed in the left
hand column where M = man, W = woman, B = boy, G = girl, L = laughing,
C = crying. Subsequent columns detail how stimuli were divided between
AGE (child/adult), Gender (female/male) and Emotion (laughing/crying).
As described in the text, two example of each stimuli type were used for
testing.

6.2.3 Procedure

The same procedure of using a Free Sorting Task (FST) was employed here

in similarity to the that used in previous chapters. The FST was used to test

participants categorisation of a number of different sounds. The current chapter

differs in that the stimuli were all vocal sounds as described in table 6.2.

Stimuli were also specifically chosen to vary along the three dimensions of age

(child/adult), gender (male/female) and emotion (laugh/cry).

Analysis was again carried out using Heirarchical Clustering based on Principal

Components (HCPC) and MCA with results being presented in the form of

dendrograms, factor maps and subject maps in the following section.
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Figure 6.1: Figure of typicality ratings for Voice-stimuli, as listed in table 6.2. Stimuli
were rated on their typicality for Age (child-adult), Gender (male-female)
and Emotion (laughing-crying) on a scale of 1− 7. The Average results of
the three ratings is also shown in the bottom right panel.
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6.3 results

The following section is divided into two sections. The first covers the categori-

sation performance of participants using MultiCorrespondence Analysis (MCA)

and Heirarchical Clustering based on Principal Components (HCPC) analyses.

This will set out what kinds of categories were created , what aspects of the

stimuli were used for categorisation and overall describe the categorisation

strategies used by participants in the three testing conditions. A second section

will present results on how accurately stimuli were perceived in the three differ-

ent conditions using participants verbal descriptions when asked to identify the

stimuli. This information is also important in understanding the categorisation

strategies.

6.3.1 Categorisation Performance

Figure 6.3 shows the MCA analysis for the voice-categorisation in the Natural

sounds (NS) condition. Dimensions can be quite easily interpreted due to the

simplistic nature of the stimuli, in that they varied only in three salient features

of age, gender and emotion. Dim 1 shows crying sounds strongly contrasted

with laughter sounds, such that the first dimension and the strongest manner

in which participants are grouping/separating the stimuli, is based on the

emotion. There is also no different in terms on age or gender, such that laughter

and crying stimuli have almost the exact same value (respectively) on Dim

1. Figure 6.4 shows the map of participants across the MCA dimensions. As

can be seen in the upper panel participant agreement to Dim 1 is very high,

96%, only one participant does not appear to be using emotion as the first

manner of categorising the stimuli. In fact participant ns03 categorised stimuli

into two groups, described as adults or children, highlighting the variability in

categorisation strategy that exists.

Dim 2 is also quite clear in that it contrasts the adult and child stimuli,

reflecting an association to the age of the voice. There is a small difference

associated to the emotion of the voice however, in that the laughter stimuli

seem more strongly separated by age, than the crying stimuli. This could reflect

a perceptual difference in that the age of the voice is more easily perceived for

the laughter sounds. This is further evidenced when noting that Dim 3 also
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contrasts the stimuli based on age, but more strongly for the crying sounds,

with adults (W & M) to the right of the axis and child voices (B & G) to the

left. In fact the coordinates of participants on Dim 2 and Dim 3 are significantly

correlated (r = 0.87,p < 0.05) showing that those participants who strongly use

Dim 2 are the same whom use Dim 3, a total of 13 participants. Of course this

makes sense that those participants who would categorise the laughter sounds

via age, would also categorise crying sounds in the same manner.

It is not until Dim 4 that the gender of the stimuli appears as part of the

categorisation strategy and noticeably this is exclusively linked to the adult

voices. Whilst this is not unexpected, based on gender typicality values in

figure 6.1, the fact that gender should appear so ’late’ in the categorisation

strategy is surprising based on previous studies that focus more on gender

discrimination / categorisation with regards to vocal stimuli. Interesting split

of those participants that do or do not use Dim 1,2,3,4. There does not appear

to be a graded agreement for any dimension. This is again likely influenced by

the distinct characteristics of the stimuli.

Figure 6.2: Dendrogram output of the HCPC analysis for Natural sounds. The height
axis indicates the level of similarity between stimuli, such that a greater
height corresponds to a greater DIS-similarity.



6.3 results 184

Figure 6.2 shows the results of the categorisation in a simplified form and

it is again easy to see that the first node corresponds to Dim 1, dividing the

stimuli between laughter and crying, the second and third nodes to Dim 2 &

3 dividing stimuli between age. Finally the fifth and sixth nodes show a of

gender, but ONLY for the adult stimuli, where as the child stimuli are grouped

all together both boys and girls.

Overall these results suggest that the most salient feature within the voice

stimuli is that of the emotion (laughing/crying), followed by the age (child/adult)

and finally the gender (male/female). The contrast of gender regarding the

child voices was only observed on Dim 6, which covered only 4.2% of the

variance and is therefore not shown. Only 2 participants strongly used this

dimension and there is also no division of gender for child stimuli in figure 6.2.

This therefore shows that the ambiguity of child gender is not a strong salient

feature used in the categorisation strategy.

Results taken with 11 CIL, all of whom had more than 12 months experience

with their implants were tested with the same stimuli and paradigm. Results in

this case must be treated as preliminary because of the nature of the analysis

which requires 15 participants to be valid. However due to the simplistic nature

of the stimuli the results presented below give a very strong indication to results

that would be achieved with more participants and therefore provide valid

comparisons for discussion and conclusions.

Results of MCA and HCPC analysis are shown in figure 6.5. The factor map

in the upper panel is again easily interpreted, with Dimension 1 showing a

contrast of the laughter and crying sounds, and Dim 2 contrasting the crying

sounds with regards to age, child vs adult. Further dimensions were unable to

be interpreted in terms of differences in age, gender or emotion, instead only

showing the separation of singular sounds from other stimuli, for this reason

they are not shown.

The dendrogram, lower panel of figure 6.5 also shows that the first distinction

of the voice stimuli is regarding the emotion, with laughter sounds all grouped

together on the let hand side. Crying sides, separated in the right hand branch

are subsequently divided by age, which is not seen for the laughing sounds.

Analysis of how sounds were perceived shows that ’age’ was perceived to a
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similar level of accuracy for both laughing and crying sounds (figures 6.6 & 6.7),

so it is not a matter of age being more easily perceived for different kinds of

sounds. More likely is the possibility that adult-crying sounds and child-crying

sounds somehow perceived in different ways and this is discussed further in

section 6.4. Noticeably one sound, BL-2, is“mis-categorised” amongst crying

sounds, when it is in fact the sound of laughing.

Middle panel of figure 6.5 helps understand how participants use the strate-

gies described above. 9 of the 11 participants have a coordinate along Dim

1 greater than 0.8 and therefore share the same strategy of categorising the

sounds based on emotion. Only two participants (X106 & X105) do not have

a coordinate above 0.8. Participant X106, the furthest away from using the

commonly held strategy related to emotion, categorised sounds on the basis

of loudness, describing categories as “normal”, “louder” or “less loud but

the same word”. Participant 105, somewhat followed the strategy of emotions,

describing two categories as “baby crying” and “woman laughing”, however

they also used a category of “coughing” sounds differentiating their personal

categorisations strategy from that of other participants. With regards to Dim

2, there is more variation amongst CIL participants, such that only 4 of them

strongly use Dim 2. However, other participants still use the perception of age

(for example participant X27 and X103) to categorise different sounds. This

reflects the variability in perceiving the age of the voice stimuli, a result of

varying auditory abilities amongst CIL.

Overall results show strong similarities to those of NHL in the use of emotion

and age for categorising stimuli and there appears no use or perception of the

gender of voices. Variability in CIL auditory abilities is also explains variability

in results.
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Figure 6.3: MCA factor maps for Natural sounds NS condition, tested with xxxx par-
ticipants. Upper panel shows dimensions 1&2 with dimensions 3&4 in the
lower panel. Amount of variance covered by each dimension is also shown
on the corresponding axes.
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Figure 6.4: MCA factor maps for Natural sounds NS condition, tested with xxxx par-
ticipants. Upper panel shows dimensions 1&2 with dimensions 3&4 in the
lower panel. Amount of variance covered by each dimension is also shown
on the corresponding axes.
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Figure 6.5: Results of categorisation performance of 11 CIL. Upper panel shows the
factor map output of MCA analysis, with Dimensions 1 & 2 displayed.
Middle panel also shows the participant map for the same two dimensions
whilst the lower panel shows dendrogram output of HCPC.
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6.3.2 Stimuli Perception

In order to aid the interpretation of categorisation strategies described in the

preceding section and to further understand the perceptions of voice-stimuli

by the two groups of participants, NHL and CIL. Perceptual accuracy of each

stimuli characteristics (Age, Gender & Emotion) was analysed by evaluating

the descriptions of sounds given by each participant. Figure 6.6 displays the

results split between the three stimuli characteristics and shows firstly that the

perceptions of CIL participants are lower than NHL. This is true for all, Age,

Emotion and Average results (kruskal-wallism p < 0.001) however not in the

case of Gender perception, where both NHL and CIL struggle to perceive the

gender of the child voices. This is further highlighted in figure 6.7, and shows

that NHL perceive gender quite well for the case of adult voices whilst CIL do

not accurately perceive gender in any condition. The participant groups are

also different in that the perception of age is much stronger in NHL than in CIL.

This figure also helps show that Emotion is accurately perceived in all cases

for both NHL and CIL, although CIL appear to perceive laughter sounds more

strongly than crying sounds, as previously mentioned.

Figure 6.6: Perception accuracy of voice stimuli as rated for each stimuli. The three
scatter plots show how accurately the Age, Gender and Emotion were
perceived for each stimulus. Results are plotted for normal hearing listeners
(NHL) with � and for Cochlear Implanted Listener (CIL) with •. A boxplot
of the overall perceptual accuracy (the average across all three scatter plots)
is also shown.
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The analysis of perceptual accuracy show that the stimuli characteristics

appear to differ in their salience (or accuracy of perception). Where Emotion is

the most strongly salient, well perceived by both participant groups,; followed

by Age, again used by both groups, and finally the Gender, which is only well-

perceived in the case of NHL listening to adult sounds. This pattern corresponds

to the interpretation of the MCA analysis for both groups in that Emotion, then

age then gender are used to categorise the stimuli such that the most salient

information is used as the basis for categorisation strategies. As mentioned

above, age seems to be used as a manner of separating the crying sounds by CIL,

however the results of figures 6.6 & 6.7 suggest that age is poorly perceived by

CIL in all stimuli conditions. Therefore the perceptual difference between adult-

crying and child-crying sounds may be due to another perception of the stimuli.

Figure 6.7: Colour map of the average Perception accuracy scores for each stimuli
variable - Age, Gender and Emotion. Scores are subsequently subdivided
between Adult/Child, Male/Female and Laughing/Crying in order to
demonstrate the perception of each variable within each sub-variable. For
example in the right hand panel for CIL, the perception of Emotion is
stronger/more accurate for laughing sounds as compared to crying sounds.

Overall it can be observed that both participant groups easily perceive the

emotional information of the stimuli and subsequently use this as the first part

of their categorisation strategies. Age may also be used by both participant

groups, certainly by NHL, although there is further discussion required (below)
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regarding the perception of adult and child crying sounds by CIL. Finally

the gender of voice does not constitute a significant part of the categorisation

strategies especially for CIL where it is very poorly perceived. This is however

slightly clouded by the ambiguity of gender within the child voices. The results

would also suggest a change to the importance of information contained within

the identification of voice, where the emotional content is the most important,

followed by age and gender, although this conclusion is of course made based

on the stimuli used in the study and may change with different or more varied

stimuli.

6.3.3 Acoustic Analysis

In similarity to analysis conducted in previous chapters, the coordinates of MCA

dimensions were correlated with acoustic measurements of the stimuli, for both

the NHL and CI users tested. Only two significant correlations (Spearman rank

p < 0.05) were found for the CI user data and are summarised thusly:

For the CI users, Dim 1 (as depicted in figure 6.5) was correlated to RMS at

250 Hz (r = 0.55) and 350Hz (r = 0.51). Dim 1 is associated to the separation of

crying and laughing sounds and it therefore appears that crying sounds have a

higher RMS in this frequency range (overall 200− 400 Hz).

Dimension 3 is also correlated to the RMS at 150Hz (r = 0.81). This correlation

is however due to the sound BL-2 having very high RMS in this frequency range

(59 dB) compared to the other sounds. Although Dimension 3 is not shown

in the figures, it is not easily interpreted in terms of age, gender or emotional

content and therefore this correlation does not appear to aid in the categorical

perception of the stimuli by the CIL tested.

6.4 discussion

A Free Sorting Task (FST) of 16 vocal sounds was tested amongst groups of 25 normal

hearing listeners (NHL) and 11CIL where stimuli varied across three vocal characteristics

of Age (child vs. adult), Gender (male, vs. female) and Emotion (laughter vs. crying).
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Categorisation strategies for both participant groups were based firstly on emotion,

secondly on age and thirdly (but only for select stimuli) on gender. This suggests

a possible hierarchy of information for NHL that was in part reflected by CIL. Of

important note was also the perception of the emotional content by CIL which was fairly

unanimously used for categorisation strategies of all the CIL participants.

The results are similar to those of [47] in demonstrating groups/categories

based on the age and gender of voice and as mentioned above the results

demonstrate a possible hierarchy of vocal information for use in categorising

vocal stimuli. The importance that the emotion seems to carry is interesting

as it may contravene previously held theory on auditory categorisation that

suggests categories are based on successful source identification. Perceiving the

emotional content of the stimulus does not rely on accurate source identification

and in this way categorisation theory may need to take into account emotional

attributes more strongly, for example the categorisation of warning or alarm

sounds which has been commonly found [57, 91]. This may also be why the

emotion is perceived more accurately than the other characteristics of age and

gender. However, one small note is that emotion was elicited using laughter and

crying, which themselves could also constitute physical actions more strongly

related to source identification. Previous research has used sentences spoken

in different emotions, if similar results were found using such stimuli it may

remove the perception of a physical emotional action and help to show how

strongly auditory (vocal) categorisation is based on emotion vs. source informa-

tion. This should also be done of course with many different emotions to see

how this influences the categorisation strategy and if the hierarchy observed

her remains robust.

Whilst CIL clearly discriminate stimuli based on emotion the conclusions

that age is also used may be somewhat blurred. CIL show no difference in

the perception of age regarding the laugher vs. crying sounds and so it is

somewhat unclear why categorisation strategy should be different. There must

be a difference in the perception of adult-crying and child-crying sounds. Possi-

bly it is due to a difference in emotional perception, whilst sounds identified

as “crying” a baby/child crying is evident of very different needs and actual

emotion than an adult crying, whereby a child more likely cries as a result of

physical injury and pain whilst an adult is more likely to cry as a result of an

emotional injury and “sadness”. Therefore perception may differ due to the
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emotion or the emotional intensity within the adult and child crying sounds.

If this is the true reason it shows a significant amount of detailed emotional

perception by the CIL group that was not originally predicted.

One reason why gender might not be used so strongly as part of NHL’s cate-

gorisation strategies is the ambiguous nature of the child stimuli. The results of

NHL show that gender can and is used by listeners to discriminate between the

adult sounds, however due to the age and emotion being more typical and more

easily perceived for ALL stimuli the gender is simply less useful in the case of

the stimuli described here. For CIL the perception of gender is also difficult

with adult voices and so therefore does not play a part in their categorisation.

In order to remove ambiguity of child gender subsequent testing (not shown

here) with audio-visual and solely visual stimuli (i.e. pictures corresponding to

the auditory stimuli) have also been tested in a FST. With the addition of visual

information the ambiguity was removed, gender typicality measures were no

different between child and adult stimuli. Significantly the results of both tests

showed emotion to be used as the first manner of categorising the stimuli

in similarity with the the results of only the audio condition presented here.

Therefore even when the gender is non-ambiguous it remains lower down in the

possible hierarchy of vocal information used by listeners when discriminating

different voices.

Evidently CIL are capable of perceiving the emotional actions of laughter

and crying. This is important for furthering the understanding of emotional

perception with this group of listeners who have previously shown difficulties

in this area of perception [98]. Of course further research would require testing

a wider variety of emotions and emotional actions and this would be possible

using the interesting and novel approach of categorical perception and the FST.

6.5 conclusion

Both NHL and CIL showed similar abilities in categorising a set of vocal sounds

that were divided between age (child/adult), gender (male vs. female) and

emotion (laughing vs. crying). Interestingly the most salient of these features

was the emotion, whilst gender did not constitute a major part of the cate-

gorisation strategies employed by either group of participants. This may place

greater importance on the emotional content and perception associated with

vocal recognition and discrimination for all humans. Regarding CIL their per-
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formance at perceiving the various attributes of stimuli was poorer than NHL.

Although the results present useful steps towards understanding their abilities

in the discrimination of voices and how emotional stimuli may a play a part in

this, maybe even aiding it.

Key Points

• Typicality ratings of stimuli (conducted with NHL) show that age

and emotion are highly typical and therefore easily perceived for

all stimuli. Gender is also highly typical for adult voices, however

there is ambiguity of gender for child voices most likely due to the

similarity in fundamental frequency.

• NHL categorise stimuli firstly in terms of emotion (laughter vs cry-

ing), secondly in terms of age (child vs adult) and finally in terms

of the gender of adult voices. The gender of voice is not strongly

used as part of categorisation strategies, but maybe influenced by

the ambiguous gender of child voices.

• The emotional content of the vocal stimuli is the most salient vocal

characteristic in comparison to age and gender. The difference

between laughter and crying sounds is used by both NHL and CIL to

discriminate the vocal stimuli and this discrimination represents the

first aspect of categorisation strategies for both participant groups.

• CIL also use the emotional characteristics of the stimuli for the

purpose of categorisation and results show that the emotion is

more accurately perceived than the age and gender. CIL are also

poorer at perceiving age, gender and emotion in comparison to NHL.

These results are most likely due to the reduced ability of CIL to

process spectral information in comparison to temporal information.

Noticeably the laughter stimuli used for testing are rhythmic and

temporally distinct in nature.
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O V E R A L L D I S C U S S I O N

The work presented covers the topic of auditory categorisation - How the perception

of everyday sounds is used to group different sounds together. Using a FST, looked

at how humans perceive a collection of everyday sounds and how similarities in these

perceptions are used to group or categorise sounds together.

Common categories were found in similarity to existing studies - human vocal sounds,

musical sounds, mechanical, natural and specific kinds of action sounds. Spectrally

degraded sounds showed that categorisation by NHL was robustly based on percep-

tions of the sound producing event (material / action) and very rarely were acoustic

characteristics used as part of categorisation strategies, suggesting that categorisation

theories should be further developed to understand the role of potential listening modes

as suggested by Gaver (musical vs everyday listening) and LeMaitre (acoustical vs

causal vs semantic).

Categorisation of auditory stimuli was also found to be associated to the auditory

environment/context, however more likely based on activities that are commonly related

to specific places. It was hoped that the addition of context information could also aid the

successful perception of spectrally degraded sounds, however results proved inconclusive

possibly biased by the task difficulty, or showing that the context information was not

useful for participants at all.

The work also present the first results of testing CIL in a FST. Comparison of CIL and

NHL show that most experienced CIL follow very similar results to NHL in the separa-

tion of human, musical and environmental sounds, with lesser experienced CIL showing

the use of similar strategies regarding vocal and human action stimuli. Duration of

implantation was seen to be important for the segregation of vocal vs environmental

sounds, although overall CIL presented more variation and less participant agreement

to the uncovered strategies. Categorisation identification was also found to b improved

for more experienced CIL and suggests that categorical perception should be further

investigated as manner of improving CIL perception of real-world sounds and possibly

incorporated into rehabilitation schemes.

195
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7.1 how are sounds categorised?

The present work would seem to echo auditory categories that have been found

in previous work, including those of human vocalisations, machine/transport

sounds, human action sounds and nature sounds [52, 76, 37, 48, 79]. Categories

are predominantly based upon perceptions associated with the sound produc-

ing event (object / action) in accordance with the theory of everyday listening

(Gaver) and causal similarities (LeMaitre). The influence of context, whilst not

forming specific categories simply based on a location, may be used to create

categories based on the activities associated with said location, in a way modu-

lating the categorisation of actions (that may otherwise be categorised based on

only the specific action) [48]. Finally the importance of emotion, or emotional

reaction, cannot be ignored as another factor that modulates categorisation,

as shown un previous studies on visual and auditory categorisation [13, 19].

CIL participants for example described stimuli as those that were “liked” and

“not liked” as well as common perceptions of warning sounds (“doorbell” and

“telephone ringing”). Therefore influence of emotional reaction influence seems

to be an increasing factor in the absence of spectral information and increased

difficulty in identifying sounds, as noted by categorisation strategies of CIL and

NHL in CI simulations. This is also evidenced by the categorisation of the emo-

tion or emotional reaction within vocal stimuli that furthers previous research

into the perception of voices [47] in that it over-rides the perception of age and

gender. This is likely due to the importance of emotions in communication and

the evolution of these process in humans [19].

Concerning the manner in which stimuli are perceived it appears that the

theory of Gaver is not entirely clear-cut. When sounds are not easily identifiable

it is not the case that perception is concerned “only” with factors associated

with the sound signal. Rather listeners still seek to extract information about the

sound producing event, for example the action, and make the sound relevant

to their needs. However the grouping of musical sounds still suggests that

these sounds, or when sounds are perceived as musical, can be categorised

differently and are based the perception of the sound signal. Overall an ap-

proach based on that suggested by [77] regarding the use of acoustical, causal

or semantic perceptions/similarities seems a likely basis for understanding

auditory categorisation.
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Extracting information about an object via the sound it produces is of course

understandable as an evolutionary mechanism [79], and is evidenced by the

finding of specific brain areas associated to different kinds of action sounds -

human, animal, natural and mechanical. [79] also developed a categorisation

model based on the concreteness, the size and the effect ability of the sounds,

further showing the importance of the relationship between the listener and the

sound producing object.

Of course there are possible further aspects to this relationship that could be

explored and added to the model. This is especially true as the model is only

concerned with action sounds and does not involve musical sounds nor human

vocal sounds, however it could well be the case that vocal and human-action

sounds are subsets of human sounds, much in similarity to the categorisation of

faces and bodies concerning visual stimuli [19].

The results do not specifically outline a hierarchy of auditory classification,

although they do agree on certain categories related predominantly to the

perception of the sound producing event which in turn relates to how a listener

may interact with the object. Certain aspects of a hierarchy may be apparent for

example the robustness of the sound producing action being a low-level form

of categorisation. Living and non-living sounds also appear to be part of the

hierarchical structure whilst musical, environmental and human sounds may

be broad level categories below this along with vocal and human action being

subsets of human sounds.The influence of other information may be used to

group lower level perceptions, for example emotion or the type of activity to

which certain objects/actions are associated. Alongside this form of perception

that follows on from theory by Gaver and LeMaitre, the perception of musical

sounds suggests that these sounds are considerable different in their and a

form of “musical listening” indeed exists further work should be undertaken to

understand the exact conditions of when and why this is employed.

7.2 auditory categorisation with cil

The process of categorisation is an essential part of understanding how the

world is perceived. Category knowledge can help guide the identification of a

specific object and help discriminate between different sounds. In effect identifi-

cation and categorisation are one in the same process which seeks to extract

meaning from a stimulus via the identification of certain properties. Identifica-
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tion is simply a more refined/accurate level in this process [19, 115].

The study here has shown that at a level of categorical perception that expe-

rienced CIL are able to use this knowledge to discriminate between different

kinds of sounds much in the same way as NHL. There is an effect of the dura-

tion of implantation that shows more experienced CIL (implantation greater

than 14 months) are able to more accurately distinguish categories of musical

environmental and especially human vocal sounds. CIL have also been shown

to demonstrate better ability to identify auditory categories rather than identify

individual sounds, in similarity to previous studies [111, 59]. However in pre-

vious studies CIL were made aware of possible categories (e.g. home, animal,

office, mechanical). The current study therefore represents the first time CIL

have been tested with a Free Sorting Task (FST), a more “real-world” approach

to testing auditory perception/categorisation. Experienced CIL also show sig-

nificant ability to categorise voices based on emotional action (laughing/crying)

however struggle to perceive age or gender information [94, 65, 81, 34].

The performance of CIL is very similar to NHL in regards that categories

are based on the perception (correct or in-correct) of semantic information

associated to the sound producing event. This would suggest that “top-down”

processes involved in categorisation are still in tact and still driving the strate-

gies used by post-lingually deafened CIL. A strong factor in these processes is

the the idea of how the listener may interact with the object [80, 76]. However the

accurate processing of the acoustic information is clearly essential in allowing

the listener (NHL or CIL) to create an association between the sound signal and

the access to such semantic information. It appears that the functioning of the

CI device delivers an adequate representation of the acoustic signal for semantic

information to be access at the categorical level quite well. This seems especially

true for vocal sounds and is also likely aided by the fact that CI devices and

subsequent rehabilitation programmes are focussed towards restoring speech

perception. However when it comes to identification of specific information,

for example identifying certain objects or identifying the gender or age of a

speaker, there is insufficient detail to the signal delivered by the CI device for a

listener to make a link to previously held concepts, or causal information that

they had previously learned during periods of functional hearing. Of course

an additional aspect in this is that during periods of deafness there are cortical

reorganisation that may disrupt or alter the sources of conceptual and semantic
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knowledge associated with auditory stimuli. The current work echoes that of

others in that temporal are more easily perceived by CIL, especially those with

a clear rhythmic structure [111, 122, 59, 5]. Certain spectral information also

appear to be used for categorising purposes when they are highly salient or

easily extracted from the signal, for pitch salience when categorising melodic

musical sounds. These could be likely areas to focus on with regards to the

kind of details in the acoustical signal that can be accurately delivered by the

implant, perceived by the device user and further investigated for improving

CIL auditory performance both auditory processing and categorisation, dis-

crimination and possibly identification. They may represent the level of detail

that may be delivered by the CI device an passed up as bottom-up processing.

As mentioned above these top-down processes seem to be used by CIL

even after periods of deafness. Whether there is cortical reorganisation of such

areas as identified by Lewis is yet to be understood and poses a good oppor-

tunity to further understand the development of auditory cognition in CIL

in a similar way to that already done with speech and voice related stimuli

[16, 79, 115, 114, 24, 67]. It is also stated that environmental sound processing

shares similar networks as speech processing [59, 111]. Understanding how the

whole auditory system of CIL undergoes change may play an important role to

improving rehabilitation techniques for the future. It is likely that some form of

cognitive reorganisation or adaptation takes place concerning these sounds and

the process of categorisation, because results with CI simulations differ certain

aspects, which shows the way spectrally degraded stimuli are dealt with by

NHL and CIL auditory systems is different (exuding the effects of short-term

training effects).

If categorical perception / categorisation processes are sufficiently retained

in CIL it shows that not only are higher order processes active, but that the

signal delivered to theInferior Temporal Cortex (IT) is of sufficient detail to

represent the auditory category. This is possibly where the difference between

categorisation and identification of a sound stimuli differ. The CI device delivers

much more crude information, especially spectrally. and this reduced level of

acoustic information may not allow the listener to identify individual stimuli.

It may therefore be possible to use this improved ability of categorical per-

ception and robust top-down processing as part of rehabilitation schemes,
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especially in helping CIL discriminate between different kinds of sounds. By

learning to differentiate categories of sounds this could help CIL to use the

semantic categorical knowledge to improve the discrimination of different kinds

of sounds. This may enhance the link between detection of the sound signal

and the cortical representation of the auditory category. Once certain categories

have been learned it may be possible to train CIL with sub-categories whereby

the acoustic information would be more difficult to differentiate. In this way

training would resemble a reverse hierarchy of learning [3, 2]. Whilst it may not

be possible to arrive at identification performance equivalent of NHL the learn-

ing of categories could allow more accurate identification of certain sounds. For

example environmental sounds pose difficulty in that they constitute a widely

varying acoustics, can be generated by many sources, occur in many different

locations. By dividing stimuli into categories that reflect the way in which audi-

tory stimuli are perceived, for example the kind of source or action or activity,

it may limit the variability of acoustic characteristics and allow sounds be more

readily learned. It would also present a feasible manner in which to present a

multitude of stimuli to a listener in which the task, to categorise stimuli was

less taxing than specifically identifying individual stimuli, and would allow

listeners to increase their familiarity with different sounds, an aspect important

to auditory perception [6].

In order to make such a scheme a reality it is therefore essential to understand

the mechanisms by which sounds are categorised. The current work suggests

that context or location may not be the most ideal form of auditory category,

possibly more strongly related to the activity which takes place in a particular

location instead [48]. Visual aids may act differently to aid such categorisation.

Rather it has been shown and in other works that the way in which a listener

interacts with a sound forms the basis of many categories. Different forms of

perceptions as suggested by [75, 52] would also point towards the fact that the

same sound can be listened to in different ways, an evolution of the listening

modes proposed by [37]. This is also a vital part of understanding that should

be investigated and clarified as to how it affects auditory categorisation and

how listeners relate to different sounds. The model suggested by [80] (men-

tioned previously) should also be considered as vital when considering the

categorisation of action sounds and how the model can be applied to CIL in

order to improve the perception of such sounds. It is likely that the same cogni-

tive networks exist for post-lingually deaf CIL, however investigating whether
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modification due to deafness arise would be an important step to furthering

understanding of action sound perception.



8
C O N C L U S I O N

The current work tested the categorisation a variety of different sounds with

groups of NHL and CIL. Testing showed that predefined categories of envi-

ronmental, musical and vocal were broadly represented in the categorisation

strategies of participants, however such large encompassing categories are not

accurately representative of the way in which auditory categories are perceived

in the real-world. The work poses another step towards better understanding

of auditory perception, by focussing at the level of category perception. This is

important in understanding how NHL deal with auditory environments/stim-

uli and how this knowledge could be applied to the understanding of auditory

perception in CIL.

Testing found similar categories and categorisation strategies to previous

work. Based on causal or semantic information, of which some perceptions

remain robust even in the face of sever spectral degradation. It would also ap-

pear that context/location is not a strong part of these categorisation strategies.

However whilst agreement exists the domain of auditory categorisation is still

not firmly established and requires some more rigorous/exact studies in order

to generate a fuller picture of how perceptions and potential listening modes

combine.

The study also represents the first to test CIL in a FST of mixed everyday

sounds. Shows that experienced CIL are able to follow the same strategies as

NHL and show the same level of category identification. There is also an effect

of implantation duration (implant experience) such that more experienced CIL

are more similar to NHL, with more accurate category identification and a

greater ability at discriminating vocal from environmental sounds.

To conclude the study a proposal is made to use categorical perception as

a useful tool in rehabilitating CIL, especially in learning how to differentiate

different“kinds of sound” and especially for dealing with real world environ-

ments when many different kinds of sounds could be going on at the same

202
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time. Although in order to successfully do this the theories, understandings,

classification models proposed for auditory stimuli should be more clearly

established. For example specific categories that exist, the perceptions that are

used when judging category membership (and similarity) for example acoustic,

causal and semantic, and finally the potential listening modes (e.g. musical and

everyday from Gaver) that may modulate perceptions and classifications.
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A P P E N D I X A : C AT E G O RY I D E N T I F I C AT I O N B Y N H L

The following appendix contains descriptions of the categories created by the

three groups of NHL as described in chapter 2. As explained, participants com-

pleted a FST of sixteen common sounds and were then tasked with describing

the categories that they created. Each participant group listened to stimuli in

one of three conditions, for the first group sounds were natural and unmodified

(NS), for the second group sounds were passed through a 16-channel vocoder (

16C! (16C!)) and the third group listened to sounds passed through a 8-channel

vocoder (8C! (8C!)). Vocoding methods were employed in order to simulate CI

perceptions of the sounds.

As mentioned above the comments in this appendix refer to the categories

that were identified by participants and NOT to individual sounds. In the

following tables, the category descriptions of participants are shown relative

to each of the sixteen stimuli. Therefore allowing the reader to see how each

individual sound was categorised and shedding light on how it was perceived.

The descriptions were used to evaluate the category identification accuracy

of each participant relevant to the three predefined categories of environmental,

musical and vocal sounds. This was done by evaluating the description associ-

ated with each sound as to whether or not they corresponded to the pre-defined

categories.

9.1 appendix - a1 - category descriptions for ns, 16c & 8c
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A P P E N D I X B : C AT E G O RY A N D S O U N D I D E N T I F I C AT I O N

B Y C I L

The following appendix contains descriptions of the categories created by the

three groups of CIL, Experienced cochlear implant listeners (EXP), Intermediate

cochlear implant listeners (INT) and New cochlear implant listeners (NEW) as

described in chapter 3. As explained, participants completed a FST of sixteen

common sounds and were then tasked with describing the categories that they

created.

As mentioned above the comments in this appendix refer to the categories

that were identified by participants and NOT to individual sounds. In the

following tables, the category descriptions of participants are shown relative

to each of the sixteen stimuli. Therefore allowing the reader to see how each

individual sound was categorised and shedding light on how it was perceived.

The descriptions were used to evaluate the category identification accuracy

of each participant relevant to the three predefined categories of environmental,

musical and vocal sounds. This was done by evaluating the description associ-

ated with each sound as to whether or not they corresponded to the pre-defined

categories.
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A P P E N D I X : C

The following appendix contains data relevant to the testing of the effect of

context (location) on the identification and categorisation of 20 environmental

sounds that is described in chapter ??. Sounds were chosen to represent one of

four different contexts - Bathroom, Kitchen, Exterior and Office and are listed

in table ??. The typicality of each sound to its associated context was measured

by asking 9 participants to rate the typicality on a scale of 1-10, where 10 was

highly typical and 1 not very typical. Results of this test, referred to in chapter

throughout the the manuscript as testing Step-1, are shown in table ?? with a

mean value also calculated.

The current appendix also contains figures which display the descriptions

given by participants when identifying each of the 20 sounds across three

different test conditions. The three test conditions, which are fully detailed in

chapter ?? are again briefly described below. These figures were created in order

to show the possible changes in perception that could have occurred across the

three different test conditions.

• Step1-Typ-Typ - typicality ratings of the stimuli as to whether they were

typical of the designated context.

• Step2-FST-NS - Free Sorting Task (FST) of stimuli in Natural sounds (NS)

condition to test categorisation strategies of environmental sounds.

• Step3-FST-SIM - again a FST however sounds were passed through a 4

channel vocoder in order to simulate listening with a CI

• Step4-FC-SIM - Forced categorisation of CI simulated sounds as used in

Step3-FST-SIM

In creating the comment-figures participants descriptions were evaluated as

to whether the perception described referenced different attributes of the either

the sound producing event, or the sound signal itself. These attributes are listed

in the legend on every figure and are also described below:
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• Action: referencing the action involved in producing the sound, e.g. hit-

ting, smashing, scraping, scratching.

• Material: referencing the material of an object involved in producing the

sound e.g. water, glass, wood, metal.

• Object: specific referencing of a real physical object e.g. car, telephone,

tree, human being.

• Context: mention of a context or location associated to the sound e.g.

bathroom, park, train station.

• Qualitative: perceptions that pertain to the sound signal itself, but how-

ever using such vocabulary as “soft/hard” to describe the texture. Also

referencing more emotional reactions to sounds for example happy/sad,

busy/calm. Qualitative and Acoustic may be read as quite similar.

• Acoustic: again referencing the sound signal however in a more analytical

manner, such as describing specific aspects of the frequency content - e.g.

high/low pitched, describing the sound as a kind of “noise”. Qualitative

and Acoustic may be read as quite similar.

• Unclassifiable / “Similar”: Descriptions that were not able to be inter-

preted as any of the above. This also included conditions where partici-

pants were only able to give responses such as “i don’t know” or where

participants were only able to state that sounds were “similar” without

giving further details on this similarity.

Participants responses were given in both French and English and
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Participant Number

Context Sound ID 1 2 3 4 5 6 7 8 9 Mean

Shaving 1 2 2 1 1 3 10 8 8 4

Shower 10 7 10 10 10 10 10 7 9 9

Shower curtain 5 1 0 7 1 10 10 5 5 5

Sink 5 8 10 9 10 8 10 6 6 8

Toothbrush 10 10 10 10 8 10 10 10 10 10

Bathtub 7 9 6 8 10 10 10 7 9 8

Ba
th

ro
om

Water 5 9 7 7 9 10 10 3 10 8

Cereal 10 8 10 8 7 10 10 7 6 8

Bread 10 9 10 4 4 7 10 9 8 8

Egg beating 5 10 10 8 10 10 10 8 10 9

Oven 1 1 1 5 5 5 4 3 8 4K
it

ch
en

Plate 10 5 5 7 5 8 10 6 7 7

Basketball 10 9 10 10 2 6 10 0 9 7

Rain 10 10 10 9 5 10 10 10 10 9

Tractor 10 8 10 6 8 10 10 10 10 9

Shovel 7 7 1 3 6 7 10 5 7 6

Ex
te

ri
or

Lightning 10 10 10 7 5 9 10 10 7 9

Paper folding 2 6 9 4 7 10 5 6 6

Photocopier 10 10 10 9 10 10 10 10 8 10

Scissors 10 7 9 5 6 10 6 7 8O
ffi

ce

Tape 1 9 4 5 7 6 10 10 7 7

Table 11.1: Typicality ratings of 20 environmental sounds used for testing the effect of
context in chapter 5.
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