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Abstract—We consider the problem of estimating a finite
number of atoms of a dictionary embedded in white noise, using a
sparse signal representation (SSR) approach, a problem which is
relevant in many radar applications. In particular, the estimation
of a radar scene consisting of targets with wide amplitude range
can be challenging since the sidelobes of a strong target can
disrupt the estimation of a weak one. In this paper, we present a
Bayesian algorithm able to estimate weak targets possibly hidden
by strong ones. The main strength of this algorithm lies in a novel
sparse-promoting prior distribution which decorrelates sparsity
level and target power and makes the estimation process span
the whole target power range. This algorithm is implemented
through a Monte-Carlo Markov chain. It is successfully evaluated
on synthetic and semiexperimental radar data.

I. INTRODUCTION

A well-known problem in radar applications is the estima-
tion of radar scenes containing strong and weak targets, since
the sidelobes of a strong target can disrupt the estimation of
a weak one. Several algorithms were developed to address
this issue, starting with the CLEAN algorithm [1], [2]. This
algorithm “successively removes large targets and their side-
lobe responses by subtracting the point spread function of the
receiving system centered at the locations of the bright targets”
[2]. Thus, if a strong target and a weak target are present in the
radar scene, the strong target will first be removed, and then the
weak target should appear as the bright target and be estimated.
More recently, the so-called “greedy methods”, such as the
Matching Pursuit (MP) [3] and Orthogonal Matching Pursuit
(OMP) [4], [5], use a similar procedure to estimate such a
target scene. Generally speaking, the estimation methods that
rely on a sparse representation of the target scene are of
particular interest in this issue since they allow the estimation
of a sidelobe-less signal of interest (SOI) and can lead to a
better target dynamic range.

In [6], a Bayesian sparse recovery algorithm was developed
and proved to give good performance on synthetic and exper-
imental data. As in every sparse signal representation (SSR)
approach, the signal is described as a linear combination of a
finite number of atoms from a dictionary. Using this approach,
the problem can be written as

y = Fx+ n (1)
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with
F ∈ CM×M̄ a sparsifying dictionary of size M × M̄

where usually M̄ ≥M ;
x ∈ CM̄ the sparse vector having ideally exactly N

nonzero components, N being the number
of scatterers in the target scene.

However, as in every SSR algorithm, adequate tuning of
some parameters is essential since it can deteriorate the
performance of the reconstruction. In [6], the sparsity is
enforced via a sparse-promoting prior distribution on vector
x. This prior depends on some hyperparameters that will
adjust the knowledge the radar operator has about the target
power level. In this case, setting up these hyperparameters
can be tedious. This paper aims at modifying the algorithm
proposed in [6] in order to deal with targets having significant
different power level. The approach proposed is to modify
the prior distribution of the sparse vector and to divide its
support into several classes, which correspond to subdivisions
of the receiver dynamic range. Thus, the estimation process is
“forced” to span each class of target power.

The remaining of the paper is organized as follows. The
proposed Bayesian model is described in Section II, as well as
the associated estimation scheme in Section III. The proposed
algorithm is successfully evaluated via numerical simulations
on both synthetic and semiexperimental data in Section IV.

II. BAYESIAN MODEL

In this section, we describe the hierarchical Bayesian
model adopted, which is represented graphically in Fig. 1.
A Bayesian framework is established in order to estimate the
target scene x. Thus, each unknown parameter is modeled by a
random variable with a given prior probability density function
(pdf). Each prior density is chosen as facilitating the computa-
tion of the estimation process (mathematical tractability), yet
preserving physical sense to the hierarchical model.

A. Likelihood

We adopt the same observation model as in [6] recalled in
(1). An additive white noise background is considered, and the
noise n is assumed to be centered Gaussian with power σ2,
which is denoted as

n|σ2 ∼ CNM

(
0, σ2I

)
(2)
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Fig. 1. Directed acyclic graph associated with the hierarchical Bayesian model
proposed. The parameters in the dashed circles need to be adjusted by the
operator.

where I is the identity matrix. The likelihood function is thus
given by

f(y|x, σ2) =
1

πMσ2M
exp

{
−
‖y − Fx‖22

σ2

}
. (3)

B. Prior pdfs of the parameters

1) Noise power σ2: As in [6], an inverse-gamma prior is
chosen for the white noise power σ2, essentially because it
is conjugate to the likelihood (3). The prior pdf of σ2 can
therefore be expressed as

π(σ2|γ0, γ1) ∝ e−γ1/σ
2

(σ2)γ0+1
I[0,+∞)(σ

2) (4)

where γ0, γ1 are respectively the shape and scale parameters.
The distribution (4) is denoted as σ2|γ0, γ1 ∼ IG (γ0, γ1).
As mentioned before, the shape and scale parameters (γ0, γ1)
allow a very informative, or on the contrary flat, prior distri-
bution to be selected.

2) Sparse vector x: As said in Section I, the approach
chosen to deal with the problem of estimating targets with
different power level is to consider several classes of target
power. Truncating the power range makes sense in radar
applications since the receiver has some predefined dynamic
range [7, chap.11]. Then, the idea is to divide the power range
into several classes, within the dynamic range limitation.

The elements xm̄ , [x]m̄ of the amplitude vector are
assumed independent and identically distributed (iid). Instead
of considering x ∈ CM̄ , we parametrize x in terms of modulus
ρ and angle φ subject to (s.t.)

x , ρ� eiφ, (5)

where � refers to the Hadamard product. Eq. (5) is equivalent
to the formulation ∀m̄ ∈

{
0 . . . M̄ − 1

}
, xm̄ = ρm̄e

iφm̄ .

The elements in ρ and φ are iid a priori. The Bernoulli-
Gaussian prior distribution on xm̄ used in [6] can be modified
in order to include this idea of classes of target power, such
that

π(ρm̄|w)= w0δ(ρm̄) +

C∑
c=1

wckc√
2πσ2

c

exp

{
− 1

2σ2
c

(ρm̄ − ρc)2

}
I[ρ−c ,ρ+

c )(ρm̄) (6)

and

π(φm̄|ρm̄ = 0) = δ(φm̄) (7a)

π(φm̄|ρm̄ 6= 0) =
1

2π
I[0,2π](φm̄) (7b)

where w = [wc]c=0,...,C is the vector of class probabilities,
and w0 = 1−

∑C
c=1 wc. kc is a scaling constant consecutive to

the truncation of the Gaussian on [ρ−c , ρ
+
c ). This mixed-type

prior distribution allows to enforce sparsity while including
the target power classes notion. In other words, ρm̄ belongs
to class c with probability wc, and is distributed following
N[ρ−c ,ρ

+
c )

(
ρc, σ

2
c

)
; it is null with probability w0. ρc and σ2

c

represent the mean and variance in each class. Thus, the hyper-
parameters {(ρ−c , ρ+

c , ρc, σ
2
c )}c=1...C can be set-up such that

the distributions N[ρ−c ,ρ
+
c )

(
ρc, σ

2
c

)
cover the whole expected

amplitude range, while having separated or almost-separated
supports.

However, setting-up the parameters {(ρc, σ2
c )}c=1...C can

be tedious, so a simpler prior can be assigned to ρm̄, e.g., a
uniform-like prior

π(ρm̄|w) = w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄). (8)

In this case, ρm̄ belongs to class c with probability wc, and
is uniformly distributed within this class; it is null with prob-
ability w0. In the following, we adopt this simpler uniform-
like prior distribution, acknowledging that it is still possible
to adopt a Gaussian-like prior distribution (6).

C. Prior pdfs of the hyperparameters

1) Vector of class probabilities w: A conventional solution
for the distribution of the vector of class probabilities w is a
multivariate Dirichlet distribution with concentration parame-
ters θ0, . . . , θC > 0 [8], denoted as w ∼ Dir (θ0, ..., θC)

π(w|θ0, . . . , θC) ∝ wθ0−1
0 I[0,1](w0)×

C∏
c=1

wθc−1
c I[0,1](wc).

(9)
When no prior information about the target power range is
available, a symmetric Dirichlet distribution can be adopted
where the concentration parameters θ0, . . . , θC are equals to
1. Otherwise, the concentration parameters can be adjusted in
order to favor some classes over the other ones.



III. BAYESIAN ESTIMATION

Herein we propose an estimation scheme of the target scene
x based on the Bayesian hierarchical model described in (3),
(7), (8), (9). More precisely, our objective is to obtain the
following estimator of x

x̂class = E
{
ρ� eiφ|y

}
(10)

=

∫
ρ,φ

ρ� eiφf(ρ,φ|y)dρdφ. (11)

This last integral is intractable to derive analytically, so we
demarginalize it and calculate x̂class as

x̂class =

∫
σ2,ρ,φ,w

ρ� eiφf(σ2,ρ,φ,w|y)dσ2dρdφdw.

(12)
It is now possible to compute x̂class since we can obtain sam-
ples following the joint posterior distribution f(σ2,ρ,φ,w|y).
Indeed, as in [6], a Monte-Carlo Markov Chain (MCMC)
is implemented [9]. More specifically, a Gibbs sampler
[9, chap.10] is used, which simulates iteratively samples
σ2(t)

,ρ(t),φ(t),w(t) according to their conditional posterior

distribution f(ζi|y, ζ−i), where ζ =
[
σ2,ρT ,φT ,wT

]T
and

ζ−i is the vector ζ whose ith element has been removed.
After a burn-in time Nbi, the samples ζ(t) are distributed
according to the joint posterior distribution f(ζ|y). When
enough samples are acquired (namely, Nr), the estimator of
x is built empirically as

x̂class = N−1
r

Nr∑
t=1

ρ(t+Nbi) � eiφ
(t+Nbi)

(13)

which is the empirical mean of all the samples
x(t) = ρ(t) � eiφ

(t)

. The conditional posterior distributions
are obtained from the joint posterior pdf of ρ,φ, σ2,w|y

f(ρ,φ, σ2,w|y) ∝ f(y|ρ,φ, σ2)π(ρ|w)π(φ|ρ)π(σ2)π(w).
(14)

A. Sampling of ρ

Since the elements in ρ are a priori iid, it is sampled
element-wise. Thus, we calculate the conditional posterior
distribution of ρm̄ using (8) and (14)

f(ρm̄|y, σ2,ρ−m̄,φ,w) ∝ f(y|ρ,φ, σ2)π(ρ|w)

∝ exp
{
−σ−2

[
ρ2
m̄ ‖ f m̄ ‖2 −2ρm̄Re

{
eHm̄f m̄e

iφm̄
}]}

×

[
w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄)

]
∝ wm̄,0 δ(ρm̄) (15)

+

C∑
c=1

wm̄,ckm̄,c√
2πη2

m̄

exp

{
− 1

2η2
m̄

(ρm̄ − µm̄)2

}
I[ρ−c ,ρ+

c )(ρm̄)

200 400 600 800 1000 1200 1400 1600
ρ0
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w0 = 0.10, 0.15, 0.60, 0.15

Fig. 2. Conditional posterior distribution (15) of ρ0 with µ0 = 500,
η0 = 150 and w0 = [10, 15, 60, 15]%. The dashed lines represent the
limits of the three non-zero power classes. The dotted curve is the Gaussian
N

(
µm̄, η2

m̄

)
.

where for c = 1, . . . , C

η2
m̄ =

1

2
σ2 ‖ f m̄ ‖−2 (15a)

µm̄ = ‖ f m̄ ‖−2 Re
{
eHm̄f m̄e

iφm̄
}

(15b)

wm̄,c =

wc ×
kc
km̄,c

(2πη2
m̄)1/2 exp

{
1

2
η−2
m̄ µ2

m̄

}
w0 +

∑C
c=1 wc

kc
km̄,c

(2πη2
m̄)1/2 exp

{
1

2
η−2
m̄ µ2

m̄

} (15c)

and wm̄,0 = 1 −
∑C
c=1 wm̄,c. The conditional posterior

distribution of ρm̄ is then a mixed-type distribution with an
atom at 0 and a continuous component which is a mixture of
truncated Gaussians that are easy to simulate from, using for
instance an accept-reject procedure [10]. Note that the mean
and variance of the truncated Gaussian N[ρ−c ,ρ

+
c )

(
µm̄, η

2
m̄

)
do

not depend on the class, but that this Gaussian is weighted by
wm̄,c, which may be different for each class. This is illustrated
in Fig.2 where we can see an example of this distribution,
without the discrete component.

Remark. When using a Fourier dictionary, ‖ f m̄ ‖2= 1 so
that η2

m̄ = σ2/2, which does not depend on the grid index m̄.

B. Sampling of φ

The elements in φ are also a priori iid so it is sampled
element-wise. The conditional posterior distribution of φm̄ is
written as

f(φm̄|y, σ2,φ−m̄,ρ) ∝ f(y|ρ,φ, σ2)π(φm̄|ρm̄)

∝ exp
{
−σ−2

[
−2ρm̄Re

{
eHm̄f m̄e

iφm̄
}]}

π(φm̄|ρm̄)

∝ exp
{

2σ−2ρm̄|fHm̄em̄| cos (φm̄ − ψm̄)
}
π(φm̄|ρm̄).

According to (7a), we have

f(φm̄|y, σ2,φ−m̄,ρ; ρm̄ = 0) = δ(φm̄) (16)

and

f(φm̄|y, σ2,φ−m̄,ρ; ρm̄ 6= 0) ∝ (17)
exp {κm̄ cos (φm̄ − ψm̄)} I[0,2π)(φm̄)



which is a von Mises-Fisher distribution with concentration
parameter and mean direction respectively [11]

κm̄ = 2ρm̄σ
−2|fHm̄em̄| (17a)

ψm̄ = ∠fHm̄em̄ (17b)

where ∠ represents the angle in [0, 2π). It is denoted as
φm̄|y, σ2,φ−m̄,ρ; ρm̄ 6= 0 ∼ VM(κm̄, ψm̄). This distribution
is easy to simulate from following the method described
in [11].

C. Sampling of σ2

As in [6], the conditional posterior distribution of σ2 is

σ2|y,ρ,φ ∼ IG
(
γ0 +M,γ1+ ‖ y − F (ρ� eiφ) ‖22

)
.
(18)

D. Sampling of w

A Dirichlet prior distribution is assigned to vector w. Using
(9) and (14), the conditional posterior distribution of w is then
calculated as

f(w|y,ρ) ∝ π(ρ|w)π(w)

∝
M̄−1∏
m̄=0

{
w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄)

}

×wθ0−1
0

C∏
c=1

wθc−1
c

∝wn0+θ0−1
0 ×

C∏
c=1

wnc+θc−1
c (19)

where nc = #{m̄|ρm̄ ∈ [ρ−c , ρ
+
c )}, i.e., the number of scatter-

ers in class c, and n0 = M̄ −
∑C
c=1 nc. Thus, the conditional

posterior distribution of w is a Dirichlet distribution with
concentration parameters (n0 + θ0, n1 + θ1, . . . , nC + θC).

IV. NUMERICAL SIMULATIONS

A. Synthetic data

First, the proposed algorithm is compared to the previous
algorithm from [6] through numerical simulations on synthetic
data. These are generated according to (1) and (2), and using
a Fourier basis F as a sparsifying dictionary. The target
power classes adopted are: (−∞ 0], [0 30], [30 55], [55 65] dB.
As mentioned before, when using the previous algorithm
from [6], the radar operator must set-up the scale and shape
parameters of the prior distribution of the target power via
hyperparameters (see discussion in [6, Sec.III]). In what fol-
lows, they are adjusted to a non-informative Jeffreys prior, or
to an informative prior corresponding to high or low-power
targets. In this scenario, we consider a strong target with post-
processing SNR of 60 dB, defined as (F being unitary)

SNR = |xm̄|2/σ2, (20)

surrounded by two weak targets with varying SNR from 7 to
20 dB, located on the previous and next frequency bins. The
three targets have random phase. The performance of these

two algorithms is assessed after Nmc = 200 Monte-Carlo
simulations through the calculation of the normalized Mean
Square Error (nMSE) of the estimated target scene F x̂class
and the nMSE of the elements of x̂class corresponding to the
position of the targets in the scene. They are respectively
calculated as

nMSE(F x̂class) =
1

Nmc

Nmc∑
n=1

‖ F x̂class
(n) − Fx ‖22

‖ Fx ‖22
(21)

nMSE(x̂classi) =
1

Nmc

Nmc∑
n=1

|x̂(n)
classi − xi|

2

|xi|2
. (22)

Fig.3 shows that the proposed algorithm with target power
classes outperforms the algorithm from [6] in terms of nMSE
of Fx, regardless of the hyperparameters set-up. In fact, both
algorithms give the same performance in terms of nMSE of the
strong target (x1, Fig.3(c)) but the proposed algorithm better
estimates the weak targets (e.g., x0, Fig.3(b)).
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Fig. 3. Comparison between the performance of the proposed algorithm with
power classes (plain line), and that of the previous algorithm from [6] in the
case of a flat prior (dash-dotted line), or a prior adjusted to high-power (dotted
line) or low-power targets (dashed line). The scenario consists of three close
targets separated by 1/M . M̄ = M = 16. Nr = 1000, Nbi = 200.

B. Semiexperimental data

The performance of the proposed algorithm is finally con-
firmed on semiexperimental data recorded in November 2014
using the PARSAX radar [12] installed at TU Delft, The
Netherlands. The semiexperimental data were built adding
synthetic one-dimensional targets to a deramped thermal noise
signal. The target scene is represented in Fig.4(a); it consists of



3 strong targets with SNR=60dB, a target at 35 dB and 3 weak
targets near two of the strong ones. This target scene was
processed range-bin-wise since the algorithm is limited to one-
dimensional analysis for the moment. The proposed algorithm
well estimates the target scene, especially the weak targets that
are not always estimated by the previous algorithm from [6]. It
is also interesting to see that the proposed algorithm estimates
zero-velocity components that most probably correspond to
offsets of the coders.

V. CONCLUSION

In this paper we have presented a new Bayesian algorithm
for the sparse representation of a radar scene with targets
having wide amplitude range. In particular, a new sparse-
promoting prior was introduced, whose aim is to consider
several classes of target power and make the estimation process
span each class. The algorithm proposed, though computation-
ally intensive, allows to estimate weak targets whose recovery
might have been disrupted by strong ones. The study was
limited to on-grid targets but the algorithm will be extended
in the near future in order to deal with off-grid targets.
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scene estimated by the previous algorithm from [6] (squares). The background
corresponds to the target scene estimated by the APES algorithm. M = 32,
M̄ = M , Nr = 1000, Nbi = 1000.


