

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17215

The contribution was presented at ECAI 2016 :
http://www.ecai2016.org/

To cite this version : Ben Amor, Nahla and El Khalfi Zeineb and Fargier,
Hélène and Sabbadin, Régis Lexicographic refinements in possibilistic decision
trees. (2016) In: European Conference on Artificial Intelligence (ECAI 2016), 29
August 2016 - 2 September 2016 (La Hague, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78386263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lexicographic Refinements in Possibilistic Decision Trees

Nahla Ben Amor1 and Zeineb El Khalfi2 and Helene Fargier´ ` 3 and Regis Sabbadin´ 4

Abstract. Possibilistic decision theory has been proposed twenty

years ago and has had several extensions since then. Because of the

lack of decision power of possibilistic decision theory, several refine-

ments have then been proposed. Unfortunately, these refinements do

not allow to circumvent the difficulty when the decision problem is

sequential. In this article, we propose to extend lexicographic refine-

ments to possibilistic decision trees. We show, in particular, that they

still benefit from an Expected Utility (EU) grounding. We also pro-

vide qualitative dynamic programming algorithms to compute lexi-

cographic optimal strategies. The paper is completed with an exper-

imental study that shows the feasibility and the interest of the ap-

proach.

1 Introduction

For many years, there has been an interest in the Artificial Intelli-

gence community towards the foundations and computational meth-

ods of decision making under uncertainty (see e.g. [1, 28, 7, 5, 16]).

The usual paradigm of decision under uncertainty is based on the

Expected Utility (EU) model [18, 23]. Its extensions to sequential

decision making are Decision Trees (DT) [20] and Markov Decision

Processes (MDP) [6, 19], where the uncertain effects of actions are

represented by probability distributions.

When information about uncertainty cannot be quantified in a

probabilistic way, possibilistic decision theory is a natural field to

consider [14, 27, 12, 15, 10, 11, 15]. Qualitative decision theory is

relevant, among other fields, for applications to planning under un-

certainty, where a suitable strategy (i.e. a set of conditional or uncon-

ditional decisions) is to be found, starting from a qualitative descrip-

tion of the initial world, of the available decisions, of their (perhaps

uncertain) effects and of the goal to reach (see [1, 3, 9, 8, 21, 22]).

Even though appealing for its ability to handle qualitative prob-

lems, possibilisitic decision theory suffers from an important draw-

back. Acts (and strategies in sequential problems) are compared

through min and max operators, which leads to a drowning effect:

plausible enough bad or good consequences may blur the comparison

between acts that would otherwise be clearly differentiable.

In order to overcome the drowning effect, refinements of possi-

bilistic decision criteria have been proposed in the non-sequential

case [13, 27]. Some refinements have the very interesting property to

remain qualitative while satisfying the properties of EU. But these re-

finements do not extend to sequential decision under uncertainty (in

the context of the present work, to decision trees) where the drowning

effect is also due to the reduction of compound possibilistic strategies

into simple ones [13].

1 LARODEC, Tunisie, email: nahla.benamor@gmx.fr
2 LARODEC, Tunisie, IRIT, France, email: zeineb.khalfi@gmail.com
3 IRIT, France, email: fargier@irit.fr
4 INRA-MIAT, France, email: rsabbadin@toulouse.inra.fr

The present paper proposes lexicographic refinements that com-

pare full strategies (and not simply their reductions) and provides a

dynamic programming algorithm to compute a lexicographic opti-

mal strategy. It is a technical challenge to establish results of equiv-

alence between lexicographic refinements of utilities of strategies in

possibilistic decision trees and EU-based criteria. We prove such re-

sults, which opens the way to define dynamic programming solutions

or even reinforcement learning algorithms for possibilistic MDPs

[26, 25], which would not suffer from the drowning effect.

The paper is structured as follows ; the next Section recalls some

results about the comparison of strategies in possibilistic decision

trees. In Section 3, we define lexicographic orderings that refine the

possibilistic criteria. Section 4 then proposes a dynamic program-

ming algorithm for the computation of lexi-optimal strategies. Sec-

tion 5 shows that the lexicographic criteria can be represented by

infinitesimal expected utilities. The last Section reports experiments

highlighting the feasibility and interest of the approach5.

2 Possibilistic decision trees

Decision trees provide an explicit modeling of sequential decision

problems by representing, simply, all possible scenarios. The graph-

ical component of a decision tree is a labelled graph DT = (N , E).
N = ND ∪NC ∪NU contains three kinds of nodes (see Figure 1):

• ND is the set of decision nodes (represented by squares);

• NC is the set of chance nodes (represented by circles);

• NU is the set of leaves, also called utility nodes.

For any node N , Out(N) denotes its outgoing edges, Succ(N)
the set of its children nodes and Succ(N, e) the child of N that is

reached by edge e ∈ Out(N). This tree represents a sequential de-

cision problem as follows:

• Leaf nodes correspond to states of the world in which a utility is

obtained (for the sake of simplicity we assume that utilities are

attached to leaves only); the utility of a leaf node Li ∈ NU is

denoted u(Li).
• Decision nodes correspond to states of the world in which a deci-

sion is to be made: Di ∈ ND represents a decision variable Yi the

domain of which corresponds to the labels a of the edges starting

from Di. These edges lead to chance nodes, i.e. Succ(Di) ⊆ NC .

• A state variable Xj is assigned to each chance node Cj ∈ NC , the

domain of which corresponds to the labels x of the edges starting

from that node. Each edge starting from a chance node Cj repre-

sents an event Xj = x. For any Cj ∈ NC , Succ(Cj) ⊆ NU∪ND

i.e. after the execution of a decision, either a leaf node or a deci-

sion node is reached.

5 The proofs are omitted for the sake of brevity but are available at
https://www.irit.fr/publis/ADRIA/PapersFargier/ecai2016.pdf

Start(DT) denotes the first decision nodes of the tree (it is a

singleton containing the root of the tree if it is a decision node, or its

successors if the root is a chance node). For the sake of simplicity,

we suppose that all the paths from the root to a leaf in the tree have

the same length: h, the horizon of the decision tree, is the number of

decision nodes along these paths. Given a node N of DT , we shall

also consider the subproblem DT N defined by the tree rooted in N .

The joint knowledge on the state variables is not given in extenso,

but through the labeling of the edges issued from chance nodes. In

a possibilistic context the uncertainty pertaining to the possible out-

comes of each Xj is represented by a possibility distribution: each

edge starting from Cj , representing an event Xj = x, is endowed

with a number πj(x), the possibility π(Xj = x|past(Cj))
6. A pos-

sibilistic ordered scale, L = {α0 = 0L < α1 < . . . < αl = 1L}, is

used to evaluate the utilities and possibilities.

Solving a decision tree amounts to building a strategy, i.e. a func-

tion δ : ND $→ A, where A is the set of possible actions, including a

special “undefined” action ⊥, chosen for action nodes which are left

unexplored by a given strategy. Admissible strategies assign a chance

node to each reachable decision node, i.e. must be:

• sound: ∀Di ∈ ND, δ(Di) ∈ Out(Di) ∪ {⊥} ⊆ A, and

• complete: (i) ∀Di ∈ Start(DT), δ(Di) (= ⊥ and

(ii) ∀Di s.t. δ(Di) (= ⊥, ∀N ∈ Succ(Succ(Di, δ(Di))) either

δ(N) (= ⊥ or N ∈ NU .

We denote by ∆N (or simply ∆, when there is no ambiguity) the

set of admissible strategies built from a tree rooted in N . Each strat-

egy δ defines a connected subtree of DT , the branches of which

represent possible scenarios, or trajectories. Formally, a trajectory

τ = (aj0 , xi1 , aj1 , . . . , ajh−1 , xih) is a sequence of value assign-

ments to decision and chance variables along a path from a starting

decision node (a node in Start(DT)) to a leaf: Y0 = aj0 is the

first decision in the trajectory, xi1 the value taken by its first chance

variable, Xj0 in this scenario, Yi1 = aj1 is the second decision, etc.

We identify a strategy δ, the corresponding subtree and the list of

its trajectories represented by a matrix. We also consider subtrees,

and thus sub-strategies: let Cj be a chance node, Di1 , . . . , Dik its

successors and, for l = 1, k, the strategies δil ∈ ∆Dil
which solve

the subproblem rooted in Dil . δi1 + · · ·+ δik is the strategy of ∆Cj

resulting from the composition of the δil : (δi1 + · · · + δik)(N) =
δil(N) iff N belongs to the subtree rooted in Dil .

Example 1 Let us suppose that a “Rich and Unknown” person runs

a startup company. In every state she must choose between Invest-

ing (Inv) or Advertising (Adv) and she may be then Rich (R) or Poor

(P) and Famous (F) or Unknown (U). Figure 1 shows the possibilis-

tic decision tree (with horizon h = 2) that represents this decision

problem. This tree has 8 strategies, 16 trajectories:

τ1 = (Adv,R&U, Inv, P&U), τ2 = (Adv,R&U, Inv,R&U),
τ3 = (Adv,R&U,Adv,R&U), τ4 = (Adv,R&U,Adv,R&F),
τ5 = (Adv,R&F,Adv,R&U), τ6 = (Adv,R&F,Adv,R&F),
etc.

The evaluation of a possibilistic strategy, as proposed by [22], relies

on the qualitative optimistic and pessimistic decision criteria axiom-

atized by [11]. The utility of the strategy is computed on the basis of

the transition possibilities and the utilities of its trajectories. For each

trajectory τ = (aj0 , xi1 , aj1 , . . . , xih):

6 As in classical probabilistic decision trees, it is assumed that π(Xj =
x|past(Cj)) only depends on the variables in past(Cj) and actually only
on the decision made in the preceding node and on the state of the preceding
chance node.

u(L3)= 0.5

u(L4)= 0.7

C2

D2

u(L1)=0.3

u(L2)= 0.5

D1

D0

C1

Adv

Inv

Adv

Inv

C3

 R&U (π=0.5)

 R&F (π=1)

R&F (π=1)

R&U (π=0.5)

P&U (π=0.2)

R&U (π=1)

u(L11)= 0.5

u(L12)= 0.3

C7

C9

 D4

u(L9)= 0.3

u(L10)= 0.5

D3

C6

Adv

Inv

Inv

C8

P&U (π=0.2)

 R&U (π=1)

P&U (π=1)

P&F (π=0.5)

P&U (π=0.2)

R&U (π=1)

R&U (π=1)

P&U (π=0.2) u(L13)= 0.3

u(L14)= 0.5

C10

Adv

R&F (π=1)

R&U (π=0.5) u(L15)= 0.5

u(L16)= 0.7

C4

Adv

R&F (π=1)

R&U (π=0.5)

C5

P&F (π=0.2)

R&F (π=1) u(L7)= 0.7

u(L8)= 0.5

Inv

u(L5)= 0.5

u(L6)= 0.5

Figure 1. The possibilistic decision tree of Example 1

• Its utility denoted u(τ), is the utility u(xih) of its leaf.

• The possibility of τ given that a strategy δ is applied from initial

node D0 is defined by:

π(τ |δ,D0) =

{

min
k=1..h

πjk−1(xik) if τ is a trajectory of δ,

0 otherwise.

where πjk−1 is the possibility distribution at Cjk−1 .

It is now possible to compute, for any δ ∈ ∆ its optimistic and

pessimistic utility degrees (the higher, the better):

uopt(δ) = max
τ∈δ

min(π(τ |δ,D0), u(τ))

upes(δ) = min
τ∈δ

max (1− π(τ |δ,D0), u(τ))

This approach is purely ordinal (only min and max operations are

used to aggregate the evaluations of the possibility of events and the

ones of the utility of states). We can check that the preference order-

ings +O between strategies, derived either from uopt (O = uopt) or

from upes (O = upes), satisfy the principle of weak monotonicity:

∀Cj ∈ NCj , ∀Di ∈ Succ(Cj), δ, δ
′ ∈ ∆Di , δ” ∈ ∆Succ(Cj)\Di

:

δ +O δ
′ =⇒ δ + δ” +O δ

′ + δ
′′

This property guarantees that dynamic programming [2] applies, and

provides an optimal strategy in time polynomial with the size of the

tree: [21, 22] have proposed qualitative counterparts of stochastic dy-

namic programming algorithms: in the finite horizon case backwards

induction, or in the infinite horizon case value and policy iteration.

The basic pessimistic and optimistic utilities nevertheless present

a severe drawback, known as the ”drowning effect”, due to the use

of idempotent operations. In particular, when two strategies give an

identical and extreme (either good, for uopt or bad, for upes), utility

in some plausible trajectory, they may be undistinguished although

they may give significantly different consequences in other possible

trajectories, as illustrated in Example 2.

Example 2 Let δ and δ′ be the two strategies of Example 1 de-

fined by δ(D0) = δ′(D0) = Adv; δ(D1) = Inv; δ′(D1) =
Adv; δ(D2) = δ′(D2) = Adv. δ gathers 4 trajectories, τ1, τ2, τ5,

τ6 with π(τ1|D0, δ) = 0.2 and u(τ1) = 0.3; π(τ2|D0, δ) = 0.5 and

u(τ2) = 0.5 ; π(τ5|D0, δ) = 0.5 and u(τ5) = 0.5; π(τ6|D0, δ) =
1 and u(τ5) = 0.5. Hence uopt(δ) = upes(δ) = 0.5.

- δ′ is also composed of 4 trajectories (τ3, τ4, τ5, τ6). Hence

uopt(δ
′) = upes(δ

′) = 0.5.

Thus uopt(δ) = uopt(δ
′) and upes(δ) = upes(δ

′): δ′, which pro-

vides at least utility 0.5 in all trajectories, is not preferred to δ that

provides a bad utility (0.3) in some non impossible trajectory (τ1). τ2,

which is good and totally possible ”drowns” the bad consequence of

δ in τ1 in the optimistic comparison; in the pessimistic one, the bad

utility of τ1 is drowned by its low possibility, hence a global degree

upes that is equal to the one of δ′ (that, once again, guarantees a 0.5
utility degree at least).

The two possibilistic criteria thus may fail to satisfy the principle

of Pareto efficiency, that may be written as follows, for any optimiza-

tion criterion O (here upes or uopt):

∀δ, δ′ ∈ ∆, if (i) ∀D ∈ Common(δ, δ′), δD +O δ′D and (ii)

∃D ∈ Common(δD, δ′D), δD ≻O δ′D , then δ ≻O δ′

where Common(δ, δ′) is the set of nodes for which both δ and δ′

provide an action and δD (resp. δ′D) is the restriction of δ (resp. δ′)

to the subtree rooted in D.

Moreover, neither uopt or upes do fully satisfy the classical, strict,

monotonicity principle, that can be written as follows:

∀Cj ∈ NC , Di ∈ Succ(Cj), δ, δ
′ ∈ ∆Di , δ” ∈ ∆Succ(Cj)\Di

,

δ +O δ
′ ⇐⇒ δ + δ” +O δ

′ + δ
′′

It may indeed happen that upes(δ) > upes(δ
′) while

upes(δ + δ”) = upes(δ
′ + δ”) (or that uopt(δ) > uopt(δ

′) while

uopt(δ + δ”) = uopt(δ
′ + δ”)).

The purpose of the present work is to build efficient preference

relations that agree with the qualitative utilities when the latter can

make a decision, and break ties when not - to build refinements 7 that

satisfy the principle of Pareto efficiency.

3 Escaping the drowning effect by leximin and
leximax comparisons

The possibilistic drowning effect is due to the use of min and max
operations. In ordinal aggregations, this drawback is well known and

it has been overcome by means of leximin and leximax comparisons

[17]. More formally, for any two vectors t and t′:

• t +lmin t′ iff ∀i, tσ(i) = t′σ(i) or ∃i∗, ∀i < i∗, tσ(i) = t′σ(i) and

tσ(i∗) > t′σ(i∗)

• t +lmax t′ iff ∀i, tµ(i) = t′µ(i) or ∃i∗, ∀i < i∗, tµ(i) = t′µ(i) and

tµ(i∗) > t′µ(i∗)

7 Formally, a preference relation !′ refines a preference relation ! if and
only if whatever δ, δ′, if δ ≻ δ′ then δ ≻′ δ′.

where, for any vector v (here, v = t or v = t′), vµ(i) (resp. vσ(i))

is the ith best (resp. worst) element of v.

The refinements of uopt and upes by lexicographic principles have

been considered by [13] for non sequential problems; in this context,

a decision is a possibility distribution π over the utility degrees, i.e.

a vector of pairs (π(u), u). Then it is possible to write:

• π Dlmax(lmin) π′ iff ∀i, (π(u), u)µ(i) ∼lmin (π′(u), u)µ(i) or

∃i∗, ∀i < i∗, (π(u), u)µ(i) ∼lmin (π′(u), u)µ(i) and

(π(u), u)µ(i∗) ≻lmin (π′(u), u)µ(i∗).

• π Dlmin(lmax) π′ iff ∀i, (1 − π(u), u)σ(i) ∼lmax (1 −
π′(u), u)σ(i) or ∃i∗, ∀i < i∗, (1 − π(u), u)σ(i) ∼lmax (1 −
π′(u), u)σ(i) and (1− π(u), u)σ(i∗) ≻lmax (1− π′(u), u)µ(i∗).

where (π(u), u)µ(i) is the ith best pair of (π(u), u) according to

lmin and (1 − π(u), u)σ(i) is the ith worst pair of (1 − π(u), u)
according to lmax.

A straightforward way of applying this to sequential decision is

to reduce the compound possibility distribution corresponding to the

strategy, as usually done in possibilistic (and probabilistic) decision

trees. The reduction of δ yields the distribution πδ on the utility de-

grees, defined by: πδ(u) = max
τ,u(τ)=u

π(τ |δ,D0). Then we can write:

δ Dlmax(lmin) δ
′

iff πδ Dlmax(lmin) πδ′ ,

δ Dlmin(lmax) δ
′

iff πδ Dlmin(lmax) πδ′ .

Dlmax(lmin) (resp. Dlmin(lmax)) refines +uopt (resp. +upes), but

neither Dlmax(lmin) nor Dlmin(lmax) do satisfy Pareto efficiency, as

shown by the following counterexample.

Example 3 Consider a modified version of the problem of Example

1 (Figure 2). δ and δ′ are the two strategies defined by: δ(D0) =
δ′(D0) = Adv, δ(D1) = Inv, δ′ = (D1) = Adv, δ(D2) =
δ′D2

= Adv. Common(δ, δ′) = {D0, D1, D2}, δD0 = δ′D0
,

δD2 = δ′D2
and δD1 dominates δ′D1

w.r.t. lmax(lmin), since

((1, 0.1), (1, 0.9))⊲lmax(lmin) ((1, 0.1)(0.5, 0.9)). δ should then be

strictly preferred to δ′. By reduction, we get πδ(0.9) = πδ(0.1) =
min(0.4, 1) = 0.4 and πδ(0.8) = min(1, 1) = 1 and for δ′ we have

πδ′(0.9) = min(0.4, 0.5) = 0.4, πδ′(0.1) = min(0.4, 1) = 0.4
and πδ′(0.8) = min(1, 1) = 1: δ and δ′ are indifferent for

Dlmax(lmin). This contradicts Pareto efficiency.

Inv

Adv

0.9

0.1

C2

C4

D2

0.9

0.1

 D1

D0 C1

C3

 R&F: 0.4

 R&U : 1

 R&U: 1

 R&F: 0.5

 R&F: 1

 P&F: 1

 R&U: 1

 R&F: 1

0.8

0.8

Adv

Adv

Figure 2. A counter example at the efficiency of Dlmax(lmin)

The drowning effect at work here is due to the reduction of

strategies, namely to the fact that the possibility of a trajectory

is drowned by the one of the least possible of its edges. That

is why we propose to give up the principle of reduction and to

build lexicographic comparisons on strategies considered in extenso.

Recall that: uopt(δ) = max
τ∈δ

min
{

min
k=1..h

πjk−1(xik);u(xih)
}

.

Then, for any τ = (aj0 , xi1 , . . . , ajh−1 , xih) and τ ′ =
(aj′0

, xi′1
, . . . , aj′

h−1
, xi′

h
), we define +lmin and +lmax by:

• τ +lmin τ ′ iff (πj0(xi1), . . . , πjh−1(xih), u(xih)) +lmin

(πj′0
(xi′1

), . . . , πj′
h−1

(xi′
h
), u(xi′

h
))

• τ +lmax τ ′ iff (1 − πj0(xi1), . . . , 1 − πjh−1(xih), u(xih))
+lmax (1− πj′0

(xi′1
), . . . , 1− πj′

h−1
(xi′

h
), u(xi′

h
))

Hence the proposition of the following preference relations8:

• δ +lmax(lmin) δ′ iff ∀i, τµ(i) ∼lmin τ ′
µ(i) or ∃i∗, ∀i ≤

i∗, τµ(i) ∼lmin τ ′
µ(i) and τµ(i∗) ≻lmin τ ′

µ(i∗),

• δ +lmin(lmax) δ′ iff ∀i, τσ(i) ∼lmax τ ′
σ(i) or ∀i, τσ(i) ∼lmax

τ ′
σ(i) or ∃i∗, ∀i ≤ i∗, τσ(i) ∼lmax τ ′

σ(i) and τσ(i∗) ≻lmax τ ′
σ(i∗),

where τµ(i) (resp. τ ′
µ(i)) is the ith best trajectory of δ (resp δ′) ac-

cording to +lmin and τσ(i) (resp. τ ′
σ(i)) is the ith worst trajectory of

δ (resp δ′) according to +lmax.

These relations are relevant refinements and escape the drowning

effect - they are those we are looking for:

Proposition 1 +lmax(lmin) is complete, transitive and refines

+uopt ; +lmin(lmax) is complete, transitive and refines +upes .

Proposition 2 +lmax(lmin) and +lmin(lmax) both satisfy the prin-

ciple of Pareto efficiency as well as strict monotonicity.

Propositions 1 and 2 have important consequences; from a pre-

scriptive point of view, they outline the rationality of lmax(lmin)
and lmin(lmax) and suggest a probabilistic interpretation, which

we develop in Section 5. From a practical point of view, they allow

us to define a dynamic programming algorithm to get lexi optimal

solutions - this is the topic of the next Section.

4 Dynamic Programming for lexi qualitative
criteria

The algorithm we propose (Algorithm 1 for the lmax(lmin) variant;

the lmin(lmax) variant is similar) proceeds in the classical way, by

backwards induction: when a chance node is reached, an optimal sub-

strategy is recursively built for each of its children; these substrate-

gies are combined but the resulting strategy is NOT reduced, contrar-

ily to what is classically done; when a decision node is reached, the

program is called for each child and the best of them is selected.
The comparison of strategies is done on the basis of the matrices

of their trajectories (denoted ρ ; each line gathers the possibility and
utility degrees of a trajectory τ = (aj0 , xi1 , aj1 , . . . , ajh , xih)):

ρlt =







πjt−1

(

xit

)

if t ≤ h,O = lmax
(

lmin
)

1− πjt−1

(

xit

)

if t ≤ h,O = lmin
(

lmax
)

u
(

xih

)

if t = h+ 1.

So as to allow fast comparisons, the matrices are built incrementally

and ordered on the fly by the function ConcatAndOrder: when a

8 If the strategies have different numbers of trajectories, neutral trajectories
(vectors) are added to the shortest strategy, at the bottom of the shortest list
of trajectories

Algorithm 1: DynProgLmaxLmin(N :Node)

Data: δ, the strategy built by the algorithm, is a global variable

Result: Computes δ for DT N and returns the maxtrix of its

trajectories, ρ

begin

// Leaves

if N ∈ NU then ρ = [u(N)];
// Chance nodes

if N ∈ C then
k = |Succ(N)|;
for Di ∈ Succ(N) do

ρi ← DynProgLmaxLmin(Di);
ρ ← ConcatAndOrder(ρ1, . . . , ρk, πN);

// Decision nodes

if N ∈ D then
ρ ← [0]
foreach aj ∈ Out(N) do

ρj ← DynProgLmaxLmin(Succ(N, aj));
if ρj +lmax(lmin) ρ then

ρ ← ρj and δ(N) ← aj ;

return ρ;

chance node, say Cj is reached, k = |Succ(Cj)| substrategies are

built recursively and their matrices ρ1, . . . , ρk are computed. Matrix

ρ of the current (compound) strategy, for the subtree rooted in Cj ,

is obtained by calling ConcatAndOrder
(

ρ1, . . . , ρk, πCj

)

. This

function adds a column to each ρi, filled with πj(xi) ; the matrices

are vertically concatenated; then the elements in the lines are ordered

in decreasing (resp. increasing) order, and the lines are reordered by

decreasing (resp. increasing) order w.r.t. to lmax (resp. lmin). As

a matter of fact, once ρ has been reordered, ρ1,1 is always equal to

uopt(δ) (resp. upes(δ)).
The lexicographic comparison of two strategies δ and δ′ is per-

formed by scanning the elements ρl,t and ρ′l,t of ρ and ρ′ in parallel,

line by line from the first one. The first pair of different (ρl,t, ρ
′
l,t) de-

termines the best matrix/strategy. If the matrices have different num-

bers of lines, neutral lines are added at the bottom of the shortest one

(filled with 0 for the optimistic case, with 1 for the pessimistic one).

Even if working with matrices rather than numerical values, the

algorithm is polynomial w.r.t. the size of the original tree. This is

because (i) the algorithm crosses each edge of the tree only once (as

in the classical version), (ii) the matrices are never bigger than the

strategies and (iii) the comparison of strategies is done in time linear

with their size - thus linear with the size of the original tree.

5 Lexi comparisons and Expected Utility

If the problem is not sequential, it is easy to see that the comparison

of possibilistic utility distributions by +lmax(lmin) and +lmin(lmax)

do satisfy the axioms of EU. [13] have indeed shown that these deci-

sion criteria can be captured by an EU - namely, relying on infinites-

imal probabilities and utilities. In this Section, we claim that such a

result can be extended to sequential problems - for decision trees.

The proof relies on a transformation of the possibilistic tree into

a probabilistic one. The graphical components are identical and so

are the sets of admissible strategies. In the optimistic case the prob-

ability and utility distributions are chosen in such a way that the

lmax(lmin) and EU criteria do provide the same preference on ∆.

To this extent, we build a transformation φ : L ⊆ [0, 1] → [0, 1]

that maps each possibility distribution to an additive distribution and

each utility level into an additive one; this transformation is required

to satisfy the following condition:

(R) : ∀α, α′ ∈ L such that α > α
′ : φ(α)h+1

> b
h
φ(α′),

where b is the branching factor of the tree. Condition (R) guarantees

that if uopt(δ) = α > uopt(δ
′) = α′, then a comparison based on a

sum-product approach on the new tree will also decide in favor of δ.

For any chance node Cj , a local transformation φj is then derived

from φ, such that φj satisfies both condition (R) and the normaliza-

tion condition of probability theory. EUopt denotes the preference

relation provided by the EU-criterion on the probabilistic tree ob-

tained by replacing each πj by φj ◦ πj and the utility function u by

φ ◦ u. We show that:

Proposition 3 If (R) holds, then +EUopt refines +uopt .

Proposition 4 δ +lmax(lmin) δ
′ iff δ +EUopt δ′, ∀(δ, δ′) ∈ ∆.

Example 4 φ(1) = 1, φ(0.9) = 0.2, φ(0.8) = 0.001, φ(0.5) =
10
−10, φ(0.4) = 10

−30, φ(0.1) = 10
−91.

It holds that φ(α)3 > φ(α′) ∗ 22, for all α > α′. We ob-

tain the transformed conditional distributions by normalizing on

each node. For instance for node C1, φ1(10
−30) = 10−30

1+10−30 and

φ1(1) =
1

1+10−30 , for node C2, φ2(1) =
1

1+1
and φ2(1) = 0.5, for

node C3, φ3(10
−10) = 10−10

1+10−10 and φ3(1) = 1
1+10−10 , for node

C4, φ4(1) = 0.5 and φ4(1) = 0.5.

Adv

a1

 R&F:φ2(1)

 P&F:φ2(1)

Inv

Adv

R&F:φ4(1)

R&U:φ4(1)

R&F:φ3(10-10)

 R&U:φ3(1)

0.2

10-91

 R&F: φ1(10-30)

 R&U: φ1(1)

D0
C1

C2

C3

C4

D1

D2

0.2

10-91

0.001

0.001

Adv

Figure 3. Transformed probabilistic decision tree of possibilisic decision
tree of (counter)-example 3

The construction is a little more complex if we consider the

+lmin(lmax) comparison, where the utility degrees are not directly

compared to possibility degrees π but to degrees 1 − π. Hopefully,

it is possible to rely on the results obtained for the optimistic case,

since the optimistic and pessimistic utilities are dual of each other.

Proposition 5 Let DT inv the tree obtained from DT by using util-

ity function u′ = 1 − u on leaves. It holds that: upes,DT (δ) ≥
upes,DT (δ′) iff uopt,DT inv (δ′) ≥ uopt,DT inv (δ)

As a consequence, we build an EU-based equivalent of

+lmin(lmax), denoted +EUpes , by replacing each possibility distri-

bution πi in DT by the probability distribution φi ◦ πi, as for the

optimistic case and each utility degree u byφ(1) − φ(u). It is then

possible to show that:

Proposition 6 δ +lmin(lmax) δ
′ iff δ +EUpes δ′, ∀(δ, δ′) ∈ ∆.

Propositions 4 and 6 show that lexi-comparisons have a proba-

bilistic interpretation - actually, using infinitesimal probabilities and

utilities. This result comforts the idea, first proposed by [4] and then

by [13], of a bridge between qualitative approaches and probabilities,

through the notion of big stepped probabilities [4, 24]. We make here

a step further, by the identification of transformations that support

sequential decision making.

Beyond this theoretical argument, this result suggests an al-

ternative algorithm for the optimization of lmax(lmin) (resp.

lmin(lmax)): simply transform the possibilistic decision tree into

a probabilistic one and use a classical, EU-based algorithm of dy-

namic programming. In a perfect world, both approaches solve the

problem in the same way and provide the same optimal strategies -

the difference being that the first one is based on the comparison of

matrices, the second one on expected utilities in R
+. The point is

that the latter handles infinitesimals; then either the program is based

on an explicit handling of infinitesimals, and proceeds just like the

matrix-based comparison, or it lets the programming language han-

dle these numbers in its own way - and, given the precision of the

computation, provides approximations.

6 Experiments

We thus get three criteria for each of the pessimistic and optimistic

approaches: the basic possibilistic ones, the lexicographic refine-

ments described in Section 3, and the EU approximations of the lat-

ter. We compare the 3 variants within each series with two measures:

the CPU time and a pairwise success rate: SuccessA
B

is the per-

centage of solutions provided by an algorithm optimizing criterion

A that are optimal with respect to criterion B; for instance, the lower

Success uopt
lmax(lmin)

, the more important the drowning effect.

The backward induction algorithms corresponding to the six crite-

ria have been implemented in Java. As to the EU-based approaches,

the transformation function depends on the horizon h and the branch-

ing factor b (here b = 2). We used φ(1L) = 1, φ(αi) =
φ(αi+1)

h+1

bh∗1.1
,

each φj being obtained by normalization of φ on Cj . The experi-

ments have been performed on an Intel Core i5 processor computer

(1.70 GHz) with 8GB DDR3L of RAM..

The tests were performed on complete binary decision trees,

for h = 2 to h = 7, that are randomly generated. The first

node is a decision node: at each decision level from the root

(i = 1) to the last level (i = 7) the tree contains 2i−1 deci-

sion nodes.This means that with h = 2 (resp. 3, 4, 5, 6, 7), the

number of decision nodes is equal to 5 (resp. 21, 85, 341, 1365,

5461) The utility values are uniformly randomly fired in the set

L = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Conditional pos-

sibilities relative to chance nodes are normalized, one edge having

possibility one and the possibility degree of the other is uniformly

fired in L. For each value of h, 100 decision trees are generated.

Figure 4 presents the average execution CPU time for the six crite-

ria. We observe that, whatever the optimized criterion, the CPU time

increases linearly w.r.t. the number of decision nodes, which is in

line with what we could expect. Furthermore, it remains affordable

with big trees: the maximal CPU time is lower than 1s for a deci-

sion tree with 5461 decision nodes. It appears that uopt is always

faster than EUopt, which is 1.5 or 2 times faster than lmax(lmin)
The same conclusion is drawn when comparing lmin(lmax) to upes

and EUpes. These results are easy to explain: (i) the manipulation of

matrices is obviously more expensive than the one of numbers and

(ii) the handling of numbers by min and max operations is faster than

sum-product manipulations of infinitesimal.

0,2

1

5

25

125

625

3125

5 21 85 341 1365 5461

Average CPU time for the pessimistic criteria

upes

EUpes

lmin(lmax)C
P

U
 t

im
e

 i
n

 m
s

Number of decision nodes

0,2

1

5

25

125

625

5 21 85 341 1365 5461

Average CPU time for the optimistic criteria

uopt

EUopt

lmax(lmin)

C
P

U
 t

im
e

 i
n

 m
s

Number of decision nodes

Figure 4. Average CPU time (in ms) for h=2 to 7

As to the success rate, the results are described in Figure 5. The

percentage of solutions optimal for uopt (resp. for upes) that are also

optimal for lmax(lmin) (resp. lmin(lmax)) is never more than

82%, and decreases when the horizon increases: the drowning ef-

fect is not negligible and increases with the length of the trajectories.

Moreover EUopt (resp. EUpes) does not perform well as an approx-

imation of lmax(lmin) (resp. lmin(lmax)): the percentage of so-

lutions optimal for the former which are also optimal for the latter is

lower than 80% in all cases, and decreases when h increases. This

is easily explained by the fact that the probabilities are infinitesimals

and converge to 0 when the length of the branches (and thus the num-

ber of factors in the products) increase, as suggested in Section 5.

These experiments conclude in favor of the lexi refinements in

their full definition - their approximation by expected utilities are

comparable in terms of CPU efficiency but not precise enough. The

EU criteria nevertheless offer a better approximation than uopt and

upes when space is limited (or when h increases).

7 Concluding remarks

This work has both theoretical and practical implications. It extends

and generalizes to sequential problems the theoretical links estab-

lished in [13] between possibilistic utilities and expected utilities.

It performs better that the refinement of binary possibilistic utilities

Figure 5. Sucess rate

(BPU) proposed in [27] for Binary Possibilistic Utilities and as a

particular case, to classical, optimitic and pessimistic, possibilitistic

utilities. In [27]’s treatment indeed, two similar trajectories of the

same strategy are merged. The resulting criterion thus suffers from

a drowning effect and does no satisfy strict monotonicity: as such,

it cannot be represented by an EU-based criterion which “counts”

trajectories (weighted by their probabilities). We actually do refine

[27]’s criterion. Incorporating our lexicographic refinements in BPU

would lead to a more powerful refinement and suggests a probabilis-

tic interpretation of efficient BPU. It also leads to new planning al-

gorithms that are more “decisive” than their original counterparts.

The perspectives of our work are twofold. First, our approach

could be naturally extended to solve possibilistic Markov Decision

Processes.This extension seems theoretically straightforward, since a

finite-horizon MDP can be translated into a set of decision trees (one

for each state). Thus, our theoretical results hold for finite-horizon

MDPs as well. However, the direct application of the lexicographic

approach to possibilistic MDPs may lead to algorithms which are

exponential in time and space (w.r.t. the MDP description), since the

decision trees associated to a MDP may be of exponential size, while

(possibilistic) MDPs can be solved in polynomial time [22, 21]. De-

termining whether computing lexicographic optimal solutions to pos-

sibilistic MDPs is tractable is a perspective of this work.

The second perspective of this work, not unrelated, is to develop

simulation-based algorithms for finding lexicographic solutions to

MDPs. Reinforcement Learning algorithms [26] allow to solve large

size MDPs by making use of simulated trajectories of states to opti-

mize a strategy. It is not immediate to develop RL algorithms for pos-

sibilistic MDPs, since no unique stochastic transition function corre-

sponds to a possibility distribution. However, uniform simulation of

trajectories (with random choice of actions) may be used to gener-

ate an approximation of the possibilistic decision tree (provided that

both transition possibilities and utility of the leaf are given with the

simulated trajectory). So, interleaving simulations and lexicographic

dynamic programming may lead to RL-type algorithms for approxi-

mating lexicographic-optimal policies for (large) possibilistic MDPs.

REFERENCES

[1] Kim Bauters, Weiru Liu, and Llu’is Godo, ‘Anytime algorithms for
solving possibilistic MDPs and hybrid MDPs’, in 9th International

Symposium on Foundations of Information and Knowledge Systems

(FoIKS’16), eds., Marc Gyssens and Guillermo Simari, Lecture Notes
in Artificial Intelligence, pp. 1–18. Springer International Publishing
Switzerland, (2016).

[2] Richard Bellman, Dynamic Programming, Princeton University Press,
1957.

[3] Nahla Ben Amor, Hélène Fargier, and Wided Guezguez, ‘Possibilis-
tic sequential decision making’, International Journal of Approximate

Reasoning, 55, 1269–1300, (2014).
[4] Salem Benferhat, Didier Dubois, and Henri Prade, ‘Possibilistic and

standard probabilistic semantics of conditional knowledge bases’, Jour-

nal of Logic and Computation, 9, 873–895, (1999).
[5] Blai Bonet and Hector Geffner, ‘Arguing for decisions: A qualitative

model of decision making’, in 12th Conference on Uncertainty in Ar-

tificial Intelligence (UAI-96), August 1-4, Portland, Oregon, USA, pp.
98–105, (1996).

[6] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman,
‘Acting optimally in partially observable stochastic domains’, in 12th

National Conference on Artificial Intelligence (AAAI’13), July 31 - Au-

gust 4 Seattle, WA, USA, pp. 1023–1028, (1994).
[7] Francis C. Chu and Joseph Y. Halpern, ‘Great expectations. part I: on

the customizability of generalized expected utility’, in 18th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-03), August

9-15,2013, Acapulco, Mexico, pp. 291–296, (2003).
[8] Nicolas Drougard, Florent Teichteil-Konigsbuch, Jean-Loup Farges,

and Didier Dubois, ‘Qualitative possibilistic mixed-observable MDPs’,
in 29th Conference on Uncertainty in Artificial Intelligence (UAI’13),

August 11-15,2013, Bellevue, WA, USA, pp. 192–201, (2013).
[9] Nicolas Drougard, Florent Teichteil-Konigsbuch, Jean-Loup Farges,

and Didier Dubois, ‘Structured possibilistic planning using decision di-
agrams’, in 28th Conference on Artificial Intelligence (AAAI’14), July

27 -31, 2014, Québec City, Québec, Canada., pp. 2257–2263, (2014).
[10] Didier Dubois, Lluis Godo, Henri Prade, and Adriana Zapico, ‘Mak-

ing decision in a qualitative setting: from decision under uncertainty to
case-based decision’, in 6th International Conference on Principles of

Knowledge Representation and Reasoning (KR’98), June 2-5, Trento,

Italy, pp. 594–605, (1998).
[11] Didier Dubois and Henri Prade, ‘Possibility theory as a basis for quali-

tative decision theory’, in 14th international joint conference on Artifi-

cial intelligence (IJCAI’95), August 20-25, Montreal, Quebec Canada,
pp. 1925–1930, (1995).

[12] Didier Dubois, Henri Prade, and Régis Sabbadin, ‘Decision-theoretic
foundations of qualitative possibility theory’, European Journal of Op-

erational Research, 128, 459–478, (2001).
[13] Hélène Fargier and Régis Sabbadin, ‘Qualitative decision under uncer-

tainty: back to expected utility’, Artificial Intelligence, 164, 245–280,
(2005).

[14] Phan Giang and Prakash P Shenoy, ‘Two axiomatic approaches to deci-
sion making using possibility theory’, European Journal of Operational

Research, 162, 450–467, (2005).
[15] Lluis Godo and Adriana Zapico, ‘On the possibilistic-based decision

model: Characterization of preference relations under partial inconsis-
tency’, Applied Intelligence, 14, 319–333, (2001).

[16] Daniel J. Lehmann, ‘Generalized qualitative probability: Savage revis-
ited.’, in 21st Conference in Uncertainty in Artificial Intelligence (UAI

’05), July 26-29, Edinburgh, Scotland, pp. 381–388, (1996).
[17] Hervi Moulin, Axioms of Cooperative Decision Making, Cambridge

University Press, 1988.
[18] John Von Neumann and Oskar Morgenstern, Theory of games and eco-

nomic behavior, 1948.
[19] Martin L. Puterman, Markov Decision Processes, John Wiley and Sons,

1994.
[20] Howard Raiffa, Decision Analysis: Introductory Lectures on Choices

under Uncertainty, Addison Wesley, 1968.
[21] Régis. Sabbadin, ‘Possibilistic Markov decision processes’, Engineer-

ing Applications of Artificial Intelligence, 14, 287–300, (2001).
[22] Régis Sabbadin, Hélène Fargier, and Jŕome Lang, ‘Towards qualitative

approaches to multi-stage decision making’, International Journal of

Approximate Reasoning, 19, 441–471, (1998).
[23] Leonard J. Savage, The Foundations of Statistics, Wiley, 1954.

[24] Paul Snow, ‘Diverse confidence levels in a probabilistic semantics for
conditional logics’, Artificial Intelligence, 113, 269–279, (1999).

[25] Richard S. Sutton, ‘Learning to predict by the methods of temporal
differences’, in Machine Learning, pp. 9–44, (1988).

[26] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning:An

Introduction, MIT Press, 1998.
[27] Paul Weng, ‘Qualitative decision making under possibilistic uncer-

tainty: Toward more discriminating criteria’, in 21st Conference in

Uncertainty in Artificial Intelligence (UAI’05), July 26-29, Edinburgh,

Scotland, pp. 615–622, (2005).
[28] Paul Weng, ‘Axiomatic foundations for a class of generalized expected

utility: Algebraic expected utility’, in 22nd Conference Annual Con-

ference on Uncertainty in Artificial Intelligence (UAI-06), July 13-16 ,

Arlington, Virginia, pp. 520–527, (2006).

