
  
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 

 

  
 
 
 
 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 17450 

 

To cite this version:  
 
Brunot, Mathieu and Janot, Alexandre and Carrillo, Francisco and Gautier, 
Maxime A separable prediction error method for robot identification. 
(2016) In: 7th IFAC Symposium on Mechatronic Systems, 5 September 
2016 - 8 September 2016 (Loughborough University, United Kingdom). 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@listes-diff.inp-toulouse.fr 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78386409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords   Robots identification; System identification; Closed-loop identification; Predictions error

methods; Output error identification. 

1. INTRODUCTION

The usual method for robot identification is based on the 

Least-Squares (LS) technique and the Inverse Dynamic 

Identification Model (IDIM). The IDIM indeed allows 

expressing the input torque as a linear function of the 

physical parameters thanks to the modified Denavit and 

Hartenberg (DHM) notation. Therefore, the IDIM-LS method 

is a really practical solution, which explains its success, see 

(Gautier, Janot & Vandanjon 2013) and the references given 

therein. However this method needs a well-tuned band pass 

filtering to get the derivatives of the joint positions. Recently, 

(Janot, Vandanjon & Gautier 2014) have introduced the 

Instrumental Variable (IV) method which does not require 

such careful filtering, see an application in (Brunot et al. 

2015). This method is called as IDIM-IV method. The IDIM-

LS and IDIM-IV methods belong to the linear regression 

framework.  

Another technique is the Prediction Error Method (PEM). It 

was originally developed in the automatic control field in the 

discrete time framework; see e.g. (Ljung 1999). Although this 

method is of great interest, it cannot be straightforwardly 

applied to robots, because their dynamic models are 

continuous time. In other words, it is about fitting Ordinary 

Differential Equations (ODE) coefficients, see e.g. 

(Schittkowski 2013) or (Baysse, Carrillo & Habbadi 2012). 

In robot identification, the Direct and Inverse Dynamic 

Identification Model (DIDIM) technique has been recently 

developed in (Gautier, Janot & Vandanjon 2013). It is an 

Output Error Method (OEM) i.e. a PEM where the noise 

model filter is equal to one (the noise is assumed to be white 

and serially uncorrelated). Moreover, DIDIM uses the fact 

that the torque is linear with respect the parameters. Unlike 

the standard PEM method, the output of the continuous time 

model is simulated and not predicted; see for instance 

exercise 61 of (Schoukens, Pintelon & Rolain 2012).  

The aim of this article is to consider the possibility of 

estimating the parameters of the noise filter which colours the 

noise, as well as the physical parameters of a robot. It has 

been already shown that considering PEM instead of OEM 

allows a better precision in the estimates (smaller 

covariance), see Chapter 7 of (Söderström & Stoica 1988). If 

the robot model is a nonlinear continuous time system, the 

noise filter is considered here as a linear discrete filter. In 

fact, it is more convenient for the identification process as 

explained in (Garnier, Wang & Young 2008). Two solutions 

to estimate this filter appear. Firstly, as with the regular PEM, 

simultaneously estimated thanks to a nonlinear optimisation 

algorithm. Secondly, as with the Refined Instrumental 

Variable (see (Young 2015)), the physical parameters are 

estimated thanks to usual techniques, and then the filter is 

separately identified from the residuals. Both solutions are 

investigated in this article. They are evaluated trough 

experiments. The experimental results tend show that the 

separable approach seems more suitable to provide optimal 

estimates of the robot parameters, although the computational 

burden is slightly higher. 

The rest of the paper is organized as follows. Section 2 

reviews the usual robots identification technique IDIM-LS. 

Section 3 presents the PEM as developed in the field of 
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system identification, the OEM used for robot identification, 

and the proposed alternative: a separable PEM. The 

experimental identification of the SCARA robot is presented 

in Section 4. Finally, section 5 concludes this paper. 

2. IDIM: INVERSE DYNAMIC IDENTIFICATION

MODEL TECHNIQUE 

2.1. Notations 

The main notations used in this article are illustrated in Fig. 1 

where 1z  is the unit delay operator, i.e. 1

1k kz q t q t .

The noise filter, H , will always be considered as a Linear 

Time Invariant (LTI) system in the discrete time framework. 

The controller, C , and the plant, G , can be either 

continuous time or discrete time transfer functions. The input 

noises are considered as white and are contained in e . The 

vector v  contains the measurement coloured noises. 

Fig. 1. Overall figure of the considered system 

2.2. SCARA Prototype Model 

For ease of understanding, the model of the SCARA is 

directly presented. To get a comprehensive picture of the 

robots modelling, please refer to (Khalil & Dombre 2004). 

SCARA (see Fig. 2) is a prototype which has previously been 

identified with DIDIM and IDIM-LS techniques in (Gautier, 

Janot & Vandanjon 2013).  

The IDIM is defined by (3), where jq , jq jq  and jq jq  are 

respectively the angular position, velocity and acceleration of 

joint j . The IDIM is used for the LS identification. In the 

opposite, the simulation necessary for the PEM methods 

requires the Direct Dynamic Model (DDM), represented by 

the operator G  in Fig. 1 and given by (2). For further 

information about the inertia matrix A , and vector d  

(containing Coriolis and friction components), please refer to 

(Gautier, Janot & Vandanjon 2013) and the references given 

therein. The vector  in (1) contains the physical parameters

to be estimated, where 1rZZ  and 2ZZ  are respectively the 

inertia of the first and the second link; 2MX  and 2MY  are 

components of the first moments of link 2; jFv  and jFc  are 

the viscous and Coulomb friction parameters of joint j . 
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Fig. 2. SCARA Prototype 

2.3. Least-Squares 

The model described by (3) can be straightforwardly 

extended to the following vector-matrix form 

LSu (4) 

where, u  is the (2 1)N  sampled vector of ( )t ,  is the

(2 )pN n  sampled observation matrix of T t   and 
LSe  is 

the (2 1)N  vector of error terms, with N  the number of 

sampled data considered and pn  the number of parameters. It 

is assumed that  is full rank, i.e. ( ) prank n  , and that 

pN npN nN nN nN nN n , to have an over-determined system of equations. 

From (4), the LS estimates and their associated covariance 

matrix are given by 

1
T T

LS ,
1

T

LS LS (5) 

with, 

2

1 2

1
kLS

kp

k

N

LSt t
N n

. 

From a theoretical point of view, the LS estimates (5) are 

unbiased if the error has a zero mean and if the regressors are 

uncorrelated with the error, see (6). 

( ) 0LSE e LS LS( ) ( ) ( 0)T TE E E (6) 

The covariance matrix given by (5) assumes that  is

deterministic and 
LSe  is homoscedastic i.e. var( )LS LSe . It

is usually assumed that those two assumptions hold. 

However, the systems considered in this article operate in 

closed-loop. In that case, the assumption given by (6) does 

not hold (Van den Hof 1998). This explains why practitioners 

usually use tailor-made pre-filtering prior to the identification 

process. Various filtering approaches exist in the literature, as 
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for instance state variable filters, Poisson filters or implicit 

sensitivity filters. However, they only work for systems linear 

in the states, see for example (Young, Garnier & Gilson 

2006). For robot identification, the usual filtering process is 

described in (Gautier 1997). 

3. PEM: PREDICTION ERROR METHODS

3.1. Regular PEM 

The original PEM has been developed to identify open-loop 

system, in a LTI and discrete time framework. The aim is to 

find the vector of parameters which minimizes the error 

between the measured output of the system and the predicted 

one. Mathematically, we must solve (7), where  is the

prediction error vector. This vector depends on the utilised 

technique. Different errors will be presented in this article. 

The problem is usually nonlinear and requires appropriate 

optimisation algorithm, like Levenberg-Marquardt one. 

2

1 2

1
arg min

2

N

k

k

t
N

(7) 

As it has been shown in (Forssell & Ljung 1999), PEM can 

be extended to the closed-loop case (i.e. direct approach), but 

then the physical parameters and the noise model are linked. 

That is to say that if an error was done in the noise model 

identification, the estimated physical parameters would be 

biased, see e.g. (Forssell & Ljung 1999). This is due to the 

correlation between the noise, v , and the input, . In this

case, the prediction error is given by (8), 

1 1 1

| |

, ,

pem k meas k k

meas k k

t t t

z t z tH
 (8) 

where |ktq is the predicted output vector. The term of

it , with 1;i k , 

but also on meas jtq , with 1; 1j k .

3.2. OEM  for Robots 

The standard PEM cannot be directly applied for robot 

identification. The robot models are indeed continuous time 

and nonlinear with respect to the states. This problem is 

similar to the one of aircraft identification; see e.g. (Klein & 

Morelli 2006). Both communities have developed a similar 

solution. Firstly, the filter that coloured the noise is usually 

neglected ( H I , with I  the identity matrix). According to 

the classical systems structures, see Chapter 4 of (Ljung 

1999), the robots and the aircrafts are then modelled by 

output error models. Hence, the applied identification 

techniques are called OEM. Secondly, the model output is 

usually simulated and not predicted. Thus, the current output 

is function of the initial states, the past and the current inputs, 

but not of the past measured outputs. 

As it has been seen previously, the IDIM are linear with 

respect to the physical parameters. We therefore consider the 

input torques. From this point comes the specificity of OEM 

in robot identification. In fact, the simulated output of the 

model is  instead of q . Thus, the output error vector is

given by  

| ,oem k k kt t t   (9) 

where , , , , , ,T

s s st t t ts s s, ,s s ss s s, , , ,, , , ,, , , ,t tt t, , , ,, , , ,, , , ,, , , ,, , , ,, ,, , , , . The vectors 
sq , 

sqsq  and 
sqsq  contain respectively the angular positions, 

velocities and accelerations of  robot joints, coming from the 

simulation of the whole nonlinear closed-loop system. Hence, 

the knowledge of the controller is required for the simulation. 

Since the input of the simulation, 
refq , is perfectly known 

(i.e. noise free), is not correlated with the measurement

noise v . That insures the consistency of the estimation, 

assuming no modelling error. Furthermore, from (3), it 

comes: 

| T

oem k k kt t t . (10) 

If the dependence of in  is neglected, the optimisation of

(7) is greatly enhanced. In fact, the gradient defined by (A.3), 

in Appendix A, is just , T

k kt t . In the field of robot 

identification, we call it DIDIM and it is iteratively solved 

with LS, see Eq. (37) in (Gautier, Janot & Vandanjon 2013). 

In the field of system identification, this technique is called 

Pseudo-Linear Regression (PLR), see Eq. (7.112) in (Ljung 

1999). According to the same reference, PLR is derived from 

(Solo 1979).  

3.3. Separable PEM for Robots 

The advantage of the PEM compared with the OEM is that it 

provides lower covariances for the estimated parameters; see 

e.g. Complement C7.5 in (Söderström & Stoica 1988). To 

achieve this in robot identification, a noise dynamics H  

could be added in the error term (10). Nevertheless, we have 

no prior information about the order of the filter and this 

solution may lead to a complex optimization problem. 

Consequently, the optimization may reach local minima or 

even diverge. Therefore, inspired by the Refined Instrumental 

Variable (RIV) developed in (Young 2015), we propose a 

separable approach by considering the following error: 

1 1| , |sep pem k oem kt z t . (11) 

The proposed methodology, a separable PEM (SEP-PEM), is 

composed by two steps: 

1. Estimate the physical parameters of the system by

solving (7) with (9) or (10); 

2. Obtain an estimate of the noise model with (11). In

other words, the residuals of the first step are used as 

an estimate of the noise v . 

Those steps are repeated until the prediction error has 

converged. From the residuals of the second step, an estimate 

of noise variance is computed with (A.2). The separation of 

the identification of the physical parameters and the one of 

the noise model implies that both models are statistically 

independent. 
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4. EXPERIMENTS

4.1. Experimental Setup 

To illustrate our separable method, the SCARA prototype 

presented in section 2.2 is studied. The identification is 

performed with experimental data. Joint position and control 

signals are recorded with a sample frequency of 100 Hz.  For 

the IDIM-LS method, the filters are tuned according to 

(Gautier, Janot & Vandanjon 2013). The first step (OEM 

method) is performed by solving (7) with (9), using the 

Levenberg-Marquardt algorithm, which is initialised with 

CAD values. That is to say, the inertias are approximately 

known (3.0 for 
1rZZ  and 0.5 for 

2ZZ ) whereas all the other 

components are set to zero. From a practical point of view, 

we simulate the model with Simulink® and the parameters, 

solutions of (7), are found thanks to the lsqnonlin function, 

available in the Optimisation Toolbox of Matlab®. It should 

be noticed that the gradient is approximated using finite 

differences. The second step is performed with the aic 

function of the CAPTAIN Toolbox. This function seeks the 

Auto-Regressive filter which provides the best Akaike 

Information Criterion (AIC) while ensuring the witheness of 

the estimated input signal ee . For more detailed information 

about the toolbox, please refer to (Young 2011). In Eq. (11), 

H  is a 2 2  matrix of transfer functions. Since each link 

has its own sensor, we assume there is no correlation between 

the noises of both axes. That is to say that H  is diagonal, 

with 
1

1
jj

jjA z
H where jjA  is the AR polynomial of 

joint j . 

The robot is driven by a Proportional-Derivative (PD) 

controller described by (12), where 1Kg  and 
2Kg  are gains 

equal to previously estimated inertias of the arms; 
refjq  is the 

reference trajectory for arm j . Fig. 3 illustrates the joint j

controller, where 
jd  is the nonlinear disturbance containing 

the friction and Coriolis terms. This is the model utilized for 

the simulation of the robot. Therefore, by taking 
j jrKg ZZ

, the dynamics of the whole closed-loop system is defined 

just by the gains 
jKp   and 

jKv . The numerical values are 

summarized in 

Table 1. Although, the control law presents poor 

performances from a tracking point, it allows identifying the 

robot. 

1 1 1 1 1 1
1

2
2 2 2 2 2 2

( ) ( ) ( )( )

( ) ( ) ( ) ( )

ref

ref

meas meas

meas meas

Kg Kp q t q t Kv q tt

t Kg Kp q t q t Kv q t

( )( )( )1 1 ( )measq t1 11 1 ( )( )1 11 1meas ( )( )( )

( )( )( )( )( )2 2 ( )measq t2 22 2 ( )( )2 22 2meas

(12) 

Table 1. Numerical values of the PD control law 

Link 1 Link 2 

Kp 6.25 156.25 

Kv 2.0 25.0 

Kg 3.5 0.06 

To insure the differentiability of the criterion, the sign 

function is not used in the simulation model. It is known that 

if  is large enough then q ( ) 2arctan q ( )j jsign t tq (q (q (q ( ) 2arctan q (q (q (q (q ( )j j) 2arctan q (q (q (q (q (q ( ) 2) 2j jq ( ) 2q (q ( ) 2) 2) 2) 2) 2) 2arctanj j) 2arctan . 

The parameter  is a scale factor, which is taken equal to

100. This has indeed proven to be a parsimonious choice. 

Actually, a too large value would make the system stiff. 

Fig. 3. PD control law of the SCARA robot, for arm j 

4.2. Identification Results 

The identification results are summarized in Table 2, which 

presents the estimated values and the relative standard 

deviations, defined in Appendix A. The SEP-PEM is just 

written PEM in the tables and figures in order to increase the 

readability. Since the OEM and PEM methods have estimated 

the same physical parameters, their results will be referred as 

OEM/PEM. For information, the SEP-PEM algorithm has 

converged in two iterations. The settings for the LS pre-

filtering are the same as those in (Gautier, Janot & Vandanjon 

2013). It is remarkable that LS and OEM/PEM methods 

provide equivalent estimates. There is a noticeable difference 

in the estimation of 1rZZ . However, as it can be seen in Fig. 

4 and Fig. 6, it does not lead to large difference in the signals 

estimation. In fact, with respect to Table 3, the relative errors 

in the torques estimations are close and satisfactory. 

Table 2. Identification results 

LS % LS /OEM PEM % OEM % PEM

1rZZ 3.50 0.007 3.44 0.024 0.0024 

1Fv 0.03 2.1 0.07 3.7 0.38 

1Fc 0.25 0.13 0.23 0.55 0.056 

2ZZ 0.06 0.040 0.06 0.13 0.013 

2MX 0.24 0.013 0.24 0.056 0.0057 

2MY 0.01 0.29 0.01 1.2 0.12 

2Fv 0.005 1.8 0.003 8.4 0.86 

2Fc 0.05 0.49 0.05 1.7 0.17 

The interest of the SEP-PEM method is clearly visible in 

Table 2 with its small relative standard deviations. Actually, 

for the OEM case, the relative standard deviations are 

calculated with (A.2) and (9), whereas for the SEP-PEM case 

they are calculated with (A.2) and (11). Fig. 5 and Fig. 7 

prove the efficiency of the SEP-PEM method to whiten the 

residuals. For information, those figures have been drawn 

with the acf function of the CAPTAIN Toolbox, with default 

parameters, see (Young 2011). This routine computes the 

AutoCorrelation Function (ACF) of the identified noise. It is 

recalled that for a white noise, the autocorrelation is zero for 
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any non-zero lag. In the presented figures, the autocorrelation 

values are indicated in blue (for 38 lags) and the 2  

confidence interval appears in red. The aic function has 

estimated a 13th  order noise filter for the first link and 37th

order one for the second link.  

For the sake of completeness, we have unsuccessfully tried to 

identify the noise filters at the same time as the physical 

parameters. The filters orders and the initial values of the 

coefficients were those previously estimated by the aic 

function.  
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Fig. 5. Autocorrelation of the OEM residuals: Link 1 (top) 

and Link 2 (bottom) 

Table 3. Relative estimation error 

100 jjmeas jmeasj jmeasj LS OEM/PEM 

Link 1, 1j  2.98% 2.39% 

Link 2, 2j  4.35% 4.57% 

4.3. Cross-Validation 

To validate the estimate of the SEP-PEM method, cross-

validations have been performed with another experimental 

data set. The relative prediction errors are respectively 3.21% 

and 4.42% for the first and the second link. These values are 

equivalent to those in Table 3. Fig. 8 shows the 

autocorrelations of the residuals. If they seem less white than 

those of the identification, they are still compatible with a 

white noise. 

0 1 2 3 4 5
0

100

200

300

400

Time (s)
P

o
s
it
io

n
 o

f 
m

o
to

r 
2

 (
d

e
g

)

 

 Measurement

LS

OEM/PEM

Reference

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

T
o

rq
u

e
 2

 (
N

m
)

Fig. 6. Identification time history  Link 2

5 10 15 20 25 30 35

-0.04

-0.02

0

0.02

A
u
to

C
o
rr

e
la

ti
o
n
 F

u
n
c
ti
o
n

Link 1

5 10 15 20 25 30 35
-0.06

-0.04

-0.02

0

0.02

A
u
to

C
o
rr

e
la

ti
o
n
 F

u
n
c
ti
o
n

Link 2

Fig. 7. Autocorrelation of the SEP-PEM residuals: Link 1 

(top) and Link 2 (bottom) 

5. CONCLUSIONS

In this paper, a separable robot identification method has 

been presented, experimentally validated on the SCARA 

prototype robot and compared with two standard approaches. 

This technique is divided in two sequential steps: the 

identification of the physical parameters thanks to an output 

error method, and the identification of parameters of the 

filter, which colours the noise. The experiments carried out 
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with the SCARA prototype indicate that this method seems to 

be suitable for robot identification. Finally, compared with 

other standard methods, this separable approach is more 

effective because it provides estimates with small variances. 

Future works concern the application of this separable 

approach to an industrial robot and the comparison with other 

approaches not addressed in this paper. 
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Fig. 8. Autocorrelation of the SEP-PEM residuals (cross-

validation): Link 1 (top) and Link 2 (bottom) 
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Appendix A. ASYMPTOTIC DISTRIBUTION of 

PARAMETERS ESTIMATES 

The goal of this appendix is not to provide the whole 

theoretical development of Chapter 9 in (Ljung 1999), but 

only to remind the main results. Assuming the optimization 

algorithm ha  and there is no

modelling error, the covariance matrix of the asymptotic 

distribution can be estimated from data by (A.1), where  is

the gradient defined by (A.3) and N is the estimated 

covariance of the measurement noise. 
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From (A.1), it can be defined the relative standard deviation 

of the thi  parameter with (A.4), assuming non zero value. 
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