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ABSTRACT

Increasing the sampling rate of Analog-to-Digital Convert-

ers (ADC) is a main challenge in many fields and especially

in telecommunications. Time-Interleaved ADCs (TI-ADC)

were introduced as a technical solution to reach high sam-

pling rates by time interleaving and multiplexing several low-

rate ADCs at the price of a perfect synchronization between

them. Indeed, as the signal reconstruction formulas are de-

rived under the assumption of uniform sampling, a desynchro-

nization between the elementary ADCs must be compensated

upstream with an online calibration and expensive hardware

corrections of the sampling device. Based on the observation

that desynchronized TI-ADCs can be effectively modeled us-

ing a Periodic Non-uniform Sampling (PNS) scheme, we de-

velop a general method to blindly estimate the time delays

involved in PNS. The proposed strategy exploits the signal

stationarity properties and thus is simple and quite general-

izable to other applications. Moreover, contrarily to state-of-

the-art methods, it applies to bandpass signals which is the

more judicious application framework of the PNS scheme.

Index Terms— Nonuniform sampling, Estimation, Sta-

tionary random process, Analog-to-Digital Converters

1. INTRODUCTION

The evolution of communication systems implies the trans-

mission of signals with increasing frequencies, requiring sub-

sequent adaptations of the sampling devices. In this context,

the design of ADCs performing at very high frequency is a

huge economical and technological challenge. Thus, an alter-

native solution has been developed by time-interleaving and

multiplexing several low-frequency and thus low-cost ADCs

to form a TI-ADC [1, 2]. The sampling operation is shared

between elementary ADCs to reach a high global sampling

frequency. However, since a TI-ADC is expected to perform
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a global uniform sampling operation, the elementary ADCs

must have similar intrinsic properties and, especially, they

must be perfectly synchronized [3, 4]. Online solutions have

been previously considered [5–7] for the estimation and cor-

rection since the desynchronization can appear and vary dur-

ing functioning. Nevertheless, these methods consider base-

band signals in their theoretical developments which is not

realistic for telecommunications. They require hardware cal-

ibrations and corrections to impose uniform sampling, un-

fortunately requiring a system disconnection and increasing

complexity and power consumption. An alternative and more

flexible sampling model can be considered for TI-ADCs in

order to avoid hardware operations: the PNS scheme [8–12].

This model allows to take into account the desynchronization,

once estimated, through generalized reconstruction formulas.

Based on this observation, this paper develops a blind strat-

egy for the desynchronization estimation and more generally

for the blind estimation of time delays in a PNS scheme. This

strategy operates directly on the transmitted bandpass signal,

with no need for a training sequence. For telecommunica-

tion purpose and for more generality, we consider a bandpass

random stationary signal model and we exploit this station-

arity property. The estimation is performed from the recon-

structed bandpass signal. Afterwards, the estimated delay is

used to adapt the PNS reconstruction formulas. The paper is

organized as follows. Section 2 formulates the problem and

presents the signal and sampling models. Section 3 details the

proposed method. The performance analysis is conducted in

section 4. Section 5 contains concluding remarks and future

work discussion.

2. PROBLEM FORMULATION

The method proposed in this paper is very general and could

be envisioned in a theoretical way only, in relation with non

uniform sampling. However, TI-ADCs provide a natural and

illustrative application framework for this method because it

is nontrivial and requires general methods applicable to ran-



dom bandpass signals.

2.1. Application: Desynchronization in TI-ADCs

TI-ADCs are composed of L elementary time-interleaved and

multiplexed ADCs, each operating at a frequency fs. If the

delay between two consecutive ADCs is constant and equal

to 1
Lfs

, the TI-ADC performs a global uniform sampling op-

eration at frequency Lfs. However, in practice, disparities

and design imperfections lead to the so-called mismatch er-

rors: gain, offset and time-skew errors. These errors lead

to non-linear distortions upon the reconstructed signal and

many studies are devoted to their characterization and correc-

tion [4–6]. Moreover, under adverse (mainly thermic) oper-

ating conditions, this delay may vary during system function-

ing and perfect synchronization can be hardly guaranteed and

maintained. Fig. 1 shows the modified architecture that we

will consider in the following, taking into account the desyn-

chronization (or time-skew error) which is considered as the

most damaging error [3]. The classical multiplexing stage

after the ADCs must be replaced by a reconstruction stage

(REC) that uses the desynchronization between elementary

ADCs denoted as δi, i = 0, ..., L − 1 as an input. This paper

proposes a method for the blind estimation of the desynchro-

nization during system functioning. This estimation is then

put back into the sampling model for an accurate reconstruc-

tion without hardware delay correction.
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Fig. 1: General architecture of a TI-ADC

2.2. Signal model

We model the analog signal as a real wide-sense stationary

random process X = {X(t), t ∈ R} with zero mean, finite

variance and power spectral density sX(f) defined by:

sX(f) =

∫ ∞

−∞

e−2iπfτRX(τ) dτ (1)

where RX(τ) = E[X(t)X∗(t − τ)] is the auto-correlation

function of X (E[·] stands for the mathematical expectation

and the superscript ∗ for the complex conjugate). This model

fits the targeted applications in the field of telecommunica-

tions where the multiple carriers can be approximated by a

random process model. Moreover, this telecommunications-

modeling signal is assumed to be bandpass: its power spec-

trum sX(f) is included in the so-called kth Nyquist band de-

fined in normalized frequency by:

BN (k) =

(
−(k +

1

2
),−(k −

1

2
)

)
∪

(
k −

1

2
, k +

1

2

)
. (2)

In [13], the authors emphasized the challenge of using high

frequencies (high k values) in the transmission because of the

resulting sensitivity towards synchronization.

2.3. PNS2 sampling scheme

The PNSL (Periodic Non-uniform Sampling (PNS) of order

L) is a sampling scheme composed of L uniform sampling

sequences Xδi = {X(nTs + δi), n ∈ Z}, i = 0, ..., L − 1
that are non-uniformly time-interleaved. Ts =

1
fs

denotes the

common sampling period and δi denotes the delay of each se-

quence. We set that δi 6=
iTs

L
(except δ0 = 0 by convention)

and δi − δi−1 6= Ts

L
, modeling the desynchronization. The

sampling times are thus non uniformly distributed in a given

sampling period. In the following we will consider a normal-

ized sampling frequency for simplification, giving Ts = 1.

PNSL has been investigated for its anti-aliasing properties

[8, 10, 11] and its lower sampling frequency requirement in

the case of bandpass signals [9, 12].

For simplicity and without loss of generality, this paper

focuses on the PNS2 scheme [8]. Results can be extended to

the case of L ADCs leading to more complex expressions for

the reconstruction formulas [14]. Concerning the delay esti-

mation step, a TI-ADC with L ADCs denoted ADC0,...,L−1

can be calibrated by choosing ADC0 as a reference and by

estimating successively the delay between each ADC1,...,L−1

and ADC0 according to a simple PNS2 scheme.

In the case of PNS2, the samples are distributed according

to two uniform sequences defined as X0 = {X(n), n ∈ Z}
and Xδ = {X(n+ δ), n ∈ Z} with δ ∈ ]0, 1[. The resulting

mean sampling rate equals 2 and thus fits the signal effective

bandwidth, for a real bandpass signal whose band is com-

posed of two symmetric intervals of unit length (2). Under

the condition that 2kδ /∈ Z, the exact reconstruction from an

infinite number of samples is derived using the formula [15]:

X(t) =
A0(t) sin [2πk(δ − t)] +Aδ(t) sin [2πkt]

sin [2πkδ]
,

Aλ(t) =
∑
n∈Z

sin [π(t− n− λ)]

π(t− n− λ)
X(n+ λ).

(3)

with λ ∈ {0, δ}. Note that, in previous works, the authors

have proposed errorless reconstruction formulas (in term of

mean-squared error) [16, 17], whose convergence rate can be

increased by introducing appropriate filters [15] and which

can perform joint reconstruction and interference cancelation

or direct analytic signal construction [18]. These additional

functionalities are of great interest in telecommunications.

The reconstruction formulas associated to PNS2 assume

that the time delay δ is a priori known. For TI-ADC modeling



purpose, the time delay must be considered as unknown and

possibly time-varying. However, the variations of δ, mainly

resulting from thermal constraint evolution, can be assumed

very slow with respect to its estimation computational time.

Consequently, the proposed method considers a fixed value of

δ during the observation time. Next section presents a strategy

for the estimation of δ from the observation of the sequences

X0 and Xδ using stationarity properties.

3. PROPOSED METHOD

Now, we consider that the true delay δ is unknown. In this

case, the reconstruction is performed using a wrong value of

the delay denoted as δ̃, whereas the sampling times are actu-

ally {n + δ, n ∈ Z}. Let X(δ̃) = {X(δ̃)(t), t ∈ R} denote

the reconstructed signal using δ̃ instead of δ in (3):

X(δ̃)(t) =
A0(t) sin[2πk(δ̃ − t)] +Aδ(t+ δ − δ̃) sin [2πkt]

sin[2πkδ̃]
(4)

The strategy we propose for the estimation of δ is based on

the observation that the reconstructed signal X(δ̃) is not sta-

tionary in the general case of desynchronization (i.e. δ̃ 6= δ).

This property is demonstrated in the Appendix.

Our method exploits this non stationarity property to es-

timate δ. The reconstructed signal mean power is estimated

at different times. Comparison of the estimates allows to de-

tect whether the reconstructed signal is wide-sense stationary

(time-independent mean power) or not.

First, the formula (4) is used to reconstruct the signal at

uniform discrete times expressed as tm = n + m
M+1 , m =

1, ...,M and n ∈ Z. Let P
(δ̃)
m denote the expected power of

the reconstructed signal at times tm as:

P (δ̃)
m = E

[∣∣∣X(δ̃) (tm)
∣∣∣
2
]

(5)

Let Pref denote the reference power defined from the two

available sampling sequences X0 or Xδ :

Pref = E
[
|X(n)|

2
]
= E

[
|X (n+ δ)|

2
]

(6)

If δ̃ = δ, the stationarity property implies that:

P (δ̃)
m1

= P (δ̃)
m2

(= Pref) ∀(m1,m2) ∈ [1,M ] (7)

On the contrary, if δ̃ 6= δ, the equality (7) does not hold

anymore. The principle of our method is to identify the value

δ̂ of δ̃ that respect (7). Next section studies the performance

analysis of this estimation method.

4. PERFORMANCE ANALYSIS

Simulations are performed for a random stationary bandpass

process in Nyquist band BN (7) (k = 7 in (2)). In the con-

text of PNS2 sampling, a classical scheme has been identified

in telecommunications as quadrature sampling. This special

sampling scheme has the property to give direct access to the

in-phase and quadrature components by sampling using PNS2
with the use of δ = 1

4fc
where fc denotes the signal central

frequency [13]. Here, fc = k = 7 according to (2).

The desynchronization is modeled as an additive uniform

random variable A and we have δ = 1
4k +A , A ∼ U(−ε, ε)

where ε is chosen according to the signal band properties. In-

deed, following PNS2 definition, δ must respect the condition

2kδ /∈ Z in order to perform the reconstruction. Applying

that condition here, we have : δ ∈]0, 1
2k [ resulting in ε = 1

4k .

Assuming a delay δ̃, the signal is reconstructed at times

tm using a window of N samples for each sampling sequence

and a truncated version of (4):




A0(t) =

∑N

2

n=−N

2

sin[π(t−n)]
π(t−n) X(n)

Aδ(t+ δ − δ̃) =
∑N

2

n=−N

2

sin[π(t−n−δ̃)]

π(t−n−δ̃)
X(n+ δ)

(8)

Mean powers are estimated for N reconstruction times using

classical expectation estimators:

P̂ (δ̃)
m =

1

N

N

2∑

n=−N

2

∣∣∣∣X
(δ̃)

(
n+

m

M + 1

)∣∣∣∣
2

, m = 1, ...,M

We consider M = 14 and N = 500 in the following. Fig. 2

displays the estimated power curves, for a randomly chosen

δ = 0.011 and δ̃ ∈ [0.001, 0.05].
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Fig. 2: Estimated power curves for M = 14.

According to Fig. 2, the curves all cross around the same

point with coordinate δ. It validates the stationarity behavior:

when the curves cross, all the estimated powers are equal and

then the signal power is time-independent. The problem is

that the equality in (7) does not strictly hold. Then, to find the

point where the curves are the closer from each other, we es-

timate the variance of P̂
(δ̃)
m for each value of δ̃. This variance

is displayed on Fig. 3 as a function of δ̃. The minimum gives

the best estimation δ̂ of δ defined as:

δ̂ = min
δ̃∈[ 1

4k−ε, 1
4k+ε]

[
var

(
P̂

(δ̃)
m, m=1..M

)]
(9)



We performed the estimation with an increasing number

N of samples and we tested the results by computing the

Signal-to-Error Ratio (SER) of the reconstructed signal us-

ing the estimation δ̂. Initially, without estimation, we have a

SER of 2.4dB as the reconstruction is seriously damaged by

the desynchronization. Fig. 4 plots the mean SER in dB as a

function of N for Nite = 1000 iterations and it shows that the

estimation step helps compensating desynchronization, con-

sidering that, above 40dB, the reconstruction is satisfactory.

SERdB = 10 log10

[
Psignal

Perror

]
= 10 log10

[
E[|X(t)|2]

E[|X(t)−X(δ̂)(t)|2]

]
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Fig. 3: Variance of the estimated power curves for M = 14.

0 1,000 2,000 3,000 4,000 5,000

20

30

40

50

N

M
ea
n
S
E
R

d
B

Fig. 4: Mean reconstruction SER in dB as a function of the

number of samples, estimated for Nite = 1000.

5. CONCLUSION AND FUTURE WORKS

This paper proposes a blind method to estimate and compen-

sate desynchronization in a PNS2 sampling scheme. Exploit-

ing stationarity properties of the reconstructed signal, it helps

to build a flexible model for TI-ADCs in the case of bandpass

signals. This method requires few a priori information. It

performs on the signal samples and does not require learning

sequences for system calibration. Moreover, for application

to telecommunication purpose, the method applies on a re-

alistic random wide-sense stationary bandpass signal model

contrarily to the state-of-the-art methods that often deal with

simple baseband signals such as sine waves. The simulations

show that the estimation/compensation helps to retrieve sat-

isfying reconstruction performance. Note that the desynchro-

nization is assumed constant during the estimation. Conse-

quently, the method must be performed periodically when the

desynchronization varies. The next step should be to develop

an adaptive algorithm for online estimation of desynchroniza-

tion variations. This will be part of a future work.

Appendix: Proof of the stationarity property

As the signal of interest is real and with spectrum relying

into two separate bands (2), it can be decomposed as X =
X++X−, where X+ (respectively X−) stands for the signal

component whose spectrum relies in the positive frequencies

(respectively negative frequencies). Following the develop-

ments of [19], the principle of our derivations is to consider

the isometry involving X+ and X− as:

X+(t)
IX←→ e2iπft |f>0 and X−(t)

IX←→ e2iπft |f<0

From the equation above applied to X+ and X−, the follow-

ing system can be obtained then leading to (3).

{
A0(t) = X+(t)e

−2iπkt +X−(t)e
2iπkt

Aδ(t) = X+(t)e
−2iπk(t−δ) +X−(t)e

2iπk(t−δ)
(10)

Considering (5) and similar derivations as those leading to

(10), the isometry relates X
(δ̃)
− (t) (respectively X

(δ̃)
+ (t)) to:

e2iπt(f−k) sin[2πk(δ̃−t)]
sin[2πkδ̃]

+ e2iπf(t+δ−δ̃)e−2iπk(t−δ̃) sin[2πkt]

sin[2πkδ̃]
,

for f < 0 (respectively f > 0). Then, we obtain that the

isometry relates X(t)−X(δ̃)(t) to:

e2iπft
sin[2πkt]

sin[2πkδ̃]

[
1− e2iπf(δ−δ̃)

]
e2iπk(δ̃−t)sign(f) (11)

where sign(f) = 1 if f > 0 and sign(f) = −1 if f < 0.

Now, let us consider the mean square reconstruction error

defined by ε2
δ̃
(t) = E[|X(t) − X(δ̃)(t)|2]. From (11), ε2

δ̃
(t)

can be expressed as a function of δ̃ − δ:

ε2
δ̃
(t) =

∫∞

−∞

∣∣∣ sin[2πkt]
sin[2πkδ̃]

[
1− e2iπf(δ−δ̃)

]∣∣∣
2

sX(f)df

= 8
(

sin[2πkt]

sin[2πkδ̃]

)2 ∫∞

0
sin2

[
πf(δ − δ̃)

]
sX(f)df

The reconstruction is not errorless except when δ̃ = δ. Simi-

larly we can develop the expression of the power of X(δ̃)(t):

E

[∣∣∣X(δ̃)(t)
∣∣∣
2
]
= 8

sin2[2πkδ̃]

∫∞

0
(sin2[πkδ̃] cos2[πk(2t− δ̃)]

+ sin[2πkt] sin[2πk(t− δ̃)] sin2[πf(δ̃ − δ) + πkδ̃])sX(f)df
(12)

showing that the power of X(δ̃)(t) depends on t so the result

is not stationary, except when δ̃ = δ. In this case, the expres-

sion in (12) simplifies using trigonometry formulas, to give

E
[∣∣X(δ)(t)

∣∣2
]
= E

[
|X(t)|

2
]
=

∫∞

−∞ sX(f)df (which does

not depend on t) as expected by definition of (1).
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