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Use Cases of Pervasive Artificial Intelligence

for Smart Cities Challenges

Julien Nigon1, Estèle Glize2, David Dupas1, Fabrice Crasnier1, Jérémy Boes1

Abstract— Software engineering has been historically top-
down. From a fully specified problem, a software engineer
needs to detail each step of the resolution to get a solution. The
resulting program will be functionally adequate as long as its
execution environment complies with the original specifications.
With their large amount of data and their ever changing
multi-level dynamics, smart cities are too complex for a top-
down approach. They prompt the need for a paradigm shift
in computer science. Programs should be able to self-adapt on
the fly, to handle unspecified events, and to efficiently deal with
tremendous amount of data. To this end, bottom-up approach
should become the norm. Machine learning is a first step, and
distributed computing helps. Multi-Agent Systems (MAS) can
combine machine learning and distributed computing and may
be easily designed with a bottom-up approach. This paper
explores how MASs can answer challenges at various levels
of smart cities, from sensors networks to ambient intelligence.

I. INTRODUCTION

Nowadays, only 2% of the Earth’s surface is occupied by

cities. In 2050, they will have 70% of the world population

and they will release more than 80% of CO2 emissions.

One of the main challenge for the smart city is to optimize

the activities and the services it offers, while supervising

the energies, and in maintaining a good quality of life for

people who stay at the center of the smart cities concerns.

To customize and optimize the inhabitant’s environment, it is

necessary to equip it with tools, mainly technological, which

provide information about the environment. If Internet of

Things is required to manage efficiently and relevantly a city,

this is not sufficient. We present in this paper an Artificial In-

telligence approach which can improve the decision-making

for energy consumption and human well-being.

Section II introduces the definition of a smart city and

states the challenges relative to a specific thematic, energy.

Section III introduce AMOEBA, a multi-agent AI system

designed to understand and manage pervasive systems which

self-adapt in real-time, thus requiring no explicit control.

Sections IV to VI present use cases of artificial intelligence

at three different scales in the city of the future:

• A city-scale application is the forecast of renewable

energy production in order to optimize energy manage-

ment in the city. Section IV presents how AMOEBA

learns a model of wind power production.
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• At building-scale, section V gives results on automatic

detection of singularities in order to improve the energy

performance of buildings.

• At an individual scale, section VI presents the architec-

ture AMOEBA architecture allow to understand what

are the conditions of the well-being of a human in his

daily life.

II. SMART CITY

Smart cities are a hot topic, very cross-disciplinary and

consequently studied by many authors in various disciplines.

Therefore, many definitions have been proposed, some with

more emphasis on performance, or governance, or technol-

ogy... [10]. Nevertheless, it is generally accepted that smart

cities are using a large number of sensors and data sources,

and although it is not the only constitutive part of a smart

city it is to this aspect that we are interested in this paper.

The development of smart cities involves many areas of

research to define the best ways to deal with and manage

energy, mobility, health governance, etc. Nevertheless, one

of the major differences between a smart city and a ”conven-

tional” city smartly designed is the extensive use of IT and

communication technologies. This difference significantly

alters the way in which we can use the available data

to design the city of the future. Indeed, businesses and

governments have regularly collected large amounts of data

about cities, but these data sets are often characterized by

a relatively small number of variables, low continuity in

time, and are often in limited access [7]. Most of the time,

conventional cities are characterized by data scarcity.

On the other hand, the proliferation of inexpensive sensors

offers the perspective of having a continuous huge amount

of heterogeneous data, with autonomous and distributed

sources, also known as big data [14]. Given this trend, smart

cities will be characterized by their ability to generate big

data, unlike conventional cities. Issues related to the analysis

of these data then change completely. Where the scarcity

and irregularity of data were among the main issues to take

into account, the main challenges become, for smart cities,

to be able to process extensive data, sometimes containing

useless or redundant sources, and to be able to extract useful

information and correlations in real time.

Real time is indeed a really important feature for any

system trying to handle data from smart city. For example, if

data is used to improve transportation by advising travelers of

the best path to choose, according to current flow of people,

the analysis realized by the system must be able to provide

a rapid solution [2]. Even after few minutes, the data may



have changed dramatically. The analysis time must remain

far below these time scales.

In this context, it is difficult to develop algorithms to

establish relevant correlations in this huge stream of data.

The difficulty increases even more when it comes to be

able to process the data indifferently for each relevant field.

Especially in the context of a smart city, where these fields

are numerous (energy, transport, thermodynamics, etc ...),

designing ad-hoc tools for each one seems a rather inefficient

way to go.

In addition to the diversity of fields of study within the

smart city, there are strong constraints even in a same field.

In fact, the smart city is a changing environment, with varied,

nonlinear, and often impossible to predict behaviour. These

various aspects of the smart city imply that to study the smart

city it is necessary to be able to understand complexity. Since

the smart city can be seen as a complex system, it is very

difficult to correctly use the data it provides using predefined

models. Rather, it seems imperative to have systems capable

of learning and self-adapt to effectively process data from

a complex system. So, Multi-Agent Systems (MAS) are a

promising way to make best use of data collected by smart

city. This kind of computerized system are indeed very well

suited to perform distributed computing, and could be used

to perform machine learning too.

III. AMOEBA: A GENERIC AI SYSTEM FOR SMART

CITIES

In this part, we describe the generic AI java tool applied

in the three next use cases, the Agnostic MOdEl Builder

by self-Adaptation (AMOEBA). It builds a model in real-

time using a large amounts of data from a smart city. The

ability to model data behaviour offers many opportunities. A

model, as we build it with AMOEBA, computes an output

value using a set of input values. It could be seen as a

mathematical function f , the set of input as vector x, and

the output as the application f(x). To be able to build

this model, AMOEBA must learn using examples of correct

outputs, as shown in figure 1. This put our approach in the

field of supervised learning [9]. When the correct output is

not known, AMOEBA could be interrogated to provide a

proposition of correct output, as shown in figure 2.

AMOEBA is a MAS using AMAS (Adaptive Multi-Agent

System) approach. It is composed of agents, which are

digital entities able to store information and interact with

their environment. In AMOEBA, their are two kinds of

agents: percept agent and context agent. Percept agents are

in charge of communication with external sources of data,

like sensors or database. Context agents try to define the

context where a specific output would be a good one. To

do that, context agents use data collected by percept agents.

Whenever percepts agents receive new data, context agents

use these data in order to adapt their knowledge and improve

the output provided by AMOEBA.

To be able to memorize contexts where a specific output

is relevant, each context agent owns a set of validity ranges.

A validity range is an interval associated to one percept

agent. A validity range is valid if, and only if, the current

perceived value of the associated percept agent is included

in its interval. If all the validity ranges of a given Context

Agent are valid, the Context Agent is valid too, and its output

is considered relevant. So, the memorized context where the

context agent is valid could be seen as a n-orthotope (or

hyperrectangle) in a space defined by all the data sources, as

shown in figure 3. The set of all current values sent by data

sources could be seen as a point in this space. If this point

is included in the hyperrectangle, the context agent is valid.

Each context agent also owns a local model. When valid,

it asks the local model to compute an output (using the

data collected by a percept agent). The local model could

be implemented by any mechanism able to compute a

regression. In this paper, the presented version of AMOEBA

uses the Miller’s updating regression algorithm[8] as local

model. Using a set of points, the algorithm is able to

compute a linear function. This linear function is defined

by :
∑

p

n=1
(xnvn) + a, with p the number of percepts, xn a

coefficient, vn the current value of a percept n, and a a real

number. Using various local models opens the opportunity to

work on many different issues. Here we perform regression,

but by changing the structure of the local model it is possible

to do other things, such as classification, retaining all the

other mechanisms of the approach.

An important aspect of our approach is the concept of

cooperative situation. An agent is said to be in a cooperative

situation if, and only if all its interactions with other agents

are cooperative. An interaction between two agents is said

to be cooperative if this interaction does not impair the

two agents to perform their tasks. When in a cooperative

situation, an agent executes its nominal behaviour to perform

its tasks [4]. So, for the whole AMOEBA system to work

properly, we must ensure that each agent is in a cooperative

situation as often as possible, so it performs its nominal

behaviour correctly. Hence, each agent must be able to :

• detect when it is in a non-cooperative situation. It is the

detection step.

• adapt itself or adapt its interactions to reach a cooper-

ative situation if needed. By doing so, it must avoid to

create other non-cooperative situation for other agents.

It is the resolution step.

It is through this mechanism of resolution that the agents

of the system adapt themselves and, so, that the whole system

adapts itself. Context agents have few different ways to adapt.

They can adjust their validity range to include or exclude

some values and they can change their proposed output, by

adapting their local model. Moreover, new context agents

can be created. It is trough these creations that AMOEBA,

empty of any context agent at the beginning, is populated.

Finally, context agents could remove themselves, when they

consider themselves as useless.

To understand this mechanism of resolution of non-

cooperative situations, it is important to see how context

agents adapt themselves when they are wrong. First, it is

the detection step. The context agent, when valid, produces

an output. If an oracle value is available, the context agent



Fig. 1. During a learning step, AMOEBA uses incoming data to adapt and
improve itself. Red arrow represent the specific data source that AMOEBA
try to model, labeled as ”oracle”.

compares its output to the oracle value and, if the difference

is too high (higher than an error margin dynamically deter-

mined), the context agent considers that its output was a bad

one. So, it must adapt: it is the resolution step. To adapt,

the agent has two options. It could change its local model

to provide a different output in the same situation, and it

could reduce its validity ranges to be not valid in the same

situation anymore. To choose between these two possibilities,

the context agent considers the difference between its output

and the oracle. If very high (higher than a user parameter),

the agent considers that its output is wrong in this situation,

it is better to avoid to give output next time and so it reduces

its validity ranges. Otherwise, it changes its local model.

Using these mechanisms, AMOEBA is able to organize

itself in order to refine the outputs it offers. It was designed

to be able to scale and operate in real time, thanks to the

use of local interactions between agents that minimize the

combinatorial explosion caused by the large amount of

sources of data.

Beyond the evaluation of AMOEBA properties, there are

many areas for improvements that we want to study. In

particular, we are interested in opportunities to dynamically

detect situations where AMOEBA lacks information to learn

properly. Initially, this could raise alerts to warn that learning

is ambiguous or unstable, and in a second time it could be

possible to try to infer the missing information when there

are correlations between them and other data sources.

Another interesting track is linked to local models of

AMOEBA. We have so far worked with relatively simple

local models (linear regression, fixed value, average ...), but

it might be interesting to use more complex local models,

such as neural networks, MAS or even other instances of

AMOEBA. This would actually perform a form of meta-

learning, in the sense that AMOEBA would seek to deter-

mine for what situations one specific local model provides

the best result.

IV. USE CASE 1: MULTI-AGENT SYSTEM FOR

RENEWABLE ENERGY SERVICE

Smart cities have sustainability issues especially in energy

systems. Indeed, they try to reach a good quality of life

providing energy services to the population such as trans-

portation, artificial light, etc ... At the same time, they aim for

Fig. 2. During the exploitation step, AMOEBA receives a set of data with-
out the oracle. It uses previous learning to provide an output corresponding
to a possible oracle value for the current data set.

Fig. 3. Context agents could be represented as rectangles in a two
dimensions space, defined by two sources of data x and y. Each agent is
composed of two validity ranges, which define its size.

a sustainable local economy and a reduction of the ecological

impact [5].

Renewable energies like hydroelectric, wind or solar

power meet these requirements. First, their sources are

inexhaustible, that is to say the use of the source has no

or few effects on its availability. This characteristic allows

to have a return on the expensive equipment in the medium

term. Then, they are distributed over the Earth and can be

exploited near each city. Moreover, the ecological footprint is

clearly reduced compared with fossil fuels or nuclear power.

The combustion of fossil fuels is the primary source of air

pollution because it releases pollutants like carbon dioxide,

nitrous oxide or methane [3] . As for nuclear power, its waste

is considered as high-level radioactive waste because it is

potentially harmful for tens of thousands to millions of years

[12].

However, the green powers are intermittent: that is to say

their production of energy varies a lot over time according to

climatic variations. To guarantee the balance of the electricity

network (production equals to consumption) and avoid a

black-out of the city, it is necessary to know the production

of these types of energy at least one day in advance, so it is



possible to start up the production of an energy source when

another has a low forecast.

Furthermore, the use of renewable energies in smart cities

fits into the context of fast development of the energy

market. The policy of energy transition to the green growth

encourages the use of renewable energy sources instead of

nuclear power and fossil fuel. More and more countries

in Europe liberalize their energy market adding a financial

aspect in the forecast. Indeed, the producers make an offer

of energy for the next day and have to respect it to avoid

financial fees instead of inject it without any constraint

whenever they wish.

Consequently, the forecast of renewable energy is a main

challenge in order to create a smart city based on sustainable

energy.

The wind power is one of the renewable energies with the

most substantial progression in term of capacity added in the

global consumption of electricity since 2014 [13]. It turns

the force of the wind into electricity and depends upon other

meteorological and mechanical parameters. The conversion

of wind force into the power P produced by a wind turbine

follows the formula :

P = 1

2
ρSv3Cp























ρ is the air density

S is the surface area swept with the blades

v is the wind force coming perpendicularly

to the wind turbine

Cp is the output of the wind turbine

However, in reality it is harder to predict the production.

For instance, the kinetic turbulence could affect the amount

of wind which passes through the wind turbine. The oper-

ating speed of the blades of the wind turbine slows down

when the basket temperature is too high. Another example

is the presence of frost on the blades that could disrupt the

mechanism. Thus, taking into account all these parameters

makes the forecast of production better.

The AI system AMOEBA (presented in section III and

used in this work) takes the desired number of inputs, infers

their importance and combines them to give the right output

which is the forecast of production in this case. To perform

it, it needs historical data set of all parameters at a given

instant and the associated production of the wind turbine:

this system rests upon the learning over data technique.

In addition, it reduces the development time and the un-

certainty compared to a more classical approach of forecast

which creates a model for each meteorological phenomenon

and mixes them. Indeed, AMOEBA avoids the creation of

explicit models and gives a real-time forecast.

Moreover, at a given point, the wind is felt differently

over time due to alteration in the environment (roughness’

land, topography, albedo...) and in the measuring tool

(calibration’s requirement, obsolescence...). Having an

adaptive tool to the environment which could detect

under-efficiency (breakdowns, problem in the measuring

instrument, need for maintenance...) is a great improvement

for the wind power domain. Technically, AMOEBA fills the

requirements to self-adapt to its environment and to provide

a good forecast during the wind farm activity in spite of

environmental or wind farm structure changes.

Fig. 4. Graph of the forecast provided by AMOEBA and the real wind
power of a wind turbine of the wind farm in France during more than 20
hours. The historical data set for learning and resolution steps is made with
data of the force of the wind at the basket of the wind turbine and the
corresponding production from 2015.

The forecast made by AMOEBA and the real production

of a wind turbine in the wind farm, situated in France, over

more than 120 steps of resolution is presented in figure 4.

This forecast has linked the force of the wind received at the

wind turbine and the wind power produced. The normalized

root-mean-square deviation or error (NRMSD or NRMSE)

is 1.92% and the normalized mean absolute error (NMAE)

is 1.44%. The first one indicates there is few unlikely errors

of forecast whereas the last one shows the constant error

made during the resolution is low.

Finally, AMOEBA is promising for treating forecast prob-

lem with real data. But the one of energy production relies

on the meteorological forecasts in order to be used in

advance. That leads to some difficulties for the resolution

as the meteorological forecasts bring inconsistent data to

learn with. Indeed, the error of the meteorological model

generates ambiguous situation during the learning step: two

similar forecasts can give two really different productions.

This problem can be explained on one hand because the pro-

duction of wind power depends upon a lot of parameters, as

shown in the formula above, and each forecast of a parameter

adds its uncertainty. On the other hand, the meteorological

forecasts are made every hour by predicting the conditions

of the last ten minutes of the hour. So, one hour is explained

with a ten minutes forecast. The last but not least, these

forecasts are provided at points of a defined mesh which

aren’t the location of the wind turbine ; the characteristics

of the area are different between them and cause differences



in the meteorological conditions. Some effects like the wake

effect of the wind turbine can also come under consideration.

To anticipate this problem, it should be interesting to find

some patterns where the differences between the forecast

and the real condition are recurrent. For instance, when

the density is high and the kinetic turbulence is low, the

forecasts tends to be under-estimated. At the current state,

AMOEBA isn’t sufficiently appropriate to perform this

recognition.

Forecasting the production enables to use different sorts

of renewable energies. So, this kind of tool is necessary to

manage efficiently the energy in a smart and sustainable city.

V. USE CASE 2: MULTI-AGENT SYSTEM FOR ECONOMY

ENERGY

Nowadays, a lot of objects are connected like our watches

which can receive messages, the refrigerators which can

order missing products, or the parkings able to indicate free

places. It is easy to think that buildings will be connected in

the cities of future. They will dispose of sensors to measure

their water consumption or their electric consumption. With

those data, it will be possible to detect uncommon situations,

that we named singularities. The ability to detect these

singularities could improve a building consumption and so

saving energy.

For example, if the singularity is a breakdown, a tech-

nician can react to it faster and, consequently, the energy

management will be improved. An efficient management of

energy is important for the smart cities [11]. We will be able

to go for the way off, we can make a comparison between

the sensors data and the building simulation. This also offer

promising opportunities to improve study of user behaviour

on energy consumption, by differentiating more precisely

measurement errors and unexpected user actions for exam-

ple. In some project (like the zero energy building project

[1]), understanding energy consumption with precision is an

utmost necessity.

During the experiences, we have used the data from an

already connected building, and more precisely the data of

the handling air central. AMOEBA was designed to learn to

correlate data. Here, we use it to make classification. We

use five sensors as entry, and the oracle is a sixth entry

saying if the current situation is a singularity or not. Then,

AMOEBA use these entries to build a more general model of

singularities in such a way that, in a new unknown situation,

AMOEBA could said if this situation is a singularity or not.

• One sensor for the outside air temperature.

• One sensor for the temperature ambient air, in other

words it is the temperature in the life area.

• One sensor for the temperature resumption air. It is

the air temperature on the entrance of the central air

handling.

• One sensor for the temperature blown air. It is the air

temperature to send back in the building.

• Finally, the sensor for the blown pressure. When this

Fig. 5. The period is between october 12 and december 21 2014. The
pressure is between 0 and 450 Pa. The ambient temperature is between 19
and 28 C. The outside temperature is between 1 and 31 C. The discard
temperature is between 9 and 33 C. The blown temperature is between 10
and 28 C.

sensor value is too high or too low, we have a singu-

larity.

This chart figure 5 represents the five sensors values, it

covers the period from october 12th to december 21th 2014.

A significant singularity is also visible on the chart because

it is on several temperatures sensors of the resumption air,

the blowing air and on the pressure sensor.

After the learning step over the 38,809 situations (see

Figure 6), AMOEBA has well classified 38,314 situations.

This represents 98.7% of success. It has mistaken 495

situations and 449 singularities were not detected.

AMOEBA succeeds at classifying the major singularity

but it does not succeed to classify all singularities. On 2352

singularities, AMOEBA has well classified 1903 situations

which corresponds to an error rate of 19%.

In order to improve those results, AMOEBA has to im-

prove the generalization of the situation but it is difficult

because with five sensors, the generalization is on five

dimensions We have to lead further experiences with others

parameters to confirm those results. For example, we can

increase the number of sensors to better classify the situations

or asking to an expert to annotate the situations. But the

problem of generalization goes further than that. Indeed,

determining a good way to generalize is a complex task. In

the current version of AMOEBA, results could be modified

by tuning parameters affecting the generalization process.

Even if this tuning is rather simple for a learning system,

we are working on a more general way to generalize, able

to be fully efficient without tuning.

This kind of systems serves the economy of energy and is

needed to help human to manage larger and larger systems.



Fig. 6. AMOEBA output according to expected output (neutral or
singularity)

Fig. 7. Actions on devices: Autonomous AI tool versus human

VI. USE CASE 3: MULTI-AGENT SYSTEMS FOR

MANAGING THE WELL-BEING

A previous work [6] demonstrated the capability to ob-

serve users during their daily activity in order to learn how

to perform their actions on their behalf. An example of this

work is given on the figure 7 which simulates the human

behaviour during 50 days in a room of a flat having a light

and an electric shutter. We observe that the AI system learns

relevantly the contexts in which the user acts: on average 78.6

actions by day while the user performs only 0.9 action by

day. Because a human has not exactly the same behaviour,

the simulations are repeated 20 times during the 50 days

period. We want now to go a step beyond, in learning what

is the real underlying well-being of the humans and not only

their actions on the devices.

However, this tool doesn’t express the human needs

because it only informs about his actions on the devices

in numerous contexts. So, it is important to have means

to perceive human requirements and means to act on the

environment in order to maintain the well-being which can

evolve in real time and which is not the same for two

different inhabitants. The sensors and effectors must be

embedded with intelligence to enable all the system to self-

adapt to the changes.

The well-being is defined as a pleasant state resulting

from the satisfaction of the body and the spirit requirements

which leads to feel a so-called sensation of well-being. This

satisfaction towards the environment rests on all the physical

dimensions of the atmospheres, but also to the behavioural

and psychological aspects. At the physical level, or phys-

iological, there are the comforts which can be measurable

thanks to sensors such as the respiratory, thermal, acoustic or

visual comforts. This aspect is generally well-known and sev-

eral norms define minimum and/or maximum thresholds for

concerned physical quantities (light, temperature, acoustic

power, etc.). At the behavioural level, the individual human

capacity for action is highlighted because the environmental

conditions and the expectations vary over time. Indeed, a

draft trough a room is more appreciate in summer than in

winter. Thus, it is important that the occupant can act on the

regulatory bodies of the systems modifying the conditions

of his environment. Finally, at the psychological level, the

implication of the individual is pointed out in term of energy.

Despite of his capacity to control his environment to meet

these physiological needs, he has to be conscious of it.

There are other dimensions to the sensation of well-being

in an environment. For instance, the comfort of use (is the

building adapted to the activities for which it is designed?),

the aesthetic feeling (is the building beautiful? Does it well

integrate to his environment?), a positive or negative feeling

due to the innovation (is the building too modern?), etc. So,

the combination of the various comfort dimensions (physio-

logical, behavioural, psychological) involves the well-being

in an environment isn’t easy to describe. This well-being will

be not only different for each person, but also time-varying,

according to its age, its sex, its health, and even its humor.

The ecosystem of smart city aims to study this notion in

order to improve the comfort of the citizens and to be more

effective, while developing the city in accordance with the

environment.

Some studies on the respiratory, thermal, acoustic and

visual comforts were made, but in such a divided way,

without studying the interactions between them. In this work,

we would like to take simultaneously into account all these

comforts with an ”adaptive” and ”bottom-up” approach. A

cyberphysical system is associated to the management of

one type of comfort, for example for visual comfort. This

system has some information in inputs, information provided

by sensors. The outputs of the system is realized by effectors

which act on the comfort. The system able to manage all the

types of comfort is a collective of cyberphysical systems or

a system of systems. All these systems are in interactions

and interdependent.

AMOEBA makes a learning of the various systems linked

to the comforts, thanks to MAS, without describing them

the intrinsic features of the comforts to learn. Each agent

possesses its own objective which could conflict with the

others. Like this, a conflict between visual comfort and

thermal comfort could occur during a beautiful summer day

between the actions of opening and closing the shutters.

Indeed, if an action of closure increases the thermal comfort

by decreasing of the temperature, it will be made to the

detriment of the visual comfort ; the action of opening will

cause the opposite effect. Furthermore, if the decrease of the



Fig. 8. The respiratory, thermal, acoustic and visual comforts define the
concept of well-being and interact on power consumption.

visual comfort engenders the simultaneous action to switch

on a light, the MAS bound to the electric consumption will

conflict with this action. It is this peculiarity which allows

the emergence of features and actions, and which can reveal

the notion of well-being studied.

Because in smart and sustainable system the human is

central, the system must be able to take into account and to

act to provide them a good quality of life.

VII. CONCLUSIONS

Smart cities are complex environments. In this paper, we

emphasize the importance of considering the management

of a smart city as a complex multi-scale problem, requiring

a generic and adaptive approach. Through three use cases,

dealing with the energy production, the singularity detection

and the comfort, we present our multi-agent and bottom-up

approach to address these requirements. This multi-agent ap-

proach is based on a set of cooperation mechanisms, defined

by the AMAS approach, to ensure its rapid adaptation to the

changing dynamics of a complex environment.

We presented 3 use cases of a generic system AMOEBA

able to learn and to self-adapt to changing environment. The

first application deals with the renewable energy where the

system provides a forecast of the production. The second

application concerns the detection of singularity or singular

behaviour in order to help to repair these situations to

economize energy. The third is a system of systems able

to manage the daily life environment of human in order to

provide them well-being. In these three use cases the generic

AMOEBA system is instantiated.

AMOEBA is able to design in a bottom-up approach a

system which can present a kind of intelligent behaviour

because it learns from the encountered situations. These

systems are pervasive in the sense that they can work without

the human intervention if the human doesn’t intervene. And

they take into account it if he human acts on the system.

In the smart and sustainable city, these kinds of systems

are needed because of the complexity of the city where all

situations cannot be forecast in advance.

The various use cases presented will have to be refined

and further developed in the future. In the medium term, our

approach will be soon tested in the context of a connected

campus with a very large amount of data, as part of the

neOCampus operation. This should assess, hopefully, the

capacity of our approach to process data from a system of

complexity approaching the complexity of a smart city.
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