

To link to this article : DOI:10.1007/s00371-016-1286-0
URL : http://dx.doi.org/10.1007/s00371-016-1286-0

To cite this version : Zhu, Minhui and Morin, Géraldine and Charvillat,
Vincent and Ooi, Wei Tsang Sprite tree: an efficient image-based
representation for networked virtual environments. (2016) The Visual
Computer : International Journal of Computer Graphics, 2016. pp. 1-18.
ISSN 0178-2789

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17157

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78386208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sprite tree: an efficient image-based representation for networked
virtual environments

Minhui Zhu1
· Géraldine Morin2

· Vincent Charvillat2
· Wei Tsang Ooi1

Abstract We propose a new and efficient image-based rep-

resentation for networked virtual environments, called the

sprite tree. A sprite tree organizes multiple reference images

efficiently and compactly for accelerating the rendering of

complex virtual scenes. Using our basic construction and

rendering methods, the results show that a sprite tree can

efficiently organize the pixels from hundreds of distinctive

reference images and accelerate the rendering of a complex

scene. Furthermore, we propose the sprite view similarity to

(i) largely reduce the lighting artifacts in the rendered images,

and (ii) significantly reduce the redundancy and the tree size

with little loss of the visual quality.

Keywords 3D image warping · Image-based rendering ·

Remote rendering · Networked virtual environments

1 Introduction

Networked virtual environments (NVEs) have several popu-

lar applications such as multiplayer online games (e.g. World

B Minhui Zhu

minhui7zhu@gmail.com

Géraldine Morin

Morin@enseeiht.fr

Vincent Charvillat

Vincent.Charvillat@enseeiht.fr

Wei Tsang Ooi

ooiwt@comp.nus.edu.sg

1 National University of Singapore, Singapore, Singapore

2 University of Toulouse, Toulouse, France

of Warcraft1, League of Legends2), social virtual worlds

(e.g. Second Life3), and virtual heritage (e.g. Google Cul-

tural Institute4). These modern NVEs have exhibited several

challenging features. First, they are displaying more and

more densely distributed 3D models. When these objects

could have significantly complex geometry, the traditional

visibility culling techniques (e.g. view frustum culling) can-

not reduce the rendering complexity enough. For example,

the Lucy statue5 is scanned and modeled with more than 28

million polygons. Second, modern NVEs may allow users

to create or alter the 3D models in real time, such as in

Second Life.6 It then requires a high bandwidth to trans-

mit these models for real-time updates. For example, it

requires 324.8 s to download the highly compressed 81.2

MB Thai Statue model7 [42] with an average bandwidth of

2 Mbps. Third, modern NVEs may need to support thou-

sands or millions of concurrent users. For example, as a

massively multiplayer online game (MMOG), League of

Legends reported over 7.5 million concurrent players during

each day’s peak play time.8 Fourth, modern NVEs should be

accessible by mobile devices. Compared with PC machines,

ordinary mobile devices are usually equipped with small dis-

play screens and without high-end graphics hardware, run

under a low bandwidth and with limited battery capacities.

These devices may not be fully capable of rendering a virtual

1 http://battle.net/wow/.

2 http://www.leagueoflegends.com.

3 http://secondlife.com.

4 https://www.google.com/culturalinstitute/.

5 http://graphics.stanford.edu/data/3Dscanrep/.

6 http://secondlife.com/.

7 http://graphics.stanford.edu/data/3Dscanrep/.

8 http://www.riotgames.com/our-games.

scene in real time. It may also be expensive or time consuming

to download the complex 3D models over wireless networks.

Finally, some NVEs may be copyrighted and the download-

ing of 3D models in the scene is not allowed, especially since

3D printing became popular. A possible scenario is that a vir-

tual museum may need to display the ancient objects in 3D

without transferring their 3D forms to the viewers over the

network.

The most common 3D representation is mesh based: in

this context, 3D meshes are transferred to the client for

local rendering with good visual quality and low interaction

latency. But these meshes may require a high bandwidth for

real-time downloading, such as the Thai Statue mentioned

above. Even being downloaded, high-end graphics hardware

is needed to render them with an acceptable frame rate.

Such context is not adapted for light client, as bandwidth

and rendering capacities may be insufficient. Additionally,

it does not support copyrighted meshes. Another popu-

lar solution is the video-based approach. Relying on the

server for rendering, encoding, and streaming each frame,

the clients including the mobile devices explore the virtual

scene like watching a video remotely without much effort

other than decoding and displaying. It requires a reason-

able bandwidth comparable to video streaming and suits

the copyrighted 3D models. As for mesh-based approach,

the workload between the server and the client is unbal-

anced: in a video-based approach, workload is pushed on

the server. The NVEs may need to be deployed with pow-

erful remote servers. The servers render for each client and

download video frames that are usually not reusable on the

client side.

We opted for a third, image-based, solution. It repre-

sents the 3D models as image samples, for example, a

planar impostor [1] (also called a billboard) or image with

its depth map (called a depth image). The complexity of

image-based rendering algorithms [24,26] does not depend

on the scene complexity and resolution, unlike rendering

through a geometry-based rendering pipeline. For this rea-

son, it is much cheaper for the clients to render with these

image samples than the 3D models. This solution has simi-

lar advantages to the video-based solution, but the workload

is balanced between the server and the client. It can eas-

ily adapt to the increasing number of 3D models in a scene

without overloading either the server or the client for three

reasons.

First, these image samples are reusable on the client side.

They can also be shared among concurrent users exploring

the same virtual scene, since the users may share the viewing

content during their navigation.

Second, the clients, even the resource-constrained devices,

can take a reasonable amount of work via image-based ren-

dering techniques.

Third, the copyrighted and/or highly complex 3D mod-

els can be transmitted using image samples, while other

3D models in the scene can still be rendered with other

techniques including the mesh-based and video-based

solutions.

Despite these features, traditional image-based solutions

do have their limitations in efficiency. They may need a large

number of image samples [4,14] to show a complex virtual

scene with acceptable visual quality, increasing the memory

and bandwidth requirements for exploring the NVEs. It may

also become computationally intensive if too many image

samples have to be rendered at the same time. Therefore,

we propose a new and efficient image-based representation,

named the sprite tree, for the acceleration of rendering in

modern NVEs. Specifically, a sprite [32] is a group of image

pixels extracted from a depth image, and a sprite tree is an

octree storing and organizing the sprites. The main intuition

for proposing the sprite tree is to efficiently organize and

utilize a number of image samples to accelerate the rendering

of a complex virtual scene. One main application of the sprite

tree is the following remote rendering system. The server

maintains a sprite tree and streams the sprites to the clients

upon requests. There is no need to constantly render or stream

the geometry data for each client, and thus the server can

support more clients. The clients, resource-constrained or

not, can cache and reuse the sprites in a local sprite tree

for the local rendering, reducing the interaction latency and

server-side rendering workload.

Our main contributions are summarized as follows.

– We propose the sprite tree to significantly accelerate the

rendering of static 3D models in a complex virtual scene.

The sprite tree can efficiently organize the pixels from

hundreds of distinctive reference images for the acceler-

ation of rendering. The proposed view similarity criteria

reduce the redundancy in the sprite tree by inserting only

the distinctive reference images. Moreover, traditional

visibility culling techniques are combined with the sprite

tree.

– Further, the sprite view similarity measure avoids the

lighting artifacts in rendered images, by considering

both visibility and lighting conditions for selecting valid

sprites for rendering. We also use this measure to further

reduce redundant sprites in the sprite tree.

2 Related work

In this section, we first review classical image-based tech-

niques and representations that use explicit geometry same as

our work. Second, we review classical approaches for remote

rendering.

2.1 Image-based rendering

Image-based rendering is a process of sampling and recon-

struction of the world. But pure image-based representations

usually require a huge number of image samples, such as

Lumigraph [12] and the light field [19]. To make the data

size manageable, a commonly used strategy is to introduce

geometry. We now review several representations introduced

with different types of geometry.

Maciel and Shirley [23] introduced the idea of planar

impostors, also called billboard. A planar impostor is easy to

generate and cheap to display, but due to the flatness, it causes

visibility errors and can be easily detectable when the viewer

moves around it. A way to tackle the visibility issue is to

make image impostors view independent. Decoret et al. pro-

posed billboard clouds [9]. They optimize image impostors

and choose a set of representative planes given a geomet-

ric error threshold. But pre-processing such impostors takes

long time, and a significant amount of texture memory is

required for storage. Our sprites are similar to image impos-

tors, but they are not rendered on well-chosen quadrilateral

plane as a texture. It is extracted from a reference image in

a straightforward way (see Sect. 3.2). Moreover, a sprite can

be warped [24–26] to different views without suffering the

visibility issue of planar impostors. Viewers are hence not

constrained to certain viewing cells.

Shade et al. [33] employed image impostors in their rep-

resentation called hierarchical image cache to accelerate

walk-through in virtual environments. The image impostors

are stored in a BSP tree, reused as long as they are valid

according to an error metric, and updated once they become

invalid. Schaufler et al. [31] proposed a similar image cache

but with a different space partitioning tree, a kd tree. We also

use a spatial partitioning tree. Only distinctive sprites are

added to a sprite tree, and selection of sprites is enable for

the visibility and lighting issues instead of updating. For this

reason, sprites do not need frequent updates like the hierar-

chical image cache when the view changes rapidly.

Textured Depth Mesh (TDMs) can be seen as impostors

augmented with 3D information, also called 3D impostors

or meshed impostors [39]. It can be seen as a simplified

mesh mapped with detailed scene appearance information

from depth images. Although TDMs offer a better recon-

struction and solve the visibility issue, it may have rendering

artifacts called the rubber sheet effect [10]. To address such

artifacts, multi-mesh impostors (MMI) [10] control the visi-

bility errors by generating multiple layers of textured meshes

with dynamic updates. To eliminate the visibility errors,

Jeschke and Wimmer [16] present a new algorithm that gen-

erates a TDM with a special error bound metric. Wilson and

Manocha [41] also minimized such errors by sampling the

geometry incrementally, generating an incremental textured

depth mesh (ITDMs). Generating a TDM is usually too slow

to be done in real time, and thus TDMs are pre-processed.

Ghiletiuc proposed a real-time creation of TDMs [11]. The

TDM is able to present details like contours better than

impostors and sprites. Unlike TDMs, our sprite tree does

not rely on a mesh, that is, the underlying structure is not

piecewise linear. But, because of this ad’hoc piecewise linear

mapping, creating TDMs requires heavier processing than

creating sprite trees. In addition, TDMs are used efficiently to

model urban scenes, including mostly flat objects like build-

ings and streets. Objects like plants require numerous small

polygons, and thus are difficult to be represented as meshes.

By contrast, the sprite tree has no such constraints, as we

shall see in Sect. 5 in particular on the San Miguel scene.

3D Image Warping [24–26] is widely adopted for image-

based rendering systems [36,38,43]. This technique has

occlusion errors [26]. To reduce these errors, multiple ref-

erence images [24] can be taken from different views and

warped to the same target view. These reference images must

be carefully chosen [3,14,24,37] so that mixing their warped

views compensates the missing information in single frames.

On top of using warping from multiple sprites, we filter

sprites to be warped depending on views to ensure coher-

ent lighting for the target view (see Sect. 4). Layered Depth

Image (LDI) [32] offers an alternative way to reduce occlu-

sion errors. LDI generalizes the depth images by associating

each pixel location with possibly several depth pixels. It can

still be warped like a normal depth image [29]. Meanwhile,

it reduces artifacts due to single-layered depth image. But

current hardware does not support the maintenance of mul-

tiple samples along the viewing ray per pixel. Moreover, the

fixed resolution of the LDI is a limitation. To address this

problem, Chang et al. [4] proposed the LDI tree. The LDI

tree organizes the LDIs into an octree, and coarser versions

of the pixel are also added to the parent octree nodes to get

a multi-resolution representation. We also adopt 3D image

warping and organize samples using an octree. Figure 1 illus-

trates the relations between a sprite in the sprite tree and an

LDI in the LDI tree, by showing two sprites (9 pixels and

4 pixels respectively) and their corresponding LDIs. In an

LDI, pixels are orthographically projected onto one side of

its bounding box, choosing the axis-aligned plane with the

closest orientation. Pixels projected to the same LDI grid

location and also from the same surface are merged, elimi-

nating redundant samples. Once projected, a pixel cannot be

traced back to the view it originates from. As a comparison,

sprites and their associated pixels are view dependent. We

reduce redundancy from the source, that is, only dissimilar

images or sprites are inserted (see Sects. 3.3 and 4.2).

The following disadvantages of the LDI and the LDI tree

(mentioned by their authors) motivated us to propose the

sprite tree for rendering complex 3D scenes. First, pixels

undergo two resampling steps from the input image to out-

put image, one at the construction stage and the other at the

Fig. 1 An illustration of an LDI [4] and two sprites (used in our

approach)

rendering stage. This potentially degrades the image quality.

Qu et al. extended LDI to overcome this disadvantage with

the help of O-buffer [30]. It records the position of pixels in

LDI and delays the resampling at the construction stage to

the rendering stage. It, however, involves storing the origin

information for each pixel and applying a two-step warp-

ing algorithm. For our representation, we rather choose not

to resample. Second, merging pixels at the same location

only works for diffuse surfaces with little view-dependent

variance. Lischinski et al. [21] proposed to use a second col-

lection of LDIs for the view-dependent part of the scene. This

method increases the complexity to create, maintain, and use

the LDIs. We do not carry out such separation for sprites.

Instead, we choose to handle this problem by selecting only

qualified sprites for the target view (see Sect. 4.2).

2.2 Remote rendering

Based on what data are transmitted from the server to the

client, we review existing work on remote rendering in terms

of the following three approaches: (i) mesh-based approach;

(ii) video-based approach; and (iii) image-based approach.

In mesh-based remote rendering, the server streams the

3D meshes to the clients for local rendering. Since the down-

loading time depends on the network bandwidth and the

mesh size, large meshes are not well suited for interactive

remote rendering. One solution is progressive meshes [13],

which transmits a coarser mesh and progressively refines the

geometry. Although the user can view a simple mesh almost

immediately, progressive meshes have to be generated by

preprocessing. In addition, progressive meshes are not suit-

able for scenes with dense and separate objects, since they are

object-based representation. Anyhow, mesh-based approach

assumes that the clients have enough rendering capability

and the meshes are allowed for downloading, which are not

always true.

In video-based approach, a high-end server renders the

3D models and streams the resulting videos to the remote

clients [17]. It relies on server-side rendering and effi-

cient video compression, making the scene visualization

easy for mobile devices. Videos generated from a virtual

scene can also benefit from additional information, for

example, the information on the rendering process can be

used to predict [7,27] or calculate [6] the motion vectors.

On the other hand, it is not a scalable solution due to

the heavy server-side rendering and the client-side interac-

tion delay. In other words, the server can be easily over-

whelmed if there are too many clients requesting at the same

time.

Image-based approach can alleviate the burden of con-

current clients on the server side. Image-based rendering

techniques reduce the complexity of 3D rendering by replac-

ing parts of the geometry with images. The difficulty is

to trade off between the rendering quality and the inter-

action latency. 3D warping [24–26] is often used in this

approach. Specifically, the server renders the 3D model into

depth images (called reference images), which are trans-

mitted to the client for local warping. Light clients can be

benefited significantly from this kind of remote rendering

systems [5]. To reduce occlusion errors, Mark et al. [24]

chose two reference images, respectively, near a previous and

a future reference view. But, as they mentioned, occlusion

errors cannot always be avoided by two reference images.

Hudson and Mark [14] proposed to use three sets of ref-

erence images surrounding the user’s view, warping twelve

images per view, while some of the images may not be use-

ful. Shi et al. [37] proposed to predict a future reference

view to be used with a main one so that the warping errors

can be compensated. The quality of the prediction, how-

ever, depends on the actual future camera motion. Instead

of using reference views along the user path, Bouatouch et

al. [3] proposed a camera placement algorithm to capture

a relatively small set of reference images so that occlusion

errors are avoided. Their approach suits street networks, but

is difficult to generalize to other scenes. Different from the

above work, we propose to store many reference images in

terms of distinctive sprites in a sprite tree and select carefully

only those sprites useful to the target view for warping; the

sprite filtering both improves the rendering quality and lim-

its the complexity of the warping computation. The reference

views can come from the user movement or from previously

well-chosen reference views [3,14,24,37]. As image samples

accumulated in a sprite tree, there are many more images

to choose from for fewer occlusion errors, compared to a

few chosen reference images. Similar to the camera place-

ment method [3], we also choose a relatively small set of

images; however, we rely on the user movement history

and our filter determines what image samples are actually

stored.

3 Sprite tree

We now present the structure of sprite tree. Following that,

we introduce the basic methods to build a sprite tree with

controlled redundancy and to render with a sprite tree.

3.1 Structure

A sprite tree is a set of sprites stored in an octree. As explained

in Sect. 2.1, image-based representation stored in hierarchical

spatial partitioning tree has been proposed for rendering, for

LDIs [4,32] and billboards [31,33]. In this section, we detail

the structure of the proposed sprite tree.

The initial sprite tree is a preprocessed octree, used to

subdivide the 3D space of the scene for frustum culling. It

means that the root node of this octree has the bounding box

of the scene. Only the leaf nodes will be inserted with sprites.

A sprite is a group of image pixels with depth rendered

from the same view: each sprite corresponds to a view (ren-

dering parameters are stored in the indexed view) and consists

of an array of depth pixels. Each pixel stores its original index

(i.e. coordinates in the image which it belongs to), color and

depth, as shown in the following representation:

DepthPixel:

Index: integer

Color: 32 bit integer

Depth: float

Sprite:

View Index: integer

Pixels[N]: array of DepthPixel

All the depth pixels in a sprite are located in the same

leaf node, which is how they are grouped into one sprite (see

Sect. 3.2). With the root bounding box determined by the

scene, the depth of the octree determines how much scene

information the sprites in the same leaf node could represent.

An octree with more levels can lead to better accuracy of

the frustum culling, but it also decomposes an image into

smaller sprites, leading to more processing in the insertion

and selection processes. In the experiments, we set the level

of the sprite tree to be seven.

Sprites in the same leaf node are extracted from different

reference images and thus have different views. Depending

on the views, these sprites may be rendered with different

amount of scene details for the geometry contained by this

leaf node. To render the geometry in a particular leaf node

from a target view, only sprites with a certain depth range

are sufficient and hence required. This depth range should be

comparable to the depth range of the leaf node perceived from

the target view. For this reason, we store the depth ranges of

sprites. There are two reasons why we prefer the depth range

to the sampling resolution or density. First, the depth range

can be directly acquired from the depth map. Second, it can

be easily estimated for any leaf node visible to the target

view for selecting suitable sprites. Furthermore, in order to

avoid storing the depth range of each sprite and searching all

of them, we adopted another method that assigns levels to

sprites.

Specifically, sprites are distinguished by levels within each

leaf node according to the minimum depth values of their

pixels. Note that the depth is the actual linear depth in the

viewing space not the inverse depth stored in the Z-buffer.

The viewing range [ZN, ZF] defined by the near plane ZN

and the far plane ZF of the camera is divided into a fixed

number of uniform sub-ranges, each of which corresponds

to a level. A sprite, once created, will be stored on the level

whose sub-range its minimum depth value falls into. In this

way, given a desired depth range, we can directly refer to the

corresponding levels that cover this depth range to retrieve

sprites. Besides the minimum depth values of a sprite, the

maximum depth or the average depth could also be used for

this purpose.

3.2 Inserting A reference image

We now explain how the sprites from a reference image are

inserted into the sprite tree.

Before the insertion of a reference image I , an octree

is built for the scene as the initial empty sprite tree (see

Sect. 3.1). We project each pixel x in the image I into the 3D

space by Eq. 1 presented by McMillan [26], where C is the

camera position, P is the mapping matrix from image space

to rays, and δ is the disparity.

X = C + Px
1

δ
. (1)

The sprite tree is traversed from the root to leaf nodes for

each projected pixel. By checking whether the bounding box

of the traversed node contains the 3D location X of pixel x ,

we find the leaf node o that the pixel x falls within. After

all the pixels from image I are processed in the above way,

those pixels falling into the same node are grouped into a

sprite. The minimum depth of these pixels is also computed

for assigning levels to sprites. We denote a sprite as s(o, v),

in which o indexes the leaf node and v is the view of image

I . Then, we locate the level l(o, v) for the sprite s(o, v) with

the minimum depth.

This insertion process performs two tasks, which decom-

poses the image into sprites and attaches these sprites to the

octree leaf nodes they are located in. It would be possible

to decompose images based on the bounding boxes of the

objects, to shorten the traversal of the tree, or organize sprites

by a different space partitioning tree such as a k-d tree. We

Fig. 2 An example of a reference view rendered into a background

image and a foreground image. a Foreground image, b background

image, c–f are four of the sprites created after inserting the foreground

image into the sprite tree

choose the octree for its simplicity and decompose the images

naturally using the octree subdivision.

Note that we separate the objects in the scene into two

categories: (i) the background objects, such as the walls, win-

dows, pillars, and the ground, which have simple geometry;

and (ii) the foreground objects, such as the tables and plants,

which have much complex geometry than the background

objects. We only insert pixels from the foreground objects

using the method described above. The reason is that these

background objects can be rendered easily, but they may gen-

erate a large number of pixels. The cost of storing pixels

from background objects is not worth the savings in ren-

dering cost. After such separation for the San Miguel Model

(see Sect. 5.1) used in the evaluations, the foreground objects

contain about 90 % of the geometry in the whole scene. It

means that 90 % of the geometry will be replaced with sprite

tree for rendering. To separate the pixels from foreground

and background objects, we render them separately into two

depth images using multiple render buffers. The foreground

image is used for insertion, and the two images are merged for

display. With this setting, a sprite tree can be built by servers

or capable clients without interrupting their rendering tasks.

Figure 2a, b shows an example of a reference view ren-

dered into a foreground image and a background image. After

inserting the foreground image into the sprite tree, four of the

sprites created are shown in Fig. 2c–f. Note that these sprites

are only displayed as images. As mentioned in Sect. 3.1, the

pixels in any sprite are stored sequentially as an array.

3.3 Redundancy control in building sprite tree

Since any image rendered in the scene can be inserted into the

sprite tree, it is necessary and critical to control and reduce

the redundancy introduced by inserting images from similar

views. For example, if the images are captured from a user

trace, successive views along the trace are usually similar

due to the spatial and temporal coherence; thus, inserting all

of them would lead to a large amount of redundancy in the

sprite tree. One straightforward method is to insert dissimi-

lar images. We, therefore, propose a simple view similarity

measure for this purpose. Note that, we will use the phrases

“inserting view(s)” and “inserting image(s)” interchangeably

from now on.

We define the view similarity by two criteria: (i) the dis-

tance d(v1, v2) between the camera positions of two views

v1, v2 is less than threshold ε; and, (ii) the angle a(v1, v2)

between their viewing directions is less than another thresh-

old θ . In other words, two views are considered similar if they

are spatially close and looking in similar directions. Accord-

ing to these two criteria, only dissimilar views are used for

building the sprite tree. By adjusting θ and ε, we control the

redundancy and the size of the sprite tree.

This view similarity measure is a simplistic measure that

is cheap to compute, since it does not consider the scene com-

plexity or the existing sprites. In Sect. 4.1, we will propose

a more sophisticated way to insert reference images by con-

sidering the similarity between the sprites to be inserted and

the existing sprites based on the sprite view similarity mea-

sure. For comparison in the evaluations, we will refer to the

insertion method based on the view similarity as view-based

insertion and the insertion method based on the sprite view

similarity as sprite-based insertion.

3.4 Rendering with sprite tree

We now introduce how to render a target view with a sprite

tree. Given a target view, the process starts with the frustum

culling. From the root node, only those children nodes not

culled will be traversed recursively until that the leaf nodes

are reached. After reaching a leaf node, the minimum and

maximum depth values of the node to the target view are

computed through its bounding box. Each of the depth values

corresponds to a level. Sprites on these two levels and the

levels in-between are selected and considered adequate to

represent the geometry inside the node for the target view. By

comparing the levels first, we ensure that the pixels used for

warping are originally rendered at a comparable depth, that

means, a comparable resolution. These selected sprites can

all be used to render the target view, but not all of them may

be useful in terms of reconstruction. To avoid unnecessary

warping, one basic decision can be made according to the

visibility of a sprite as a planar billboard using the back-face

culling technique.

Figure 3 shows an illustration of this technique. The plane

represents a sprite s(o, v) in the in-view node o, and it has a

fixed orientation n which is the reverse viewing direction of

its sprite view. We compute the product of the vector n and

the vector r which points from the position of the target view

vt to the center of the node o. If the product n · r < 0, the

Fig. 3 An illustration for determining the visibility of a sprite in an

in-view node

sprite is considered visible from the target view vt , otherwise

it is discarded. These visible sprites are send to the GPU for

warping. The warping is done as proposed by McMillan [26]

but is applied to sprites rather than images.

After warping, the warped sprites are merged with the

background image rendered with the background geometry

on GPU before display.

There is one possible drawback in the above rendering

process, that is, the lighting conditions in different sprites are

not considered for selecting adequate sprites. Warping sprites

with different lighted colors to the same surface may lead to

lighting artifacts due to the inconsistency. We, therefore, pro-

pose the sprite view similarity to consider both the visibility

and the lighting condition. For comparison, we will refer to

the above rendering method using the back-face culling as

culling-based rendering and the improved method based on

the sprite view similarity as similarity-based rendering. In the

evaluations, we will show the lighting artifacts in the culling-

based rendering and that the similarity-based rendering can

largely reduce such artifacts.

3.5 Sprite tree for NVE

NVEs are displaying more and more 3D models that could

have significantly complex geometry in the viewing frus-

tum. When the traditional visibility culling techniques cannot

reduce much geometry complexity, they can still work well

with the sprite tree. More importantly, the storage, render-

ing cost and bandwidth consumption of using the sprite tree

depend on the size of the sprites instead of the complexity or

the number of 3D models in NVEs. Additionally, in case of

real-time changes to the objects in NVEs, sprites can be added

or removed conveniently from the sprite tree with only certain

specific sprites related to the changes to be transmitted. While

NVEs can have thousands or millions of concurrent users, a

sprite tree can be shared among users and cached to prevent

the server from rendering the same static scene repeatedly

for the users. Mobile clients can also access NVEs using the

sprite tree without the need of high-end graphics hardware or

high bandwidth. Last but not least, NVEs with copyrighted

3D models can be rendered by letting the users download the

sprite tree freely.

4 Similarity in sprite tree

An important factor for the performance of a sprite tree

is the selection of sprites. During insertion of reference

images, the view similarity criteria (see Sect. 3.3) detect

when two views are similar. But there could be similar

sprites from views considered dissimilar. Inserting views

without further considering the similarity in sprites poten-

tially increases redundancy in the sprite tree. This redundancy

would increase both the number of sprites selected for recon-

structing a target view and also the storage size required by

the sprite tree. Similarly, selecting a sprite without consider-

ing the similarity between the sprite view and the target view

may lead to inconsistent lighting. That is to say, results for the

approach including the view-based insertion (see Sect. 3.3)

and the culling-based rendering (see Sect. 3.4) can be further

improved in terms of performance and quality.

Having introduced the basic work of the sprite tree in

Sect. 3, we now present how to improve the efficiency of the

sprite tree beyond the performance of regular rendering via a

measure called the sprite view similarity. This measure takes

into account both the visibility and the lighting conditions and

allows two important improvements: (i) sprite-based inser-

tion, we insert only the distinctive sprites rather than a whole

reference image, based on the similarity between the to-be-

inserted sprite and the inserted sprites; (ii) similarity-based

rendering, we select the visible sprites whose lighting con-

ditions are suitable for the target view for the rendering. We

will highlight the performance increase of using the sprite

view similarity measure in Sect. 5.

4.1 Modelling sprite view similarity

The sprite view similarity measures the quality of a sprite

s(v, o) for a target view vt , and is denoted SM L(o, v, vt).

The sprite s(v, o) is generated from view v and corresponds

to the geometry in tree leaf node o. Whereas the view simi-

larity criteria between v and vt (Sect. 3.3) consider the two

views generally regarding the whole scene, the sprite view

similarity considers the two views regarding a node o only.

This measure is twofold: first, we consider the quantity of

shared content (visibility), second, we consider the difference

in appearance (lighting). A sprite captures the appearance of

the 3D geometry in a node, while the complexity of the 3D

geometry in the node is unknown. The performance would

be unpredictable if we compute the similarity based on the

actual geometry. We could compute the simplification of the

geometry based on the actual model and material, but this

Fig. 4 Vectors that affect surface lighting

implies to store and maintain the simplified geometry and

material data along with the sprite tree. We propose instead to

consider a canonical representation, which models the geom-

etry in o and possible surface orientations. We could take a

sphere included in the cell, but, in order to limit the compu-

tational complexity, we quantify the normals by considering

a dodecahedron instead of a sphere. Among the five regu-

lar polyhedrons candidates, the dodecahedron offers a better

trade off between the accuracy and computational cost.

For assessing the difference in visibility: we first set the

visibility F(f, v) = 1 for each face f , if the center point of

face f is visible from the view v; otherwise, F(f, v) = 0.

Similarly, F(f, v, vt) = 1 if the center point of face f is

visible from both views v and vt . Note that F(f, v) and

F(f, v, vt) are the same visibility function that can take dif-

ferent number of views as input variables.

The appearance of the geometry in o depends on the view

because of the lighting. Lighting does affect pixel colors:

when sampling the same surface with the same amount of

pixels from two different views, the color of the surface

might be different enough and cause warping artifacts (see

Sect. 5.2). For each node, its sole dodecahedron is always

placed in the center with a fixed radius and a fixed orien-

tation, which is independent of the views. As such, we can

quantify the difference in appearance of a node from two

views via the dodecahedron. Let f be a face index, where

f = 0, 1, · · · , 11. The three vectors necessary for the com-

putations are N (f), the unit outwards normal vector of the

face f , E(f, v), the unit vector pointing from the center point

of the face f to the viewing position of the view v, and L(f),

the light direction from the center point of the face f to the

light source (Fig. 4). The illumination I (f, v) at the center

point of face f as perceived from v is computed choosing a

lighting model. For example, taking the Phong model [28]

R(f, v) = 2 ·
(
N (f) · L(f)

)
· N (f) − L(f), (2a)

I (f, v) = IA + ID ·
(
N (f) · L(f)

)

+ IS · max
{

R(f, v) · E(f, v), 0
}α

(2b)

Table 1 Examples for the setting of threshold σ

∑11
f =0 F(f, vt) 1 2 3 4 5 6

σ example I 1 2 3 4 5 6

σ example II 1 2 3 3 4 5

where R(f, v) is the computed reflection ray, IA is the ambi-

ent intensity, ID is the diffuse intensity, IS is the specular

intensity, and α is the shininess. Similarly, we also compute

the illumination I (f, vt) at the face f from vt . Note that there

is no need to consider the view-independent intensity in this

computation of the illumination, that is, neither the ambient

component, nor the diffuse intensity when it is not affected

by the light setting such as a headlight.

Finally, we determine a binary sprite view similarity mea-

sure such that SM L(o, v, vt) = 1 if the following criteria

are both satisfied (otherwise, SM L(o, v, vt) = 0):

11∑

f =0

F(f, v, vt) ≥ σ (3)

|I (f, v) − I (f, vt)| < δ, for all f with F(f, v, vt) = 1

(4)

Criterion (3) insures the similarity of visible geometry,

by requiring a minimal number of shared visible faces. Note

that, for dodecahedron, the maximum number of visible faces

is six . Table 1 shows two examples of σ setting: example

I ensures a strict constraint, for which all faces visible from

the sprite view vt also need to be visible from v; example

II is a little looser, which is also used in our experiments.

Criterion (4) bounds the lighting intensity difference of the

shared dodecahedron faces from the two views.

Depending on the above criteria and their thresholds, it is

possible that certain useful sprites could be ignored, which

may lead to certain objects missing from the resulting image.

Since the thresholds can be adjusted to allow sprites with

more appearance or visibility difference to be selected, such

artifacts of missing objects can also be adjusted. The corre-

sponding experiment results are shown in Sect. 5.2.

4.2 Applications to the rendering and insertion

We now introduce how to apply the sprite view similarity

measure for the insertion and the rendering.

Sprite-based insertion For a reference image rendered at

view vr to be inserted into the sprite tree S, the sprite tree S

is traversed for this view vr . We denote the set of visible leaf

nodes from view vr as G(vr). For each node o ∈ G(vr), the

minimum and maximum depth are computed using its bound-

ing box for finding the level l(o, vr) where the sprite s(o, vr)

will be stored. Among the set S(o, vr) of sprites at level

l(o, vr) in node o, we search for a sprite s(o, v) ∈ S(o, vr)

that is considered qualified to reconstruct the sprite view

vr (o), i.e. the sprite view similarity SM L(o, v, vr) = 1. If at

least one of such sprite s(o, v) is found, we say that the sprite

s(o, vr) is redundant to an existing sprite in the sprite tree S

and thus unnecessary to be inserted. We collect such nodes

in the set G(vr , S) = {o|o ∈ G(vr), ∃s(o, v) ∈ S(o, vr),

SM L(o, v, vr) = 1} for which the corresponding sprite

s(o, vr) is redundant; no sprite from vr will be inserted in

nodes in G(vr , S). The other sprites from view vr for nodes

in the set G(vr) − G(vr , S) are inserted. Figure 5 illustrates

the above insertion process. There are two views v1 and v2

in the figure, each having two sprites (one sprite for the red

sphere and the other for the wireframe sphere). If using the

view similarity criteria (see Sect. 3.3), the two views are dis-

similar and all their sprites will be inserted into the sprite tree

as described in Sect. 3.2. But there could be redundant sprites.

For example, the sprites of the wireframe sphere in both views

may be similar enough that one can reconstruct the other. To

insert only the distinctive sprites and avoid the redundancy,

we propose to use our sprite view similarity criteria. After

the sprites s(o1, v1) and s(o2, v1) of the two spheres from the

view v1 are inserted, we can identify that the sprite s(o2, v2)

of the wireframe sphere from v2 is similar and thus redundant

to the inserted sprite s(o2, v1) of the same sphere according

to the sprite view similarity (SM L(o2, v2, v1) = 1). As a

result, the sprite s(o2, v2) is not inserted. By contrast, the

sprite s(o1, v2) of the red sphere is not similar to the inserted

sprite s(o1, v1) and is thus inserted. As such, three sprites

are inserted using the sprite view similarity measure, less

than using the view similarity criteria. In this way, images

can be inserted without considering their view similarities.

Meanwhile, sprites are inserted greedily as long as they are

not redundant. Since only redundant sprites are reduced, the

sprites inserted earlier and capable of reconstructing these

redundant sprites are still preserved in the sprite tree. There-

fore, the visual quality of the output image is not affected

significantly, while the sprite tree is smaller.

Similarity-Based Rendering The rendering process is the

same as that in Sect. 3.4, except that we are replacing the

back-face culling with the sprite view similarity check. In

other words, instead of checking visibility based on the tra-

ditional technique, we measure the sprite view similarity

between the sprite view and the target view. If they are sim-

ilar, the sprite is selected for reconstructing the target view.

Figure 6 shows an example of rendering a target view with

the sprite tree. After locating the octree leaf nodes visible

in the target view, qualified sprites are selected in each leaf

node. Only five leaf nodes are shown in this example, and

their approximate projected areas on the target image plane

are plotted as five red rectangles layered on the image. The

available sprites in these nodes are selectively shown in the

Fig. 5 A scene of two spheres, with two views generating four sprites

Fig. 6 An example of rendering a target view with the sprite tree. The

top image shows five of the sprites for the foreground as an example,

selected (on the side) and warped (in the middle) for rendering the

middle image with our method

five gray dashed rectangles. In this case, one qualified sprite

for each of these nodes is selected (marked by red edges

instead of gray) and warped (represented by red arrows point-

ing from the selected sprite to the corresponding projected

area) to the target view.

4.3 Similarity in NVEs

According to the mobility characteristics [20,34] in NVEs,

there are certain popular areas that users often visit. Even for

areas not so popular, it is likely that multiple users may view

the same part of the scene. Considering the huge number of

concurrent users in NVEs, it is highly likely that high redun-

dancy would exist in sprites without any proper precaution.

Such redundancy in sprites would then unnecessarily con-

sume computation and network resources when using the

sprite tree for NVEs. The sprite view similarity measure that

we propose for the sprite tree will not only (i) prevent such

redundancy from accumulating in the sprite tree but also (ii)

make sure the similarity in NVEs can be used to improve the

quality of the reconstructed image by identifying the more

qualified sprites.

5 Evaluation

5.1 Experiment setup

We now introduce the data sets used in our evaluation, includ-

ing the virtual scene and the user traces mentioned above.

Virtual scene We use a 3D virtual scene San Miguel, mod-

eled by Guillermo M. Leal Llaguno of Evolución Visual,

Mexico. The scene has 2.5 million unique polygons and is

rendered with 10.7 million polygons using the object instanc-

ing technique. We render this scene with a 60◦ vertical field

of view at a resolution of 1280 × 720. A headlight is used

with the camera to light the scene. If placing a camera in the

courtyard, many objects in the viewing direction are densely

distributed within the view frustum, meaning the geometry

complexity is high even after frustum culling. Note that there

are no transparent objects or common graphics effects like

shadows in the rendering of this virtual scene. Based on some

existing techniques [8,15,22], we could apply these effects

to our rendering system in the future.

User trace We use synthetic user traces in our evaluation.

They are generated using human mobility models that con-

tain the mobility characteristics [20,34] (e.g. distributions

of flight length and pause time, popularity of areas) in vir-

tual scenes, such as the SLAW [18] mobility model and the

SAMOVAR [35] mobility model. We used the SLAW model

to generate synthetic user traces. The generation code is avail-

able from the authors9 and BonnMotion.10 In the SLAW

model, there are several parameters that can be adjusted, such

as the size of the scene area, the number of waypoints, the

minimum and maximum pause time of the user, the duration

of the trace, and the number of simultaneous users. We adjust

only these five parameters in the SLAW model according to

the scene San Miguel. Specifically, we make the following

9 http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-mo

dels-download-tlw-slaw.

10 http://sys.cs.uos.de/bonnmotion/

Fig. 7 A waypoint map with 100 waypoints (yellow triangles) gen-

erated by the SLAW mobility model, shown from the top view of the

courtyard in the model San Miguel. The white dashed line shows the

trajectory of one simulated user

settings: (i) we restrict the user movements to the courtyard

because there are much fewer objects outside that area, and

thus the size of the scene area is set to the size of the court-

yard; (ii) the number of waypoints is set to 100, and Fig. 7

shows an example of 100 waypoints generated by SLAW for

the courtyard area of the scene San Miguel; (iii) the mini-

mum and maximum pause time are set to 10 seconds and

60 seconds respectively; and, (iv) the duration of the trace

is set to one hour, and the user’s speed is fixed to 1 m/s. As

an example, Fig. 7 shows one user trace simulated with the

above setting.

Reference-based visual quality assessment The visual qual-

ity of the reconstructed views is an important performance

measure in our evaluations. Traditional image quality metrics

such as PSNR and SSIM [40] are not suitable for assessing

reconstructed images by 3D image warping [2]. We propose

to assess the visual quality by quantifying how many pixels

are reconstructed for a target view. This approach requires

to compare the reconstructed image with the ground truth

image rendered with geometry. We simply count how many

pixels in the ground truth image are matching in the recon-

structed image after rendering a target view vt with sprite

tree S, that is to say, we count in the reconstructed image,

the number W (vt , S) of pixels whose depth values match the

depth values of their corresponding pixels in the ground truth

image. For normalization, this number is divided by the total

number Z(vt) of pixels in the ground truth image. This com-

putation of reference-based visual quality for reconstructing

a target view vt with sprite tree S is

Q(vt , S) =
W (vt , S)

Z(vt)
. (5)

Table 2 Performance

measurements of the rendering

methods for the sprite tree and

their relative differences

Rendering method Nwarped Tframe (ms) Qvisual

Culling-based (A) 3, 765, 586 44.30 0.81

Similarity-based (B) 1, 317, 264 38.88 0.76

Relative difference (A−B
A

) (%) 65 12 6

Nwarped is the average number of pixels warped for one target view; Tframe is the average frame time; and,

Qvisual is the average visual quality

We will call this assessment Qvisual in evaluations.

Note that for the similarity-based rendering and sprite-

based insertion in the following evaluations, threshold δ =

0.15 and the setting example II of threshold σ in Table 1 are

used for the sprite view similarity measure.

5.2 Similarity-based vs. culling-based rendering

We first compare the two rendering methods of the sprite

tree: similarity-based (in Sect. 4.2) and culling-based (in

Sect. 3.3). To compare the two methods, we render 210

dissimilar target views selected from a five-users mobility

simulation, with the same sprite tree built using the view-

based insertion method with view similarity thresholds ε = 2

and θ = 20 (see Sect. 3.3). The visual quality of each recon-

structed image is compared to its ground truth image rendered

with 3D geometry as the reference (i.e. the reference-based

approach, see Sect. 5.1).

Table 2 shows the average number Nwarped of warped pix-

els for one target view, the average frame time Tframe, and

the average visual quality Qvisual of the two rendering meth-

ods. It also highlights the relative difference between the

measurements of the two methods. As shown, Nwarped drops

significantly from 3.7 million to 1.3 million when using the

similarity-based rendering method, which is 65 % fewer,

since this method additionally considers the lighting con-

ditions for the selection of qualified sprites. The rendering

time with the similarity-based rendering is thus 12 % less.

By contrast, the average frame time measured for rendering

the target views with geometry (the ground truth) is 98.70 ms,

which is more than twice the frame time of rendering with

the sprite tree even using the culling-based rendering. The

reduction of qualified sprites also leads to a slight decrease

(about 6 %) in the average visual quality Qvisual, which can

be explained with Fig. 8.

Figure 8 shows one of the target views reconstructed by

the two rendering methods. The visual quality Qvisual of the

two rendering methods is both high (around 0.8) and sim-

ilar, but the rendering of objects is different. In Fig. 8b,

the image reconstructed by the similarity-based rendering

method has higher fidelity to the ground truth image (Fig. 8c),

which can be seen from two details including the ivy leaves

on the wall and the three chair backs around the table. In

general, the rendered objects in Fig. 8b have no notice-

Fig. 8 An example of a reconstructed view using the culling-based

rendering and the similarity-based rendering with the same sprite tree. a

Culling-based rendering, Qvisual = 0.84, b similarity-based rendering,

Qvisual = 0.88, c ground truth

able lighting artifacts when compared to those in Fig. 8a,

as the result of avoiding the sprites with unsuitable lighting

conditions.

Therefore, the similarity-based rendering method achieves

better visual quality in terms of lighting conditions and is also

flexible for adjustment.

5.3 Sprite-based vs. view-based insertion

We now compare the two insertion methods. For the com-

parison, we first build two sprite trees with the sprite-based

insertion and view-based insertion, respectively. The ref-

erence images used to build the trees are from the same

synthetic user traces that are generated by the SLAW mobil-

ity model [18], simulating five users (see Sect. 5.1). Second,

we render the same 210 target views (see Sect. 5.2) with the

two sprite trees using the similarity-based rendering method.

The size of the two sprite trees is compared in terms of the

total number Ntotal of pixels in sprites. Their rendering perfor-

mance is also measured and averaged over the target views,

including the average number Nwarped of pixels warped for

one target view, the average frame time Tframe, and the aver-

age reference-based visual quality Qvisual.

Figure 9 shows that the tree size (in pixels) grows slower

when using the sprite-based insertion method, as more and

more reference images are inserted. Moreover, the final tree

using the sprite-based insertion method contains only about

50 million pixels in total, which is much smaller than the

70 million pixels in the other tree. The reason is that the

sprite-based method ignores the redundant sprites while the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

P
ix

e
ls

 (
in

 m
ill

io
n

s
)

Sprite-Based Insertion
View-Based Insertion

Fig. 9 The sprite tree size (i.e. the total number of pixels)

view-based method inserts the dissimilar images without

considering the redundancy of sprites among them.

Furthermore, as shown in Table 3, the number Nwarped

of pixels warped is also 28 % smaller when using the

sprite-based insertion method, since the redundancy among

these pixels (or their sprites) is reduced as well. Only about

0.64 million pixels (fewer than the number of pixels in a

1280 × 720 image) are selected and warped, which is 52

% fewer compared to the 1.32 million pixels (almost two

1280 × 720 images) used by the view-based insertion. The

resulting frame time also decreases from 38.88 to 37.76 ms.

A smaller sprite tree is easier to maintain in memory or

to transfer over the network. With a more compact sprite

tree, the sprite-based insertion method still leads to an aver-

age visual quality (0.72) close to the quality (0.76) of using

the view-based insertion method. An example of a recon-

structed view is shown in Fig. 10, with similar visual quality

achieved: 0.83 (sprite-based) and 0.88 (view-based). It means

that the sprite-based insertion method reduces the size and

the redundancy of the sprite tree significantly with only a

small decrease in visual quality.

5.4 LDI tree vs. sprite tree

We now compare the LDI tree to our sprite tree, using

the sprite-based insertion and similarity-based rendering

methods based on the sprite view similarity measure. The

comparisons are in terms of rendering quality and tree size.

For the visual comparison of rendering quality, we insert

the same images corresponding to three test views into the

two empty trees, as shown in Fig. 11a. The three test views

are looking at the same table and its chairs from the left

(Fig. 11b), the right (Fig. 11c), and the middle side (Fig. 12a),

respectively. They show different lighting conditions of the

rendered objects, e.g. the chair backs and the yellow table-

cloth.

We then compare between the reconstructed images of

the middle test view rendered by the sprite tree and the LDI

tree. Ideally, since the image of the middle view has been

inserted, both trees are expected to fully reconstruct and

render the middle view. As expected, the resulting image

(Fig. 12b) of the sprite tree is highly similar to the ground

truth image (Fig. 12a), but the resulting image (Fig. 12c) of

the LDI tree is not. In the image (Fig. 12c) of the LDI tree,

Table 3 Performance

measurements of the insertion

methods for the sprite tree and

their percentage differences

Insertion method Ntotal Nwarped Tframe (ms) Qvisual

View-based (A) 69,070,185 1,317,264 38.88 0.76

Sprite-based (B) 49,724,435 638,775 37.76 0.72

Percentage difference (
(A−B)

A
) (%) 28 52 3 6

Ntotal is the number of total pixels in the sprite tree; Nwarped is the average number of pixels warped for one

target view; Tframe is the average frame time; and Qvisual is the average visual quality

Fig. 10 An example of a reconstructed view by the similarity-based

rendering with the sprite trees using different insertion methods. a View-

based insertion, Qvisual = 0.88, b sprite-based insertion, Qvisual =

0.83, c ground truth

darker and lighter colors are inconsistently shown on the chair

backs and the tablecloth. Obviously, besides the image sam-

ples from the middle view, samples from the other two test

views are also warped and mixed together in the resulting

image of the LDI tree, leading to these noticeable lighting

artifacts.

Therefore, we can better select the suitable image samples

for the rendering using the sprite tree. When both the suit-

able and unsuitable image samples are available, it is critical

to identify and select only the suitable ones. LDI tree is a

pixel-based representation. Pixels are stored independently

in an LDI without the information of their original views.

Without such information, the LDI tree cannot identify the

suitable image samples similar to the target views. In con-

trast, the sprite tree preserves and uses the view information

of image samples (inserted as the sprites) for the considera-

tion of lighting conditions. As the result, the image samples

from the left and the right test views can be avoided based

on the sprite view similarity measure. In this way, only the

samples from the middle view are correctly selected for the

rendering.

Furthermore, the construction cost of a sprite tree is more

sustainable than that of an LDI tree, because: (i) the con-

struction cost of an LDI tree may depend on which render

pipeline is used, for example, an LDI can be constructed

directly from a ray tracer for synthetic scenes [4,32] but

requires an additional pixel resampling process if using the

traditional rasterization pipeline; (ii) the sprites are simply

the depth pixels from the rendered images, regardless of the

underlying rendering pipeline; and (iii) the main computation

cost of building a sprite tree is to assess the sprite similarity,

which is easily controlled by various similarity parameters

and thresholds.

Although the sprite similarity also takes additional com-

putational cost during the rendering, the cost is linear to the

number of sprites in all the octree leaf nodes within the target

view. Let S(o) be the set of sprites stored in the leaf node o

within the target view vt , and let O(vt) be the set of octree

leaf nodes within vt . The total calculations of the sprite sim-

ilarity based on illumination difference (see Sect. 4.1) are

linear to
∑

o∈O(vt)
|S(o)|. The maximum number of in-view

nodes |O(vt)| is constant if the camera setting and the octree

setting stay unchanged. We also largely reduce the number

|S(o)| of sprites in each leaf node o by inserting only the

dissimilar sprites. In our simulation using the San Miguel

scene with dense objects, there are only about one thousand

leaf nodes in total in an octree of seven levels and about 26

sprites on average in each leaf node. In summary, the compu-

tational cost to identify the similarities among sprites is also

manageable.

Finally for the comparison of the tree size, Fig. 13 shows

the total number of pixels in the sprite tree and the LDI tree,

with the same set of reference images inserted. The size of

the sprite tree grows to 30 million pixels, while the size of

the LDI tree grows to 52 million pixels that is approximately

1.7 times larger. The reasons are that the LDI tree main-

tains the pixel samples of LDIs with multiple sampling rates.

These sampling rates correspond to the octree levels. The

traversal needs to reach only the octree level with the sam-

pling rate comparable to the target view. For each pixel to be

inserted to an LDI in an octree node, it will also be inserted

to the parent LDI in the parent octree node. Such insertion

leads to a huge LDI tree. In contrast, the sprite tree main-

tains the pixels in sprites with only their original sampling

rate.

Fig. 11 Reference views for evaluation: a a top view of the scene with three white arrows indicating the reference views, b left view, and c right

view. The middle view is shown in Fig. 12a

Fig. 12 Rendered images of the middle testing view as indicated in

Fig. 11a: a ground truth image, b rendered with the sprite tree, and c

rendered with the LDI tree

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f
P

ix
e
ls

 (
in

 m
ill

io
n
)

Number of Reference Images

Sprite Tree
LDI Tree

Fig. 13 The total number of pixels in the sprite tree and the LDI tree

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

user0 user1 user2 user3 user4

A
v
e
ra

g
e
 F

ra
m

e
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Sprite Tree

40.39 40.39 40.94 40.37 40.79

3D Geometry

69.27 70.57

64.94

75.70

67.08

Fig. 14 Comparison of the frame time between rendering with the

sprite tree and rendering with the 3D geometry

5.5 Comparison with the geometry-based rendering

We now compare the rendering with the sprite tree and the

rendering with the 3D geometry. Two sets of synthetic user

traces are used, each of which simulates five users and con-

tains about 18,000 views. One set is used to build a sprite

tree with the sprite-based insertion method and the other set

Fig. 15 a, c are examples of rendered images in acceptable quality using the sprite tree. e is an example with more rendering errors. The right

column is the ground truth images rendered with the geometry

is used as the target views of the target users. We render these

target views with the sprite tree and with the geometry of the

virtual scene (as the ground truth). The similarity-based ren-

dering method is used with the sprite tree.

Figure 14 plots the average frame time of the two rendering

methods for each target user. We can see that rendering with

the sprite tree requires about 40 ms on average and is about

30 ms faster than rendering with the geometry. Moreover,

the frame time of using the sprite tree among different target

users is not as fluctuating as that of geometry, because the

complexity of rendering with the sprite tree does not depend

on the geometry complexity as perceived in the target views.

Additionally, the average visual quality Qvisual measured is

0.82, which is acceptable based on our observations.

Figure 15a, c shows two representative frames in accept-

able quality, as the examples of the rendered images with the

sprite tree. As shown, the rendered images are highly similar

to the ground truth images with two exceptions. First, the

rendered objects’ silhouettes are thicker and with more edge

aliasing, for example, the plants in the flowerpot in Fig. 15a.

This is caused by the splatting after a pixel is warped to

the resulting image. We use a simple splatting method by

updating four pixel positions closest to the position of the

warped pixel. In other words, the influence area of any warped

pixel is a 2 × 2 pixel area. Despite this problem, splatting is

an effective technique to resolve the visibility issues in 3D

image warping, although it cannot resolve all of them and

also affects the smoothness of lighted colors on a surface.

Without splatting, there would be more holes in the resulting

image. The LDI tree also adopts splatting. Second, the table

at the bottom left in Fig. 15a has incorrect lighting condi-

tions. This is a compromise made to avoid missing rendered

objects by lowering the sprite view similarity criteria (see

Sect. 4.1) in the similarity-based method. Because the dis-

appeared objects may be more noticeable than the lighting

artifacts in terms of rendering errors. As such, the sprites

with unsuitable lighting conditions are also used, if no better

sprite is available in the sprite tree. As a comparison, Fig. 15e

shows a rendered image with more rendering errors. Com-

pared with the ground truth image (Fig. 15f), it is obvious

that there is a part of plant leaf not rendered in Fig. 15e.

The reason is that there is no sprite qualified for rendering

the missing leaf in this target view. It is possible that a low-

resolution sprite is available, but it is not considered qualified

to deliver satisfying resolution and may lead to many small

holes. In Fig. 15e, the missing plant leaf does not hurt the

harmony in the image.

There is more to discover about the above-mentioned

errors. Besides the close-up views of objects, many errors

happen to those objects near the walls of the courtyard,

according to observations during the experiments. Those

spots are less visited than the center of the courtyard by the

simulated user traces; therefore, less sprites are saved, lead-

ing to the higher probability that qualified sprites could not

be found in the sprite tree. As a comparison, acceptable qual-

ity is achieved for those views popularly visited, such as the

view in Fig. 15c which are around the center of the scene.

5.6 Discussions on real-time graphics effects

We apply the sprite tree method for the dense and static

objects that enrich the context of a virtual scene. Our method

can handle limited real-time graphic effects, like the lighting

effects with a headlight in our simulation or the shadow cast-

ing among static objects. This type of shadows is captured

into sprites and warped properly.

The proposed version of the sprite tree models static

objects and the dynamic part of the scene can be rendered

in a separate pass; moving transparent objects and particle

effects can be rendered in the same separate pass with the

background objects (see Sect. 3.2), as long as they have lit-

tle interaction with the static objects. Another solution, for

handling slow motion, is to time-stamp sprites and select

valid sprites based on the time frame. This could also apply

for predictable lighting changes (e.g. daylight changes in a

natural scene). To support more real-time graphics effects,

we could add additional geometry-related sprite attributes

or even different sprites that help improve the interaction

between sprites and dynamic scene elements. As an example,

for shadow casting, dedicated “depth-sprites” could model

shadow maps, and would be stored in a sprite tree and used

for rendering, similarly to our proposed geometric sprites.

6 Conclusion

We propose the sprite tree as an efficient image-based rep-

resentation to accelerate the rendering in NVEs. We show

how to build a sprite tree by inserting only dissimilar views

and how to render target views with a sprite tree using visible

sprites only. Furthermore, we improve the performance of the

sprite tree in terms of the size, the rendering quality and the

rendering speed by modelling the sprite view similarity. This

measure is used to (i) insert dissimilar sprites without consid-

ering the view similarity for building a compact sprite tree,

and (ii) select suitable sprites considering both the visibil-

ity and the lighting conditions of sprites regarding any target

view. The results show that the sprite tree does accelerate the

rendering of the complex scene even using the basic inser-

tion and rendering methods. After applying the sprite view

similarity measure in the insertion and rendering, not only

the sprite tree is more compact, but also the lighting artifacts

are largely reduced, as compared to our basic methods and

the LDI tree.

In this paper, we have proposed a framework for sprites

modelling static scenes that simplifies the storage and ren-

dering pipeline of the static part of the scene. This proposal

allows users with limited bandwidth or rendering capabilities

to improve their frame rates, benefiting from the rendering of

other users. In future work, we would like to further consider

modelling real-time graphics effects with sprites, as long as

their use remains more efficient than direct rendering, either

in storage space or in rendering time.

Acknowledgments We would like to thank Guillermo M. Leal Lla-

guno of Evolución Visual, Mexico for giving us permission to use the

3D model San Miguel in our work.

References

1. Aliaga, D.G.: Visualization of complex models using dynamic

texture-based simplification. In: Proceedings of the 7th Conference

on Visualization ’96, VIS ’96, pp. 101–ff (1996)

2. Bosc, E., Pepion, R., Le Callet, P., Koppel, M., Ndjiki-Nya, P.,

Pressigout, M., Morin, L.: Towards a new quality metric for 3-D

synthesized view assessment. IEEE J. Sel. Top. Signal Process.

5(7), 1332–1343 (2011)

3. Bouatouch, K., Point, G., Thomas, G.: A client-server approach

to image-based rendering on mobile terminals. Research Report

RR-5447, French Institute for Research in Computer Science and

Automation (2005)

4. Chang, C.F., Bishop, G., Lastra, A.: LDI tree: a hierarchical rep-

resentation for image-based rendering. In: Proceedings of the 26th

Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’99, pp. 291–298 (1999)

5. Chang, C.F., Ger, S.H.: Enhancing 3D graphics on mobile devices

by image-based rendering. In: Proceedings of the Third IEEE

Pacific Rim Conference on Multimedia: Advances in Multimedia

Information Processing, PCM ’02, pp. 1105–1111 (2002)

6. Cheng, L., Bhushan, A., Pajarola, R., Zarki, M.E.: Real-time

3D graphics streaming using MPEG-4. In: Proceedings of the

IEEE/ACM Workshop on Broadband Wireless Services and Appli-

cations, BroadWise ’04, pp. 1–16 (2004)

7. Cohen-Or, D., Noimark, Y., Zvi, T.: A server-based interactive

remote walkthrough. Proceedings of the Sixth Eurographics Work-

shop on Multimedia 2001, 75–86 (2002)

8. Decaudin, P., Neyret, F.: Volumetric billboards. Comput. Graph.

Forum 28(8), 2079–2089 (2009)

9. Décoret, X., Durand, F., Sillion, F.X., Dorsey, J.: Billboard clouds

for extreme model simplification. ACM Trans. Graph. 22(3), 689–

696 (2003)

10. Decoret, X., Sillion, F., Schaufler, G., Dorsey, J.: Multi-layered

impostors for accelerated rendering. Comput. Graph. Forum 18(3),

61–73 (1999)

11. Ghiletiuc, J., Färber, M., Brüderlin, B.: Real-time remote rendering

of large 3D models on smartphones using multi-layered impostors.

In: Proceedings of the 6th International Conference on Computer

Vision / Computer Graphics Collaboration Techniques and Appli-

cations, MIRAGE ’13, vol. 14, pp. 1–8 (2013)

12. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumi-

graph. In: Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 43–54

(1996)

13. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’96, pp. 99–108 (1996)

14. Hudson, T.C., Mark, W.R.: Multiple image warping for remote

display of rendered images. University of North Carolina at Chapel

Hill, Chapel Hill, NC, USA, Tech. rep. (1999)

15. Im, Y.H., Han, C.Y., Kim, L.S.: A method to generate soft shadows

using a layered depth image and warping. IEEE Trans. Vis. Comput.

Graph. 11(3), 265–272 (2005)

16. Jeschke, S., Wimmer, M.: Textured depth meshes for real-time ren-

dering of arbitrary scenes. In: Proceedings of the 13th Eurographics

Workshop on Rendering, EGRW ’02, pp. 181–190. Eurographics

Association (2002)

17. Lamberti, F., Sanna, A.: A streaming-based solution for remote

visualization of 3D graphics on mobile devices. IEEE Trans. Vis.

Comput. Graph. 13(2), 247–260 (2007)

18. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: SLAW: self-

similar least-action human walk. IEEE/ACM Trans. Netw. 20(2),

515–529 (2012)

19. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of

the 23rd Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’96, pp. 31–42 (1996)

20. Liang, H., Silva, R.N., Ooi, W.T., Motani, M.: Avatar mobility

in user-created networked virtual worlds: measurements, analy-

sis, and implications. Multimedia Tools Appl. 45(1–3), 163–190

(2009)

21. Lischinski, D., Rappoport, A.: Image-based rendering for non-

diffuse synthetic scenes. In: Proceedings of the Eurographics

Workshop on Rendering Techniques ’98, pp. 301–314 (1998)

22. Ma, L., Duan, Q.: Image-based rendering of transparent object with

caustic shadow. In: IEEE Youth Conference on Information, Com-

puting and Telecommunication, YC-ICT ’09, pp. 538–541 (2009)

23. Maciel, P.W.C., Shirley, P.: Visual navigation of large environments

using textured clusters. In: Proceedings of the 1995 Symposium on

Interactive 3D graphics, I3D ’95, pp. 95–ff (1995)

24. Mark, W.R., McMillan, L., Bishop, G.: Post-rendering 3D warping.

In: Proceedings of the 1997 Symposium on Interactive 3D graphics,

I3D ’97, pp. 7–ff (1997)

25. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based

rendering system. In: Proceedings of the 22nd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH

’95, pp. 39–46 (1995)

26. McMillan Jr., L.: An image-based approach to three-dimensional

computer graphics. Ph.D. thesis, University of North Carolina at

Chapel Hill, Chapel Hill, NC, USA (1997)

27. Noimark, Y., Cohen-Or, D.: Streaming scenes to MPEG-4 video-

enabled devices. IEEE Comput. Graph. Appl. 23(1), 58–64 (2003)

28. Phong, B.T.: Illumination for computer generated pictures. Com-

mun ACM 18(6), 311–317 (1975)

29. Popescu, V., Lastra, A., Aliaga, D., de Oliveira Neto, M.: Efficient

warping for architectural walkthroughs using layered depth images.

In: Proceedings of the Conference on Visualization ’98, VIS ’98,

pp. 211–215 (1998)

30. Qu, H., Kaufman, A., Shao, R., Kumar, A.: A framework for

sample-based rendering with o-buffers. In: Proceedings of the 14th

IEEE Visualization 2003, VIS ’03, p. 58 (2003)

31. Schaufler, G., Stürzlinger, W.: A three dimensional image cache

for virtual reality. Comput. Graph. Forum 15(3), 227–235 (1996)

32. Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images.

In: Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 231–

242 (1998)

33. Shade, J., Lischinski, D., Salesin, D.H., DeRose, T., Snyder, J.:

Hierarchical image caching for accelerated walkthroughs of com-

plex environments. In: Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH

’96, pp. 75–82 (1996)

34. Shen, S., Brouwers, N., Iosup, A., Epema, D.: Characterization of

human mobility in networked virtual environments. In: Proceed-

ings of Network and Operating System Support on Digital Audio

and Video Workshop, NOSSDAV ’14, pp. 13–18 (2014)

35. Shen, S., Iosup, A.: Modeling avatar mobility of networked vir-

tual environments. In: Proceedings of International Workshop on

Massively Multiuser Virtual Environments, MMVE ’14, pp. 1–6

(2014)

36. Shi, S., Jeon, W.J., Nahrstedt, K., Campbell, R.H.: Real-time

remote rendering of 3D video for mobile devices. In: Proceedings

of the 17th ACM International Conference on Multimedia, MM

’09, pp. 391–400 (2009)

37. Shi, S., Kamali, M., Nahrstedt, K., Hart, J.C., Campbell, R.H.: A

high-quality low-delay remote rendering system for 3D video. In:

Proceedings of the International Conference on Multimedia, MM

’10, pp. 601–610 (2010)

38. Shi, S., Nahrstedt, K., Campbell, R.: A real-time remote rendering

system for interactive mobile graphics. ACM Trans. Multimedia

Comput. Commun. Appl. 8(3s), 1–20 (2012)

39. Sillion, F., Drettakis, G., Bodelet, B.: Efficient impostor manipula-

tion for real-time visualization of urban scenery. Comput. Graph.

Forum 16(3), C207–C218 (1997)

40. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qual-

ity assessment: from error visibility to structural similarity. IEEE

Trans. Image Process. 13(4), 600–612 (2004)

41. Wilson, A., Manocha, D.: Simplifying complex environments

using incremental textured depth meshes. In: ACM SIGGRAPH

2003 Papers, SIGGRAPH ’03, pp. 678–688 (2003)

42. Zhao, S., Ooi, W.T., Carlier, A., Morin, G., Charvillat, V.: 3D mesh

preview streaming. In: Proceedings of the 4th ACM Multimedia

Systems Conference, MMSys ’13, pp. 178–189 (2013)

43. Zhu, M., Mondet, S., Morin, G., Ooi, W.T., Cheng, W.: Towards

peer-assisted rendering in networked virtual environments. In:

Proceedings of the 19th ACM International Conference on Multi-

media, MM ’11, pp. 183–192 (2011)

Minhui Zhu joined the Ph.D.

program in National Univer-

sity of Singapore in 2009. She

received her Bachelor degree in

Computer Science from Xi’an

Jiaotong University, Xi’an, China.

Her research work is in image-

based rendering for networked

virtual environments.

Géraldine Morin is an asso-

ciate professor at the University

of Toulouse in France. Her ini-

tial work is in geometric mod-

eling and she has since pro-

posed different multi-resolution

models, and compact and pro-

gressive representations for 3D

models in multimedia. She also

worked on collaborative analy-

sis and synthesis of images for

reconstructing 3D models from

images (for plants or circular

shapes), on manipulation of 3D

shapes (visual tracking, analysis

of similarity).

Vincent Charvillat received the

Eng. degree in Computer Science

and Applied Mathematics from

ENSEEIHT, Toulouse France

and the M.Sc. in Computer Sci-

ence from the National Poly-

technic Institute of Toulouse,

both in 1994. He received the

Ph.D. degree in Computer Sci-

ence from the National Poly-

technic Institute of Toulouse in

1997. He joined the Computer

Science and Applied Mathemat-

ics department of ENSEEIHT in

1998 as an assistant professor. He

obtained the habilitation degree in Computer Science in 2008 and

is currently a professor at the University of Toulouse, IRIT research

lab, ENSEEIHT Eng. School. He is the head of VORTEX research

team at ENSEEIHT (Visual Objects: from Reality To EXpression). His

main research interests are visual processing and multimedia applica-

tions. Current topics of research include visual object extraction (object

tracking, detection and coding), compositing (augmented reality and

hypermedia), interactive delivery (multimedia adaptation, mobile appli-

cations).

Wei Tsang Ooi is an asso-

ciate professor in the Department

of Computer Science, National

University of Singapore. His

research interest is in the area

of systems support for multime-

dia applications, including video

streaming, graphics streaming,

and networked virtual environ-

ment.

