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In this work, the dark current spectroscopy is tested 

on neutron, proton and ion irradiated CIS 

to identify the defects generated by coulomb and nuclear interactions 



The dark current spectroscopy 

Hypothesis: to each type of silicon bulk defect corresponds a given 

generation rate (Shockley Read Hall): 

𝑈 =
𝝈𝑣𝑡ℎ𝑛𝑖

2cosh (
|𝑬𝒕 − 𝐸𝑖|

𝑘𝑇
)
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The dark current spectroscopy 

EOR protons 

EOR deuterium 

1 MeV oxygen 

3 MeV helium 
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512 x 512 pixels 

7 µm pixel pitch 

Pinned photodiode 

Low intrinsic dark current 

(6 e-/s @ 22°C) 
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Tested device: 

Pinned photodiode CMOS image sensor 



Neutrons and high-energy ions: 

nuclear interactions 
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Nuclear (elastic, inelastic): 

high energy silicon PKA 

(~ 100 keV) 

⇒  dense damage 

 

 

PKA = Primary Knock-on Atom (primary recoil) 
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Nuclear (elastic, inelastic): 

high energy silicon PKA 

(~ 100 keV) 

⇒  dense damage 

Low NIEL coulomb: low 

energy PKA (~ 100 eV) 

which are well separated 

⇒  sparse damage 

 

 

PKA = Primary Knock-on Atom (primary recoil) 

Low energy light ions: 

low NIEL coulomb interactions 
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Nuclear (elastic, inelastic): 

high energy silicon PKA 

(~ 100 keV) 

⇒  dense damage 

Low NIEL coulomb: low 

energy PKA (~ 100 eV) 

which are well separated 

⇒  sparse damage 

High NIEL coulomb: low 

energy PKA but very 

close to each other 

⇒  dense damage 

 
PKA = Primary Knock-on Atom (primary recoil) 

Low energy heavy ions: 

high NIEL coulomb interactions 
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Exponential hot pixel 

tail (several 10,000 e-/s) 

with many hot pixels 

 

 

 

 

 

22 MeV neutrons 

60 MeV protons 

Nuclear interactions: 

Exponential hot pixel tail 
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Exponential hot pixel 

tail (several 10,000 e-/s) 

with many hot pixels 

Similar exponential 

mean for neutrons and 

protons (4.3.103 e-/s) 

 

 

 

 

 

[1] Dale et al., IEEE TNS, 1994. 

[2] Srour et al., IEEE TNS, 1986. 

 

 

 

 

 

 

 

22 MeV neutrons 

60 MeV protons 

Nuclear interactions: 

Exponential hot pixel tail 

Similar mean damage energy 

per nuclear interaction 

60 MeV protons: 120 keV [1] 

22 MeV neutrons: 115 keV [2] 
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Exponential hot pixel 

tail (several 10,000 e-/s) 

with many hot pixels 

Similar exponential 

mean for neutrons and 

protons (4.3.103 e-/s) 

Similar number of hot 

pixels at similar fluence 

due to similar nuclear 

NIEL 

 Neutrons: 4.0 keVcm²/g 

 Protons: 2.7 keVcm²/g 
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Exponential hot pixel 

tail (several 10,000 e-/s) 

with many hot pixels 

Similar exponential 

mean for neutrons and 

protons (4.3.103 e-/s) 

Similar number of hot 

pixels at similar fluence 

due to similar nuclear 

NIEL 

 Neutrons: 4.0 keVcm²/g 

 Protons: 2.7 keVcm²/g 

 

 

 

 

 

 

22 MeV neutrons 

60 MeV protons 

Nuclear interactions: 

Exponential hot pixel tail 

Nuclear interactions ⇒ high dark current exponential hot pixel tail 
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More pixels with small 

dark current increases 

(few 100 e-/s) for protons 

 

 

Neutrons 1011 cm-2 

Protons 1011 cm-2 

Low NIEL coulomb interactions: 

dark current peaks 
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Neutrons 1011 cm-2 

Protons 1011 cm-2 

More pixels with small 

dark current increases 

(few 100 e-/s) for protons 

Dark current peaks 

separated by 50 e-/s 

⇒ specific point defects 

with generation rate of      

50 e-/s 

 

 

Dark current 

peaks 

Low NIEL coulomb interactions: 

dark current peaks 
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Neutrons 1011 cm-2 

Protons 1011 cm-2 

More pixels with small 

dark current increases 

(few 100 e-/s) for protons 

Dark current peaks 

separated by 50 e-/s 

⇒ specific point defects 

with generation rate of      

50 e-/s 

⇒ generated by coulomb 

interactions (only for 

protons) 

 

 

Dark current 

peaks 

Low NIEL coulomb interactions: 

dark current peaks 

Low NIEL coulomb interactions ⇒ dark current peaks (point defects) 
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16 MeV 

3 MeV 

EOR 

Dark current peaks Hot pixel tail 

Effect of the coulomb 

and nuclear cross section 
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16 MeV 

3 MeV 

EOR 

Dark current peaks Hot pixel tail 

Effect of the coulomb 

and nuclear cross section 

Nuclear interactions 

 

Exponential hot pixel tail 

Low NIEL coulomb interactions 

 

Dark current peaks 
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EOR heavy ions (oxygen 

and aluminum): 

 exponential hot pixel 

tail 

EOR protons 

60 MeV protons 

EOR aluminum 

EOR oxygen 

High NIEL coulomb interactions: 

exponential hot pixel tail 

Exponential 

hot pixel tail 

7 
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EOR heavy ions (oxygen 
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 exponential hot pixel 

tail 

 similar slope than 60 

MeV protons (nuclear 

interactions) 

 

EOR protons 

60 MeV protons 

EOR aluminum 

EOR oxygen 

High NIEL coulomb interactions: 

exponential hot pixel tail 

Dense damage (nuclear interactions or high NIEL coulomb interactions) 

 

Exponential hot pixel tail 

Exponential 

hot pixel tail 
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Idark ≈ Aexp (−
qEa

kT
) 

Ea ≃ |Et − Ei| + 0.63 eV  

 

 

 

 

 

60 MeV protons 

Dark current activation energy of the 

exponential hot pixel tail 

8 
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Idark ≈ Aexp (−
qEa

kT
) 

Ea ≃ |Et − Ei| + 0.63 eV  

 

High dark current: 0.63 eV 

⇒ midgap energy levels 

 

 

 

 

 

~ 0.63 eV 

60 MeV protons 

Dark current activation energy of the 

exponential hot pixel tail 
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Idark ≈ Aexp (−
qEa

kT
) 

Ea ≃ |Et − Ei| + 0.63 eV  

 

High dark current: 0.63 eV 

⇒ midgap energy levels 

Smooth hot pixel tail 

⇒ various generation rates 

⇒ many possible structures 

 

 

 

 

 

 

~ 0.63 eV 

Clusters? 

Amorphous inclusions? 

60 MeV protons 

Dark current activation energy of the 

exponential hot pixel tail 
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First dark current peak 

(+50 e-/s): 

⇒ Two possible activation 

energies: 0.70 and 0.75 eV 

Dark current activation energy 

of the dark current peaks 

EOR protons 

+ 50 e-/s 
0.75 eV 

0.70 eV 

9 
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First dark current peak 

(+50 e-/s): 

⇒ Two possible activation 

energies: 0.70 and 0.75 eV 

⇒ Two different defects 

 𝐄𝐀 ≃ 0,75 eV 

⇒ |Et − Ei| ≃ 0,12 eV ⇒ V2 

 𝐄𝐀 ≃ 0,70 eV: 

⇒ |Et − Ei| ≃ 0,07 eV ⇒ VP 

 

[1] Tivarus et al., IEEE TNS, 2008. 

[2] M. Moll, PhD thesis, 1999. 

 

 

V2 2V2 3V2 

VP VP + V2 VP + 2V2 

EOR protons 

Dark current activation energy 

of the dark current peaks 
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VP anneals below 200°C 

V2 is stable at 200°C 

 

 

 

 

 

 

 

 

[1] Tivarus et al., IEEE TNS, 2008. 

[2] M. Moll, PhD thesis, 1999. 

 

V2 2V2 3V2 4V2 5V2 

10 

Dark current activation energy 

after 200°C annealing 

EOR protons 
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Summary 

The effect of coulomb and nuclear interactions on the dark current 

distribution have been dissociated: 

 Low NIEL coulomb interactions: 

 Sparse displacement damage 

 Mainly dark current peaks (few 100 e-/s) and few hot pixels 

 Nuclear interactions or high NIEL coulomb interactions: 

 Dense displacement damage 

 Exponential hot pixel tail with many hot pixels (few 10,000 e-/s)  

The main radiation-induced defects depend on the damage density: 

 Sparse displacement damage: point defects such as V2 and VP 

 Clustered displacement damage: midgap defects such as clusters 
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Thank you for your attention! 

J.-M. Belloir, V. Goiffon, P.Magnan, ISAE-SUPAERO, Toulouse, France, 

C. Virmontois, O. Gilard, CNES, Toulouse, France, 

M. Raine, P. Paillet, CEA DAM DIF, Arpajon, France. 
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End-of-range: 

 non-exponential hot 

pixel tail 

 very few hot pixels 

⇒ mainly point defects 

 

3 MeV: 

 exponential hot pixel tail 

 less hot pixels than high-

energy ions 

⇒ only few clusters 

 

 

End-of-range light ions (low NIEL coulomb) 

3 MeV light ions (some nuclear interactions) 

• EOR protons 

• EOR deuterium 

− 3 MeV protons 

− 3 MeV deuterium 

− 3 MeV helium 
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Dark current peaks after 200°C annealing 

for low energy light ions 
V2 2V2 3V2 4V2 5V2 

6V2 

7V2 

EOR protons 

EOR deuterium 

1 MeV oxygen 

3 MeV helium 
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VP anneals between 

150°C and 200°C 

V2 is stable up to 260°C 

New defect noted D1  

(13 e-/s) visible after 

200°C annealing 

Other defects appear 

after 260°C annealing 

and above: 

 D2: +60 e-/s, EA ≃ 0,70 eV 

 D3: +700 e-/s, EA ≃ 0,60 eV 

 

D1 D2 (+60 e-/s) 

Dark current activation energy 

after 300°C annealing 

V2 

Pixels without defects 

730 keV protons 



Displacement damage density effect 

Particle 

Maximum coulomb 

nuclear stopping 

power (eV/Å) 

End-of-range protons 0.1 

End-of-range deuterium 0.2 

End-of-range carbon 11 

End-of-range oxygen 17 

End-of-range aluminum 36 

End-of-range silicon 

(nuclear interaction) 
40 
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Non-exponential hot pixel 

tail with low probability 

Exponential hot pixel tail 

9 eV/Å ~ 1 displaced atom per lattice plan (ED ~ 21 eV) 

⇒ Exponential hot pixel tail (clusters) for clustered displacement damage 


