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ABSTRACT

Within the scope of sparse signal representation, we consider
the problem of velocity ambiguity mitigation for wideband
radar signal. We present a Bayesian robust algorithm based on
a new sparsifying dictionary suited for range-migrating tar-
gets possibly straddling range-velocity bins. Numerical sim-
ulations on experimental data demonstrate the ability of the
proposed algorithm in mitigating velocity ambiguity.

Index Terms— Bayesian estimation, Sparse signal repre-
sentations (SSR), wideband radar

1. INTRODUCTION

A radar system transmitting a train of pulses at constant pulse
repetition frequency (PRF) suffers from two types of ambi-
guities: range ambiguities (if the PRF is too high) or veloc-
ity ambiguities (if the PRF is too low) [1]. Moreover, one
cannot increase the ambiguous range without decreasing the
ambiguous velocity, and reciprocally. Wideband radar sys-
tems offer an alternative to the problem of ambiguity removal
[2, 3]. More precisely, if we assume that a low PRF is used,
there are no range ambiguities but many velocity ambiguities.
Additionally, using a wide instantaneous bandwidth improves
range resolution, so that fast moving targets are likely to mi-
grate during the coherent processing interval (CPI) leading to
range-velocity coupling. Unlike conventional Doppler phase
measurement, this range walk phenomenon can give unam-
biguous velocity measurement.

Sparse signal representation (SSR) can be of particular in-
terest when trying to remove velocity ambiguities since it al-
lows the estimation of a sidelobe-less signal of interest (SOI)
[4],[5, chap.5]. SSR relies on a sparsifying dictionary that
results from a discretization of the range and velocity dimen-
sions (in the case of this bi-dimensional problem) and hence
define some analysis grid. In [6] an SSR algorithm was devel-
oped within this framework and proven to mitigate velocity
ambiguities, provided that target’s features belong to the anal-
ysis grid. Otherwise, as mentioned in [7, 8, 9, 10] a problem
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of grid-mismatch might arise and disrupt velocity ambiguity
mitigation. In [7, 8] two SSR algorithms robustified towards
grid mismatch are presented in the case of narrowband radar
signal where 1D and 2D Fourier analysis grids are used re-
spectively (resp.). Here, the novelty lies into the new sparsi-
fying dictionary that takes into account range migration, and
the corresponding estimation scheme; the algorithm is devel-
oped within a Bayesian framework.

The remaining of the paper is organized as follows. First,
the wideband signal model is described in Section 2. Then,
the proposed Bayesian hierarchical model and the associated
estimation scheme are presented in Section 3 and 4 resp. The
proposed algorithm is finally evaluated on experimental data
in Section 5.

2. SIGNAL MODEL

The signal model used to describe migrating targets has been
introduced in [6]. In this paper, a row-vectorized version of
this model is used

y =

N∑
n=1

αnan + n (1)

where each vector has a length KM , K being the number of
subbands and M the number of pulses corresponding to the
received samples gathered in vector y. n is the noise vector;
αn, an and N represent the complex amplitude and signature
of the nth scatterer, and the total number of scatterers in the
scene. The scatterer signature a involved in (1) is the product
of a conventional 2D-cisoid with cross-coupling terms that
model the range migration, i.e.,

[a]m+kM = e
j2π
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where fc is the carrier frequency, B the bandwidth, Tr the
pulse repetition interval (PRI); τ0 is the initial round-trip de-
lay of the scatterer and v its radial velocity. fd , 2vfcTr/c
is the normalized Doppler frequency of the scatterer, while
fr , τ0B/K represents its normalized range frequency. In



the following equations, the fractional bandwith per subband
µ = B/(Kfc) is used.

Within the scope of SSR methods, the signal y is refor-
mulated as

y = Hx+ n (3)

where x is a sparse vector that represents the targets ampli-
tude andH is aKM×K̄M̄ sparsifying dictionary that stems
from a discretization of the range and velocity dimensions,
K̄M̄ being the dimensions of reconstruction of the scene.
Then, using (2) the ī-th column of the dictionary H is ex-
pressed as

[hī]i =
1√
KM

exp {−j2πfrīk} exp {j2πfdī(1 + µk)m}

where frī and fdī are the normalized range and Doppler fre-
quencies from the range and velocity analysis grids. The ta-
ble indices k, m, i and k̄, m̄, ī used to index the sparsifying
dictionary H are related as i = m + kM (k ∈ {0,K −
1}, m ∈ {0,M − 1}) and similarly for ī, k̄, m̄.

The range analysis grid is divided into K̄ bins with a pos-
sible zero-padding factor, so that K̄ = nrzpK. Then, the nor-
malized range Doppler frequency frī of a scatterer located at
the k̄-th range bin is expressed as frī = k̄/K̄.

In order to mitigate velocity ambiguity, the range-velocity
map is unfolded with a factor of nva on the velocity axis.
Taking into account positive and negative velocities leads us
to consider a velocity analysis grid that goes from −nvava/2
to nvava/2, where va = c/(2fcTr) is the ambiguous velocity.

This grid is divided into M̄ bins with M̄ = nvzpnvaM
where nvzp represents the zero-padding factor per velocity am-
biguity. The normalized Doppler frequency is then fdī =
nvam̄

′/M̄ where (assuming M̄ is even) m̄′ = m̄ if m̄ ∈
{0, ..., M̄/2− 1}; m̄′ = m̄− M̄ if m̄ ∈ {M̄/2, ..., M̄ − 1}.

As explained in [7, 8], the range and velocity of the tar-
gets present in the radar scene does not necessarily coincide
with that of the sparsifying dictionary H . Following the ap-
proach proposed in [8] two mismatch vectors (εv, εr) are in-
troduced to address the mismatch problem on the velocity and
range axis resp. They parametrize the sparsifying dictionary
H such that

fdī =
m̄′ + εv

ī

M̄
nva, frī =

k̄ + εr
ī

K̄
. (4)

Generally speaking, the problem (3) is ill-posed because
K̄M̄ >> KM (especially when the range-velocity maps are
unfolded, i.e., nva > 1); in this paper, the problem is regular-
ized using a Bayesian approach.

3. HIERARCHICAL BAYESIAN MODEL

A Bayesian framework is set up in order to estimate the pa-
rameters of interest x and (εv, εr). The hierarchical Bayesian

model adopted is that of [8] so it is briefly recalled in this sec-
tion. However, note that the sparsifying dictionary in case of
migrating targets will demand a new method for the sampling
of the mismatch parameters (εv, εr).

3.1. Likelihood

The noise vector n is assumed white and distributed follow-
ing a centered Gaussian distribution with power σ2. The like-
lihood function is then expressed as

f(y|σ2,x, εv, εr) =

exp

{
−||y −H(εv, εr)x||2

σ2

}
(πσ2)

KM
. (5)

3.2. Prior model

3.1.1) Target amplitude vector x
The elements xī , [x]̄i of the amplitude vector are as-

sumed independent and identically distributed (iid) according
to the following mixed type probability density function (pdf)

π(xī|w, σ2
x) = (1−w)δ(|xī|)+w

1

πσ2
x

exp

{
−|xī|

2

σ2
x

}
. (6)

The prior (6) is denoted as xī|w, σ2
x ∼ BerCN

(
w, 0, σ2

x

)
. It

promotes the sparsity of the radar scene, while decorrelating
sparsity level and target power via its mixed-type structure.

3.1.2) Noise power σ2

An inverse-gamma prior is chosen for the white noise
power σ2; it is denoted IG (γ0, γ1) and can be expressed as

π(σ2|γ0, γ1) ∝ e−γ1/σ
2

(σ2)γ0+1
I[0,+∞)(σ

2) (7)

where γ0, γ1 are resp. the shape and scale parameters.

3.1.3) Target signal power σ2
x

Similarly to σ2, an inverse-gamma prior is chosen for
the target signal power σ2

x and is denoted as σ2
x|β0, β1 ∼

IG (β0, β1).

3.1.4) Level of occupancy w
If no information is available about the sparsity level of

the target scene, a convenient prior is a uniform pdf over the
interval [0, 1], i.e., w ∼ U[0,1].

3.1.5) Grid errors (εv, εr)
The joint prior pdf of the grid error in the īth analysis

bin (εv
ī
, εr
ī
) is chosen conditioned to the magnitude of xī; we

consider that the (εv
ī
, εr
ī
|xī) are iid with conditional joint pdf

π(εvī , ε
r
ī |xī = 0) =δ(εvī )δ(ε

r
ī ) (8a)

π(εvī , ε
r
ī |xī 6= 0) =I[−0.5,0.5](ε

v
ī )I[−0.5,0.5](ε

r
ī ) (8b)

where IA(.) is the indicator function of the set A.



4. BAYESIAN ESTIMATION

We propose an estimation scheme of the target scene via
the parameters of interest x, (εv, εr) based on the Bayesian
hierarchical model described in Section 3. More precisely,
our objective is to obtain the minimum mean square error
(MMSE) estimators of x and (εv, εr)

x̂MMSE =

∫
xf(x|y)dx, (9a)(

ε̂v, ε̂r
)

MMSE =

∫
(εv, εr) f(εv, εr|y)dεvdεr. (9b)

However, (9) seems intractable to derive analytically, so
a Monte-Carlo Markov Chain (MCMC) is implemented [11].
More specifically, an hybrid Gibbs sampler [11, chap.10] is
used, which simulates iteratively samples θi(t) according to
their conditional posterior distribution f(θi|y,θ−i) where
θ =

[
σ2, εvT , εrT ,xT , w, σ2

x

]T
and θ−i is the vector θ

whose ith element has been removed. After a burn in time
Nbi, the samples are distributed according to their posterior
distribution f(θi|y). When enough samples are acquired
(Nr), the MMSE estimators can be built empirically as

θ̂iMMSE = N−1
r

Nr∑
t=1

θi
(t+Nbi). (10)

The conditional posterior distributions are obtained from the
joint posterior pdf of σ2,x, εv, εr, w, σ2

x|y. In particular, vec-
tors x and (εv, εr) are sampled element-wise following the
conditional posterior distributions of xī and (εv

ī
, εr
ī
) that are

derived from the conditional joint posterior distribution

f(εvī , ε
r
ī , xī|y, ε

v
−ī, ε

r
−ī,x−ī, σ

2, w, σ2
x)

∝ exp

{
−
[
|xī|2||hī(εvī , ε

r
ī
)||2 − 2Re

{
x∗
ī
hī(ε

v
ī
, εr
ī
)Heī

}]
σ2

}
× π(xī|w, σ2

x)π(εvī , ε
r
ī |xī) (11)

where we used (5) along with the fact that y−H(εv, εr)x =
eī − hīxī with eī = y −

∑
l 6=ī hl(ε

v
l , ε

r
l )xl.

4.1. Sampling of x, σ2, w, and σ2
x

Following [7], x is sampled element-wise; the īth element of
x follows the distribution BerCN

(
wī, µī, η

2
ī

)
with

η2
ī =

(
σ−2 + σ−2

x ||hī(εvī , ε
r
ī )||

2
)−1

(12a)

µī =σ−2η2
ī hī(ε

v
ī , ε

r
ī )
Heī (12b)

wī =
w

(1− w)σ2
xη
−2
ī

exp
{
−η−2

ī
|µī|2

}
+ w

. (12c)

Note that with the sparsifying dictionaryH adopted
||hī(εvī , ε

r
ī
)||2 = 1.

The conditional posterior distributions of σ2, σ2
x and w

are given by

σ2|y,x, εv, εr ∼ IG
(
γ0 +KM, γ1 + ||y −H(εv, εr)x||2

)
σ2
x|y,x ∼ IG

(
||x||0 + β0, ||x||2 + β1

)
w|y,x ∼ Be

(
||x||0 + 1, K̄M̄ − ||x||0 + 1

)
where ||x||0 is the number of non-zero elements in x.

4.2. Sampling of (εv, εr)

The parameters (εv, εr) are jointly sampled element-wise.
Using (11),(8) and ||hī(εvī , ε

r
ī
)||2 = 1 we obtain

f(εvī , ε
r
ī |y, ε

v
−ī, ε

r
−ī,x, σ

2;xī = 0) = δ(εvī )δ(ε
r
ī ) (13a)

f(εvī , ε
r
ī |y, ε

v
−ī, ε

r
−ī,x, σ

2;xī 6= 0) (13b)

∝ exp

{
KM−1∑
i=1

κi cos

(
2π

[
εv
ī

M̄
nva(1 + µk)m− k

εr
ī

K̄

]
− φi

)}

knowing that (εv
ī
, εr
ī
) ∈ [−.5, .5]2 and where κi = |[zī]i|,

φi = ∠[zī]i, with zī = 2σ−2x∗
ī
[h∗ī (0, 0)� eī].

We can see that range and velocity indices are coupled in
distribution (13), contrary to that of [8]. Besides, it does not
belong to any familiar class of distribution so a Metropolis-
Hastings move is added to the Gibbs sampler in order to sam-
ple jointly (εv

ī
, εr
ī
). In the MH algorithm, samples are drawn

from a proposal distribution and accepted or rejected with a
given acceptance ratio [11]. The shape of the target distribu-
tion (13) depends on the signal-to-noise ratio (SNR): for high
SNR values, it is peaked around the true values of (εv

ī
, εr
ī
),

whereas it is flat in the case of low SNR values. In this paper,
we employ postprocessing SNR, defined as |xī|2/σ2. Thus,
the choice of the proposal is chosen conditionally to the SNR
value: i) a uniform proposal distribution for low SNR values,
εv
ī
, εr
ī
∼ U[−.5,.5]2 . ii) a Gaussian proposal distribution for

high SNR values, εv
ī
, εr
ī
∼ N (µε,Σε).

This sampling procedure was already used in [8], but here
estimation of the mean and covariance matrix of the Gaussian
proposal is adapted to the case of migrating targets due to
coupling of indices k and m in (13). Moreover, the sampling
procedure is improved wrt that of [8] in the sense that esti-
mation of the parameters of the proposal distribution is more
accurate (as described later). This ensures better sampling of
the parameters (εv, εr), but at the cost of computational effi-
ciency.

Estimation of µε First, the mean is estimated as the values
of (εv

ī
, εr
ī
) giving the maximum of (13). To do so, (13) is

reformulated as

f(εvī , ε
r
ī |y, ε

v
−ī, ε

r
−ī,x, σ

2;xī 6= 0) ∝ I[−.5,.5](ε
v
ī )I[−.5,.5](ε

r
ī )

exp

{
Re

{
KM−1∑
i=1

[zī]i exp {j2π (frcik − fdci(1 + µk)m)}

}}



with frci = εr
ī
/K̄ and fdci = nvaε

v
ī
/M̄ . One can recog-

nize in this last expression the coherent integration with mi-
gration compensation of vector zī [5, p.522]. Hence, µε can
be estimated as the location of the maximum of this coherent
integration restricted to the domain (εv

ī
, εr
ī
) ∈ [−.5, .5]

2.

Estimation of Σε Then a second-order Taylor series ex-
pansion of (13) around its peak (namely, µε) is conducted
and (13) is approximated by

εvī , ε
r
ī |y, ε

v
−ī, ε

r
−īx, σ

2;xī 6= 0 ∼ N (µε,Σε) .

5. EXPERIMENTAL RESULTS

In this section, we depict the results obtained with the pro-
posed algorithm on experimental data recorded with the
PARSAX radar of TU Delft [12] . The data set considered
entails several echoes of vehicles on a freeway; data has been
pre-whitened via some ad-hoc procedure.

It can be seen in Fig.1(a) that four targets are correctly 1

estimated by the proposed algorithm and that velocity ambi-
guities are mitigated. However, when using a non-robustified
version of the algorithm (i.e., mismatch is considered null,
Fig.1(b)) the sidelobes of targets at range bin 6/7, 12 and 14
are seen as “real” targets. Note that one target is still correctly
estimated (20 m/s, range bins 3/4), probably because its mis-
match with respect to the range-velocity analysis grid is low.

To finish, we depict the histogram of (εv
ī
, εr
ī
)|y for the tar-

get at range bin 6, -14.6 m/s; it is built using samples drawn
by the hybrid Gibbs sampler described in Section 4. We can
see that, even with a uniform prior distribution, the empiri-
cal posterior distribution is strongly peaked around the value
estimated by the SSR algorithm, namely (.32, .36).

6. CONCLUSION

In this paper, we present a Bayesian sparse recovery algo-
rithm able to mitigate velocity ambiguities in the case of off-
grid range migrating targets. More precisely, this algorithm
relies on a robustified sparsifying dictionary suited for range-
migrating targets that possibly straddle range-velocity bins.
Then, the parameters of interest are estimated thanks to a
Monte-Carlo Markov chain algorithm. The proposed algo-
rithm is successfully evaluated on experimental radar data and
is proved to mitigate velocity ambiguities. In the future, the
algorithm could be extended to colored noise in order to deal
with diffuse clutter component.

1Though ground truth is unknown, true values of non-ambiguous veloci-
ties were confirmed by stationarity analysis based on two consecutive bursts
of M pulses [13].

(a) Proposed algorithm

(b) No mismatch estimation

Fig. 1: Range-velocity map from PARSAX data estimated by proposed algo-
rithm with or without mismatch estimation (circles). Coherent integration of
the scene represented background. K = 16, M = 64, fc = 3.315 GHz,
B = 100 MHz, va = 45 m/s, σ2 ≈ 1. K̄ = K, nva = 2, M̄ = 2M ,
(mσ2

x
, stdσ2

x
) = (40, 10) dB, (mσ2 , stdσ2 ) = (0, 5) dB.

Fig. 2: Prior and empirical posterior pdf of (εv
ī
, εr
ī
) for target at range bin 6,

-14.6 m/s. MMSE estimate depicted as circle.
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